Science.gov

Sample records for acute dietary fat

  1. Dietary Fats

    MedlinePlus

    ... PHOs to food. Try to replace them with oils such as canola, olive, safflower, sesame, or sunflower. Of course, eating too much fat will put on the pounds. Fat has twice as many calories as proteins or carbohydrates. NIH: National Heart, Lung, and Blood Institute

  2. Dietary Fat and Cholesterol

    MedlinePlus

    ... Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 7 March 2017. + ... saturated fat found in red meat. What is cholesterol? Cholesterol is a fatlike substance that’s found in ...

  3. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism.

    PubMed Central

    Weintraub, M S; Zechner, R; Brown, A; Eisenberg, S; Breslow, J L

    1988-01-01

    The chronic and acute effects of different types of dietary fat on postprandial lipoprotein metabolism were studied in eight normolipidemic subjects. Each person was placed for 25 d on each of three isocaloric diets: a saturated fat (SFA), a w-6 polyunsaturated fat (w-6 PUFA) and a w-3 polyunsaturated fat (w-3 PUFA) diet. Two vitamin A-fat loading tests were done on each diet. The concentrations in total plasma and chylomicron (Sf greater than 1,000) and nonchylomicron (Sf less than 1,000) fractions of retinyl palmitate (RP) were measured for 12 h postprandially. Compared with the SFA diet, the w-6 PUFA diet reduced chylomicron and nonchylomicron RP levels 56 and 38%, respectively, and the w-3 PUFA diet reduced these levels 67 and 53%, respectively. On further analysis, the main determinant of postprandial lipoprotein levels was the type of fat that was chronically fed, which appeared to mediate its effect by changing the concentration of the endogenous competitor for the system that catabolizes triglyeride-rich lipoproteins. However, there was a significant effect of the acute dietary fat load, which appeared to be due to a differential susceptibility to lipolysis of chylomicrons produced by SFA as opposed to PUFA fat loads. The levels of postprandial lipoproteins are determined by the interaction of these chronic and acute effects. PMID:3058748

  4. Dietary fat and children

    MedlinePlus

    ... These include fats found in fish, nuts, and vegetable oils. Limit foods with saturated and trans fats (such as meats, full-fat dairy products, and processed foods). Fruits and vegetables are healthy snack foods. Children should be taught ...

  5. Dietary fats explained

    MedlinePlus

    ... milk, ice cream, cream, and fatty meats. Some vegetable oils, such as coconut, palm, and palm kernel oil, ... fats can help lower your LDL cholesterol. Most vegetable oils that are liquid at room temperature have unsaturated ...

  6. Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis.

    PubMed

    te Velde, Anje A; Brüll, Florence; Heinsbroek, Sigrid E M; Meijer, Sybren L; Lütjohann, Dieter; Vreugdenhil, Anita; Plat, Jogchum

    2015-10-15

    In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner.

  7. Acute liver failure caused by ‘fat burners’ and dietary supplements: A case report and literature review

    PubMed Central

    Radha Krishna, Y; Mittal, V; Grewal, P; Fiel, MI; Schiano, T

    2011-01-01

    Globally, people are struggling with obesity. Many effective, non-conventional methods of weight reduction, such as herbal and natural dietary supplements, are increasingly being sought. Fat burners are believed to raise metabolism, burn more calories and hasten fat loss. Despite patient perceptions that herbal remedies are free of adverse effects, some supplements are associated with severe hepatotoxicity. The present report describes a young healthy woman who presented with fulminant hepatic failure requiring emergent liver transplantation caused by a dietary supplement and fat burner containing usnic acid, green tea and guggul tree extracts. Thorough investigation, including histopathological examination, revealed no other cause of hepatotoxicity. The present case adds to the increasing number of reports of hepatotoxicity associated with dietary supplements containing usnic acid, and highlights that herbal extracts from green tea or guggul tree may not be free of adverse effects. Until these products are more closely regulated and their advertising better scrutinized, physicians and patients should become more familiar with herbal products that are commonly used as weight loss supplements and recognize those that are potentially harmful. PMID:21499580

  8. Dietary fat intake, supplements, and weight loss

    NASA Technical Reports Server (NTRS)

    Dyck, D. J.

    2000-01-01

    Although there remains controversy regarding the role of macronutrient balance in the etiology of obesity, the consumption of high-fat diets appears to be strongly implicated in its development. Evidence that fat oxidation does not adjust rapidly to acute increases in dietary fat, as well as a decreased capacity to oxidize fat in the postprandial state in the obese, suggest that diets high in fat may lead to the accumulation of fat stores. Novel data is also presented suggesting that in rodents, high-fat diets may lead to the development of leptin resistance in skeletal muscle and subsequent accumulations of muscle triacylglycerol. Nevertheless, several current fad diets recommend drastically reduced carbohydrate intake, with a concurrent increase in fat content. Such recommendations are based on the underlying assumption that by reducing circulating insulin levels, lipolysis and lipid oxidation will be enhanced and fat storage reduced. Numerous supplements are purported to increase fat oxidation (carnitine, conjugated linoleic acid), increase metabolic rate (ephedrine, pyruvate), or inhibit hepatic lipogenesis (hydroxycitrate). All of these compounds are currently marketed in supplemental form to increase weight loss, but few have actually been shown to be effective in scientific studies. To date, there is little or no evidence supporting that carnitine or hydroxycitrate supplementation are of any value for weight loss in humans. Supplements such as pyruvate have been shown to be effective at high dosages, but there is little mechanistic information to explain its purported effect or data to indicate its effectiveness at lower dosages. Conjugated linoleic acid has been shown to stimulate fat utilization and decrease body fat content in mice but has not been tested in humans. The effects of ephedrine, in conjunction with methylxanthines and aspirin, in humans appears unequivocal but includes various cardiovascular side effects. None of these compounds have been

  9. Dietary fat intake, supplements, and weight loss.

    PubMed

    Dyck, D J

    2000-12-01

    Although there remains controversy regarding the role of macronutrient balance in the etiology of obesity, the consumption of high-fat diets appears to be strongly implicated in its development. Evidence that fat oxidation does not adjust rapidly to acute increases in dietary fat, as well as a decreased capacity to oxidize fat in the postprandial state in the obese, suggest that diets high in fat may lead to the accumulation of fat stores. Novel data is also presented suggesting that in rodents, high-fat diets may lead to the development of leptin resistance in skeletal muscle and subsequent accumulations of muscle triacylglycerol. Nevertheless, several current fad diets recommend drastically reduced carbohydrate intake, with a concurrent increase in fat content. Such recommendations are based on the underlying assumption that by reducing circulating insulin levels, lipolysis and lipid oxidation will be enhanced and fat storage reduced. Numerous supplements are purported to increase fat oxidation (carnitine, conjugated linoleic acid), increase metabolic rate (ephedrine, pyruvate), or inhibit hepatic lipogenesis (hydroxycitrate). All of these compounds are currently marketed in supplemental form to increase weight loss, but few have actually been shown to be effective in scientific studies. To date, there is little or no evidence supporting that carnitine or hydroxycitrate supplementation are of any value for weight loss in humans. Supplements such as pyruvate have been shown to be effective at high dosages, but there is little mechanistic information to explain its purported effect or data to indicate its effectiveness at lower dosages. Conjugated linoleic acid has been shown to stimulate fat utilization and decrease body fat content in mice but has not been tested in humans. The effects of ephedrine, in conjunction with methylxanthines and aspirin, in humans appears unequivocal but includes various cardiovascular side effects. None of these compounds have been

  10. Saturated fats: what dietary intake?

    PubMed

    German, J Bruce; Dillard, Cora J

    2004-09-01

    Public health recommendations for the US population in 1977 were to reduce fat intake to as low as 30% of calories to lower the incidence of coronary artery disease. These recommendations resulted in a compositional shift in food materials throughout the agricultural industry, and the fractional content of fats was replaced principally with carbohydrates. Subsequently, high-carbohydrate diets were recognized as contributing to the lipoprotein pattern that characterizes atherogenic dyslipidemia and hypertriacylglycerolemia. The rising incidences of metabolic syndrome and obesity are becoming common themes in the literature. Current recommendations are to keep saturated fatty acid, trans fatty acid, and cholesterol intakes as low as possible while consuming a nutritionally adequate diet. In the face of such recommendations, the agricultural industry is shifting food composition toward lower proportions of all saturated fatty acids. To date, no lower safe limit of specific saturated fatty acid intakes has been identified. This review summarizes research findings and observations on the disparate functions of saturated fatty acids and seeks to bring a more quantitative balance to the debate on dietary saturated fat. Whether a finite quantity of specific dietary saturated fatty acids actually benefits health is not yet known. Because agricultural practices to reduce saturated fat will require a prolonged and concerted effort, and because the world is moving toward more individualized dietary recommendations, should the steps to decrease saturated fatty acids to as low as agriculturally possible not wait until evidence clearly indicates which amounts and types of saturated fatty acids are optimal?

  11. Dietary Fat and Sports Nutrition: A Primer

    PubMed Central

    Lowery, Lonnie M.

    2004-01-01

    The general public’s view of macronutrients has undergone sweeping changes in recent years. Dietary fats are a key example. Since the anti-fat health education initiatives of the 1980s and early 1990s, certain dietary fats have been increasingly recognized as actually beneficial to health. Athletes, like the mainstream populace, are now getting the message that wise dietary fat (triacylglycerol) choices offer essential fatty acids, blood lipid management, maintained endocrine and immune function, inflammation control, metabolic effects and even potential body composition and performance benefits. Toward this end, many companies now sell specialty dietary fat supplements and recognized health authorities have begun recommending them to certain populations. This review will cover data regarding the physiology, dietary needs, food sources, and potential benefits and risks most relevant to athletes. Practical suggestions for incorporating healthy fats will be made. Both food-source and supplemental intakes will be addressed with interrelationships to health throughout. Key Points Nutrition education initiatives over recent years have sent contrasting messages on dietary fat to the public. Variations in chemical structure among triacylglycerols and their component fatty acids induce very different biological effects. Manipulating fat as a percentage of total kcal affects athletes. Athletes have special needs for which dietary fat may prove beneficial. PMID:24482588

  12. Dietary Fat, Eicosanoids and Breast Cancer Risk

    DTIC Science & Technology

    2008-10-01

    eicosanoid balance, and breast cancer risk in postmenopausal women. The study objectives are to: 1) evaluate the effects of total fat and omega -3 fatty acid ...Dietary fat, omega -3 fatty acids , eicosanoids, sex hormones 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...Eicosanoids, and Breast Cancer Risk”, is a dietary intervention aimed at evaluating the effects of total fat intake and omega -3 fatty acids on breast

  13. The role of dietary fat in obesity.

    PubMed

    Astrup, Arne

    2005-02-01

    Current scientific evidence indicates that dietary fat plays a role in weight loss and maintenance. Meta-analyses of intervention trials find that fat-reduced diets cause a 3-4-kg larger weight loss than normal-fat diets. A 10% reduction in dietary fat can cause a 4-5-kg weight loss in individuals with initial body mass index of 30 kg m (-2). Short-term trials show that nonfat dietary components are equally important. Sugar-sweetened beverages promote weight gain, and replacement of energy from fat by sugar-sweetened beverages is counterproductive in diets aimed at weight loss. Protein has been shown to be more satiating than carbohydrate, and fat-reduced diets with a high protein content (20-25% of energy) may increase weight loss significantly. There is little evidence that low-glycemic index foods facilitate weight control. Evidence linking certain fatty acids to body fatness is weak. Monounsaturated fatty acids may even be more fattening than polyunsaturated and saturated fats. No ad libitum dietary intervention study has shown that a normal-fat, high-monounsaturated fatty acid diet is comparable to a low-fat diet in preventing weight gain. Current evidence indicates that the best diet for prevention of weight gain, obesity, type 2 diabetes, and cardiovascular disease is low in fat and sugar-rich beverages and high in carbohydrates, fiber, grains, and protein.

  14. How much dietary fat in therapeutic nutrition?

    PubMed Central

    Simko, V.

    1990-01-01

    Dietary fat has a less prominent role in realimentation than the alternate source of energy, carbohydrate. Presently available therapeutic diets, in typical feeding routines, provide only 3 to 120 g of fat per day. Three major factors contribute to fat underutilization: long-standing belief that fat is to blame for various vague symptoms of indigestion, misconception that daily fecal fat in excess of 7 g represents bowel dysfunction, and fear of fat-induced atherogenesis. None of these apply to refeeding starved and malnourished patients. The small intestine has a vastly underutilized capacity for fat absorption, and at the habitual fat intake of 100 g per day absorption is complete in the proximal one fifth of the gut. In patients requiring vigorous realimentation, the remaining small intestine should also be utilized. Dietary fat is well tolerated, and daily intakes of 500 g of polyunsaturated fat in a complete diet have not been associated with important side effects, while there was a significant improvement in body stores of fat and protein. Compared to diets high in carbohydrate, adequate intake of fat results in better nutrient utilization, less CO2 production and decreased lipogenesis and insulin requirements. Diets higher in fat are also better tolerated because of their lower volume and osmolality. The result is more effective absorption of calories and a faster nutritional recovery. Increased adipose tissue and protein reserve benefits patients who are in stress, immunocompromised, or debilitated. Adequate dietary fat should be considered for malnourished subjects with intact gastrointestinal function, and when intestinal absorptive capacity is reduced by surgery or disease. PMID:2194611

  15. Dietary Fat, Eicosanoids and Breast Cancer Risk

    DTIC Science & Technology

    2007-10-01

    postmenopausal women. The study objectives are to: 1) evaluate the effects of total fat and omega -3 fatty acid intake on plasma and urinary sex hormone...associated with reducing breast cancer risk in postmenopausal women. 15. SUBJECT TERMS Dietary fat, omega -3 fatty acids , eicosanoids, sex hormones 16...candidate in September, 2007. • Preliminary data from plasma sex hormone analysis supports low fat, high omega -3 fatty acid diet in prevention of breast

  16. Dietary Fat, Eicosanoids and Breast Cancer Risk

    DTIC Science & Technology

    2009-04-01

    risk of sex. hormone mediated cancer, such as breast canoer. A high intake oftotal fat and omega -6 fatty acids increases risk while omega -3 (03...Era ofHope meeting. No manuscripts have yet been gtmm’ated. dietary fat, omega -3 fatty acids ,. eicosanoids, sex ho~nes 16. SECURITY CLASSIFICATION OF... fatty acids are associated with risk reduction. Our proposal is testi~g the effect ofdietary fat and fatty acids on sex homwne . concentrations in post

  17. Dietary fat and risk of breast cancer

    PubMed Central

    Binukumar, Bhaskarapillai; Mathew, Aleyamma

    2005-01-01

    Background Breast cancer is one of the major public health problems among women worldwide. A number of epidemiological studies have been carried out to find the role of dietary fat and the risk of breast cancer. The main objective of the present communication is to summarize the evidence from various case-control and cohort studies on the consumption of fat and its subtypes and their effect on the development of breast cancer. Methods A Pubmed search for literature on the consumption of dietary fat and risk of breast cancer published from January 1990 through December 2003 was carried out. Results Increased consumption of total fat and saturated fat were found to be positively associated with the development of breast cancer. Even though an equivocal association was observed for the consumption of total monounsaturated fatty acids (MUFA) and the risk of breast cancer, there exists an inverse association in the case of oleic acid, the most abundant MUFA. A moderate inverse association between consumption of n-3 fatty acids and breast cancer risk and a moderate positive association between n-6 fatty acids and breast cancer risk were observed. Conclusion Even though all epidemiological studies do not provide a strong positive association between the consumption of certain types of dietary fat and breast cancer risk, at least a moderate association does seem to exist and this has a number of implications in view of the fact that breast cancer is an increasing public health concern. PMID:16022739

  18. Dietary fat composition and dementia risk.

    PubMed

    Morris, Martha Clare; Tangney, Christine C

    2014-09-01

    This is a qualitative review of the evidence linking dietary fat composition to the risk of developing dementia. The review considers laboratory and animal studies that identify underlying mechanisms as well as prospective epidemiologic studies linking biochemical or dietary fatty acids to cognitive decline or incident dementia. Several lines of evidence provide support for the hypothesis that high saturated or trans fatty acids increase the risk of dementia and high polyunsaturated or monounsaturated fatty acids decrease risk. Dietary fat composition is an important factor in blood-brain barrier function and the blood cholesterol profile. Cholesterol and blood-brain barrier function are involved in the neuropathology of Alzheimer's disease, and the primary genetic risk factor for Alzheimer's disease, apolipoprotein E-ε4, is involved in cholesterol transport. The epidemiologic literature is seemingly inconsistent on this topic, but many studies are difficult to interpret because of analytical techniques that ignored negative confounding by other fatty acids, which likely resulted in null findings. The studies that appropriately adjust for confounding by other fats support the dietary fat composition hypothesis.

  19. Does dietary fat influence insulin action?

    PubMed

    Storlien, L H; Kriketos, A D; Jenkins, A B; Baur, L A; Pan, D A; Tapsell, L C; Calvert, G D

    1997-09-20

    What is clear from the research thus far is that dietary fat intake does influence insulin action. However, whether the effect is good, bad, or indifferent is strongly related to the fatty acid profile of that dietary fat. The evidence has taken many forms, including in vitro evidence of differences in insulin binding and glucose transport in cells grown with different types of fat in the incubation medium, in vivo results in animals fed different fats, relationships demonstrated between the membrane structural lipid fatty acid profile and insulin resistance in humans, and finally epidemiological evidence linking particularly high saturated fat intake with hyperinsulinemia and increased risk of diabetes. This contrasts with the lack of relationship, or even possible protective effect, of polyunsaturated fats. In particular, habitual increased n-3 polyunsaturated dietary fat intake (as fish fats) would appear to be protective against the development of glucose intolerance. It is reassuring that the patterns of dietary fatty acids that appear beneficial for insulin action and energy balance are also the patterns that would seem appropriate in the fight against thrombosis and cardiovascular disease. Mechanisms, though, still need to be defined. However, there are strong indicators that defining the ways in which changes in the fatty acid profile of membrane structural lipids are achieved, and in turn influence relevant transport events, plus understanding the processes that control accumulation and availability of storage lipid in muscle may be fruitful avenues for future research. One of the problems of moving the knowledge gained from research at the cellular level through to the individual and on to populations is the need for more accommodating research designs. In vitro studies may provide in-depth insights into intricate mechanisms, but they do not give the "big picture" for practical recommendations. On the other hand, correlational studies tend to be fairly

  20. Prior Exercise Increases Subsequent Utilization of Dietary Fat.

    ERIC Educational Resources Information Center

    Votruba, Susan B.; Atkinson, Richard L.; Hirvonen, Matt D.; Schoeller, Dale A.

    2002-01-01

    Investigated whether exercise would alter the partitioning of dietary fat between oxidation and storage. Seven women participated in rest, light exercise, and heavy exercise. Researchers calculated stationary cycle exercise sessions and dietary fat oxidation. Prior exercise had a positive effect on oxidation of dietary monosaturated fat but not…

  1. Dietary fat intake and functional dyspepsia

    PubMed Central

    Khodarahmi, Mahdieh; Azadbakht, Leila

    2016-01-01

    A few studies have assessed the effects of fat intake in the induction of dyspeptic symptoms. So, the aim of this study was to review the articles regarding the dietary fat intake and FD. We used electronic database of PubMed to search. These key words were chosen: FD, dietary fat, dyspeptic symptom, energy intake and nutrients. First, articles that their title and abstract were related to the mentioned subject were gathered. Then, full texts of related articles were selected for reading. Finally, by excluding four articles that was irrelevant to subject, 19 relevant English papers by designing clinical trial, cross-sectional, case–control, prospective cohort, and review that published from 1992 to 2012 were investigated. Anecdotally, specific food items or food groups, particularly fatty foods have been related to dyspepsia. Laboratory studies have shown that the addition of fat to a meal resulted in more symptoms of fullness, bloating, and nausea in dyspeptic patients. Studies have reported that hypersensitivity of the stomach to postprandial distension is an essential factor in the generation of dyspeptic symptoms. Small intestinal infusions of nutrients, particularly fat, exacerbate this hypersensitivity. Moreover, evidence showed that perception of gastric distension increased by lipids but not by glucose. Long chain triglycerides appear to be more potent than medium chain triglycerides in inducing symptoms of fullness, nausea, and suppression of hunger. Thus, Fatty foods may exacerbate dyspeptic symptoms. Therefore, it seems that a reduction in intake of fatty foods may useful, although this requires more evaluations. PMID:27195249

  2. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat.

    PubMed

    Davis, Kathleen E; Prasad, Chandan; Vijayagopal, Parakat; Juma, Shanil; Adams-Huet, Beverley; Imrhan, Victorine

    2015-12-14

    The purpose of this pilot study was to determine whether macronutrient content (low-fat v. high-fat diet) influences an indicator of advanced glycation end products (AGE), N(ε) carboxymethyl-lysine (CML), in the context of a 1-d, high-AGE diet. The effect of the diets on inflammatory markers was also assessed. A total of nineteen overweight and obese adults (nine men and ten women) without known disease were recruited to participate in a crossover challenge of a high-fat, high-AGE (HFHA) and low-fat, high-AGE (LFHA) diet. In each phase patients had fasting blood drawn, followed by consumption of a high-fat or low-fat breakfast test meal, then three postprandial blood draws at 1, 2 and 3 h after consuming the test meal. After consuming high-AGE meals for the remainder of the day, participants returned the next day for a follow-up analysis. A different pattern in the 3-h post-meal CML and soluble receptor for AGE response to the two diets was observed (P=0·01 and 0·05, respectively). No change in serum CML was observed following consumption of a LFHA breakfast (535 (25th-75th percentile 451-790) to 495 (25th-75th percentile 391-682) ng/ml; P=0·36), whereas a rise in CML occurred after the HFHA breakfast (463 (25th-75th percentile 428-664) to 578 (25th-75th percentile 474-865) ng/ml; P=0·05). High sensitivity C-reactive protein and high molecular weight adiponectin were not affected by either diet. These findings suggest that dietary CML may not be as important in influencing serum CML as other dietary factors. In addition, acute exposure to dietary CML may not influence inflammation in adults without diabetes or kidney disease. This is contrary to previous findings.

  3. Influence of dietary fatty acid composition and exercise on changes in fat oxidation from a high-fat diet.

    PubMed

    Cooper, J A; Watras, A C; Shriver, T; Adams, A K; Schoeller, D A

    2010-10-01

    Acute high-fat (HF) diets can lead to short-term positive fat balances until the body increases fat oxidation to match intake. The purpose of this study was to examine the effects of a HF diet, rich in either mono-unsaturated or saturated fatty acids (FAs) and exercise, on the rate at which the body adapts to a HF diet.(13)C-labeled oleate and (2)H-labeled palmitate were also given to determine the contribution of exogenous vs. global fat oxidation. Eight healthy men (age of 18-45 yr; body mass index of 22 ± 3 kg/m(2)) were randomized in a 2 × 2 crossover design. The four treatments were a high saturated fat diet with exercise (SE) or sedentary (SS) conditions and a high monounsaturated fat diet with exercise (UE) or sedentary (US) conditions. Subjects stayed for 5 days in a metabolic chamber. All meals were provided. On day 1, 30% of energy intake was from fat, whereas days 2-5 had 50% of energy as fat. Subjects exercised on a stationary cycle at 45% of maximal oxygen uptake for 2 h each day. Respiratory gases and urinary nitrogen were collected to calculate fat oxidation. Change from day 1 to day 5 showed both exercise treatments increased fat oxidation (SE: 76 ± 30 g, P = 0.001; UE: 118 ± 31 g, P < 0.001), whereas neither sedentary condition changed fat oxidation (SS: -10 ± 33 g, P = not significant; US: 41 ± 14 g, P = 0.07). No differences for dietary FA composition were found. Exercise led to a faster adaptation to a HF diet by increasing fat oxidation and achieving fat balance by day 5. Dietary FA composition did not differentially affect 24-h fat oxidation.

  4. Influence of dietary fat on pork eating quality.

    PubMed

    Alonso, Verónica; Najes, Luis M; Provincial, Laura; Guillén, Elena; Gil, Mario; Roncalés, Pedro; Beltrán, José A

    2012-12-01

    This study compared the influence of dietary fat sources on meat quality, fatty acid composition and sensory attributes in pork. The experiment was conducted with 43 entire male pigs (Pietrain×(Landrace×Large White)) which were fed a basal diet without added fat (control diet) or supplemented with different sources of fat: animal fat (1%, AF1; 3%, AF3), soyabean oil (1%, SBO1) and calcium soaps of palm oil (1%, CaSPO1). Dietary fat supplementation did not significantly affect ultimate pH, colour, Warner-Bratzler shear force values, sensory attributes or SFA. Pigs fed SBO1 had the lowest proportion of MUFA and the highest of PUFA. In conclusion, these dietary fat sources could be recommended for inclusion in diets, at these levels, with no detrimental effect on eating quality. Despite finding no significant differences, the PCA afforded a comprehensive view of the predominating attributes of pork from animals fed the different fats.

  5. Modulation of nitrosamine mutagenicity by dietary fat

    SciTech Connect

    Lawson, T. )

    1991-03-15

    Dietary fat is implicated in the etiology of human cancer and enhances the carcinogenicity of many chemical carcinogens including N-nitrosobis(2-oxopropyl)amine (BOP) in the hamster pancreas. Earlier studies showed that high-fat diets (HFD) did not enhance BOP carcinogenicity when given with BOP, suggesting that HFD's role was solely on the promotion/development phase of tumorigenesis. This suggestion is more a facet of the carcinogen used than of the action of HFD. Hepatocytes from hamsters fed HFD were used to activate N-nitrosobis(2-oxopropyl)amine (BHP) and BOP in the V79 mutagenicity assay. The mutagenicity of BHP was increased 5 fold whereas that of BOP by only 2 fold, probably due to the increased metabolism of BHP back to BOP. BHP and BOP are interconvertible in vivo. These data suggest that if BHP had been used in the bioassays a role for HFD in tumor initiation would have been shown, BHP is probably only a detoxification products of BOP, and BHP is only carcinogenic by virtue of its conversion to BOP.

  6. Acute Effects of Dietary Fat on Inflammatory Markers and Gene Expression in First-Degree Relatives of Type 2 Diabetes Patients

    PubMed Central

    Pietraszek, Anna; Gregersen, Søren; Hermansen, Kjeld

    2011-01-01

    BACKGROUND: Subjects with type 2 diabetes (T2D) and their relatives (REL) carry an increased risk of cardiovascular disease (CVD). Low-grade inflammation, an independent risk factor for CVD, is modifiable by diet. Subjects with T2D show elevated postprandial inflammatory responses to fat-rich meals, while information on postprandial inflammation in REL is sparse. AIM: To clarify whether medium-chain saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) have differential acute effects on low-grade inflammation in REL compared to controls (CON). METHODS: In randomized order, 17 REL and 17 CON ingested two fat-rich meals, with 72 energy percent from MUFA and 79 energy percent from mainly medium-chain SFA, respectively. Plasma high sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), adiponectin, and leptin were measured at baseline, 15 min, 60 min, and 240 min postprandially. Muscle and adipose tissue biopsies were taken at baseline and 210 min after the test meal, and expression of selected genes was analyzed. RESULTS: Plasma IL-6 increased (p < 0.001) without difference between REL and CON and between the meals, whereas plasma adiponectin and plasma hs-CRP were unchanged during the 240 min observation period. Plasma leptin decreased slightly in response to medium-chain SFA in both groups, and to MUFA in REL. Several genes were differentially regulated in muscle and adipose tissue of REL and CON. CONCLUSIONS: MUFA and medium-chain SFA elicit similar postprandial circulating inflammatory responses in REL and CON. Medium-chain SFA seems more proinflammatory than MUFA, judged by the gene expression in muscle and adipose tissue of REL and CON. PMID:22580729

  7. Alcoholic Liver Disease: Update on the Role of Dietary Fat

    PubMed Central

    Kirpich, Irina A.; Miller, Matthew E.; Cave, Matthew C.; Joshi-Barve, Swati; McClain, Craig J.

    2016-01-01

    Alcoholic liver disease (ALD) spans a spectrum of liver pathology, including fatty liver, alcoholic steatohepatitis, and cirrhosis. Accumulating evidence suggests that dietary factors, including dietary fat, as well as alcohol, play critical roles in the pathogenesis of ALD. The protective effects of dietary saturated fat (SF) and deleterious effects of dietary unsaturated fat (USF) on alcohol-induced liver pathology are well recognized and documented in experimental animal models of ALD. Moreover, it has been demonstrated in an epidemiological study of alcoholic cirrhosis that dietary intake of SF was associated with a lower mortality rates, whereas dietary intake of USF was associated with a higher mortality. In addition, oxidized lipids (dietary and in vivo generated) may play a role in liver pathology. The understanding of how dietary fat contributes to the ALD pathogenesis will enhance our knowledge regarding the molecular mechanisms of ALD development and progression, and may result in the development of novel diet-based therapeutic strategies for ALD management. This review explores the relevant scientific literature and provides a current understanding of recent advances regarding the role of dietary lipids in ALD pathogenesis. PMID:26751488

  8. Reduced or modified dietary fat for preventing cardiovascular disease

    PubMed Central

    Hooper, Lee; Summerbell, Carolyn D; Thompson, Rachel; Sills, Deirdre; Roberts, Felicia G; Moore, Helen; Smith, George Davey

    2014-01-01

    Background Reduction and modification of dietary fats have differing effects on cardiovascular risk factors (such as serum cholesterol), but their effects on important health outcomes are less clear. Objectives To assess the effect of reduction and/or modification of dietary fats on mortality, cardiovascular mortality, cardiovascular morbidity and individual outcomes including myocardial infarction, stroke and cancer diagnoses in randomised clinical trials of at least 6 months duration. Search methods For this review update, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE, were searched through to June 2010. References of Included studies and reviews were also checked. Selection criteria Trials fulfilled the following criteria: 1) randomised with appropriate control group, 2) intention to reduce or modify fat or cholesterol intake (excluding exclusively omega-3 fat interventions), 3) not multi factorial, 4) adult humans with or without cardiovascular disease, 5) intervention at least six months, 6) mortality or cardiovascular morbidity data available. Data collection and analysis Participant numbers experiencing health outcomes in each arm were extracted independently in duplicate and random effects meta-analyses, meta-regression, sub-grouping, sensitivity analyses and funnel plots were performed. Main results This updated review suggested that reducing saturated fat by reducing and/or modifying dietary fat reduced the risk of cardiovascular events by 14% (RR 0.86, 95% CI 0.77 to 0.96, 24 comparisons, 65,508 participants of whom 7% had a cardiovascular event, I2 50%). Subgrouping suggested that this reduction in cardiovascular events was seen in studies of fat modification (not reduction - which related directly to the degree of effect on serum total and LDL cholesterol and triglycerides), of at least two years duration and in studies of men (not of women). There were no clear effects of dietary fat changes on total mortality (RR 0

  9. Dietary Fat, Eicosanoids and Breast Cancer Risk

    DTIC Science & Technology

    2005-04-01

    40g 60g/40g 60g/40g Raspberries 80g 110g 110g w/Sugar 0 6g 6g 50g (High Brownie Fat) 40g (Low Fat) 40g (Low Fat) Dinner: Meatloaf 1 00g 80g 80g w...Calculated) Kcal 1979 2009 2000 CHO (g)/%) 232g/45.5% 332g/64% 320g/62% Pro (g/%) 76g/1 5% 80g/1 5% 77g/1 5% Fat (g/ PI ) 89g/39.5% 48g/21% 54g/23

  10. Prolonged stimulation of corticosterone secretion by corticotropin-releasing hormone in rats exhibiting high preference for dietary fat

    USGS Publications Warehouse

    Herminghuysen, D.; Plaisance, K.; Pace, R. M.; Prasad, C.

    1998-01-01

    Through the secretion of corticosterone, the hypothalamo-pituitary-adrenal (HPA) axis is thought to play an important role in the regulation of caloric intake and dietary fat preference. In an earlier study, we demonstrated a positive correlation between urinary corticosterone output and dietary fat preference. Furthermore, dietary fat preference was augmented following chronic but not acute hypercorticosteronemia produced by exogenous corticosterone administration. These observations led us to explore whether the HPA axis of rats exhibiting high preference for fat may have exaggerated sensitivity to corticotropin-releasing hormone (CRH). The results of these studies show a delayed and blunted but more prolonged corticosterone response to CRH in the fat-preferring rats compared with that of the carbohydrate-preferring rats.

  11. Synergistic Interaction of Dietary Cholesterol and Dietary Fat in Inducing Experimental Steatohepatitis

    PubMed Central

    Savard, Christopher; Tartaglione, Erica V.; Kuver, Rahul; Haigh, W. Geoffrey; Farrell, Geoffrey C.; Subramanian, Savitha; Chait, Alan; Yeh, Matthew M.; Quinn, LeBris S.; Ioannou, George N.

    2017-01-01

    The majority of patients with nonalcoholic fatty liver disease (NAFLD) have “simple steatosis,” which is defined by hepatic steatosis in the absence of substantial inflammation or fibrosis and is considered to be benign. However, 10%–30% of patients with NAFLD progress to fibrosing nonalcoholic steatohepatitis (NASH), which is characterized by varying degrees of hepatic inflammation and fibrosis, in addition to hepatic steatosis, and can lead to cirrhosis. The cause(s) of progression to fibrosing steatohepatitis are unclear. We aimed to test the relative contributions of dietary fat and dietary cholesterol and their interaction on the development of NASH. We assigned C57BL/6J mice to four diets for 30 weeks: control (4% fat and 0% cholesterol); high cholesterol (HC; 4% fat and 1% cholesterol); high fat (HF; 15% fat and 0% cholesterol); and high fat, high cholesterol (HFHC; 15% fat and 1% cholesterol). The HF and HC diets led to increased hepatic fat deposition with little inflammation and no fibrosis (i.e., simple hepatic steatosis). However, the HFHC diet led to significantly more profound hepatic steatosis, substantial inflammation, and perisinusoidal fibrosis (i.e., steatohepatitis), associated with adipose tissue inflammation and a reduction in plasma adiponectin levels. In addition, the HFHC diet led to other features of human NASH, including hypercholesterolemia and obesity. Hepatic and metabolic effects induced by dietary fat and cholesterol together were more than twice as great as the sum of the separate effects of each dietary component alone, demonstrating significant positive interaction. Conclusion Dietary fat and dietary cholesterol interact synergistically to induce the metabolic and hepatic features of NASH, whereas neither factor alone is sufficient to cause NASH in mice. PMID:22508243

  12. Fat Grams: How to Track Your Dietary Fat

    MedlinePlus

    ... for total fat based on a 2,000-calorie-a-day diet. Multiply 2,000 by 0. ... So if you're on a 2,000-calorie-a-day diet, 400 to 700 calories can ... of calories a day. For a 2,000-calorie-a-day diet, that's 200 calories or about ...

  13. The role of dietary fat in adipose tissue metabolism.

    PubMed

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  14. Dietary Fats - Multiple Languages: MedlinePlus

    MedlinePlus

    ... PDF Chinese Community Health Resource Center Cholesterol and Fat Content of Common Foods 一般食品胆固醇及脂肪成份 - 简体中文 (Chinese - Simplified) Bilingual ... PDF Chinese Community Health Resource Center Cholesterol and Fat Content of Common Foods 一般食品膽固醇及脂肪成份 - 繁體中文 (Chinese - Traditional) Bilingual ...

  15. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut

    PubMed Central

    Wong, Sandi; Stephens, W. Zac; Burns, Adam R.; Stagaman, Keaton; David, Lawrence A.; Bohannan, Brendan J. M.; Guillemin, Karen

    2015-01-01

    ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. PMID:26419876

  16. Intestinal lipid–derived signals that sense dietary fat

    PubMed Central

    DiPatrizio, Nicholas V.; Piomelli, Daniele

    2015-01-01

    Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake. PMID:25642767

  17. Dietary fat-induced hyperphagia in rats as a function of fat type and physical form.

    PubMed

    Lucas, F; Ackroff, K; Sclafani, A

    1989-05-01

    The influence of dietary fat on food intake and weight gain was assessed by feeding adult female rats diets that differed in the type and form of fat, as well as in the availability of other macro- and micronutrients. Compared to chow-fed controls, the various fat diets increased total food intake by 4% to 27%. Specifically, rats fed chow and a separate source of fat (fat option diet) consumed more fat and total calories, and gained more weight when the fat source was emulsified corn oil rather than pure corn oil or was vegetable shortening rather than corn oil. However, corn oil and shortening had similar effects on caloric intake and weight gain when presented as emulsified gels. Also, pure and emulsified-gel forms of shortening did not differ in their effects on caloric intake and weight gain. Supplementing the vegetable shortening with micronutrients, however, enhanced its hyperphagia-promoting effect. The results of two-choice tests revealed that the rats' preferences for the orosensory properties of the various fat sources did not account for the differential hyperphagias obtained. Rather, it appears that long-term fat selection and caloric intake are influenced primarily by postingestive factors. Fat selection and total intake were determined not only by the fat source itself, but also by the other diet options. That is, rats selected more fat and consumed more calories when chow was the alternative food than when separate sources of carbohydrate and protein were available.

  18. Examining Multiple Parenting Behaviors on Young Children's Dietary Fat Consumption

    ERIC Educational Resources Information Center

    Eisenberg, Christina M.; Ayala, Guadalupe X.; Crespo, Noe C.; Lopez, Nanette V.; Zive, Michelle Murphy; Corder, Kirsten; Wood, Christine; Elder, John P.

    2012-01-01

    Objective: To understand the association between parenting and children's dietary fat consumption, this study tested a comprehensive model of parenting that included parent household rules, parent modeling of rules, parent mediated behaviors, and parent support. Design: Cross-sectional. Setting: Baseline data from the "MOVE/me Muevo"…

  19. Dietary fat, cooking fat, and breast cancer risk in a multiethnic population.

    PubMed

    Wang, Jun; John, Esther M; Horn-Ross, Pamela L; Ingles, Sue Ann

    2008-01-01

    Our objective was to examine the association between dietary fat intake, cooking fat usage, and breast cancer risk in a population-based, multiethnic, case-control study conducted in the San Francisco Bay area. Intake of total fat and types of fat were assessed with a food frequency questionnaire among 1,703 breast cancer cases diagnosed between 1995 and 1999 and 2,045 controls. In addition, preferred use of fat for cooking was assessed. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). High fat intake was associated with increased risk of breast cancer (highest vs. lowest quartile, adjusted OR = 1.35, 95% CI = 1.10-1.65, P(trend) < 0.01). A positive association was found for oleic acid (OR = 1.55, 95% CI = 1.14-2.10, P(trend) < 0.01) but not for linoleic acid or saturated fat. Risk was increased for women cooking with hydrogenated fats (OR = 1.58, 95% CI = 1.20-2.10) or vegetable/corn oil (rich in linoleic acid; OR = 1.30, 95% CI = 1.06-1.58) compared to women using olive/canola oil (rich in oleic acid). Our results suggest that a low-fat diet may play a role in breast cancer prevention. We speculate that monounsaturated trans fats may have driven the discrepant associations between types of fat and breast cancer.

  20. Associations of dietary fat with albuminuria and kidney dysfunction1234

    PubMed Central

    Lin, Julie; Judd, Suzanne; Le, Anh; Ard, Jamy; Newsome, Britt B; Howard, George; Warnock, David G; McClellan, William

    2010-01-01

    Background: Diet represents a potentially important target for intervention in nephropathy, yet data on this topic are scarce. Objectives: The objective was to investigate associations between dietary fats and early kidney disease. Design: We examined cross-sectional associations between dietary fats and the presence of high albuminuria (an established independent predictor of kidney function decline, cardiovascular disease, and mortality) or estimated glomerular filtration rate (eGFR) <60 mL ⋅ min−1 ⋅ 1.73 m−2 at baseline in 19,256 participants of the REGARDS (Reasons for Geographic and Racial Differences in Stroke) study, an ongoing cohort study in US adults aged ≥45 y at time of enrollment. We used logistic regression to assess associations between quintiles of total fat and subtypes of dietary fat (saturated, monounsaturated, polyunsaturated, and trans fat) and presence of high albuminuria or eGFR <60 mL ⋅ min−1 ⋅ 1.73 m−2. Results: After multivariable adjustment, only saturated fat intake was significantly associated with high albuminuria [for quintile 5 compared with quintile 1, odds ratio (OR): 1.33; 95% CI: 1.07, 1.66; P for trend = 0.04]. No significant associations between any type of fat and eGFR <60 mL · min−1 · 1.73 m−2 were observed. ORs between the highest quintile of saturated fat and eGFR <60 mL · min−1 · 1.73 m−2 varied by race with a borderline significant interaction term (ORs: 1.24 in whites compared with 0.74 in blacks; P for interaction = 0.05) in multivariable-adjusted models, but no other associations were significantly modified by race or diabetes status. Conclusion: Higher saturated fat intake is significantly associated with the presence of high albuminuria, but neither total nor other subtypes of dietary fat are associated with high albuminuria or eGFR <60 mL · min−1 · 1.73 m−2. PMID:20702608

  1. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  2. Dietary fat, fat subtypes and hepatocellular carcinoma in a large European cohort.

    PubMed

    Duarte-Salles, Talita; Fedirko, Veronika; Stepien, Magdalena; Aleksandrova, Krasimira; Bamia, Christina; Lagiou, Pagona; Laursen, Anne Sofie Dam; Hansen, Louise; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; His, Mathilde; Boeing, Heiner; Katzke, Verena; Kühn, Tilman; Trichopoulou, Antonia; Valanou, Elissavet; Kritikou, Maria; Masala, Giovanna; Panico, Salvatore; Sieri, Sabina; Ricceri, Fulvio; Tumino, Rosario; Bueno-de-Mesquita, H B As; Peeters, Petra H; Hjartåker, Anette; Skeie, Guri; Weiderpass, Elisabete; Ardanaz, Eva; Bonet, Catalina; Chirlaque, Maria-Dolores; Dorronsoro, Miren; Quirós, J Ramón; Johansson, Ingegerd; Ohlsson, Bodil; Sjöberg, Klas; Wennberg, Maria; Khaw, Kay-Tee; Travis, Ruth C; Wareham, Nick; Ferrari, Pietro; Freisling, Heinz; Romieu, Isabelle; Cross, Amanda J; Gunter, Marc; Lu, Yunxia; Jenab, Mazda

    2015-12-01

    The role of amount and type of dietary fat consumption in the etiology of hepatocellular carcinoma (HCC) is poorly understood, despite suggestive biological plausibility. The associations of total fat, fat subtypes and fat sources with HCC incidence were investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, which includes 191 incident HCC cases diagnosed between 1992 and 2010. Diet was assessed by country-specific, validated dietary questionnaires. A single 24-hr diet recall from a cohort subsample was used for measurement error calibration. Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated from Cox proportional hazard models. Hepatitis B and C viruses (HBV/HCV) status and biomarkers of liver function were assessed separately in a nested case-control subset with available blood samples (HCC = 122). In multivariable calibrated models, there was a statistically significant inverse association between total fat intake and risk of HCC (per 10 g/day, HR = 0.80, 95% CI: 0.65-0.99), which was mainly driven by monounsaturated fats (per 5 g/day, HR = 0.71, 95% CI: 0.55-0.92) rather than polyunsaturated fats (per 5 g/day, HR = 0.92, 95% CI: 0.68-1.25). There was no association between saturated fats (HR = 1.08, 95% CI: 0.88-1.34) and HCC risk. The ratio of polyunsaturated/monounsaturated fats to saturated fats was not significantly associated with HCC risk (per 0.2 point, HR = 0.86, 95% CI: 0.73-1.01). Restriction of analyses to HBV/HCV free participants or adjustment for liver function did not substantially alter the findings. In this large prospective European cohort, higher consumption of monounsaturated fats is associated with lower HCC risk.

  3. Project LEAN: a national campaign to reduce dietary fat consumption.

    PubMed

    Samuels, S E

    1990-01-01

    The Henry J. Kaiser Family Foundation initiated a social marketing campaign in 1987, to reduce the nation's risk for heart disease and some cancers. Project LEAN (Low-Fat Eating for America Now) encourages reduction in dietary fat consumption to 30 percent of total calories, by 1998, through public service advertising, publicity, and point-of-purchase programs in restaurants, supermarkets, and school and worksite cafeterias. The campaign has joined efforts with the Partners for Better Health, a coalition of over thirty national health and consumer organizations that are working towards a common goal of improved health through nutrition. Project LEAN has provided funds to states and communities to initiate local campaigns and work with chefs, food professionals, and the food industry to change norms and customs in food preparation and manufacturing. The goal of the campaign is to accelerate the trend in fat reduction and to stimulate the greater availability of low-fat food choices in the marketplace.

  4. Parental dietary fat intake alters offspring microbiome and immunity1

    PubMed Central

    Myles, Ian A.; Vithayathil, Paul J.; Segre, Julia A.; Datta, Sandip K.

    2013-01-01

    Mechanisms underlying modern increases in prevalence of human inflammatory diseases remain unclear. The hygiene hypothesis postulates that decreased microbial exposure has, in part, driven this immune dysregulation. However, dietary fatty acids also influence immunity, partially through modulation of responses to microbes. Prior reports have described the direct effects of high fat diets on the gut microbiome and inflammation, and some have additionally shown metabolic consequences for offspring. Our study sought to expand on these previous observations to identify the effects of parental diet on offspring immunity using mouse models to provide insights into challenging aspects of human health. To test the hypothesis that parental dietary fat consumption during gestation and lactation influences offspring immunity, we compared pups of mice fed either a Western diet fatty acid profile or a standard low fat diet. All pups were weaned onto the control diet to specifically test the effects of early developmental fat exposure on immune development. Pups from Western diet breeders were not obese or diabetic, but still had worse outcomes in models of infection, autoimmunity, and allergic sensitization. They had heightened colonic inflammatory responses, with increased circulating bacterial lipopolysaccharide (LPS) and muted systemic LPS responsiveness. These deleterious impacts of the Western diet were associated with alterations of the offspring gut microbiome. These results indicate that parental fat consumption can leave a “lard legacy” impacting offspring immunity and suggest inheritable microbiota may contribute to the modern patterns of human health and disease. PMID:23935191

  5. Effects of dietary fat and calorie on immunologic function

    SciTech Connect

    Barness, L.A.; Carver, J.D.; Friedman, H.; Hsu, K.H.L.

    1986-03-05

    The effect of dietary fat and calories on immunologic function in specific pathogen-free inbred DBA/2 and CBA/J mice was studied. Three diets were modified from control, the AIN-76 purified diet. The high saturated fat diet contained 22.5% coconut oil and 2.5% safflower oil. The high unsaturated fat diet contained 25% safflower oil. Fat was substituted isoclorically for carbohydrate in these two diets. The low calorie diet contained 40% less protein, carbohydrate and fat than control diet; fiber was substituted for these ingredients. Female weanling mice were on the diets for more than 35 days before testing. The natural killer (NK) activity of spleen cells was determined by in vitro cytolysis of /sup 51/Cr-labeled YAC-1 cells. The spleen cells response to sheep red blood cells (SRBC) or allogeneic tumor EL-4 cells was measured after immunizing the mice with SRBC or EL-4 cells for 4 or 11 days, respectively. The results showed no significant effect of the low calorie diet on NK activity, anti-SRBC or anti-EL-4 response compared to normal diet. Anti-SRBC plaque response was significantly enhanced (27% higher), while anti-EL-4 response was significantly suppressed (15% less) with high saturated fat diet. NK activity was normal. Mice on high unsaturated fat diet showed suppressed anti-SRBC response (16% less) and anti-EL-4 response (17% less), while NK activity was significantly enhanced (70% higher).

  6. Dietary fats and health: dietary recommendations in the context of scientific evidence.

    PubMed

    Lawrence, Glen D

    2013-05-01

    Although early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health. The evidence of ω6 polyunsaturated fatty acids (PUFAs) promoting inflammation and augmenting many diseases continues to grow, whereas ω3 PUFAs seem to counter these adverse effects. The replacement of saturated fats in the diet with carbohydrates, especially sugars, has resulted in increased obesity and its associated health complications. Well-established mechanisms have been proposed for the adverse health effects of some alternative or replacement nutrients, such as simple carbohydrates and PUFAs. The focus on dietary manipulation of serum cholesterol may be moot in view of numerous other factors that increase the risk of heart disease. The adverse health effects that have been associated with saturated fats in the past are most likely due to factors other than SFAs, which are discussed here. This review calls for a rational reevaluation of existing dietary recommendations that focus on minimizing dietary SFAs, for which mechanisms for adverse health effects are lacking.

  7. Dietary Fats and Health: Dietary Recommendations in the Context of Scientific Evidence1

    PubMed Central

    Lawrence, Glen D.

    2013-01-01

    Although early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health. The evidence of ω6 polyunsaturated fatty acids (PUFAs) promoting inflammation and augmenting many diseases continues to grow, whereas ω3 PUFAs seem to counter these adverse effects. The replacement of saturated fats in the diet with carbohydrates, especially sugars, has resulted in increased obesity and its associated health complications. Well-established mechanisms have been proposed for the adverse health effects of some alternative or replacement nutrients, such as simple carbohydrates and PUFAs. The focus on dietary manipulation of serum cholesterol may be moot in view of numerous other factors that increase the risk of heart disease. The adverse health effects that have been associated with saturated fats in the past are most likely due to factors other than SFAs, which are discussed here. This review calls for a rational reevaluation of existing dietary recommendations that focus on minimizing dietary SFAs, for which mechanisms for adverse health effects are lacking. PMID:23674795

  8. Dietary intake mediates the relationship of body fat to pain.

    PubMed

    Emery, Charles F; Olson, KayLoni L; Bodine, Andrew; Lee, Victoria; Habash, Diane L

    2017-02-01

    Prior studies have documented an association of obesity with chronic pain, but the mechanism explaining the association remains unknown. This study evaluated the degree to which dietary intake of foods with anti-inflammatory effects mediates the relationship of body fat to body pain. Ninety-eight community-residing healthy adults (60% women; mean age = 43.2 ± 15.3 years; range: 20-78 years) participated in a home-based study of home environment, food-related behaviors, health, and adiposity. During a 3-hour home visit evaluation, 3 measures of body fat were collected, including height and weight for calculation of body mass index (BMI). Participants also completed a 24-hour food recall interview and self-report measures of bodily pain (BP; BP subscale from the Medical Outcomes Study Short Form-36) and psychological distress (Hospital Anxiety and Depression Scale). Quality of dietary intake was rated using the Healthy Eating Index-2010. Mediation models were conducted with the PROCESS macro in SAS 9.3. Mean BMI was consistent with obesity (30.4 ± 7.8; range: 18.2-53.3), and BP values (73.2 ± 22.1; range: 0-100) and dietary intake quality (59.4 ± 15.5; range: 26.8-88.1) were consistent with population norms. Modeling in PROCESS revealed that Healthy Eating Index-2010 scores mediated the relationship between BMI and BP (bindirect = -0.34, 95% confidence interval = -0.68 to -0.13). The mediation model remained significant when controlling for biomechanical factors (arthritis/joint pain), medication use, psychological distress, age, and education, and models remained significant using the other 2 body fat measures. Thus, the data indicate that dietary intake of foods with anti-inflammatory effects mediates the relationship of body fat to body pain in healthy men and women.

  9. Dietary restriction, caloric value and the accumulation of hepatic fat

    PubMed Central

    2012-01-01

    Background Studies using laboratory animals under what are considered to be "standard" conditions normally offer unrestricted amounts of food to the animals, which can lead to metabolic disorders. Moreover, standard diets have different compositions. Aim Therefore, the aim of the present study was to assess the effects of two non-isocaloric diets (commercial Purina® and AIN-93M), which are considered standard diets, on the accumulation of fat in the liver of rats when offered ad libitum or in a restricted amount. Methods Thus, 40 Wistar rats (90 days old) were separated into 4 groups according to the amount of food offered (ad libitum or dietary restriction) and the type of diet (commercial diet, 3,028.0 kcal/g or AIN-93M, 3,802.7 kcal/g): animals fed the commercial Purina® diet ad libitum (AP), animals fed restricted amounts of the commercial Purina® diet (RP), animals fed the AIN-93M diet ad libitum (AD), and animals fed restricted amounts of the AIN-93M diet (RD). Dietary restriction consisted of pair-feeding the RP and RD groups with 60% of the total food consumed by the corresponding ad libitum groups. Results Because of its higher carbohydrate and calorie content, AIN-93M was found to accelerate weight gain, reduce glucose tolerance and peripheral insulin sensitivity, and increase the amount of fat in the liver when compared to the commercial diet. Conversely, a 40% dietary restriction assisted in weight loss without causing malnutrition, contributing to an improved glucose tolerance and higher levels of HDL cholesterol. Conclusion Therefore, differences in the amount of carbohydrates and calories provided by the diet can lead to important metabolic disorders, such as impaired tolerance and accumulation of hepatic fat, and dietary restriction improves serum and tissue lipid profiles in laboratory animals. PMID:22221448

  10. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances.

    PubMed Central

    Flatt, J P; Ravussin, E; Acheson, K J; Jéquier, E

    1985-01-01

    To study the effect of dietary fat on postprandial substrate utilization and nutrient balance, respiratory exchange was determined in seven young men for 1 h before and 9 h after the ingestion of one of three different breakfasts: i.e., bread, jam, and dried meat (482 kcal: 27% protein, 62% carbohydrate, and 11% fat); bread, jam, and dried meat plus 50 g of margarine containing long-chain triglycerides (LCT); or bread, jam, and dried meat plus 40 g medium-chain triglycerides (MCT) and 10 g LCT margarine (858 kcal: 15% protein, 35% carbohydrate, and 50% fat). Plasma glucose concentrations peaked 45 min after the start of the meals. When compared with the low fat meal, the LCT margarine supplement had no effect at any time on circulating glucose and insulin concentrations, nor on the respiratory quotient. When MCTs were consumed, plasma glucose and insulin concentrations remained lower and plasma FFA concentrations higher during the first 2 h. 9 h after the breakfasts, the amounts of substrates oxidized were similar in each case, i.e., approximately 320, 355, and 125 kcal for carbohydrate, fat, and protein, respectively. This resulted in comparable carbohydrate (mean +/- SD = -22 +/- 32, -22 +/- 37, and -24 +/- 22 kcal) and protein balances (-7 +/- 9, +7 +/- 7, and -8 +/- 11 kcal) after the low fat, LCT- and MCT-supplemented test meals, respectively. However, after the low fat meal, the lipid balance was negative (-287 +/- 60 kcal), which differed significantly (P less than 0.001) from the fat balances after the LCT- and MCT-supplemented meals, i.e., +60 +/- 33 and +57 +/- 25 kcal, respectively. The results demonstrate that the rates of fat and of carbohydrate oxidation are not influenced by the fat content of a meal. PMID:3900133

  11. Effect of the types of dietary fats and non-dietary oils on bone metabolism.

    PubMed

    El-Sayed, Eman; Ibrahim, Khadiga

    2017-03-04

    Nutrients beyond calcium and vitamin D have a role on bone health, and in treatment and prevention of osteoporosis. Quality and quantity of dietary fat may have consequences on skeletal health. Diets with highly saturated fat content produce deleterious effects on bone mineralization in growing animals. Conversely, dietary n-3-long chain polyunsaturated fatty acids play an important role in bone metabolism and may help in prevention and treatment of bone disease. Some reports suggest a correlation between the dietary ratio of n-6 and n-3 polyunsaturated fatty acids and bone formation. Specific dietary fatty acids were found to modulate prostanoid synthesis in bone tissue and improve bone formation in both animal and clinical trials. The skeletal benefits of dietary isoprenoids are extremely documented. Higher isoprenoids intake may relate to higher bone mineral density. Dietary supplements containing fish oil, individual polyunsaturated fatty acids, and isoprenoids could be used as adjuvant with bone medications in osteoportic conditions but their doses must be considered to avoid detrimental effect of over dosages.

  12. A Mechanism by Which Dietary Trans Fats Cause Atherosclerosis*

    PubMed Central

    Chen, Chun-Lin; Tetri, Laura H.; Neuschwander-Tetri, Brent A.; Huang, Shuan Shian; Huang, Jung San

    2010-01-01

    Dietary trans fats have been causally linked to atherosclerosis but the mechanism by which they cause the disease remain elusive. Suppressed TGF-β responsiveness in aortic endothelium has been shown to play an important role in the pathogenesis of atherosclerosis in animals with hypercholesterolemia. We investigated the effects of a high trans-fat (TF) diet on TGF-β responsiveness in aortic endothelium and integration of cholesterol in tissues. Here we show that normal mice fed a high TF diet for 24 weeks exhibit atherosclerotic lesions and suppressed TGF-β responsiveness in aortic endothelium. The suppressed TGF-β responsiveness is evidenced by markedly reduced expression of TGF-β type I and II receptors and profoundly decreased levels of P-Smad2, an important TGF-β–response indicator, in aortic endothelium. These mice exhibit greatly increased integration of cholesterol into tissue plasma membranes. These results suggest that dietary trans fats cause atherosclerosis, at least in part, by suppressing TGF-β responsiveness. This effect is presumably mediated by the increased deposition of cholesterol into cellular plasma membranes in vascular tissue, as in hypercholesterolemia. PMID:21036587

  13. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity.

    PubMed

    Hall, Kevin D; Bemis, Thomas; Brychta, Robert; Chen, Kong Y; Courville, Amber; Crayner, Emma J; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D; Miller, Bernard V; Prado, Carla M; Siervo, Mario; Skarulis, Monica C; Walter, Mary; Walter, Peter J; Yannai, Laura

    2015-09-01

    Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5-day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53 ± 6 g/day of body fat, fat oxidation was unchanged by fat restriction, leading to 89 ± 6 g/day of fat loss, and was significantly greater than carbohydrate restriction (p = 0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with prolonged isocaloric diets varying in carbohydrate and fat.

  14. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity

    PubMed Central

    Hall, Kevin D.; Bemis, Thomas; Brychta, Robert; Chen, Kong Y.; Courville, Amber; Crayner, Emma J.; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D.; Miller, Bernard V.; Prado, Carla M.; Siervo, Mario; Skarulis, Monica C.; Walter, Mary; Walter, Peter J.; Yannai, Laura

    2015-01-01

    Summary Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5 day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53±6 g/d of body fat, fat oxidation was unchanged by fat restriction leading to 89±6 g/d of fat loss and was significantly greater than carbohydrate restriction (p=0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with isocaloric diets varying in carbohydrate and fat. PMID:26278052

  15. Dietary fat type influences total milk fat content in lean women.

    PubMed

    Anderson, Nicole K; Beerman, Kathy A; McGuire, Mark A; Dasgupta, Nairanjana; Griinari, J Mikko; Williams, Janet; McGuire, Michelle K

    2005-03-01

    Trans fatty acids (TFA) are found naturally in some foods (e.g., dairy products) as well as many processed foods made with partially hydrogenated vegetable oils (PHVO). Data from a growing literature suggest that some TFA decrease milk fat in lactating animals. Because the physiologic effects of TFA in lactating women are unknown, this study was designed to investigate the effects of TFA consumption on human milk fat. A randomized, crossover design (n = 12) was used to study the effect of 3 dietary treatments: high PHVO (regular margarine), low PHVO (low TFA margarine), or low PHVO but high in naturally occurring TFA (butter) on milk fat. Treatments were administered for 5 d, with 7-d washout periods. Maternal adiposity was estimated by dual-energy X-ray absorptiometry. Milk and blood were collected on d 5 of each intervention period. In general, milk and serum fatty acid concentrations mirrored those of the dietary treatments. There were significant interactions between treatment and maternal adiposity on milk fat and infant milk consumption, as well as on serum glucose and nonesterified fatty acid (NEFA) concentrations. Consumption of regular margarine, compared with low TFA margarine, resulted in lower milk fat in leaner, but not in more obese women. Consumption of either regular or low TFA margarine, compared with butter, elevated serum NEFA concentrations in the more obese women. In summary, consumption of regular margarine, compared with low TFA margarine, decreased milk fat in lean women. Further studies are required to determine whether infant milk consumption might compensate for this potentially important change in milk composition.

  16. Dietary fats and cholesterol in italian infants and children.

    PubMed

    Agostoni, C; Riva, E; Scaglioni, S; Marangoni, F; Radaelli, G; Giovannini, M

    2000-11-01

    The fat intake of Italian infants has peculiar characteristics that begin quite early because their mothers' milk has a monounsaturated fat content (45%) at the upper limit of the values found in Europe. Comparison studies in breast-fed and formula-fed infants were conducted to evaluate growth and developmental correlates and differences in fat intakes in the early months of life. Breast-fed infants have higher blood lipid concentrations at 4 mo of age than do formula-fed infants. The addition of long-chain polyunsaturated fatty acids (LCPUFAs) and cholesterol to formulas for term infants may affect concentrations of circulating blood lipids as well as the LCPUFA composition of the lipids during the breast-feeding period. The addition of LCPUFAs does not seem to affect the growth rate of formula-fed infants. Although an initial benefit of LCPUFA feeding on eye-hand coordination was observed, this effect was not sustained; by 24 mo, different feeding groups had similar developmental scores. Other peculiarities of the Italian experience are presented, including body weights from infancy to early childhood in 147 children, the nutrient densities of different diets in Italian schoolchildren, and the effects of nutritional education on dietary intakes. The diets of these children were high in animal protein and supplied approximately 30-35% of energy from fats throughout childhood. Both the dietary protein intakes at 1 y of age and parental body mass indexes were associated with 5-y body mass index values. Classroom education may be useful to lower the plasma lipid concentrations in healthy, primary school-age children. It is not known whether this early modification can be maintained and whether it influences the later development of cardiovascular disorders.

  17. No difference in acute effects of supplemental v. dietary calcium on blood pressure and microvascular function in obese women challenged with a high-fat meal: a cross-over randomised study.

    PubMed

    Ferreira, Thaís da Silva; Leal, Priscila Mansur; Antunes, Vanessa Parada; Sanjuliani, Antonio Felipe; Klein, Márcia Regina Simas Torres

    2016-11-01

    Recent studies suggest that supplemental Ca (SC) increases the risk of cardiovascular events, whereas dietary Ca (DC) decreases the risk of cardiovascular events. Although frequently consumed with meals, it remains unclear whether Ca can mitigate or aggravate the deleterious effects of a high-fat meal on cardiovascular risk factors. This study aimed to evaluate the effects of SC or DC on blood pressure (BP) and microvascular function (MVF) in the postprandial period in obese women challenged with a high-fat meal. In this cross-over controlled trial, sixteen obese women aged 20-50 years were randomly assigned to receive three test meals (2908 kJ (695 kcal); 48 % fat): high DC (HDCM; 547 mg DC), high SC (HSCM; 500 mg SC-calcium carbonate) and low Ca (LCM; 42 mg DC). BP was continuously evaluated from 15 min before to 120 min after meals by digital photoplethysmography. Before and 120 min after meals, participants underwent evaluation of serum Ca and microvascular flow after postocclusive reactive hyperaemia (PORH) by laser speckle contrast imaging. Ionised serum Ca rose significantly only after HSCM. Systolic BP increased after the three meals, whereas diastolic BP increased after LCM and HDCM. Hyperaemia peak, hyperaemia amplitude and AUC evaluated after PORH decreased with LCM. After HDCM, there was a reduction in hyperaemia peak and hyperaemia amplitude, whereas HSCM decreased only hyperaemia peak. However, comparative analyses of the effects of three test meals on serum Ca, BP and MVF revealed no significant meal×time interaction. This study suggests that in obese women SC and DC do not interfere with the effects of a high-fat meal on BP and MVF.

  18. Transfer of dietary zinc and fat to milk--evaluation of milk fat quality, milk fat precursors, and mastitis indicators.

    PubMed

    Wiking, L; Larsen, T; Sehested, J

    2008-04-01

    The present study demonstrated that the zinc concentration in bovine milk and blood plasma is significantly affected by the intake of saturated fat supplements. Sixteen Holstein cows were used in a 4 x 4 Latin square design with 4 periods of 12 d, and 4 dietary treatments were conducted. A total mixed ration based on corn silage, grass-clover silages, and pelleted sugar beet pulp was used on all treatments. A high de novo milk fat diet was formulated by adding rapeseed meal and molasses in the total mixed ration [39 mg of Zn/kg of dry matter (DM)], and a low de novo diet by adding saturated fat, fat-rich rapeseed cake, and corn (34 mg of Zn/kg of DM). Dietary Zn levels were increased by addition of ZnO to 83 and 80 mg of Zn/kg of DM. Treatments did not affect daily DM intake, or yield of energy-corrected milk, milk fat, or milk protein. The high de novo diet significantly increased milk fat percentage and milk content of fatty acids with chain length from C6 to C16, and decreased content of C18 and C18:1. Treatments did not influence milk free fatty acids at 4 degrees C at 0 or 28 h after milking. The average diameter of milk fat globules was significantly greater in milk from cows offered low de novo diets. Furthermore, the low de novo diet significantly increased the concentration of nonesterified fatty acids and d-beta-hydroxybutyrate in blood plasma, the latter was also increased in milk. Treatments did not affect the enzyme activity of lactate dehydrogenase and N-acetyl-beta-d-glucosaminidase in milk or the activity of isocitrate dehydrogenase and malate dehydrogenase in blood plasma. The low de novo diet significantly increased plasma Zn and milk Zn content, whereas dietary Zn level did not in itself influence these parameters. This indicates that the transfer of fat from diet to milk might facilitate transfer of Zn from diet to milk.

  19. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    PubMed

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression.

  20. Fat to treat fat: emerging relationship between dietary PUFA, endocannabinoids, and obesity.

    PubMed

    Kim, Jeffrey; Li, Yong; Watkins, Bruce A

    2013-01-01

    Obesity incidence continues to escalate as a global nutrition and health problem. Scientists and clinicians are engaged in numerous research approaches that include behavior, education, applied nutrition studies and clinical therapies to prevent, control and reverse obesity. The common goal is to identify areas of basic and clinical research to understand aspects of human biology that contribute to obesity. In these approaches recent discoveries in biology and advancing technologies are tools employed to prevent and reverse obesity. The purpose of this review article is to present the current knowledge of key components of the endocannabinoid system that contribute to eating, influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors. Herein the objectives are to (1) describe the relationship between dietary polyunsaturated fatty acids (PUFA) and obesity, (2) explain the role of this signaling system in obesity, and (3) present areas of consequential future research with dietary long chain PUFA. There are several gaps in the knowledge of the role dietary PUFA play in the tone of the endocannabinoid signaling system involving ligands and receptors. Elucidating the PUFA relationship to signaling tone may explain the presumed overstimulation of signaling believed to contribute to over eating, fat accretion and inflammation. Future research in this endeavor must be hypothesis driven utilizing appropriate models for investigations on dietary PUFA, endocannabinoids and obesity.

  1. A reliable, valid questionnaire indicates that preference for dietary fat declines when following a reduced-fat diet.

    PubMed

    Ledikwe, Jenny H; Ello-Martin, Julie; Pelkman, Christine L; Birch, Leann L; Mannino, Michelle L; Rolls, Barbara J

    2007-07-01

    This study establishes the reliability and validity of the Fat Preference Questionnaire, a self-administered instrument to assess preference for dietary fat. Respondents select the food which tastes better and is eaten more frequently from 19 sets of food. Each set is comprised of related foods differing in fat content. The questionnaire was administered to women in laboratory-based (n=63), cross-sectional (n=150), and weight-loss (n=71) studies. The percentage of food sets in which high-fat foods were reported to "taste better" (TASTE score) and to be "eaten more often" (FREQ score) was determined. A measure of dietary fat restriction (DIFF) was created by subtracting TASTE from FREQ. Food intake was assessed by direct measure, 24-h recall, or food diary. Additionally, participants completed a standard survey assessing dietary restraint. Test-retest correlations were high (r=0.75-0.94). TASTE and FREQ scores were positively correlated with total fat intake (r=0.22-0.63). DIFF scores positively correlated with dietary restraint (r=0.39-0.52). Participants in the weight-loss trial experienced declines in fat consumption, TASTE and FREQ scores, and BMI values, and an increase in DIFF scores. Weight loss correlated with declines in FREQ (r=0.36) scores and increases in DIFF scores (r=-0.35). These data suggest that preference for dietary fat declines when following a reduced-fat diet and an increase in restraint for intake of dietary fat is important for weight loss. The Fat Preference Questionnaire is a stable, easily-administered instrument that can be used in research and clinical settings.

  2. Dietary fat modulates serum paraoxonase 1 activity in rats.

    PubMed

    Kudchodkar, B J; Lacko, A G; Dory, L; Fungwe, T V

    2000-10-01

    We examined the effects of dietary fats with specific fatty acid compositions, on serum paraoxonase (PON1) activity in rats. Male adult Sprague-Dawley rats were divided randomly into four dietary groups. One group received the control diet [AIN 93M with soybean oil (5 g/100 g diet)], whereas the remaining three groups received the modified control diet supplemented with (15 g/100 g diet) triolein, tripalmitin or fish oil, respectively. After 20 d, blood was obtained after overnight food deprivation and PON1 activity was determined. Serum lipids and lipid components of lipoproteins were also determined. Serum PON1 activity [micromol/(L.min)] was significantly (P: < 0.05) higher in triolein (98 +/- 6) and lower in fish oil (41 +/- 4), compared with tripalmitin-fed rats (63 +/- 11). Serum PON1 activity in tripalmitin-fed rats was comparable to that of controls (67 +/- 9). Serum PON1 activity correlated significantly with serum lecithin:cholesterol acyltransferase (LCAT) activity (r = 0.77, P: < 0.001) and was transported in blood principally in association with the denser subfraction of HDL, very high density lipoprotein (VHDL; d > 1.15 kg/L). Serum PON1 activity correlated strongly with serum lipids as well as lipids of VLDL, HDL and its subfractions. Multiple linear regression analysis, however, showed a significant relationship of serum PON1 activity, principally with the phospholipids of VHDL (r = 0.47, P: < 0.002). These data suggest that the modulation of serum PON1 activity by dietary fat may be mediated via the effect of the specific fatty acids on the synthesis and secretion of VHDL, the subfraction of HDL that transports the majority of PON1 in the blood.

  3. Olestra ingestion and dietary fat absorption in humans.

    PubMed

    Daher, G C; Cooper, D A; Zorich, N L; King, D; Riccardi, K A; Peters, J C

    1997-08-01

    The effect of olestra, a zero-calorie fat replacement, on the absorption of dietary fat was determined with a dual-isotope technique in 67 healthy male subjects. After a 30-d adaptation period in which they consumed potato chips which delivered either 10 g/d olestra or 10 g/d triglyceride under free-living conditions, the subjects were housed in a metabolic ward and given 0, 8, 20 or 32 g olestra in potato chips. The chips were eaten as part of a breakfast containing about 38 g of fat, about 0.16 mg of 14C-triolein, and a nonabsorbable marker, 51CrCl3. Feces were collected for 7 d, and aliquots of the two daily collections containing the highest levels of 51Cr were oxidized. The CO2 was collected, and 14C content was determined by liquid scintillation spectrometry. The fractional absorption of 14C-triolein was calculated from the average ratios of 14C/51Cr dosed and measured in the feces. Olestra had a slight but significant dose-response effect on triglyceride absorption: the highest olestra dose (32 g) reduced absorption by 1.2%. This effect is not nutritionally significant with respect to either availability of essential fatty acids or energy intake.

  4. Dietary phosphorus acutely impairs endothelial function.

    PubMed

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  5. Effects of dietary fat and saturated fat content on liver fat and markers of oxidative stress in overweight/obese men and women under weight-stable conditions.

    PubMed

    Marina, Anna; von Frankenberg, Anize Delfino; Suvag, Seda; Callahan, Holly S; Kratz, Mario; Richards, Todd L; Utzschneider, Kristina M

    2014-10-28

    Dietary fat and oxidative stress are hypothesized to contribute to non-alcoholic fatty liver disease and progression to steatohepatitis. To determine the effects of dietary fat content on hepatic triglyceride, body fat distribution and markers of inflammation and oxidative stress, overweight/obese subjects with normal glucose tolerance consumed a control diet (CONT: 35% fat/12% saturated fat/47% carbohydrate) for ten days, followed by four weeks on a low fat (LFD (n = 10): 20% fat/8% saturated fat/62% carbohydrate) or high fat diet (HFD (n = 10): 55% fat/25% saturated fat/27% carbohydrate). Hepatic triglyceride content was quantified by MRS and abdominal fat distribution by MRI. Fasting biomarkers of inflammation (plasma hsCRP, IL-6, IL-12, TNFα, IFN-γ) and oxidative stress (urinary F2-α isoprostanes) were measured. Body weight remained stable. Compared to the CONT, hepatic triglyceride decreased on the LFD (mean (95% CI): change -2.13% (-3.74%, -0.52%)), but did not change on the HFD and there was no significant difference between the LFD and HFD. Intra-abdominal fat did not change significantly on either diet, but subcutaneous abdominal fat increased on the HFD. There were no significant changes in fasting metabolic markers, inflammatory markers and urinary F2-α isoprostanes. We conclude that in otherwise healthy overweight/obese adults under weight-neutral conditions, a diet low in fat and saturated fat has modest effects to decrease liver fat and may be beneficial. On the other hand, a diet very high in fat and saturated fat had no effect on hepatic triglyceride or markers of metabolism, inflammation and oxidative stress.

  6. Does heat stress alter the pig's response to dietary fat?

    PubMed

    Kellner, T A; Baumgard, L H; Prusa, K J; Gabler, N K; Patience, J F

    2016-11-01

    Heat stress (HS) results in major losses to the pork industry via reduced growth performance and, possibly, carcass fat quality. The experimental objective was to measure the effects of HS on the pig's response to dietary fat in terms of lipid digestion, metabolism, and deposition over a 35-d finishing period. A total of 96 PIC 337 × C22/C29 (PIC, Inc., Hendersonville, TN) barrows (initial BW of 100.4 ± 1.2 kg) were randomly allotted to 1 of 9 treatments arranged as a 3 × 3 factorial: thermoneutral (TN; constant 24°C; ad libitum access to feed), pair-fed thermoneutral (PFTN; constant 24°C; limit fed based on previous HS daily feed intake), or HS (cyclical 28°C nighttime, 33°C from d 0 to 7, 33.5°C from d 7 to 14, 34°C from d 14 to 21, 34.5°C from d 21 to 28, and 35°C from d 28 to 35 daytime; ab libitum access to feed) and diet (a corn-soybean meal-based diet with 0% added fat [CNTR], CNTR with 3% added tallow [TAL; iodine value {IV} = 41.8], or CNTR with 3% added corn oil [CO; IV = 123.0]). No interactions between environment and diet were evident for any major response criteria ( ≥ 0.063). Rectal temperature increased due to HS (39.0°C for HS, 38.1°C for TN, and 38.2°C for PFTN; < 0.001). Heat stress decreased ADFI (27.8%; < 0.001), ADG (0.72 kg/d for HS, 1.03 kg/d for TN, and 0.78 kg/d for PFTN; < 0.001), and G:F (0.290 for HS, 0.301 for TN, and 0.319 for PFTN; = 0.006). Heat stress barrows required 1.2 Mcal of ME intake more per kilogram of BW gain than PFTN ( < 0.001). Heat stress tended to result in the lowest apparent total tract digestibility of acid hydrolyzed ether extract (AEE; 59.0% for HS, 60.2% for TN, and 61.4% for PFTN; = 0.055). True total tract digestibility (TTTD) of AEE of CO-based diets (99.3%) was greater than that of CNTR (97.3%) and TAL-based diets (96.3%; = 0.012). Environment had no impact on TTTD of AEE ( = 0.118). Environment had no impact on jowl IV at market (69.2 g/100 g for HS, 69.3 g/100 g for TN, and 69.8 g/100 g for

  7. Food Sources, Dietary Behavior, and the Saturated Fat Intake of Latino Children.

    ERIC Educational Resources Information Center

    Basch, Charles E.; And Others

    1992-01-01

    Studies dietary patterns that distinguish children with higher and lower mean daily percentages of calories from saturated fat using data from mothers of 205 Latino children aged 4-7 years in New York City. Substituting low-fat for whole milk appears a key strategy for lowering saturated fat intake. (SLD)

  8. Dietary milk fat globule membrane improves endurance capacity in mice.

    PubMed

    Haramizu, Satoshi; Ota, Noriyasu; Otsuka, Atsuko; Hashizume, Kohjiro; Sugita, Satoshi; Hase, Tadashi; Murase, Takatoshi; Shimotoyodome, Akira

    2014-10-15

    Milk fat globule membrane (MFGM) comprises carbohydrates, membrane-specific proteins, glycoproteins, phospholipids, and sphingolipids. We evaluated the effects of MFGM consumption over a 12-wk period on endurance capacity and energy metabolism in BALB/c mice. Long-term MFGM intake combined with regular exercise improved endurance capacity, as evidenced by swimming time until fatigue, in a dose-dependent manner. The effect of dietary MFGM plus exercise was accompanied by higher oxygen consumption and lower respiratory quotient, as determined by indirect calorimetry. MFGM intake combined with exercise increased plasma levels of free fatty acids after swimming. After chronic intake of MFGM combined with exercise, the triglyceride content in the gastrocnemius muscle increased significantly. Mice given MFGM combined with exercise had higher mRNA levels of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc1α) and CPT-1b in the soleus muscle at rest, suggesting that increased lipid metabolism in skeletal muscle contributes, in part, to improved endurance capacity. MFGM treatment with cyclic equibiaxial stretch consisting of 10% elongation at 0.5 Hz with 1 h on and 5 h off increased the Pgc1α mRNA expression of differentiating C2C12 myoblasts in a dose-dependent manner. Supplementation with sphingomyelin increased endurance capacity in mice and Pgc1α mRNA expression in the soleus muscle in vivo and in differentiating myoblasts in vitro. These results indicate that dietary MFGM combined with exercise improves endurance performance via increased lipid metabolism and that sphingomyelin may be one of the components responsible for the beneficial effects of dietary MFGM.

  9. Association between dietary fat intake and insulin resistance in Chinese child twins.

    PubMed

    Huang, Tao; Beaty, Terri; Li, Ji; Liu, Huijuan; Zhao, Wei; Wang, Youfa

    2017-01-01

    Dietary fat intake is correlated with increased insulin resistance (IR). However, it is unknown whether gene-diet interaction modulates the association. This study estimated heritability of IR measures and the related genetic correlations with fat intake, and tested whether dietary fat intake modifies the genetic influence on type 2 diabetes (T2D)-related traits in Chinese child twins. We included 622 twins aged 7-15 years (n 311 pairs, 162 monozygotic (MZ), 149 dizygotic (DZ)) from south-eastern China. Dietary factors were measured using FFQ. Structural equation models were fit using Mx statistical package. The intra-class correlation coefficients for all traits related to T2D were higher for MZ twins than for DZ twins. Dietary fat and fasting serum insulin (additive genetic correlation (r A) 0·20; 95 % CI 0·08, 0·43), glucose (r A 0·12; 95 % CI 0·01, 0·40), homoeostasis model of assessment-insulin resistance (Homa-IR) (r A 0·22; 95 % CI 0·10, 0·50) and the quantitative insulin sensitivity check index (Quicki) (r A -0·22; 95 % CI -0·40, 0·04) showed strong genetic correlations. Heritabilities of dietary fat intake, fasting glucose and insulin were estimated to be 52, 70 and 70 %, respectively. More than 70 % of the phenotypic correlations between dietary fat and insulin, glucose, Homa-IR and the Quicki index appeared to be mediated by shared genetic influence. Dietary fat significantly modified additive genetic effects on these quantitative traits associated with T2D. Analysis of Chinese twins yielded high estimates of heritability of dietary fat intake and IR. Genetic factors appear to contribute to a high proportion of the variance for both insulin sensitivity and IR. Dietary fat intake modifies the genetic influence on blood levels of insulin and glucose, Homa-IR and the Quicki index.

  10. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations?

    PubMed Central

    Eilander, Ans; Harika, Rajwinder K.

    2015-01-01

    1 The development of food‐based dietary guidelines for prevention of cardiovascular diseases requires knowledge of the contribution of common foods to SFA and PUFA intake. We systematically reviewed available data from European countries on population intakes and dietary sources of total fat, SFA, and PUFA. Data from national dietary surveys or population studies published >1995 were searched through Medline, Web of Science, and websites of national public health institutes. Mean population intakes were compared with FAO/WHO dietary recommendations, and contributions of major food groups to overall intakes of fat and fatty acids were calculated. Fatty acid intake data from 24 European countries were included. Reported mean intakes ranged from 28.5 to 46.2% of total energy (%E) for total fat, from 8.9 to 15.5%E for SFA, from 3.9 to 11.3%E for PUFA. The mean intakes met the recommendation for total fat (20–35%E) in 15 countries, and for SFA (<10%E) in two countries, and for PUFA (6–11%E) in 15 of the 24 countries. The main three dietary sources of total fat and SFA were dairy, added fats and oils, and meat and meat products. The majority of PUFA in the diet was provided by added fats and oils, followed by cereals and cereal products, and meat and meat products. Practical applications: While many European countries meet the recommended intake levels for total fat and PUFA, a large majority of European population exceeds the widely recommended maximum 10%E for SFA. In particular animal based products, such as dairy, animal fats, and fatty meat contribute to SFA intake. Adhering to food‐based dietary guidelines for prevention of CHD and other chronic diseases in Europe, including eating less fatty meats, low‐fat instead of full‐fat dairy, and more vegetable fats and oils will help to reduce SFA intake and at the same time increase PUFA intake. In European countries, SFA intakes are generally higher than the recommended <10%E and PUFA intakes lower than the

  11. The impact of usual dietary patterns, selection of significant foods and cuisine choices on changing dietary fat under 'free living' conditions.

    PubMed

    Tapsell, Linda C; Hokman, Anita; Sebastiao, Ana; Denmeade, Sharyn; Martin, Gina; Calvert, G Dennis; Jenkins, Arthur B

    2004-01-01

    Dietary guidelines for the general population and for the management of obesity, diabetes and heart disease suggest a reduction in dietary fat, and in particular dietary saturated fatty acids (SFA). In order to achieve the recommended levels, changes in food choice patterns are required. Foods are consumed in combination with other foods, and these combinations are often recognizable as cuisine patterns. In this study we examined the food choice patterns of a group of 63 adults with existing type 2 diabetes mellitus who completed a 12 month dietary intervention trial aimed at changing dietary fat under 'free living' conditions. In both lower fat (LF, 27%) and modified fat (MF, 37%E) groups, a reduction in dietary SFA and an increase in polyunsaturated fat were required, with an additional requirement to increase dietary monounsaturated fat in the MF group. The usual diets of the study sample were on average low in total fat (27%E), but high in saturated fat (12%E). Those already consuming total fat at the level concordant with their allocation (LF or MF) achieved targets faster than those with a discordant allocation, but there was no significant effect of usual diet on time of target achievement at 12 months. At 6 months, those achieving dietary fat targets had changed to low fat dairy products and leaner meats, were having more spreads, oils, and nuts and were consuming takeaway meals less than twice a week. Contributions to dietary fat shifted from takeaway foods, meat, dairy products and cakes to spreads, oils and nuts. The modified fat and low fat groups chose more Mediterranean and South East Asian cuisines respectively. In this study sample, usual dietary patterns had an initial impact on change in the diet, but identifiable changes in food choice patterns and the adoption of certain cuisines that combined foods indicative of the dietary guidelines resulted in successful achievement of dietary fat targets.

  12. Poor adherence to dietary guidelines among adult survivors of childhood acute lymphoblastic leukemia.

    PubMed

    Robien, Kim; Ness, Kirsten K; Klesges, Lisa M; Baker, K Scott; Gurney, James G

    2008-11-01

    Recent studies indicate that survivors of childhood acute lymphoblastic leukemia (ALL) are at increased risk of obesity and cardiovascular disease, conditions that healthy dietary patterns may help ameliorate or prevent. To evaluate the usual dietary intake of adult survivors of childhood ALL, food frequency questionnaire data were collected from 72 participants, and compared with the 2007 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention recommendations, the Dietary Approaches to Stop Hypertension (DASH) diet, and the 2005 United States Department of Agriculture (USDA) Food Guide. Mean daily energy intake was consistent with estimated requirements; however, mean body mass index was 27.1 kg/m2 (overweight). Dietary index scores averaged fewer than half the possible number of points on all 3 scales, indicating poor adherence to recommended guidelines. No study participant reported complete adherence to any set of guidelines. Although half the participants met minimal daily goals for 5 servings of fruits and vegetables (WCRF/AICR recommendations) and dietary fat (DASH diet and USDA Food Guide), participants reported dietary sodium and added sugar intake considerably in excess of recommendations, and suboptimal consumption of whole grains. Guideline adherence was not associated with either body mass index or waist circumference, perhaps due to the low dietary index scores. These findings suggest that dietary intake for many adult survivors of childhood ALL is not concordant with dietary recommendations that may help reduce their risk of obesity, cardiovascular disease, or other treatment-related late effects.

  13. The association between leisure-time physical activity and dietary fat in American adults.

    PubMed Central

    Simoes, E J; Byers, T; Coates, R J; Serdula, M K; Mokdad, A H; Heath, G W

    1995-01-01

    Relations between leisure-time physical activity and dietary fat were examined in a population-based probability sample of 29,672 adults in the 1990 Behavioral Risk Factor Surveillance System. Consumption of 13 high-fat food items and participation in physical activities were measured, and fat and activity scores were calculated. Dietary fat and physical activity were strongly and inversely associated. This association was independent of nine other demographic and behavioral risk factors. Etiologic researchers should consider that diet and physical activity can potentially confound each other, and creators of public health messages that target one behavior should consider including the other. PMID:7856785

  14. Adipose tissue expansion and the development of obesity: influence of dietary fat type.

    PubMed

    Hausman, D B; Loh, M Y; Flatt, W P; Martin, R J

    1997-03-01

    Recent studies indicate that the prevalence of obesity in adults has increased by 30% or more in the past decade, with increases in both genders and in all ethnic and racial populations and age groups. Obesity is associated with many chronic diseases and alterations in physiologic function including cardiovascular disease, hypertension, diabetes mellitus, gallbladder disease and certain types of cancer. Much attention regarding dietary influences on obesity development or prevention has focused on high fat diets. Many studies have confirmed that high fat feeding leads to an expansion of adipose tissue mass through an increase in fat cell size and/or number and to the subsequent development of obesity. However, there is little definitive information on the effect of type of dietary fat, especially palm oil, on adipose tissue cellularity and the development of obesity. These studies were designed to determine whether dietary fat of different sources vary in their ability to produce obesity and to begin to elucidate the mechanism by which such divergence occurs. Male Osborne-Mendel rats were fed either a low fat (15% calories) or one of three high fat diets (65% calories) for 12 weeks. The predominant fat source in the high fat diets was either soybean oil, tallow, or palm-olein (a fraction of palm oil). Final body weight was not influenced by fat level or type; however, percent carcass lipid and fat pad weight were higher in soybean oil and tallow fed rats than in low fat and palm-olein fed rats. Fat pad specific increases in cell size and cell number were observed for tallow and soybean oil fed compared to low fat and palm-olein fed rats. Serum triglycerides were higher in the tallow and palm-olein fed rats compared to low fat fed rats; no significant effects of dietary fat type on serum cholesterol were observed. These results indicate that palm-olein, unlike tallow and soybean oil, were comparable to a low fat diet concerning fat pad weight, body composition and

  15. Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters.

    PubMed

    Lin, Yi-Ling; Chang, Yuan-Yen; Yang, Deng-Jye; Tzang, Bor-Show; Chen, Yi-Chen

    2013-09-01

    Polyphenols in noni juice (NJ) are mainly composed of phenolic acids, mainly gentisic, p-hydroxybenoic, and chlorogenic acids. To investigate the beneficial effects of NJ on the liver, hamsters were fed with two diets, normal-fat and high-fat diets. Furthermore, high-fat dietary hamsters were received distilled water, and 3, 6, and 9 mL NJ/kg BW, respectively. After a 6-week feeding period, the increased (p<0.05) sizes of liver and visceral fat in high-fat dietary hamsters compared to the control hamsters were ameliorated (p<0.05) by NJ supplementation. NJ also decreased (p<0.05) serum/liver lipids but enhanced (p<0.05) daily faecal lipid/bile acid outputs in the high-fat dietary hamsters. High-fat dietary hamsters supplemented with NJ had higher (p<0.05) liver antioxidant capacities but lowered (p<0.05) liver iNOS, COX-2, TNF-α, and IL-1β expressions, gelatinolytic levels of MMP9, and serum ALT values compared to those without NJ. Hence, NJ protects liver against a high-fat dietary habit via regulations of antioxidative and anti-inflammatory responses.

  16. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors.

    PubMed

    Dewell, Antonella; Weidner, Gerdi; Sumner, Michael D; Chi, Christine S; Ornish, Dean

    2008-02-01

    There is increasing evidence that dietary factors in plant-based diets are important in the prevention of chronic disease. This study examined protective (eg, antioxidant vitamins, carotenoids, and fiber) and pathogenic (eg, saturated fatty acids and cholesterol) dietary factors in a very-low-fat vegan diet. Ninety-three early-stage prostate cancer patients participated in a randomized controlled trial and were assigned to a very-low-fat (10% fat) vegan diet supplemented with soy protein and lifestyle changes or to usual care. Three-day food records were collected at baseline (n=42 intervention, n=43 control) and after 1 year (n=37 in each group). Analyses of changes in dietary intake of macronutrients, vitamins, minerals, carotenoids, and isoflavones from baseline to 1 year showed significantly increased intake of most protective dietary factors (eg, fiber increased from a mean of 31 to 59 g/day, lycopene increased from 8,693 to 34,464 mug/day) and significantly decreased intake of most pathogenic dietary factors (eg, saturated fatty acids decreased from 20 to 5 g/day, cholesterol decreased from 200 to 10 mg/day) in the intervention group compared to controls. These results suggest that a very-low-fat vegan diet can be useful in increasing intake of protective nutrients and phytochemicals and minimizing intake of dietary factors implicated in several chronic diseases.

  17. Dietary fat intake and ovarian cancer risk: a meta-analysis of epidemiological studies

    PubMed Central

    Qiu, Wenlong; Lu, Heng; Qi, Yana; Wang, Xiuwen

    2016-01-01

    Observational studies assessing the association of dietary fat and risk of ovarian cancer yield discrepant results. Pertinent prospective cohort studies were identified by a PubMed search from inception to December 2015. Sixteen independent case-control and nine cohort studies on dietary fat intake were included, with approximately 900,000 subjects in total. Relative risks (RRs) with 95% confidence intervals were pooled using a random effects model. Heterogeneity, sensitivity analysis and publication bias were assessed; subgroup analysis and analysis stratified by EOC histology were conducted. The reported studies showed a significant increase of ovarian cancer risk with high consumption of total-, saturated-, and trans-fats, while serous ovarian cancer was more susceptible to dietary fat consumption than other pathological subtypes. No evidence of positive association between dietary fat intake and ovarian cancer risk was provided by cohort studies. Menopausal status, hormone replacement therapy, body mass index (BMI), and pregnancy times, modified the objective associations. In conclusion, the meta-analysis findings indicate that high consumption of total, saturated and trans-fats increase ovarian cancer risk, and different histological subtypes have different susceptibility to dietary fat. PMID:27119509

  18. Quality and Sensory Characteristics of Reduced-fat Chicken Patties with Pork Back Fat Replaced by Dietary Fiber from Wheat Sprout.

    PubMed

    Choi, Yun-Sang; Sung, Jung-Min; Park, Jong-Dae; Hwang, Ko-Eun; Lee, Cheol-Won; Kim, Tae-Kyung; Jeon, Ki-Hong; Kim, Cheon-Jei; Kim, Young-Boong

    2016-01-01

    The effects of reducing pork fat levels from 20% to 15% or 10% by partially substituting pork back fat with wheat sprout fiber in reduced-fat chicken patties were investigated. Approximate composition, energy value, pH, color, cooking loss, reduction in diameter, reduction in thickness, shear force, and sensory properties were determined. Moisture content, ash contents, yellowness of uncooked and cooked reduced-fat chicken patties with wheat sprout were higher than those in the control, while displaying fat content, calorie content, and pH of uncooked and cooked lower in reduced-fat chicken patties than in the control. Cooking loss, reduction in diameter, and reduction in thickness were the highest in the reduced-fat chicken patties with 10% fat level. Cooking loss, reduction in diameter, and reduction in thickness were decreased when fat levels and wheat sprout levels were increased. Control samples without wheat sprout dietary fiber had significantly (p<0.05) higher color and flavor scores compared to reduced-fat chicken patties containing wheat sprout dietary fiber. The overall acceptability of the control and treatment with 15% fat and 2% wheat sprout dietary fiber (T3) was the highest. Therefore, 15% fat level in reduced-fat chicken patties with the addition of 2% wheat sprout dietary fiber can be used to improve the quality and sensory characteristics of regular-fat chicken patties containing 20% fat level.

  19. Quality and Sensory Characteristics of Reduced-fat Chicken Patties with Pork Back Fat Replaced by Dietary Fiber from Wheat Sprout

    PubMed Central

    2016-01-01

    The effects of reducing pork fat levels from 20% to 15% or 10% by partially substituting pork back fat with wheat sprout fiber in reduced-fat chicken patties were investigated. Approximate composition, energy value, pH, color, cooking loss, reduction in diameter, reduction in thickness, shear force, and sensory properties were determined. Moisture content, ash contents, yellowness of uncooked and cooked reduced-fat chicken patties with wheat sprout were higher than those in the control, while displaying fat content, calorie content, and pH of uncooked and cooked lower in reduced-fat chicken patties than in the control. Cooking loss, reduction in diameter, and reduction in thickness were the highest in the reduced-fat chicken patties with 10% fat level. Cooking loss, reduction in diameter, and reduction in thickness were decreased when fat levels and wheat sprout levels were increased. Control samples without wheat sprout dietary fiber had significantly (p<0.05) higher color and flavor scores compared to reduced-fat chicken patties containing wheat sprout dietary fiber. The overall acceptability of the control and treatment with 15% fat and 2% wheat sprout dietary fiber (T3) was the highest. Therefore, 15% fat level in reduced-fat chicken patties with the addition of 2% wheat sprout dietary fiber can be used to improve the quality and sensory characteristics of regular-fat chicken patties containing 20% fat level. PMID:28115892

  20. A Practical Guide for Estimating Dietary Fat and Fiber Using Limited Food Frequency Data.

    ERIC Educational Resources Information Center

    Neale, Anne Victoria; And Others

    1992-01-01

    A methodology is presented for estimating daily intake of dietary fat and fiber based on limited food frequency data. The procedure, which relies on National Food Consumption Survey data and daily consumption rates, can provide baseline estimates of dietary patterns for health promotion policymakers. (SLD)

  1. Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study assessed the effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Three-week old male C57BL/6 mice were fed the AIN-93G standard diet or a 45% fat diet (kcal %) for seven weeks before they were subcutaneously injected with 2.5 x 105 viable cells into th...

  2. Contents of total fat, fatty acids, starch, sugars and dietary fibre in Swedish market basket diets.

    PubMed

    Becker, W; Eriksson, A; Haglund, M; Wretling, S

    2015-05-14

    The typical dietary supply of total fat, fatty acids, starch, sugars, polyols and dietary fibre in Sweden was assessed from analyses of market baskets (MB) purchased in 2005 and 2010. MB were based on food balance sheets, with each basket comprising about 130 foods, which represented more than 90% of annual dietary supply. Foods were divided into ten to twelve categories. In 2010, total fat contributed 34% of energy (E%), SFA 14.3 E%, MUFA 12.8 E%, PUFA 4.6 E%, n-6 fatty acids 3.6 E%, n-3 fatty acids 1.0 E% and trans-fatty acids (TFA) 0.5 E%. Glycaemic carbohydrates contributed 47 E%, monosaccharides 9 E%, sucrose 11 E%, disaccharides 15 E% and total sugars 24 E%. Added sugars contributed about 15 E%. Dietary fibre content was about 1.7 g/MJ in the 2010 MB. Compared with the 2005 MB, the dietary supply of TFA and dietary fibre was lower, otherwise differences were small. The present MB survey shows that the content of SFA and added sugars was higher than the current Nordic Nutrition Recommendations, while the content of PUFA and especially dietary fibre was lower. TFA levels decreased and dietary supply was well below the recommendations of the WHO. These results emphasise a focus on quality and food sources of fat and carbohydrates, limiting foods rich in SFA and added sugars and replacing them with foods rich in dietary fibre and cis-unsaturated fatty acids.

  3. Food sources, dietary behavior, and the saturated fat intake of Latino children.

    PubMed Central

    Basch, C E; Shea, S; Zybert, P

    1992-01-01

    BACKGROUND. Recent recommendations for Americans aged 2 and older call for a reduction in the average saturated fat intake to less than 10% of calories. METHODS. Using 24-hour dietary recalls collected from mothers of 4- to 7-year-old urban Latino children, we identified foods and dietary behavior patterns that distinguish children with higher and lower mean daily percentages of calories from saturated fat. RESULTS. Compared with children in the lowest quintile of intake, children in the highest quintile consumed more than twice as much saturated fat per day from high-fat milk products (18.5 g vs 7.8 g), mostly from whole milk. They did not consume different kinds of milk or different amounts of milk per eating occasion, but on average they consumed milk more frequently (2.8 vs 1.6 eating occasions per day). Even children in the lowest quintile, on average, exceeded the 10% of calories from saturated fat currently recommended. If low-fat (1% fat) milk had been substituted without other dietary changes, all but the highest two quintiles would have been within the recommended level. CONCLUSIONS. The substitution of low-fat for whole milk appears to be a key strategy for preschool children for achieving recommended levels of saturated fat intake. PMID:1585960

  4. An Environmental Intervention to Reduce Dietary Fat in School Lunches.

    ERIC Educational Resources Information Center

    Whitaker, Robert C.; And Others

    1993-01-01

    Examined lunch entree choices by students in 16 elementary schools. During baseline period, low-fat entrees were available on 23% of days and selected by 39% of students. During intervention period, these figures were 71% of days and 29% of students. Across intervention, fat content of average meal dropped from 36% to 30% of calories from fat. (BC)

  5. Effects of selective breeding on the cholesterolemic responses to dietary saturated fat and cholesterol in baboons.

    PubMed

    McGill, H C; McMahan, C A; Mott, G E; Marinez, Y N; Kuehl, T J

    1988-01-01

    Positive assortative mating of baboons (Papio sp.) based on elevation of serum cholesterol concentrations in response to a cholesterol- and saturated fat-enriched diet produced 64 progeny (30 high line; 34 low line). When the animals were 3 to 4 years of age, we tested their lipoprotein cholesterol responses to dietary cholesterol and fat in a factorial experiment with two levels of dietary cholesterol (1.7 and less than 0.01 mg/kcal) and two types of fat, coconut oil (P/S 0.1) and corn oil (P/S 3.5), each providing 40% of total calories from fat; we also tested their responses to chow. The high line animals had significantly higher very low density plus low density lipoprotein (VLDL + LDL) and high density lipoprotein (HDL) cholesterol levels on all diets. The effects of dietary cholesterol on VLDL + LDL cholesterol concentrations were greater in high line animals than in low line animals, but dietary cholesterol's effects on HDL cholesterol were similar in both lines. The effects of saturated fat, compared to unsaturated fat, on both VLDL + LDL and HDL cholesterol levels were similar in both lines. Selective breeding produced lines diverging in lipoprotein cholesterol concentrations by acting on several different genetically mediated processes that control serum lipoprotein levels. At least one of these processes involves responsiveness of serum VLDL + LDL cholesterol concentration to dietary cholesterol.

  6. Reducing dietary fat from a meal increases the bioavailability of exogenous carbohydrate without altering plasma glucose concentration

    PubMed Central

    Knuth, Nicolas D.; Shrivastava, Cara R.; Horowitz, Jeffrey F.

    2009-01-01

    The primary goal of this study was to determine the acute glycemic and endocrine responses to the reduction of fat content from a meal. On three separate occasions, nine overweight subjects (body mass index = 30 ± 1 kg/m2; 5 men, 4 women) consumed 1) a control meal (∼800 kcal; 100 g of carbohydrate, 31 g of fat, and 30 g of protein), 2) a low-fat meal (∼530 kcal; 100 g of carbohydrate, 1 g of fat, and 30 g of protein), or 3) a low-fat meal plus lipid infusion [same meal as low-fat meal, but the total energy provided was the same as control (800 kcal), with the “missing” fat (∼30 g) provided via an intravenous lipid infusion]. All three meals contained [13C]glucose (3 mg/kg body wt) to assess the bioavailability of ingested glucose. During the 5-h period after each meal, we measured the recovery of [13C]glucose in plasma, plasma glucose, and insulin concentrations. We also measured plasma concentration of the gastrointestinal peptides: glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY3-36 (PYY3-36). The recovery of the ingested [13C]glucose in the hour after ingestion was greater (P < 0.05) after the low-fat than after the control meal [area under the curve (AUC): 1,206 ± 252 and 687 ± 161 μM·h, respectively]. However, removing dietary fat from the meal did not affect the plasma concentration of glucose or insulin. Importantly, [13C]glucose recovery was not different during the low-fat and lipid infusion trials (AUC: 1,206 ± 252 and 1,134 ± 247 μM·h, respectively), indicating that the accelerated delivery of exogenous glucose found after removing fat from the meal is due exclusively to the reduction of fat in the gastrointestinal tract. In parallel with these findings, the reduction in fat calories from the meal reduced plasma concentration of GIP, GLP-1, and PYY3-36. In summary, these data suggest that removing fat from the diet expedited exogenous glucose delivery into the systemic circulation

  7. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks.

    PubMed

    Poorghasemi, Mohammadreza; Seidavi, Alireza; Qotbi, Ali Ahmad Alaw; Laudadio, Vito; Tufarelli, Vincenzo

    2013-05-01

    This study was conducted to determine the effects of three different fat sources and their combination on growth performance, carcass traits and intestinal measurements of broiler chickens reared to 42 d of age. Two hundred day-old male broiler chicks (Ross 308) were randomly assigned to one of five treatments with four replicates of 10 chicks based on a completely randomized design. The dietary treatments consisted of 4% added fat from three different sources and their combination as follows: T, diet containing 4% tallow; CO, diet containing 4% canola oil; SFO, diet containing 4% sunflower oil; TCO, diet containing 2% tallow+2% canola oil; TSFO, diet containing 2% tallow+2% sunflower oil. Dietary fat type affected significantly BW and gain as well as feed efficiency in birds fed the TCO diets compared with those fed the other diets. Dietary fat type also modified meat yield, resulting in a higher breast and drumstick yields in the birds fed TCO and TSFO diets, respectively. Most of internal organ relative weights and small intestine measurements were not influenced by dietary treatments, except for the abdominal fat pad weight that was lower in birds fed SFO and for small intestinal length that was influenced by fat source. Results from the current study suggested that the supplementation with a combination of vegetable and animal fat sources in broiler diet supported positively growth performance and carcass parameters.

  8. Out of the frying pan: dietary saturated fat influences nonalcoholic fatty liver disease.

    PubMed

    Parks, Elizabeth; Yki-Järvinen, Hannele; Hawkins, Meredith

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by excess accumulation of fat in the liver. In some cases, NAFLD is also accompanied by insulin resistance, resulting in metabolic dysfunction. Dietary fat content probably influences both NAFLD and insulin resistance; however, the immediate effects of fat consumption have not been fully explored. In this issue of the JCI, Hernández et al. evaluated hepatic glucose and lipid metabolism in humans and mice following a single oral dose of saturated fat. This one bolus of fat resulted in a measurable increase in insulin resistance, hepatic triglycerides, and gluconeogenesis. In mice, the saturated fat bolus resulted in the induction of several NAFLD-associated genes. Together, the results of this study indicate that saturated fat intake has immediate effects on metabolic function.

  9. Characterization of the Proteome of Cytoplasmic Lipid Droplets in Mouse Enterocytes after a Dietary Fat Challenge

    PubMed Central

    D’Aquila, Theresa; Sirohi, Devika; Grabowski, Jeffrey M.; Hedrick, Victoria E.; Paul, Lake N.; Greenberg, Andrew S.; Kuhn, Richard J.; Buhman, Kimberly K.

    2015-01-01

    Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption. PMID:25992653

  10. Effect of zinc on copper and iron bioavailability as influenced by dietary copper and fat source

    SciTech Connect

    Magee, A.C.; Jones, B.P.; Lin, F.; Sinthusek, G.; Frimpong, N.A.; Wu, S.

    1986-03-05

    In a number of experiments, they have observed that liver copper levels of young male rats fed low zinc diets were essentially the same as liver copper levels of rats fed adequate zinc. Liver iron levels of rats fed low zinc diets, however, tended to be markedly higher than liver iron levels of rats fed adequate zinc. Increases in dietary zinc (up to 200 ppm) were generally associated with decreases in liver iron deposition, but had little effect on liver copper deposition. Iron bioavailability appeared to be enhanced when fat sources high in saturated fatty acids were used, and there was evidence that the type of dietary fat influenced the effect of zinc on iron bioavailability. Liver copper deposition, however, did not appear to be markedly affected by the type of dietary fat suggesting that copper bioavailability is less affected by fat source. Increases in dietary copper were associated with increases in liver copper levels and decreases in liver iron levels of rats fed increasing levels of zinc. These data suggest that potential interrelationships between dietary factors not being considered as experimental variables could have significant effects on results and on the interrelationships between dietary variables which are being studied.

  11. Dietary fat alters the response of hypothalamic neuropeptide Y to subsequent energy intake in broiler chickens.

    PubMed

    Wang, Xiao J; Xu, Shao H; Liu, Lei; Song, Zhi G; Jiao, Hong C; Lin, Hai

    2017-02-15

    Dietary fat affects appetite and appetite-related peptides in birds and mammals; however, the effect of dietary fat on appetite is still unclear in chickens faced with different energy statuses. Two experiments were conducted to investigate the effects of dietary fat on food intake and hypothalamic neuropeptides in chickens subjected to two feeding states or two diets. In Experiment 1, chickens were fed a high-fat (HF) or low-fat (LF) diet for 35 days, and then subjected to fed (HF-fed, LF-fed) or fasted (HF-fasted, LF-fasted) conditions for 24 h. In Experiment 2, chickens that were fed a HF or LF diet for 35 days were fasted for 24 h and then re-fed with HF (HF-RHF, LF-RHF) or LF (HF-RLF, LF-RLF) diet for 3 h. The results showed that chickens fed a HF diet for 35 days had increased body fat deposition despite decreasing food intake even when the diet was altered during the re-feeding period (P<0.05). LF diet (35 days) promoted agouti-related peptide (AgRP) expression compared with HF diet (P<0.05) under both fed and fasted conditions. LF-RHF chickens had lower neuropeptide Y (NPY) expression compared with LF-RLF chickens; conversely, HF-RHF chickens had higher NPY expression than HF-RLF chickens (P<0.05). These results demonstrate: (1) that HF diet decreases food intake even when the subsequent diet is altered; (2) the orexigenic effect of hypothalamic AgRP; and (3) that dietary fat alters the response of hypothalamic NPY to subsequent energy intake. These findings provide a novel view of the metabolic perturbations associated with long-term dietary fat over-ingestion in chickens.

  12. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    PubMed

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  13. Amphetamine Containing Dietary Supplements and Acute Myocardial Infarction

    PubMed Central

    Hritani, Abdulwahab; Antoun, Patrick

    2016-01-01

    Weight loss is one of the most researched and marketed topics in American society. Dietary regimens, medications that claim to boost the metabolism, and the constant pressure to fit into society all play a role in our patient's choices regarding new dietary products. One of the products that are well known to suppress appetite and cause weight loss is amphetamines. While these medications suppress appetite, most people are not aware of the detrimental side effects of amphetamines, including hypertension, tachycardia, arrhythmias, and in certain instances acute myocardial infarction. Here we present the uncommon entity of an acute myocardial infarction due to chronic use of an amphetamine containing dietary supplement in conjunction with an exercise regimen. Our case brings to light further awareness regarding use of amphetamines. Clinicians should have a high index of suspicion of use of these substances when young patients with no risk factors for coronary artery disease present with acute arrhythmias, heart failure, and myocardial infarctions. PMID:27516911

  14. Effects of partial replacement of dietary fat by olestra on dietary cholesterol absorption in man

    SciTech Connect

    Jandacek, R.J.; Ramirez, M.M.; Crouse, J.R. III )

    1990-08-01

    Olestra, a nonabsorbable fat substitute comprising long-chain fatty acid esters of sucrose, had been previously shown to reduce cholesterol absorption in humans when ingested at a level of 50 g/d. To determine whether or not a lower level of dietary olestra would also reduce cholesterol absorption, we studied the effect of 7 g of olestra twice a day in 20 normocholesterolemic male inpatients in a double-blind, crossover trial. Two 6-day diet treatment and stool collection periods were separated by a 14-day washout period. Half of the subjects received butter, and half, a butter-olestra blend during each treatment period according to a crossover design. All subjects ingested trace amounts of 3H-cholesterol and 14C-beta-sitosterol with the butter or the butter-olestra blend. Cholesterol absorption was determined from the 3H/14C ratios in the diet and in saponified and extracted stools according to previously validated methodology. Cholesterol absorption during the butter regimen was significantly greater than that during the olestra regimen (56.1% +/- 1.6% v 46.7% +/- 1.1%, P less than .01).

  15. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol.

    PubMed

    Mehta, Devina; Mehta, Kamal D

    2017-03-01

    Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.

  16. Hypercholesterolemia screening. Does knowledge of blood cholesterol level affect dietary fat intake?

    PubMed Central

    Aubin, M.; Godin, G.; Vézina, L.; Maziade, J.; Desharnais, R.

    1998-01-01

    OBJECTIVE: To assess whether knowing blood cholesterol test results influences people's intention to lower their dietary fat intake and to assess changes in diet after 3 months. DESIGN: Randomized clinical study. SETTING: Two hospital-based family medicine centres. PARTICIPANTS: A total of 526 patients aged 18 to 65, without prior knowledge of their blood cholesterol levels, were recruited. Seventy did not appear for their appointments, and 37 did not meet study criteria, leaving 419 participants. From that group, 391 completed the study. INTERVENTIONS: Patients submitted to cholesterol screening were randomly assigned to one of two groups, completing the study questionnaires either before (control group) or after (experimental group) being informed of their screening test results. All participants were called 3 months after transmission of test results to assess their dietary fat intake at that time. MAIN OUTCOME MEASURES: Differences in intention to adopt a low-fat diet reported between the experimental and control groups and differences in dietary fat intake modification after 3 months between patients with normal and abnormal blood cholesterol test results. RESULTS: Knowledge of test results influenced patients' intentions to adopt low-fat diets (F1,417 = 5.4, P = .02). Patients reported lower mean dietary fat intake after 3 months than at baseline (P < .0001). The reduction was greater in patients with abnormal screening results (F2,388 = 3.6, P = .03). CONCLUSIONS: Being informed of personal blood cholesterol levels effects an immediate change in eating habits that translates into reduced dietary fat intake. PMID:9640523

  17. Progressing Insights into the Role of Dietary Fats in the Prevention of Cardiovascular Disease.

    PubMed

    Zock, Peter L; Blom, Wendy A M; Nettleton, Joyce A; Hornstra, Gerard

    2016-11-01

    Dietary fats have important effects on the risk of cardiovascular disease (CVD). Abundant evidence shows that partial replacement of saturated fatty acids (SAFA) with unsaturated fatty acids improves the blood lipid and lipoprotein profile and reduces the risk of coronary heart disease (CHD). Low-fat diets high in refined carbohydrates and sugar are not effective. Very long-chain polyunsaturated n-3 or omega-3 fatty acids (n-3 VLCPUFA) present in fish have multiple beneficial metabolic effects, and regular intake of fatty fish is associated with lower risks of fatal CHD and stroke. Food-based guidelines on dietary fats recommend limiting the consumption of animal fats high in SAFA, using vegetable oils high in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), and eating fatty fish. These recommendations are part of a healthy eating pattern that also includes ample intake of plant-based foods rich in fiber and limited sugar and salt.

  18. Exploring the Dietary Patterns of Young New Zealand Women and Associations with BMI and Body Fat.

    PubMed

    Schrijvers, Jenna K; McNaughton, Sarah A; Beck, Kathryn L; Kruger, Rozanne

    2016-07-26

    Examining dietary patterns provides an alternative approach to investigating dietary behaviors related to excess adiposity. The study aim was to investigate dietary patterns and body composition profiles of New Zealand European (NZE) women, participating in the women's EXPLORE (Examining the Predictors Linking Obesity Related Elements) study. Post-menarche, pre-menopausal NZE women (16-45 years) (n = 231) completed a validated 220-item, self-administrated, semi-quantitative food frequency questionnaire. Body mass index (BMI) was calculated using measured height (cm) and weight (kg); body fat percentage (BF%) was measured using air displacement plethysmography (BodPod). Dietary patterns were identified using principal component factor analysis. Associations between dietary patterns, age, BMI and BF% were investigated. Four dietary patterns were identified: snacking; energy-dense meat; fruit and vegetable; healthy, which explained 6.9%, 6.8%, 5.6% and 4.8% of food intake variation, respectively. Age (p = 0.012) and BMI (p = 0.016) were positively associated with the "energy-dense meat" pattern. BF% (p = 0.016) was positively associated with the "energy-dense meat" pattern after adjusting for energy intake. The women following the identified dietary patterns had carbohydrate intakes below and saturated fat intakes above recommended guidelines. Dietary patterns in NZE women explain only some variations in body composition. Further research should examine other potential factors including physical activity and socioeconomic status.

  19. Exploring the Dietary Patterns of Young New Zealand Women and Associations with BMI and Body Fat

    PubMed Central

    Schrijvers, Jenna K.; McNaughton, Sarah A.; Beck, Kathryn L.; Kruger, Rozanne

    2016-01-01

    Examining dietary patterns provides an alternative approach to investigating dietary behaviors related to excess adiposity. The study aim was to investigate dietary patterns and body composition profiles of New Zealand European (NZE) women, participating in the women’s EXPLORE (Examining the Predictors Linking Obesity Related Elements) study. Post-menarche, pre-menopausal NZE women (16–45 years) (n = 231) completed a validated 220-item, self-administrated, semi-quantitative food frequency questionnaire. Body mass index (BMI) was calculated using measured height (cm) and weight (kg); body fat percentage (BF%) was measured using air displacement plethysmography (BodPod). Dietary patterns were identified using principal component factor analysis. Associations between dietary patterns, age, BMI and BF% were investigated. Four dietary patterns were identified: snacking; energy-dense meat; fruit and vegetable; healthy, which explained 6.9%, 6.8%, 5.6% and 4.8% of food intake variation, respectively. Age (p = 0.012) and BMI (p = 0.016) were positively associated with the “energy-dense meat” pattern. BF% (p = 0.016) was positively associated with the “energy-dense meat” pattern after adjusting for energy intake. The women following the identified dietary patterns had carbohydrate intakes below and saturated fat intakes above recommended guidelines. Dietary patterns in NZE women explain only some variations in body composition. Further research should examine other potential factors including physical activity and socioeconomic status. PMID:27472358

  20. Postprandial lipoprotein composition in pigs fed diets differing in type and amount of dietary fat.

    PubMed

    Luhman, C M; Faidley, T D; Beitz, D C

    1992-01-01

    To determine the effects of diet on postprandial lipoprotein composition, growing pigs were fed diets containing 20 or 40% of energy as soybean oil, tallow or a 50:50 blend of soybean oil and tallow. At the end of wk 6, a blood sample was drawn from pigs fasted for 12 h. Pigs were then fed, and blood samples were drawn 1 and 4 h later. In LDL, concentrations of free and total cholesterol were greater in pigs fed 40% of energy as fat than in pigs fed 20% of energy as fat (P less than 0.02). Pigs fasted for 12 h had lesser concentrations of triacylglycerol and greater concentrations of phospholipid in LDL and HDL than did pigs fasted for 1 and 4 h (P less than 0.05). In HDL, total cholesterol and phospholipid concentrations were greater in pigs fed 40% of energy as fat than in pigs fed 20% of energy as fat (P less than 0.01). A greater concentration of triacylglycerol was found in VLDL of pigs fed 40% of energy as fat than in pigs fed 20% of energy as fat (P less than 0.01). Amount of dietary fat had a greater effect than did type of dietary fat on composition of lipoproteins from postprandial pigs.

  1. Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women

    PubMed Central

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2011-01-01

    The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370

  2. Role of dietary fats in the prevention and treatment of the metabolic syndrome.

    PubMed

    Nettleton, Joyce A; Jebb, Susan; Risérus, Ulf; Koletzko, Berthold; Fleming, Jennifer

    2014-01-01

    A symposium on the health significance of dietary fat in the prevention and treatment of the metabolic syndrome (MetS) was held at the 20th International Congress of Nutrition in Granada, Spain, on September 19, 2013. Four nutrition experts addressed the topics of dietary fat and obesity, effects of dietary fat quality in obesity and insulin resistance, influence of early nutrition on the later risk of MetS and the relative merits of high- or low-fat diets in counteracting MetS. Participants agreed that preventing weight gain and achieving weight loss in overweight and obese patients were key strategies for reducing MetS. Both low-fat and low-carbohydrate diets are associated with weight loss, but adherence to the diet is the most important factor in achieving success. Avoidance of high saturated fats contributes to lower health risks among obese, MetS and diabetic patients. Further, healthy maternal weight at conception and in pregnancy is more important that weight gain during pregnancy for reducing the risk of obesity in the offspring. The effects of different polyunsaturated fatty acids on MetS and weight loss require clarification.

  3. 21 CFR 101.75 - Health claims: dietary saturated fat and cholesterol and risk of coronary heart disease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cholesterol and risk of coronary heart disease. 101.75 Section 101.75 Food and Drugs FOOD AND DRUG... Specific Requirements for Health Claims § 101.75 Health claims: dietary saturated fat and cholesterol and risk of coronary heart disease. (a) Relationship between dietary saturated fat and cholesterol and...

  4. Dietary Fat, Fiber, and Carbohydrate Intake in Relation to Risk of Endometrial Cancer

    PubMed Central

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2011-01-01

    Background Macronutrients such as fat and fiber have been hypothesized to play a role in the etiology of endometrial cancer. Methods To investigate these associations, the authors analyzed data from the Nurses’ Health Study (NHS). From 1980 to 2006, 669 invasive adenocarcinoma cases were identified over 1.3 million person-years of follow-up. Dietary intake was assessed in 1980 and updated every 2–4 years. Cox proportional hazard models were used to calculate relative risks (RRs), controlling for total energy and other risk factors. Results Overall, the authors found no significant associations between most dietary factors and endometrial cancer risk. Total fat was associated with a borderline significant decreased risk (top vs. bottom quintile RR=0.78; 95% confidence interval [CI]=0.60, 0.99; Ptrend=0.18). Findings for animal fat were similar. No inverse associations between dietary fibers and cancer risk were observed. Cereal fiber was modestly positively associated with risk (top vs. bottom quintile RR=1.38, 95%CI=1.07, 1.79; Ptrend = 0.05). The inverse association with animal fat intake and a positive association with carbohydrate intake were observed among premenopausal but not among postmenopausal women. Conclusions In this large prospective study, no overall association was observed between dietary fat, fiber, or carbohydrates with endometrial cancer risk, although several of the relationships may vary by menopausal status. Impact Dietary fat and fiber intake do not appear to play a major role in endometrial cancer etiology overall. However, further evaluation of these associations, particularly in premenopausal women, is needed. PMID:21393567

  5. The effects of fat talk on body dissatisfaction and eating behavior: the moderating role of dietary restraint.

    PubMed

    Compeau, Alyssa; Ambwani, Suman

    2013-09-01

    Although research suggests that fat talk, the normalized conversations that involve degrading one's body shape/weight and size, can increase body dissatisfaction and disordered eating behavior, the extent to which dietary restraint may moderate these relationships remains uncertain. A pilot study (N=30) comparing online videos with researcher-developed vignettes as prospective manipulations for fat talk exposure suggested use of the vignettes as potent yet subtle stimuli. In the main study, women undergraduates (N=116) were randomized to read a fat talk or neutral vignette and then completed standardized measures of body dissatisfaction and dietary restraint while being concurrently presented with food stimuli. Results suggest significant moderation effects for dietary restraint: whereas fat talk exposure was associated with increased body dissatisfaction among low dietary restrainers, it appeared to reduce food consumption among high dietary restrainers. Findings highlight the importance of individual differences in shaping responses to fat talk.

  6. Proceedings from the 2013 Canadian Nutrition Society Conference on Advances in Dietary Fats and Nutrition.

    PubMed

    Holub, Bruce; Mutch, David M; Pierce, Grant N; Rodriguez-Leyva, Delfin; Aliani, Michel; Innis, Sheila; Yan, William; Lamarche, Benoit; Couture, Patrick; Ma, David W L

    2014-07-01

    The science of lipid research continues to rapidly evolve and change. New knowledge enhances our understanding and perspectives on the role of lipids in health and nutrition. However, new knowledge also challenges currently held opinions. The following are the proceedings of the 2013 Canadian Nutrition Society Conference on the Advances in Dietary Fats and Nutrition. Content experts presented state-of-the-art information regarding our understanding of fish oil and plant-based n-3 polyunsaturated fatty acids, nutrigenomics, pediatrics, regulatory affairs, and trans fats. These important contributions aim to provide clarity on the latest advances and opinions regarding the role of different types of fats in health.

  7. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats.

    PubMed

    Snow, Dallin R; Jimenez-Flores, Rafael; Ward, Robert E; Cambell, Jesse; Young, Michael J; Nemere, Ilka; Hintze, Korry J

    2010-02-24

    Milk fat globule membrane (MFGM) is a biopolymer composed primarily of membrane proteins and lipids that surround the fat globules in milk. Although it is considered to have potential as a bioactive ingredient, few feeding studies have been conducted to measure its potential benefits. The aim of this investigation was to determine if dietary MFGM confers protection against colon carcinogenesis compared to diets containing corn oil (CO) or anhydrous milk fat (AMF). Male, weanling Fischer-344 rats were randomly assigned to one of three dietary treatments that differed only in the fat source: (1) AIN-76A diet, corn oil; (2) AIN-76A diet, AMF; and (3) AIN-76A diet, 50% MFGM, 50% AMF. Each diet contained 50 g/kg diet of fat. With the exception of the fat source, diets were formulated to be identical in macro and micro nutrient content. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4, and fed experimental diets for a total of 13 weeks. Over the course of the study dietary treatment did not affect food consumption, weight gain or body composition. After 13 weeks animals were sacrificed, colons were removed and aberrant crypt foci (ACF) were counted by microscopy. Rats fed the MFGM diet (n = 16) had significantly fewer ACF (20.9 +/- 5.7) compared to rats fed corn oil (n = 17) or AMF (n = 16) diets (31.3 +/- 9.5 and 29.8 +/- 11.4 respectively; P < 0.05). Gene expression analysis of colonic mucosa did not reveal differential expression of candidate colon cancer genes, and the sphingolipid profile of the colonic mucosa was not affected by diet. While there were notable and significant differences in plasma and red blood cell lipids, there was no relationship to the cancer protection. These results support previous findings that dietary sphingolipids are protective against colon carcinogenesis yet extend this finding to MFGM, a milk fat fraction available as a food ingredient.

  8. Changes in food patterns during a low-fat dietary intervention in women.

    PubMed

    Gorbach, S L; Morrill-LaBrode, A; Woods, M N; Dwyer, J T; Selles, W D; Henderson, M; Insull, W; Goldman, S; Thompson, D; Clifford, C

    1990-06-01

    The Women's Health Trial was initiated by the National Cancer Institute to study the effects of a low-fat diet on the incidence of breast cancer in women at elevated risk for the disease. The purpose of this article is to examine the specific dietary changes that 173 women made while participating in a feasibility intervention program to reduce their fat intake to approximately 20% of total calories over a 12-month period. The intervention program used group sessions to teach nutrition information and behavioral skills necessary to make a life-style dietary change. Four-day food records were collected from participants at the beginning of the study and again at 12 months. Women in the intervention group reduced their total fat intake from a mean of 76 gm (39% of total energy) to 31 gm (22% of total energy), mainly by decreasing their fat intake from milk products, red meats, and fats/oils. These women used cheddar cheese, American cheese, whole milk, butter, mayonnaise, salad dressing, bacon, and hamburgers less frequently, and used diet American cheese, low-fat cottage cheese, and skim milk more frequently. They consumed less fat in their vegetable dishes, and their total caloric intake from fruit increased slightly. In addition, the overall quality of the diets improved, since there was a 20% to 50% increase in the energy-adjusted intake of vitamins and minerals from food sources.

  9. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation

    PubMed Central

    Dow, Caitlin A.; Stauffer, Brian L.; Greiner, Jared J.; DeSouza, Christopher A.

    2016-01-01

    High-fat diets are associated with an increased risk of cardiovascular disease. A potential underlying mechanism for the increased cardiovascular risk is endothelial dysfunction. Nitric oxide (NO)-mediated endothelium-dependent vasodilation is critical in the regulation of vascular tone and overall vascular health. The aim of this study was to determine the influence of dietary fat intake on endothelium-dependent vasodilation. Forty-four middle-aged and older sedentary, healthy adults were studied: 24 consumed a lower fat diet (LFD; 29% ± 1% calories from fat) and 20 consumed a high-fat diet (HFD; 41% ± 1% calories from fat). Four-day diet records were used to assess fat intake, and classifications were based on American Heart Association guidelines (<35% of total calories from fat). Forearm blood flow (FBF) responses to acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor NG-monomethyl-l-arginine (L-NMMA), as well as responses to sodium nitroprusside were determined by plethysmography. The FBF response to acetylcholine was lower (~15%; P < 0.05) in the HFD group (4.5 ± 0.2 to 12.1 ± 0.8 mL/100 mL tissue/min) than in the LFD group (4.6 ± 0.2 to 14.4 ± 0.6 mL/100 mL tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the LFD group (~25%) but not in the HFD group. There were no differences between groups in the vasodilator response to sodium nitroprusside. These data indicate that a high-fat diet is associated with endothelium-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with high dietary fat intake. PMID:26058441

  10. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Greiner, Jared J; DeSouza, Christopher A

    2015-07-01

    High-fat diets are associated with an increased risk of cardiovascular disease. A potential underlying mechanism for the increased cardiovascular risk is endothelial dysfunction. Nitric oxide (NO)-mediated endothelium-dependent vasodilation is critical in the regulation of vascular tone and overall vascular health. The aim of this study was to determine the influence of dietary fat intake on endothelium-dependent vasodilation. Forty-four middle-aged and older sedentary, healthy adults were studied: 24 consumed a lower fat diet (LFD; 29% ± 1% calories from fat) and 20 consumed a high-fat diet (HFD; 41% ± 1% calories from fat). Four-day diet records were used to assess fat intake, and classifications were based on American Heart Association guidelines (<35% of total calories from fat). Forearm blood flow (FBF) responses to acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-l-arginine (L-NMMA), as well as responses to sodium nitroprusside were determined by plethysmography. The FBF response to acetylcholine was lower (∼15%; P < 0.05) in the HFD group (4.5 ± 0.2 to 12.1 ± 0.8 mL/100 mL tissue/min) than in the LFD group (4.6 ± 0.2 to 14.4 ± 0.6 mL/100 mL tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the LFD group (∼25%) but not in the HFD group. There were no differences between groups in the vasodilator response to sodium nitroprusside. These data indicate that a high-fat diet is associated with endothelium-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with high dietary fat intake.

  11. Template to improve glycemic control without reducing adiposity or dietary fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drugs that improve chronic hyperglycemia independently of insulin signaling or reduction of adiposity or dietary fat intake may be highly desirable. Ad36, a human adenovirus, promotes glucose uptake in vitro independently of adiposity or proximal insulin signaling. We tested the ability of Ad36 to i...

  12. A novel gastrointestinal microbiome modulator from soy pods reduces absorption of dietary fat in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diet impacts the composition of the gastrointestinal (GI) microbiome and it has shifted toward unprecedented fat and sugar. Because dietary habits are difficult to change, we developed a novel GI microbiome modulator (GIMM) as an intervention. Male mice were fed 1 of 3 isocaloric diets for 30 d; o...

  13. Influence of Self-Efficacy on Fat-Related Dietary Behavior in Chinese Americans

    ERIC Educational Resources Information Center

    Liou, Doreen

    2004-01-01

    The purpose of this study was to describe the relationship between self-efficacy and fat-related dietary behavior among a sample of first and second generation Chinese Americans living in New York City. A survey questionnaire was administered to a purposive sample of 743 Chinese Americans, ranging from ages 21 to 73. The questionnaire measured…

  14. Associations of menstrual cycle length with intake of soy, fat, and dietary fiber in Japanese women.

    PubMed

    Nagata, Chisato; Oba, Shino; Shimizu, Hiroyuki

    2006-01-01

    A decreased risk of breast cancer has been reported among women who have longer menstrual cycles or anovulatory cycles. The present study examined the relationships between intake of fat, soy, and dietary fiber and length of menstrual cycle among 341 Japanese women aged 18 to 29 yr old at two colleges and three nursing schools. Intake of nutrients and foods including fats, dietary fiber, and soy products was estimated through the use of a validated semi-quantitative food frequency questionnaire. The mean cycle length was determined for each women based on a prospective record of menstruation. Polyunsaturated fat intake was significantly inversely associated with cycle length; the means of cycle length were 33.2 and 31.0 days for the lowest and the highest quintiles of intake, respectively, after controlling for covariates (trend = 0.03). The odds ratio of a long cycle (> 35 days) for the highest vs. lowest quintile of dietary fiber intake was 2.12 (95% confidence interval 1.00-4.47), although the trend was not statistically significant. The data suggest that polyunsaturated fat and dietary fiber intake are associated with the parameters of menstrual cycle length, but further studies are required to better characterize these associations.

  15. The effects of exercise on the storage and oxidation of dietary fat.

    PubMed

    Hansen, Kent; Shriver, Tim; Schoeller, Dale

    2005-01-01

    Obesity has become a worldwide problem of pandemic proportions. By definition, obesity is the accumulation of excess body fat and it represents the long-term results of positive energy and fat balance. The failures in the regulatory mechanisms leading to the development of obesity are still not well understood, but there is growing evidence that exercise is an important element in obesity prevention. Exercise promotes energy/fat balance while providing beneficial alterations to obesity/overweight-related comorbidities and mortality. Also, exercise, in large part, influences whether the fate of dietary fat is storage or oxidation. Many factors including intensity, duration and type (aerobic vs anaerobic) of exercise, energy expended during exercise and individual fitness level impact the amounts of fat oxidised at any given time. Evidence suggests that moderate-intensity exercise yields the most cumulative (during and post-exercise) fat grams used for substrate in the average individual. All intensities of exercise, however, promote fat oxidation during the post-exercise period. We suggest that it is the effects of exercise on 24-hour fat balance that are most important in understanding the role of exercise in the prevention of fat accumulation and obesity.

  16. Dietary fat and fatty acid intake and epithelial ovarian cancer risk: evidence from epidemiological studies

    PubMed Central

    Hou, Rui; Wu, Qi-Jun; Gong, Ting-Ting; Jiang, Luo

    2015-01-01

    The associations between dietary fat and fatty acid (FA) intakes and epithelial ovarian cancer (EOC) risk have been inconsistent in previous studies. We conducted a meta-analysis of epidemiological studies to evaluate these associations. We identified relevant studies by searching PubMed, EMBASE, and Web of Science databases. We used random-effects models to estimate summary relative risks (RRs) and 95% confidence intervals (CIs). Overall, the search yielded 20 studies (1 pooled analysis of 12 cohort studies, 5 cohorts, and 14 case-control studies). The summary RR for EOC for the highest versus lowest categories of total dietary fat intake was 1.12 (95%CI= 0.95–1.33; I2 = 77.4%; n = 14). The RRs were not significant when fats were divided into plant-based fats (RR = 0.93, 95%CI = 0.77–1.13; n = 6), animal-based fats (RR = 1.15, 95%CI = 0.95–1.39; n = 8), dairy-based fats (RR = 1.02, 95%CI = 0.88–1.18; n = 3), saturated FAs (RR = 1.04, 95%CI = 0.93–1.17; n = 12), monounsaturated FAs (RR = 0.98, 95%CI = 0.84–1.13; n = 10), polyunsaturated FAs (RR = 0.96, 95%CI = 0.81–1.12; n = 10), and trans-unsaturated FAs (RR = 1.15, 95%CI = 0.98–1.36; n = 3). Similar non-significant results were also observed in most of the subgroup and sensitivity analyses. The findings of this meta-analysis suggest a lack of evidence for associations between dietary fat and FA intakes and EOC risk. Further analyses should be conducted to assess the associations with other types of fat, and the results should be stratified by tumor invasiveness and EOC histology. PMID:26515595

  17. Influence of dietary saturated fat intake on endothelial fibrinolytic capacity in adults.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Greiner, Jared J; DeSouza, Christopher A

    2014-09-01

    Approximately 50% of middle-aged and older adults in the United States regularly consume a diet high in saturated fat. High dietary saturated fat intake has been linked to promote atherothrombotic vascular disease. We tested the hypothesis that endothelial fibrinolytic function is diminished in middle-aged and older adults who habitually consume a diet high in saturated fat. Twenty-four healthy, sedentary middle-aged, and older adults (54 to 71 years) were studied: 10 (8 men and 2 women) with a dietary saturated fat intake <10% (lower saturated fat) of total calories and 14 (9 men and 5 women) with a dietary saturated fat intake ≥10% of total calories (high saturated fat). Net endothelial release of tissue-type plasminogen activator (t-PA), the primary activator of fibrinolysis, was determined, in vivo, in response to intrabrachial infusions of bradykinin (12.5 to 50.0 ng/100 ml tissue/min) and sodium nitroprusside (1.0 to 4.0 μg/100 ml tissue/min). Capacity of the endothelium to release t-PA in response to bradykinin was ∼30% less (p <0.05) in the high (from -0.7 ± 0.6 to 36.9 ± 3.3 ng/100 ml tissue/min) compared with the lower (from -0.3 ± 0.3 to 53.4 ± 7.8 ng/100 ml tissue/min) dietary saturated fat group. Moreover, total amount of t-PA released was significantly less (∼30%) (201 ± 22 vs 274 ± 29 ng/100 ml tissue) in the adults who reported consuming a diet high in saturated fat. These results indicate that the capacity of the endothelium to release t-PA is lower in middle-aged and older adults who habitually consume a diet high in saturated fat. In conclusion, endothelial fibrinolytic dysfunction may underlie the increased atherothrombotic disease risk with a diet high in saturated fat.

  18. Effect of Dietary Fat on Gene Expression in Poultry, A Review.

    PubMed

    Navidshad, Bahman; Royan, M

    2016-01-01

    Traditionally, poultry farmers aimed to produce birds with high body weight and feed conversion ratio. However, in line with current developments, there are other traits that must be taken into account as well. These include producing poultry meat with lower body fat content and improving the nutritional quality of the poultry meat to appeal to consumer requirements. The interrelated importance of human diet and health status is an ancient subject. Human foods as a lifestyle factor is involved in the incidence of many types of diseases, such as cardiovascular diseases and cancer. Recent reports suggest that not only the quantity but also the composition of dietary fat is an important factor to prevent these metabolic diseases in human populations. It has been reported that some dietary fats are able to reduce lipid synthesis and increase fatty acid oxidation and diet-mediated thermogenesis. The outcome of this change is a superior animal product with lower fat content. There is evidence of dissimilar mechanisms of action of n-3 and n-6 fatty acids. Dietary fatty acids have various effects on cellular metabolism, and many of these effects are carried out through the alteration of gene expression. This review will focus on the control of body fat by gene expression in avians.

  19. Interaction of dietary high-oleic-acid sunflower hulls and different fat sources in broiler chickens.

    PubMed

    Viveros, A; Ortiz, L T; Rodríguez, M L; Rebolé, A; Alzueta, C; Arija, I; Centeno, C; Brenes, A

    2009-01-01

    The effect of dietary fat sources (high-oleic-acid sunflower seeds, HOASS; palm oil, PO; and high-oleic-acid sunflower oil, HOASO) and high-oleic-acid sunflower hulls (HOAS hulls; 40 g/kg of diet) on performance, digestive organ size, fat digestibility, and fatty acid profile in abdominal fat and blood serum parameters was evaluated in chickens (from 1 to 21 d of age). Bird performance and digestive organ size were not affected by either dietary fat source or sunflower hull supplementation. Fat digestibility in birds fed diets enriched (HOASS and HOASO) in monounsaturated fatty acids (MUFA) was increased compared with those fed the PO diet. The addition of sunflower hulls did not modify fat digestibility. The fatty acids pattern of abdominal fat reflected the dietary fat profile. The greatest concentrations of C16:0 and C18:0 were found in birds fed PO diets. The C18:1n-9 content was increased in birds that received HOASS and HOASO diets compared with those fed PO diets. The greatest content of C18:2n-6 was observed in birds fed HOASS diets. The ratio of polyunsaturated fatty acid (PUFA) to MUFA was significantly increased in birds fed PO diets compared with those fed HOASS or HOASO diets. The addition of sunflower hulls to the diets resulted in a decrease of C18:2n-6 and PUFA concentrations and PUFA:MUFA ratio in abdominal fat. Dietary fat sources and sunflower hulls modify blood triglycerides and serum lipoproteins. A decrease in triglyceride concentrations was observed in birds fed HOASS diets compared with those fed PO and HOASO diets. The greatest concentrations of serum high density, very low density (VLDL), and low density lipoproteins were found in birds receiving HOASO, PO, and HOASS diets, respectively. The addition of sunflower hulls to the diets caused an increase of serum triglycerides and VLDL concentrations. The MUFA-enriched diets had lower triglyceride and VLDL concentrations than did diets rich in saturated fatty acids. However, the sunflower hull

  20. Influence of amount and type of dietary fat on deposition, adipocyte count and iodine number of abdominal fat in broiler chickens.

    PubMed

    Wongsuthavas, S; Terapuntuwat, S; Wongsrikeaw, W; Katawatin, S; Yuangklang, C; Beynen, A C

    2008-02-01

    This study described the relation between the type and amount of dietary fat on the deposition of abdominal fat by broiler chickens. It was hypothesized that at higher fat intakes, the well-known lowering effect of polyunsaturated fatty acids on the deposition of abdominal fat would be diminished. Experimental diets were formulated to contain three levels of added fat (3%, 6% and 9%). Each level had different proportions of the saturated fatty acids (SFA) and unsaturated fatty acids (UFA) by installing the ratios of 1:1, 1:2, 1:3, 1:4 and 1:5 with the use of tallow and soybean oil. Arbor Acres chicks, aged 7 days, were fed one of the 15 experimental diets until they were aged 42 days. Feed and water were provided ad libitum. There was no systematic effect of the dietary fat type and the amount on the weight gain and the feed intake. The lowest SFA:UFA ratio of 1:5 produced the lowest feed conversion rates, irrespective of the amount of the fat in the diet. The abdominal fat deposition was similar in the birds fed on diets containing either 3% or 6% added fat, but deposition was lower than in those fed 9% fat. A decrease in the SFA:UFA ratio of the diet was associated with a dose-dependent decrease in abdominal fat, irrespective of the amount of fat in the diet. This observation leads to the rejection of the hypothesis stated above. A decrease in the dietary SFA:UFA from 1:1 to 1:4 caused a decrease in the number of the fat cells per surface unit of breast meat. It is concluded that an increased intake of soybean oil at the expense of tallow reduced the abdominal fat deposition and the number of fat cells in the breast meat of broiler chickens.

  1. Quantum coherence spectroscopy to measure dietary fat retention in the liver

    PubMed Central

    Lindeboom, Lucas; de Graaf, Robin A.; Nabuurs, Christine I.; van Ewijk, Petronella A.; Hesselink, Matthijs K.C.; Wildberger, Joachim E.; Schrauwen-Hinderling, Vera B.

    2016-01-01

    The prevalence of fatty liver reaches alarming proportions. Fatty liver increases the risk for insulin resistance, cardiovascular disease, and nonalcoholic steatohepatitis (NASH). Although extensively studied in a preclinical setting, the lack of noninvasive methodologies hampers our understanding of which pathways promote hepatic fat accumulation in humans. Dietary fat retention is one of the pathways that may lead to fatty liver. The low (1.1%) natural abundance (NA) of carbon-13 (13C) allows use of 13C-enriched lipids for in vivo MR studies. Successful implementation of such methodology, however, is challenging due to low sensitivity of 13C-magnetic resonance spectroscopy (13C-MRS). Here, we investigated the use of 1-dimensional gradient enhanced heteronuclear single quantum coherence (ge-HSQC) spectroscopy for the in vivo detection of hepatic 1H-[13C]-lipid signals after a single high-fat meal with 13C-labeled fatty acids in 5 lean and 6 obese subjects. Postprandial retention of orally administered 13C-labeled fatty acids was significant (P < 0.01). Approximately 1.5% of the tracer was retained in the liver after 6 hours, and retention was similar in both groups (P = 0.92). Thus, a substantial part of the liver fat can originate directly from storage of meal-derived fat. The ge-HSQC can be used to noninvasively reveal the contribution of dietary fat to the development of hepatic steatosis over time. PMID:27699229

  2. Effects of 2-acetylaminofluorene, dietary fats and antioxidants on nuclear envelope cytochrome P-450

    SciTech Connect

    Carubelli, R.; Graham, S.A.; Griffin, M.J.; McCay, P.B.

    1986-05-01

    The authors reported a marked loss of cytochrome P-450 in hepatic nuclear envelope (NE) but not in microsomes of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks. This may reflect loss of NE capacity to detoxify AAF metabolites generated by microsomal P-450. They are now investigating if dietary effects such as progressive decrease in the incidence of AAF-induced tumors in rats fed high polyunsaturated fat diet (HPUF) vs. high saturated fat diet (HSF) vs. low fat diet (LF), and the anticarcinogenic activity of butylated hydroxytoluene (BHT; 0.3% w/w) correlate with preservation of NE P-450. Rats fed AAF HSF (25.6% w/w corn oil) showed marked loss of NE P-450 after 3 weeks; BHT protected against this loss. Rats fed AAF in HSF (25.6% w/w; 18 parts beef tallow + 2 parts corn oil), on the other hand, experienced a marked drop in NE P-450 after 9 weeks; BHT protected against this loss. Comparison of NE P-450 levels in control rats fed HPUF or HSF for 3 weeks with those of rats fed a semipurified diet with 10% fat or Purina chow (ca. 5% fat), support the prediction of an inverse correlation between the levels of dietary fat and the NE P-450 content. Studies on AAF and BHT effects using LF (2% w/w corn oil) are in progress.

  3. Quantum coherence spectroscopy to measure dietary fat retention in the liver.

    PubMed

    Lindeboom, Lucas; de Graaf, Robin A; Nabuurs, Christine I; van Ewijk, Petronella A; Hesselink, Matthijs K C; Wildberger, Joachim E; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B

    2016-08-18

    The prevalence of fatty liver reaches alarming proportions. Fatty liver increases the risk for insulin resistance, cardiovascular disease, and nonalcoholic steatohepatitis (NASH). Although extensively studied in a preclinical setting, the lack of noninvasive methodologies hampers our understanding of which pathways promote hepatic fat accumulation in humans. Dietary fat retention is one of the pathways that may lead to fatty liver. The low (1.1%) natural abundance (NA) of carbon-13 ((13)C) allows use of (13)C-enriched lipids for in vivo MR studies. Successful implementation of such methodology, however, is challenging due to low sensitivity of (13)C-magnetic resonance spectroscopy ((13)C-MRS). Here, we investigated the use of 1-dimensional gradient enhanced heteronuclear single quantum coherence (ge-HSQC) spectroscopy for the in vivo detection of hepatic (1)H-[(13)C]-lipid signals after a single high-fat meal with (13)C-labeled fatty acids in 5 lean and 6 obese subjects. Postprandial retention of orally administered (13)C-labeled fatty acids was significant (P < 0.01). Approximately 1.5% of the tracer was retained in the liver after 6 hours, and retention was similar in both groups (P = 0.92). Thus, a substantial part of the liver fat can originate directly from storage of meal-derived fat. The ge-HSQC can be used to noninvasively reveal the contribution of dietary fat to the development of hepatic steatosis over time.

  4. Fat accumulation, fatty acids and melting point changes in broiler chick abdominal fat as affected by time of dietary fat feeding and slaughter age.

    PubMed

    Carmona, J M; Lopez-Bote, C J; Daza, A; Rey, A I

    2017-03-23

    1. This work aims to quantify changes in fatty acid profile, melting point, abdominal fat accumulation and 2-thiobarbituric acid-reactive substances production depending on dietary fat source and age at slaughter, and to estimate the optimal date for the change from an unsaturated fat to a saturated fat diet or vice versa. 2. Treatments established were (1) birds fed 8% tallow from 21 to 49 d (TTT); (2) birds fed 8% tallow from 21 to 37 d and 8% sunflower oil from d 38 to 49 (TSS); (3) birds fed 8% sunflower oil from 21 to 37 d and 8% tallow from d 38 to 49 (STT); (4) birds fed 8% sunflower oil from 21 to 41 d and 8% tallow from d 42 to 49 (SST); (5) birds fed 8% sunflower oil from 21 to 49 d (SSS). Birds from each group were slaughtered on d 21, 29, 38, 40, 42, 44, 46 and 49. 3. The polyunsaturated fatty acids (PUFAs) proportion in the SSS group reached maximum values at d 40 and fitted a quadratic response. This group also showed a decrease in saturated fatty acids (SATs) and monounsaturated fatty acids (MUFAs) of lower intensity than the PUFA increase. The highest synthesis of SAT + MUFA was found in the SSS and TSS groups, whereas these had the lowest body-to-dietary PUFA ratio. 4. A high and quadratic increase in the MUFA proportion was observed during the first 10 d of feeding with the tallow-enriched diet at the expenses of the proportion of PUFA that quadratically decreased (minimum values at d 38). 5. Lipogenic and desaturation capacity decreased with age. 6. The TSS group increased tissue PUFA content faster that the SST group decreased PUFA content after the change in diet which indicates that the earlier feeding has to be taken into consideration for obtaining higher or lower changes in quality parameters. 7. The melting point of the SSS group showed a lower response to the dietary treatment in the initial period when compared to the TTT treatment. 8. The TTT, STT, SST and TSS groups showed similar fat accumulation, and changes in lipid

  5. Coassimilation of dietary fat and benzo(a)pyrene in the small intestine: an absorption model using the killifish

    SciTech Connect

    Vetter, R.D.; Carey, M.C.; Patton, J.S.

    1985-04-01

    Benzo(a)pyrene (BP) was dissolved in dietary fat and fed in a single dose to killifish (Fundulus heteroclitus). Fluorescence microscopic examinations of small intestinal content and frozen sections of whole small intestine revealed that during fat digestion BP was codispersed in liquid crystalline product phases produced during lipolysis and then coabsorbed with dietary lipid followed by its reappearance in intracellular fat droplets. During the time that the absorbed fat remained in the enterocytes, BP fluorescence was initially concentrated in the intracellular fat droplets and then spread throughout the cytosol of the enterocytes. Tissue analyses showed that BP was rapidly metabolized in the intestine and transported to the gallbladder. These studies show that separation of a dissolved hydrophobic carcinogen from dietary fat occurs primarily after the fat has been digested, dispersed, absorbed, and reassembled in the enterocyte. The inability of the enterocyte to discriminate between dietary fat and dissolved carcinogenic compounds may be a partial explanation of the observed link between high fat diets and the incidence of some cancers. In vertebrates, the intestine and not the liver, appears to be the major site of metabolism of dietary polycyclic aromatic hydrocarbons (PAHs).

  6. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease

    PubMed Central

    Varela-López, Alfonso; Quiles, José L.; Cordero, Mario; Giampieri, Francesca; Bullón, Pedro

    2015-01-01

    Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients’ effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes. PMID:26783708

  7. Oxidative Stress and Dietary Fat Type in Relation to Periodontal Disease.

    PubMed

    Varela-López, Alfonso; Quiles, José L; Cordero, Mario; Giampieri, Francesca; Bullón, Pedro

    2015-04-28

    Oxidative stress is one of the main factors studied to explain the pathophysiological mechanisms of inflammatory conditions, such as periodontitis. In this respect, nutrition may be of great importance. Actually, research on nutrients' effects on periodontal diseases has expanded to include those influencing the redox status, which correlates to the inflammatory process. Dietary fat or lipids are often blamed as the major source of excess energy. Consequently, when caloric intake exceeds energy expenditure, the resultant substrate-induced increase in citric acid cycle activity generates an excess of reactive oxygen species (ROS). In addition, dietary fatty acid intake influences in relative fatty acid composition of biological membranes determining its susceptibility to oxidative alterations. From this standpoint, here, we reviewed studies analyzing the dietary fat role in periodontal disease. Research data suggest that periodontal health could be achieved by main dietary strategies which include substitution of saturated fats with monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Maybe in the future, we should analyze the diet and provide some advice to periodontitis patients to improve treatment outcomes.

  8. Effect of dietary fat source on lipoprotein composition and plasma lipid concentrations in pigs.

    PubMed

    Faidley, T D; Luhman, C M; Galloway, S T; Foley, M K; Beitz, D C

    1990-10-01

    Most studies of the effects of dietary fat sources on plasma lipid components have used diets with extreme fat compositions; the current study was designed to more nearly mimic human dietary fat intake. Young growing pigs were fed diets containing either 20 or 40% of energy as soy oil, beef tallow or a 50/50 blend of soy oil and tallow. Different dietary fats did not affect concentrations of cholesterol, triacylglycerol or protein in plasma or major lipoprotein fractions. The concentration of phospholipid was less in plasma and in very low density lipoproteins with soy oil feeding than with tallow feeding. The weight percentage of cholesteryl ester in the low density lipoprotein fraction tended to be greater with 40% than with 20% tallow and tended to be less with 40% than with 20% soy oil. Phospholipid as a weight percentage of low density lipoprotein was least in pigs fed soy oil. Tallow feeding increased the percentage of myristic, palmitic, palmitoleic and oleic acids in plasma, relative to both other groups. Soy oil feeding increased the percentage of linoleic and linolenic acids. These moderate diets were not hypercholesterolemic, but they did alter plasma fatty acid composition and phospholipid concentrations in plasma and very low density lipoprotein.

  9. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport

    PubMed Central

    Bernier-Latmani, Jeremiah; Cisarovsky, Christophe; Demir, Cansaran Saygili; Bruand, Marine; Jaquet, Muriel; Davanture, Suzel; Ragusa, Simone; Siegert, Stefanie; Dormond, Olivier; Benedito, Rui; Radtke, Freddy; Luther, Sanjiv A.; Petrova, Tatiana V.

    2015-01-01

    The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature. PMID:26529256

  10. High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, while Dietary Fibre Counteracts These Effects

    PubMed Central

    Jakobsdottir, Greta; Xu, Jie; Molin, Göran; Ahrné, Siv; Nyman, Margareta

    2013-01-01

    Introduction Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. Objective To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. Material and Methods Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. Results and Discussion Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet. PMID:24236183

  11. The effect of dietary carbohydrate:fat ratio on energy intake by adult women.

    PubMed

    van Stratum, P; Lussenburg, R N; van Wezel, L A; Vergroesen, A J; Cremer, H D

    1978-02-01

    The effect of the dietary carbohydrate:fat (C:F) ratio on the spontaneous energy intake by healthy adults was investigated by comparing a high-carbohydrate diet (fat 24%, carbohydrate 58%, protein 18% of energy) and a high-fat diet (fat 47%, carbohydrate 35%, protein 18% of energy) in a 2 X 2 week cross-over design. Subjects were 22 healthy nuns in a Trappist convent with very regular activities. The diets consisted of combinations of liquid formula (75%) and standardized snacks (25%). The difference in C:F ratio was concealed: energy density, taste and appearance were similar. Energy consumption was recorded continuously. The mean daily energy intakes remained constant: 8276 kJ (1978 kcal). The difference in mean daily energy intake between diets was 73 kJ +/- 180 (SEM). Small changes in body weight were observed, but these are argued not to indicate definitive effects. It is concluded that changing the C:F ratio within commonly occurring ranges does not influence the spontaneous energy intake of healthy adults. The composition of the dietary fat was kept constant. Under practical conditions a change in the C:F ratio will also induce a change in the fatty acid composition of the diet, which might affect the energy intake regulation. Other experiments are required to see whether the C:F ratio can affect body composition or other physiological parameters in the long run.

  12. Dietary fat and corticosterone levels are contributing factors to meal anticipation

    PubMed Central

    Gyte, Amy; Denn, Mark; Leighton, Brendan; Piggins, Hugh D.

    2016-01-01

    Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content. PMID:26818054

  13. It is time to revisit current dietary recommendations for saturated fat.

    PubMed

    Lamarche, Benoît; Couture, Patrick

    2014-12-01

    The extent to which a high intake of saturated fat (SFA) increases the risk of cardiovascular disease (CVD) has become a highly controversial topic. Dietary SFA primarily raises low-density lipoprotein cholesterol, while having a relatively neutral impact on other key CVD risk factors. Recent epidemiological data also challenge the concept that SFA increases the risk of CVD. This short review provides arguments for the urgency to re-assess the association between dietary SFA and CVD risk in light of recent data on the subject.

  14. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation.

  15. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits.

    PubMed

    Mashurabad, Purna Chandra; Palika, Ravindranadh; Jyrwa, Yvette Wilda; Bhaskarachary, K; Pullakhandam, Raghu

    2017-02-01

    Dietary fat increases carotenoid bioavailability by facilitating their transfer to the aqueous micellar fraction during digestion. However, the specific effect of both quantity and type of dietary fat required for optimal carotenoid absorption remained unexplored. In the present study, the effect of amount and type of vegetable oils on carotenoid micellarization from carrot, spinach, drumstick leaves and papaya using in vitro digestion/Caco-2 cell model have been assessed. Although, dietary fat (0.5-10% w/w) significantly increased the micellarization of carotenoids from all the test foods, the extent of increase was determined by the food matrix (papaya > drumstick = spinach > carrot) and polarity of carotenoids (lutein > β-carotene = α-carotene > lycopene). Among the dietary fats tested the carotenoid micellarization was twofold to threefold higher with dietary fat rich in unsaturated fatty acids (olive oil = soybean oil = sunflower oil) compared to saturated fatty acids (peanut oil = palm oil > coconut oil). Intestinal cell uptake of lutein exceeded that of β-carotene from micellar fraction of spinach leaves digested with various oils. However, cellular uptake of β-carotene is depended on the carotenoid content in micellar fraction rather than the type of fat used. Together these results suggest that food matrix, polarity of carotenoids and type of dietary fat determines the extent of carotenoid micellarization from vegetables and fruits.

  16. Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium.

    PubMed

    Sesink, A L; Termont, D S; Kleibeuker, J H; Van Der Meer, R

    2000-10-01

    High intake of red meat is associated with an increased risk of colon cancer. It has been suggested that fat from red meat is responsible, because high fat intake increases the concentration of cytotoxic lipids in the colon. Experimental studies have not unequivocally supported such a role for fat, however. Recently, we showed that dietary haem, which is abundant in red meat, increased colonic cytotoxicity and epithelial proliferation. In this study, we wanted to clarify whether dietary fat affects colon cancer risk by itself or by modulating the detrimental effects of haem on the colonic epithelium. Rats were fed control or haem-supplemented diets with 10%, 25% or 40% of the energy derived from fat for 14 days. Faeces were collected for biochemical analyses. Colonic cytotoxicity was determined from the degree of lysis of erythrocytes by faecal water. Colonic epithelial proliferation was measured in vivo using [(3)H]thymidine incorporation. Increasing the fat content of the control diets stimulated faecal disposal of both fatty acids and bile acids. It also increased the concentration of fatty acids, but not that of bile acids, in faecal water in control rats. The cytolytic activity of faecal water and colonic epithelial proliferation were unaffected. Dietary haem increased faecal cation content and cytolytic activity of faecal water at all fat levels, suggesting that the colonic mucosa was exposed to high amounts of luminal irritants. This effect was smaller in rats on the low-fat diet. Dietary haem also increased colonic epithelial proliferation at all fat levels. The haem-induced effects were independent of fatty acids or bile acids in the faecal water. In western societies, 30-40% of ingested energy is supplied by dietary fat, so our results suggest that the association between consumption of red meat and risk of colon cancer is mainly due to its haem content, and is largely independent of dietary fat content.

  17. Dietary fat content and fiber type modulate hind gut microbial community and metabolic markers in the pig.

    PubMed

    Yan, Hui; Potu, Ramesh; Lu, Hang; Vezzoni de Almeida, Vivian; Stewart, Terry; Ragland, Darryl; Armstrong, Arthur; Adeola, Olayiwola; Nakatsu, Cindy H; Ajuwon, Kolapo M

    2013-01-01

    Obesity leads to changes in the gut microbial community which contribute to the metabolic dysregulation in obesity. Dietary fat and fiber affect the caloric density of foods. The impact of dietary fat content and fiber type on the microbial community in the hind gut is unknown. Effect of dietary fat level and fiber type on hindgut microbiota and volatile fatty acid (VFA) profiles was investigated. Expression of metabolic marker genes in the gut, adipose tissue and liver was determined. A 2 × 2 experiment was conducted in pigs fed at two dietary fat levels (5% or 17.5% swine grease) and two fiber types (4% inulin, fermentable fructo-oligosaccharide or 4% solka floc, non-fermentable cellulose). High fat diets (HFD) resulted in a higher (P<0.05) total body weight gain, feed efficiency and back fat accumulation than the low fat diet. Feeding of inulin, but not solka floc, attenuated (P<0.05) the HFD-induced higher body weight gain and fat mass accumulation. Inulin feeding tended to lead to higher total VFA production in the cecum and resulted in a higher (P<0.05) expression of acyl coA oxidase (ACO), a marker of peroxisomal β-oxidation. Inulin feeding also resulted in lower expression of sterol regulatory element binding protein 1c (SREBP-1c), a marker of lipid anabolism. Bacteria community structure characterized by DGGE analysis of PCR amplified 16S rRNA gene fragments showed that inulin feeding resulted in greater bacterial population richness than solka floc feeding. Cluster analysis of pairwise Dice similarity comparisons of the DGGE profiles showed grouping by fiber type but not the level of dietary fat. Canonical correspondence analysis (CCA) of PCR- DGGE profiles showed that inulin feeding negatively correlated with back fat thickness. This study suggests a strong interplay between dietary fat level and fiber type in determining susceptibility to obesity.

  18. Effect of the inclusion time of dietary saturated and unsaturated fats before slaughter on the accumulation and composition of abdominal fat in female broiler chickens.

    PubMed

    Sanz, M; Lopez-Bote, C J; Flores, A; Carmona, J M

    2000-09-01

    The aim of this experiment was to assess the effects of four different feeding programs designed to include tallow, a saturated fat at 0, 8, 12, and 28 d prior to slaughter on female broiler performance and the deposition, fatty acid profile, and melting point of abdominal fat. The following treatment groups were established according to dietary inclusion--from 21 to 49 d of age--of: sunflower oil (SUN), sunflower oil followed by tallow during the last 8 d (SUN + 8TALL), sunflower oil followed by tallow during the last 12 d (SUN + 12TALL), and tallow (TALL). The diets were designed to be isoenergetic and isonitrogenous. Abdominal fat deposition increased linearly with increasing number of days in which birds were fed the tallow-enriched diet. However, linear and quadratic response patterns were found between days before slaughter in which the birds were fed the tallow-enriched diet and abdominal fat melting points. This result suggested an exponential response in which 85% of the maximum level was already attained when the dietary fat type changed from an unsaturated to a saturated condition during the last 8 d of the feeding period. The use of an unsaturated fat source during the first stages of growth, and the substitution of a saturated fat for a few days before slaughter, may offer the advantage of lower abdominal fat deposition and an acceptable fat fluidity compared with the use of a saturated fat source during the whole growing and finishing period.

  19. The correlation between dietary fat intake and blood pressure among people with spinal cord injury

    PubMed Central

    Sabour, Hadis; Norouzi-Javidan, Abbas; Soltani, Zahra; Mousavifar, Seyede Azemat; Latifi, Sahar; Emami-Razavi, Seyed Hassan; Ghodsi, Seyed Mohammad

    2016-01-01

    Background: Studies have demonstrated the effect of different dietary fats on blood pressure (BP) in general population. However, these associations have not yet been described in people with spinal cord injury (SCI). Methods: Referred patients to Brain and SCI Research Center between 2011 and 2014 have been invited to participate. Only paraplegic individuals were recruited and patients with injury at cervical or higher thoracic sections were excluded to omit the bias effect of autonomic dysreflexia. Dietary intakes were assessed by recording consumed foods by 24-hour dietary recall interviews using Nutritionist IV 3.5.3 modified for Iranian foods. Systolic BP (SBP) and diastolic BP (DBP) were measured 3 times and the mean values entered analysis. Results: Higher intakes of cholesterol were related to higher BP (P = 0.010 and 0.011 for SBP and DBP, respectively). Similarly, intake of saturated fat was positively correlated to both SBP (P = 0.016, r = 0.21) and DBP (P = 0.011, r = 0.22). The effect of eicosapentaenoic acid (EPA) on BP was insignificant (P = 0.760 and 0.720 for SBP and DBP, respectively). However, intake of docosahexaenoic acid (DHA) was related to lower BP among people with SCI. Conclusion: This study has demonstrated that higher intakes of cholesterol and saturated fat are associated with increased BP, whereas DHA is an antihypertensive agent. Dietary modifications with reduction of cholesterol and saturated fat along with intake of additional DHA supplements may help to reduce BP in spinal cord injured-individuals with hypertension. PMID:27648172

  20. Effect of acute ethanol ingestion on fat absorption.

    PubMed

    Boquillon, M

    1976-12-01

    A test meal (300 mg casein, 600 mg sucrose, 100 mg corn oil, tracer dose of 9.10(3)H oleic acid) was given to fasting adult rats with intestinal lymph fistulas. One group received an acute oral dose of ethanol (3.2 g/kg body weight) simultaneously with the test meal. Controls received 2.5 ml of water instead of ethanol. Ingestion of ethanol temporarily delayed the removal of lipid radioactivity from the stomachs. More than 25% of radioactivity fed remained 8 hr after feeding whereas with control rats less than 10% of lipid radioactivity fed remained 6 hr after feeding. In controls and ethanol-treated rats, the amounts of exogenous lipids in the intestinal lumen and mucosa were low and similar enough. Quantities of endogenous and exogenous lipids found in the lymph collected during 24 hr after feeding were similar in the two groups, but the fat absorption peak was found after 6 hr in alcoholic rats and before 6 hr in controls. This delay was probably due to the retention of lipids in the stomach. More of the exogenous lipid was always transported by small particles moving in the region of alpha1 globulins in cellulose acetate electrophoresis than by larger particles remaining at the origin. This proportion was enhanced in the ethanol-treated animals. The larger fat particles were richer in endogenous fatty acids in alcohol-treated rats than in controls.

  1. Effect of dietary fat source and exercise on odorant-detecting ability of canine athletes.

    PubMed

    Altom, Eric K; Davenport, Gary M; Myers, Lawrence J; Cummins, Keith A

    2003-10-01

    Eighteen male English Pointers (2-4 years of age, 23.94+/-0.54 kg body weight) were allotted to three diet and two physical conditioning groups to evaluate the effect of level and source of dietary fat on the olfactory acuity of canine athletes subjected to treadmill exercise. Diet groups (6 dogs/diet) consisted of commercially prepared diets (minimum of 26% crude protein) containing 12% fat as beef tallow (A), 16% fat provided by equivalent amounts of beef tallow and corn oil (B), or 16% fat provided by equivalent amounts of beef tallow and coconut oil (C). This dietary formulation resulted in approximately 60% of the total fatty acid being saturated for diets A and C, while approximately 72% of the total fatty acids were unsaturated in diet B. One-half of the dogs within each dietary group were subjected to treadmill exercise 3 times per week for 30 min (8.05 km/h, 0% grade) for 12 weeks. All dogs were subjected to a submaximal exercise stress test (8.05 km/h, 10% slope for 60 min) every four weeks beginning at week 0. Olfactory acuity was measured utilizing behavioral olfactometry before and after each physical stress test. Non-conditioned (NON) dogs displayed a greater decrease (P<0.05) in olfactory acuity following exercise, while physically conditioned (EXE) dogs did not show a change from pre-test values. A diet by treatment interaction (P<0.10) was detected over the course of the study. NON dogs fed coconut oil had decreased odorant-detecting capabilities when week 4 values were compared with week 12 values. Feeding a diet that is predominately high in saturated fat may affect the odorant-detecting capabilities of working dogs. Additionally, these data indicate that utilization of a moderate physical conditioning program can assist canine athletes in maintaining olfactory acuity during periods of intense exercise.

  2. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs.

    PubMed

    Tous, N; Theil, P K; Lauridsen, C; Lizardo, R; Vilà, B; Esteve-Garcia, E

    2012-12-01

    The aim of this study was to investigate underlying mechanisms of dietary conjugated linoleic acid (CLA) on lipid metabolism in various tissues of pigs. Sixteen gilts (73 ± 3 kg) were fed a control (containing sunflower oil) or an experimental diet in which 4% of sunflower oil was replaced by CLA, and slaughtered at an average BW of 117 ± 4.9 kg. Transcription of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), sterol regulatory element binding protein (SREBP1), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P < 0.05), whereas CLA reduced PPARα transcription in all tissues studied (P < 0.05) with the exception of intermuscular fat. Transcription of genes related to FA synthesis was reduced by CLA in SM muscle and liver (SREBP1, both P < 0.1; ACC, P < 0.01 in SM; and FAS, P < 0.01 in liver), whereas CLA reduced (P < 0.05) LPL and D6D transcriptions in SM muscle and reduced (P < 0.05) SCD in liver but increased (P < 0.05) SCD in LT muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P < 0.01), while monosaturated and polyunsaturated FA were reduced in a tissue-specific way by CLA. It was concluded that dietary CLA affected transcription of genes and fat metabolism in a tissue-specific manner.

  3. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat.

    PubMed

    Blake, W L; Clarke, S D

    1990-12-01

    The objective of this research was to determine whether dietary polyunsaturated fatty acids suppress hepatic fatty acid synthase (FAS) mRNA levels by altering FAS gene transcription. Male Sprague-Dawley rats were meal-fed for 10 d a high glucose diet supplemented with 20% digestible energy as menhaden oil or tripalmitin. The transcription rate for FAS was determined by nuclear run-on analysis in hepatic nuclei isolated from rats 2 h postmeal. The values for transcription rates of FAS and S14 (a putative lipogenic protein) in rats fed menhaden oil were only 6 and 21%, respectively, of the rates in rats fed the tripalmitin diet (p less than 0.02). Gene transcription for beta-actin and phosphoenolpyruvate carboxykinase did not differ between treatments. The reduction in hepatic FAS mRNA levels caused by dietary polyunsaturated fats appears to be caused primarily by an inhibition of FAS transcription. The control of transcription by polyunsaturated fats appears not to be mediated by cAMP because the transcription rate for phosphoenolpyruvate carboxykinase (whose gene is very sensitive to cAMP stimulation) was unaffected by the source of dietary fat.

  4. Effect of dietary fat type on anxiety-like and depression-like behavior in mice.

    PubMed

    Mizunoya, Wataru; Ohnuki, Koichiro; Baba, Kento; Miyahara, Hideo; Shimizu, Naomi; Tabata, Kuniko; Kino, Takako; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2013-12-01

    Dietary fat plays an important role in higher brain functions. We aimed to assess the short and long term intake of three different types of dietary fat (soybean oil, lard, and fish oil) on anxiety-like and depression-like behavior in mice. For the short term intake assessment, a behavioral test battery for anxiety and depression was carried out for a 3-day feeding period. For the long term intake assessment, a behavioral test battery began after the 4-week feeding period. During the short term intake, the time spent in the open arms of the elevated plus-maze was the longest in the fish oil fed group, followed by the soybean oil and lard-fed groups. The elevated plus-maze is a common animal model to assess anxiety, in which an increased time spent in the open arms indicates an anxiolytic effect. The difference between the fish oil-fed group and lard-fed group was statistically significant (p < 0.01), but there was no significant difference between the soybean oil-fed group and the other two groups. Similar results were observed after a 4-week feeding period. On the other hand, there was no significant difference among the three groups in behavior tests to evaluate depression. Thus, the dietary fat types appeared to influence anxiety but not depression in mice, both in short term (3 days) and long term (4 weeks) feeding.

  5. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  6. [Association between dietary intake, physical activity, socioeconomic factors and body fat percentage among schoolchildren].

    PubMed

    D'Avila, Gisele Liliam; Silva, Diego Augusto Santos; de Vasconcelos, Francisco de Assis Guedes

    2016-04-01

    The scope of this article was to assess the association between dietary intake, physical activity and socioeconomic factors associated with body fat percentage in 7 to 14-year-old schoolchildren. It is a cross-sectional study with a probability sample of 2,481 students from public and private schools in Florianópolis, Santa Catarina, Brazil. Body fat percentage was investigated by measuring triceps and subscapular skin folds. Poisson regression was performed to test the association between excess body fat and independent variables, estimating prevalence ratios and 95% confidence intervals. The prevalence of excess body fat was 23.9%, though there was no significant difference between sex (p = 0.359) and age (p = 0.202). Excess body fat was associated with different factors in 11 to 14-year-old schoolchildren, namely eating less than three meals a day (OR = 1.62, CI: 1.38 to 1.91) and consumption of high-risk food more than 3 times a day (OR = 0.61 CI: 0.47 to 0.79). No significant difference was observed with physical activity. The high prevalence of excess body fat detected reveals the need for fostering the adoption of healthier behavioral practices (in relation to nutrition and physical activity) by schoolchildren.

  7. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs.

    PubMed

    Han, Rui; Jiang, Hailong; Che, Dongsheng; Bao, Nan; Xiang, Dong; Liu, Feifei; Yang, Huaming; Ban, Zhibin; Qin, Guixin

    2017-02-22

    This study aimed to evaluate the effect of temperature and dietary fat level on growth performance, heat production, nutrient oxidation and nitrogen balance in growing pigs. Thirty-two pigs (Duroc × Landrace × Large White) with initial weight of 25±1.91 kg were assigned to treatments in 2×4 factorial design. All pigs fed with two isoenergetic and isoproteic diets of different fat levels (low fat level: 3.68% fat of dry matter (DM) and high fat level: 8.39% fat of DM) under four environmental temperatures (23, 18, 13 and 8 ºC). Heat production (HP) and nutrient oxidation were calculated from gas exchange via measurement with respiration chambers. The results showed that there was no interaction effect on growth performance by the temperature and dietary fat level. The average daily feed intake (ADFI) was lower (P < 0.001), the average daily gain (ADG) was higher (P < 0.001) and feed utilization was more efficient at 23 ºC than 13 and 8 ºC (P < 0.001). Dietary fat had no effect on growth performance and feed utilization at the four different temperatures. A significant interaction (P < 0.001) between temperature and dietary fat level on oxidation of carbohydrate (OXCHO) and fat (OXF) was observed. HP, OXF and OXCHO were significantly increased (P < 0.001) as environment temperatures decreased. Increasing dietary fat generated an increase in the OXF and decrease in the OXCHO (P < 0.001). No significant difference was observed in protein oxidation (OXP) of two factors. The intakes of nitrogen, nitrogen excretion in feces (FN) and urine (UN) by the pigs kept in 8 ºC environment were highest. Nitrogen digestibility decreased as environmental temperature decreases, with the most efficient gains obtained at 23 ºC. However, nitrogen retention was not influenced by environmental temperature. Dietary fat level did not affect nitrogen balance. No significant interaction between temperature and dietary fat level was observed for nitrogen balance. These results

  8. Is dietary fat, vitamin D, or folate associated with pancreatic cancer?

    PubMed Central

    Sanchez, GV; Weinstein, SJ; Stolzenberg-Solomon, RZ

    2012-01-01

    Although potentially modifiable risk factors for pancreatic cancer include smoking, obesity, and diabetes, less is known about the extent to which diet affects cancer risk. Recent studies have demonstrated some consistency for dietary fat being associated with elevated pancreatic cancer risk, particularly from animal sources. However, less is known about which fatty acids pose the greatest risk. Vitamin D, due to its endogenous production following UV-B exposure, is a unique risk factor in that researchers have created several methods to assess its exposure in humans. Studies that measured vitamin D exposure differently have shown inconsistent results. Dietary studies suggest protective associations, whereas studies of circulating 25-hydroxyvitamin D status show null or positive associations with low or very high concentrations, respectively. Several, but not all epidemiologic studies provide evidence of an inverse relationship between total and/or dietary folate and risk of pancreatic cancer. Protective associations for circulating folate are more often observed among populations with inadequate status. This article reviews the current epidemiological and experimental evidence investigating the relationship of dietary fat, vitamin D, and folate with pancreatic cancer. Additionally the mechanisms by which these risk factors may contribute to cancer, the methodological challenges involved with assessing risk, and other obstacles encountered when ascertaining the magnitude and direction of these three exposures are discussed. PMID:22162236

  9. Short communication: influence of dietary tallow and fish oil on milk fat composition.

    PubMed

    Jones, D F; Weiss, W P; Palmquist, D L

    2000-09-01

    Four midlactation Holstein cows in a 4 x 4 Latin square design were fed one of four diets that contained 3% added fat (dry matter basis) as 100:0, 67:33, 50:50, or 33:67 tallow:fish oil. Feed intake and yield and composition of milk were not affected by treatment. The proportion of fatty acids 18:0 and cis-18:1 decreased and trans-18:1, conjugated linoleic acid, 18:3, 20:4, and 20:5 increased in milk fat with increasing fish oil. The efficiency of transferring dietary 20:5 and 22:6 to milk fat was < 7%.

  10. Association between dietary fat intake and colorectal adenoma in korean adults

    PubMed Central

    Kim, Jeehyun; Oh, Seung-Won; Kim, Young-Sun; Kwon, Hyuktae; Joh, Hee-Kyung; Lee, Ji-Eun; Park, Danbee; Park, Jae-Hong; Ko, Ah-Ryoung; Kim, Ye-Ji

    2017-01-01

    Abstract The incidence of colorectal cancer is rapidly increasing in South Korea. It is important to clarify the association between colorectal cancer and diet, being one of the main modifiable risk factors, as such studies in the Korean population are lacking. A cross-sectional study was performed using data from participants who had undergone a screening colonoscopy and a nutritional assessment during a routine health check-up from January 2008 to December 2011. Dietary intake data were derived from 1-day food records; colorectal adenoma was histopathologically confirmed by biopsy during colonoscopy. Eventually, 2604 participants were included in the analysis. The risk of colorectal adenoma by quintile of dietary fat intake was analyzed using logistic regression. Subgroup analyses by degree of risk and by location of colorectal adenoma were additionally performed. In men, total fat intake was not associated with risk of colorectal adenoma. However, risk of colorectal adenoma increased with higher saturated fatty acid (SFA) intake. The adjusted odds ratio in the highest quintile was 1.71 (95% confidence interval, 1.01–2.91) compared with that in the lowest quintile. There was no significant association between fat intake and risk of colorectal adenoma characterized by subsite. In female participants, total fat and specific fatty acid intake were not associated with risk of colorectal adenoma. These data support that high SFA intake is associated with risk of colorectal adenoma in Korean men. PMID:28072719

  11. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.

    PubMed

    Gao, Xiang; Liu, Xiaofang; Xu, Jie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2014-10-01

    Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine (TMA) and is present in many aquatic foods. Here, we investigated the effects of TMAO on glucose tolerance in high fat diet (HFD)-fed mice. Male C57BL/6 mice were randomly assigned to the control, high fat (HF), and TMAO groups. The HF group was fed a diet containing 25% fat, and the TMAO group was fed the HFD plus 0.2% TMAO for 4 weeks. After 3 weeks of feeding, oral glucose tolerance tests were performed. Dietary TMAO increased fasting insulin levels and homeostasis model assessment-estimated insulin resistance (HOMA-IR) and exacerbated the impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signal pathway, glycogen synthesis, gluconeogenesis and glucose transport in liver. mRNA levels of the pro-inflammatory cytokine MCP-1 increased significantly and of the anti-inflammatory cytokine IL-10 greatly decreased in adipose tissue. Our results suggest that dietary TMAO exacerbates impaired glucose tolerance, obstructs the hepatic insulin signaling pathway, and causes adipose tissue inflammation in mice fed a high fat diet.

  12. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet.

    PubMed

    Forsythe, Cassandra E; Phinney, Stephen D; Feinman, Richard D; Volk, Brittanie M; Freidenreich, Daniel; Quann, Erin; Ballard, Kevin; Puglisi, Michael J; Maresh, Carl M; Kraemer, William J; Bibus, Douglas M; Fernandez, Maria Luz; Volek, Jeff S

    2010-10-01

    We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF(2α), a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (-32%). There was a significant inverse correlation between changes in urine 8-iso PGF(2α) and PL ARA on both CRD (r = -0.82 CRD-SFA; r = -0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA.

  13. Sex Differences in Motivational Responses to Dietary Fat in Syrian Hamsters

    PubMed Central

    Shannonhouse, John L.; Grater, Danielle M.; York, Daniel; Wellman, Paul J.; Morgan, Caurnel

    2015-01-01

    Women are more likely than men to exhibit motivational disorders (e.g., anhedonia and anxiety) with limited treatment options, and to overconsume high-fat “comfort foods” to improve motivational disruptions. Unfortunately, neurobiological underpinnings for sex differences in motivational disruptions and their responses to dietary fat are poorly understood. To help bridge these fundamental knowledge gaps, we assessed behavioral and neurobiological responses to dietary fat in a hamster model of female-biased motivational lability. Relative to social housing, social separation reduced hedonic drive in a new behavioral assay, the reward investigational preference (RIP) test. Fluoxetine or desipramine treatment for 21, but not 7, days improved RIP test performance. Pharmacologic specificity in this test was shown by non-responsiveness to diazepam, tracazolate, propranolol, or naltrexone. In the anxiety-related feeding/exploration conflict (AFEC) test, social separation worsened latency to eat highly palatable food under anxiogenic conditions, but not in home cages. Social separation also reduced weight gain, food intake, and adiposity while elevating energy expenditure, assessed by caloric efficiency and indirect calorimetry. Furthermore, chronic high-fat feeding improved anhedonic and anxious responses to separation, particularly in females. In the motivation-influencing nucleus accumbens, females, but not males, exhibited a separation-induced anxiety-related decrease in Creb1 mRNA levels and an anhedonia-related decrease in ΔFosb mRNA levels. Consistent with its antidepressant- and anxiolytic-like effects on behavior, high-fat feeding elevated accumbal Creb1 and ΔFosb mRNA levels in females only. Another accumbal reward marker, Tlr4 mRNA, was elevated in females by high-fat feeding. These results show that social separation of hamsters provides a novel model of sex-dependent comorbid anhedonia, anxiety, and anorexia, and implicate accumbal CREB, ΔFosB, and TLR4

  14. Prospective study of dietary fat and risk of uterine leiomyomata1234

    PubMed Central

    Radin, Rose G; Kumanyika, Shiriki K; Ruiz-Narváez, Edward A; Palmer, Julie R; Rosenberg, Lynn

    2014-01-01

    Background: Uterine leiomyomata (UL) are the primary indication for hysterectomy and are 2–3 times more common in black than white women. High dietary fat intake has been associated with increased endogenous concentrations of estradiol, a sex steroid hormone that is known to influence UL risk. Objective: We assessed the relation of dietary fat intake (total, subtypes, and selected food sources) with UL incidence. Design: Data were from the Black Women's Health Study, a prospective cohort study. Over an 8-y period (2001–2009), 12,044 premenopausal women were followed for a first diagnosis of UL. Diet was assessed via a food-frequency questionnaire in 2001. Cox regression models were used to compute incidence rate ratios (IRRs) and 95% CIs with adjustment for potential confounders. Results: During 75,687 person-years of follow-up, there were 2695 incident UL cases diagnosed by ultrasound (n = 2191) or surgery (n = 504). Intakes of total fat and fat subtypes were not appreciably associated with UL risk overall, although statistically significant associations were observed for specific saturated (inverse) and monounsaturated and polyunsaturated (positive) fatty acids. With respect to polyunsaturated fats, the IRR for the highest compared with lowest quintiles of marine fatty acid intake [the sum of omega-3 (n−3) polyunsaturated fatty acids eicosapentanoic acid, docosapentaenoic acid, and docosahexaenoic acid] was 1.18 (95% CI: 1.05, 1.34; P-trend = 0.005). The IRR for the highest compared with lowest categories of dark-meat fish consumption was 1.13 (95% CI: 1.00, 1.28). Conclusions: In US black women, the most consistent associations of fat intake with UL were small increases in risk associated with intakes of long-chain omega-3 fatty acids. Future studies are warranted to confirm these findings and elucidate which components of fatty foods, if any, are related to UL risk. PMID:24598152

  15. Dietary carbohydrate modifies the inverse association between saturated fat intake and cholesterol on very low-density lipoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We aimed to investigate the relationship between dietary saturated fat on fasting triglyceride (TG) and cholesterol levels, and any mediation of this relationship by dietary carbohydrate intake. Men and women in the NHLBI Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 1036, mea...

  16. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  17. Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma and changes in plasma cytokine concentrations in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study assessed the effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Three-week old male C57BL/6 mice were fed the AIN-93G standard diet or a 45% fat diet (kcal %) for seven weeks before they were subcutaneously injected with 2.5 x 105 viable cells into th...

  18. Type of dietary fat is associated with the 25-hydroxyvitamin D3 increment in response to vitamin D supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mono- and polyunsaturated fats may have opposing effects on vitamin D absorption. The purpose of this study was to determine whether intakes of different dietary fats are associated with the increase in serum 25-hydroxyvitamin D (25OHD) following supplementation with vitamin D3. This analysis was co...

  19. Examining the Minimal Required Elements of a Computer-Tailored Intervention Aimed at Dietary Fat Reduction: Results of a Randomized Controlled Dismantling Study

    ERIC Educational Resources Information Center

    Kroeze, Willemieke; Oenema, Anke; Dagnelie, Pieter C.; Brug, Johannes

    2008-01-01

    This study investigated the minimally required feedback elements of a computer-tailored dietary fat reduction intervention to be effective in improving fat intake. In all 588 Healthy Dutch adults were randomly allocated to one of four conditions in an randomized controlled trial: (i) feedback on dietary fat intake [personal feedback (P feedback)],…

  20. Dietary fat and risk of renal cell carcinoma in the USA: a case–control study

    PubMed Central

    Brock, Kaye E.; Gridley, Gloria; Chiu, Brian C.-H.; Ershow, Abby G.; Lynch, Charles F.; Cantor, Kenneth P.

    2011-01-01

    An increased risk of renal cell carcinoma (RCC) has been linked with obesity. However, there is limited information about the contribution of dietary fat and fat-related food groups to RCC risk. A population-based case–control study of 406 cases and 2434 controls aged 40–85 years was conducted in Iowa (1986–89). For 323 cases and 1820 controls from the present study, information on dietary intake from foods high in fat nutrients and other lifestyle factors was obtained using a mailed questionnaire. Cancer risks were estimated by OR and 95 % CI, adjusting for age, sex, smoking, obesity, hypertension, physical activity, alcohol and vegetable intake and tea and coffee consumption. In all nutrient analyses, energy density estimates were used. Dietary nutrient intake of animal fat, saturated fat, oleic acid and cholesterol was associated with an elevated risk of RCC (OR = 1·9, 95 % CI 1·3, 2·9, Ptrend < 0·001; OR = 2·6, 95 % CI 1·6, 4·0, Ptrend < 0·001; OR = 1·9, 95 % CI 1·2, 2·9, Ptrend = 0·01; OR = 1·9, 95 % CI 1·3, 2·8, Ptrend = 0·006, respectively, for the top quartile compared with the bottom quartile of intake). Increased risks were also associated with high-fat spreads, red and cured meats and dairy products (OR = 2·0, 95 % CI 1·4, 3·0, Ptrend = 0·001; OR = 1·7, 95 % CI 1·0, 2·2, Ptrend = 0·01; OR = 1·8, 95 % CI 1·2, 2·7, Ptrend = 0·02; OR = 1·6, 95 % CI 1·1, 2·3, Ptrend = 0·02, respectively). In both the food groups and nutrients, there was a significant dose–response with increased intake. Our data also indicated that the association of RCC with high-fat spreads may be stronger among individuals with hypertension. These findings deserve further investigation in prospective studies. PMID:18786276

  1. Evidence from randomised controlled trials does not support current dietary fat guidelines: a systematic review and meta-analysis

    PubMed Central

    Harcombe, Zoë; Baker, Julien S; DiNicolantonio, James J; Grace, Fergal; Davies, Bruce

    2016-01-01

    Objectives National dietary guidelines were introduced in 1977 and 1983, by the USA and UK governments, respectively, with the ambition of reducing coronary heart disease (CHD) mortality by reducing dietary fat intake. A recent systematic review and meta-analysis by the present authors, examining the randomised controlled trial (RCT) evidence available to the dietary committees during those time periods, found no support for the recommendations to restrict dietary fat. The present investigation extends our work by re-examining the totality of RCT evidence relating to the current dietary fat guidelines. Methods A systematic review and meta-analysis of RCTs currently available, which examined the relationship between dietary fat, serum cholesterol and the development of CHD, was undertaken. Results The systematic review included 62 421 participants in 10 dietary trials: 7 secondary prevention studies, 1 primary prevention and 2 combined. The death rates for all-cause mortality were 6.45% and 6.06% in the intervention and control groups, respectively. The risk ratio (RR) from meta-analysis was 0.991 (95% CI 0.935 to 1.051). The death rates for CHD mortality were 2.16% and 1.80% in the intervention and control groups, respectively. The RR was 0.976 (95% CI 0.878 to 1.084). Mean serum cholesterol levels decreased in all intervention groups and all but one control group. The reductions in mean serum cholesterol levels were significantly greater in the intervention groups; this did not result in significant differences in CHD or all-cause mortality. Conclusions The current available evidence found no significant difference in all-cause mortality or CHD mortality, resulting from the dietary fat interventions. RCT evidence currently available does not support the current dietary fat guidelines. The evidence per se lacks generalisability for population-wide guidelines. PMID:27547428

  2. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice.

    PubMed

    Tandy, Sally; Chung, Rosanna W S; Wat, Elaine; Kamili, Alvin; Berge, Kjetil; Griinari, Mikko; Cohn, Jeffrey S

    2009-10-14

    Krill oil (KO) is rich in n-3 fatty acids that are present in phospholipids rather than in triglycerides. In the present study, we investigated the effects of dietary KO on cardiometabolic risk factors in male C57BL/6 mice fed a high-fat diet. Mice (n = 6-10 per group) were fed for 8 weeks either: (1) a nonpurified chow diet (N); (2) a high-fat semipurified diet containing 21 wt % buttermilk + 0.15 wt % cholesterol (HF); (3) HF supplemented with 1.25 wt % KO (HFKO1.25); (4) HF with 2.5 wt % KO (HFKO2.5); or (5) HF with 5 wt % KO (HFKO5.0). Dietary KO supplementation caused a significant reduction in liver wt (i.e., hepatomegaly) and total liver fat (i.e., hepatic steatosis), due to a dose-dependent reduction in hepatic triglyceride (mean +/- SEM: 35 +/- 6, 47 +/- 4, and 51 +/- 5% for HFKO1.25, -2.5, and -5.0 vs HF, respectively, P < 0.001) and cholesterol (55 +/- 5, 66 +/- 3, and 71 +/- 3%, P < 0.001). Serum cholesterol levels were reduced by 20 +/- 3, 29 +/- 4, and 29 +/- 5%, and blood glucose was reduced by 36 +/- 5, 34 +/- 6, and 42 +/- 6%, respectively. Serum adiponectin was increased in KO-fed animals (HF vs HFKO5.0: 5.0 +/- 0.2 vs 7.5 +/- 0.6 microg/mL, P < 0.01). These results demonstrate that dietary KO is effective in improving metabolic parameters in mice fed a high-fat diet, suggesting that KO may be of therapeutic value in patients with the metabolic syndrome and/or nonalcoholic fatty liver disease.

  3. Effects of Endurance Running and Dietary Fat on Circulating Ghrelin and Peptide YY

    PubMed Central

    Russell, Ryan D.; Willis, Kentz S.; Ravussin, Eric; Larson-Meyer, Enette D.

    2009-01-01

    Ghrelin and peptide YY (PYY) are newly recognized gut peptides involved in appetite regulation. Plasma ghrelin concentrations are elevated in fasting and suppressed following a meal, while PYY concentrations are suppressed in fasting and elevated postprandially. We determine whether ghrelin and PYY are altered by a low-fat, high-carbohydrate (10% fat, 75% carbohydrate) or moderate-fat, moderate-carbohydrate (35% fat, 50% carbohydrate) diet and; whether these peptides are affected by intense endurance running (which is likely to temporarily suppress appetite). Twenty-one endurance-trained runners followed a controlled diet (25% fat) and training regimen for 3 days before consuming the low-fat or isoenergetic moderate-fat diet for another 3 days in random cross-over fashion. On day 7 runners underwent glycogen restoration and then completed a 90-minute pre-loaded 10-km time trial on day 8, following a control breakfast. Blood samples were obtained on days 4 and 7 (fasting), and day 8 (non-fasting) before and after exercise for analysis of ghrelin, PYY, insulin and growth hormone (GH). Insulin, GH, Ghrelin and PYY changed significantly over time (p < 0.0001) but were not influenced by diet. Ghrelin was elevated during fasting (days 4 and 7), while insulin and PYY were suppressed. Following the pre-exercise meal, ghrelin was suppressed ~17% and insulin and PYY were elevated ~157 and ~40%, respectively, relative to fasting (day 7). Following exercise, PYY, ghrelin, and GH were significantly (p < 0.0001) increased by ~11, ~16 and ~813%, respectively. The noted disruption in the typical inverse relationship between ghrelin and PYY following exercise suggests that interaction of these peptides may be at least partially responsible for post-exercise appetite suppression. These peptides do not appear to be influenced by dietary fat intake. Key points The study presents novel findings which address whether the appetite-stimulating gut peptide ghrelin and the appetite

  4. Associations of Dietary Fat, Regional Adiposity, and Blood Pressure in Men

    PubMed Central

    Williams, Paul T.; Fortmann, Stephen P.; Terry, Richard B.; Garay, Susan C.; Vranizan, Karen M.; Ellsworth, Nancy; Wood, Peter D.

    2010-01-01

    Mediterranean populations have low incidence rates of cardiovascular disease and hypertension that may be due, in part, to dietary factors, particularly a relatively high intake of monounsaturated fat as olive oil. In this study, nutritional components (as grams per 4200 kJ) (1 kcal = 4.2 kJ) from three-day food records were examined in association with resting blood pressure in a cross-sectional survey of 76 sedentary middle-aged American men, aged 30 to 55 years, with resting blood pressures below 160/100 mm Hg. Systolic and diastolic blood pressures correlated significantly and inversely with monounsaturated fat consumption. Polyunsaturated fat consumption also correlated inversely with diastolic blood pressure; however, this relationship became nonsignificant when adjusted for an index of regional adiposity that characterizes the male-type obesity pattern. Detailed analyses of specific fatty acids showed that the correlations with monounsaturates were specific to oleic acid, and the correlation with polyunsaturates was specific to linoleic acid. Multiple regression analysis suggested that 18.2% of the variance in systolic blood pressure and 23.2% of the variance in diastolic blood pressure were related to monounsaturated and polyunsaturated fat consumption and regional adiposity. Thus, increased consumption of monounsaturated fat is related inversely to resting blood pressure, although causality remains to be determined. PMID:3586249

  5. Effects of Replacing Pork Back Fat with Brewer's Spent Grain Dietary Fiber on Quality Characteristics of Reduced-fat Chicken Sausages

    PubMed Central

    Choi, Min-Sung; Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; n Lee, Soo-Yeo; Kim, Cheon-Jei

    2014-01-01

    The effects of replacing pork back fat with brewer's spent grain (BSG) pre-emulsion for physicochemical, textural properties, and sensory evaluations of reduced-fat chicken sausages are evaluated. Control was prepared with 15% pork back fat, and three reduced-fat chicken sausages were formulated with the replacement of 20, 25, and 30% pork back fat with BSG pre-emulsion. The pH level of reduced-fat sausages formulated with BSG pre-emulsion is lower than that of the control (p<0.05). The redness, yellowness, and apparent viscosity of reduced-fat chicken sausages increase proportionally with increasing BSG pre-emulsion (p<0.05). With increasing BSG pre-emulsion concentration, the fat contents and energy values are decreased in reduced-fat chicken sausages (p<0.05). The BSG pre-emulsion improves the hardness, gumminess, and chewiness of reduced-fat chicken sausages (p<0.05), and the reduction in fat and the addition of BSG pre-emulsion had no influence on the cohesiveness of the chicken sausage. And there is no significant difference in the overall acceptability among control, T1 (chicken sausage with 20% of BSG pre-emulsion, 10% of fat addition), and T2 (chicken sausage with 25% of BSG pre-emulsion, 5% of fat addition) (p>0.05). Therefore, our results indicate that BSG is effective dietary fiber source for manufacturing of reduced-fat meat product and suggest that 20-25% of BSG pre-emulsion is suitable for pork back fat in chicken sausages. PMID:26760933

  6. Resistance of lung fatty acid synthesis to inhibition by dietary fat in the meal-fed rat.

    PubMed

    Clarke, S D; Wilson, M D; Ibnoughazala, T

    1984-03-01

    One-half of the palmitate utilized by the lung for production of the surfactant phospholipid, dipalmitoyl phosphatidylcholine, originates from de novo palmitate synthesis in the lung. In this report the lung was examined for the influence of dietary fat on the lung de novo fatty acid synthesis pathway. Lung lipogenesis was reduced by fasting and accelerated by carbohydrate refeeding or insulin injection. However, in general lung fatty acid synthesis was unaffected by dietary fat. Supplementing one meal (high glucose diet) with as much as 36% additional fat kilocalories did not suppress lung fatty acid synthesis. An inhibition of fatty acid synthesis resulted from a fat supplement of +60 and +120% of meal kilocalories, but this inhibition was likely due to an attenuated rate of glucose absorption. Ingestion of a high carbohydrate diet supplemented with 10, 17, or 30% added kilocalories as safflower oil or palmitate had no effect on lipogenesis after 10 days. On the other hand, liver fatty acid synthesis and acetyl-CoA carboxylase were selectively suppressed by safflower oil, whereas dietary palmitate was ineffective as an inhibitor of lipogenesis. These data clearly demonstrate that the well-characterized preferential suppression of liver lipogenesis by dietary polyunsaturated fats does not extend to lung tissue, and, more importantly, the inhibition of liver lipogenesis is not secondary to an essential fatty acid deficiency. The marked resistance of lung fatty acid synthesis to inhibition by dietary fat might be a biological protective mechanism to ensure adequate palmitate for dipalmitoyl phosphatidylcholine synthesis.

  7. The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man

    PubMed Central

    Grundy, Scott M.; Ahrens, E. H.

    1970-01-01

    Cholesterol balance studies were carried out in 11 patients with various types of hyperlipoproteinemia to determine the mechanism by which unsaturated fats lower plasma cholesterol. Unsaturated fats produced no increase in fecal endogenous neutral steroids in 10 of 11 patients and no decrease in absorption of exogenous cholesterol in 5 patients who received cholesterol in the diet. In 8 of 11 patients no changes occurred in excretion of bile acids during the period on unsaturated fat when plasma cholesterol was declining. However, in 3 of 11 patients small but significant increases in bile acid excretion were found during this transitional period; in 2 others increases also occurred after plasma cholesterol had become constant at lower levels on unsaturated fat. Since the majority of patients showed no change in cholesterol or bile acid excretions during the transitional period, we propose that when excretion changes did occur they were probably not the cause of the plasma cholesterol change. Furthermore, turnover data and specific activity curves suggested that cholesterol synthesis was not influenced by exchange of dietary fats. Thus, excluding changes in excretion and synthesis, we conclude that it is most likely that unsaturated fats cause plasma cholesterol to be redistributed into tissue pools. We have also examined the possibility that cholesterol which is redistributed into tissues could be secondarily excreted as neutral steroids or bile acids. In at least 5 of 11 patients excretion patterns were consistent with this explanation. However, we cannot rule out that excretion changes may have been due to alterations in transit time, to changes in bacterial flora, or to transitory changes in absorption or synthesis of cholesterol or bile acids. Our conclusion that unsaturated fats cause a redistribution of cholesterol between plasma and tissue pools points to the necessity in future to explore where cholesterol is stored, to what extent stored cholesterol can

  8. Pro-opiomelanocortin modulates the thermogenic and physical activity responses to high-fat feeding and markedly influences dietary fat preference.

    PubMed

    Tung, Y C Loraine; Rimmington, Debra; O'Rahilly, Stephen; Coll, Anthony P

    2007-11-01

    Complete proopiomelanocortin (POMC) deficiency causes a human syndrome of hypoadrenalism, altered skin and hair pigmentation, and severe hyperphagic obesity. Heterozygote carriers of nonsense mutations are strongly predisposed to obesity. Pomc(+/-) mice have normal body weight on a chow diet but increase food intake and become more obese than wild-type littermates when placed on a high-fat diet. To further explore the mechanisms whereby dietary fat interacts with Pomc genotype to produce obesity, we examined Pomc-null, Pomc(+/-), and wild-type mice for changes in the components of energy balance in response to provision of a high-fat diet and macronutrient preference when presented with a selection of dietary choices. In contrast to wild-type mice, Pomc null mice did not increase their resting energy expenditure or their spontaneous physical activity when given a high-fat diet. Pomc(+/-) mice increased resting energy expenditure similarly to wild types, but their increase in physical activity was significantly less than that seen in wild-type mice. In two independent experimental tests of macronutrient preference, Pomc genotype was a strong predictor of dietary fat preference with Pomc null animals choosing to eat approximately twice as much fat, but similar amounts of carbohydrate and protein, as wild-type animals. Pomc(+/-) mice showed an intermediate response. In summary, POMC-derived peptides have influences on multiple aspects of the organism's response to the presentation of high-fat diet. This includes a major influence, readily discernible even in heterozygote animals, on the dietary preference for fat.

  9. Are the Dietary Guidelines for Meat, Fat, Fruit and Vegetable Consumption Appropriate for Environmental Sustainability? A Review of the Literature

    PubMed Central

    Reynolds, Christian John; Buckley, Jonathan David; Weinstein, Philip; Boland, John

    2014-01-01

    This paper reviews the current literature around the environmental impacts of dietary recommendations. The focus of the review is on collating evidence relating to environmental impacts of the dietary advice found in the World Health Organisation guidelines, and environmental impact literature: reducing the consumption of fat, reducing the consumption of meat-based protein and animal-based foods, and increasing the consumption of fruit and vegetables. The environmental impact of reducing dietary fat intake is unclear, although reducing consumption of the food category of edible fats and oils appears to have little impact. However most, but not all, studies support environmental benefits of a reduced consumption of animal-based foods and increased consumption of fruit and vegetables. In general, it appears that adhering to dietary guidelines reduces impact on the environment, but further study is required to examine the environmental impacts of animal-based foods, and fruit and vegetable intake in depth. PMID:24926526

  10. Are the dietary guidelines for meat, fat, fruit and vegetable consumption appropriate for environmental sustainability? A review of the literature.

    PubMed

    Reynolds, Christian John; Buckley, Jonathan David; Weinstein, Philip; Boland, John

    2014-06-12

    This paper reviews the current literature around the environmental impacts of dietary recommendations. The focus of the review is on collating evidence relating to environmental impacts of the dietary advice found in the World Health Organisation guidelines, and environmental impact literature: reducing the consumption of fat, reducing the consumption of meat-based protein and animal-based foods, and increasing the consumption of fruit and vegetables. The environmental impact of reducing dietary fat intake is unclear, although reducing consumption of the food category of edible fats and oils appears to have little impact. However most, but not all, studies support environmental benefits of a reduced consumption of animal-based foods and increased consumption of fruit and vegetables. In general, it appears that adhering to dietary guidelines reduces impact on the environment, but further study is required to examine the environmental impacts of animal-based foods, and fruit and vegetable intake in depth.

  11. Characterization of biophysical properties of baboon lipoproteins: modulation by dietary fat and cholesterol

    SciTech Connect

    Babiak, J.

    1984-04-01

    The serum lipoproteins of baboons fed diets containing differing types and amounts of fat and varying amounts of cholesterol were examined by analytic ultracentrifugation, gradient gel electrophoresis, density gradient ultracentrifugation, sodium dodecyl sulfate-polyacrylamide electrophoresis, electron microscopy, and standard protein and lipid composition assays. These studies characterized the lipoproteins of the baboon, observed how concentrations and physical-chemical properties of the lipoproteins are modulated by dietary fat and cholesterol and described the suitability of the baboon as an animal model of human lipoprotein metabolism. Results indicate that baboon high density lipoproteins (HDL), though higher in total serum concentration than human HDL, are remarkably similar to human HDL. The concentration of baboon HDL is increased by dietary saturated fat but decreased by the addition of cholesterol. While serum concentrations of low density lipoproteins (LDL) tend to be lower in baboons, the physical-chemical properties of the LDL of baboons and humans are comparable. The LDL of both species contains apolipoprotein B as their major apolipoprotein and exhibit considerable polydispersity in particle size. LDL of both species consists of seven discrete subpopulations. The analytical and statistical data presented in this dissertation indicate that the baboon is a good model for studying the role of lipoproteins in the development of atherosclerosis. 125 references, 31 figures, 28 tables.

  12. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    PubMed

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.

  13. Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss

    PubMed Central

    Zhou, June; Martin, Roy J; Tulley, Richard T; Raggio, Anne M; Shen, Li; Lissy, Elizabeth; McCutcheon, Kathleen; Keenan, Michael J

    2009-01-01

    Resistant starch (RS) is a fermentable fiber that decreases dietary energy density and results in fermentation in the lower gut. The current studies examined the effect of RS on body fat loss in mice. In a 12 week study (study 1), the effect of two different types of RS on body fat was compared with two control diets (0% RS) in C57Bl/6J mice: regular control diet or the control diet that had equal energy density as the RS diet (EC). All testing diets had 7% (wt/wt) dietary fat. In a 16 week study (study 2), the effect of RS on body fat was compared with EC in C57BL/6J mice and two obese mouse models (NONcNZO10/LtJ or Non/ShiLtJ). All mice were fed control (0% RS) or 30% RS diet for 6 weeks with 7% dietary fat. On the 7th week, the dietary fat was increased to 11% for half of the mice, and remained the same for the rest. Body weight, body fat, energy intake, energy expenditure, and oral glucose tolerance were measured during the study. At the end of the studies, the pH of cecal contents was measured as an indicator of RS fermentation. Results: Compared with EC, dietary RS decreased body fat and improved glucose tolerance in C57BL/6J mice, but not in obese mice. For other metabolic characteristics measured, the alterations by RS diet were similar for all three types of mice. The difference in dietary fat did not interfere with these results. The pH of cecal contents in RS fed mice was decreased for C57BL/6J mice but not for obese mice, implying the impaired RS fermentation in obese mice. Conclusion: 1) decreased body fat by RS is not simply due to dietary energy dilution in C57Bl/6J mice, and 2) along with their inability to ferment RS; RS fed obese mice did not lose body fat. Thus, colonic fermentation of RS might play an important role in the effect of RS on fat loss. PMID:19739641

  14. Dietary Carbohydrate Modifies the Inverse Association Between Saturated Fat Intake and Cholesterol on Very Low-Density Lipoproteins.

    PubMed

    Wood, A C; Kabagambe, E K; Borecki, I B; Tiwari, H K; Ordovas, J M; Arnett, D K

    2011-08-23

    We aimed to investigate the relationship between dietary saturated fat on fasting triglyceride (TG) and cholesterol levels, and any mediation of this relationship by dietary carbohydrate intake. Men and women in the NHLBI Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 1036, mean age ± SD = 49 ± 16 y) were included. Mixed linear models were run with saturated fat as a predictor variable and fasting TG, very low density lipoprotein cholesterol (VLDL-C), low density cholesterol (LDL-C) and high density cholesterol (HDL-C) as separate outcome variables. Subsequent models were run which included dietary carbohydrate as a predictor variable, and an interaction term between saturated fat and carbohydrate. All models controlled for age, sex, BMI, blood pressure and dietary covariates. In models that included only saturated fat as a predictor, saturated fat did not show significant associations with fasting lipids. When carbohydrate intake and an interaction term between carbohydrates and saturated fat intake was included, carbohydrate intake did not associate with lipids, but there was an inverse relationship between saturated fat intake and VLDL-C (P = 0.01) with a significant interaction (P = 0.01) between saturated fat and carbohydrate with regard to fasting VLDL-C concentrations. Similar results were observed for fasting TG levels. We conclude that, when controlling for carbohydrate intake, higher saturated fat was associated with lower VLDL-C and TGs. This was not the case at higher intakes of carbohydrate. This has important implications for dietary advice aimed at reducing TG and VLDL-C levels.

  15. Dietary fat impacts fetal growth and metabolism: uptake of chylomicron remnant core lipids by the placenta.

    PubMed

    Rebholz, Sandra L; Burke, Katie T; Yang, Qing; Tso, Patrick; Woollett, Laura A

    2011-08-01

    The fetus requires significant energy for growth and development. Although glucose is a major source of energy for the fetus, other maternal nutrients also appear to promote growth. Thus, the goal of these studies was to determine whether triglyceride-rich remnants are taken up by the placenta and whether maternal dietary lipids, independently of adiposity, can impact fetal growth. To accomplish our first goal, chylomicron particles were duallly labeled with cholesteryl ester and triglycerides. The placenta took up remnant particles/core lipids at rates greater than adipose tissue and skeletal muscle but less than the liver. Although the placenta expresses apoE receptors, uptake of chylomicron remnants and/or core lipids can occur independently of apoE. To determine the impact of dietary lipid on fetal growth, independent of maternal adiposity, females were fed high-fat diets (HFD) for 1 mo; there was no change in adiposity or leptin levels prior to or during pregnancy of dams fed HFD. Fetal masses were greater in dams fed HFD, and mRNA levels of proteins involved in fatty acid oxidation (CPT I, PPARα), but not glucose oxidation (pyruvate kinase) or other regulatory processes (HNF-4α, LXR), were increased with maternal dietary fat. There was also no change in mRNA levels of proteins involved in placental glucose and fatty acid transport, and GLUT1 protein levels in microvillous membranes were similar in placentas of dams fed either diet. Thus, the ability of the placenta to take up chylomicron remnant core lipids likely contributes to accelerated fetal growth in females fed high fat diets.

  16. Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference.

    PubMed

    Dramane, Gado; Akpona, Simon; Besnard, Philippe; Khan, Naim A

    2014-12-01

    Dietary lipids are usually responsible of several metabolic disorders. Recent compelling evidences suggest that there is a sixth taste modality, destined for the detection of oro-gustatory fats. The lipid-binding glycoprotein CD36, expressed by circumvallate papillae (CVP) of the mouse tongue, has been shown to be implicated in oro-gustatory perception of dietary lipids. We demonstrate that linoleic acid (LA) by activating sPLA2, cPLA2 and iPLA2 via CD36, produced arachidonic acid (AA) and lyso-phosphatidylcholine (Lyso-PC) which triggered Ca(2+) influx in CD36-positive taste bud cells (TBC), purified from mouse CVP. LA induced the production of Ca(2+) influx factor (CIF). CIF, AA and Lyso-PC exerted different actions on the opening of store-operated Ca2+ (SOC) channels, constituted of Orai proteins and regulated by STIM1, a sensor of Ca(2+) depletion in the endoplasmic reticulum. We observed that CIF and Lyso-PC opened Orai1 channels whereas AA-opened Ca(2+) channels were composed of Orai1/Orai3. STIM1 was found to regulate LA-induced CIF production and opening of both kinds of Ca(2+) channels. Furthermore, Stim1(-/-) mice lost the spontaneous preference for fat, observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. Other cell types are involved in, and external factors can influence this preference.

  17. Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue

    PubMed Central

    Huang, Edmond; Leone, Vanessa; Devkota, Suzanne; Wang, Yunwei; Brady, Matthew; Chang, Eugene

    2013-01-01

    Background Growing evidence shows that dietary factors can dramatically alter the gut microbiome in ways that contribute to metabolic disturbance and progression of obesity. In this regard, mesenteric adipose tissue has been implicated in mediating these processes through the elaboration of pro-inflammatory adipokines. In this study, we examined the relationship of these events by determining the effects of dietary fat content and source on gut microbiota, as well as the effects on adipokine profiles of mesenteric and peripheral adipocytes. Methods Adult male C57Bl/6 mice were fed milk fat-, lard-(SFA sources), or safflower oil (PUFA)- based high fat diets for four weeks. Body mass and food consumption were measured. Stool 16S rRNA was isolated and analyzed via T-RFLP as well as variable V3-4 sequence tags via next gen sequencing. Mesenteric and gonadal adipose samples were analyzed for both lipogenic and inflammatory mediators via qRT-PCR. Results High-fat feedings caused more weight gain with concomitant increases in caloric consumption relative to low-fat diets. Additionally, each of the high fat diets induced dramatic and specific 16S rRNA phylogenic profiles that were associated with different inflammatory and lipogenic mediator profile of mesenteric and gonadal fat depots. Conclusions Our findings support the notion that dietary fat composition can both reshape the gut microbiota as well as alter host adipose tissue inflammatory/lipogenic profiles. They also demonstrate the interdependency of dietary fat source, commensal gut microbiota, and inflammatory profile of mesenteric fat that can collectively impact the host metabolic state. PMID:23639897

  18. Longitudinal analysis of intervention effects on temptations and stages of change for dietary fat using parallel process latent growth modeling.

    PubMed

    Brick, Leslie Ann D; Yang, Si; Harlow, Lisa L; Redding, Colleen A; Prochaska, James O

    2016-11-25

    The Dietary Guidelines for Americans recommend a 20-35 percent daily intake of fat. Resisting the temptation to eat high-fat foods, in conjunction with stage of readiness to avoid these foods, has been shown to influence healthy behavior change. Data (N = 6516) from three randomized controlled trials were pooled to examine the relationships among direct intervention effects on temptations and stage of change for limiting high-fat foods. Findings demonstrate separate simultaneous growth processes in which baseline level of temptations, but not the rate of change in temptations, was significantly related to the change in readiness to avoid high-fat foods.

  19. Dietary protein and fat intake in relation to risk of colorectal adenoma in Korean.

    PubMed

    Yang, Sun Young; Kim, Young Sun; Lee, Jung Eun; Seol, Jueun; Song, Ji Hyun; Chung, Goh Eun; Yim, Jeong Yoon; Lim, Sun Hee; Kim, Joo Sung

    2016-12-01

    Consumption of red meat and alcohol are known risk factors for colorectal cancer, but associations for dietary fat remain unclear. We investigated the associations of dietary fat, protein, and energy intake with prevalence of colorectal adenoma.We performed a prospective cross-sectional study on asymptomatic persons who underwent a screening colonoscopy at a single center during a routine health check-up from May to December 2011. Dietary data were obtained via a validated Food Frequency Questionnaire (FFQ), assisted by a registered dietician. We also obtained information on alcohol consumption and smoking status, and measured metabolic syndrome markers including abdominal circumference, blood pressure, fasting glucose, serum triglyceride and high-density lipoprotein cholesterol. We calculated odds ratio (OR) and 95% confidence interval (CI) to evaluate the associations using the polytomous logistic regression models. As a secondary analysis, we also conducted a matched analysis, matched by age and sex (557 cases and 557 non-cases).The study sample included 557 cases (406 males and 151 females) with histopathologically confirmed colorectal adenoma, and 1157 controls (650 males and 507 females). The proportion of advanced adenoma was 28.1% of men and 18.5% of female, respectively. Although vegetable protein intake was inversely associated with the prevalence of colorectal adenoma, further adjustment for potential confounding factors attenuated the association, resulting in no significant associations. There were no significant associations between dietary fat intake and colorectal adenoma in energy-adjusted models. For vegetable protein in women, the OR for the comparison of those in the highest tertile with those in the lowest tertile was 0.47 (95% CI 0.25-0.91, P for trend = 0.07) after adjustment for total energy intake. However, after controlling for metabolic syndrome markers, body mass index, smoking status, alcohol consumption, and family history of

  20. Dietary protein and fat intake in relation to risk of colorectal adenoma in Korean

    PubMed Central

    Yang, Sun Young; Kim, Young Sun; Lee, Jung Eun; Seol, Jueun; Song, Ji Hyun; Chung, Goh Eun; Yim, Jeong Yoon; Lim, Sun Hee; Kim, Joo Sung

    2016-01-01

    Abstract Consumption of red meat and alcohol are known risk factors for colorectal cancer, but associations for dietary fat remain unclear. We investigated the associations of dietary fat, protein, and energy intake with prevalence of colorectal adenoma. We performed a prospective cross-sectional study on asymptomatic persons who underwent a screening colonoscopy at a single center during a routine health check-up from May to December 2011. Dietary data were obtained via a validated Food Frequency Questionnaire (FFQ), assisted by a registered dietician. We also obtained information on alcohol consumption and smoking status, and measured metabolic syndrome markers including abdominal circumference, blood pressure, fasting glucose, serum triglyceride and high-density lipoprotein cholesterol. We calculated odds ratio (OR) and 95% confidence interval (CI) to evaluate the associations using the polytomous logistic regression models. As a secondary analysis, we also conducted a matched analysis, matched by age and sex (557 cases and 557 non-cases). The study sample included 557 cases (406 males and 151 females) with histopathologically confirmed colorectal adenoma, and 1157 controls (650 males and 507 females). The proportion of advanced adenoma was 28.1% of men and 18.5% of female, respectively. Although vegetable protein intake was inversely associated with the prevalence of colorectal adenoma, further adjustment for potential confounding factors attenuated the association, resulting in no significant associations. There were no significant associations between dietary fat intake and colorectal adenoma in energy-adjusted models. For vegetable protein in women, the OR for the comparison of those in the highest tertile with those in the lowest tertile was 0.47 (95% CI 0.25–0.91, P for trend = 0.07) after adjustment for total energy intake. However, after controlling for metabolic syndrome markers, body mass index, smoking status, alcohol consumption, and family history

  1. Dietary Fat and Aging Modulate Apoptotic Signaling in Liver of Calorie-Restricted Mice

    PubMed Central

    López-Domínguez, José Alberto; Khraiwesh, Husam; González-Reyes, José Antonio; López-Lluch, Guillermo; Navas, Plácido; Ramsey, Jon Jay; de Cabo, Rafael; Burón, María Isabel

    2015-01-01

    Imbalance between proliferation and cell death accounts for several age-linked diseases. Aging, calorie restriction (CR), and fat source are all factors that may influence apoptotic signaling in liver, an organ that plays a central metabolic role in the organism. Here, we have studied the combined effect of these factors on a number of apoptosis regulators and effectors. For this purpose, animals were fed diets containing different fat sources (lard, soybean oil, or fish oil) under CR for 6 or 18 months. An age-linked increase in the mitochondrial apoptotic pathway was detected with CR, including a decrease in Bcl-2/Bax ratio, an enhanced release of cytochrome c to the cytosol and higher caspase-9 activity. However, these changes were not fully transmitted to the effectors apoptosis-inducing factor and caspase-3. CR (which abated aging-related inflammatory responses) and dietary fat altered the activities of caspases-8, -9, and -3. Apoptotic index (DNA fragmentation) and mean nuclear area were increased in aged animals with the exception of calorie-restricted mice fed a lard-based fat source. These results suggest possible protective changes in hepatic homeostasis with aging in the calorie-restricted lard group. PMID:24691092

  2. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility.

    PubMed

    Khan, Naiman A; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Hillman, Charles H

    2015-10-01

    Identification of health behaviors and markers of physiological health associated with childhood cognitive function has important implications for public health policy targeted toward cognitive health throughout the life span. Although previous studies have shown that aerobic fitness and obesity exert contrasting effects on cognitive flexibility among prepubertal children, the extent to which diet plays a role in cognitive flexibility has received little attention. Accordingly, this study examined associations between saturated fats and cholesterol intake and cognitive flexibility, assessed using a task switching paradigm, among prepubertal children between 7 and 10 years (N = 150). Following adjustment of confounding variables (age, sex, socioeconomic status, IQ, VO2max, and BMI), children consuming diets higher in saturated fats exhibited longer reaction time during the task condition requiring greater amounts of cognitive flexibility. Further, increasing saturated fat intake and dietary cholesterol were correlated with greater switch costs, reflecting impaired ability to maintain multiple task sets in working memory and poorer efficiency of cognitive control processes involved in task switching. These data are among the first to indicate that children consuming diets higher in saturated fats and cholesterol exhibit compromised ability to flexibly modulate their cognitive operations, particularly when faced with greater cognitive challenge. Future longitudinal and intervention studies are necessary to comprehensively characterize the interrelationships between diet, aerobic fitness, obesity, and children's cognitive abilities.

  3. Acute Selenium Toxicity Associated With a Dietary Supplement

    PubMed Central

    MacFarquhar, Jennifer K.; Broussard, Danielle L.; Melstrom, Paul; Hutchinson, Richard; Wolkin, Amy; Martin, Colleen; Burk, Raymond F.; Dunn, John R.; Green, Alice L.; Hammond, Roberta; Schaffner, William; Jones, Timothy F.

    2011-01-01

    Background Selenium is an element necessary for normal cellular function, but it can have toxic effects at high doses. We investigated an outbreak of acute selenium poisoning. Methods A case was defined as the onset of symptoms of selenium toxicity in a person within 2 weeks after ingesting a dietary supplement manufactured by “Company A,” purchased after January 1, 2008. We conducted case finding, administered initial and 90-day follow-up questionnaires to affected persons, and obtained laboratory data where available. Results The source of the outbreak was identified as a liquid dietary supplement that contained 200 times the labeled concentration of selenium. Of 201 cases identified in 10 states, 1 person was hospitalized. The median estimated dose of selenium consumed was 41 749 μg/d (recommended dietary allowance is 55 μg/d). Frequently reported symptoms included diarrhea (78%), fatigue (75%), hair loss (72%), joint pain (70%), nail discoloration or brittleness (61%), and nausea (58%). Symptoms persisting 90 days or longer included fingernail discoloration and loss (52%), fatigue (35%), and hair loss (29%). The mean initial serum selenium concentration of 8 patients was 751 μg/L (reference range, ≤125 μg/L). The mean initial urine selenium concentration of 7 patients was 166 μg/24 h (reference range, ≤55 μg/24 h). Conclusions Toxic concentrations of selenium in a liquid dietary supplement resulted in a widespread outbreak. Had the manufacturers been held to standards used in the pharmaceutical industry, it may have been prevented. PMID:20142570

  4. Milk fat responses to dietary supplementation of short- and medium-chain fatty acids in lactating dairy cows.

    PubMed

    Vyas, D; Teter, B B; Erdman, R A

    2012-09-01

    Short-and medium-chain fatty acids (SMCFA), which are synthesized de novo in the mammary gland, are reduced to a much greater extent than the long-chain fatty acids during diet-induced milk fat depression. Our hypothesis was that SMCFA are limiting for milk fat synthesis even under conditions when milk fat is not depressed. Our objective was to test the potential limitation of SMCFA on milk fat synthesis via dietary supplementation. Sixteen lactating Holstein cows (107±18 d in milk) were fed a corn silage-based total mixed ration. Cows were randomly assigned to groups of 4 per pen and supplemented with 1 of 4 dietary fat supplements (600 g/d) supplied in a 4×4 Latin square design with 21-d experimental periods. Treatments consisted of fat supplements containing mixtures of calcium salts of long-chain fatty acids (Megalac; Church & Dwight Co. Inc., Princeton, NJ) and an SMCFA mixture (S; 3.3% C8, 7.6% C10, 9.85% C12, 32.12% C14, and 47.11% C16) that contained 0, 200, 400, and 600 g/d of S substituted for Megalac (S0, S200, S400, and S600, respectively). No treatment effects were observed for dry matter and fat-corrected milk. However, milk yield was decreased with S600. Milk fat increased linearly by 0.17, 0.25, and 0.33 percentage units for the respective S treatments. However, fat yield peaked at S200 and milk protein concentration and yield was significantly decreased at the higher S levels because of a linear trend toward decreased milk yield in the S600 treatment. In conclusion, SMCFA supplementation linearly increased milk fat concentration but decreased milk production at the higher levels of supplementation. The dietary inclusion of SMCFA had no effects on total milk fat yield.

  5. Gene-dietary fat interaction, bone mineral density and bone speed of sound in Children: a twin study in China

    PubMed Central

    Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa

    2015-01-01

    Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604

  6. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs.

    PubMed

    Feng, Zemeng; Li, Tiejun; Wu, Chunli; Tao, Lihua; Blachier, Francois; Yin, Yulong

    2015-04-01

    The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a flavour enhancer in China. Previous studies have reported that high-fat diet modifies intestinal metabolism and physiology. However, little information is available on the effects of oral MSG on intestine, and no study focus on the interaction of dietary fat and MSG for intestinal health. The aim of the present study was to evaluate the effects of MSG and dietary fat on intestinal health in growing pigs, and to try to identify possible interactions between these 2 nutrients for such effects. A total of 32 growing pigs were used and fed with 4 isonitrogenous and isocaloric diets (basal diet, high-fat diet, basal diet with 3% MSG and high fat diet with 3% MSG). Parameters related to reactive oxygen species metabolism, epithelial morphology, pro-inflammation factors and tight junction protein expression and several species of intestinal microbe were measured. Overall, dietary fat and MSG had detrimental effects on several of the physiological and inflammatory parameters measured in the proximal intestine, while exerting beneficial effects on the distal intestine in growing pigs, with generally antagonistic effects. These results may be of particular relevance for nutritional concerns in patients with intestinal diseases.

  7. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats

    PubMed Central

    Kristensen, Mette; Bach Knudsen, Knud Erik; Jørgensen, Henry; Oomah, David; Bügel, Susanne; Toubro, Søren; Tetens, Inge; Astrup, Arne

    2013-01-01

    Dietary fibers (DF) may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group): low DF control (C), 5% DF from cellulose (5-CEL), CEL + 5% DF from whole (5-WL) or ground linseed (5-GL), CEL + 5% DF from linseed DF extract (5-LDF), and CEL + 10% DF from linseed DF extract (10-LDF). Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 17–21. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% ± 0.8%) and lowest (74.3% ± 0.6%) with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001). Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL) and when the proportion of viscous DF increased (5-GL vs. 5-LDF). The 10-LDF resulted in a lower final body weight (258 ± 6.2 g) compared to C (282 ± 5.9 g), 5-CEL (281 ± 5.9 g), and 5-WL (285 ± 5.9 g) (p < 0.05). The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01). In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats. PMID:23966109

  8. Enterostatin inhibition of dietary fat intake is modulated through the melanocortin system.

    PubMed Central

    Lin, Ling; Park, MieJung; York, David A.

    2007-01-01

    Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knockout mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 icv blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in α-melanocyte stimulating hormone (α-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway. PMID:17113194

  9. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

    PubMed Central

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-01-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. PMID:24441829

  10. Both Dietary Supplementation with Monosodium L-Glutamate and Fat Modify Circulating and Tissue Amino Acid Pools in Growing Pigs, but with Little Interactive Effect

    PubMed Central

    Feng, Zemeng; Zhou, Xiaoli; Wu, Fei; Yao, Kang; Kong, Xiangfeng; Li, Tiejun; Blachier, Francois; Yin, Yulong

    2014-01-01

    Background The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a daily food additive in China. Little information is available on the effects of oral MSG and dietary fat supplementation on the amino acid balance in tissues. The present study aimed to determine the effects of both dietary fat and MSG on amino acid metabolism in growing pigs, and to assess any possible interactions between these two nutrients. Methods and Results Four iso-nitrogenous and iso-caloric diets (basal diet, high fat diet, basal diet with 3% MSG and high fat diet with 3% MSG) were provided to growing pigs. The dietary supplementation with fat and MSG used alone and in combination were found to modify circulating and tissue amino acid pools in growing pigs. Both dietary fat and MSG modified the expression of gene related to amino acid transport in jejunum. Conclusions Both dietary fat and MSG clearly influenced amino acid content in tissues but in different ways. Both dietary fat and MSG enhance the absorption of amino acids in jejunum. However, there was little interaction between the effects of dietary fat and MSG. PMID:24465415

  11. Free fat interpositional graft in acute physeal injuries: the anticipatory Langenskiöld procedure.

    PubMed

    Foster, B K; John, B; Hasler, C

    2000-01-01

    Free fat graft interposition has been used extensively in management of physeal injuries with established growth disturbances. The use of this technique as part of the management of acute physeal injuries has not been reported. Here we report on its application in acute physeal injuries, where it has prevented the formation of an anticipated physeal arrest.

  12. Dietary fat effects on brush border membrane composition and enzyme activities in rat intestine.

    PubMed

    Kaur, M; Kaur, J; Ojha, S; Mahmood, A

    1996-01-01

    The effect of dietary fats on the chemical composition and enzyme activities has been studied in intestinal brush border membranes (BBM) or rats. Animals were given commercial rat pellet diet (RP) or semisynthetic diet rich in either saturated [coconut oil (CCO))] or polyunsaturated [n-6, corn oil (CO) or n-3, fish oil (FO)] fat at the 10% level for 5 weeks. The membrane cholesterol/phospholipid ratio was augmented in CO- or RP-fed rats. There was an increase in level of saturated fatty acids in BBM from CCO- or FO-fed animals. n-3 polyunsaturated fatty acid content was raised in FO-fed rats, while the proportion of linoleic acid and arachidonic acid was enhanced in animals given a CO diet. Membrane fluidity was in the order of CCO < RP = CO < FO. The membrane hexose content was high (p < 0.05) in the CCO group. Hexosamines were elevated (p < 0.05) in CCO- or FO-fed rat brush borders. Membrane fucose was unaltered, while sialic acid content was elevated in CO- (p < 0.05) and FO- (p < 0.01) fed vs. CCO-fed rats. Lectin binding to brush borders corroborated these findings. The activities of alkaline phosphatase, sucrase and lactase were augmented (p < 0.001) in CCO-fed animals. Leucine-aminopeptidase and sucrase activities were depressed by FO feeding. The activities of PNP-beta-glycosidases were the highest in FO-fed rats. These results indicate that dietary fat quality markedly affects microvillus membrane lipid composition, glycosylation and enzyme functions in rat intestine.

  13. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative

    PubMed Central

    Navarro, Sandi L.; Neuhouser, Marian L.; Cheng, Ting-Yuan David; Tinker, Lesley F.; Shikany, James M.; Snetselaar, Linda; Martinez, Jessica A.; Kato, Ikuko; Beresford, Shirley A. A.; Chapkin, Robert S.; Lampe, Johanna W.

    2016-01-01

    Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women’s Health Initiative prospective cohort (n = 134,017). During a mean 11.7 years (1993–2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber (p-trend 0.09 and 0.08). An interaction (p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans. PMID:27916893

  14. The Influence of Dietary Fat Source on Life Span in Calorie Restricted Mice.

    PubMed

    López-Domínguez, José A; Ramsey, Jon J; Tran, Dianna; Imai, Denise M; Koehne, Amanda; Laing, Steven T; Griffey, Stephen M; Kim, Kyoungmi; Taylor, Sandra L; Hagopian, Kevork; Villalba, José M; López-Lluch, Guillermo; Navas, Plácido; McDonald, Roger B

    2015-10-01

    Calorie restriction (CR) without malnutrition extends life span in several animal models. It has been proposed that a decrease in the amount of polyunsaturated fatty acids (PUFAs), and especially n-3 fatty acids, in membrane phospholipids may contribute to life span extension with CR. Phospholipid PUFAs are sensitive to dietary fatty acid composition, and thus, the purpose of this study was to determine the influence of dietary lipids on life span in CR mice. C57BL/6J mice were assigned to four groups (a 5% CR control group and three 40% CR groups) and fed diets with soybean oil (high in n-6 PUFAs), fish oil (high in n-3 PUFAs), or lard (high in saturated and monounsaturated fatty acids) as the primary lipid source. Life span was increased (p < .05) in all CR groups compared to the Control mice. Life span was also increased (p < .05) in the CR lard mice compared to animals consuming either the CR fish or soybean oil diets. These results indicate that dietary lipid composition can influence life span in mice on CR, and suggest that a diet containing a low proportion of PUFAs and high proportion of monounsaturated and saturated fats may maximize life span in animals maintained on CR.

  15. [Importance of the dietary fat on the prevention and control of metabolic disturbances and cardiovascular disease].

    PubMed

    Lottenberg, Ana Maria Pita

    2009-07-01

    The World Health Organization (WHO) has recently reinforced the fact that inadequate diets, along with physical inactivity, are among the ten main determinant factors of mortality. Several randomized trials demonstrated that dietary interventions may lower or even prevent the occurrence of several non-communicable diseases. In this context, the role of diet has been exhaustively evaluated in several clinical and epidemiological studies. Thus, it is well established in literature that the amount and type of dietary fat have a direct influence on cardiovascular risk factors, such as lipids and plasma lipoprotein concentration, as well as their association with inflammatory processes. Fatty acids also participate in complex intracellular signaling systems, a function which has been currently investigated. Dietary polyunsaturated fatty acids (PUFA) act not only by altering membrane lipid composition, cellular metabolism and signal transduction, but also modulating gene expression by regulating the activity and/or production of different nuclear transcription factors. The aim of this article is to review important topics regarding the lipids metabolism and correlate them with nutritional therapies that may contribute to the prevention and treatment of related diseases.

  16. Influence of post hatch dietary supplementation of fat on performance, carcass cuts and biochemical profile in Ven Cobb broiler

    PubMed Central

    Rai, Komal Prasad; Gendley, M. K.; Tiwari, S. P.; Sahu, Tarini; Naik, Surendra Kumar

    2015-01-01

    Aim: The present experiment was conducted to study the effect of post hatch dietary fat supplementation on performance of broiler chicken. Materials and Methods: A total of 120 day-old Ven Cobb broiler chicks were randomly assigned to 4 treatment groups of 30 chicks in each (three replicates of 10 birds/treatment). The trial lasted for 35 days. The experimental design was a completely randomized design. Four types of diet were formulated for 1st week: T1, T2, T3 and T4 contained control diet with no added fat, 2.5, 5 and 7.5% fat, respectively. After 1st week post-hatch period chicks were fed ad libitum with the normal basal diet as per Bureau of Indian Standard recommendations till completion of the experiment (8-35 days). Results: Significantly higher (p<0.05) body weight and improved feed conversion ratio (FCR) was recorded in birds fed 5% dietary fat at the end of the experiment whereas, feed intake was not significantly affected. Significantly (p<0.05) higher dressed weight was observed due to 5% fat supplementation than other groups whereas, it was not significant for other carcass cuts. No significant differences were observed in moisture, protein and lipid content of breast and thigh muscle of broiler due to supplemented fat whereas, 2.5% dietary fat significantly (p<0.05) increase the serum HI titer on day 28th. In biochemical profile, higher serum albumin (g/dl) was recorded due to 5% fat supplementation whereas other biochemical components did not show any significance difference among treatments. Conclusion: It may be concluded that supplementation of fat in broilers diet improves the overall FCR, dressing percentage and gain more body weight. PMID:27047070

  17. Dietary calcium is associated with body mass index and body fat in American Indians.

    PubMed

    Eilat-Adar, Sigal; Xu, Jiaqiong; Loria, Catherine; Mattil, Claudia; Goldbourt, Uri; Howard, Barbara V; Resnick, Helaine E

    2007-08-01

    American Indians have a high prevalence of obesity. Evidence supports a relationship between increased dietary calcium intake and lower body weight. This study was conducted to investigate the association between dietary calcium intake, BMI, and percentage of body fat (PBF) in American Indians (ages 47-79 y) in the Strong Heart Study (SHS) (2nd exam, 1992-1995). SHS data were compared with data for the general U.S. adult population from the NHANES III (1988-1994). BMI was calculated as kg/m(2). PBF was estimated by bioelectrical impedance using an equation based on total body water. The clinical examination included measures of blood chemistry. Dietary data were collected using a 24-h dietary recall. Calcium intake was significantly lower in SHS participants than in age-matched NHANES III participants. Mean calcium intake in the SHS was 680 mg/d (range: 103-4574 mg/d) for men and 610 mg/d (range: 71-4093 mg/d) for women (P < 0.001). After adjustment for potential confounders, BMI and PBF were lower by 0.80 kg/m(2) (95% CI: -1.53 to -0.08, P = 0.046) and 1.28% (95% CI: -2.10 to -0.47, P = 0.011) in SHS participants with higher (> or = 873 mg/d in the 5th quintile) vs. lower calcium intake (<313 mg/d in the 1st quintile). No relation between calcium intake and BMI or PBF was observed in NHANES III participants. Our data may be used to develop nutritional interventions aimed at weight control in culturally appropriate clinical trials.

  18. Dietary Calcium is Associated with Body Mass Index and Body Fat in American Indians

    PubMed Central

    Eilat-Adar, Sigal; Xu, Jiaqiong; Loria, Catherine; Mattil, Claudia; Goldbourt, Uri; Howard, Barbara V.; Resnick, Helaine E.

    2009-01-01

    American Indians have a high prevalence of obesity. Evidence exists to support a relationship between increased dietary calcium intake and lower body weight. This study was conducted to investigate the association between dietary calcium intake, BMI, and percentage of body fat (PBF) in American Indians (ages 47–79 y) in the Strong Heart Study (SHS) (2nd exam: 1992–1995). SHS data were compared with data for the general U.S. adult population from the National Health and Nutrition Examination Survey (NHANES III) (1988–1994). BMI was calculated as weight (kg)/height (m2). PBF was estimated by bioelectrical impedance, using an equation based on total body water. The clinical examination included measures of blood chemistry. Dietary data were collected using a 24-h dietary recall. Calcium intake was significantly lower among SHS participants than among age-matched NHANES III participants. Mean calcium intake in the SHS was 680 mg/d (range: 103 – 4574 mg/d) for men and 610 mg/d (range: 71 – 4093 mg/d) for women (P < 0.001). After adjustment for potential confounders, BMI and PBF were lower by 0.80 kg/m2 (95% CI: −1.53 to −0.08, P = 0.046) and 1.28% (95% CI: −2.10 to −0.47, P = 0.011) in SHS participants with higher (≥ 873 mg/d in the 5th quintile) versus lower calcium intake (< 313 mg/d in the 1st quintile). No relation between calcium intake and BMI or PBF was observed in NHANES III participants. Our data may be used to develop nutritional interventions aimed at weight control in culturally appropriate clinical trials. PMID:17634270

  19. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters

    PubMed Central

    Enos, Reilly T.; Davis, J. Mark; Velázquez, Kandy T.; McClellan, Jamie L.; Day, Stani D.; Carnevale, Kevin A.; Murphy, E. Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage. PMID:23103474

  20. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters.

    PubMed

    Enos, Reilly T; Davis, J Mark; Velázquez, Kandy T; McClellan, Jamie L; Day, Stani D; Carnevale, Kevin A; Murphy, E Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage.

  1. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    PubMed

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  2. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    PubMed Central

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-01-01

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats. PMID:24496299

  3. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit.

    PubMed

    Chang, Yuan-Yen; Chou, Chung-Hsi; Chiu, Chih-Hsien; Yang, Kuo-Tai; Lin, Yi-Ling; Weng, Wei-Lien; Chen, Yi-Chen

    2011-01-12

    Nonalcoholic fatty liver (NAFL) is also called hepatic steatosis and has become an emergent liver disease in developed and developing nations. This study was to exam the preventive effects of taurine (Tau) on the development of hepatic steatosis via a hamster model. Although hepatic steatosis of hamsters was induced by feeding a high-fat/cholesterol diet, drinking water containing 0.35 and 0.7% Tau improved (p < 0.05) the serum lipid profile. Meanwhile, the smaller (p < 0.05) liver sizes and lower (p < 0.05) hepatic lipids in high-fat/cholesterol dietary hamsters drinking Tau may be partially due to higher (p < 0.05) fecal cholesterol, triacylglycerol, and bile acid outputs. In the regulation of lipid homeostasis, drinking a Tau solution upregulated (p < 0.05) low-density lipoprotein receptor and CYP7A1 gene expressions in high-fat/cholesterol dietary hamsters, which result in increased fecal cholesterol and bile acid outputs. Drinking a Tau solution also upregulated (p < 0.05) peroxisome proliferator-activated receptor-α (PPAR-α) and uncoupling protein 2 (UPC2) gene expressions in high-fat/cholesterol dietary hamsters, thus increasing energy expenditure. Besides, Tau also enhanced (p < 0.05) liver antioxidant capacities (GSH, TEAC, SOD, and CAT) and decreased (p < 0.05) lipid peroxidation (MDA), which alleviated liver damage in the high-fat/cholesterol dietary hamsters. Therefore, Tau shows preventive effects on the development of hepatic steatosis induced by a high-fat/cholesterol dietary habit.

  4. Dietary Fat Preference and Effects on Performance of Piglets at Weaning.

    PubMed

    Weng, Ruey-Chee

    2016-10-05

    The objective of this experiment was to evaluate the interplay of dietary lipid sources and feeding regime in the transition from sow milk to solid food of abruptly weaned piglets. 144 weaned piglets were trained over a 15 day period to experience gradually reducing dietary fat content from 12% to 6% for lard (L), soybean oil (S) and coconut oil (C) and their feeding behavior and diet preference then tested in a behavior observation experiment. Another 324 weaned piglets were used in three consecutive feeding experiments to measure the effect of different dietary fats on performance and feed choice in the four weeks after abrupt weaning. The lipid sources were used as supplements in a 3% crude fat corn/soya basal diet, with 6% of each being included to form diets 9C, 9S and 9L respectively, and their effects on performance measured. Combinations of these diets were then further compared in fixed blends or free choice selection experiments. In experiment 1, piglets pre-trained to experience reducing lipid inclusion showed different subsequent preferences according to lipid source, with a preference for lard at 9%, soybean oil at 3% and coconut oil at 6% inclusion rate (P<0.001). Following abrupt weaning, piglets that were fed with 9C and 9L had similar, heavier body weights at 3rd week of age, than those fed 9L, whilst after 4 weeks those fed 9C had the heaviest body weights (18.13 kg, p=0.006). Piglets fed a fixed 1:1 blend of 9C+9S had a poorer feed conversion ratio (FCR=1.80) than those fed a blend of 9C+9L (FCR=1.4). The 9C and 9L combination groups showed better performance in both fixed blend and free choice feeding regimes. Free choice combination showed higher FCR than their equivalent fixed blends, with the exception of the 9C and 9S groups. In summary, piglets can select and adjust suitable lipid sources. After abrupt weaning, they still have dependence on high oleic acid lipids as found in sow milk. They are also attracted to lipids with high short

  5. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning.

    PubMed

    Boerman, J P; Potts, S B; VandeHaar, M J; Lock, A L

    2015-10-01

    The effects of partly replacing dietary starch with fiber and fat to provide a diet with similar net energy for lactation (NEL) density on yields of milk and milk components and on energy partitioning were evaluated in a crossover design experiment. Holstein cows (n = 32; 109 ± 22 d in milk, mean ± standard deviation) were randomly assigned to treatment sequence. Treatments were a high-starch diet containing 33% corn grain (mixture of dry ground and high-moisture corn; HS) or a high-fiber, high-fat diet containing 2.5% palmitic acid-enriched fatty acid (FA) supplement (HFF). Diets contained corn silage, alfalfa silage, and wheat straw as forage sources; HS contained 32% starch, 3.2% FA, and 25% neutral detergent fiber, whereas HFF contained 16% starch, 5.4% FA, and 33% neutral detergent fiber. Compared with HS, the HFF treatment reduced milk yield, milk protein concentration, and milk protein yield, but increased milk fat concentration, milk fat yield, milk energy output, and milk to feed ratio (energy-corrected milk/dry matter intake). The HFF treatment reduced the yield of de novo synthesized (< 16-carbon) milk FA and increased the yield of 16-carbon milk FA. Yield of preformed (> 16-carbon) milk FA was not different. The HFF treatment increased plasma concentrations of triglycerides and nonesterified fatty acids, but decreased plasma concentration of insulin. Compared with HS, the HFF treatment reduced body weight gain, change in body condition score, and fat thickness over the rump and rib. Calculated body energy gain, as a fraction of NEL use, was less for HFF than HS, whereas milk energy as a fraction of NEL use was increased for HFF. We concluded that the 2 treatments resulted in similar apparent NEL densities and intakes, but the HS treatment partitioned more energy toward body gain whereas the HFF treatment partitioned more energy toward milk. A high-fiber, high-fat diet might diminish the incidence of over conditioning in mid-lactation cows while

  6. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    PubMed Central

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  7. High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice.

    PubMed

    Atshaves, Barbara P; McIntosh, Avery L; Storey, Stephen M; Landrock, Kerstin K; Kier, Ann B; Schroeder, Friedhelm

    2010-02-01

    Since liver fatty acid binding protein (L-FABP) facilitates uptake/oxidation of long-chain fatty acids in cultured transfected cells and primary hepatocytes, loss of L-FABP was expected to exacerbate weight gain and/or obesity in response to high dietary fat. Male and female wild-type (WT) and L-FABP gene-ablated mice, pair-fed a defined isocaloric control or high fat diet for 12 weeks, consumed equal amounts of food by weight and kcal. Male WT mice gained weight faster than their female WT counterparts regardless of diet. L-FABP gene ablation enhanced weight gain more in female than male mice-an effect exacerbated by high fat diet. Dual emission X-ray absorptiometry revealed high-fat fed male and female WT mice gained mostly fat tissue mass (FTM). L-FABP gene ablation increased FTM in female, but not male, mice-an effect also exacerbated by high fat diet. Concomitantly, L-FABP gene ablation decreased serum beta-hydroxybutyrate in male and female mice fed the control diet and, even more so, on the high-fat diet. Thus, L-FABP gene ablation decreased fat oxidation and sensitized all mice to weight gain as whole body FTM and LTM-with the most gain observed in FTM of control vs high-fat fed female L-FABP null mice. Taken together, these results indicate loss of L-FABP exacerbates weight gain and/or obesity in response to high dietary fat.

  8. An Educational Intervention for Reducing the Intake of Dietary Fats and Cholesterol among Middle-Aged and Older Women.

    ERIC Educational Resources Information Center

    Gorman, Charlotte

    2001-01-01

    Middle aged and older women (n=14) attended a seminar on reducing saturated fat and cholesterol intake. Their 4-month follow-up reflections showed they adopted an average of 14.5 of 34 dietary practices. Those with higher adoption scores tended to be older and had less education and lower income. (SK)

  9. Development of the SoFAS(solid fats and added sugars) concept: The 2010 Dietary Guidelines for Americans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diets of most U.S. children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids...

  10. Dietary Fat Intake and Exercise among Two- and Four-Year College Students: Differences in Behavior and Psychosocial Factors

    ERIC Educational Resources Information Center

    Berg, Carla J.; An, Lawrence C.; Ahluwalia, Jasjit S.

    2013-01-01

    Given the demographic differences among two-year colleges and four-year universities and the relatively limited access to health education and campus-based health resources, this study compares the frequency of limiting dietary fat intake and exercising among two- and four-year college students. A total of 2,265 undergraduate students aged 18-25…

  11. Effect of sex, dietary glycerol or dietary fat during late fattening, on fatty acid composition and positional distribution of fatty acids within the triglyceride in pigs.

    PubMed

    Segura, J; Cambero, M I; Cámara, L; Loriente, C; Mateos, G G; López-Bote, C J

    2015-11-01

    The effect of sex, source of saturated fat (lard v. palm oil) and glycerol inclusion in the fattening diet on composition and fatty acid positional distribution in the triglyceride molecule was studied in pigs from 78 to 110 kg BW. Average daily gain and carcass characteristics, including ham and loin weight, were not affected by dietary treatment but sex affected backfat depth (P < 0.01). A significant interaction between sex and glycerol inclusion was observed; dietary glycerol increased lean content in gilts but not in barrows (P < 0.05 for the interaction). Individual and total saturated fatty acid (SFA) concentrations were greater in barrows than in gilts. In contrast, the concentration of total polyunsaturated fatty acids (PUFA) and of C18:2n-6, C18:3n-3, C20:3n-9 and C20:4n-6 in the intramuscular fat (IMF) was higher (P < 0.05) in gilts than in barrows. Sex did not affect total monounsaturated fatty acids (MUFA) concentration in the IMF. The proportion of SFA in the subcutaneous fat (SF) was higher in barrows than in gilts (P < 0.001). Within the individual SFA, sex affected only the concentrations of C14:0 and C16:0 (P < 0.001). Dietary fat did not affect total SFA or PUFA concentrations of the IMF but the subcutaneous total MUFA concentration tended to be higher (P = 0.079) in pigs fed lard than in pigs fed palm oil. Dietary glycerol increased total MUFA and C18:1n-9 concentration in the IMF and increased total MUFA and decreased C18:2n-6, C18:3n-3 and total PUFA concentrations in the SF. The data indicate that altering the fatty acid composition of the triglyceride molecule at the 2-position, by dietary intervention during the fattening phase, is very limited.

  12. Involvement of dietary saturated fats, from all sources or of dairy origin only, in insulin resistance and type 2 diabetes.

    PubMed

    Morio, Béatrice; Fardet, Anthony; Legrand, Philippe; Lecerf, Jean-Michel

    2016-01-01

    Reducing the consumption of saturated fatty acids to a level as low as possible is a European public health recommendation to reduce the risk of cardiovascular disease. The association between dietary intake of saturated fatty acids and development and management of type 2 diabetes mellitus (T2DM), however, is a matter of debate. A literature search was performed to identify prospective studies and clinical trials in humans that explored the association between dietary intake of saturated fatty acids and risk of insulin resistance and T2DM. Furthermore, to assess whether specific foods, and not just the saturated fatty acid content of the food matrix, can have differential effects on human health, the relationship between consumption of full-fat dairy products, a main source of dietary saturated fatty acids, and risk of insulin resistance and T2DM was studied. There is no evidence that dietary saturated fatty acids from varied food sources affect the risk of insulin resistance or T2DM, nor is intake of full-fat dairy products associated with this risk. These findings strongly suggest that future studies on the effects of dietary saturated fatty acids should take into account the complexity of the food matrix. Furthermore, communication on saturated fats and their health effects should be prudent and well informed.

  13. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets.

    PubMed

    Yokoyama, Wallace; Anderson, William H K; Albers, David R; Hong, Yun-Jeong; Langhorst, Marsha L; Hung, Shao-Ching; Lin, Jiann-Tsyh; Young, Scott A

    2011-10-26

    In animal studies, hydroxypropyl methylcellulose (HPMC) intake results in increased fecal fat excretion; however, the effects on dietary saturated fatty acids (SATs) and trans-fatty acids (TRANS) remain unknown. This study investigated the effect of HPMC on digestion and absorption of lipids in male Golden Syrian hamsters fed either freeze-dried ground pizza (PZ), pound cake (PC), or hamburger and fries (BF) supplemented with dietary fiber from either HPMC or microcrystalline cellulose (MCC) for 3 weeks. We observed greater excretion of SATs and TRANS by both diets supplemented with HPMC or MCC as compared to the feed. SAT, TRANS, and unsaturated fatty acids (UNSAT) contents of feces of the PZ diet supplemented with HPMC were 5-8 times higher than diets supplemented with MCC and tended to be higher in the PC- and BF-HPMC supplemented diets as well. We also observed significant increases in fecal excretion of bile acids (2.6-3-fold; P < 0.05), sterols (1.1-1.5-fold; P < 0.05), and unsaturated fatty acids (UNSAT, 1.7-4.5-fold; P < 0.05). The animal body weight gain was inversely correlated with the excretion of fecal lipid concentrations of bile acids (r = -0.56; P < 0.005), sterols (r = -0.48; P < 0.005), SAT (r = -0.69; P < 0.005), UNSAT (r = -0.67; P < 0.005), and TRANS (r = -0.62; P < 0.005). Therefore, HPMC may be facilitating fat excretion in a biased manner with preferential fecal excretion of both TRANS and SAT in hamsters fed fast food diets.

  14. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine.

    PubMed

    de Wit, Nicole; Derrien, Muriel; Bosch-Vermeulen, Hanneke; Oosterink, Els; Keshtkar, Shohreh; Duval, Caroline; de Vogel-van den Bosch, Johan; Kleerebezem, Michiel; Müller, Michael; van der Meer, Roelof

    2012-09-01

    We studied the effect of dietary fat type, varying in polyunsaturated-to-saturated fatty acid ratios (P/S), on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1), or safflower oil (HF-SO; P/S 7.8) for 8 wk. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared with the HF-OO, HF-SO, or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes-to-Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis.

  15. Alterations of Ultrastructural and Fission/Fusion Markers in Hepatocyte Mitochondria From Mice Following Calorie Restriction With Different Dietary Fats

    PubMed Central

    2013-01-01

    We analyzed ultrastructural changes and markers of fission/fusion in hepatocyte mitochondria from mice submitted to 40% calorie restriction (CR) for 6 months versus ad-libitum-fed controls. To study the effects of dietary fat under CR, animals were separated into three CR groups with soybean oil (also in controls), fish oil, and lard. CR induced differential changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. The number of cristae per mitochondrion was significantly higher in all CR groups compared with controls. Proteins related to mitochondrial fission (Fis1 and Drp1) increased with CR, but no changes were detected in proteins involved in mitochondrial fusion (Mfn1, Mfn2, and OPA1). Although many of these changes could be attributed to CR regardless of dietary fat, changing membrane lipid composition by different fat sources did modulate the effects of CR on hepatocyte mitochondria. PMID:23403066

  16. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  17. The fat of the matter: how dietary fatty acids can affect exercise performance.

    PubMed

    Pierce, Barbara J; McWilliams, Scott R

    2014-11-01

    Fatty-acid composition of fat stores affects exercise performance in a variety of vertebrates although few such studies focus on flying vertebrates such as migratory birds, which are exceptional exercisers. We first discuss the natural variation in quality of fat available in natural foods eaten by migratory birds and their behavioral preferences for specific fatty acids in these foods. We then outline three proposed hypotheses for how dietary fatty acids can affect exercise performance, and some of the evidence to date that pertains to these hypotheses with special emphasis on the exercise performance of migratory birds. In theory, selectively feeding on certain long-chain unsaturated fatty acids may be advantageous because (1) such fatty acids may be metabolized more quickly and may stimulate key facets of aerobic metabolism (fuel hypothesis); (2) such fatty acids may affect composition and key functions of lipid-rich cell membranes (membrane hypothesis); and (3) such fatty acids may directly act as signaling molecules (signal hypothesis). Testing these hypotheses requires cleverly designed experiments that can distinguish between them by demonstrating that certain fatty acids stimulate oxidative capacity, including gene expression and activity of key oxidative enzymes, and that this stimulation changes during exercise.

  18. Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract.

    PubMed

    Józefiak, D; Kierończyk, B; Rawski, M; Hejdysz, M; Rutkowski, A; Engberg, R M; Højberg, O

    2014-06-01

    The aim of the present work was to examine how different fats commonly used in the feed industry affect broiler performance, nutrient digestibility and microbial fermentation in the gastrointestinal tract of broiler chickens challenged with virulent Clostridium perfringens strains. Two experiments were carried out, each including 480-day-old male broilers (Ross 308), which were randomly distributed to eight experimental groups using six replicate pens per treatment and 10 birds per pen. In Experiment 1, birds were fed diets containing soybean oil, palm kernel fatty acid distillers, rendered pork fat and lard. In Experiment 2, birds were fed diets containing rapeseed oil, coconut oil, beef tallow and palm oil. In both experiments, the birds were either not challenged or challenged with a mixture of three C. perfringens type A strains. Irrespective of the fat type present in the diet, C. perfringens did not affect broiler chicken body weight gain (BWG) and mortality in either of the two experiments. The BWG was affected by dietary fat type in both experiments, indicating that the fatty acid composition of the fat source affects broiler growth performance. In particular, the inclusion of animal fats tended to improve final BW to a greater extent compared with the inclusion of unsaturated vegetable oils. In Experiment 2, irrespective of the dietary fat type present in the diet, C. perfringens challenge significantly impaired feed conversion ratio in the period from 14 to 28 days (1.63 v. 1.69) and at 42 days (1.65 v. 1.68). In both experiments apparent metabolizable energy values were affected by dietary fat type. Irrespective of the fat type present in the diet, C. perfringens challenge decreased the digesta pH in the crop and ileum, but had no effect in cecal contents. Moreover, in Experiment 1, total organic acid concentration in the ileum was two to three times lower on soybean oil diets as compared with other treatments, indicating that C. perfringens as well as

  19. The type of dietary fat affects the severity of autoimmune disease in NZB/NZW mice.

    PubMed Central

    Alexander, N. J.; Smythe, N. L.; Jokinen, M. P.

    1987-01-01

    The type of dietary fat dramatically affects the onset of autoimmune disease in lupus-prone female New Zealand Black/New Zealand White F1 (B/W) mice. Disease development was strikingly slowed in mice fed a diet containing quantities of omega-3 fatty acids (fish oil, FO). By 10 months of age, 94% of the FO mice were still living, whereas all the mice fed a saturated fat diet (lard,L) were dead. Those mice fed a corn oil (CO) diet were intermediate with 35% alive at the 10-month time evaluation. Long after the L and CO groups had succumbed to glomerulonephritis, the FO group had negligible proteinuria. Both B and T cell function, particularly antibody production and resultant circulating immune complex (CIC) levels, were modified by the type of dietary fat. FO mice exhibited lower levels of anti-ds-DNA and lower levels of CICs than L or CO mice. B/W antibody response to a T-independent antigen (DNP-dextran) was enhanced at 8 months of age in FO mice, whereas it was suppressed in L mice. T-dependent (sheep red blood cell) responses at that time period were reduced in all the diet groups, a reflection of the reduced numbers of accessory T cells as determined by FACS analysis. The natural killer (NK) response to YAC-1 cells decreased in the L group from 5 to 9 months of age but remained unchanged in the CO and FO groups. Severe glomerulonephritis was the most common histopathologic finding in the L and CO groups. Arteritis was found in the spleens of nearly all the L and CO mice. Arteritis of the heart, colon and intestine, stomach, kidney, and liver were also seen principally in the L mice. In contrast, most FO mice had minimal to mild glomerulonephritis and no or minimal arteritis in the spleen. It is likely omega-3 fatty acids of fish oil reduce immune-complex-induced glomerulonephritis through production of prostaglandin metabolites with attenuated activity and/or through altering cell membrane structure and fluidity, which may, in turn, affect the responsiveness of

  20. Impact of Dietary Lipids on Colonic Function and Microbiota: An Experimental Approach Involving Orlistat-Induced Fat Malabsorption in Human Volunteers

    PubMed Central

    Morales, Pamela; Fujio, Sayaka; Navarrete, Paola; Ugalde, Juan A; Magne, Fabien; Carrasco-Pozo, Catalina; Tralma, Karina; Quezada, MariaPaz; Hurtado, Carmen; Covarrubias, Natalia; Brignardello, Jerusa; Henriquez, Daniela; Gotteland, Martin

    2016-01-01

    OBJECTIVES: High-fat diets alter gut microbiota and barrier function, inducing metabolic endotoxemia and low-grade inflammation. Whether these effects are due to the high dietary lipid content or to the concomitant decrease of carbohydrate intake is unclear. The aim of this study was to determine whether higher amounts of dietary fat reaching the colon (through orlistat administration) affect the colonic ecosystem in healthy volunteers and the effect of the prebiotic oligofructose (OF) in this model. METHODS: Forty-one healthy young subjects were distributed among four groups: Control (C), Prebiotic (P), Orlistat (O), and Orlistat/Prebiotic (OP). They consumed a fat-standardized diet (60 g/day) during Week-1 (baseline) and after 1 week of washout, Week-3. During Week-3, they also received their respective treatment (Orlistat: 2 × 120 mg/day, OF: 16 g/day, and maltodextrin as placebo). A 72-h stool collection was carried out at the end of Week-1 (T0) and Week-3 (T1). Fecal fat, calprotectin, and short-chain fatty acids (SCFAs) as well as the antioxidant activity of fecal waters (ferric-reducing antioxidant power), fecal microbiota composition (by deep sequencing), and gut permeability (Sucralose/Lactulose/Mannitol test) were determined at these times. RESULTS: Fecal fat excretion was higher in the O (P=0.0050) and OP (P=0.0069) groups. This event was accompanied, in the O group, by an increased calprotectin content (P=0.047) and a decreased fecal antioxidant activity (P=0.047). However, these alterations did not alter gut barrier function and the changes observed in the composition of the fecal microbiota only affected bacterial populations with low relative abundance (<0.01%); in consequences, fecal SCFA remained mainly unchanged. Part of the colonic alterations induced by orlistat were prevented by OF administration. CONCLUSIONS: In the context of an equilibrated diet, the acute exposition of the colonic ecosystem to high amounts of dietary lipids is

  1. Dietary fat supplementation effects on in vitro nutrient disappearance and in vivo nutrient intake and total tract digestibility by horses.

    PubMed

    Bush, J A; Freeman, D E; Kline, K H; Merchen, N R; Fahey, G C

    2001-01-01

    Addition of fat to the diet of the equine is a popular method of increasing energy density of the diet while reducing feed intake. Reducing feed intake is of interest to race horse trainers because additional feed is seen as additional weight and, therefore, a hindrance to performance. Limited information is available regarding the interactions of fat with other dietary components, particularly fiber, in the equine digestive system. The effect of dietary fat on in vitro nutrient disappearance in equine cecal fluid was studied in Exp. 1 using a split-plot design within a 2 x 2 Latin square. Two ponies were fed alfalfa (ALF) alone or alfalfa plus 100 g/d corn oil. Five substrates were used to determine in vitro DM disappearance, OM disappearance, NDF disappearance, and total dietary fiber (TDF) disappearance. The substrates included: ALF, tall fescue (TF), red clover (RC), soybean hulls (SBH), and rolled oats (RO). Fat supplementation did not affect in vitro DM, OM, or NDF disappearance. Addition of fat to the diet increased (P < 0.05) the disappearance of NDF in RO. Among substrates, in vitro DM and OM disappearance were highest (P < 0.05) for RO, followed by SBH, ALF, RC, and TF. In vitro NDF and TDF disappearance were highest (P < 0.05) for SBH, followed by RO, ALF, RC, and TF. In Exp. 2, the effects of varying levels of fat on nutrient intake and total tract digestibility were examined using a 4 x 4 Latin square design. Four mature mares were fed a 60% forage-40% concentrate diet containing different concentrations of fat: 0% supplemental fat control (C); 5% supplemental corn oil (5% CO); 10% supplemental corn oil (10% CO); or 15% supplemental corn oil (15% CO). Treatment did not affect intake of the concentrate portion of the diet or CP, gross energy, or NDF intake. Mares consuming the C diet had the highest (P < 0.05) intake of alfalfa cubes, DM, and OM, followed by those on the 10, 5, and 15% CO treatments, respectively. Treatment did not affect nutrient

  2. Executive functioning and dietary intake: Neurocognitive correlates of fruit, vegetable, and saturated fat intake in adults with obesity.

    PubMed

    Wyckoff, Emily P; Evans, Brittney C; Manasse, Stephanie M; Butryn, Meghan L; Forman, Evan M

    2017-04-01

    Obesity is a significant public health issue, and is associated with poor diet. Evidence suggests that eating behavior is related to individual differences in executive functioning. Poor executive functioning is associated with poorer diet (few fruits and vegetables and high saturated fat) in normal weight samples; however, the relationship between these specific dietary behaviors and executive functioning have not been investigated in adults with obesity. The current study examined the association between executive functioning and intake of saturated fat, fruits, and vegetables in an overweight/obese sample using behavioral measures of executive function and dietary recall. One-hundred-ninety overweight and obese adults completed neuropsychological assessments measuring intelligence, planning ability, and inhibitory control followed by three dietary recall assessments within a month prior to beginning a behavioral weight loss treatment program. Inhibitory control and two of the three indices of planning each independently significantly predicted fruit and vegetable consumption such that those with better inhibition and planning ability consumed more fruits and vegetables. No relationship was found between executive functioning and saturated fat intake. Results increase understanding of how executive functioning influences eating behavior in overweight and obese adults, and suggest the importance of including executive functioning training components in dietary interventions for those with obesity. Further research is needed to determine causality as diet and executive functioning may bidirectionally influence each other.

  3. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat.

    PubMed

    Bou, R; Guardiola, F; Barroeta, A C; Codony, R

    2005-07-01

    A factorial design was used to study the effect of changes in broiler feed on the composition and consumer acceptability of chicken meat. One week before slaughter, 1.25% dietary fish oil was removed from the feed and replaced by other fat sources (animal fat or linseed oil) or we continued with fish oil, and diets were supplemented with Zn (0, 300, or 600 mg/kg), and Se (0 or 1.2 mg/kg as sodium selenite or 0.2 mg/kg as Se-enriched yeast). The changes in dietary fat led to distinct fatty acid compositions of mixed raw dark and white chicken meat with skin. The fish oil diet produced meat with the highest eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) content, whereas the linseed oil diet led to meat with the highest content in total n-3 polyunsaturated acids (PUFA), especially linolenic acid. However, meat from animals on the animal fat diet was still rich in very long-chain n-3 PUFA. Se content was affected by Se and Zn supplements. Se content increased with Zn supplementation. However, only Se from the organic source led to a significant increase in this mineral in meat compared with the control. Consumer acceptability scores and TBA values of cooked dark chicken meat after 74 d or after 18 mo of frozen storage were not affected by any of the dietary factors studied.

  4. Effects of the Dietary ω3:ω6 Fatty Acid Ratio on Body Fat and Inflammation in Zebrafish (Danio rerio).

    PubMed

    Powell, Mickie L; Pegues, Melissa A; Szalai, Alexander J; Ghanta, Vithal K; D'Abramo, Louis R; Watts, Stephen A

    2015-08-01

    The diets of populations in industrialized nations have shifted to dramatically increased consumption of ω6 polyunsaturated fatty acids (PUFA), with a corresponding decrease in the consumption of ω3 PUFA. This dietary shift may be related to observed increases in obesity, chronic inflammation, and comorbidities in the human population. We examined the effects of ω3:ω6 fatty acid ratios in the context of constant total dietary lipid on the growth, total body fat, and responses of key inflammatory markers in adult zebrafish (Danio rerio). Zebrafish were fed diets in which the ω3:ω6 PUFA ratios were representative of those in a purported ancestral diet (1:2) and more contemporary Western diets (1:5 and 1:8). After 5 mo, weight gain (fat free mass) of zebrafish was highest for those that received the 1:8 ratio treatment, but total body fat was lowest at this ratio. Measured by quantitative real-time RT-PCR, mRNA levels from liver samples of 3 chronic inflammatory response genes (C-reactive protein, serum amyloid A, and vitellogenin) were lowest at the 1:8 ratio. These data provide evidence of the ability to alter zebrafish growth and body composition through the quality of dietary lipid and support the application of this model to investigations of human health and disease related to fat metabolism.

  5. Effects of Dietary Fibers on Weight Gain, Carbohydrate Metabolism and Gastric Ghrelin Gene Expression in High Fat Diet Fed Mice

    PubMed Central

    Wang, Zhong Q.; Zuberi, Aamir; Zhang, Xian H.; Macgowan, Jacalyn; Qin, Jianhua; Ye, Xin; Son, Leslie; Wu, Qinglin; Lian, Kun; Cefalu, William T.

    2009-01-01

    Diets that are high in dietary fiber are reported to have substantial health benefits. We sought to compare the metabolic effects for three types of dietary fibers, i.e. sugar cane fiber (SCF), psyllium (PSY) and cellulose (CEL) on body weight, carbohydrate metabolism and stomach ghrelin gene expression in a high-fat diet fed mouse model. Thirty-six male mice (C57BL/6) were randomly divided into four groups that consumed high fat-diets or high fat diet containing 10% SCF, PSY, and CEL respectively. After baseline measurements were assessed for body weight, plasma insulin, glucose, leptin and glucagon-like peptide-1 (GLP-1), animals were treated for 12 weeks. Parameters were re-evaluated at end of study. Whereas there was no difference at the baseline, body weight gains in the PSY and SCF groups were significantly lower than in CEL group at end of study, No difference in body weight was observed between the PSY and SCF animals. Body composition analysis demonstrated that fat mass in the SCF group was considerably lower than in the CEL and HFD groups. In addition, fasting plasma glucose and insulin and areas under curve of IPGTT were also significantly lower in the SCF and PSY groups than in the CEL and HFD groups. Moreover, fasting plasma concentrations of leptin were significantly lower and GLP-1 level was two-fold higher in the SCF and PSY mice than in the HFD and CEL mice. Ghrelin mRNA levels of stomach in SCF groups were significantly lower than in CEL and HFD groups as well. These results suggest differences in response to dietary fiber intake in this animal model as high fat diets incorporating dietary fibers such as SCF and PSY appeared to attenuate weight gain, enhance insulin sensitivity, and modulate leptin and GLP-1 secretion and gastric ghrelin gene expression. PMID:17998014

  6. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high.

  7. Are Dietary Restraint Scales Valid Measures of Acute Dietary Restriction? Unobtrusive Observational Data Suggest Not

    ERIC Educational Resources Information Center

    Stice, Eric; Fisher, Melissa; Lowe, Michael R.

    2004-01-01

    The finding that dietary restraint scales predict onset of bulimic pathology has been interpreted as suggesting that dieting causes this eating disturbance, despite the dearth of evidence that these scales are valid measures of dietary restriction. The authors conducted 4 studies that tested whether dietary restraint scales were inversely…

  8. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs.

    PubMed

    Huang, Y; Andueza, D; de Oliveira, L; Zawadzki, F; Prache, S

    2015-11-01

    Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding. We compared the ability of visible reflectance spectroscopy (Vis RS, wavelength range: 400 to 700 nm) with that of visible-near-infrared reflectance spectroscopy (Vis-NIR RS, wavelength range: 400 to 2500 nm) to differentiate between carcasses of lambs reared with three feeding regimes, using partial least square discriminant analysis (PLS-DA) as a classification method. The sample set comprised perirenal fat of Romane male lambs fattened at pasture (P, n = 69), stall-fattened indoors on commercial concentrate and straw (S, n = 55) and finished indoors with concentrate and straw for 28 days after pasture-feeding (PS, n = 65). The overall correct classification rate was better for Vis-NIR RS than for Vis RS (99.0% v. 95.1%, P < 0.05). Vis-NIR RS allowed a correct classification rate of 98.6%, 100.0% and 98.5% for P, S and PS lambs, respectively, whereas Vis RS allowed a correct classification rate of 98.6%, 94.5% and 92.3% for P, S and PS lambs, respectively. This study suggests the likely implication of molecules absorbing light in the non-visible part of the Vis-NIR spectra (possibly fatty acids), together with carotenoid and haem pigments, in the discrimination of the three feeding regimes.

  9. Elevated fat skatole levels in immunocastrated, surgically castrated and entire male pigs with acute dysentery.

    PubMed

    Skrlep, Martin; Batorek, Nina; Bonneau, Michel; Fazarinc, Gregor; Segula, Blaž; Candek-Potokar, Marjeta

    2012-12-01

    Boar taint is due to androstenone and skatole (3-methyl-indole) accumulation in fat tissues. During a study to investigate the effect of immunocastration on fattening pigs, an outbreak of acute dysentery occurred caused by Lawsonia intracellularis and Brachyspira hyodysenteriae and resulted in cachexia and high mortality. Low androstenone levels in the immunocastrates (0.25 ± 0.04 μg/g liquid fat) suggested that the immunocastration had been effective, but unusually high skatole concentrations in fat tissues were found not only in entire males, but also in surgical castrates and immunocastrates (0.22 ± 0.15, 0.14 ± 0.08 and 0.18 ± 0.14 μg/g liquid fat, respectively). The findings suggest that boar taint can arise in cases of intestinal infections, even in castrated pigs.

  10. Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    PubMed Central

    Rudyk, Olena; Makra, Péter; Jansen, Eugene; Shattock, Michael J.; Poston, Lucilla; Taylor, Paul D.

    2011-01-01

    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli. PMID:22043281

  11. Influence of dietary fat and selenium fed during initiation or promotion on the development of preneoplastic lesions in rat liver

    SciTech Connect

    Baldwin, S.; Parker, R.S.

    1986-03-05

    Aflatoxin B/sub 1/ (AFB1)-induced ..gamma..-glutamyl transpeptidase (GGT)-positive foci in rat liver were assessed in animals fed different levels of fat and selenium (Se) during either initiation (IN) or promotion (PR). Male Sprague Dawley rats (50g) were divided into 12 groups. One of six modified AIN-76 experimental diets were fed to groups 1-6 during weeks 1-4.5 (IN) and to groups 7-12 during weeks 4.5-15 (PR). During weeks 3-4, 13 rats/group received 10 daily doses of AFB1 (.4 mg/kg bwt/dose, i.g.). Two levels of corn oil (2% and 20%) were fed, each containing 3 levels of Se: < 0.02; 0.15; 2.5 (IN) or 1.9 (PR) ppm. When not fed the experimental diets rats were fed a standard AIN-76 diet. In groups 1-6, 0.03% phenobarbital was added to the standard diet. At week 15 rats were sacrificed. Compared to all low-fat groups, the high-fat diets with either < 0.02 or 0.15 ppm Se fed during IN resulted in a marked increase in mean diameter of GGT-positive foci and % liver section occupied by foci. In rats fed high-fat 2.5 ppm Se, preneoplastic development was decreased below all low-fat groups. During PR, Se status but not dietary fat level influenced foci formation. Rats fed < 0.02 ppm Se had greater mean diameter of foci and % section occupied by foci than either 0.15 or 1.9 ppm Se. Thus, an interaction was observed between dietary fat and selenium during IN, but not during PR.

  12. Dietary Fat Intake Is Differentially Associated with Risk of Paroxysmal Compared with Sustained Atrial Fibrillation in Women123

    PubMed Central

    Chiuve, Stephanie E; Sandhu, Roopinder K; Moorthy, M Vinayaga; Glynn, Robert J; Albert, Christine M

    2015-01-01

    Background: Dietary fats have effects on biological pathways that may influence the development and maintenance of atrial fibrillation (AF). However, associations between n–3 (ω-3) polyunsaturated fatty acids and AF are inconsistent, and data on other dietary fats and AF risk are sparse. Objectives: We examined the association between dietary fatty acid (FA) subclasses and risk of incident AF and explored whether these associations differed for sustained and paroxysmal AF. Methods: We conducted a prospective cohort study in 33,665 women ≥45 y old without cardiovascular disease (CVD) and AF at baseline in 1993. Fat intake was estimated from food frequency questionnaires at baseline and in 2004. Incident AF was confirmed by medical records through October 2013. AF patterns were classified according to the most sustained form of AF within 2 y of diagnosis. Cox proportional hazards models with the use of a competing risk model approach estimated the RR. Results: Over 19.2 y, 1441 cases of incident AF (929 paroxysmal and 467 persistent/chronic) were confirmed. Intakes of total fat and FA subclasses were not associated with risk of AF. Saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were differentially associated with AF patterns. The RR for a 5% increment of energy from SFAs was 1.47 (95% CI: 1.04, 2.09) for persistent/chronic and 0.85 (95% CI: 0.66, 1.08) for paroxysmal AF (P-difference = 0.01). For MUFAs, the RR for a 5% increment was 0.67 (95% CI: 0.46, 0.98) for persistent/chronic and 1.03 (95% CI: 0.78, 1.34) for paroxysmal AF, although the difference between patterns was not significant (P-difference = 0.07). Conclusions: Dietary fat was not associated with risk of incident AF in women without established CVD or AF. High SFA and low MUFA intakes were associated with greater risk of persistent or chronic, but not paroxysmal, AF. Improving dietary fat quality may play a role in the prevention of sustained forms of AF. The Women’s Health

  13. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions.

  14. Fat spectro-colorimetric characteristics of lambs switched from a low to a high dietary carotenoid level for various durations before slaughter.

    PubMed

    de Oliveira, L; Carvalho, P C F; Prache, S

    2012-12-01

    This study investigated the changes in fat reflectance spectrum characteristics and color in lambs switched from a low to a high dietary carotenoid level for various durations before slaughter. Six treatments, feeding a high dietary carotenoid level for 0, 15, 30, 45, 60 or 75 days before slaughter, were compared in individually indoor penned lambs. Each treatment used 10 Romane lambs; feeding management ensured similar growth pattern and carcass weight for all the treatment groups. There was a change in reflectance spectrum characteristics and yellowness of subcutaneous fat as early as 15 days after the switch. Mean concentration of carotenoid pigments and yellowness of subcutaneous fat increased linearly with the duration of the high dietary carotenoid level. In perirenal fat, the change in reflectance spectrum characteristics was observed as early as 15 days after the switch, but the response to the duration of the high dietary carotenoid level was curvilinear.

  15. Effect of 360His mutation in apolipoprotein A-IV on plasma HDL-cholesterol response to dietary fat.

    PubMed

    Jansen, S; Lopez-Miranda, J; Ordovas, J M; Zambrana, J L; Marin, C; Ostos, M A; Castro, P; McPherson, R; Lopez Segura, F; Blanco, A; Jimenez Pereperez, J A; Perez-Jimenez, F

    1997-10-01

    In order to determine whether genetic variability of apolipoprotein (apo) A-IV is responsible for the improvement in lipid profile when dietary saturated fats are replaced by carbohydrates or monounsaturated fats, 41 healthy male subjects were studied: 33 were homozygous for the 360Gln allele and 8 were heterozygote carriers of the 360His allele. These were administered three consecutive 4-week diets. The first was a diet rich in saturated fat (SAT diet, with 38% fat, 20% saturated. This was followed by a low fat diet (NCEP-I, with < 30% fat, < 10% saturated). The final diet was rich in monounsaturated fat (MUFA diet, with 38% fat, 22% monounsaturated). There was no difference in plasma lipid and apolipoprotein levels of both groups of individuals after consuming the SAT diet. Switching from this diet to the NCEP-I diet, carriers of the 360His allele presented a greater decrease in high density lipoprotein-cholesterol (HDL-C) (-10 vs. -1 mg/dL, P < 0.004) and apoA-I levels (-19 vs. -8 mg/dL, P < 0.037). Similarly, replacement of carbohydrates by monounsaturated fats produced a greater increase in HDL-C (9 vs. 1 mg/dL, P < 0.003) and apoA-I levels (9 vs. 2 mg/dL, P < 0.036) in carriers of the 360His mutation. Lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities and apoA-IV levels were also measured. However, no genotype-related differences were observed for these parameters. Our results suggest that variability in HDL-C and apoA-I response to diet is, at least partially, determined by the 360His mutation of apoA-IV.

  16. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  17. Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats

    PubMed Central

    Khraiwesh, Husam; López-Domínguez, José A.; del Río, Lucía Fernández; Gutierrez-Casado, Elena; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J.; Burón, María I.; Villalba, José M.; González-Reyes, José A.

    2014-01-01

    In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls),fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well. Our results show that CR induced changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. Also, mean number of mitochondrial cristae and lengths were significantly higher in all CR groups compared with controls. Finally, CR had no remarkable effects on the expression levels of fission and fusion protein markers. However, considerable differences in many of these parameters were found when comparing the CR groups, supporting the idea that dietary fat plays a relevant role in the modulation of CR effects in aged mice. PMID:24704714

  18. Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health.

    PubMed

    Duivenvoorde, Loes P M; van Schothorst, Evert M; Bunschoten, Annelies; Keijer, Jaap

    2011-08-01

    High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on an ad libitum basis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.

  19. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys

    PubMed Central

    Khatibzadeh, Shahab; Shi, Peilin; Fahimi, Saman; Lim, Stephen; Andrews, Kathryn G; Engell, Rebecca E; Powles, John; Ezzati, Majid

    2014-01-01

    Objectives To quantify global consumption of key dietary fats and oils by country, age, and sex in 1990 and 2010. Design Data were identified, obtained, and assessed among adults in 16 age- and sex-specific groups from dietary surveys worldwide on saturated, omega 6, seafood omega 3, plant omega 3, and trans fats, and dietary cholesterol. We included 266 surveys in adults (83% nationally representative) comprising 1 630 069 unique individuals, representing 113 of 187 countries and 82% of the global population. A multilevel hierarchical Bayesian model accounted for differences in national and regional levels of missing data, measurement incomparability, study representativeness, and sampling and modelling uncertainty. Setting and population Global adult population, by age, sex, country, and time. Results In 2010, global saturated fat consumption was 9.4%E (95%UI=9.2 to 9.5); country-specific intakes varied dramatically from 2.3 to 27.5%E; in 75 of 187 countries representing 61.8% of the world’s adult population, the mean intake was <10%E. Country-specific omega 6 consumption ranged from 1.2 to 12.5%E (global mean=5.9%E); corresponding range was 0.2 to 6.5%E (1.4%E) for trans fat; 97 to 440 mg/day (228 mg/day) for dietary cholesterol; 5 to 3,886 mg/day (163 mg/day) for seafood omega 3; and <100 to 5,542 mg/day (1,371 mg/day) for plant omega 3. Countries representing 52.4% of the global population had national mean intakes for omega 6 fat ≥5%E; corresponding proportions meeting optimal intakes were 0.6% for trans fat (≤0.5%E); 87.6% for dietary cholesterol (<300 mg/day); 18.9% for seafood omega 3 fat (≥250 mg/day); and 43.9% for plant omega 3 fat (≥1,100 mg/day). Trans fat intakes were generally higher at younger ages; and dietary cholesterol and seafood omega 3 fats generally higher at older ages. Intakes were similar by sex. Between 1990 and 2010, global saturated fat, dietary cholesterol, and trans fat intakes remained stable, while omega 6, seafood omega

  20. A high-fat, high-glycaemic index, low-fibre dietary pattern is prospectively associated with type 2 diabetes in a British birth cohort

    PubMed Central

    Pastorino, Silvia; Richards, Marcus; Pierce, Mary; Ambrosini, Gina L.

    2016-01-01

    The combined association of dietary fat, glycaemic index (GI) and fibre with type 2 diabetes has rarely been investigated. The objective was to examine the relationship between a high-fat, high-GI, low-fibre dietary pattern across adult life and type 2 diabetes risk using reduced rank regression. Data were from the MRC National Survey of Health and Development. Repeated measures of dietary intake estimated using 5-day diet diaries were available at age 36, 43 and 53 for 1180 study members. Associations between dietary patterns scores at each age, as well as longitudinal changes in dietary pattern z-scores, and type 2 diabetes incidence (n=106) from 53 to 60-64 years were analysed. The high-fat, high-GI, low-fibre dietary pattern was characterised by low intakes of fruit, vegetables, low-fat dairy products, and whole grain cereals, and high intakes of white bread, fried potatoes, processed meat and animal fats. There was an increasing trend in OR for type 2 diabetes with increasing quintile of dietary pattern z-scores at age 43 among women but not among men. Women in the highest z-score quintile at age 43 had an OR for type 2 diabetes of 5.45 (2.01, 14.79). Long-term increases in this dietary pattern, independently of BMI and waist circumference, were also detrimental among women: for each 1 SD unit increase in dietary pattern z-score between 36 and 53 years, the OR for type 2 diabetes was 1.67 (95% CI: 1.20, 2.43) independently of changes in BMI and waist circumference in the same periods. A high-fat, high-GI low-fibre dietary pattern was associated with increased type 2 diabetes risk in middle-aged British women but not men. PMID:27245103

  1. Cholesterol kinetic effects of dietary fat in CBA/J and C57BR/cdJ mice

    SciTech Connect

    Stewart, J.; Kuan, Soniu; Seagrave, R.; Patterson, L.; Koschorreck, R.; Dupont, J. )

    1990-02-26

    Small differences in dietary fats cause marked differences in cholesterol metabolism in different strains of mice. CBA/J mice adjust HMGCOA reductase activity and C57BR/cdJ mice change fecal excretion of cholesterol. Phenomenological compartmental modeling of movement of 4{sup 14}C-cholesterol in the two strains of mice fed 40 en % fat, P/S = 0.24 (SFA) or 30 en % fat, P/S = 1 (PUFA) was used to analyze rates of movement between serum, liver, heart, and carcass. The C57 mice had slower movement between all compartments than CBA. Residence times in tissues were longer in mice fed SFA than those fed PUFA diet. The kinetic results are in agreement with the organ concentrations and enzyme activities measured.

  2. Serum lipids in rats as related to modifications in dietary fat, fiber, and sodium with magnesium deficiency

    SciTech Connect

    Howe, C.A.; Kubena, K.S. )

    1991-03-11

    Recommendations to modify dietary intake to attenuate risk of cardiovascular disease have been released by numerous governmental and health organizations. Since magnesium is associated with lipid metabolism and normal cardiovascular function, this study was designed to determine the effect of modifications in dietary fat, fiber, and sodium with magnesium deficiency on serum lipids and tissue minerals. The control (C) diet was based upon the AIN-76 diet formulation; the American (A) diet included average fat, fiber, and sodium levels in the US; and the recommended (R) diet was lower in fat and sodium and higher in fiber. Diets contained either 1,000 or 150 (L) mg Mg/kg diet. Male weanling Sprague-Dawley rats were fed one of the diets (C, CL, A, Al, R, RL) for six weeks. Levels of tissue Mg, Ca, Zn, and P were determined. Neither initial nor final body weights varied between groups. Serum levels of triglyceride were higher in the C and Cl groups than in the others. Serum cholesterol was lower in the R and Rl groups than in the Cl and A groups. Animals which were fed the diet modified with regard to fat, fiber, and sodium had lower serum cholesterol levels than did those fed the American diet. Magnesium deficiency was not consistently related to serum lipid levels.

  3. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    PubMed

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50-70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat

  4. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18-79 years.

    PubMed

    Welch, Ailsa A; MacGregor, Alex J; Minihane, Anne-Marie; Skinner, Jane; Valdes, Anna A; Spector, Tim D; Cassidy, Aedin

    2014-03-01

    Age-related loss of skeletal muscle mass results in a reduction in metabolically active tissue and has been related to the onset of obesity and sarcopenia. Although the causes of muscle loss are poorly understood, dietary fat has been postulated to have a role in determining protein turnover through an influence on both inflammation and insulin resistance. This study was designed to investigate the cross-sectional relation between dietary fat intake, as dietary percentage of fat energy (PFE) and fatty acid profile, with indices of skeletal muscle mass in the population setting. Body composition [fat-free mass (FFM; in kg)] and the fat-free mass index (FFMI; kg FFM/m(2)) was measured by using dual-energy X-ray absorptiometry in 2689 women aged 18-79 y from the TwinsUK Study and calculated according to quintile of dietary fat (by food-frequency questionnaire) after multivariate adjustment. Positive associations were found between the polyunsaturated-to-saturated fatty acid (SFA) ratio and indices of FFM, and inverse associations were found with PFE, SFAs, monounsaturated fatty acids (MUFAs), and trans fatty acids (TFAs) (all as % of energy). Extreme quintile dietary differences for PFE were -0.6 kg for FFM and -0.28 kg/m(2) for FFMI; for SFAs, MUFAs, and TFAs, these were -0.5 to -0.8 kg for FFM and -0.26 to -0.38 kg/m(2) for FFMI. These associations were of a similar magnitude to the expected decline in muscle mass that occurs over 10 y. To our knowledge, this is the first population-based study to demonstrate an association between a comprehensive range of dietary fat intake and FFM. These findings indicate that a dietary fat profile already associated with cardiovascular disease protection may also be beneficial for conservation of skeletal muscle mass.

  5. Postprandial Spillover of Dietary Lipid into Plasma Is Increased with Moderate Amounts of Ingested Fat and Is Inversely Related to Adiposity in Healthy Older Men123

    PubMed Central

    Puga, Guilherme M.; Meyer, Christian; Mandarino, Lawrence J.; Katsanos, Christos S.

    2012-01-01

    Adverse effects on health mediated by increased plasma FFA concentrations are well established and older individuals are particularly susceptible to these effects. We sought to determine the effects of the amount of dietary fat on increasing the plasma FFA concentrations as a result of “spillover” of dietary fat into the plasma FFA pool during the postprandial period in older men. Healthy, older participants (63–71 y old) were studied in a randomized, crossover design following ingestions of low (LF) and moderate (MF) amounts of [1,1,1-13C]-triolein-labeled fat, corresponding to 0.4 and 0.7 g of fat/kg body weight, respectively. Spillover of dietary fatty acids into plasma during the 8-h postprandial period (AUC; mmol · L−1 · h) after MF ingestion was 1.2 times greater than that after LF ingestion (2.8 ± 0.4 vs. 1.2 ± 0.1; P < 0.05). The spillover of dietary fatty acids following the MF, but not the LF, ingestion was correlated with the percent body fat (rs = −0.89) and percent body fat-free mass (rs = 0.94) of the men (P < 0.05). After adjusting to the amount of ingested fat, the spillover of dietary fatty acids in the MF trial was disproportionally higher than that in the LF trial (P < 0.05), but the corresponding postprandial plasma TG responses did not differ between trials. In conclusion, spillover of dietary lipid into plasma is disproportionally increased at higher doses of dietary fat and this response is inversely related to adiposity in healthy men of advanced age. PMID:22955513

  6. Body weight and abdominal fat gene expression profile in response to a novel hydroxycitric acid-based dietary supplement.

    PubMed

    Roy, Sashwati; Rink, Cameron; Khanna, Savita; Phillips, Christina; Bagchi, Debasis; Bagchi, Manashi; Sen, Chandan K

    2004-01-01

    Obesity is a global public health problem, with about 315 million people worldwide estimated to fall into the WHO-defined obesity categories. Traditional herbal medicines may have some potential in managing obesity. Botanical dietary supplements often contain complex mixtures of phytochemicals that have additive or synergistic interactions. The dried fruit rind of Garcinia cambogia, also known as Malabar tamarind, is a unique source of (-)-hydroxycitric acid (HCA), which exhibits a distinct sour taste and has been safely used for centuries in Southeastern Asia to make meals more filling. Recently it has been demonstrated that HCA-SX or Super Citrimax, a novel derivative of HCA, is safe when taken orally and that HCA-SX is bioavailable in the human plasma as studied by GC-MS. Although HCA-SX has been observed to be conditionally effective in weight management in experimental animals as well as in humans, its mechanism of action remains to be understood. We sought to determine the effects of low-dose oral HCA-SX on the body weight and abdominal fat gene expression profile of Sprague-Dawley rats. We observed that at doses relevant for human consumption dietary HCA-SX significantly contained body weight growth. This response was associated with lowered abdominal fat leptin expression while plasma leptin levels remained unaffected. Repeated high-density microarray analysis of 9960 genes and ESTs present in the fat tissue identified a small set (approximately 1% of all genes screened) of specific genes sensitive to dietary HCA-SX. Other genes, including vital genes transcribing for mitochondrial/nuclear proteins and which are necessary for fundamental support of the tissue, were not affected by HCA-SX. Under the current experimental conditions, HCA-SX proved to be effective in restricting body weight gain in adult rats. Functional characterization of HCA-SX-sensitive genes revealed that upregulation of genes encoding serotonin receptors represent a distinct effect of

  7. Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high fat diet and ovariectomy in mice.

    PubMed

    Ohtake, Kazuo; Ehara, Nobuyuki; Chiba, Hiroshige; Nakano, Genya; Sonoda, Kunihiro; Ito, Junta; Uchida, Hiroyuki; Kobayashi, Jun

    2017-02-14

    Menopausal women are at greater risk of developing metabolic syndrome with reduced endothelial nitric oxide synthase (eNOS) activity. Hormone replacement therapy increases eNOS activity and normalizes some characteristics of metabolic syndrome. We hypothesized that nitric oxide (NO) supplementation should have a therapeutic effect in this syndrome. We examined the effect of dietary nitrite on mice model with postmenopausal metabolic syndrome induced by ovariectomy (OVX) with high fat diet (HF). C57BL/6 female mice were divided into five groups, sham+normal fat diet (NF), sham+ HF, OVX+HF without or with sodium nitrite (50mg and 150mg/L) in drinking water. Daily food intake and weekly body weight were monitored for 18 weeks. OVX and HF significantly reduced plasma levels of nitrate/nitrite (NOx), and developed obesity with visceral hypertrophic adipocytes, and increased transcriptional levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrotizing factor-α (TNF-α) and interleukin-6 (IL-6) in visceral fat tissues. The proinflammatory state in the adipocytes provoked severe hepatosteatosis and insulin resistance in OVX+HF group compared with sham+NF group. However, dietary nitrite significantly suppressed adipocyte hypertrophy and transcriptions of proinflammatory cytokines in visceral fat in a dose dependent manner. The improvement of visceral inflammatory state consequently reversed the hepatosteatosis and insulin resistance observed in OVX+HF mice. These results suggest that endogenous NO defect might underlie postmenopausal metabolic syndrome, and dietary nitrite provides an alternative source of NO, and subsequently compensating for metabolic impairments of this syndrome.

  8. Effects of Dietary Fatty Acids on Lipid Traits in the Muscle and Perirenal Fat of Growing Rabbits Fed Mixed Diets

    PubMed Central

    Peiretti, Pier Giorgio

    2012-01-01

    Simple Summary Polyunsaturated fatty acids in human foods have been shown to have health benefits. We investigated the potential to incorporate them into rabbit meat by adding them to the diet. Good relationships between dietary fatty acids (FAs) and their content in longissimus dorsi muscle and perirenal fat of rabbits was established, especially the latter. The results should make it possible to enhance the polyunsaturated fatty acid content of rabbit meat, with benefits to the health of human consumers. Abstract The aim of this study was to evaluate the effects of various raw materials (spirulina, curcuma, tomato pomace, false flax, linseed, chia, perilla seeds) as suitable polyunsaturated fatty acid n-3 (n-3 PUFA) sources, on the lipid traits in the longissimus dorsi muscle and perirenal fat of growing rabbits. The fatty acid (FA) analyses of the diets, carried out by gas chromatography, differed over a wide range on the basis of the highly varied ingredients in 27 experimental formulations. Among the 29 identified FAs, three from feeds were catabolized in the rabbits, five were de novo synthesized and stored chiefly in the muscle. It was possible to linearly characterize the incorporation from the feed to the muscle of 16 FAs. This study has confirmed that the dietary inclusion of various raw materials could be considered as a way of enriching the n-3 PUFA of rabbit meat. A proposal for the prediction of n-3 PUFA from dietary α-linolenic acid (C18:3 n-3) and a panel of another 10 FAs has been made for intramuscular fat (R2 = 0.94) and perirenal fat (R2 = 0.96). PMID:26486776

  9. Incorporation of n-3 fatty acids into plasma and liver lipids of rats: importance of background dietary fat.

    PubMed

    MacDonald-Wicks, Lesley K; Garg, Manohar L

    2004-06-01

    The health benefits of long-chain n-3 PUFA (20:5n-3 and 22:6n-3) depend on the extent of incorporation of these FA into plasma and tissue lipids. This study aimed to investigate the effect of the background dietary fat (saturated, monounsaturated, or n-6 polyunsaturated) on the quantitative incorporation of dietary 18:3n-3 and its elongated and desaturated products into the plasma and the liver lipids of rats. Female weanling Wistar rats (n = 54) were randomly assigned to six diet groups (n = 9). The fat added to the semipurified diets was tallow (SFA), tallow plus linseed oil (SFA-LNA), sunola oil (MUFA), sunola oil plus linseed oil (MUFA-LNA), sunflower oil (PUFA), or sunflower oil plus linseed oil (PUFA-LNA). At the completion of the 4-wk feeding period, quantitative FA analysis of the liver and plasma was undertaken by GC. The inclusion of linseed oil in the rat diets increased the level of 18:3n-3, 20:5n-3, and, to a smaller degree, 22:6n-3 in plasma and liver lipids regardless of the background dietary fat. The extent of incorporation of 18:3n-3, 20:5n-3, and 22:5n-3 followed the order SFA-LNA > MUFA-LNA > PUFA-LNA. Levels of 22:6n-3 were increased to a similar extent regardless of the type of major fat in the rat diets. This indicates that the background diet affects the incorporation in liver and plasma FA pools of the n-3 PUFA with the exception of 22:6n-3 and therefore the background diet has the potential to influence the already established health benefits of long-chain n-3 fatty acids.

  10. Dietary Fat Interacts with PCBs to Induce Changes in Lipid Metabolism in Mice Deficient in Low-Density Lipoprotein Receptor

    PubMed Central

    Hennig, Bernhard; Reiterer, Gudrun; Toborek, Michal; Matveev, Sergey V.; Daugherty, Alan; Smart, Eric; Robertson, Larry W.

    2005-01-01

    There is evidence that dietary fat can modify the cytotoxicity of polychlorinated biphenyls (PCBs) and that coplanar PCBs can induce inflammatory processes critical in the pathology of vascular diseases. To test the hypothesis that the interaction of PCBs with dietary fat is dependent on the type of fat, low-density lipoprotein receptor–deficient (LDL-R−/−) mice were fed diets enriched with either olive oil or corn oil for 4 weeks. Half of the animals from each group were injected with PCB-77. Vascular cell adhesion molecule-1 (VCAM-1) expression in aortic arches was non-detectable in the olive-oil–fed mice but was highly expressed in the presence of PCB-77. PCB treatment increased liver neutral lipids and decreased serum fatty acid levels only in mice fed the corn-oil–enriched diet. PCB treatment increased mRNA expression of genes involved in inflammation, apoptosis, and oxidative stress in all mice. Upon PCB treatment, mice in both olive- and corn-oil–diet groups showed induction of genes involved in fatty acid degradation but with up-regulation of different key enzymes. Genes involved in fatty acid synthesis were reduced only upon PCB treatment in corn-oil–fed mice, whereas lipid transport/export genes were altered in olive-oil–fed mice. These data suggest that dietary fat can modify changes in lipid metabolism induced by PCBs in serum and tissues. These findings have implications for understanding the interactions of nutrients with environmental contaminants on the pathology of inflammatory diseases such as atherosclerosis. PMID:15626652

  11. Decreasing incidence of acute appendicitis, with special reference to the consumption of dietary fiber.

    PubMed

    Arnbjörnsson, E; Asp, N G; Westin, S I

    1982-01-01

    The incidence of acute appendicitis and the total number of appendectomies performed in the adult population admitted to our medical center are both decreasing. The cause is not clear. Better nutrition and the wide-spread use of antibiotics are two possible factors which come to mind, but we know of no scientific evidence that these are responsible. There has been a slight decrease in the mean dietary fiber content in the Swedish diet during the last three decades. The decreased incidence of acute appendicitis cannot therefore be correlated with an increase in the mean dietary fiber intake.

  12. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypocholesterolemic and hypoglycemic effects of hydroxypropyl methylcellulose (HPMC), a semisynthetic nonfermentable soluble dietary fiber, are well established. However, effects of HPMC on dietary saturated fatty acids and trans fatty acids are largely unknown. This study investigated the eff...

  13. Effect of high dietary fat content on heat production and lipid and protein deposition in growing immunocastrated male pigs.

    PubMed

    Batorek-Lukač, N; Dubois, S; Noblet, J; Čandek-Potokar, M; Labussière, E

    2016-12-01

    In immunocastrated (IC) pigs, revaccination (V2) increases lipid deposition (LD) because of increased voluntary feed intake; but little is known on associated effect of diet composition on partitioning of nutrients in IC pigs. Digestibility measurements, N and energy balances in respiration chambers were performed in two subsequent stages in four replicates of two male littermates to determine the changes between 85 (stage 1) and 135 (stage 2) kg live weight due to combined effect of IC, growth and increased feed intake (IC/growth). During stage 1, pigs received a standard low-fat diet (LF diet; 2.5% dry matter (DM) of fat fed at 2.27 MJ metabolizable energy (ME)/kg BW0.60 per day), whereas during stage 2, feed intake was increased to 2.47 MJ ME/kg BW0.60 per day and one littermate was fed LF diet whereas the second received a fat-enriched diet (HF diet; 8.9% DM of fat) to determine the effect of increased dietary fat content on energy utilization in IC pigs. Results from N balance and measurements of gas exchanges were used to calculate respiratory quotient (RQ), heat production (HP), nutrient contribution to fat retention, components of HP, protein deposition (PD) and LD. Nutrients and energy apparent digestibility coefficients, methane losses and N retention (P<0.05) increased with IC/growth. Despite higher ME intake, total HP remained similar (1365 kJ/kg of BW0.60 per day; P=0.47) with IC/growth. Consequently, total retained energy (RE) increased with IC/growth (from 916 to 1078 kJ/kg of BW0.60 per day; P<0.01) with a higher fat retention (625 to 807 kJ/kg BW0.60 per day; P<0.01), originating mainly from carbohydrates associated with a higher lipogenesis (536 to 746 kJ/kg BW0.60 per day; P<0.01) and RQ (1.095 to 1.145; P<0.01). Both PD (from 178 to 217 g/day; P=0.02) and LD (from 227 to 384 g/day; P<0.01) increased due to IC/growth. Feeding HF diet after IC was associated with increased crude fat digestibility (P<0.01) and increased RE as fat (807 to 914 k

  14. Maximizing acute fat utilization: effects of exercise, food, and individual characteristics.

    PubMed

    Bennard, Patrick; Imbeault, Pascal; Doucet, Eric

    2005-08-01

    In discussion of the physiological mechanisms that regulate fat metabolism, and with consideration of the metabolic stimuli that modulate substrate metabolism, the issue of how an acute state of negative lipid balance can be maximized is addressed. The regulation of lipolysis by catecholamines and insulin is reviewed, and the mechanisms of fatty acid mobilization and uptake by muscle are also briefly discussed. The implications of substrate availability and the hormonal response during physiological states such as fasting, exercise, and after food intake are also addressed, with particular regard to the influences on fatty acid mobilization and/or oxidation from eliciting these stimuli conjointly. Finally, a brief discussion is given of both the nature of exercise and the exercising individual, and how these factors influence fat metabolism during exercise. It is also a primary thrust of this paper to underline gaps in the existing literature with regard to exercise timing concerning food ingestion for maximizing acute lipid utilization.

  15. Steatohepatitis in laboratory opossums exhibiting a high lipemic response to dietary cholesterol and fat.

    PubMed

    Chan, Jeannie; Sharkey, Francis E; Kushwaha, Rampratap S; VandeBerg, Jane F; VandeBerg, John L

    2012-07-01

    Plasma VLDL and LDL cholesterol were markedly elevated (>40-fold) in high-responding opossums, but moderately elevated (6-fold) in low-responding opossums after they had consumed a high-cholesterol and high-fat diet for 24 wk. In both high- and low-responding opossums, plasma triglycerides were slightly elevated, threefold and twofold, respectively. Dietary challenge also induced fatty livers in high responders, but not in low responders. We studied the lipid composition, histopathological features, and gene expression patterns of the fatty livers. Free cholesterol (2-fold), esterified cholesterol (11-fold), and triglycerides (2-fold) were higher in the livers of high responders than those in low responders, whereas free fatty acid levels were similar. The fatty livers of high responders showed extensive lobular disarray by histology. Inflammatory cells and ballooned hepatocytes were also present, as were perisinusoidal fibrosis and ductular proliferation. In contrast, liver histology was normal in low responders. Hepatic gene expression revealed differences associated with the development of steatohepatitis in high responders. The accumulation of hepatic cholesterol was concomitant with upregulation of the HMGCR gene and downregulation of the CYP27A1, ABCG8, and ABCB4 genes. Genes involved in inflammation (TNF, NFKB1, and COX2) and in oxidative stress (CYBA and NCF1) were upregulated. Upregulation of the growth factor genes (PDGF and TGFB1) and collagen genes (Col1A1, Col3A1, and Col4A1) was consistent with fibrosis. Some of the histological characteristics of the fatty livers of high-responding opossums imitate those in the livers of humans with nonalcoholic steatohepatitis.

  16. 21 CFR 101.36 - Nutrition labeling of dietary supplements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., total calories, calories from fat, total fat, saturated fat, trans fat, cholesterol, sodium, total..., saturated fat, cholesterol, total carbohydrate, dietary fiber, vitamin K, selenium, manganese, chromium... fat, saturated fat, cholesterol, sodium, potassium, total carbohydrate, and dietary fiber,...

  17. A high energy intake from dietary fat among middle-aged and older adults is associated with increased risk of malnutrition 10 years later.

    PubMed

    Söderström, Lisa; Rosenblad, Andreas; Adolfsson, Eva T; Wolk, Alicja; Håkansson, Niclas; Bergkvist, Leif

    2015-09-28

    A higher fat content in the diet could be an advantage for preventing malnutrition among older adults. However, there is sparse scientific evidence to determine the optimal fat intake among older adults. This prospective cohort study examined whether a high energy intake of dietary fat among middle-aged and older adults is associated with the risk of malnutrition 10 years later. The study population comprised 725 Swedish men and women aged 53-80 years who had completed a questionnaire about dietary intake and lifestyle factors in 1997 (baseline) and whose nutritional status was assessed when admitted to the hospital in 2008-2009 (follow-up). At the follow-up, 383 (52.8%) participants were identified as being at risk of malnutrition and fifty-two (7.2%) were identified as malnourished. Multinomial logistic regression models were used to analyse the association between previous dietary fat intake and nutritional status later in life. Contrary to what was expected, a high energy intake from total fat, saturated fat and monounsaturated fat among middle-aged and older adults increased the risk of exhibiting malnutrition 10 years later. However, this applied only to individuals with a BMI<25 kg/m² at the baseline. In conclusion, these findings suggest that preventive actions to counteract malnutrition in older adults should focus on limiting the intake of total fat in the diet by reducing consumption of food with a high content of saturated and monounsaturated fat.

  18. Isolated fat pad sign in acute elbow injury: is it clinically relevant?

    PubMed

    Jie, Kim E; van Dam, Lisette F; Hammacher, Eric R

    2016-06-01

    An isolated fat pad sign (i.e. joint effusion without a visible fracture), commonly seen in acute elbow injury, is associated with occult fracture and treated as such. However, the clinical relevance of an isolated fat pad is unclear, thereby questioning the need for specialized follow-up. In this study, 111 patients (median age 15 years, interquartile range 9-27 years) with an isolated fat pad sign after acute elbow injury were included. The clinical relevance of an isolated fat pad sign was derived from descriptives on pain, elbow function, treatment change, number of revisits and recovery time after 1 week follow-up and long-term follow-up. Treatment alterations were rarely made and none of the patients needed an operative intervention; also, none of the patients had persistent symptoms. The median recovery time was 3 weeks (interquartile range 2-12 weeks). This study shows that, unless symptoms persist or worsen, regular follow-up at a specialized outpatient clinic is not needed.

  19. Effect of prepartal and postpartal dietary fat level on performance and plasma concentration of metabolites in transition dairy cows.

    PubMed

    Karimian, M; Khorvash, M; Forouzmand, M A; Alikhani, M; Rahmani, H R; Ghaffari, M H; Petit, H V

    2015-01-01

    The objective of this study was to determine the effects of 2 levels of dietary fat (low and high) offered during the prepartal and postpartal periods on dry matter intake (DMI), plasma concentration of metabolites, and milk yield and composition. Twenty-four Holstein dry cows were assigned on d 21 relative to expected parturition date to 1 of 4 treatments in a 2×2 factorial arrangement of 2 levels of fat fed during the prepartal period and 2 levels of fat fed during the postpartal period: prepartal low fat and postpartal low fat (LF-LF), prepartal low fat and postpartal high fat (LF-HF), prepartal high fat and postpartal low fat (HF-LF), or prepartal high fat and postpartal high fat (HF-HF). Prepartal and postpartal LF diets contained no fat supplement. Prepartal HF diets contained 1.60% calcium salts of soybean oil. The proportion of calcium salts of soybean oil was increased to 1.70% of DM for the first 21 d of lactation and to 2.27% of DM from d 21 to 56 of lactation in the HF diet. Diets were fed for ad libitum intake from d 21 before calving until d 56 of gestation. Prepartal DMI was lower for cows fed the HF diet compared with those fed the LF diet (12.6 vs. 16.2kg/d). Postpartum, cows fed the HF-HF and HF-LF diets had, respectively, the lowest and highest DMI, although no significant differences existed between HF-LF and LF-LF. Net energy intake was higher for cows fed the postpartal HF diets compared with those fed the LF diets. Prepartal fat level had no effect on net energy intake. Cows offered the prepartal HF diet had higher milk yield when offered the postpartal LF diet compared with those offered the postpartal HF diet and no effect of the postpartal fat level was detected when cows were fed the prepartal LF diet. Milk composition was similar among treatments. Plasma cholesterol concentration postpartum was higher for cows fed the prepartal LF diet than for those fed the prepartal HF diet (5.16 vs. 3.74mmol/L) and postpartal fat level had no effect

  20. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs.

    PubMed

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Li, Xinguo; Xu, Haijun; Kong, Xiangfeng; Huang, Ruilin; Tang, Wenjie; Shinzato, Izuru; Smith, Stephen B; Wu, Guoyao

    2009-05-01

    Obesity in humans is a major public health crisis worldwide. In addition, livestock species exhibit excessive subcutaneous fat at market weight. However, there are currently few means of reducing adiposity in mammals. This study was conducted with a swine model to test the hypothesis that dietary L-arginine supplementation may increase muscle gain and decrease fat deposition. Twenty-four 110-day-old barrows were assigned randomly into two treatments, representing supplementation with 1.0% L-arginine or 2.05% L-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Growth performance was measured based on weight gain and food intake. After a 60-day period of supplementation, carcass and muscle composition were measured. Serum triglyceride concentration was 20% lower (P < 0.01) but glucagon level was 36% greater (P < 0.05) in arginine-supplemented than in control pigs. Compared with the control, arginine supplementation increased (P < 0.05) body weight gain by 6.5% and carcass skeletal-muscle content by 5.5%, while decreasing (P < 0.01) carcass fat content by 11%. The arginine treatment enhanced (P < 0.05) longissimus dorsi muscle protein, glycogen, and fat contents by 4.8, 42, and 70%, respectively, as well as muscle pH at 45 min post-mortem by 0.32, while reducing muscle lactate content by 37%. These results support our hypothesis that dietary arginine supplementation beneficially promotes muscle gain and reduces body fat accretion in growing-finishing pigs. The findings have a positive impact on development of novel therapeutics to treat human obesity and enhance swine lean-tissue growth.

  1. Dietary CLA combined with palm oil or ovine fat differentially influences fatty acid deposition in tissues of obese Zucker rats.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alves, Susana P; Alfaia, Cristina M; Castro, Matilde F; Bessa, Rui J B; Prates, José A M

    2012-01-01

    The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13-38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60-80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation.

  2. Dietary intake of fats and fatty acids in the Korean population: Korea National Health and Nutrition Examination Survey, 2013

    PubMed Central

    Baek, Yeji; Hwang, Ji-Yun; Kim, Kirang; Moon, Hyun-Kyung; Kweon, Sanghui; Yang, Jieun

    2015-01-01

    BACKGROUND/OBJECTIVES The aim of this study was to estimate average total fat and fatty acid intakes as well as identify major food sources using data from the Korea National Health and Nutrition Examination Survey (KNHANES) VI-1 (2013). SUBJECTS/METHODS Total fat and fatty acid intakes were estimated using 24-hour dietary recall data on 7,048 participants aged ≥ 3 years from the KNHANES VI-1 (2013). Data included total fat, saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), n-3 fatty acid (n-3 FA), and n-6 fatty acid (n-6 FA) levels. Population means and standard errors of the mean were weighted in order to produce national estimates and separated based on sex, age, income, as well as residential region. Major food sources of fat, SFA, MUFA, PUFA, n-3 FA, and n-6 FA were identified based on mean consumption amounts of fat and fatty acids in each food. RESULTS The mean intake of total fat was 48.0 g while mean intakes of SFA, MUFA, PUFA, n-3 FA, and n-6 FA were 14.4 g, 15.3 g, 11.6 g, 1.6 g, and 10.1 g, respectively. Intakes of MUFA and SFA were each higher than that of PUFA in all age groups. Pork was the major source of total fat, SFA, and MUFA, and soybean oil was the major source of PUFA. Milk and pork were major sources of SFA in subjects aged 3-11 years and ≥ 12 years, respectively. Perilla seed oil and soybean oil were main sources of n-3 FA in subjects aged ≥ 50 years and aged < 50 years, respectively. CONCLUSIONS Estimation of mean fatty acid intakes of this study using nationally represented samples of the Korean population could be useful for developing and evaluating national nutritional policies. PMID:26634055

  3. Dietary long-chain polyunsaturated fatty acids from different sources affect fat and fatty acid excretions in rats.

    PubMed

    Amate, L; Gil, A; Ramírez, M

    2001-12-01

    Several sources of long-chain polyunsaturated fatty acids (LCP) have been evaluated for infant-formula supplementation. These sources differ in their chemical structure [triglyceride (TG) or phospholipid (PL)], arrangement of fatty acids on the TG or PL backbone, fatty acid composition and presence of other lipid components. All of these characteristics influence fat digestion, may affect fat and fatty acid absorption, and hence, LCP bioavailability and metabolism in infancy. The main objective of this work was to establish the influence of different dietary LCP sources on overall fat and LCP absorption in early life. We compared fat and fatty acid excretions at weaning in rats fed control diets or diets supplemented with LCP as TG or PL. Two separate experiments were conducted. In Experiment 1, weanling rats were fed for 3 wk a control diet (C1), a diet with TG from tuna and fungal oils (TF-TG) or a diet with PL from pig brain concentrate (PB-PL). In Experiment 2, weanling rats were fed for 3 wk a control diet (C2), a diet containing egg-TG (EG-TG) or a diet containing egg-PL (EG-PL). Fat, mineral and saturated fatty acid excretions in feces were higher in rats fed PB-PL compared with those fed TF-TG diet. In Experiment 2, groups did not differ in fat and mineral excretions. However, the EG-PL group had lower fecal excretions of saturated fatty acids than the C2 and EG-TG groups. The 16:1(n-7), 18:1(n-9), 18:2(n-6) and 22:6(n-3) levels in feces were higher in the EG-TG group than in the EG-PL group. In summary, total fat and LCP excretions differed among rats fed diets supplemented with LCP from different sources.

  4. LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries.

    PubMed

    Shaw, Danielle I; Tierney, Audrey C; McCarthy, Sinead; Upritchard, Jane; Vermunt, Susan; Gulseth, Hanne L; Drevon, Christian A; Blaak, Ellen E; Saris, Wim H M; Karlström, Brita; Helal, Olfa; Defoort, Catherine; Gallego, Raquel; López-Miranda, José; Siedlecka, Dominika; Malczewska-Malec, Małgorzata; Roche, Helen M; Lovegrove, Julie A

    2009-03-01

    Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24 g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (sem 0.6) and 38.9 (sem 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (sem 0.6) and 29.1 (sem 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (sem 0.3) and 10.4 (sem 0.2) %E from SFA and 12.7 (sem 0.3) and 18.7 (sem 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.

  5. Effects of Dietary Fatty Acids on Lipid Traits in the Muscle and Perirenal Fat of Growing Rabbits Fed Mixed Diets.

    PubMed

    Peiretti, Pier Giorgio

    2012-02-22

    The aim of this study was to evaluate the effects of various raw materials (spirulina, curcuma, tomato pomace, false flax, linseed, chia, perilla seeds) as suitable polyunsaturated fatty acid n-3 (n-3 PUFA) sources, on the lipid traits in the longissimus dorsi muscle and perirenal fat of growing rabbits. The fatty acid (FA) analyses of the diets, carried out by gas chromatography, differed over a wide range on the basis of the highly varied ingredients in 27 experimental formulations. Among the 29 identified FAs, three from feeds were catabolized in the rabbits, five were de novo synthesized and stored chiefly in the muscle. It was possible to linearly characterize the incorporation from the feed to the muscle of 16 FAs. This study has confirmed that the dietary inclusion of various raw materials could be considered as a way of enriching the n-3 PUFA of rabbit meat. A proposal for the prediction of n-3 PUFA from dietary α-linolenic acid (C18:3 n-3) and a panel of another 10 FAs has been made for intramuscular fat (R² = 0.94) and perirenal fat (R² = 0.96).

  6. Yeast culture supplementation prevented milk fat depression by a short-term dietary challenge with fermentable starch.

    PubMed

    Longuski, R A; Ying, Y; Allen, M S

    2009-01-01

    Effects of yeast culture on responses to a fermentable starch challenge were evaluated in an experiment with a crossover arrangement of treatments for yeast culture supplementation with 28-d periods and a fermentable starch challenge on the last 2 d of each 28-d period as a split plot within period. Eight ruminally cannulated, midlactation, multiparous Holstein cows (96 +/- 14 d in milk) were randomly assigned to treatment sequence. Treatments were yeast culture or control (mix of dry ground corn and soybean meal), top-dressed at 56 g per head per day throughout each period. Diets containing dry ground corn grain were fed from d 1 through 26 of each period. On the last 2 d of each period, the dry ground corn was replaced by finely ground high-moisture corn grain on an equivalent dry matter basis to abruptly increase ruminal fermentability of dietary starch. Response variables were averaged for d 25 and 26 for the dry corn treatment and for d 27 and 28 for the high-moisture corn treatment each period. The fermentable starch challenge decreased dry matter intake by 1.9 kg/d and tended to increase milk yield compared with the dry corn diet. However, effects of the fermentable starch challenge on yield of milk fat varied for the yeast culture and control diets; yield of milk fat decreased from 1.42 to 1.30 kg/d for the control treatment but increased from 1.40 to 1.47 kg/d for the yeast culture treatment. Milk fat concentration tended to decrease from 3.34 to 3.03% during the dietary challenge compared with the base diet for the control treatment but was not affected (mean = 3.32%) by the dietary challenge for the yeast culture treatment. An interaction of treatments was also detected for fat-corrected milk, which increased from 41.0 to 43.0 kg/d for the yeast culture treatment but decreased from 41.6 to 39.8 kg/d for the control diet with the fermentable starch challenge. Frequency of ruminating bouts was decreased by yeast culture compared with control (12.8 vs. 15

  7. The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats.

    PubMed

    Maric, Tia; Woodside, Barbara; Luheshi, Giamal N

    2014-02-01

    Recent evidence has demonstrated that consumption of high fat diets can trigger brain inflammation and subsequent injury in the absence of any peripheral inflammatory signaling. Here we sought to investigate whether a link exists between the concentration of highly saturated fats in the diet and the development of inflammation in the brain of rats and, whether the source of the saturated fat was an important factor in this process. Adult male rats had access to diets with a moderate level of total fat (32% of calories as fat) varying in level of saturated fat [low (20%) vs high (>60%)] and its source (butter or coconut oil). After 8 weeks of diet exposure peripheral and central tissues were collected for analysis of inflammatory signals. Neither blood nor white adipose tissue exhibited any changes in inflammatory mediators regardless of the saturated fat content or the source. In the brain however, we observed significant hypothalamic upregulation of the expression of markers of glial activation as well as of interleukin (IL)-1,6 and nuclear factor (NF)-IL-6, which were highest in the group fed the butter-based diets. The increase in these inflammatory mediators had no effect on basal body temperature or the temperature response to systemic lipopolysaccharide (LPS). The present results indicate that hypothalamic inflammation associated with consumption of diets high in fat is directly linked to the saturated fat content as well as the source of that fat. These effects are likely linked to other pathophysiological changes in the regulation of metabolism.

  8. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    PubMed

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.

  9. Physicochemical and functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck) dietary fiber and its application as a fat replacer in yogurt.

    PubMed

    Yi, Tian; Huang, Xingjian; Pan, Siyi; Wang, Lufeng

    2014-08-01

    Orange by-products from juice extraction are generally discarded or used in animal feed due to their low market value. However, orange by-products show potential as dietary fiber (DF) and fat replacers in products such as yogurt. This study assessed the benefits of using orange by-products in DF-enriched materials such as DF powders (OP) and micronized DF with ball-milling (MDF). The study also investigated the effects of adding different levels of OP and MDF on the quality of low-fat yogurt. Results show that MDF showed better physicochemical and functional properties than OP, and that 2% MDF as a fat replacer in yogurt retained most of the textural and sensory properties of full-fat yogurt. Therefore, this study showed that MDF is a promising alternative as a fat replacer in low-fat yogurt, without sacrificing good taste and other qualities of full-fat yogurt.

  10. Dietary glycaemic index and glycaemic load in relation to food and nutrient intake and indices of body fatness in British children and adolescents.

    PubMed

    Murakami, Kentaro; McCaffrey, Tracy A; Livingstone, M Barbara E

    2013-10-01

    The diversity of the associations of dietary glycaemic index (GI) and glycaemic load (GL) with dietary intake and body fatness observed in epidemiological studies may be partly due to the differences in underlying dietary intake patterns. We examined the cross-sectional associations of dietary GI and GL with food and nutrient intakes and indices of body fatness in 818 children aged 4-10 years and 818 adolescents aged 11-18 years in Britain, based on the data from the National Diet and Nutrition Survey. Dietary intake was assessed using a 7 d weighed dietary record. Overweight was defined as BMI ≥ 85th percentile of the age- and sex-specific British growth reference data. Central obesity was defined as waist:height ratio (WHtR) ≥ 0·5 (adolescents only). Breads, breakfast cereals and potatoes were the positive predictive food groups for dietary GI, while dairy products, fruit juice, other cereals and fruit were the negative predictors. Dietary GL was closely correlated with carbohydrate intake. Dietary GI showed no associations with overweight or central obesity. Conversely, dietary GL showed an independent association with a higher risk of overweight in children and a higher risk of central obesity (but not overweight) in adolescents. However, dietary GI and GL were not associated with BMI z-score in children and adolescents or WHtR in adolescents. In conclusion, the present study showed that dietary GL was independently associated with overweight in children and with central obesity in adolescents. Nevertheless, given no associations when body fatness measures were treated as continuous variables, the results must be interpreted cautiously.

  11. Acute pancreatitis attributed to dietary indiscretion in a female mixed breed canine.

    PubMed

    Shukla, Angelie

    2010-02-01

    A female, mixed-breed dog was presented with signs of abdominal discomfort and vomiting of 24 h duration following an episode of dietary indiscretion. Clinical signs, previous medical history, and diagnostic tests supported a diagnosis of acute pancreatitis. Specific and supportive treatment was instituted, and clinical signs resolved 10 d after presentation.

  12. Effect of dietary alpine butter rich in conjugated linoleic acid on milk fat composition of lactating sows.

    PubMed

    Schmid, Alexandra; Collomb, Marius; Bee, Giuseppe; Bütikofer, Ulrich; Wechsler, Daniel; Eberhard, Pius; Sieber, Robert

    2008-07-01

    Multiparous sows (n 17) were included in a controlled cross-over-study in order to investigate the influence of a natural source of conjugated linoleic acid (CLA) (alpine butter) on the milk fatty acid composition of lactating sows (as an animal model for lactating women) and on the growth performance of their progeny. The usual fat source of a standard lactation diet was replaced by either CLA-rich alpine butter or margarine (control diet). Compared with the margarine diet, feeding the alpine butter-supplemented diet increased (P 0.05) affected. Growth performance of the progeny was similar for both dietary treatments. In summary, the findings show that adding alpine butter to the diet does not provoke a milk fat depression and does not alter the composition of total SFA, MUFA and PUFA in sow milk but increases its CLA concentration.

  13. The opioid system contributes to the acquisition of reinforcement for dietary fat but is not required for its maintenance.

    PubMed

    Sakamoto, Kazuhiro; Matsumura, Shigenobu; Okafuji, Yoko; Eguchi, Ai; Yoneda, Takeshi; Mizushige, Takafumi; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2015-01-01

    The opioid system plays an important role in ingestive behavior, especially with regard to palatable high-fat or sweetened foods. In the present study, we investigated the role of the opioid system in the regulation of ingestive behavior in mice with regard to dietary fat intake, reinforcement, and particularly the processes involved in development of these behavior types. Subcutaneous administration of the non-selective opioid receptor antagonist naltrexone (0.5 or 2.0mg/kg body weight [BW]) reduced the spontaneous intake of fat emulsion (Intralipid). We investigated the effect of naltrexone on reinforcement by using an operant behavioral paradigm under a progressive ratio schedule in which the number of lever presses required to obtain a test sample increased progressively. Mice showed stronger reinforcement by Intralipid as a function of concentration. However, naltrexone (0.5 or 2.0mg/kg BW) did not affect reinforcement at any concentration of Intralipid in mice that had repeatedly ingested Intralipid before testing was carried out. Intralipid ingestion also induced conditioned place preference (CPP), which is another evaluation index of reinforcement. High-dose naltrexone (2.0mg/kg BW) administration during CPP conditioning suppressed the reinforcement induced by Intralipid ingestion, although the drug administration (0.5 or 2.0mg/kg BW) during CPP testing did not affect reinforced behavior. These results suggest that the amount of fat ingestion and reinforcement for fat ingestion are separately regulated by the opioid system. Furthermore, our results indicate that the opioid system plays an important role in acquiring reinforcement for fat but is not required for maintenance of learned reinforcement.

  14. Comparison of selenium levels and sources and dietary fat quality in diets for broiler breeders and layer hens.

    PubMed

    Leeson, S; Namkung, H; Caston, L; Durosoy, S; Schlegel, P

    2008-12-01

    Two experiments were carried out with broiler breeders (experiment 1) and laying hens (experiment 2) to study the effects of Se sources, in interaction with dietary level of Se or dietary fats on performance, Se incorporation into tissues (blood, liver, breast muscle, and egg) and eggs, hatchability, and glutathione peroxidase (GPX) activities in tissues and blood. Both experiments involved a 3 x 2 factorial arrangement of 3 Se sources (selenite, Se yeast, or B-Traxim Se) and either 2 levels of each source (0.1 or 0.3 mg/kg) or 2 fats (fresh or oxidized). Egg production was not affected by Se source or dietary fat in both experiments. Egg production was greater (P < 0.01) in breeder hens fed 0.3 mg/kg of Se in experiment 1. Hatchability of eggs from hens fed 0.1 mg/kg of Se was lower (P < 0.05) in hens fed Se yeast, whereas from hens fed 0.3 mg/kg of Se, it was comparable across treatments. Selenium in egg, liver, and breast muscle was greater (P < 0.01 or <0.05) in hens fed the greater concentration of Se. Eggs from breeder hens fed organic Se sources had greater (P < 0.01) Se content than those of inorganic source. Egg albumen from breeder fed Se yeast had the greatest Se (P < 0.01), whereas egg yolk from hens fed B-Traxim Se had the greatest Se (P < 0.05). These parameters were affected by interaction between dietary Se level and source (P < 0.01 or < 0.05). Selenium contents in liver and breast muscle were greater (P < 0.01) in hens fed Se yeast compared with hens fed other sources of Se. In experiment 1, liver GPX was greater (P < 0.01) in hens fed selenite or Se yeast, whereas plasma GPX was greater (P < 0.01) in hens fed selenite compared with B-Traxim Se or Se yeast. Supplementation with oxidized fat increased (P < 0.05) GPX in blood and liver. B-Traxim Se decreased (P < 0.05) malondialdehyde content in breast muscle of layers. It is concluded that broiler breeders require supplementation of 0.3 mg/kg of Se, and that there are numerous measurable advantages

  15. Effects of lighting program during the growing period and dietary fat during the laying period on broiler breeder performance.

    PubMed

    Brake, J; Garlich, J D; Baughman, G R

    1989-09-01

    In two experiments, broiler breeders were grown in either of two lighting regimens, fed diets without added fat, and then fed diets with or without 5% added poultry fat during the subsequent laying period. In Experiment 1 half the birds were subjected to decreasing daylength using daylight (800 lx) and half were subjected to 9 h of incandescent light (20 lx) to 20 wk of age. In Experiment 2 the lighting regimen was either an 8-h photoperiod supplied by daylight (800 lx) or an 8-h photoperiod supplied by incandescent light (20 lx) to 20 wk of age. Added dietary fat produced significantly higher egg weight (Experiments 1 and 2), egg production (Experiment 2), and significantly lower fertility and hatchability of fertile eggs (Experiments 1 and 2). Short photoperiods (8 or 9 h) provided by incandescent light produced significantly higher fertility (Experiments 1 and 2) and hatchability of fertile eggs (Experiment 2), and significantly lower egg specific gravity, shell percentage (Experiment 1), egg weight, and eggshell weight (Experiment 2). Effects on fertility may be related to higher female body weight during lay due to daylight rearing or added fat, or relative changes in light intensity at photostimulation.

  16. Fat and dietary fiber intake and colon cancer mortality: a chronological comparison between Japan and the United States.

    PubMed

    Honda, T; Kai, I; Ohi, G

    1999-01-01

    To estimate the role of dietary fiber (DF) and fat in the striking growth of colon cancer mortality in Japan after World War II, we analyzed relations between the above variables in comparison with those in the United States. In the United States, fat intake grew by only one-third over the past 70 years (from 124 g in 1909-1913 to 166 g in 1984), whereas colon cancer mortality increased fourfold (from 5 to 20 per 100,000). In Japan, although fat intake roughly doubled during the 40 years after World War II (from 20 to 38 g), colon cancer mortality grew 5.5-fold (from 2 to 11 per 100,000). It is difficult to give a consistent explanation for the growth patterns of colon cancer mortality in both countries on the basis of fat consumption as a cancer promoter. In the United States, DF intake continuously dwindled at a level always less than in Japan throughout this century. DF intake in Japan also declined rather steadily, except for war time, over the past 80 years. However, with regard to the growth pattern of colon cancer mortality, it began rising steeply around the period when the daily DF intake diminished below 20 g, suggesting the presence of a threshold level in this neighborhood in preventing the development of colon cancer.

  17. Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats.

    PubMed

    Pandareesh, M D; Anand, T

    2013-12-01

    L-carnitine (LC) plays a central role in fatty acid metabolism and in skeletal muscle bioenergetics. LC supplementation is known to improve physical performance and has become widespread in recent years without any unequivocal support to this practice. A scientific-based knowledge is needed, to understand the implications of LC supplementation on physical fatigue. In current study, we have explored synergistic effects of dietary LC and fat content against physical fatigue in rats. Ninety male Wistar rats were supplemented with different concentrations of LC (0.15, 0.3, and 0.5 %) and fat content (5, 10, and 15 %) through diet in different combinations. Our results elucidated that LC (0.5 %) along with 10 and 15 % fat diet supplemented rats showed significant ergogenic effect. The swimming time until exhaustion was increased by ~2- and ~1.5-fold in rats fed with 10 and 15 % fat diet containing LC (0.5 %). LC supplementation improved the energy charge by increasing the levels of ATP, tissue glycogen, reduced GSH, plasma triglyceride, plasma glucose levels, and enzymatic antioxidant status, i.e., superoxide dismutase, catalase, and glutathione peroxidase. LC supplementation also significantly reduced lipid peroxidation, lactic acid, plasma urea nitrogen, creatinine, creatinekinase, and lactate dehydrogenase levels in various tissues compared to its respective control group. Thus the present study indicates that LC ameliorates the various impairments associated with physical endurance in rats.

  18. High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2014-09-01

    Viscous dietary fiber consumption lowers the postprandial glucose curve and may decrease obesity and associated comorbidities such as insulin resistance and fatty liver. We determined the effect of 2 viscous fibers, one fermentable and one not, on the development of adiposity, fatty liver, and metabolic flexibility in a model of diet-induced obesity. Rats were fed a normal-fat (NF) diet (26% energy from fat), a high-fat diet (60% energy from fat), each containing 5% fiber as cellulose (CL; nonviscous and nonfermentable), or 5% of 1 of 2 highly viscous fibers-hydroxypropyl methylcellulose (HPMC; nonfermentable) or guar gum (GG; fermentable). After 10 wk, fat mass percentage in the NF (18.0%; P = 0.03) and GG groups (17.0%; P < 0.01) was lower than the CL group (20.7%). The epididymal fat pad weight of the NF (3.9 g; P = 0.04), HPMC (3.9 g; P = 0.03), and GG groups (3.6 g; P < 0.01) was also lower than the CL group (5.0 g). The HPMC (0.11 g/g liver) and GG (0.092 g/g liver) groups had lower liver lipid concentrations compared with the CL group (0.14 g/g liver). Fat mass percentage, epididymal fat pad weight, and liver lipid concentration were not different among the NF, HPMC, and GG groups. The respiratory quotient was higher during the transition from the diet-deprived to fed state in the GG group (P = 0.002) and tended to be higher in the HPMC group (P = 0.06) compared with the CL group, suggesting a quicker shift from fatty acid (FA) to carbohydrate oxidation. The HPMC group [15.1 nmol/(mg ⋅ h)] had higher ex vivo palmitate oxidation in muscle compared with the GG [11.7 nmol/(mg ⋅ h); P = 0.04] and CL groups [10.8 nmol/(mg ⋅ h); P < 0.01], implying a higher capacity to oxidize FAs. Viscous fibers can reduce the adiposity and hepatic steatosis that accompany a high-fat diet, and increase metabolic flexibility, regardless of fermentability.

  19. Effect of a low-fat, high-carbohydrate dietary intervention on change in mammographic density over menopause.

    PubMed

    Martin, Lisa J; Greenberg, Carolyn V; Kriukov, Valentina; Minkin, Salomon; Jenkins, David J A; Yaffe, Martin; Hislop, Gregory; Boyd, Norman F

    2009-01-01

    We have previously shown that a low-fat dietary intervention for 2 years in women with extensive mammographic density decreased mammographic density to a greater extent than in the control group. Post-hoc analysis indicated that this effect was strongest in women who became postmenopausal during the follow-up period. The purpose of the present study was to determine if this potentially important finding could be confirmed in a new and larger group of subjects with a longer follow-up time. Participants in a low-fat dietary intervention trial who were premenopausal at entry and became postmenopausal during follow-up were examined. Total breast, dense, and non-dense area and percent density were measured in baseline and postmenopause mammograms using a computer-assisted method. Total breast and non dense area increased more in the control group compared to the intervention group (for breast area 2.6 and 0.2 cm(2), respectively; P=0.05, and for non-dense area 10.9 and 8.1 cm(2), respectively; P=0.06). Dense area decreased to a similar degree in both groups (-8.2 and -8.0 cm(2), respectively; P=0.84). Percent density decreased to a slightly greater degree in the control compared to intervention group (-9.4 and -7.8%, respectively, P=0.11). There were no significant differences between study groups after adjustment for weight change. Menopause reduced density to a similar extent in the low-fat diet and control groups. If a low-fat diet reduces breast cancer risk, the effect is unlikely to be through changes in mammographic density at menopause.

  20. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats

    PubMed Central

    Olivares-García, V; Torre-Villalvazo, I; Velázquez-Villegas, L; Alemán, G; Lara, N; López-Romero, P; Torres, N; Tovar, A R; Díaz-Villaseñor, A

    2015-01-01

    Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after

  1. Adiponectin Gene Variants Are Associated with Insulin Sensitivity in Response to Dietary Fat Consumption in Caucasian Men2

    PubMed Central

    Pérez-Martínez, Pablo; López-Miranda, José; Cruz-Teno, Cristina; Delgado-Lista, Javier; Jiménez-Gómez, Yolanda; Fernández, Juan Marcelo; Gómez, Maria José; Marín, Carmen; Pérez-Jiménez, Francisco; Ordovás, José María

    2008-01-01

    Adiponectin (adipoQ) gene variants have been associated with type 2 diabetes mellitus and insulin resistance. Our aim was to examine whether the presence of several polymorphisms at the adipoQ gene locus (-11391 G > A, 11377 C > G, 45 T > G, and 276 G > T) influences the insulin sensitivity to dietary fat. Healthy volunteers (30 men and 29 women) consumed 3 diets for 4 wk each: an initial period during which all subjects consumed a SFA-rich diet (38% total fat, 20% SFA), followed by a carbohydrate-rich diet (CHO) (30% total fat, 55% carbohydrate) or a monounsaturated fatty acid (MUFA)-rich diet (38% total fat, 22% MUFA) following a randomized, crossover design. After participants consumed each diet, we tested peripheral insulin sensitivity with the insulin suppression test and measured plasma adiponectin concentrations. C/C homozygous men for the -11377 C > G single nucleotide polymorphism (SNP) had a significantly greater decrease in the steady-state plasma glucose concentrations when changing from the SFA-rich (8.95 ± 0.6 mmol/L) to the MUFA-rich (6.04 ± 0.31 mmol/L) and CHO-rich (6.35 ± 0.38 mmol/L) diets than did those carrying the minor G allele (SFA, 6.65 ± 0.4 mmol/L; MUFA, 6.45 ± 0.4 mmol/L; CHO, 5.83 ± 0.3 mmol/L) (P sex × gene × diet interaction = 0.016). These differences did not occur in female participants. Furthermore, C/C men had lower plasma adiponectin concentrations than did C/C women (P sex × gene interaction = 0.015), independently of the dietary fat consumed. None of the variables examined were significantly associated with -11426 A > G, 45T > G, or 276 G > T SNP. In conclusion, C/C homozygous men for the -11377 C > G SNP at adipoQ gene were significantly less insulin resistant after consumption of the MUFA- and CHO-rich diets compared with the SFA-rich diet. This information should help in the identification of vulnerable populations or persons who will benefit from more personalized and mechanism-based dietary recommendations. PMID

  2. Effect of dietary fat on plasma glutathione peroxidase levels and intestinal absorption of /sup 75/Se-labeled sodium selenite in chicks

    SciTech Connect

    Mutanen, M.L.; Mykkaenen, H.M.

    1984-05-01

    The effect of dietary fat on the availability of selenium was investigated in chicks fed either 4 or 20% butter, olive oil, rape oil, corn oil or sunflower oil in the diet for 3 weeks after hatching. Plasma glutathione peroxidase (GSH-Px) activity was used as an indicator of the body selenium status. In addition, the intestinal absorption of sodium selenite (/sup 75/Se-labeled) was determined by using both the in vivo ligated loop procedure and oral administration of the isotope. The plasma GSH-Px levels increased with increasing proportion of the polyunsaturated fatty acids in the diet. Increasing the amount of fat from 4 to 20% significantly enhanced the GSH-Px activity in the groups receiving butter or olive oil, but had no effect in animals fed the unsaturated fats. The absorption of (/sup 75/Se)selenite from the ligated duodenal loops tended to be reduced in chicks fed corn oil or sunflower oil as compared to the animals receiving butter in their diet. On the other hand, the type of dietary fat did not appear to affect the absorption of the orally administered selenite. The present study demonstrates that the type of dietary fat can affect the plasma GSH-Px levels in chicks without altering the intestinal absorption of selenite. However, the results on the absorption of the intraduodenally injected sodium selenite suggest that dietary fat plays some role in the intestinal transport of selenium.

  3. Disproportionate fat stranding: a helpful CT sign in patients with acute abdominal pain.

    PubMed

    Pereira, Jose M; Sirlin, Claude B; Pinto, Pedro S; Jeffrey, R Brooke; Stella, Damien L; Casola, Giovanna

    2004-01-01

    Fat stranding adjacent to thickened bowel wall seen at computed tomography (CT) in patients with acute abdominal pain suggests an acute process of the gastrointestinal tract, but the differential diagnosis is wide. The authors observed "disproportionate" fat stranding (ie, stranding more severe than expected for the degree of bowel wall thickening present) and explored how this finding suggests a narrower differential diagnosis, one that is centered in the mesentery: diverticulitis, epiploic appendagitis, omental infarction, and appendicitis. The characteristic CT findings (in addition to fat stranding) of each of these entities often lead to a final diagnosis. Diverticulitis manifests with mild, smooth bowel wall thickening and no lymphadenopathy. Epiploic appendagitis manifests with central areas of high attenuation and a hyperattenuated rim, in addition to its characteristic location adjacent to the colon. In contrast, omental infarction is always centered in the omentum. The most specific finding of appendicitis is a dilated, fluid-filled appendix. Correct noninvasive diagnosis is important because treatment approaches for these conditions range from monitoring to surgery.

  4. Effects of dietary fats on plasma lipids and lipoproteins: an hypothesis for the lipid-lowering effect of unsaturated fatty acids

    PubMed Central

    Spritz, Norton; Mishkel, Maurice A.

    1969-01-01

    Several aspects of the effects of dietary fat on plasma lipids and lipoproteins were investigated in 12 subjects during the long-term feeding of formulas containing 40% of their calories as either saturated or unsaturated fats. The changes in fatty acid composition of plasma lipids, shown previously to occur after prolonged feedings of a dietary fat, required 10-14 days to be complete and were synchronous with the effect of the fat on plasma lipid concentrations. The change in lipid concentration occurred in low but not in high density lipoproteins. The effects on lipid levels of the low density lipoproteins were found to occur with little or no effect on the concentration of the protein moiety of these lipoproteins; as a result, cholesterol- and phospholipid to protein ratios in low density lipoproteins fell during unsaturated fat feeding. The effects of dietary fat on plasma phospholipids were studied in detail: the relative amounts of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and lysophosphatidylcholine were unaffected by the type of dietary fat. However, the molecular species of phosphatidylcholine were markedly affected. More than 90% of the fatty acids at the α-position were saturated during both saturated and unsaturated feedings. In contrast, during unsaturated feedings, linoleate at the β-position outnumbered oleate by approximately 4:1, whereas during saturated feedings these two types of fatty acids were present in nearly equal amounts. This paper also presents the following hypothesis for the lipid-lowering effect of unsaturated dietary fat: since unsaturated fatty acids occupy a greater area than saturated acids, they alter the spatial configuration of the lipids into which they are incorporated; as a result, fewer lipid molecules can be accommodated by the apoprotein of the low-density lipoproteins (LDL), and thus the lipid content of the lipoprotein is lowered. The experimental findings of this study, while not proving this

  5. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice

    PubMed Central

    Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.

    2016-01-01

    Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat

  6. The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers.

    PubMed

    Ober, John; Gillette, Robert L; Angle, Thomas Craig; Haney, Pamela; Fletcher, Daniel J; Wakshlag, Joseph J

    2016-01-01

    Optimal dietary protocols for the athletic canine are often defined by requirements for endurance athletes that do not always translate into optimal dietary interventions for all canine athletes. Prior research studying detection dogs suggests that dietary fat sources can influence olfaction; however, as fat is added to the diet the protein calories can be diminished potentially resulting in decreased red blood cell counts or albumin status. Optimal macronutrient profile for detection dogs may be different considering the unique work they engage in. To study a calorically low protein: high fat (18:57% ME), high protein: high fat (27:57% ME), and high protein: low fat (27:32% ME) approach to feeding, 17 dogs were provided various diets in a 3 × 3 cross over design. Dogs were exercised on a treadmill and blood was taken pre-exercise, immediately post-exercise, 10- and 20-min post-exercise to assess complete blood count, serum chemistry, blood gases, and cortisol; as well as rectal and core body temperature. Exercise induced a decrease in serum phosphorus, potassium, and increases in non-esterified fatty acids and cortisol typical of moderate exercise bouts. A complete and balanced high protein: high-fat diet (27:57% ME) induced decreases in serum cortisol and alkaline phosphatase. Corn oil top dressed low protein: high-fat diet (18:57% ME) induced a slightly better thermal recovery than a complete and balanced high protein: high fat diet and a high protein: low fat (27%:32% ME) diet suggesting some mild advantages when using the low protein: high fat diet that warrant further investigation regarding optimal protein and fat calories and thermal recovery.

  7. The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers

    PubMed Central

    Ober, John; Gillette, Robert L.; Angle, Thomas Craig; Haney, Pamela; Fletcher, Daniel J.; Wakshlag, Joseph J.

    2016-01-01

    Optimal dietary protocols for the athletic canine are often defined by requirements for endurance athletes that do not always translate into optimal dietary interventions for all canine athletes. Prior research studying detection dogs suggests that dietary fat sources can influence olfaction; however, as fat is added to the diet the protein calories can be diminished potentially resulting in decreased red blood cell counts or albumin status. Optimal macronutrient profile for detection dogs may be different considering the unique work they engage in. To study a calorically low protein: high fat (18:57% ME), high protein: high fat (27:57% ME), and high protein: low fat (27:32% ME) approach to feeding, 17 dogs were provided various diets in a 3 × 3 cross over design. Dogs were exercised on a treadmill and blood was taken pre-exercise, immediately post-exercise, 10- and 20-min post-exercise to assess complete blood count, serum chemistry, blood gases, and cortisol; as well as rectal and core body temperature. Exercise induced a decrease in serum phosphorus, potassium, and increases in non-esterified fatty acids and cortisol typical of moderate exercise bouts. A complete and balanced high protein: high-fat diet (27:57% ME) induced decreases in serum cortisol and alkaline phosphatase. Corn oil top dressed low protein: high-fat diet (18:57% ME) induced a slightly better thermal recovery than a complete and balanced high protein: high fat diet and a high protein: low fat (27%:32% ME) diet suggesting some mild advantages when using the low protein: high fat diet that warrant further investigation regarding optimal protein and fat calories and thermal recovery. PMID:27532039

  8. Effects of Cactus Fiber on the Excretion of Dietary Fat in Healthy Subjects: A Double Blind, Randomized, Placebo-Controlled, Crossover Clinical Investigation

    PubMed Central

    Uebelhack, Ralf; Busch, Regina; Alt, Felix; Beah, Zhi-Ming; Chong, Pee-Win

    2014-01-01

    Background Cactus (Opuntia ficus-indica) fiber was shown to promote weight loss in a 3-month clinical investigation. As demonstrated by in vitro studies, cactus fiber binds to dietary fat and its use results in reduced absorption, which in turn leads to reduced energy absorption and ultimately the reduction of body weight. Objective The objective of our study was to elucidate the dietary fat binding capacity of cactus fiber through determination of fecal fat excretion in healthy volunteers. Subjects and Methods This clinical investigation was performed as a double-blind, randomized, placebo-controlled, crossover study in healthy subjects for a period of approximately 45 days. Twenty healthy volunteer subjects were randomized to receive cactus fiber or placebo, 2 tablets thrice daily with main meals. All subjects were provided with meals during the study period (except washout) according to a standardized meal plan, with 35% of daily energy need coming from fat. Two 24-hour feces samples were collected during both the baseline and treatment periods for analysis of the fat content. Results Cactus fiber showed an increased fecal fat excretion compared with placebo (mean [SD] = 15.79% [5.79%] vs 4.56% [3.09%]; P < 0.001). No adverse events were reported throughout the study period. Conclusions Cactus fiber has been shown to significantly promote fecal fat excretion in healthy adults. The results of our study support the hypothesis that cactus fiber helps in reducing body weight by binding to dietary fat and increasing its excretion, thus reducing dietary fat available for absorption. ClinicalTrials.gov identifier: NCT01590667. PMID:25067985

  9. Exercise affects memory acquisition, anxiety-like symptoms and activity of membrane-bound enzyme in brain of rats fed with different dietary fats: impairments of trans fat.

    PubMed

    Teixeira, A M; Pase, C S; Boufleur, N; Roversi, K; Barcelos, R C S; Benvegnú, D M; Segat, H J; Dias, V T; Reckziegel, P; Trevizol, F; Dolci, G S; Carvalho, N R; Soares, F A A; Rocha, J B T; Emanuelli, T; Bürger, M E

    2011-11-10

    Here we evaluated the influence of physical exercise on behavior parameters and enzymatic status of rats supplemented with different dietary fatty acids (FA). Male Wistar rats fed diets enriched with soybean oil (SO), lard (L), or hydrogenated vegetable fat (HVF) for 48 weeks were submitted to swimming (30 min/d, five times per week) for 90 days. Dietary FA per se did not cause anxiety-like symptoms in the animals, but after physical exercise, SO group showed a better behavioral performance than L and the HVF groups in elevated plus maze (EPM). In Barnes maze, HVF group showed impaired memory acquisition as compared to L group, and exercise reversed this effect. SO-fed rats showed an improvement in memory acquisition after 1 day of training, whereas lard caused an improvement of memory only from day 4. HVF-fed rats showed no improvement of memory acquisition, but this effect was reversed by exercise in all training days. A lower activity of the Na(+)K(+)-ATPase in brain cortex of rats fed lard and HVF was observed, and this effect was maintained after exercise. Similarly, the HVF diet was related to lower activity of hippocampal Na(+)K(+)-ATPase, and exercise reduced activity of this enzyme in the SO and L groups. Our findings show influences of dietary FA on memory acquisition, whereas regular exercise improved this function and was beneficial on anxiety-like symptoms. As FA are present in neuronal membrane phospholipids and play a critical role in brain function, our results suggest that low incorporation of trans FA in neuronal membranes may act on cortical and hippocampal Na(+)K(+)-ATPase activity, but this change appears to be unrelated to the behavioral parameters primarily harmed by consumption of trans and less so by saturated FA, which were reversed by exercise.

  10. Impact of acute fat mobilization on the pharmacokinetics of the highly fat distributed compound TAK-357, investigated by physiologically-based pharmacokinetic (PBPK) modeling and simulation.

    PubMed

    Goto, Akihiko; Tagawa, Yoshihiko; Moriya, Yuu; Sato, Sho; Furukawa, Yoshiyuki; Wakabayashi, Takeshi; Tsukamoto, Tetsuya; DeJongh, Joost; van Steeg, Tamara J; Moriwaki, Toshiya; Asahi, Satoru

    2017-03-03

    In a dog toxicokinetic study, an unusual plasma concentration increase of the highly lipophilic compound TAK-357 was observed 2-weeks after termination of a 2-week repeated dosing in one dog with acute body weight loss. The present study investigates the cause of this increase. A physiologically based pharmacokinetic (PBPK) model was constructed using the rat and dog pharmacokinetic data. Using the constructed model, the TAK-357 concentration profile in case of body weight change was simulated. PBPK model-derived simulation suggested that redistribution from adipose tissues to plasma due to loss of body fat caused the observed concentration increase of TAK-357 in dog plasma. The analysis demonstrates that the disposition of a highly lipophilic and fat-distributed compound can be affected by acute changes in adipose tissue mass. PBPK modeling and simulation proved to be efficient tools for quantitative hypothesis testing of apparently atypical PK phenomena resulting from acute physiological changes.

  11. Dietary Intervention with Vitamin D, Calcium and Whey Protein Reduced Fat Mass and Increased Lean Mass in Rats

    PubMed Central

    Siddiqui, S.M.K.; Chang, E.; Li, J.; Burlage, C.; Zou, M.; Buhman, K. K.; Koser, S.; Donkin, S.S.; Teegarden, D.

    2008-01-01

    The aim of the current study is to determine the effects and the mechanisms of inclusion of dietary whey protein, high calcium and high vitamin D intake with either a high sucrose or high fat base diets on body composition of rodents. Male Wistar rats were assigned to either no whey protein, suboptimal calcium (0.25%) and vitamin D (400 IU/kg) diet (LD) or a diet containing whey protein, high calcium (1.5%) and vitamin D (10,000 IU/kg) diet (HD) and either high fat (40% of energy) or high sucrose (60%) base diets for 13 weeks. Liver tissue homogenates were used to determine [14C]glucose and [14C]palmitate oxidation. mRNA expression of enzymes related to energy metabolism in liver, adipose and muscle as well as regulators of muscle mass and insulin receptor were assessed. The results demonstrated that there was reduced accumulation of body fat mass (P = 0.01) and greater lean mass (P = 0.03) for the HD compared to LD fed group regardless of the background diet. There were no consistent differences between the LD and HD groups across background diets in substrate oxidation and mRNA expression for enzymes measured that regulate energy metabolism, myostatin or muscle VEGF. However, there was an increase in insulin receptor mRNA expression in muscle in the HD compared to the LD groups. In conclusion, elevated whey protein, calcium and vitamin D intake resulted in reduced accumulation of body fat mass and increased lean mass, with a commensurate increase in insulin receptor expression, regardless of the level of calories from fat or sucrose. PMID:19083488

  12. Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats.

    PubMed

    Siddiqui, Shamim M K; Chang, Eugene; Li, Jia; Burlage, Catherine; Zou, Mi; Buhman, Kimberly K; Koser, Stephanie; Donkin, Shawn S; Teegarden, Dorothy

    2008-11-01

    The aim of the current study was to determine the effects and the mechanisms of inclusion of dietary whey protein, high calcium, and high vitamin D intake with either a high-sucrose or high-fat base diets on body composition of rodents. Male Wistar rats were assigned to either no whey protein, suboptimal calcium (0.25%), and vitamin D (400 IU/kg) diet (LD), or a diet containing whey protein, high calcium (1.5%), and vitamin D (10 000 IU/kg) diet (HD), and either high-fat (40% of energy) or high-sucrose (60%) base diets for 13 weeks. Liver tissue homogenates were used to determine [(14)C]glucose and [(14)C]palmitate oxidation. mRNA expression of enzymes related to energy metabolism in liver, adipose, and muscle, as well as regulators of muscle mass and insulin receptor was assessed. The results demonstrated that there was reduced accumulation of body fat mass (P = .01) and greater lean mass (P = .03) for the HD- compared to LD-fed group regardless of the background diet. There were no consistent differences between the LD and HD groups across background diets in substrate oxidation and mRNA expression for enzymes measured that regulate energy metabolism, myostatin, or muscle vascular endothelial growth factor. However, there was an increase in insulin receptor mRNA expression in muscle in the HD compared to the LD groups. In conclusion, elevated whey protein, calcium, and vitamin D intake resulted in reduced accumulation of body fat mass and increased lean mass, with a commensurate increase in insulin receptor expression, regardless of the level of calories from fat or sucrose.

  13. Maternal dietary fat affects milk fatty acid profile and impacts on weight gain and thermogenic capacity of suckling rats.

    PubMed

    Priego, Teresa; Sánchez, Juana; García, Ana Paula; Palou, Andreu; Picó, Catalina

    2013-05-01

    We aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma. Their offspring also showed the highest proportion of this FA in plasma, lower BWG during the suckling period, and higher levels of UCP1 in brown adipose tissue (BAT) at weaning. Margarine-supplemented dams showed the highest percentage of PUFA in milk, and a similar tendency was found in plasma of their offspring. Butter-supplemented dams displayed higher proportion of saturated FA (SFA) in milk compared to other fat-supplemented dams, but lower than controls. Control offspring also showed higher proportion of SFA in plasma and greater BWG during the suckling period than fat-supplemented groups. Significant correlations were found between the relative content of some milk FA and BWG of offspring, in particular, oleic-acid levels correlated negatively with BWG and positively with UCP1 levels. These results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period. An effect of oleic-acid stimulating BAT thermogenic capacity of suckling pups is proposed.

  14. Intestinal Phospholipid Remodeling Is Required for Dietary-Lipid Uptake and Survival on a High-Fat Diet.

    PubMed

    Wang, Bo; Rong, Xin; Duerr, Mark A; Hermanson, Daniel J; Hedde, Per Niklas; Wong, Jinny S; Vallim, Thomas Q de Aguiar; Cravatt, Benjamin F; Gratton, Enrico; Ford, David A; Tontonoz, Peter

    2016-03-08

    Phospholipids are important determinants of membrane biophysical properties, but the impact of membrane acyl chain composition on dietary-lipid absorption is unknown. Here we demonstrate that the LXR-responsive phospholipid-remodeling enzyme Lpcat3 modulates intestinal fatty acid and cholesterol absorption and is required for survival on a high-fat diet. Mice lacking Lpcat3 in the intestine thrive on carbohydrate-based chow but lose body weight rapidly and become moribund on a triglyceride-rich diet. Lpcat3-dependent incorporation of polyunsaturated fatty acids into phospholipids is required for the efficient transport of dietary lipids into enterocytes. Furthermore, loss of Lpcat3 amplifies the production of gut hormones, including GLP-1 and oleoylethanolamide, in response to high-fat feeding, contributing to the paradoxical cessation of food intake in the setting of starvation. These results reveal that membrane phospholipid composition is a gating factor in passive lipid absorption and implicate LXR-Lpcat3 signaling in a gut-brain feedback loop that couples absorption to food intake.

  15. Dietary fat and fiber interactively modulate apoptosis and mitochondrial bioenergetic profiles in mouse colon in a site-specific manner.

    PubMed

    Fan, Yang-Yi; Vaz, Frederic M; Chapkin, Robert S

    2016-05-10

    We have demonstrated that the combination of bioactive components generated by fish oil (containing n-3 polyunsaturated fatty acids) and fermentable fiber (leading to butyrate production) act coordinately to protect against colon cancer. This is, in part, the result of an enhancement of apoptosis at the base of the crypt across all stages (initiation, promotion, and progression) of colon tumorigenesis. As mitochondria are key organelles capable of regulating the intrinsic apoptotic pathway and mediating programmed cell death, we investigated the effects of diet on mitochondrial function by measuring mucosal cardiolipin composition, mitochondrial respiratory parameters, and apoptosis in isolated crypts from the proximal and distal colon. C57BL/6 mice (n=15/treatment) were fed one of two dietary fats (corn oil and fish oil) and two fibers (pectin and cellulose) for 4 weeks in a 2×2 factorial design. In general, diet modulated apoptosis and the mucosal bioenergetic profiles in a site-specific manner. The fish/pectin diet promoted a more proapoptotic phenotype - for example, increased proton leak (Pinteraction=0.002) - compared with corn/cellulose (control) only in the proximal colon. With respect to the composition of cardiolipin, a unique phospholipid localized to the mitochondrial inner membrane where it mediates energy metabolism, fish oil feeding indirectly influenced its molecular species with a combined carbon number of C68 or greater, suggesting compensatory regulation. These data indicate that dietary fat and fiber can interactively modulate the mitochondrial metabolic profile and thereby potentially modulate apoptosis and subsequent colon cancer risk.

  16. Dietary Nitrate Acutely and Markedly Increased Exhaled Nitric Oxide in a Cystic Fibrosis Case

    PubMed Central

    Kerley, Conor P.; Kilbride, Emma; Greally, Peter; Elnazir, Basil

    2016-01-01

    Airway nitric oxide (NO) is a ubiquitous signaling molecule with bronchoprotective, anti-inflammatory and anti-infective roles. Cystic fibrosis (CF) is a chronic lung condition associated with deceased exhaled NO. Strategies to increase exhaled NO in CF have yielded inconsistent results. A potential new method of increasing systemic NO involves ingestion of dietary, inorganic nitrate which is reduced to nitrite and NO. We present the case of a 12-year-old, athletic boy with CF who demonstrated acute but marked increases in exhaled NO following dietary nitrate consumption compared to placebo PMID:27630187

  17. The effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake.

    PubMed

    Moghaddam, Elham; Vogt, Janet A; Wolever, Thomas M S

    2006-10-01

    The effects of protein and fat on glycemic responses have not been studied systematically. Therefore, our aim was to determine the dose-response effects of protein and fat on the glycemic response elicited by 50 g glucose in humans and whether subjects' fasting plasma insulin (FPI) and diet influenced the results. Nondiabetic humans, 10 with FPI < [corrected] or =40 pmol/L and 10 with FPI >40 pmol/L, were studied on 18 occasions after 10 14-h overnight fasts. Subjects consumed 50 g glucose dissolved in 250 mL water plus 0, 5, 10, or 30 g fat and/or 0, 5, 10, or 30 g protein. Each level of fat was tested with each level of protein. Dietary intake was measured using a 3-d food record. Gram per gram, protein reduced glucose responses approximately 2 times more than fat (P < 0.001) with no significant fat x protein interaction (P = 0.051). The effect of protein on glycemic responses was related to waist circumference (WC) (r = -0.56, P = 0.011) and intake of dietary fiber (r = -0.60, P = 0.005) but was unrelated to FPI or other nutrient intakes. The effect of fat on glycemic responses was related to FPI (r = 0.49, P = 0.029) but was unrelated to WC or diet. We conclude that, across the range of 0-30 g, protein and fat reduced glycemic responses independently from each other in a linear, dose-dependent fashion, with protein having approximately 3-times the effect of fat. A large protein effect was associated with high WC and high dietary-fiber intake, whereas a large fat effect was associated with low FPI. These conclusions may not apply to solid meals. Further studies are needed to determine the mechanisms for these effects.

  18. Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice.

    PubMed

    López-Domínguez, José Alberto; Khraiwesh, Husam; González-Reyes, José Antonio; López-Lluch, Guillermo; Navas, Plácido; Ramsey, Jon Jay; de Cabo, Rafael; Burón, María Isabel; Villalba, José M

    2013-12-01

    Calorie restriction decreases skeletal muscle apoptosis, and this phenomenon has been mechanistically linked to its protective action against sarcopenia of aging. Alterations in lipid composition of membranes have been related with the beneficial effects of calorie restriction. However, no study has been designed to date to elucidate if different dietary fat sources with calorie restriction modify apoptotic signaling in skeletal muscle. We show that a 6-month calorie restriction decreased the activity of the plasma membrane neutral sphingomyelinase, although caspase-8/10 activity was not altered, in young adult mice. Lipid hydroperoxides, Bax levels, and cytochrome c and AIF release/accumulation into the cytosol were also decreased, although caspase-9 activity was unchanged. No alterations in caspase-3 and apoptotic index (DNA fragmentation) were observed, but calorie restriction improved structural features of gastrocnemius fibers by increasing cross-sectional area and decreasing circularity of fibers in cross sections. Changing dietary fat with calorie restriction produced substantial alterations of apoptotic signaling. Fish oil augmented the protective effect of calorie restriction decreasing plasma membrane neutral sphingomyelinase, Bax levels, caspase-8/10, and -9 activities, while increasing levels of the antioxidant coenzyme Q at the plasma membrane, and potentiating the increase of cross-sectional area and the decrease of fiber circularity in cross sections. Many of these changes were not found when we used lard. Our data support that dietary fish oil with calorie restriction produces a cellular anti-apoptotic environment in skeletal muscle with a downregulation of components involved in the initial stages of apoptosis engagement, both at the plasma membrane and the mitochondria.

  19. Impact of dietary fat on the development of non-alcoholic fatty liver disease in Ldlr−/− mice

    PubMed Central

    Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita; Lytle, Kelli A.

    2015-01-01

    The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr−/− mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr−/− mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr−/− mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects. PMID:26282529

  20. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects.

    PubMed

    Noll, Christophe; Kunach, Margaret; Frisch, Frédérique; Bouffard, Lucie; Dubreuil, Stéphanie; Jean-Denis, Farrah; Phoenix, Serge; Cunnane, Stephen C; Guérin, Brigitte; Turcotte, Eric E; Carpentier, André C

    2015-11-01

    Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.

  1. Trends in dietary energy, fat, carbohydrate and protein intake in Chinese children and adolescents from 1991 to 2009

    PubMed Central

    Cui, Zhaohui; Dibley, Michael J.

    2012-01-01

    Few studies have examined nutrition transition in children in China. Our aim, in the present study, was to examine temporal trends in dietary energy, fat, carbohydrate and protein intake in Chinese children aged 7–17 years. The analysis used individual level, consecutive 3 d dietary recall data from seven rounds of the China Health and Nutrition Surveys in 1991 (n 2714), 1993 (n 2542), 1997 (n 2516), 2000 (n 2142), 2004 (n 1341), 2006 (n 1072) and 2009 (n 996). Mixed-effect models were constructed to obtain adjusted means and to examine trends after adjusting for intra-class correlation within clusters and for covariates including age, sex, urban/rural residence and income. From 1991 to 2009, daily energy intake steadily declined from 9511·0 to 7658·2 kJ (P < 0·0001). There was a steady decline in daily carbohydrate intake from 382·5 to 254·1 g (P < 0·0001), and in the proportion of energy from carbohydrate from 66·7 to 56·8 % (P < 0·0001). In contrast, daily fat intake steadily increased from 54·8 to 66·0 g (P < 0·0001), as did the proportion of energy from fat from 21·5 to 30·0 % (P < 0·0001). The proportion of children who consumed a diet with more than 30 % of energy from fat increased from 20·1 to 49·4 % (P < 0·0001). The proportion of energy from protein increased from 11·8 to 13·1 % (P < 0·0001), although daily protein intake dropped from 66·2 to 58·0 g (P < 0·0001). Our data suggest that Chinese children have been undergoing a rapid nutrition transition to a high-fat diet. PMID:22244308

  2. Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study.

    PubMed

    Livingstone, Katherine M; Celis-Morales, Carlos; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Forster, Hannah; O'Donovan, Clare B; Woolhead, Clara; Marsaux, Cyril F M; Macready, Anna L; Fallaize, Rosalind; Kolossa, Silvia; Tsirigoti, Lydia; Lambrinou, Christina P; Moschonis, George; Godlewska, Magdalena; Surwiłło, Agnieszka; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Gibney, Eileen R; Brennan, Lorraine; Walsh, Marianne C; Lovegrove, Julie A; Martinez, J Alfredo; Saris, Wim H M; Daniel, Hannelore; Gibney, Mike; Mathers, John C

    2016-02-14

    The interplay between the fat mass- and obesity-associated (FTO) gene variants and diet has been implicated in the development of obesity. The aim of the present analysis was to investigate associations between FTO genotype, dietary intakes and anthropometrics among European adults. Participants in the Food4Me randomised controlled trial were genotyped for FTO genotype (rs9939609) and their dietary intakes, and diet quality scores (Healthy Eating Index and PREDIMED-based Mediterranean diet score) were estimated from FFQ. Relationships between FTO genotype, diet and anthropometrics (weight, waist circumference (WC) and BMI) were evaluated at baseline. European adults with the FTO risk genotype had greater WC (AA v. TT: +1·4 cm; P=0·003) and BMI (+0·9 kg/m2; P=0·001) than individuals with no risk alleles. Subjects with the lowest fried food consumption and two copies of the FTO risk variant had on average 1·4 kg/m2 greater BMI (Ptrend=0·028) and 3·1 cm greater WC (Ptrend=0·045) compared with individuals with no copies of the risk allele and with the lowest fried food consumption. However, there was no evidence of interactions between FTO genotype and dietary intakes on BMI and WC, and thus further research is required to confirm or refute these findings.

  3. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults.

    PubMed

    Nettleton, Jennifer A; Steffen, Lyn M; Ballantyne, Christie M; Boerwinkle, Eric; Folsom, Aaron R

    2007-10-01

    Polymorphisms in genes involved in HDL-cholesterol (HDL-C) metabolism influence plasma HDL-C concentrations. We examined whether dietary fat intake modified relations between HDL-C and polymorphisms in hepatic lipase (LIPC-514C-->T), cholesteryl ester transfer protein (CETP TaqIB), and lipoprotein lipase (LPL S447X) genes. Diet (food frequency questionnaire), plasma lipids, and LIPC, CETP, and LPL genotypes were assessed in approximately 12,000 White and African American adults. In both races and all genotypes studied, minor allele homozygotes had highest HDL-C concentrations compared to the other genotypes (P<0.001). However, main effects were modified by usual dietary fat intake. In African Americans - women somewhat more strongly than men -LIPC TT homozygotes with fat intake >or=33.2% of energy had approximately 3-4 mg/dL higher HDL-C concentrations than CC and CT genotypes. In contrast, when fat intake was <33.2% of energy, TT homozygotes had HDL-C concentrations approximately 3.5mg/dL greater than those with the CC genotype but not different from those with the CT genotype (P(interaction)=0.013). In Whites, LPLGG homozygotes had greatest HDL-C at lower total, saturated, and monounsaturated fat intakes but lowest HDL-C at higher intakes of these fats (P(interaction)Dietary fat did not modify associations between CETP and HDL-C. In conclusion, these data show that plasma HDL-C differs according to LIPC, LPL, and CETP genotypes. In the case of LIPC and LPL, data suggest dietary fat modifies these relations.

  4. Impact of exercise and dietary fatty acid composition from a high-fat diet on markers of hunger and satiety.

    PubMed

    Cooper, J A; Watras, A C; Paton, C M; Wegner, F H; Adams, A K; Schoeller, D A

    2011-02-01

    To compare the effects of both dietary fatty acid composition and exercise vs. sedentary conditions on circulating levels of hunger and satiety hormones. Eight healthy males were randomized in a 2 × 2 crossover design. The four treatments were 3 days of HF diets (50% of energy) containing high saturated fat (22% of energy) with exercise (SE) or sedentary (SS) conditions, and high monounsaturated fat (30% of energy) with exercise (UE) or sedentary (US) conditions. Cycling exercise was completed at 45% of VO(2)max for 2h daily. On the third HF day, 20 blood samples were drawn over a 24h period for each hormone (leptin, insulin, ghrelin, and peptide YY (PYY)). A visual analog scale (VAS) was completed hourly between 0800 and 2200. Average 24h leptin and insulin levels were lower while 24h PYY was higher during exercise vs. sedentary conditions. FA composition did not differentially affect 24h hormone values. VAS scores for hunger and fullness did not differ between any treatment but did correlate with ghrelin, leptin, and insulin. High saturated or unsaturated fat diets did not differ with respect to markers of hunger or satiety. Exercise decreased 24h leptin and insulin while increasing PYY regardless of FA composition.

  5. Sex differences in body composition, fat storage, and gene expression profile in Caenorhabditis elegans in response to dietary restriction.

    PubMed

    Miersch, Claudia; Döring, Frank

    2013-07-02

    The metabolic and health-promoting effects of dietary restriction (DR) have been extensively studied in several species. The response to DR with respect to sex is essentially unknown. To address this question, we used the model organism Caenorhabditis elegans to analyze body composition and gene expression in males and hermaphrodites in response to DR. Unexpectedly, DR increased the fat-to-fat-free mass ratio and enlarged lipid droplets in both sexes to a similar extent. These effects were linked to a downregulation of the lipase-like 5 (lipl-5) gene in both sexes at two developmental stages. By contrast, the reductions in body size, protein content, and total RNA content in response to DR were more pronounced in hermaphrodites than in males. Functional enrichment analysis of gene expression data showed a DR-induced downregulation of several embryogenesis-associated genes concomitant with an ongoing expression of sperm-associated genes in hermaphrodites. In conclusion, DR increases fat stores in both sexes of C. elegans in the form of large and possibly lipolysis-resistant lipid droplets and markedly alters the reproductive program in hermaphrodites but not in males.

  6. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level.

    PubMed

    Simko, V; Kelley, R E

    1988-02-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the 14C-triolein marker remained proportional to the load up to 2,359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with 14C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition.

  7. The acute effects of time-of-day-dependent high fat feeding on whole body metabolic flexibility in mice

    PubMed Central

    Joo, J; Cox, C C; Kindred, E D; Lashinger, L M; Young, M E; Bray, M S

    2016-01-01

    Background: Both circadian disruption and timing of feeding have important roles in the development of metabolic disease. Despite growing acceptance that the timing of food consumption has long-term impact on metabolic homeostasis, little is known regarding the immediate influence on whole body metabolism, or the mechanisms involved. We aimed to examine the acute effects of time-of-day-dependent high fat feeding on whole body substrate metabolism and metabolic plasticity, and to determine the potential contribution of the adipocyte circadian clock. Methods: Mice were fed a regimen of 4-h meal at the beginning and end of the dark (waking) cycle, separated by 4 h of fasting. Daily experimental conditions consisted of either an early very high fat or high fat (EVHF or EHF, 60 or 45% kcals from fat, respectively) or late (LVHF or LHF) meal, paired with a low fat (LF, 10% kcals from fat) meal. Metabolic parameters, glucose tolerance, body fat composition and weight were assessed. To determine the role of the adipocyte circadian clock, an aP2-CLOCK mutant (ACM) mouse model was used. Results: Mice in the EVHF or EHF groups showed a 13.2 or 8.84 higher percentage of caloric intake from fat and had a 0.013 or 0.026 lower daily average respiratory exchange ratio, respectively, compared with mice eating the opposite feeding regime. Changes in glucose tolerance, body fat composition and weight were not significant at the end of the 9-day restricted feeding period. ACM mice did not exhibit different metabolic responses to the feeding regimes compared with wild-type littermates. Circadian clock disruption did not influence the short-term response to timed feeding. Conclusions: Both the total fat composition of diet and the timing of fat intake may differentially mediate the effect of timed feeding on substrate metabolism, but may not induce acute changes in metabolic flexibility. PMID:27133618

  8. The role of dietary fatty acids in predicting myocardial structure in fat-fed rats

    PubMed Central

    2011-01-01

    Background Obesity increases the risk for development of cardiomyopathy in the absence of hypertension, diabetes or myocardial ischemia. Not all obese individuals, however, progress to heart failure. Indeed, obesity may provide protection from cardiovascular mortality in some populations. The fatty acid milieu, modulated by diet, may modify obesity-induced myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy in obese individuals. Methods Adult male Sprague-Dawley rats were fed 1 of the following 4 diets for 32 weeks: control (CON); 50% saturated fat (SAT); 40% saturated fat + 10% linoleic acid (SAT+LA); 40% saturated fat + 10% α-linolenic acid (SAT+ALA). Serum leptin, insulin, glucose, free fatty acids and triglycerides were quantitated. In vivo cardiovascular outcomes included blood pressure, heart rate and echocardiographic measurements of structure and function. The rats were sacrificed and myocardium was processed for fatty acid analysis (TLC-GC), and evaluation of potential modifiers of myocardial structure including collagen (Masson's trichrome, hydroxyproline quantitation), lipid (Oil Red O, triglyceride quantitation) and myocyte cross sectional area. Results Rats fed SAT+LA and SAT+ALA diets had greater cranial LV wall thickness compared to rats fed CON and SAT diets, in the absence of hypertension or apparent insulin resistance. Treatment was not associated with changes in myocardial function. Myocardial collagen and triglycerides were similar among treatment groups; however, rats fed the high-fat diets, regardless of composition, demonstrated increased myocyte cross sectional area. Conclusions Under conditions of high-fat feeding, replacement of 10% saturated fat with either LA or ALA is associated with thickening of the cranial LV wall, but without concomitant functional changes. Increased myocyte size appears to be a more likely contributor to early LV thickening in response to high-fat feeding

  9. Dietary patterns and their association with acute coronary heart disease: Lessons from the REGARDS Study

    PubMed Central

    Al Suwaidi, Jassim

    2015-01-01

    Shikany et al used data from 17,418 participants in the REGARDS study, a national, population-based, longitudinal study of white and black adults aged ≥ 45 years, enrolled between 2003–2007. They examined 536 acute coronary heart disease events at follow-up (median 5.8 years) in relation to five dietary patterns (Convenience, Plant-based, Sweets, Southern, and Alcohol and Salad). After adjustment for baseline variables, the highest consumers of the Southern pattern experienced a 56% higher hazard for acute CHD. PMID:26779528

  10. Acute effects of dietary constituents on motor skill and cognitive performance in athletes.

    PubMed

    Baker, Lindsay B; Nuccio, Ryan P; Jeukendrup, Asker E

    2014-12-01

    Performance in many sports is at least partially dependent on motor control, coordination, decision-making, and other cognitive tasks. This review summarizes available evidence about the ingestion of selected nutrients or isolated compounds (dietary constituents) and potential acute effects on motor skill and/or cognitive performance in athletes. Dietary constituents discussed include branched-chain amino acids, caffeine, carbohydrate, cocoa flavanols, Gingko biloba, ginseng, guarana, Rhodiola rosea, sage, L-theanine, theobromine, and tyrosine. Although this is not an exhaustive list, these are perhaps the most researched dietary constituents. Caffeine and carbohydrate have the greatest number of published reports supporting their ability to enhance acute motor skill and cognitive performance in athletes. At this time, there is insufficient published evidence to substantiate the use of any other dietary constituents to benefit sports-related motor skill or cognitive performance. The optimal dose and timing of caffeine and carbohydrate intake promoting enhanced motor skill and cognitive performance remain to be identified. Valid, reliable, and sensitive batteries of motor skills and cognitive tests should be developed for use in future efficacy studies.

  11. Dietary Soy May Not Confound Acute Experimental Stroke Infarct Volume Outcomes In Ovariectomized Female Rats

    PubMed Central

    Prongay, Kamm D.; Lewis, Anne D.; Hurn, Patricia D.; Murphy, Stephanie J.

    2009-01-01

    Estrogen administration can alter experimental stroke outcomes. Soy as a source of phytoestrogens may therefore modulate responses in “estrogen-sensitive” stroke models, thus potentially confounding results. We evaluated the effects of dietary soy on acute infarct volumes in a pilot study using a rat focal stroke model. We hypothesized that ovariectomized (OVX) rats fed a soy-rich diet would have smaller acute infarct volumes than rats fed a soy-free diet. OVX rats were randomly assigned to a soy-free (n=6) or a soy-rich (n=6) diet for 4 weeks and weighed weekly. Following the dietary trial, rats underwent 2 hours of middle cerebral artery occlusion (MCAO). Mean arterial blood pressure, rectal and temporalis muscle temperatures, arterial blood gases, and blood glucose were recorded peri-ischemia. Rats were euthanized 22 hours following 2 hours of MCAO. Brains were stained with 2,3,5-triphenyl tetrazolium chloride for acute infarct volume analysis. Uterine weight and histology were also evaluated as additional internal estrogen-sensitive controls. Rats on the soy-free diet had greater gains in body weight (259±6% baseline body weight) than rats on the soy-rich diet (238±4% baseline body weight). No differences were seen in uterine weight and histology, peri-ischemic physiological parameters, and infarct volumes between the treatment groups. Results of this pilot study suggest that the dietary soy level tested may not alter acute infarct volumes in ischemic female rat brain. More studies addressing the potential confounding effects of dietary soy in “estrogen-sensitive” stroke models are needed if investigators are to make informed choices regarding diets used in experimental stroke research. PMID:20147341

  12. The Carbohydrate-Fat Problem: Can We Construct a Healthy Diet Based on Dietary Guidelines?12

    PubMed Central

    Drewnowski, Adam

    2015-01-01

    The inclusion of nutrition economics in dietary guidance would help ensure that the Dietary Guidelines for Americans benefit equally all segments of the US population. The present review outlines some novel metrics of food affordability that assess nutrient density of foods and beverages in relation to cost. Socioeconomic disparities in diet quality in the United States are readily apparent. In general, groups of lower socioeconomic status consume cheaper, lower-quality diets and suffer from higher rates of noncommunicable diseases. Nutrient profiling models, initially developed to assess the nutrient density of foods, can be turned into econometric models that assess both calories and nutrients per reference amount and per unit cost. These novel metrics have been used to identify individual foods that were affordable, palatable, culturally acceptable, and nutrient rich. Not all nutrient-rich foods were expensive. In dietary surveys, both local and national, some high-quality diets were associated with relatively low cost. Those population subgroups that successfully adopted dietary guidelines at an unexpectedly low monetary cost were identified as “positive deviants.” Constructing a healthy diet based on dietary guidelines can be done, provided that nutrient density of foods, their affordability, as well as taste and social norms are all taken into account. PMID:25979505

  13. The carbohydrate-fat problem: can we construct a healthy diet based on dietary guidelines?

    PubMed

    Drewnowski, Adam

    2015-05-01

    The inclusion of nutrition economics in dietary guidance would help ensure that the Dietary Guidelines for Americans benefit equally all segments of the US population. The present review outlines some novel metrics of food affordability that assess nutrient density of foods and beverages in relation to cost. Socioeconomic disparities in diet quality in the United States are readily apparent. In general, groups of lower socioeconomic status consume cheaper, lower-quality diets and suffer from higher rates of noncommunicable diseases. Nutrient profiling models, initially developed to assess the nutrient density of foods, can be turned into econometric models that assess both calories and nutrients per reference amount and per unit cost. These novel metrics have been used to identify individual foods that were affordable, palatable, culturally acceptable, and nutrient rich. Not all nutrient-rich foods were expensive. In dietary surveys, both local and national, some high-quality diets were associated with relatively low cost. Those population subgroups that successfully adopted dietary guidelines at an unexpectedly low monetary cost were identified as "positive deviants." Constructing a healthy diet based on dietary guidelines can be done, provided that nutrient density of foods, their affordability, as well as taste and social norms are all taken into account.

  14. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination

    PubMed Central

    Tzieropoulos, Hélène; Rytz, Andreas; Hudry, Julie; le Coutre, Johannes

    2013-01-01

    To disentangle taste from reward responses in the human gustatory cortex, we combined high density electro-encephalography with a gustometer delivering tastant puffs to the tip of the tongue. Stimuli were pure tastants (salt solutions at two concentrations), caloric emulsions (two milk preparations identical in composition except for fat content) and a mixture of high fat milk with the lowest salt concentration. Early event-related potentials (ERPs) showed a dose-response effect for increased taste intensity, with higher amplitude and shorter latency for high compared to low salt concentration, but not for increased fat content. However, the amplitude and distribution of late potentials were modulated by fat content independently of reported intensity and discrimination. Neural source estimation revealed a sustained activation of reward areas to the two high-fat stimuli. The results suggest calorie detection through specific sensors on the tongue independent of perceived taste. Finally, amplitude variation of the first peak in the event-related potential to the different stimuli correlated with papilla density, suggesting a higher discrimination power for subjects with more fungiform papillae. PMID:23430280

  15. Greater impact of dietary fat manipulation than apolipoprotein E genotype on ex vivo cytokine production - insights from the SATgenε study.

    PubMed

    Koutsos, Athanasios; Jackson, Kim G; Lockyer, Stacey; Carvalho-Wells, Andrew; Minihane, Anne M; Lovegrove, Julie A

    2014-04-01

    Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgenε study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgenε participants (n=52/88), prospectively recruited according to APOE genotype (n=26 E3/E3 and n=26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24h with either 0.05 or 1μg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-α and IL-10 production; TNF-α concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P<0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P<0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-α and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.

  16. Total and subtypes of dietary fat intake and risk of type 2 diabetes mellitus in the Prevención con Dieta Mediterránea (PREDIMED) study.

    PubMed

    Guasch-Ferré, Marta; Becerra-Tomás, Nerea; Ruiz-Canela, Miguel; Corella, Dolores; Schröder, Helmut; Estruch, Ramon; Ros, Emilio; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Serra-Majem, Lluís; Lapetra, José; Basora, Josep; Martín-Calvo, Nerea; Portoles, Olga; Fitó, Montserrat; Hu, Frank B; Forga, Lluís; Salas-Salvadó, Jordi

    2017-03-01

    Background: The associations between dietary fat and cardiovascular disease have been evaluated in several studies, but less is known about their influence on the risk of diabetes.Objective: We examined the associations between total fat, subtypes of dietary fat, and food sources rich in saturated fatty acids and the incidence of type 2 diabetes (T2D).Design: A prospective cohort analysis of 3349 individuals who were free of diabetes at baseline but were at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) study was conducted. Detailed dietary information was assessed at baseline and yearly during the follow-up using a food frequency questionnaire. Multivariable Cox proportional hazards models were used to estimate T2D HRs and 95% CIs according to baseline and yearly updated fat intake.Results: We documented 266 incident cases during 4.3 y of follow-up. Baseline saturated and animal fat intake was not associated with the risk of T2D. After multivariable adjustment, participants in the highest quartile of updated intake of saturated and animal fat had a higher risk of diabetes than the lowest quartile (HR: 2.19; 95% CI: 1.28, 3.73; and P-trend = 0.01 compared with HR: 2.00; 95% CI: 1.29, 3.09; and P-trend < 0.01, respectively). In both the Mediterranean diet and control groups, participants in the highest quartile of updated animal fat intake had an ∼2-fold higher risk of T2D than their counterparts in the lowest quartile. The consumption of 1 serving of butter and cheese was associated with a higher risk of diabetes, whereas whole-fat yogurt intake was associated with a lower risk.Conclusions: In a Mediterranean trial focused on dietary fat interventions, baseline intake of saturated and animal fat was not associated with T2D incidence, but the yearly updated intake of saturated and animal fat was associated with a higher risk of T2D. Cheese and butter intake was associated with a higher risk of T2D, whereas whole-fat yogurt intake

  17. How Do Tracking and Changes in Dietary Pattern during Adolescence Relate to the Amount of Body Fat in Early Adulthood?

    PubMed Central

    Schneider, Bruna Celestino; Dumith, Samuel de Carvalho; Lopes, Carla; Severo, Milton; Assunção, Maria Cecília Formoso

    2016-01-01

    Background Few studies have addressed the influence of dietary patterns (DP) during adolescence on the amount of body fat in early adulthood. Objective To analyze the associations between DP tracking and changes in the period between 15 and 18 years of age and the percentage of body fat (%BF) at age 18 years. Methods We used data from 3,823 members of the 1993 Pelotas (Brazil) birth cohort. Body density was measured at age 18 years by air displacement plethysmograph (BOD POD) and the %BF was calculated applying the Siri equation. Based on the estimates from the FFQ, we identified DP at ages 15 (“Varied”, “Traditional”, “Dieting” and “Processed meats”) and 18 years (“Varied”, “Traditional”, “Dieting” and “Fish, fast food and alcohol”). The DP tracking was defined as the individual’s adherence to the same DP at both ages. Associations were tested using multiple linear regression models stratified by sex. Results The mean %BF was 25.0% (95% CI: 24.7 to 25.4), significantly greater for girls than boys (p<0.001). The adherence to any DP at age 15 years was not associated with the %BF at age 18 years. However, individuals who adhered to a “Dieting” DP at age 18 years showed greater %BF (1.30 and 1.91 percentage points in boys and girls, respectively) in comparison with those who adhered to a “Varied” DP. Boys who presented tracking of a “Dieting” DP presented greater average %BF in comparison with others DP, as well as girls who changed from the “Traditional” or “Processed meats” DP to a “Dieting” DP. Conclusion These results may support public health policies and strategies focused on improving dietary habits of adolescents and young adults and preventing accumulation of body fat, especially among the adolescents with restrictive dietary habits. PMID:26907178

  18. The effect of acute exercise on endothelial function following a high-fat meal.

    PubMed

    Padilla, Jaume; Harris, Ryan A; Fly, Alyce D; Rink, Lawrence D; Wallace, Janet P

    2006-10-01

    The transient impairment of endothelial function following a high-fat meal is well established. Brachial artery flow-mediated dilation (FMD) decreases between 2 and 6 h post ingestion. Whether this impairment can be reduced with acute aerobic exercise has not been investigated. The purpose of this study was to investigate if a single sustained aerobic exercise session can counteract the postprandial attenuation in brachial artery FMD associated with the ingestion of a high-fat meal. Eight apparently healthy adults (five men, three women), age 25.5 +/- 0.8 years, performed three treatment conditions in a counter-balanced design: (1) low-fat meal alone (LFM), (2) high-fat meal alone (HFM), and (3) one session of aerobic exercise presented 2 h after ingesting a high-fat meal (HFM-EX). The examination of brachial artery FMD was performed at baseline and 4 h following the ingestion of the meal for each treatment condition. A 3 x 2 (treatment x time) repeated measures ANOVA exhibited a significant interaction (P = 0.019). Preprandial FMDs were similar (P = 0.863) among all three treatment conditions. The FMDs following the LFM (7.18 +/- 1.31%) and HFM-EX (8.72 +/- 0.94%) were significantly higher (P = 0.001) than the FMD following the HFM (4.29 +/- 1.64%). FMD was significantly elevated above preprandial values following the HFM-EX (5.61 +/- 1.54 to 8.72 +/- 0.94%, P = 0.005) but was unchanged following the LFM (6.17 +/- 0.94 to 7.18 +/- 1.31%, P = 0.317) and the HFM (5.73 +/- 1.23 to 4.29 +/- 1.64%, P = 0.160). These findings suggest that a single aerobic exercise session cannot only counteract the postprandial endothelial dysfunction induced by the ingestion of a high-fat meal, but also increase brachial artery FMD in apparently healthy adults.

  19. Development of the SoFAS (solid fats and added sugars) concept: the 2010 Dietary Guidelines for Americans.

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E

    2015-05-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a "calorie" is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to "empty calories" to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005 and 2010

  20. Effect of synbiotic supplementation and dietary fat sources on broiler performance, serum lipids, muscle fatty acid profile and meat quality.

    PubMed

    Ghasemi, H A; Shivazad, M; Mirzapour Rezaei, S S; Karimi Torshizi, M A

    2016-01-01

    A 42-d trial was conducted to investigate the effect of adding a synbiotic supplement to diets containing two different types of fat on performance, blood lipids and fatty acid (FA) composition and oxidative stability of breast and thigh meat in broilers. A total of 800 one-d-old male broiler chickens were randomly assigned into 1 of 8 treatments with 4 replicates of 25 birds per treatment. The experiment consisted of a 4 × 2 factorial arrangement of treatments including 4 concentrations of synbiotic (0, 0.5, 1 or 1.5 g/kg diet) and 2 types of fat [sunflower oil (SO) or canola oil (CO)] at an inclusion rate of 50 g/kg diet. Dietary fat type did not affect body weight gain (BWG) or feed conversion ratio (FCR) during the overall experimental period (0-42 d). However, fat type modified serum lipid profile and FA composition and 2-thiobarbituric acid-reactive substances (TBARS) content in breast and thigh meat. The addition of synbiotic to the diet linearly improved overall BWG and FCR and also decreased serum cholesterol and low-density lipoprotein cholesterol concentrations. The TBARS value in thigh meat after 30 d of storage at 4°C was linearly decreased as the synbiotic inclusion concentrations in the diets increased. Dietary synbiotic also decreased the proportion of monounsaturated fatty acids and increased n-6 polyunsaturated fatty acid (PUFA) concentration in thigh meat, whereas the FA profile of breast meat was not affected by synbiotic supplementation. Moreover, the PUFA/SFA ratio in the breast meat was linearly increased when synbiotic was included in the CO-containing diets. In conclusion, the addition of synbiotic to broiler diets had a positive effect on growth performance, blood lipid profile and meat quality. The results also support the use of synbiotic to increase the capacity of canola oil for enhancing PUFA/SFA ratio of breast meat in broilers.

  1. Development of the SoFAS (Solid Fats and Added Sugars) Concept: The 2010 Dietary Guidelines for Americans123

    PubMed Central

    Nicklas, Theresa A; O’Neil, Carol E

    2015-01-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a “calorie” is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to “empty calories” to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005

  2. Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure.

    PubMed

    Zhuang, Xinbo; Han, Minyi; Kang, Zhuang-li; Wang, Kai; Bai, Yun; Xu, Xing-lian; Zhou, Guang-hong

    2016-03-01

    The purpose of this study was to evaluate the effects of sugarcane dietary fiber (SDF) and pre-emulsified sesame oil for pork fat replacement on batter characteristics. Replacing pork fat with SDF and pre-emulsified sesame oil significantly affected color, water- and fat-binding properties, texture, dynamic rheology, microstructure and sensory analysis. With SDF and pre-emulsified sesame oil, the batters had improved textures and gave good sensory scores. These batters containing SDF had reduced the cholesterol and fat contents. With increasing levels of SDF, the batters had higher water- and fat-binding properties, improved texture (hardness, gumminess and chewiness), dynamic rheology and a more balanced nutritional composition. However, when the level of SDF reached 3%, the pores formed by SDF in batter were too large to hinder aggregation and the hardness of batter was unacceptable, which result the allover acceptability to be unsatisfactory. The sample 2% SDF had comparable overall acceptability to the control batter.

  3. Effect of type and level of dietary fat on rumen fermentation and performance of dairy cows fed corn silage-based diets.

    PubMed

    Onetti, S G; Shaver, R D; McGuire, M A; Grummer, R R

    2001-12-01

    The objective of this study was to investigate the effects of tallow and choice white grease (CWG) fed at 0, 2, and 4% of the diet dry matter (DM) on rumen fermentation and performance of dairy cows when corn silage is the sole forage source. Fifteen midlactation Holstein cows were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments were 0% fat (control), 2% tallow, 2% CWG, 4% tallow, and 4% CWG (DM basis). The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (DM basis). Cows were allowed ad libitum consumption of diets fed twice daily as total mixed rations. Cows fed supplemental fat had lower DM intake and produced less milk and milk fat than cows fed the control diet. Feeding 4% fat reduced milk production and milk fat yield relative to feeding 2% fat. Treatments had little effect on the concentration of trans-octadecenoic acids in milk fat. Total trans fatty acids were poorly related to changes in milk fat percentage. Ruminal pH and total volatile fatty acids concentration were not affected by supplemental fat. The acetate:propionate ratio, NH3-N, and numbers of protozoa in the rumen were significantly decreased when fat was added to the diets. Source of dietary fat did not affect rumen parameters. There was no treatment effect on in situ corn silage DM and neutral detergent fiber disappearance. Including fat in corn silage-based diets had negative effects on milk production and rumen fermentation regardless of the source or level of supplemental fat.

  4. The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source.

    PubMed

    Baéza, E; Gondret, F; Chartrin, P; Le Bihan-Duval, E; Berri, C; Gabriel, I; Narcy, A; Lessire, M; Métayer-Coustard, S; Collin, A; Jégou, M; Lagarrigue, S; Duclos, M J

    2015-10-01

    The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and

  5. Effect of dietary fat and omega-3 fatty acids on urinary eicosanoids and sex hormone concentrations in postmenopausal women: a randomized controlled feeding trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substantial evidence relates increased sex hormone concentrations with increased breast cancer risk. Varying omega-3 fatty acid (n-3) intake may lead to alterations in eicosanoid balance and subsequent changes in circulating sex hormones that reduce risk. To clarify effects of dietary fat and n-3 i...

  6. Effect of dietary fat/carbohydrate ratio on progression of alcoholic liver injury and bone loss in rats fed via total enteral nutrition (TEN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have examined the effects of diet on the dynamics of injury progression or on alcohol-induced bone loss. In the current study, 300 g male Sprague-Dawley rats (N = 10/group) were treated with alcohol containing liquid diets via a stomach tube. Dietary fat content was either 5% (high carbo...

  7. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.

  8. Nominal group technique-elicited barriers and facilitators to following the Dietary Guidelines for solid fats and added sugars in children: The HEALTH Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US population has a high intake of discretionary solid fats and added sugars (SoFAS) which currently exceeds federal dietary recommendations. The goal of this study was to identify barriers and facilitators to following the DGA. Thirty-eight 5th grade children across six Human Nutrition Resear...

  9. Effect of Dietary Cocoa Tea (Camellia ptilophylla) Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    PubMed Central

    Yang, Xiao Rong; Wat, Elaine; Wang, Yan Ping; Ko, Chun Hay; Koon, Chi Man; Siu, Wing Sum; Gao, Si; Cheung, David Wing Shing; Lau, Clara Bik San; Ye, Chuang Xing; Leung, Ping Chung

    2013-01-01

    Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups (n = 10) of C57BL/6 mice that were fed with (1) normal chow (N); (2) high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt) (HF); (3) a high-fat diet supplemented with 2% green tea extract (HFLG); (4) a high-fat diet supplemented with 4% green tea extract (HFHG); (5) a high-fat diet supplemented with 2% cocoa tea extract (HFLC); and (6) a high-fat diet supplemented with 4% cocoa tea extract (HFHC). From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a) body weight, (b) fat pad mass, (c) liver weight, (d) total liver lipid, (e) liver triglyceride and cholesterol, and (f) plasma lipids (triglyceride and cholesterol). These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome. PMID:23935682

  10. Importance of dietary fat during initiation versus promotion in rat mammary cancer

    SciTech Connect

    Hasler, C.M.; Bennink, M.R.

    1986-03-05

    This study was designed to determine if the fat content of the diet would alter 7,12-dimethylbenzanthracene (DMBA) initiation of mammary carcinogenesis. Female Sprague-Dawley rats were fed the AIN-76 (high carbohydrate, HC) diet or a modified AIN-76 diet (high fat (37/sup 5/), HF) prior to initiation. The HF diet had the same energy to nutrient ratio as the HC diet. Two groups were fed either the HC or the HF diet during the initiation and promotion phase (HC-HC and HF-HF groups). A third group was fed the HF diet 20 days before and 12 days after initiation and then were fed the HC diet during the promotion phase (HF-HC group). Weight gain during promotion was similar for the HC-HC and HF-HC groups, but the HF-HF group gained 41% more weight. The HC-HC group had significantly fewer tumors than the HF-HF or HF-HC groups (HC-HC = 1.45 tumors/rat; HF-HF = 2.75 and HF-HC = 3.63). Surprisingly, feeding the HC diet during promotion did not cause a decrease in tumorigenesis (there was actually a non-significant increase). This work demonstrates that the fat (energy) content of the diet during DMBA initiation is critical. Furthermore, the fat (energy) content of the diet during initiation was more critical than during promotion.

  11. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.

  12. Short communication: Effects of milk fat depression induced by a dietary supplement containing trans-10, cis-12 conjugated linoleic acid on properties of semi-hard goat cheese.

    PubMed

    Chen, S X; Rovai, M; Lock, A L; Bauman, D E; Gipson, T A; Ren, F Z; Zeng, S S

    2009-06-01

    Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 x 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.

  13. Dietary fat and antioxidant vitamin intake in patients of neurodegenerative disease in a rural region of Jalisco, Mexico

    PubMed Central

    Navarro-Meza, Mónica; Gabriel-Ortiz, Genaro; Pacheco-Moisés, Fermín P.; Cruz-Ramos, José A.; López-Espinoza, Antonio

    2014-01-01

    Objective To evaluate and compare the intake of lipids and (A, E, and C) vitamins in patients with and without possible neurodegenerative diseases. Methods Twenty adults with possible Alzheimer's disease or Parkinson's disease and 41 control subjects (50–89 years old) from a rural region were studied. Dietary intake was evaluated with the analysis of macronutrients and micronutrients conducted by a food frequency questionnaire and 24 hours dietary record. Analyses were adjusted for age, sex, body mass index, and energy intake. Through interrogation and use of medical record form of health secretary we obtained information about the sociodemographic characteristics. Multivariate analysis of variance to allow for covariated adjustment was used. Results Patients had a lower energy intake, vitamin C (P = 0.016), fruits (P < 0.001), vegetables (P = 0.037), and oils and fat (P = 0.002), than the controls. Interestingly, the C vitamin intake in patients was still higher than the recommended. Patients had a higher consumption of cereals (P = 0.017), high-animal fat diet (P = 0.024), and whole milk (P < 0.001); 2.4% of the controls smoke and 5% are alcohol consumers. Eighty-five percent of patients and 78% of the controls do not have physical activity. Family history of subjects in this study indicated chronic diseases. Conclusion The subjects included in this study had a high intake of C vitamin, this is due to the consumption of fruits and vegetables. However, patients with possible Alzheimer's or Parkinson's disease had a lower intake of fruits and vegetables, which could be due to type of food to which they have access. PMID:24257159

  14. Changes in Dietary Fat Intake and Projections for Coronary Heart Disease Mortality in Sweden: A Simulation Study

    PubMed Central

    Björck, Lena; Rosengren, Annika; Winkvist, Anna; Capewell, Simon; Adiels, Martin; Bandosz, Piotr; Critchley, Julia; Boman, Kurt; Guzman-Castillo, Maria; O’Flaherty, Martin; Johansson, Ingegerd

    2016-01-01

    Objective In Sweden, previous favourable trends in blood cholesterol levels have recently levelled off or even increased in some age groups since 2003, potentially reflecting changing fashions and attitudes towards dietary saturated fatty acids (SFA). We aimed to examine the potential effect of different SFA intake on future coronary heart disease (CHD) mortality in 2025. Methods We compared the effect on future CHD mortality of two different scenarios for fat intake a) daily SFA intake decreasing to 10 energy percent (E%), and b) daily SFA intake rising to 20 E%. We assumed that there would be moderate improvements in smoking (5%), salt intake (1g/day) and physical inactivity (5% decrease) to continue recent, positive trends. Results In the baseline scenario which assumed that recent mortality declines continue, approximately 5,975 CHD deaths might occur in year 2025. Anticipated improvements in smoking, dietary salt intake and physical activity, would result in some 380 (-6.4%) fewer deaths (235 in men and 145 in women). In combination with a mean SFA daily intake of 10 E%, a total of 810 (-14%) fewer deaths would occur in 2025 (535 in men and 275 in women). If the overall consumption of SFA rose to 20 E%, the expected mortality decline would be wiped out and approximately 20 (0.3%) additional deaths might occur. Conclusion CHD mortality may increase as a result of unfavourable trends in diets rich in saturated fats resulting in increases in blood cholesterol levels. These could cancel out the favourable trends in salt intake, smoking and physical activity. PMID:27490257

  15. Dietary cholesterol, fats and risk of Parkinson's disease in the Singapore Chinese Health Study

    PubMed Central

    Tan, Louis C; Methawasin, Kulthida; Tan, Eng-King; Tan, June H; Au, Wing-Lok; Yuan, Jian-Min; Koh, Woon-Puay

    2016-01-01

    Background Prospective studies on lipids and risk of Parkinson's disease (PD) in Asian populations are sparse. This study prospectively examined the associations between dietary cholesterol and major fatty acids, and risk of PD among the Chinese in Singapore. Methods This study used data from the Singapore Chinese Health Study, a population-based prospective cohort of 63 257 men and women aged 45–74 years in Singapore enrolled in 1993–1998. Dietary intakes of cholesterol and fatty acids were derived from a validated semiquantitative food frequency questionnaire and the Singapore Food Composition Table. Incident PD cases were identified either through follow-up interviews or record linkage analysis with hospital discharge and PD outpatient registries. Results After an average of 14.6 years, 218 men and 193 women in the cohort developed PD. Dietary cholesterol was associated with statistically significantly lower risk of PD in a dose–dependent manner among men after adjustment for established risk factors for PD and intakes of major fatty acids. Compared to the lowest quartile, HR (95% CI) for the highest quartile was 0.53 (95% CI 0.33 to 0.84) (P for trend=0.006). Among women, dietary monounsaturated fatty acid was inversely associated with PD risk (P for trend=0.033). Compared to the lowest quartile, HR for the highest quartile was 0.44 (95% CI 0.22 to 0.88). There was no statistically significant association between dietary saturated, n-3 and n-6 fatty acids and PD risk. Conclusions Higher intakes of cholesterol and monounsaturated fatty acids may reduce risk of PD in men and women, respectively. PMID:25669745

  16. Concordant lipoprotein and weight responses to dietary fat changein identical twins with divergent exercise levels

    SciTech Connect

    Williams, Paul T.; Blanche, Patricia J.; Rawlings, Robin; Krauss, Ronald M.

    2004-06-01

    Background/Objective: The purpose of this study is to testthe extent that individual lipoprotein responses to diet can beattributed to genes in the presence of divergent exercise levels.Design:Twenty-eight pairs of male monozygotic twins (one mostly sedentary, theother running an average of 50 km/week more than the sedentary twin) wentfrom a 6-week 40 percent fat diet to a 6-week 20 percent fat diet in acrossover design. The diets reduced fat primarily by reducing saturatedand polyunsaturated fat (both from 14 percent to 4 percent), whileincreasing carbohydrate intake from 45 percent to 65 percent. Results:Despite the twins' differences in physical activity, the dietarymanipulation produced significantly correlated changes (P<0.05) in thetwin's total cholesterol (r=0.56), low-density lipoprotein(LDL)-cholesterol (r=0.70), large, buoyant LDL (Sf7-12, r=0.52), apo A-I(r=0.49), Lp(a) (r=0.49), electrophoresis measurements of LDL-I (LDLsbetween 26 and 28.5 nm diameter, r=0.48), LDL-IIB (25.2-24.6 nm, r=0.54),LDL-IV (22-24.1 nm, r=0.50), and body weights (r=0.41). Replacing fatswith carbohydrates significantly decreased the size and ultracentrifugeflotation rate of the major LDL, the LDL mass concentrations of Sf7-12,LDL-I, high-density lipoprotein (HDL)-cholesterol and apo A-I, andsignificantly increased LDL-IIIA (24.7-25.5 nm diameter) and Lp(a).Conclusions: Even in the presence of extreme exercise difference, genessignificantly affect changes in LDL, apo A-I, Lp(a) and body weight whendietary fats are replaced with carbohydrates.

  17. Dietary supplementation and rapid catch-up growth after acute diarrhoea in childhood.

    PubMed

    Hoare, S; Poppitt, S D; Prentice, A M; Weaver, L T

    1996-10-01

    Diarrhoea is a major cause of short-term growth faltering in children of the developing world. If catch-up weight gain is delayed by inadequate dietary intake, or by further bouts of diarrhoea, progressive growth failure occurs. To test the hypothesis that early refeeding is as effective as later feeding after acute diarrhoea with weight loss, we measured the effects of a timed dietary intervention on weight gain after acute diarrhoea in underweight Gambian children. Thirty-four children aged 4-22 months with weight loss following acute diarrhoea were given a high-energy-protein supplement for 14 d beginning either immediately after rehydration or a fortnight later. With a 50% increase in energy intake and a 100% increase in protein intake there was a rapid and highly significant (P < 0.001) gain in weight within a fortnight whether the supplement was given immediately or 2 weeks after presentation. Rates of weight increase were similar whether supplementation was provided early or late, but over the full 28 d (of intervention and non-intervention) children who received late supplementation had greater overall weight gain (P < 0.02) than those supplemented early. Vigorous and early feeding with a high-energy-protein supplement should be central to the management of malnourished children with acute diarrhoea in developing countries, and may be as important as control of diarrhoea in preventing malnutrition and growth failure. This may be achieved in the community using locally available foods, in the face of continuing diarrhoea.

  18. Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion.

    PubMed

    Kim, Eun Ky; Oh, Tae Jung; Kim, Lee-Kyung; Cho, Young Min

    2016-02-01

    Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281).

  19. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome.

    PubMed

    Roopchand, Diana E; Carmody, Rachel N; Kuhn, Peter; Moskal, Kristin; Rojas-Silva, Patricio; Turnbaugh, Peter J; Raskin, Ilya

    2015-08-01

    Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols.

  20. Status of methodology for the determination of fat-soluble vitamins in foods, dietary supplements, and vitamin premixes.

    PubMed

    Blake, Christopher John

    2007-01-01

    Fat-soluble vitamins (FSVs) include vitamin A, carotenoids, vitamins D, E, and K. New legislation is being introduced in many countries to reinforce regulatory compliance of declared concentrations of vitamins and other micronutrients in food products and dietary supplements. The levels of FSVs are likely to be more closely scrutinized due to their potential health risks associated with overdosing, in particular of vitamin D. However, a proviso of stricter regulatory compliance is that analytical methods must be fit-for-purpose, providing adequate accuracy and precision. Official methods have been published by organizations such as AOAC INTERNATIONAL, European Committee for Standardization, International Dairy Federation, U.S. Pharmacopeia, and International Organization for Standardization. The methods available for foods, dietary supplements, and vitamin premixes are evaluated in this review. In general, these methods show adequate precision for regulatory compliance; however, the field of application has not often been evaluated for a sufficiently large range of food matrixes. Gaps have been noted in the range of published official procedures, particularly for carotenoids and vitamin premixes. The potential of some recent developments in sample preparation and chromatographic techniques were evaluated to provide improved procedures for FSV analysis the future.

  1. Dietary cholesterol induces hepatic inflammation and blunts mitochondrial function in the liver of high-fat-fed mice.

    PubMed

    Li, Songpei; Zeng, Xiao-Yi; Zhou, Xiu; Wang, Hao; Jo, Eunjung; Robinson, Stephen R; Xu, Aimin; Ye, Ji-Ming

    2016-01-01

    The present study investigated the role of dietary cholesterol and fat in the development of nonalcoholic fatty liver disease, a common liver disease in metabolic disorders. Mice were fed a diet of regular chow (CH), chow supplemented with 0.2% w/w cholesterol (CHC), high fat (HF, 45kcal%) or HF with cholesterol (HFC) for 17weeks. While both HF and HFC groups displayed hepatic steatosis and metabolic syndrome, only HFC group developed the phenotype of liver injury, as indicated by an increase in plasma level of alanine transaminase (ALT, by 50-80%). There were ~2-fold increases in mRNA expression of tumor necrosis factor α, interleukin 1β and monocyte chemotactic protein 1 in the liver of HFC-fed mice (vs. HF) but no endoplasmic reticulum stress or oxidative stress was observed. Furthermore, cholesterol suppressed HF-induced increase of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial transcription factor A expression and blunted fatty acid oxidation. Interestingly, after switching HFC to HF diet for 5weeks, the increases in plasma ALT and liver inflammatory markers were abolished but the blunted of mitochondrial function remained. These findings suggest that cholesterol plays a critical role in the conversion of a simple fatty liver toward nonalcoholic steatohepatitis possibly by activation of inflammatory pathways together with retarded mitochondrial function.

  2. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies.

    PubMed

    Cao, Yi; Hou, Lin; Wang, Weijing

    2016-04-15

    Results from prospective cohort studies on the association between dietary total fat and fatty acids intake and risk of breast cancer remain controversial. Pertinent prospective cohort studies were identified by a search of Embase and PubMed from inception to September 2015. Study-specific relative risks (RRs) with 95% confidence intervals were pooled using a random-effect model. Between-study heterogeneity and publication bias were assessed, and sensitivity analysis was conducted. Twenty-four independent studies on dietary total fat and fatty acids intake and seven studies on serum fatty acids were included. The pooled RR of breast cancer for the highest vs. lowest category of dietary total fat intake was 1.10 (1.02-1.19); however, no association was observed in studies adjusting for traditional risk factors of breast cancer. No association was observed between animal fat, vegetable fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3 PUFA, n-6 PUFA, eicosapentaenoic acid, docosahexaenoic acid, alpha-linolenic acid, oleic acid, linoleic acid and arachidonic acid and risk of breast cancer. The pooled RRs of breast cancer for the highest vs. lowest category of serum SFA, MUFA, PUFA, n-3 PUFA and n-6 PUFA were 1.00 (0.78-1.28), 1.41 (0.99-2.03), 0.59 (0.27-1.30), 0.81 (0.60-1.10) and 0.84 (0.60-1.18), respectively. Results from this meta-analysis suggested that dietary total fat and fatty acids might be not associated with risk of breast cancer.

  3. Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the ApcMin/+ model of colon cancer

    PubMed Central

    Soto-Pantoja, D R; Sipes, J M; Martin-Manso, G; Westwood, B; Morris, N L; Ghosh, A; Emenaker, N J; Roberts, D D

    2016-01-01

    Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in ApcMin/+ mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. ApcMin/+:Thbs1−/− mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to ApcMin/+ mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in ApcMin/+:Thbs1−/− mice relative to ApcMin/+:Thbs1+/+mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in ApcMin/+:Thbs1−/− versus ApcMin/+ mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in ApcMin/+ mice results in part from improved mitochondrial function. PMID:27239962

  4. A low-fat dietary pattern and risk of metabolic syndrome in postmenopausal women: The Women’s Health Initiative

    PubMed Central

    Neuhouser, Marian L.; Howard, Barbara; Lu, Jingmin; Tinker, Lesley F.; Van Horn, Linda; Caan, Bette; Rohan, Thomas; Stefanick, Marcia L.; Thomson, Cynthia A.

    2012-01-01

    Objective Nutrition plays an important role in metabolic syndrome etiology. We examined whether the Women’s Health Initiative (WHI) Dietary Modification Trial influenced metabolic syndrome risk. Materials/Methods 48,835 postmenopausal women aged 50–79 years were randomized to a low-fat (20% energy from fat) diet (intervention) or usual diet (comparison) for a mean of 8.1 years. Blood pressure, waist circumference and fasting blood measures of glucose, HDL-cholesterol and triglycerides were measured on a subsample (n= 2816) at baseline and years 1, 3 and 6 post-randomization. Logistic regression estimated associations of the intervention with metabolic syndrome risk and use of cholesterol-lowering and hypertension medications. Multivariate linear regression tested associations between the intervention and metabolic syndrome components. Results At year 3, but not years 1 or 6, women in the intervention group (vs. comparison) had a non-statistically significant lower risk of metabolic syndrome (OR=0.83, 95% CI 0.59–1.18). Linear regression models simultaneously modeling the five metabolic syndrome components revealed significant associations of the intervention with metabolic syndrome at year 1 (p<0.0001), but not years 3 (p=0.19) and 6 (p=0.17). Analyses restricted to intervention-adherent participants strengthened associations at years 3 (p=0.05) and 6 (p=0.06). Cholesterol-lowering and hypertension medication use was 19% lower at year 1 for intervention vs. comparison group women (OR=0.81, 95% CI 0.60–1.09). Over the entire trial, fewer intervention vs. comparison participants used these medications (26.0% vs. 29.9%), although results were not statistically significant (p=0.89). Conclusions The WHI low-fat diet may influence metabolic syndrome risk and decrease use of hypertension and cholesterol-lowering medications. Findings have potential for meaningful clinical translation. PMID:22633601

  5. Influence of dietary fat on the intestinal absorption of lipophilic compounds in goldfish (Carassius auratus).

    PubMed

    Sharifi, M; Connell, W D; Gabric, A

    1997-12-01

    Dietary uptake of a mixture of pp'DDT and four chlorobenzenes from diets with different lipid contents was measured in goldfish (Carassius auratus) in order to investigate the mechanism of intestinal absorption of organic compounds. The results of the experiments suggest that intestinal absorption is basically controlled by chemical diffusion rather than lipid coassimilation. The extent of dietary uptake as indicated by biomagnification factor was strongly correlated with the chemical log Kow, indicating that uptake of the chemicals from the gastrointestinal fluid is similar to the uptake from other aqueous environments and lipid content of the food in the range used in these experiments (2.9-10.9%) could not influence the uptake of lipophilic chemicals.

  6. Effect of various dietary fats on antibody production and lymphocyte proliferation n chickens

    SciTech Connect

    Cassity, N.A.; Fritsche, K.L.; Huang, S.C. )

    1990-02-26

    One-day old Babcock-300 female chicks (n = 80) were fed one of four corn-soybean meal based diets which differed only in fat source. Diets contained 7% by weight: corn oil (CO), canola oil (CA), lard (LA), or fish oil (FO). Chicks (n = 12/trt) were injected with sheep red blood cells (sRBC) at day 21 and antibody titers were measured by haemagglutination at d 28. On d 22 (n = 4/trt) and 26 (n = 4/trt) concanavalin A (Con A), pokeweed mitogen (PWM) or lipopolysaccharide (LPS) stimulated proliferation of splenocytes was assessed by {sup 3}H-thymidine incorporation. The results show that feeding young chicks a diet containing fish oil (rich in n-3 fatty acids) significantly increased weight gain, antibody production, and had a tendency to decrease splenocyte proliferation in response to mitogens compared to other fat sources.

  7. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila.

    PubMed

    Katewa, Subhash D; Akagi, Kazutaka; Bose, Neelanjan; Rakshit, Kuntol; Camarella, Timothy; Zheng, Xiangzhong; Hall, David; Davis, Sonnet; Nelson, Christopher S; Brem, Rachel B; Ramanathan, Arvind; Sehgal, Amita; Giebultowicz, Jadwiga M; Kapahi, Pankaj

    2016-01-12

    Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging.

  8. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function.

    PubMed

    O'Connell, Kelly A; Dabkowski, Erinne R; de Fatima Galvao, Tatiana; Xu, Wenhong; Daneault, Caroline; de Rosiers, Christine; Stanley, William C

    2013-06-01

    High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca(2+)-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca(2+) uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.

  9. Adherence to dietary recommendations for saturated fat, fiber, and sodium is low in American Indians and other U.S. adults with diabetes.

    PubMed

    Eilat-Adar, Sigal; Xu, Jiaqiong; Zephier, Ellie; O'Leary, Veronica; Howard, Barbara V; Resnick, Helaine E

    2008-09-01

    The objective of this article was to evaluate how well American Indians with diabetes met dietary recommendations and to compare adherence to dietary recommendations with those of U.S. adults with diabetes in the NHANES. Dietary intake in both studies was assessed using a 24-h recall questionnaire. Dietary intakes were evaluated against American Diabetes Association (ADA) dietary recommendations. The analysis sample consisted of 1008 participants from the Strong Heart Study (SHS) examined from 1997 to 1999 and 373 participants from NHANES examined from 1999 to 2000, all with diabetes. In both samples, intake of protein, PUFA, monounsaturated fatty acids, and carbohydrates met the 1997 ADA dietary recommendations. However, intakes of SFA as well as sodium were higher and dietary fiber intake was lower than recommended. In the SHS and NHANES, only 4.6 and 8.5% of persons with diabetes met recommendations for both SFA and fiber (P = 0.02), respectively. However, only 8.3% of the NHANES sample met the 2006 recommendations for SFA and fiber and none of the SHS sample met those recommendations. This cross-sectional study shows low adherence to ADA dietary recommendations for saturated fat, fiber, and sodium by American Indians with diabetes and by the broader U.S. population of adults with diabetes and shows that for American Indians with diabetes, programs to decrease SFA and increase fiber intakes are warranted.

  10. Clinical and pathological features of fat embolism with acute respiratory distress syndrome.

    PubMed

    Kao, Shang Jyh; Yeh, Diana Yu-Wung; Chen, Hsing I

    2007-09-01

    FES (fat embolism syndrome) is a clinical problem, and, although ARDS (acute respiratory distress syndrome) has been considered as a serious complication of FES, the pathogenesis of ARDS associated with FES remains unclear. In the present study, we investigated the clinical manifestations, and biochemical and pathophysiological changes, in subjects associated with FES and ARDS, to elucidate the possible mechanisms involved in this disorder. A total of eight patients with FES were studied, and arterial blood pH, PaO(2) (arterial partial pressure of O(2)), PaCO(2) (arterial partial pressure of CO(2)), biochemical and pathophysiological data were obtained. These subjects suffered from crash injuries and developed FES associated with ARDS, and each died within 2 h after admission. In the subjects, chest radiography revealed that the lungs were clear on admission, and pulmonary infiltration was observed within 2 h of admission. Arterial blood pH and PaO(2) declined, whereas PaCO(2) increased. Plasma PLA(2) (phospholipase A(2)), nitrate/nitrite, methylguanidine, TNF-alpha (tumour necrosis factor-alpha), IL-1beta (interleukin-1beta) and IL-10 (interleukin-10) were significantly elevated. Pathological examinations revealed alveolar oedema and haemorrhage with multiple fat droplet depositions and fibrin thrombi. Fat droplets were also found in the arterioles and/or capillaries in the lung, kidney and brain. Immunohistochemical staining identified iNOS (inducible nitric oxide synthase) in alveolar macrophages. In conclusion, our clinical analysis suggests that PLA(2), NO, free radicals and pro-inflammatory cytokines are involved in the pathogenesis of ARDS associated with FES. The major source of NO is the alveolar macrophages.

  11. The effect of chromium as chromium propionate on growth performance, carcass traits, meat quality, and the fatty acid profile of fat from pigs fed no supplemented dietary fat, choice white grease, or tallow.

    PubMed

    Jackson, A R; Powell, S; Johnston, S L; Matthews, J O; Bidner, T D; Valdez, F R; Southern, L L

    2009-12-01

    The purpose of this research was to investigate the effect of Cr as chromium propionate (CrProp) on growth performance, carcass traits, meat quality, and the fatty acid profile of fat from pigs fed no supplemented dietary fat, choice white grease (CWG), or tallow. An experiment was conducted with 108 crossbred Yorkshire gilts assigned in a randomized complete block design based on BW (average initial and final BW were 29 +/- 3 and 109 +/- 7 kg, respectively) and allotted within block to a 2 x 3 factorial arrangement of treatments. The treatment arrangement consisted of 2 levels of Cr supplementation (0 and 200 microg/kg in the form of CrProp) and 3 dietary fat sources (no added fat, CWG, or tallow). Each treatment was replicated 6 times with 3 pigs per replicate pen. The experiment was conducted over time with 3 replicates in each of 2 trials. A 4-phase grower-finisher feeding program was used. Dietary treatments were 1) a corn-soybean meal (C-SBM) diet with no added fat; 2) a C-SBM diet with 4% added tallow; 3) a C-SBM diet with 4% added CWG; 4) diet 1 + 200 microg/kg of Cr as CrProp; and 5) diet 2 + 200 microg/kg of Cr; 6) diet 3 + 200 microg/kg of Cr. Addition of Cr did not affect (P > 0.10) growth performance, but did decrease (P = 0.05) 10th-rib backfat and increase (P = 0.03) percentage of muscle. Gain:feed was increased (P = 0.003) and ADFI was decreased (P = 0.03) by fat addition. Fat addition increased HCW (P = 0.05) and dressing percent (P = 0.03). Average backfat, 9th-rib LM cook loss, and 10th-rib LM drip loss and total loss were decreased (P = 0.02 to 0.04) by tallow. Belly bending on both the teatline and scribe side were increased (P = 0.01 to 0.03) by CWG. Iodine values on belly fat samples were decreased (P = 0.02) by Cr supplementation. In addition, iodine values on belly and loin fat samples were increased (P = 0.001) by CWG. Overall, Cr supplementation decreased backfat and the iodine value of belly fat and increased the percentage of muscle.

  12. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    PubMed

    Boa, Beatriz C S; Souza, Maria das Graças C; Leite, Richard D; da Silva, Simone V; Barja-Fidalgo, Thereza Christina; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2014-01-01

    Obesity is epidemic in the western world and central adipose tissue deposition points to increased cardiovascular morbidity and mortality, independently of any association between obesity and other cardiovascular risk factors. Physical exercise has been used as non-pharmacological treatment to significantly reverse/attenuate obesity comorbidities. In this study we have investigated effects of exercise and/or dietary modification on microcirculatory function, body composition, serum glucose, iNOS and eNOS expression on 120 male hamsters treated for 12 weeks with high fat chow (HF, n = 30) starting on the 21st day of birth. From week 12 to 20, animals were randomly separated in HF (no treatment change), return to standard chow (HFSC, n = 30), high fat chow associated to an aerobic exercise training program (AET) (HFEX, n = 30) and return to standard chow+AET (HFSCEX, n = 30). Microvascular reactivity in response to acetylcholine and sodium nitroprusside and macromolecular permeability increase induced by 30 minutes ischemia followed by reperfusion were assessed on the cheek pouch preparation. Total body fat and aorta eNOS and iNOS expression by immunoblotting assay were evaluated on the experimental day. Compared to HFSC and HFSCEX groups, HF and HFEX ones presented increased visceral fat [(mean±SEM) (HF)4.9±1.5 g and (HFEX)4.7±0.9 g vs. (HFSC)*3.0±0.7 g and (HFSCEX)*1.9±0.4 g/100 g BW]; impaired endothelial-dependent vasodilatation [Ach 10(-8) M (HF)87.9±2.7%; (HFSC)*116.7±5.9%; (HFEX)*109.1±4.6%; (HFSCEX)*105±2.8%; Ach10(-6) M (HF)95.3±3.1%; (HFSC)*126±6.2%; (HFEX)*122.5±2.8%; (HFSCEX)*118.1±4.3% and Ach10(-4) M (HF)109.5±4.8%; (HFSC)*149.6±6.6%; (HFEX)*143.5±5.4% and (HFSCEX)*139.4±5.2%], macromolecular permeability increase after ischemia/reperfusion [(HF)40.5±4.2; (HFSC)*19.0±1.6; (HFEX)*18.6±2.1 and (HFSCEX)* 21.5±3.7 leaks/cm2), decreased eNOS expression, increased leptin and glycaemic levels. Endothelial

  13. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  14. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge.

    PubMed

    Lai, Chao-Qiang; Wojczynski, Mary K; Parnell, Laurence D; Hidalgo, Bertha A; Irvin, Marguerite Ryan; Aslibekyan, Stella; Province, Michael A; Absher, Devin M; Arnett, Donna K; Ordovás, José M

    2016-12-01

    Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4(+) T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10(-7)), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD.

  15. The effect of dietary intake changes on nutritional status in acute leukaemia patients after first induction chemotherapy.

    PubMed

    Malihi, Z; Kandiah, M; Chan, Y M; Esfandbod, M; Vakili, M; Hosseinzadeh, M; Zarif Yeganeh, M

    2015-07-01

    This study aimed to evaluate how changes in dietary intake among acute lymphoblastic and acute myeloid leukaemia (ALL and AML) patients affect nutritional status after the first induction chemotherapy. Dietary intake was assessed using 24-h recall and a 136-item food frequency questionnaire. Nutritional status was assessed by Patients Subjective Global Assessment questionnaire before starting induction therapy and again after 1 month. All newly diagnosed acute leukaemia patients aged 15 years old and older who attended three referral hospitals for initiation of their induction chemotherapy were included in the sample selection provided that they gave informed consent. A total of 30 AML and 33 ALL patients participated in the study. Dietary intake and nutritional status worsened after the chemotherapy treatment. Dietary intake in terms of macronutrients, micronutrients, food variety and diet diversity score changed significantly after the induction chemotherapy. No significant relationship was found between the changes in dietary indices and nutritional status. Chemotherapy-related side effects as an additional factor to cancer itself could affect dietary intake of leukaemia patients. The effectiveness of an early assessment of nutritional status and dietary intake should be further investigated in order to deter further deterioration.

  16. Improvement of fasting plasma glucose level after ingesting moderate amount of dietary fiber in Japanese men with mild hyperglycemia and visceral fat obesity.

    PubMed

    Kobayakawa, Akira; Suzuki, Tomoo; Ikami, Takao; Saito, Morio; Yabe, Daisuke; Seino, Yutaka

    2013-06-01

    A double-blind, randomized, controlled study was conducted to evaluate the effects of a moderate amount of dietary fiber intake on fasting plasma glucose level and physical characteristics in Japanese men with mild hyperglycemia and visceral fat obesity. Thirty men with mild hyperglycemia (>5.6 mmol/L) and visceral fat accumulation (>100 cm²) ingested 7.5 g/day of dietary fiber for 12 weeks. An abdominal computed tomography scan was performed at baseline and at week 12. Blood was drawn every 4 weeks. In the test food group, fasting plasma glucose level was reduced with time, and the difference between the test food group and placebo group was statistically significant at week 12. Body weight and body mass index were also reduced with time, but visceral and subcutaneous fat areas did not change significantly during the study period. The results suggest that even a moderate amount of dietary fiber intake may be beneficial for managing the fasting plasma glucose level concomitant with insulin resistance, body weight, and body mass index in Japanese men with mild hyperglycemia and visceral fat obesity.

  17. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet.

    PubMed

    Alvheim, Anita Røyneberg; Torstensen, Bente E; Lin, Yu Hong; Lillefosse, Haldis Haukås; Lock, Erik-Jan; Madsen, Lise; Frøyland, Livar; Hibbeln, Joseph R; Malde, Marian Kjellevold

    2014-01-01

    Dietary intake of linoleic acid (LNA, 18:2n-6) has increased dramatically during the 20th century and is associated with greater prevalence of obesity. The endocannabinoid system is involved in regulation of energy balance and a sustained hyperactivity of the endocannabinoid system may contribute to obesity. Arachidonic acid (ARA, 20:4n-6) is the precursor for 2-AG and anandamide (AEA), and we sought to determine if low fat diets (LFD) could be made obesogenic by increasing the endocannabinoid precursor pool of ARA, causing excessive endocannabinoid signaling leading to weight gain and a metabolic profile associated with obesity. Mice (C57BL/6j, 6 weeks of age) were fed 1 en% LNA and 8 en% LNA in low fat (12.5 en%) and medium fat diets (MFD, 35 en%) for 16 weeks. We found that increasing dietary LNA from 1 to 8 en% in LFD and MFD significantly increased ARA in phospholipids (ARA-PL), elevated 2-AG and AEA in liver, elevated plasma leptin, and resulted in larger adipocytes and more macrophage infiltration in adipose tissue. In LFD, dietary LNA of 8 en% increased feed efficiency and caused greater weight gain than in an isocaloric reduction to 1 en% LNA. Increasing dietary LNA from 1 to 8 en% elevates liver endocannabinoid levels and increases the risk of developing obesity. Thus a high dietary content of LNA (8 en%) increases the adipogenic properties of a low fat diet.

  18. Dietary fat and not calcium supplementation or dairy product consumption is associated with changes in anthropometrics during a randomized, placebo-controlled energy-restriction trial

    PubMed Central

    2011-01-01

    Insufficient calcium intake has been proposed to cause unbalanced energy partitioning leading to obesity. However, weight loss interventions including dietary calcium or dairy product consumption have not reported changes in lipid metabolism measured by the plasma lipidome. Methods The objective of this study was to determine the relationships between dairy product or supplemental calcium intake with changes in the plasma lipidome and body composition during energy restriction. A secondary objective of this study was to explore the relationships among calculated macronutrient composition of the energy restricted diet to changes in the plasma lipidome, and body composition during energy restriction. Overweight adults (n = 61) were randomized into one of three intervention groups including a deficit of 500kcal/d: 1) placebo; 2) 900 mg/d calcium supplement; and 3) 3-4 servings of dairy products/d plus a placebo supplement. Plasma fatty acid methyl esters of cholesterol ester, diacylglycerol, free fatty acids, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine and triacylglycerol were quantified by capillary gas chromatography. Results After adjustments for energy and protein (g/d) intake, there was no significant effect of treatment on changes in weight, waist circumference or body composition. Plasma lipidome did not differ among dietary treatment groups. Stepwise regression identified correlations between reported intake of monounsaturated fat (% of energy) and changes in % lean mass (r = -0.44, P < 0.01) and % body fat (r = 0.48, P < 0.001). Polyunsaturated fat intake was associated with the % change in waist circumference (r = 0.44, P < 0.01). Dietary saturated fat was not associated with any changes in anthropometrics or the plasma lipidome. Conclusions Dairy product consumption or calcium supplementation during energy restriction over the course of 12 weeks did not affect plasma lipids. Independent of calcium and dairy product consumption

  19. Effects of the type of dietary fat on acetylcholine-evoked amylase secretion and calcium mobilization in isolated rat pancreatic acinar cells.

    PubMed

    Yago, María D; Díaz, Ricardo J; Martínez, María A; Audi, Nama'a; Naranjo, José A; Martínez-Victoria, Emilio; Mañas, Mariano

    2006-04-01

    Olive oil is a major component of the Mediterranean diet, and its role in human health is being actively debated. This study aimed to clarify the mechanism of pancreatic adaptation to dietary fat. For this purpose, we examined whether dietary-induced modification of pancreatic membranes affects acinar cell function in response to the secretagogue acetylcholine (ACh). Weaning male Wistar rats were assigned to one of two experimental groups and fed for 8 weeks with a commercial chow (C) or a semisynthetic diet containing virgin olive oil as dietary fat (OO). The fatty acid composition of pancreatic plasma membranes was determined by gas-liquid chromatography. For assessment of secretory function, viable acini were incubated with ACh and amylase of supernatant was further assayed with a substrate reagent. Changes in cytosolic Ca(2+) concentration in response to ACh were measured by fura-2 AM fluorimetry. Compared to C rats, pancreatic cell membranes of OO rats had a higher level of monounsaturated fatty acids and a lower level of both saturated and polyunsaturated fatty acids, thus, reflecting the type of dietary fat given. Net amylase secretion in response to ACh was greatly enhanced after OO feeding, although this was not paralleled by enhancement of ACh-evoked Ca(2+) peak increases. In conclusion, chronic intake of diets that differ in the fat type influences not only the fatty acid composition of rat pancreatic membranes but also the responsiveness of acinar cells to ACh. This mechanism may be, at least in part, responsible for the adaptation of the exocrine pancreas to the type of fat available.

  20. Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men.

    PubMed

    Sutherland, Wayne H F; de Jong, Sylvia A; Walker, Robert J

    2007-10-01

    Postprandial chylomicrons are potent ultimate acceptors of cell membrane cholesterol and are believed to accelerate reverse cholesterol transport (RCT). We compared the effects of meals rich in polyunsaturated fat (PUFA) and either high (605 mg) or low (151 mg) in cholesterol and a meal rich in dairy fat (DF) in the form of cream on net in vitro transport of red blood cell (RBC) membrane cholesterol to 4 and 6 h postprandial plasma in eight normotriglyceridemic (NTG-H) and eight hypertriglyceridemic (HTG-H) men with mild to moderate hypercholesterolemia. In HTG-H men, cell cholesterol accumulation in 6-h postprandial plasma was significantly (P = 0.02) less after the PUFA-HC meal compared with the other meals. The significant (P < 0.001) increase in cell plus endogenous cholesterol accumulation in the triglyceride-rich lipoprotein (TRL) fraction of 4 h postprandial plasma incubated with RBC was significantly (P = 0.007) higher after the PUFA-HC meal compared with DF meal in HTG-H men. In NTG-H men, cholesterol accumulation in plasma and plasma lipoproteins in the presence and absence of RBC was not significantly affected by the type of meal ingested. These data suggest that addition of large amounts of cholesterol to a PUFA meal may impair diffusion-mediated transport of cell membrane cholesterol to postprandial plasma and that replacing DF with PUFA in a meal increases postprandial lipemia and may potentially increase cholesterol accumulation in atherogenic postprandial TRL in HTG-H men.

  1. Amount of dietary fat and type of soluble fiber independently modulate postabsorptive conversion of beta-carotene to vitamin A in mongolian gerbils.

    PubMed

    Deming, D M; Boileau, A C; Lee, C M; Erdman, J W

    2000-11-01

    Current dietary guidelines recommend a decrease in fat intake and an increase in fiber consumption. Decreased bioavailability (BV) of carotenoids is thought to be associated with both of these recommendations. A 2 x 4 factorial design was used to test the effects of dietary fat level at 10 or 30% of total energy and fiber type using no fiber, silica, citrus pectin or oat gum (7 g/100 g) on beta-carotene (betaC) BV in 4- to 5-wk-old Mongolian gerbils. We assessed BV as both accumulation of betaC and bioconversion of betaC to vitamin A (VA) in tissues. A VA- and betaC-deficient diet was fed for 1 wk followed by one of eight isocaloric, semipurified diets supplemented with carrot powder [ approximately 1 microgram betaC, 0.5 microgram alpha-carotene (alphaC)/kJ diet] for 2 wk (n = 12/group). Increasing dietary fat resulted in higher VA (P: = 0.074) and lower betaC (P: = 0.0001) stores in the liver, suggesting that consumption of high fat diets enhances conversion of betaC to VA. The effect of soluble fiber on hepatic VA storage was dependent on fiber type. Consumption of citrus pectin resulted in lower hepatic VA stores and higher hepatic betaC stores compared with all other groups, suggesting less conversion of betaC to VA. In contrast, consumption of oat gum resulted in hepatic VA and betaC stores that were higher (P = 0.012) and lower (P = 0.022), respectively, than those of citrus pectin-fed gerbils. The level of dietary fat consumed with soluble fiber had no interactive effects on hepatic VA, betaC or alphaC stores. Results demonstrate that betaC BV is independently affected by dietary fat level and type of soluble fiber, and suggest that these dietary components modulate postabsorptive conversion of betaC to VA. This study confirms the negative effects of citrus pectin on betaC BV, and suggests that oat gum does not adversely affect betaC BV.

  2. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice

    PubMed Central

    Liu, Lumei; Byrd, Aria; Plummer, Justin; Erikson, Keith M.; Harrison, Scott H.; Han, Jian

    2016-01-01

    Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n = 5) with varying fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus has a more distinct change in FtH mRNA expression compared with other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings

  3. The interplay among dietary fat, sugar, protein and açai (Euterpe oleracea Mart.) pulp in modulating lifespan and reproduction in a Tephritid fruit fly.

    PubMed

    Liedo, Pablo; Carey, James R; Ingram, Donald K; Zou, Sige

    2012-07-01

    Macronutrient balance is a critical contributor in modulating lifespan and health. Consumption of diets rich in fruits and vegetables provides numerous health benefits. The interactions among macronutrients and botanicals and how they influence aging and health remain elusive. Here we employed a nutritional geometry approach to investigate the interplay among dietary fat, sugar, protein and antioxidant- and polyphenolic-rich freeze-dried açai pulp in modulating lifespan and reproductive output in the Mexican fruit fly, Anastrepha ludens (Loew). Individual flies were cultured on one of the 24 diets made from a combination of 1) sugar and yeast extract (SY) at four ratios, 2) palmitic acid, a saturated fat, at two concentrations and 3) freeze-dried açai pulp at three concentrations. Fat addition decreased lifespan in females on the sugar only diet and the diet with a low SY ratio, while decreasing lifetime reproductive output in flies on the diet with the low SY ratio when compared to SY ratio-matched low fat controls. Açai supplementation promoted survival, while decreasing lifetime reproductive output, in flies on diets with high fat and high sugar but not other diets when compared to diet-matched non-supplemented controls. These findings reveal that the impact of fat and açai on lifespan and reproductive output depends on the dietary content of other macronutrients. Our results reveal the intricate interplay among macronutrients and nutraceuticals, and underscore the importance of taking macronutrient balance into consideration in designing dietary interventions for aging and health.

  4. The interplay among dietary fat, sugar, protein and açai (Euterpe oleracea Mart.) pulp in modulating lifespan and reproduction in a Tephritid fruit fly

    PubMed Central

    Liedo, Pablo; Carey, James R.; Ingram, Donald K.; Zou, Sige

    2012-01-01

    Macronutrient balance is a critical contributor in modulating lifespan and health. Consumption of diets rich in fruits and vegetables provides numerous health benefits. The interactions among macronutrients and botanicals and how they influence aging and health remain elusive. Here we employed a nutritional geometry approach to investigate the interplay among dietary fat, sugar, protein and antioxidant- and polyphenolic-rich freeze-dried açai pulp in modulating lifespan and reproductive output in the Mexican fruit fly, Anastrepha ludens (Loew). Individual flies were cultured on one of the 24 diets made from a combination of 1) sugar and yeast extract (SY) at four ratios, 2) palmitic acid, a saturated fat, at two concentrations and 3) freeze-dried açai pulp at three concentrations. Fat addition decreased lifespan in females on the sugar only diet and the diet with a low SY ratio, while decreasing lifetime reproductive output in flies on the diet with the low SY ratio when compared to SY ratio-matched low fat controls. Açai supplementation promoted survival, while decreasing lifetime reproductive output, in flies on diets with high fat and high sugar but not other diets when compared to diet-matched non-supplemented controls. These findings reveal that the impact of fat and açai on lifespan and reproductive output depends on the dietary content of other macronutrients. Our results reveal the intricate interplay among macronutrients and nutraceuticals, and underscore the importance of taking macronutrient balance into consideration in designing dietary interventions for aging and health. PMID:22580089

  5. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  6. Food Labeling: Health Claims; Dietary Saturated Fat and Cholesterol and Risk of Coronary Heart Disease. Interim final rule; request for comments.

    PubMed

    2016-12-19

    The Food and Drug Administration (FDA or we) is amending the regulation authorizing a health claim on the relationship between dietary saturated fat and cholesterol and risk of coronary heart disease (CHD) to permit raw fruits and vegetables that fail to comply with the low fat definition and/or the minimum nutrient content requirement to be eligible to bear the claim. We are taking this action in response to a petition submitted by the American Heart Association (the petitioner). The amendment expands the use of this health claim to certain fruits and vegetables that are currently ineligible for the health claim.

  7. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: effects on the longissimus lumborum muscle proteome.

    PubMed

    Pires, V M R; Madeira, M S; Dowle, A A; Thomas, J; Almeida, A M; Prates, J A M

    2016-07-19

    Due to genetic selection towards reduced subcutaneous fat, the amount of intramuscular fat (IMF) in commercial pigs has been reduced (<2.5%), compromising pork quality. The use of reduced protein diets (RPD) is a good strategy to increase IMF in pigs. We have previously shown that increased IMF promoted by RPD is mediated by lysine restriction. However, the molecular mechanisms involved remain unclear. Here we performed a proteomics study to quantify differentially regulated proteins in the longissimus lumborum muscle of pigs (n = 4) fed a normal protein diet (NPD) (16.0% CP) or a reduced protein diet (RPD) (13.0% CP). Both isobaric tags for relative and absolute quantification (iTRAQ) and label-free methods were used. Glycolysis, Krebs cycle, mitochondrion, contractile proteins, respiratory chain, and calcium signalling were significantly enriched in muscle samples. Thirty five proteins shown to be differentially expressed and were classified using gene ontology (GO) terms and functional annotation clustering, highlighting main relevant biological networks and proteins associated with muscle physiology and meat quality. Members of GO categories "muscle contraction" and "structural constituents of cytoskeleton", were the most significantly up-regulated proteins in muscle from pigs fed RPD. Conversely, in animals fed NPD most up-regulated proteins were enzymes involved in the regulation of energy metabolism. Our data revealed that RPD affects the amounts of proteins related to fibre type and structure, and energy metabolism. It is suggested that the increased IMF promoted by dietary protein reduction in growing-finishing pigs is mediated by shifting the metabolic properties of fibres from glycolytic to oxidative.

  8. Bovine serum albumin as the dominant form of dietary protein reduces subcutaneous fat mass, plasma leptin and plasma corticosterone in high fat-fed C57/BL6J mice.

    PubMed

    McManus, Bettina L; Korpela, Riitta; Speakman, John R; Cryan, John F; Cotter, Paul D; Nilaweera, Kanishka N

    2015-08-28

    Increasing evidence suggests that the source of dietary protein can have an impact on weight gain and fat mass during high-fat feeding in both humans and rodents. The present study examined whether dietary bovine serum albumin (BSA) as the dominant source of protein alters energy balance and adiposity associated with high-fat feeding. C57/BL6J mice were given a diet with 10 % of energy from fat and 20 % of energy from casein or a diet with 45 % of energy from fat and either 20 % of energy from casein (HFD) or BSA (HFD+BSA) for 13 weeks. The HFD+BSA diet did not significantly alter daily energy expenditure, locomotor activity and RER, but did increase cumulative energy intake and percentage of lean mass while reducing feed efficiency and percentage of fat mass when compared with the HFD (P< 0·05). In subcutaneous adipose tissue (SAT), the HFD+BSA diet increased the mRNA levels of PPARα (PPARA), carnitine palmitoyltransferase 1b (CPT1b) and uncoupling protein 3 (UCP3), but reduced the mRNA level of leptin when compared with the HFD (P< 0·05). The SAT mRNA levels of PPARA, CPT1b and UCP3 were negatively correlated (P< 0·05) with SAT mass, which was reduced in HFD+BSA mice compared with HFD controls (P< 0·01). No differences in epididymal fat mass existed between the groups. The HFD+BSA diet normalised plasma leptin and corticosterone levels compared with the HFD (P< 0·05). While differences in leptin levels were associated with the percentage of fat mass (P< 0·01), changes in corticosterone concentrations were independent of the percentage of fat mass (P< 0·05). The data suggest that the HFD+BSA diet influences plasma leptin levels via SAT mass reduction where mRNA levels of genes linked to β-oxidation were increased, whereas differences in plasma corticosterone levels were not related to fat mass reduction.

  9. Dietary consequences of recommending reduced-fat dairy products in the weight-loss context: a secondary analysis with practical implications for registered dietitians.

    PubMed

    Nolan-Clark, Deborah; Mathers, Elizabeth; Probst, Yasmine; Charlton, Karen; Batterham, Marijka; Tapsell, Linda C

    2013-03-01

    Replacing full-fat dairy products with reduced-fat varieties is a dietetic strategy for reducing energy intake while maintaining nutritional adequacy. This study aimed to explore the dietary outcomes of this recommendation in the context of weight loss. This study involved a secondary analysis of diet-history data for 86 adults (23 males and 63 females; body mass index=31.1±3.4) who had completed 3 months of a weight-loss trial in 2009, including advice to consume reduced-fat dairy products. Dairy food intake was categorized using the Australian 1995 National Nutrition Survey food hierarchy. Paired t tests and Wilcoxon signed rank tests determined dairy product consumption change after dietetic intervention. Total fat and energy per day from dairy products decreased significantly, from 14.1±1.2 g to 5.8±0.6 g and 283±20 kcal to 223±14 kcal, respectively, and total carbohydrate from dairy products increased significantly (P=0.04). Only 19.7% of participants met their dietary target of two to three servings of dairy foods per day at 3 months. When analyzed by sex, males decreased their intake of dairy products significantly, from 377.63±62.3 g/day to 357.3±46.7 g/day. Despite consuming less fat from dairy products, females did not significantly reduce energy intake from these foods (P=0.05). This study indicated that men and women responded differently to advice to change from regular to reduced-fat dairy products. Of more concern, however, is that in a weight-loss context, both men and women might choose to consume fewer servings of this food category with significant nutritional implications. Overall, this research highlights the need to consider the impact of sex and the background diet when recommending reduced-fat dairy products in the weight-loss context.

  10. Effects of dietary glucogenic precursors and fat on feed intake and carbohydrate status of transition dairy cows.

    PubMed

    Patton, R S; Sorenson, C E; Hippen, A R

    2004-07-01

    Twenty-four multiparous Holstein cows were used to determine the effects of dietary fat and glucose precursors on energy status and lactation. The treatment group (T) received 409 g/d (DM basis) of a combination of calcium salts of fatty acids, calcium propionate, and propylene glycol. The control group (C) received 409 g/d of a mixture of calcium salts of fatty acids and ground barley from 14 +/- 0.9 g/d before until 21 d after calving. Dry matter intake was greater (16.1 vs. 13.6 +/- 1.3 kg/d) for T than C during the last week prepartum and did not decrease for T from the previous week, whereas, in C, DM intakes decreased by 3.2 kg/d. Production of milk and milk fat did not differ. There was a tendency for lower protein and increased lactose concentrations in milk from T cows. Milk fat percentage was lower in T at d 7 (5.5 vs. 6.4 +/- 0.5%) and 28 (4.4 vs. 5.5 +/- 0.5%) of lactation. Liver lipid content was numerically lower (7.9 vs. 9.2 +/- 0.9%) and glycogen content was significantly higher (2.4 vs. 2.0 +/- 0.1%) in T vs. C cows on d 7 of lactation. Concentrations of nonesterified fatty acids were lower in blood of T cows on d 2 and 7 of lactation. Over all time points, blood glucose concentrations were higher in T cows pre- (70.75 vs. 62.1 +/- 1.3 mg/dL) and postpartum (60.1 vs. 56.2 +/- 1.1 mg/dL). Insulin concentrations in blood were greater for T (397 vs. 314 +/- 48 pg/mL) both pre- and postpartum. Feeding glucose precursors in combination with rumen inert lipids, compared with feeding barley in combination with the lipids for 2 wk before parturition and 3 wk postpartum helped avoid prepartum feed intake depression and increased blood glucose and insulin and decreased blood NEFA.

  11. Nephropathy in dietary hyperoxaluria: A potentially preventable acute or chronic kidney disease

    PubMed Central

    Glew, Robert H; Sun, Yijuan; Horowitz, Bruce L; Konstantinov, Konstantin N; Barry, Marc; Fair, Joanna R; Massie, Larry; Tzamaloukas, Antonios H

    2014-01-01

    Hyperoxaluria can cause not only nephrolithiasis and nephrocalcinosis, but also renal parenchymal disease histologically characterized by deposition of calcium oxalate crystals throughout the renal parenchyma, profound tubular damage and interstitial inflammation and fibrosis. Hyperoxaluric nephropathy presents clinically as acute or chronic renal failure that may progress to end-stage renal disease (ESRD). This sequence of events, well recognized in the past in primary and enteric hyperoxalurias, has also been documented in a few cases of dietary hyperoxaluria. Estimates of oxalate intake in patients with chronic dietary hyperoxaluria who developed chronic kidney disease or ESRD were comparable to the reported average oxalate content of the diets of certain populations worldwide, thus raising the question whether dietary hyperoxaluria is a primary cause of ESRD in these regions. Studies addressing this question have the potential of improving population health and should be undertaken, alongside ongoing studies which are yielding fresh insights into the mechanisms of intestinal absorption and renal excretion of oxalate, and into the mechanisms of development of oxalate-induced renal parenchymal disease. Novel preventive and therapeutic strategies for treating all types of hyperoxaluria are expected to develop from these studies. PMID:25374807

  12. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    PubMed

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  13. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men.

    PubMed

    Kim, Jin-Kwang; Moore, David J; Maurer, David G; Kim-Shapiro, Daniel B; Basu, Swati; Flanagan, Michael P; Skulas-Ray, Ann C; Kris-Etherton, Penny; Proctor, David N

    2015-02-01

    Despite the popularity of dietary nitrate supplementation and the growing evidence base of its potential ergogenic and vascular health benefits, there is no direct information about its effects on exercising limb blood flow in humans. We hypothesized that acute dietary nitrate supplementation from beetroot juice would augment the increases in forearm blood flow, as well as the progressive dilation of the brachial artery, during graded handgrip exercise in healthy young men. In a randomized, double-blind, placebo-controlled crossover study, 12 young (22 ± 2 years) healthy men consumed a beetroot juice (140 mL Beet-It Sport, James White Juice Company) that provided 12.9 mmol (0.8 g) of nitrate or placebo (nitrate-depleted Beet-It Sport) on 2 study visits. At 3 h postconsumption, brachial artery diameter, flow, and blood velocity were measured (Doppler ultrasound) at rest and during 6 exercise intensities. Nitrate supplementation raised plasma nitrate (19.5-fold) and nitrite (1.6-fold) concentrations, and lowered resting arterial pulse wave velocity (PWV) versus placebo (all p < 0.05), indicating absorption, conversion, and a biological effect of this supplement. The supplement-associated lowering of PWV was also negatively correlated with plasma nitrite (r = -0.72, p = 0.0127). Despite these systemic effects, nitrate supplementation had no effect on brachial artery diameter, flow, or shear rates at rest (all p ≥ 0.28) or during any exercise workload (all p ≥ 0.18). These findings suggest that acute dietary nitrate supplementation favorably modifies arterial PWV, but does not augment blood flow or brachial artery vasodilation during nonfatiguing forearm exercise in healthy young men.

  14. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults.

  15. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men

    PubMed Central

    Kim, Jin-Kwang; Moore, David J.; Maurer, David G.; Kim-Shapiro, Daniel B.; Basu, Swati; Flanagan, Michael P.; Skulas-Ray, Ann C.; Kris-Etherton, Penny; Proctor, David N.

    2014-01-01

    Despite the popularity of dietary nitrate supplementation and the growing evidence base of its potential ergogenic and vascular health benefits, there is no direct information about its effects on exercising limb blood flow in humans. We hypothesized that acute dietary nitrate supplementation from beetroot juice would augment the increases in forearm blood flow, as well as the progressive dilation of the brachial artery, during graded handgrip exercise in healthy young men. In a randomized, double-blind, placebo-controlled crossover study, 12 young (22 ± 2 years) healthy men consumed a beetroot juice (140 mL Beet-It Sport, James White Juice Company) that provided 12.9 mmol (0.8 g) of nitrate or placebo (nitrate-depleted Beet-It Sport) on 2 study visits. At 3 h postconsumption, brachial artery diameter, flow, and blood velocity were measured (Doppler ultrasound) at rest and during 6 exercise intensities. Nitrate supplementation raised plasma nitrate (19.5-fold) and nitrite (1.6-fold) concentrations, and lowered resting arterial pulse wave velocity (PWV) versus placebo (all p < 0.05) indicating absorption, conversion, and a biological effect of this supplement. The supplement-associated lowering of PWV was also negatively correlated with plasma nitrite (r = -0.72, p = 0.0127). Despite these systemic effects, nitrate supplementation had no effect on brachial artery diameter, flow, or shear rates at rest (all p ≥ 0.28) or during any exercise workload (all p ≥ 0.18). These findings suggest that acute dietary nitrate supplementation favorably modifies arterial PWV, but does not augment blood flow or brachial artery vasodilation during non-fatiguing forearm exercise in healthy young men. PMID:25536008

  16. Effects of dietary components including garlic on concentrations of skatole and indole in subcutaneous fat of female pigs.

    PubMed

    Leong, Jasmine; Morel, Patrick C H; Purchas, Roger W; Wilkinson, Brian H P

    2011-05-01

    The results reported here showed that threshold concentrations of skatole and indole in rice-bran oil for Singaporean consumers were 0.028 μg/g and 0.051 μg/g, respectively, and that skatole and indole levels in subcutaneous fat of pigs can be affected by diet. In Experiment A, 31 female pigs were fed with diets based on plant products only (P) or plant plus animal by-products (AP), with added levels of garlic essential oil from zero to 2.15 g/kg feed. Concentrations of skatole and indole increased with increasing garlic concentration (P < 0.001). In Experiment B, P and AP diets were fed to 47 female pigs with different dietary lipid sources (fish oil, tallow, and a mix of linseed oil and soya oil). Skatole and indole concentrations were higher in backfat of pigs fed with the AP diet (P < 0.05), but were unaffected by the type of lipid.

  17. Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model

    PubMed Central

    Gao, Chenfei; King, Michael L.; Fitzpatrick, Zachary L.; Wei, Wenqian; King, Jason F.; Wang, Mingming; Greenway, Frank L.; Finley, John W.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Zheng, Jolene

    2016-01-01

    Prowashonupana barley (PWB) is high in β-glucan with moderate content of resistant starch. PWB reduced intestinal fat deposition (IFD) in wild type Caenorhabditis elegans (C. elegans, N2), and in sir-2.1 or daf-16 null mutants, and sustained a surrogate marker of lifespan, pharyngeal pumping rate (PPR), in N2, sir-2.1, daf-16, or daf-16/daf-2 mutants. Hyperglycaemia (2% glucose) reversed or reduced the PWB effect on IFD in N2 or daf-16/daf-2 mutants with a sustained PPR. mRNA expression of cpt-1, cpt-2, ckr-1, and gcy-8 were dose-dependently reduced in N2 or daf-16 mutants, elevated in daf-16/daf-2 mutants with reduction in cpt-1, and unchanged in sir-2.1 mutants. mRNA expressions were increased by hyperglycaemia in N2 or daf-16/daf-2 mutants, while reduced in sir-2.1 or daf-16 mutants. The effects of PWB in the C. elegans model appeared to be primarily mediated via sir-2.1, daf-16, and daf-16/daf-2. These data suggest that PWB and β-glucans may benefit hyperglycaemia-impaired lipid metabolism. PMID:27721901

  18. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  19. Growth Inhibitory Effect of Low Fat Diet on Prostate Cancer Cells: Results of a Prospective, Randomized Dietary Intervention Trial in Men With Prostate Cancer

    PubMed Central

    Aronson, William J.; Barnard, R. James; Freedland, Stephen J.; Henning, Susanne; Elashoff, David; Jardack, Patricia M.; Cohen, Pinchas; Heber, David; Kobayashi, Naoko

    2011-01-01

    Purpose A high fat Western diet and sedentary lifestyle may predispose men to prostate cancer through changes in serum hormones and growth factors. We evaluated the effect of a low fat diet on serum factors affecting prostate cancer cell growth by performing a prospective, randomized dietary intervention trial in men with prostate cancer. Materials and Methods We randomized 18 men with prostate cancer who did not receive prior therapy to a low fat (15% kcal), high fiber, soy protein supplemented diet or a Western (40% kcal fat) diet for 4 weeks. Fasting serum was collected at baseline and after the intervention to measure prostate specific antigen, sex hormones, insulin, insulin-like growth factor I and II, insulin-like growth factor binding proteins, lipids and fatty acids. LNCaP cells (ATCC®) were cultured in medium containing pre-intervention and post-intervention human serum to assess the in vitro effect of the diet on prostate cancer cell proliferation. Results Subjects in each group were highly compliant with the dietary intervention. Serum from men in the low fat group significantly decreased the growth of LNCaP cells relative to Western diet serum (p = 0.03). There were no significant between group changes in serum prostate specific antigen, sex hormones, insulin, insulin-like growth factor I and II, and insulin-like growth factor binding proteins. Serum triglyceride and linoleic acid (ω-6) levels were decreased in the low fat group (p = 0.034 and 0.005, respectively). Correlation analysis revealed that decreased ω-6 and increased ω-3 fatty acid correlated with decreased serum stimulated LNCaP cell growth (r = 0.64, p = 0.004 and r = −0.49, p = 0.04, respectively). Conclusions In this prospective, randomized dietary intervention trial a low fat diet resulted in changes in serum fatty acid levels that were associated with decreased human LNCaP cancer cell growth. Further prospective trials are indicated to evaluate the potential of low fat diets for

  20. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet

    PubMed Central

    Taira, Toshio; Yamaguchi, Sayori; Takahashi, Azusa; Okazaki, Yukako; Yamaguchi, Akihiro; Sakaguchi, Hirohide; Chiji, Hideyuki

    2015-01-01

    The effects of dietary polyphenols on human health have mainly been discussed in the context of preventing degenerative diseases, particularly cardiovascular diseases and cancer. The antioxidant properties of polyphenols have been widely studied, but it has become clear that the mechanism of action of polyphenols extends beyond the modulation of oxidative stress, as they are poorly absorbed from the digestive tract. The purpose of this study was to clarify the effects of polyphenols on the colonic environment, intestinal barrier function, and gut microbiota. We demonstrated that dietary polyphenols derived from aronia, haskap, and bilberry, markedly elevated the amount of fecal mucin and immunoglobulin A (IgA) as an intestinal barrier function and ameliorated the disturbance in gut microbiota caused by a high fat diet in rats. These results suggest that dietary polyphenols play a significant role in the prevention of degenerative diseases through improvement of the colonic environment without any absorption from the digestive tract. PMID:26566306

  1. Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement.

    PubMed

    Gooding, Margaret A; Atkinson, Jim L; Duncan, Ian J H; Niel, Lee; Shoveller, Anna K

    2015-01-01

    The effects of dietary carbohydrate and fat on feline health are not well understood. The effects of feeding diets moderately high in fat (HF; n 10; 30 % fat, 26 % carbohydrate as fed) or carbohydrate (HC; n 10; 11 % fat, 47 % carbohydrate), for 84 d, were investigated in healthy, adult cats (3·5 (sd 0·5) years). Data on indirect calorimetry, blood biomarkers, activity, play and cognition were collected at baseline, and at intervals throughout the study. Body composition was measured by dual-energy X-ray absorptiometry at baseline and on day 85. There were no significant main effects of diet on body weight and composition. When data were analysed over study day within diet, cats fed HF diets experienced a significant increase in body fat (P = 0·001) and body weight (P = 0·043) in contrast to cats consuming the HC diet that experienced no change in body fat or body weight (P = 0·762) throughout the study. Overall, energy expenditure was similar between diets (P = 0·356 (fasted), P = 0·086 (postprandial)) and respiratory quotient declined with exposure to the HF diet and increased with exposure to the HC diet (P < 0·001; fasted and postprandial). There was no difference in insulin sensitivity as an overall effect of diet (P = 0·266). Activity declined from baseline with exposure to both diets (HC: P = 0·002; HF: P = 0·01) but was not different between diets (P = 0·247). There was no effect of diet on play (P = 0·387) and cats consuming either the HF or HC diet did not successfully learn the cognitive test. Overall, cats adapt to dietary macronutrient content, and the implications of feeding HC and HF diets on risk for adiposity as driven by metabolic and behavioural mechanisms are discussed.

  2. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation.

    PubMed

    Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E

    2014-01-01

    Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.

  3. A study of the interactive effects of oral contraceptive use and dietary fat intake on blood pressure, cardiovascular reactivity and glucose tolerance in normotensive women.

    PubMed

    Straznicky, N E; Barrington, V E; Branley, P; Louis, W J

    1998-03-01

    The interactive effects of combined oral contraceptive (OC) use and dietary fat intake on cardiovascular hemodynamics and metabolic parameters were investigated in a comparative study of 16 normotensive OC users from Australia and 16 age- and weight-matched nonuser controls. The 6-week study's crossover design allocated women to consume either a high- or low-fat diet for 2-week periods. Analyses were performed at the end of each diet during the luteal phase of the menstrual cycle. Plasma triglyceride levels were significantly higher in OC users than nonusers in both diet groups; however, responses of lipoprotein levels to the 2 diets did not differ between study groups. Total and low-density lipoprotein cholesterol levels decreased by 15% and 17%, respectively, in OC users, and by 14% each in non-OC users on the low-fat, compared to the high-fat, diet. Fasting plasma insulin levels, the insulin production response to administration of glucose, and resting clinic and night-time systolic blood pressures were all significantly reduced on the low-fat diet, but only in nonusers. In OC users, blood pressure responses to noradrenaline and maximal heart rate response to cold were significantly attenuated by the low-fat diet. During the low-fat diet, resting systolic, 24-hour systolic, and diastolic blood pressures and areas under the curve were significantly higher in the OC group. OC users also demonstrated a greater systolic sensitivity to administration of both noradrenaline and angiotensin II, and had a higher plasma renin activity, regardless of diet. Overall, these findings confirm that OCs can cause adverse effects on blood pressure, cardiovascular reactivity, and the insulin production response to glucose administration, and negate some of the beneficial effects of a low-fat diet.

  4. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  5. Acute High Fat Diet Consumption Activates the Mesolimbic Circuit and Requires Orexin Signaling in a Mouse Model

    PubMed Central

    Valdivia, Spring; Patrone, Anabela; Reynaldo, Mirta; Perello, Mario

    2014-01-01

    Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity and several eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of a rewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analyses to examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental test in which naïve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD) for 2 h. We found that acute HFD activates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA), nucleus accumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulation was required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of the paranigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateral hypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonist SB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei under study. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acute HFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires the activation of orexin signaling. PMID:24466352

  6. Effects of lowering dietary fiber before marketing on finishing pig growth performance, carcass characteristics, carcass fat quality, and intestinal weights.

    PubMed

    Asmus, M D; Derouchey, J M; Tokach, M D; Dritz, S S; Houser, T A; Nelssen, J L; Goodband, R D

    2014-01-01

    A total of 264 pigs (initially 41.0 kg BW) were used in a 90-d study to determine the effects of lowering dietary fiber before market on pigs fed high dietary fiber [provided by wheat middlings (midds) and distillers dried grains with solubles (DDGS)] on growth performance, carcass characteristics, carcass fat quality, and intestinal weights of growing-finishing pigs. Pens of pigs were randomly allotted by initial BW and sex to 1 of 6 treatments with 6 replications per treatment and 7 or 8 pigs per pen. A positive control (corn-soybean meal-based) diet containing no DDGS or midds (9.3% NDF) and a negative control diet with 30% DDGS and 19% midds (19% NDF) were fed throughout the entire trial (d 0 to 90). The other 4 treatments were arranged in a 2 × 2 factorial with the main effects of length of fiber reduction (23 or 47 d before marketing) and fiber level fed during the reduction period (low or medium). Pigs on these treatments were fed the negative control before the reduction treatment. The medium-fiber diet contained 15% DDGS and 9.5% midds (14.2% NDF) with the low-fiber diet was the positive control diet. Increasing the feeding duration of the low-fiber diets lowered overall ADFI (linear, P = 0.03) and improved G:F (linear, P < 0.01). Lowering the fiber level for the last 23 d did not influence growth performance; however, lowering the fiber level improved carcass yield (P = 0.002), with a greater response (P < 0.001) when the low-fiber diet was fed for 23 d. Jowl fat iodine value (IV) decreased when the longer lower fiber diets were fed (linear, P < 0.01) and was lower (P < 0.001) for pigs fed the low-fiber diet during the fiber reduction period than pigs fed the medium-fiber diet during the same time period; however, increasing the time lower fiber diets were fed from 23 to 47 d further reduced (P < 0.01) jowl IV. Increasing the duration that the control diet was fed by increasing the reduction time from 23 to 47 d increased (P < 0.01) backfat depth

  7. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines

    PubMed Central

    Zgair, Atheer; Wong, Jonathan CM; Lee, Jong Bong; Mistry, Jatin; Sivak, Olena; Wasan, Kishor M; Hennig, Ivo M; Barrett, David A; Constantinescu, Cris S; Fischer, Peter M; Gershkovich, Pavel

    2016-01-01

    There has been an escalating interest in the medicinal use of Cannabis sativa in recent years. Cannabis is often administered orally with fat-containing foods, or in lipid-based pharmaceutical preparations. However, the impact of lipids on the exposure of patients to cannabis components has not been explored. Therefore, the aim of this study is to elucidate the effect of oral co-administration of lipids on the exposure to two main active cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). In this study, oral co-administration of lipids enhanced the systemic exposure of rats to THC and CBD by 2.5-fold and 3-fold, respectively, compared to lipid-free formulations. In vitro lipolysis was conducted to explore the effect of lipids on the intestinal solubilisation of cannabinoids. More than 30% of THC and CBD were distributed into micellar fraction following lipolysis, suggesting that at least one-third of the administered dose will be available for absorption following co-administration with lipids. Both cannabinoids showed very high affinity for artificial CM-like particles, as well as for rat and human CM, suggesting high potential for intestinal lymphatic transport. Moreover, comparable affinity of cannabinoids for rat and human CM suggests that similar increased exposure effects may be expected in humans. In conclusion, co-administration of dietary lipids or pharmaceutical lipid excipients has the potential to substantially increase the exposure to orally administered cannabis and cannabis-based medicines. The increase in patient exposure to cannabinoids is of high clinical importance as it could affect the therapeutic effect, but also toxicity, of orally administered cannabis or cannabis-based medicines. PMID:27648135

  8. Yeast as a model to investigate the mitochondrial role in adaptation to dietary fat and calorie surplus

    PubMed Central

    Marchi, E.

    2008-01-01

    Several research strategies are focused towards understanding the genetic basis and molecular mechanisms that regulate uptake, synthesis, deposition, and mobilization of lipids, in the context of energy homeostasis. Because of the complexity of the problem, major input comes from the use of model systems. The aim of this work was to test the feasibility of using yeast as a model organism for studies related to dietary challenges due to high fat diet and investigate the correlation between FA metabolism and oxidative metabolism. In particular, we ask to what extent the utilization of oleic acid is dependent on mitochondrial function. We studied growth on oleic acid as a sole carbon source, and oleate stress (growth in 2 and 5% oleate) in both laboratory (BY4741 wild-type and Δsco1, Δsco2, Δtgl3, Δtgl4 mutants) and natural strains, comparing the growth phenotypes with the respiratory behaviour for each strain. We confirmed that respiratory competence is fundamental for growth on oleic acid, since the respiratory deficient mutant Δsco1 was unable to grow on oleic acid. In order to understand if the ability to use oleate as carbon source and adapt to high oleate concentrations is a general trait for the Saccharomyces cerevisiae genus, we also studied some natural strains, both diploid and haploid, identifying two meiotic derivatives of SGU90 as unable to grow in oleic acid as a sole carbon source. We investigate some aspects of mitochondrial metabolism in order to gain insights on this new finding. PMID:19037676

  9. Influence of lifelong dietary fats on the brain fatty acids and amphetamine-induced behavioral responses in adult rat.

    PubMed

    Trevizol, F; Roversi, K; Dias, V T; Roversi, Kr; Pase, C S; Barcelos, R C S; Benvegnu, D M; Kuhn, F T; Dolci, G S; Ross, D H; Veit, J C; Piccolo, J; Emanuelli, T; Bürger, M E

    2013-08-01

    The influence of dietary fatty acids (FA) on mania-like behavior and brain oxidative damage were evaluated in rats. First generation of rats born and maintained under supplementation with soybean-oil (SO), fish-oil (FO) or hydrogenated-vegetable-fat (HVF), which are rich in n-6, n-3 and trans (TFA) FA, respectively, until adulthood, were exposed to an amphetamine (AMPH)-induced mania animal model to behavioral and biochemical evaluations. While AMPH caused hyperlocomotion in HVF and, to a less extent, in SO- and FO-groups, a better memory performance was observed in FO group. Among vehicle-groups, HVF increased reactive species (RS) generation and protein-carbonyl (PC) levels in cortex; FO reduced RS generation in hippocampus and decreased PC levels in hippocampus and striatum. Among AMPH-treated animals, HVF exacerbated RS generation in all evaluated brain areas and increased PC levels in cortex and striatum; FO reduced RS generation in hippocampus and decreased PC levels in hippocampus and striatum. FO was related to higher percentage of polyunsaturated fatty acids (PUFA) and docosahexaenoic acid (DHA) in cortex and striatum, while HVF was associated to higher incorporation of TFA in cortex, hippocampus and striatum, besides increased n-6/n-3 FA ratio in striatum. While a continuous exposure to TFA may intensify oxidative events in brain, a prolonged FO consumption may prevent mania-like-behavior; enhance memory besides decreasing brain oxidative markers. A substantial inclusion of processed foods, instead of foods rich in omega-3, in the long term is able to influence the functionality of brain structures related to behavioral disturbances and weaker neuroprotection, whose impact should be considered by food safety authorities and psychiatry experts.

  10. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines.

    PubMed

    Zgair, Atheer; Wong, Jonathan Cm; Lee, Jong Bong; Mistry, Jatin; Sivak, Olena; Wasan, Kishor M; Hennig, Ivo M; Barrett, David A; Constantinescu, Cris S; Fischer, Peter M; Gershkovich, Pavel

    2016-01-01

    There has been an escalating interest in the medicinal use of Cannabis sativa in recent years. Cannabis is often administered orally with fat-containing foods, or in lipid-based pharmaceutical preparations. However, the impact of lipids on the exposure of patients to cannabis components has not been explored. Therefore, the aim of this study is to elucidate the effect of oral co-administration of lipids on the exposure to two main active cannabinoids, Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD). In this study, oral co-administration of lipids enhanced the systemic exposure of rats to THC and CBD by 2.5-fold and 3-fold, respectively, compared to lipid-free formulations. In vitro lipolysis was conducted to explore the effect of lipids on the intestinal solubilisation of cannabinoids. More than 30% of THC and CBD were distributed into micellar fraction following lipolysis, suggesting that at least one-third of the administered dose will be available for absorption following co-administration with lipids. Both cannabinoids showed very high affinity for artificial CM-like particles, as well as for rat and human CM, suggesting high potential for intestinal lymphatic transport. Moreover, comparable affinity of cannabinoids for rat and human CM suggests that similar increased exposure effects may be expected in humans. In conclusion, co-administration of dietary lipids or pharmaceutical lipid excipients has the potential to substantially increase the exposure to orally administered cannabis and cannabis-based medicines. The increase in patient exposure to cannabinoids is of high clinical importance as it could affect the therapeutic effect, but also toxicity, of orally administered cannabis or cannabis-based medicines.

  11. Effects of dietary fat and wet sorghum distiller's grains plus solubles on feedlot performance and carcass characteristics of finishing heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four hundred yearling heifers in two experiments were fed for an average of 106 days. Treatments included 0% wet sorghum distiller’s grains plus solubles (WSDGS) and 0% yellow grease (fat), 0% WSDGS and 3% fat, or 15% WSDGS and either 0, 1.5, or 3.0% fat. The WSDGS replaced steam-flaked corn and cot...

  12. Herbal and dietary supplements related to diarrhea and acute kidney injury: a case report.

    PubMed

    Wanitsriphinyo, Suphamat; Tangkiatkumjai, Mayuree

    2017-03-01

    Background There is very little evidence relating to the association of herbal medicine with diarrhea and the development of acute kidney injury (AKI). This study reports a case of diarrhea-induced AKI, possibly related to an individual ingesting copious amounts of homemade mixed fruit and herb puree. Case presentation A 45-year-old Thai man with diabetes had diarrhea for 2 days, as a result of taking high amounts of a puree made up of eight mixed fruits and herbs over a 3-day period. He developed dehydration and stage 2 AKI, with a doubling of his serum creatinine. He had been receiving enalapril, as a prescribed medication, over one year. After he stopped taking both the puree and enalapril, and received fluid replacement therapy, within a week his serum creatinine had gradually decreased. The combination of puree, enalapril and AKI may also have induced hyperkalemia in this patient. Furthermore, the patient developed hyperphosphatemia due to his worsening kidney function, exacerbated by regularly taking some dietary supplements containing high levels of phosphate. His serum levels of potassium and phosphate returned to normal within a week, once the patient stopped both the puree and all dietary supplements, and had begun receiving treatment for hyperkalemia. Results The mixed fruit and herb puree taken by this man may have led to his diarrhea due to its effect; particularly if the patient was taking a high concentration of such a drink. Both the puree and enalapril are likely to attenuate the progression of kidney function. The causal relationship between the puree and AKI was probable (5 scores) assessed by the modified Naranjo algorithm. This is the first case report, as far as the authors are aware, relating the drinking of a mixed fruit and herbal puree to diarrhea and AKI in a patient with diabetes. Conclusions This case can alert health care providers to the possibility that herbal medicine could induce diarrhea and develop acute kidney injury.

  13. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.

    PubMed

    Zarepoor, Leila; Lu, Jenifer T; Zhang, Claire; Wu, Wenqing; Lepp, Dion; Robinson, Lindsay; Wanasundara, Janitha; Cui, Steve; Villeneuve, Sébastien; Fofana, Bourlaye; Tsao, Rong; Wood, Geoffrey A; Power, Krista A

    2014-06-15

    Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation.

  14. Acute Cocoa Supplementation Increases Postprandial HDL Cholesterol and Insulin in Obese Adults with Type 2 Diabetes after Consumption of a High-Fat Breakfast123

    PubMed Central

    Basu, Arpita; Betts, Nancy M; Leyva, Misti J; Fu, Dongxu; Aston, Christopher E; Lyons, Timothy J

    2015-01-01

    Background: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function. Objective: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food–style meal. Methods: Adults with T2D [n = 18; age (mean ± SE): 56 ± 3 y; BMI (in kg/m2): 35.3 ± 2.0; 14 women; 4 men] were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food–style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10–12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment. Results: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: −1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h. Conclusion: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food–style meal challenge

  15. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    PubMed

    Crewe, Clair; Kinter, Michael; Szweda, Luke I

    2013-01-01

    Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance of the heart on

  16. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein.

    PubMed

    Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu

    2012-02-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein.

  17. Insoluble dietary fiber from pear pomace can prevent high-fat diet induced obesity in rats mainly by improving the structure of gut microbiota.

    PubMed

    Chang, Shimin; Cui, Xingtian; Guo, Mingzhang; Tian, Yiling; Xu, Wentao; Huang, Kunlun; Zhang, Yuxing

    2017-02-07

    Supplement of dietary fibers (DF) was regarded as one of the most effective way to prevent and relieve chronic diseases caused by long term intake of high-fat diet in current society. The health benefits of soluble dietary fibers (SDF) have been widely researched and applied, while the insoluble dietary fibers (IDF), which represent more proportion in plant food, were mistakenly through to have effects only in fecal bulking. In this article, we proved the anti-obesity and glucose homeostasis improvement effects of IDF from pear pomace at first, and then the mechanisms responsible for these effects were analyzed. The preliminary study by real-time PCR and Elisa showed that this kind of IDF caused more changes in gut microbiota compared with in satiety hormone or in hepatic metabolism. Further analysis of gut microbiota by high throughput amplicon sequencing showed IDF from pear pomace obviously improved the structure of gut microbiota. Especially, it promoted the growth of Bacteroidetes and inhibited the growth of Firmicutes. These results are coincident with previous hypothesis that the ratio of Bacteroidetes/Firmicutes is negatively related with obesity. In conclusion, our results demonstrated IDF from pear pomace could prevent high-fat diet induced obesity in rats mainly by improving the structure of gut microbiota.

  18. Dietary fruit, vegetable, fat, and red and processed meat intakes and Barrett’s esophagus risk: a systematic review and meta-analysis

    PubMed Central

    Zhao, Zhanwei; Pu, Zhongshu; Yin, Zifang; Yu, Pengfei; Hao, Yiming; Wang, Qian; Guo, Min; Zhao, Qingchuan

    2016-01-01

    The relationships between dietary fruit, vegetable, fat, and red and processed meat intakes and Barrett’s esophagus (BE) risk remain inconclusive. We conducted a systematic review and meta-analysis to summarize the available evidence on these issues. PubMed, EMBASE and the Cochrane Library were searched for studies published from inception through October 2015. A total of eight studies were included in this analysis. Fruit intake was not associated with BE risk (OR = 0.65, 95% CI = 0.37–1.13), but vegetable intake was strongly associated with BE risk (OR = 0.45, 95% CI = 0.29–0.71). Saturated fat, red meat and processed meat intakes were not associated with BE risk with OR = 1.25 (95% CI = 0.82–1.91), OR = 0.85 (95% CI = 0.61–1.17) and OR = 1.03 (95% CI = 0.73–1.46), respectively. Dietary vegetable not fruits intake may be associated with decreased BE risk. Fat and red and processed meat intakes may not contribute to an increased BE risk. Well-designed, large prospective studies with better established dose-response relationships are needed to further validate these issues. PMID:27256629

  19. An examination of the evidence supporting the association of dietary cholesterol and saturated fats with serum cholesterol and development of coronary heart disease.

    PubMed

    Volk, Marion G

    2007-09-01

    The lipid hypothesis is the basis for much of the contemporary diet advice and drug therapy aimed at preventing coronary heart disease (CHD), and was developed from a sequential association of dietary lipids, cholesterol, and CHD nearly 100 years ago. The lipid hypothesis considers pathological changes that relate to the end stage of the complex chronic condition summarized as CHD, not to its genesis. Ongoing research provides only inconclusive evidence of the effects of modification of total, saturated, monounsaturated, or polyunsaturated fats on cardiovascular morbidity and mortality. 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors or statins, the highest selling drugs in medical history, may provide evidence that the lipid hypothesis is based on erroneous assumptions, since some of the mechanisms of action of statins seem to be independent of cholesterol reduction. This article assesses the methodology and assumptions underlying the early studies that gave rise to the current assumption of a causal relationship between dietary fat consumption and CHD. It argues that flaws in methodology have led to inaccurate and highly debatable conclusions. It assesses research supporting criticism of these early studies and considers other factors that may influence CHD. It offers alternative interpretations of the use of statins in controlling CHD. Finally, it provides an historical context suggesting different causes of CHD that have no relation to fat intake.

  20. Association of dietary fat and carbohydrate consumption and predicted ten-year risk for developing coronary heart disease in a general Japanese population.

    PubMed

    Minoura, Akira; Wang, Da-Hong; Sato, Yoshie; Zou, Yu; Sakano, Noriko; Kubo, Masayuki; Takemoto, Kei; Masatomi, Chie; Ogino, Keiki

    2014-01-01

    We examined the relationships between dietary carbohydrate, protein, fat, and the ratio of n6/n3 fatty acid intakes with the predicted 10-year coronary heart disease (CHD) risk in a general Japanese population. We used the Framingham risk score to determine the 10-year CHD risk of the subjects, who were employees of 6 companies in a single prefecture in Japan. After excluding the subjects who reported any history of angina pectoris, myocardial infarction, diabetes, or cancer, and those with missing data resulting in the inability of estimation of 10-year CHD risk and food intakes, the final data analysis was carried out for 809 subjects. The logistic regression models revealed a significantly increased odds ratio of 10-year CHD risk in the subjects with the highest tertile of carbohydrate intake (% energy) (odds ratio 3.64, 95% CI, 2.07-6.40); after adjustment for other variables, the odds ratio for the 10-year CHD risk was also higher in the subjects with the highest tertile of carbohydrate intake (odds ratio 1.72, 95% CI, 0.70-4.25). We also found that fat intake and the ratio of n6/n3 fatty acids were inversely associated with the predicted 10-year CHD risk (p for trend<0.01). The present findings added evidence of a positive association of dietary carbohydrate and inverse associations of total fat and n6/n3 fatty acid ratio with the predicted 10-year CHD risk in a general Japanese population.

  1. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal.

    PubMed

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-08-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal-induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal.

  2. Endogenous n-3 Fatty Acids Alleviate Carbon-Tetrachloride-Induced Acute Liver Injury in Fat-1 Transgenic Mice

    PubMed Central

    Feng, Ruibing; Wang, Meng; Yan, Chunyan

    2016-01-01

    n-3 polyunsaturated fatty acids (PUFAs) are beneficial for numerous models of liver diseases. The probable protective effects of n-3 PUFA against carbon-tetrachloride- (CCl4-) induced acute liver injury were evaluated in a fat-1 transgenic mouse that synthesizes endogenous n-3 from n-6 PUFA. Fat-1 mice and their WT littermates were fed a modified AIN93 diet containing 10% corn oil and were injected intraperitoneally with a single dose of CCl4 or vehicle. CCl4 challenge caused severe liver injury in WT mice, as indicated by serum parameters and histopathological changes, which were remarkably ameliorated in fat-1 mice. Endogenous n-3 PUFA decreased the elevation of oxidative stress induced by CCl4 challenge, which might be attributed to the activation of Nrf2/keap1 pathway. Additionally, endogenous n-3 PUFA reduces hepatocyte apoptosis via suppressing MAPK pathway. These findings indicate that n-3 PUFA has potent protective effects against acute liver injury induced by CCl4 in mice, suggesting that n-3 PUFA can be used for the prevention and treatment of liver injury. PMID:27891208

  3. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections

    PubMed Central

    Noel, Pawan; Patel, Krutika; Durgampudi, Chandra; Trivedi, Ram N; de Oliveira, Cristiane; Crowell, Michael D; Pannala, Rahul; Lee, Kenneth; Brand, Randall; Chennat, Jennifer; Slivka, Adam; Papachristou, Georgios I; Khalid, Asif; Whitcomb, David C; DeLany, James P; Cline, Rachel A; Acharya, Chathur; Jaligama, Deepthi; Murad, Faris M; Yadav, Dhiraj; Navina, Sarah; Singh, Vijay P

    2016-01-01

    Background and aims Peripancreatic fat necrosis occurs frequently in necrotising pancreatitis. Distinguishing markers from mediators of severe acute pancreatitis (SAP) is important since targeting mediators may improve outcomes. We evaluated potential agents in human pancreatic necrotic collections (NCs), pseudocysts (PCs) and pancreatic cystic neoplasms and used pancreatic acini, peripheral blood mononuclear cells (PBMC) and an acute pancreatitis (AP) model to determine SAP mediators. Methods We measured acinar and PBMC injury induced by agents increased in NCs and PCs. Outcomes of caerulein pancreatitis were studied in lean rats coadministered interleukin (IL)-1β and keratinocyte chemoattractant/growth-regulated oncogene, triolein alone or with the lipase inhibitor orlistat. Results NCs had higher fatty acids, IL-8 and IL-1β versus other fluids. Lipolysis of unsaturated triglyceride and resulting unsaturated fatty acids (UFA) oleic and linoleic acids induced necro-apoptosis at less than half the concentration in NCs but other agents did not do so at more than two times these concentrations. Cytokine coadministration resulted in higher pancreatic and lung inflammation than caerulein alone, but only triolein coadministration caused peripancreatic fat stranding, higher cytokines, UFAs, multisystem organ failure (MSOF) and mortality in 97% animals, which were prevented by orlistat. Conclusions UFAs, IL-1β and IL-8 are elevated in NCs. However, UFAs generated via peripancreatic fat lipolysis causes worse inflammation and MSOF, converting mild AP to SAP. PMID:25500204

  4. Substrate Utilization is Influenced by Acute Dietary Carbohydrate Intake in Active, Healthy Females.

    PubMed

    Gregory, Sara; Wood, Richard; Matthews, Tracey; Vanlangen, Deborah; Sawyer, Jason; Headley, Samuel

    2011-01-01

    The present study compared the metabolic responses between a single low-carbohydrate (LC) and low-fat (LF) meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER) measurements were taken for 20 min fasted, for 55 min postprandial (PP), and during 30 min of exercise. Blood was collected for assessment of glucose (G), insulin (IN), triglycerides (TG), and free fatty acids (FFA) during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein). The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein). No significant differences existed between test meals for fasting blood measurements. PP IN (μU·mL(-1)) levels were significantly lower following LC compared to LF [10.7 (6.1) vs. 26.0 (21.0)]. Postexercise (PE) FFA (mEq·L(-1)) levels were significantly greater following LC [1.1 (0.3) vs. 0.5 (0.3)]. PE TG (mg·dL(-1)) levels were significantly greater following LC [152.0 (53.1) vs. 114.4 (40.9)]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization. Key pointsThe relative carbohydrate content of a single meal has a significant impact on postprandial metabolism and substrate utilization in healthy, active females.A single bout of aerobic exercise performed within an hour of meal ingestion has the potential to modify the postprandial response.Interventions aimed at improving body composition and preventing chronic disease should focus on dietary

  5. Effects of dietary fat and crude protein on feedlot performance, carcass characteristics, and meat quality in finishing steers fed differing levels of dried distillers grains with solubles.

    PubMed

    Gunn, P J; Weaver, A D; Lemenager, R P; Gerrard, D E; Claeys, M C; Lake, S L

    2009-09-01

    The objective of this study was to evaluate the influence of dietary protein and fat from distillers dried grains with solubles (DDGS) on feedlot performance, carcass characteristics, and meat quality in finishing steers. Angus-cross steers (n = 105; 443 +/- 20 kg of BW) were blocked by BW and randomly assigned to 1 of 5 dietary treatments: 1) corn-based diet with DDGS included at 25% of DM (CON), 2) CON with DDGS included at twice the amount of CON (50% of DM; 50DDGS), 3) CON with added corn protein to equal the CP in the 50DDGS diet (CON+CP), 4) CON with added vegetable oil to equal the fat in the 50DDGS diet (CON+VO), and 5) CON with protein and fat added to equal the CP and fat in the 50DDGS diet (CON+CPVO). Steers were fed to a common 12th-rib fat depth endpoint (1.3 +/- 0.2 cm; 68 to 125 d on trial). Loins and rounds were collected from 44 carcasses for Warner-Bratzler shear force (WBSF), ether extract, and case-life analyses. Data were analyzed using the MIXED procedure of SAS. Contrasts between 1) CON vs. elevated CP diets (50DDGS, CON+CP, and CON+CPVO; EP), 2) CON vs. elevated fat diets (50DDGS, CON+VO, and CON+CPVO; EF) and 3) CON vs. diets with elevated CP and fat (50DDGS and CON+CPVO; EPF) were analyzed. There were no differences in days on feed or DMI among treatments. Steers fed CON had greater ADG (P fat depth, LM area, KPH, and yield grade were not affected by treatment (P >or= 0.06). Steers fed the CON diet had greater marbling scores (P or= 0.44). However, CON steers had greater (P = 0.02) L* values than

  6. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    PubMed

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  7. Effects of fat source and dietary sodium bicarbonate plus straw on the conjugated linoleic acid content of milk of dairy cows.

    PubMed

    Troegeler-Meynadier, Annabelle; Nicot, Marie-Claude; Enjalbert, Francis

    2007-10-01

    The effects of fat source (0.7 kg of fatty acids from extruded soybeans or palmitic acid), of sodium bicarbonate (0.3 kg) plus straw (1 kg) and the interaction of these treatments on the content of conjugated linoleic acid (CLA) in the milk of dairy cows were examined. During nine weeks a group of 10 cows received a ration with palmitic acid and bicarbonate plus straw (ration PAB). During three periods of three weeks a second group of 10 cows received successively a ration with extruded soybeans and bicarbonate plus straw (ration ESB), a ration with palmitic acid without bicarbonate or straw (ration PA), and a ration with extruded soybeans without bicarbonate or straw (ration ES). Rations ES and ESB increased the content of polyunsaturated fatty acids in milk, but decreased milk fat content, compared to rations PAB and PA. Ration ESB led to the greatest milk CLA content, by a synergy between the high amount of dietary fat, and the action of bicarbonate plus straw, favouring trans11 isomers of CLA and C18:1, presumably via a ruminal pH near neutrality. Ration ES favoured trans10 isomers, not desaturated in the mammary gland, so that the milk CLA content was lower than with ration ESB, and resulted in the lowest milk fat content. In conclusion, a ration supplemented with both extruded soybeans and bicarbonate plus straw, was an efficient way to increase the CLA content in the milk of dairy cows.

  8. Transcriptome analysis of porcine M. semimembranosus divergent in intramuscular fat as a consequence of dietary protein restriction

    PubMed Central

    2013-01-01

    Background Intramuscular fat (IMF) content is positively correlated with aspects of pork palatability, including flavour, juiciness and overall acceptability. The ratio of energy to protein in the finishing diet of growing pigs can impact on IMF content with consequences for pork quality. The objective of this study was to compare gene expression profiles of Musculus semimembranosus (SM) of animals divergent for IMF as a consequence of protein dietary restriction in an isocaloric diet. The animal model was derived through the imposition of low or high protein diets during the finisher stage in Duroc gilts. RNA was extracted from post mortem SM tissue, processed and hybridised to Affymetrix porcine GeneChip® arrays. Results IMF content of SM muscle was increased on the low protein diet (3.60 ± 0.38% versus 1.92 ± 0.35%). Backfat depth was also greater in animals on the low protein diet, and average daily gain and feed conversion ratio were lower, but muscle depth, protein content and moisture content were not affected. A total of 542 annotated genes were differentially expressed (DE) between animals on low and high protein diets, with 351 down-regulated and 191 up-regulated on the low protein diet. Transcript differences were validated for a subset of DE genes by qPCR. Alterations in functions related to cell cycle, muscle growth, extracellular matrix organisation, collagen development, lipogenesis and lipolysis, were observed. Expression of adipokines including LEP, TNFα and HIF1α were increased and the hypoxic stress response was induced. Many of the identified transcriptomic responses have also been observed in genetic and fetal programming models of differential IMF accumulation, indicating they may be robust biological indicators of IMF content. Conclusion An extensive perturbation of overall energy metabolism in muscle occurs in response to protein restriction. A low protein diet can modulate IMF content of the SM by altering gene pathways

  9. The role of cholesterol absorption and hepatic cholesterol content in high and low responses to dietary cholesterol and fat in pedigreed baboons (Papio species).

    PubMed

    Kushwaha, R S; Rice, K S; Lewis, D S; McGill, H C; Carey, K D

    1993-06-01

    Selective breeding has produced baboon families with low and high plasma cholesterol responses to dietary cholesterol and fat. We used 12 high- and 12 low-responding (mainly in low-density lipoprotein [LDL] cholesterol) pedigreed baboons to determine whether cholesterol absorption and hepatic cholesterol concentration are associated with these responses. We measured cholesterol absorption first on the chow diet, which was low in cholesterol and fat, and after 3 and 13 weeks on the challenge diets, which contained 0.45 mg cholesterol/kcal and 40% of calories as either coconut oil or corn oil. Plasma, lipoprotein, and hepatic cholesterol concentrations were measured 1 week after cholesterol absorption measurements. High-responding baboons had higher percentage cholesterol absorption than low-responding baboons on both chow and challenge diets, regardless of the type of dietary fat. Both high and low responders had higher percentage cholesterol absorption with corn oil than with coconut oil. High responders also had higher hepatic cholesterol concentrations than low responders on chow and after consuming the challenge diets for 4 weeks. After consuming the challenge diets for 14 weeks, low responders fed coconut oil had hepatic cholesterol levels equal to those of high responders, while low responders fed corn oil continued to have low hepatic cholesterol levels. Thus, percentage cholesterol absorption is consistently higher in high-responding baboons regardless of diet, but hepatic cholesterol concentration varies with duration of challenge and type of fat. The results suggest that both cholesterol absorption and hepatic cholesterol concentration regulate cholesterolemic responses to diet, but by different mechanisms.

  10. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development

    PubMed Central

    Tian, X; Diaz, FJ

    2013-01-01

    Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3–5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 trimethylation and global DNA methylation in zinc deficient oocytes. Moreover, there was a 3–20 fold increase in transcript abundance of repetitive elements (Iap, Line1, Sineb1, Sineb2), but a decrease in Gdf9, Zp3 and Figla mRNA. Only 53% and 8% of mature eggs reached the 2-cell stage after IVF in animals receiving a 3 and 5 day ZDD, respectively, while a 5 day ZDD in vivo reduced the proportion of 2-cells to 49%. In vivo fertilized 2-cell embryos cultured in vitro formed fewer (38%) blastocysts compared to control embryos (74%). Likewise, fewer blastocyst and expanded blastocyst were collected from the reproductive tract of zinc deficient animals on day 3.5 of pregnancy. This could be due to a decrease in Igf2 and H19 mRNA in ZDD blastocyst. Supplementation with a methyl donor (SAM) during IVM restored histone H3K4me3 and doubled the IVF success rate from 17% to 43% in oocytes from zinc deficient animals. Thus, the terminal period of oocyte development is extremely sensitive to perturbation in dietary zinc availability. PMID:23348678

  11. Dietary supplementation of Chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms for the hypocholesterolemic and anti-obesity effects of grape seed flours derived from white and red winemaking processing were investigated. Male Golden Syrian hamsters were fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Ca...

  12. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats

    PubMed Central

    Adam, Clare L.; Gratz, Silvia W.; Peinado, Diana I.; Thomson, Lynn M.; Garden, Karen E.; Williams, Patricia A.; Richardson, Anthony J.; Ross, Alexander W.

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity. PMID:27224646

  13. Anthocyanin-rich Phytochemicals from Aronia Fruits Inhibit Visceral Fat Accumulation and Hyperglycemia in High-fat Diet-induced Dietary Obese Rats.

    PubMed

    Takahashi, Azusa; Shimizu, Hisae; Okazaki, Yukako; Sakaguchi, Hirohide; Taira, Toshio; Suzuki, Takashi; Chiji, Hideyuki

    2015-01-01

    Aronia fruits (chokeberry: Aronia melanocarpa E.) containing phenolic phytochemicals, such as cyanidin 3-glycosides and chlorogenic acid, have attracted considerable attention because of their potential human health benefits in humans including antioxidant activities and ability to improved vision. In the present study, the effects of anthocyanin-rich phytochemicals from aronia fruits (aronia phytochemicals) on visceral fat accumulation and fasting hyperglycemia were examined in rats fed a high-fat diet (Experiment 1). Total visceral fat mass was significantly lower in rats fed aronia phytochemicals than that in both the control group and bilberry phytochemicals-supplemented rats (p < 0.05). Moreover, perirenal and epididymal adipose tissue mass in rats fed aronia phytochemicals was significantly lower than that in both the control and bilberry phytochemicals group. Additionally, the mesenteric adipose tissue mass in aronia phytochemicals-fed rats was significantly low (p < 0.05). Furthermore, the fasting blood glucose levels significantly decreased in rats fed aronia phytochemicals for 4 weeks compared to that in the control rats (p < 0.05). Therefore, we investigated the effects of phytochemicals on postprandial hyperlipidemia after corn oil loading in rats, pancreatic lipase activity in vitro, and the plasma glycemic response after sucrose loading in order to elucidate the preventive factor of aronia phytochemical on visceral fat accumulation. In the oral corn oil tolerance tests (Experiment 2), aronia phytochemicals significantly inhibited the increases in plasma triglyceride levels, with a half-maximal inhibitory concentration (IC(50)) of 1.50 mg/mL. However, the inhibitory activity was similar to that of bilberry and tea catechins. In the sucrose tolerance tests (Experiment 3), aronia phytochemicals also significantly inhibited the increases in blood glucose levels that were observed in the control animals (p < 0.05). These results suggest that anthocyanin

  14. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    PubMed Central

    Sundaram, Sneha; Yan, Lin

    2016-01-01

    The objective of this study was to determine whether a reduction in energy intake ameliorated the high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma in mice. Male C57BL/6 mice were fed the AIN93G diet, a high-fat diet or a high-fat diet with a 5% restriction of the intake. Energy restriction reduced body adiposity and body weight, but maintained growth similar to mice fed the AIN93G diet. The high-fat diet significantly increased the number and size (cross-sectional area and volume) of metastases formed in lungs. Restricted feeding reduced the number of metastases by 23%, metastatic cross-sectional area by 32% and volume by 45% compared to the high-fat diet. The high-fat diet elevated plasma concentrations of proinflammatory cytokines (monocyte chemotactic protein-1, plasminogen activator inhibitor-1, leptin), angiogenic factors (vascular endothelial growth factor, tissue inhibitor of metalloproteinase-1) and insulin. Restricted feeding significantly reduced the high-fat diet-induced elevations in plasma concentrations of proinflammatory cytokines, angiogenic factors and insulin. These results demonstrated that a reduction in diet intake by 5% reduced high-fat diet-enhanced metastasis, which may be associated with the mitigation of adiposity and down-regulation of cancer-promoting proinflammatory cytokines and angiogenic factors. PMID:27582541

  15. Total dietary fat and omega-3 fatty acids have modest effects on urinary sex hormones in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total fat and omega-3 fatty acids in the diet may affect breast cancer risk by altering estrogen metabolism. The purpose of this study was to elucidate the effects of differing total fat and omega-3 fatty acid content of diets on a panel of urinary estrogens and metabolites. A controlled, cross-ove...

  16. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

  17. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    SciTech Connect

    Tanoue, Shirou; Uto, Hirofumi; Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2011-04-01

    Highlights: {yields} Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. {yields} Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. {yields} Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. {yields} Regulation of the TGF-{beta}1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-{alpha} were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-{alpha}, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-{beta}1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-{beta}1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result

  18. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice

    PubMed Central

    Villalba, José Manuel; López-Domínguez, José Alberto; Chen, Yana; Khraiwesh, Husam; González-Reyes, José Antonio; del Río, Lucía Fernández; Gutiérrez-Casado, Elena; del Río, Mercedes; Calvo-Rubio, Miguel; Ariza, Julia; de Cabo, Rafael; López-Lluch, Guillermo; Navas, Plácido; Hagopian, Kevork; Burón, María Isabel; Ramsey, Jon Jay

    2015-01-01

    The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95% of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40% less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H+ leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40% CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging. PMID:25860863

  19. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice.

    PubMed

    Villalba, José Manuel; López-Domínguez, José Alberto; Chen, Yana; Khraiwesh, Husam; González-Reyes, José Antonio; Del Río, Lucía Fernández; Gutiérrez-Casado, Elena; Del Río, Mercedes; Calvo-Rubio, Miguel; Ariza, Julia; de Cabo, Rafael; López-Lluch, Guillermo; Navas, Plácido; Hagopian, Kevork; Burón, María Isabel; Ramsey, Jon Jay

    2015-10-01

    The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.

  20. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor

    PubMed Central

    Charar, Chayki; Dorfman, Jehudith; Yadid, Tam; Tafforeau, Lionel; Gruenbaum, Yosef

    2016-01-01

    Dietary restriction (DR) is a metabolic intervention that extends the lifespan of multiple species, including yeast, flies, nematodes, rodents, and, arguably, rhesus monkeys and humans. Hallmarks of lifelong DR are reductions in body size, fecundity, and fat accumulation, as well as slower development. We have identified atx-2, the Caenorhabditis elegans homolog of the human ATXN2L and ATXN2 genes, as the regulator of these multiple DR phenotypes. Down-regulation of atx-2 increases the body size, cell size, and fat content of dietary-restricted animals and speeds animal development, whereas overexpression of atx-2 is sufficient to reduce the body size and brood size of wild-type animals. atx-2 regulates the mechanistic target of rapamycin (mTOR) pathway, downstream of AMP-activated protein kinase (AMPK) and upstream of ribosomal protein S6 kinase and mTOR complex 1 (TORC1), by its direct association with Rab GDP dissociation inhibitor β, which likely regulates RHEB shuttling between GDP-bound and GTP-bound forms. Taken together, this work identifies a previously unknown mechanism regulating multiple aspects of DR, as well as unknown regulators of the mTOR pathway. They also extend our understanding of diet-dependent growth retardation, and offers a potential mechanism to treat obesity. PMID:27457958

  1. Dietary onion intake as part of a typical high fat diet improves indices of cardiovascular health using the mixed sex pig model.

    PubMed

    Gabler, Nicholas K; Osrowska, Ewa; Imsic, Micheal; Eagling, David R; Jois, Mark; Tatham, Brendan G; Dunshea, Frank R

    2006-12-01

    The aim of this study was to evaluate the potential health benefits of onions consumed at two levels of intake, using the pig model. The dietary fat content was set at a level typical of a "western" diet (25% w/w). Fifteen female and fifteen male pigs (Large White x Landrace) were allocated to one of three dietary treatments in a randomised block design. Treatments consisted of control diet (no onion) and onion supplementation at either 8.6 or 21.4 g of onion/MJ DE fed for six weeks. Onion consumption reduced plasma triglyceride levels by 15% (P=0.030) regardless of sex and onion dose. Total plasma cholesterol and cholesterol fractions were unaffected by onion supplementation (P>0.050). The bioactivity of onion was evident in haematocrit measures, where red blood cell and haemoglobin were significantly reduced in a dose dependant manner (P<0.001 and P=0.011, respectively), while other cell counts, with exception of segmented neutrophils (-18%, P=0.012), were largely unaffected. Serum oxidative status was improved (P=0.007) in pigs consuming onions. These data demonstrate that consumption of onions can have positive health effects in both male and female pigs consuming a high fat diet.

  2. Molecular correlates of fat mass expansion in C57BL/6J mice after short-term exposure to dietary fat

    PubMed Central

    Anunciado-Koza, Rea P.; Manuel, Justin; Koza, Robert A.

    2015-01-01

    Heterogeneity of obesity within a population of inbred mice fed an obesogenic high-fat diet (HFD) is associated with changes of gene expression in white adipose tissue (WAT). One gene in particular with large variations among mice, mesoderm-specific transcript (Mest), has been shown to be highly inducible after being fed a short-term HFD, and its expression in WAT before HFD feeding is predictive for susceptibility to the development of obesity. To gain further insight on the association of Mest with rapid changes in body composition, 96 individually housed C57BL/6J mice were fed an HFD for only 2 weeks, resultin in a 12-fold and 90-fold variation in Mest mRNA in visceral epididymal and subcutaneous inguinal WAT, respectively. WAT Mest mRNA was positively associated with interindividual variation of fat mass. Surprisingly, there was only a slight association of WAT Mest with food intake when normalized by body weight or lean mass. In addition, WAT Mest expression coincided highly with the expression of the transcription factor Kruppel-like factor 14 (Klf14), an imprinted gene that regulates lipid metabolism in WAT. Our data suggest that KLF14 transcriptional activity may partially mediate, or act in concert with, MEST as part of an epigenetic mechanism that promotes fat mass accumulation in mice fed an obesogenic diet. PMID:26647164

  3. Molecular correlates of fat mass expansion in C57BL/6J mice after short-term exposure to dietary fat.

    PubMed

    Anunciado-Koza, Rea P; Manuel, Justin; Koza, Robert A

    2016-01-01

    Heterogeneity of obesity within a population of inbred mice fed an obesogenic high-fat diet (HFD) is associated with changes of gene expression in white adipose tissue (WAT). One gene in particular with large variations among mice, mesoderm-specific transcript (Mest), has been shown to be highly inducible after being fed a short-term HFD, and its expression in WAT before HFD feeding is predictive for susceptibility to the development of obesity. To gain further insight into the association of Mest with rapid changes in body composition, 96 individually housed C57BL/6J mice were fed an HFD for only 2 weeks, resulting in a 12-fold and 90-fold variation in Mest mRNA in visceral epididymal and subcutaneous inguinal WAT, respectively. WAT Mest mRNA was positively associated with interindividual variation of fat mass. Surprisingly, there was only a slight association of WAT Mest with food intake when normalized by body weight or lean mass. In addition, WAT Mest expression coincided highly with the expression of the transcription factor Kruppel-like factor 14 (Klf14), an imprinted gene that regulates lipid metabolism in WAT. Our data suggest that KLF14 transcriptional activity may partially mediate, or act in concert with, MEST as part of an epigenetic mechanism that promotes fat mass accumulation in mice fed an obesogenic diet.

  4. Acute effects of