Science.gov

Sample records for acute er stress

  1. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation.

    PubMed

    Jung, Eun Sun; Hong, HyunSeok; Kim, Chaeyoung; Mook-Jung, Inhee

    2015-01-01

    Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway. PMID:25740315

  2. Scutellaria baicalensis Georgi extract protects against alcohol-induced acute liver injury in mice and affects the mechanism of ER stress

    PubMed Central

    DONG, QINGQING; CHU, FEI; WU, CHENGZHU; HUO, QIANG; GAN, HUAIYONG; LI, XIAOMING; LIU, HAO

    2016-01-01

    The aims of the present study were to examine the hepatoprotective effect of Scutellaria baicalensis Georgi extract (Scutellariae Radix extract; SRE) against acute alcohol-induced liver injury in mice, and investigate the mechanism of endoplasmic reticulum (ER) stress. High performance liquid chromatography was used for the phytochemical analysis of SRE. Animals were administered orally with 50% alcohol (12 ml/kg) 4 h following administration of doses of SRE every day for 14 days, with the exception of normal control group. The protective effect was investigated by measuring the levels of aspartate transaminase (AST), alanine transferase (ALT) and triglyceride (TG) in the serum, and the levels of glutathione (GSH) and malondialdehyde (MDA) in liver tissues. The levels of glucose-related protein 78 (GRP78) were detected using immunohistochemical localization and an enzyme-linked immunosorbent assay. Hepatocyte apoptosis was assessed using terminal-deoxynucleoitidyl transferase mediated nick end labeling. The SRE contained 31.2% baicalin. Pretreatment with SRE had a marked protective effect by reversing the levels of biochemical markers and levels of GRP78 in a dose-dependent manner. The results of the present study demonstrated that pretreatment with SRE exerted a marked hepatoprotective effect by downregulating the expression of GRP78, which is a marker of ER stress. PMID:26936686

  3. A novel copper(I) complex induces ER-stress-mediated apoptosis and sensitizes B-acute lymphoblastic leukemia cells to chemotherapeutic agents

    PubMed Central

    Porcù, Elena; Consolaro, Francesca; Marzano, Cristina; Pellei, Maura; Gandin, Valentina; Basso, Giuseppe

    2014-01-01

    A phosphine copper(I) complex [Cu(thp)4][PF6] (CP) was recently identified as an efficient in vitro antitumor agent. In this study, we evaluated the antiproliferative activity of CP in leukemia cell lines finding a significant efficacy, especially against SEM and RS4;11 cells. Immunoblot analysis showed the activation of caspase-12 and caspase-9 and of the two effector caspase-3 and -7, suggesting that cell death occurred in a caspase-dependent manner. Interestingly we did not observe mitochondrial involvement in the process of cell death. Measures on semipurified proteasome from RS4;11 and SEM cell extracts demonstrated that chymotrypsin-, trypsin- and caspase-like activity decreased in the presence of CP. Moreover, we found an accumulation of ubiquitinated proteins and a remarkable increase of ER stress markers: GRP78, CHOP, and the spliced form of XBP1. Accordingly, the protein synthesis inhibitor cycloheximide significantly protected cancer cells from CP-induced cell death, suggesting that protein synthesis machinery was involved. In well agreement with results obtained on stabilized cell lines, CP induced ER-stress and apoptosis also in primary cells from B-acute lymphoblastic leukemia patients. Importantly, we showed that the combination of CP with some chemotherapeutic drugs displayed a good synergy that strongly affected the survival of both RS4;11 and SEM cells. PMID:24980813

  4. Scutellaria baicalensis Georgi extract protects against alcohol‑induced acute liver injury in mice and affects the mechanism of ER stress.

    PubMed

    Dong, Qingqing; Chu, Fei; Wu, Chengzhu; Huo, Qiang; Gan, Huaiyong; Li, Xiaoming; Liu, Hao

    2016-04-01

    The aims of the present study were to examine the hepatoprotective effect of Scutellaria baicalensis Georgi extract (Scutellariae Radix extract; SRE) against acute alcohol‑induced liver injury in mice, and investigate the mechanism of endoplasmic reticulum (ER) stress. High performance liquid chromatography was used for the phytochemical analysis of SRE. Animals were administered orally with 50% alcohol (12 ml/kg) 4 h following administration of doses of SRE every day for 14 days, with the exception of normal control group. The protective effect was investigated by measuring the levels of aspartate transaminase (AST), alanine transferase (ALT) and triglyceride (TG) in the serum, and the levels of glutathione (GSH) and malondialdehyde (MDA) in liver tissues. The levels of glucose‑related protein 78 (GRP78) were detected using immunohistochemical localization and an enzyme‑linked immunosorbent assay. Hepatocyte apoptosis was assessed using terminal‑deoxynucleoitidyl transferase mediated nick end labeling. The SRE contained 31.2% baicalin. Pretreatment with SRE had a marked protective effect by reversing the levels of biochemical markers and levels of GRP78 in a dose‑dependent manner. The results of the present study demonstrated that pretreatment with SRE exerted a marked hepatoprotective effect by downregulating the expression of GRP78, which is a marker of ER stress. PMID:26936686

  5. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics.

    PubMed

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F G; Rothermel, Beverly A; Lavandero, Sergio

    2012-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  6. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    PubMed Central

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  7. Arctigenin alleviates ER stress via activating AMPK

    PubMed Central

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  8. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    PubMed

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  9. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor.

    PubMed

    Omi, T; Tanimukai, H; Kanayama, D; Sakagami, Y; Tagami, S; Okochi, M; Morihara, T; Sato, M; Yanagida, K; Kitasyoji, A; Hara, H; Imaizumi, K; Maurice, T; Chevallier, N; Marchal, S; Takeda, M; Kudo, T

    2014-01-01

    We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress. PMID:25032855

  10. The role of ER stress in lipid metabolism and lipotoxicity.

    PubMed

    Han, Jaeseok; Kaufman, Randal J

    2016-08-01

    The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity. PMID:27146479

  11. Loss of Clcc1 results in ER stress, misfolded protein accumulation, and neurodegeneration.

    PubMed

    Jia, Yichang; Jucius, Thomas J; Cook, Susan A; Ackerman, Susan L

    2015-02-18

    Folding of transmembrane and secretory proteins occurs in the lumen of the endoplasmic reticulum (ER) before transportation to the cell surface and is monitored by the unfolded protein response (UPR) signaling pathway. The accumulation of unfolded proteins in the ER activates the UPR that restores ER homeostasis by regulating gene expression that leads to an increase in the protein-folding capacity of the ER and a decrease in the ER protein-folding load. However, prolonged UPR activity has been associated with cell death in multiple pathological conditions, including neurodegeneration. Here, we report a spontaneous recessive mouse mutation that causes progressive cerebellar granule cell death and peripheral motor axon degeneration. By positional cloning, we identify the mutation in this strain as a retrotransposon insertion in the Clcc1 gene, which encodes a putative chloride channel localized to the ER. Furthermore, we demonstrate that the C3H/HeSnJ inbred strain has late onset cerebellar degeneration due to this mutation. Interestingly, acute knockdown of Clcc1 expression in cultured cells increases sensitivity to ER stress. In agreement, GRP78, the major HSP70 family chaperone in the ER, is upregulated in Clcc1-deficient granule cells in vivo, and ubiquitinated proteins accumulate in these neurons before their degeneration. These data suggest that disruption of chloride homeostasis in the ER disrupts the protein-folding capacity of the ER, leading to eventual neuron death. PMID:25698737

  12. GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress-Induced Apoptosis.

    PubMed

    Gupta, Manish K; Tahrir, Farzaneh G; Knezevic, Tijana; White, Martyn K; Gordon, Jennifer; Cheung, Joseph Y; Khalili, Kamel; Feldman, Arthur M

    2016-08-01

    Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729625

  13. ER Stress-induced Aberrant Neuronal Maturation and Neurodevelopmental Disorders.

    PubMed

    Kawada, Koichi; Iekumo, Takaaki; Kaneko, Masayuki; Nomura, Yasuyuki; Okuma, Yasunobu

    2016-01-01

    Neurodevelopmental disorders, which include autism spectrum disorder, are congenital impairments in the growth and development of the central nervous system. They are mainly accentuated during infancy and childhood. Autism spectrum disorder may be caused by environmental factors, genomic imprinting of chromosome 15q11-q13 regions, and gene defects such as those in genes encoding neurexin and neuroligin, which are involved in synaptogenesis and synaptic signaling. However, regardless of the many reports on neurodevelopmental disorders, the pathogenic mechanism and treatment of neurodevelopmental disorders remain unclear. Conversely, it has been reported that endoplasmic reticulum (ER) stress is involved in neurodegenerative diseases. ER stress is increased by environmental factors such as alcohol consumption and smoking. Here we show the recent results on ER stress-induced neurodevelopmental disorders. ER stress led to a decrease in the mRNA levels of the proneural factors Hes1/5 and Pax6, which maintain an undifferentiated state of the neural cells. This stress also led to a decrease in nestin expression and an increase in beta-III tubulin expression. In addition, dendrite length was shortened by ER stress in microtubule-associated protein-2 (MAP-2) positive cells. However, the ubiquitin ligase HRD1 expression was increased by ER stress. By suppressing HRD1 expression, the ER stress-induced decrease in nestin and MAP-2 expression and increase in beta-III tubulin returned to control levels. Therefore, we suggest that ER stress induces abnormalities in neuronal differentiation and maturation via HRD1 expression. These results suggest that targeting ER stress may facilitate quicker approaches toward the prevention and treatment of neurodevelopmental disorders. PMID:27252060

  14. PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress.

    PubMed

    Wang, Lifen; Ryoo, Hyung Don; Qi, Yanyan; Jasper, Heinrich

    2015-05-01

    Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan. PMID:25945494

  15. ER stress induces NLRP3 inflammasome activation and hepatocyte death

    PubMed Central

    Lebeaupin, C; Proics, E; de Bieville, C H D; Rousseau, D; Bonnafous, S; Patouraux, S; Adam, G; Lavallard, V J; Rovere, C; Le Thuc, O; Saint-Paul, M C; Anty, R; Schneck, A S; Iannelli, A; Gugenheim, J; Tran, A; Gual, P; Bailly-Maitre, B

    2015-01-01

    The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3 inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases. Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3 inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice, administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn, activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in: CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of

  16. Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells

    PubMed Central

    Ventoso, Iván; Kochetov, Alex; Montaner, David; Dopazo, Joaquín; Santoyo, Javier

    2012-01-01

    In this work we have described the translatome of two mammalian cell lines, NIH3T3 and Jurkat, by scoring the relative polysome association of ∼10,000 mRNA under normal and ER stress conditions. We have found that translation efficiencies of mRNA correlated poorly with transcript abundance, although a general tendency was observed so that the highest translation efficiencies were found in abundant mRNA. Despite the differences found between mouse (NIH3T3) and human (Jurkat) cells, both cell types share a common translatome composed by ∼800–900 mRNA that encode proteins involved in basic cellular functions. Upon stress, an extensive remodeling in translatomes was observed so that translation of ∼50% of mRNA was inhibited in both cell types, this effect being more dramatic for those mRNA that accounted for most of the cell translation. Interestingly, we found two subsets comprising 1000–1500 mRNA whose translation resisted or was induced by stress. Translation arrest resistant class includes many mRNA encoding aminoacyl tRNA synthetases, ATPases and enzymes involved in DNA replication and stress response such as BiP. This class of mRNA is characterized by high translation rates in both control and stress conditions. Translation inducible class includes mRNA whose translation was relieved after stress, showing a high enrichment in early response transcription factors of bZIP and zinc finger C2H2 classes. Unlike yeast, a general coordination between changes in translation and transcription upon stress (potentiation) was not observed in mammalian cells. Among the different features of mRNA analyzed, we found a relevant association of translation efficiency with the presence of upstream ATG in the 5′UTR and with the length of coding sequence of mRNA, and a looser association with other parameters such as the length and the G+C content of 5′UTR. A model for translatome remodeling during the acute phase of stress response in mammalian cells is proposed. PMID

  17. Targeted Protein Destabilization Reveals an Estrogen-mediated ER Stress Response

    PubMed Central

    Raina, Kanak; Noblin, Devin J.; Serebrenik, Yevgeniy V.; Adams, Alison; Zhao, Connie; Crews, Craig M.

    2014-01-01

    Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells leads to an unfolded protein response (UPR) that either restores homeostasis or commits the cells to apoptosis. Tools traditionally used to study the UPR are pro-apoptotic and thus confound analysis of long-term cellular responses to ER stress. Here, we describe an Endoplasmic Reticulum-localized HaloTag (ERHT) protein that can be conditionally destabilized using a small molecule hydrophobic tag (HyT36). Treatment of ERHT-expressing cells with HyT36 induces an acute, resolvable ER stress that results in transient UPR activation without induction of apoptosis. Transcriptome analysis of late-stage responses to this UPR stimulus reveals a link between UPR activity and estrogen signaling. PMID:25242550

  18. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    PubMed

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. PMID:25359175

  19. ER Protein Processing Under Oxidative Stress: Implications and Prevention.

    PubMed

    Khalil, Mahmoud F; Valenzuela, Carlos; Sisniega, Daniella; Skouta, Rachid; Narayan, Mahesh

    2016-06-01

    Elevated levels of mitochondrial nitrosative stress have been associated with the pathogenesis of both Parkinson's and Alzheimer's diseases. The mechanism involves catalytic poisoning of the endoplasmic reticulum (ER)-resident oxidoreductase chaperone, protein disulfide isomerase (PDI), and the subsequent accumulation of ER-processed substrate proteins. Using a model system to mimic mitochondrial oxidative and nitrosative stress, we demonstrate a PDI-independent mechanism whereby reactive oxygen species (ROS) compromise regeneration rates of disulfide bond-containing ER-processed proteins. Under ROS-duress, the secretion-destined traffic adopts disulfide-exposed structures making the protein flux retrotranslocation biased. We also demonstrate that ROS-compromised protein maturation rates can be rescued by the polyphenol ellagic acid (EA). Our results are significant in that they reveal an additional mechanism which could promote neurodegenerative disorders. Furthermore, our data reveal that EA possesses therapeutic potential as a lead prophylactic agent against oxidative/nitrosative stress-related neurodegenerative diseases. PMID:26983927

  20. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    PubMed

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. PMID:26559141

  1. Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress

    PubMed Central

    Zhang, Peng; Zhou, Lujun; Pei, Chunli; Lin, Xinhua; Yuan, Zengqiang

    2016-01-01

    Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development. PMID:26887613

  2. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. PMID:26253462

  3. Imiquimod induces ER stress and Ca(2+) influx independently of TLR7 and TLR8.

    PubMed

    Nyberg, William A; Espinosa, Alexander

    2016-05-13

    Endoplasmic reticulum (ER) stress is a physiological response to protein overload or misfolded proteins in the ER. Certain anti-cancer drugs, e.g. bortezomib and nelfinavir, induce ER stress implying that this could be a successful therapeutic strategy against several forms of cancer. To find novel ER-stress inducers we screened a panel of natural and synthetic Toll-like receptor (TLR) agonists against human keratinocytes and identified the anti-cancer drug imiquimod (IMQ) as a potent inducer of ER stress. Other TLR7 and TLR8 agonists, including resiquimod and gardiquimod, did not induce ER stress, demonstrating that IMQ induces ER stress independently of TLR7 and TLR8. We further confirmed this by showing that IMQ could still induce ER stress in mouse Tlr7(-/-) cells. IMQ also induced a rapid and transient influx of extracellular Ca(2+) together with the release of Ca(2+) from internal stores. Depletion of Ca(2+) from the ER is a known cause of ER stress suggesting that IMQ induces ER stress via depletion of ER Ca(2+). The ER-stress inducing property of IMQ is possibly of importance for its efficacy in treating basal cell carcinoma, in situ melanoma, and squamous cell carcinoma. Our data could potentially be harnessed for rational design of even more potent ER-stress inducers and new anti-cancer drugs. PMID:27003259

  4. SEAP activity serves for demonstrating ER stress induction by glucolipotoxicity as well as testing ER stress inhibitory potential of therapeutic agents.

    PubMed

    Lenin, Raji; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-06-01

    Endoplasmic reticulum (ER) stress is emerging as a unifying paradigm and one of the underlying mechanisms in the genesis of diabetes and its complications. While this has prompted the development of ER stress inhibitors, there is a limitation in monitoring of ER stress in vitro and in vivo by reliable methodologies. We validated the secreted alkaline phosphatase (SEAP) activity as a surrogate marker of ER stress in mouse β-TC6 cells exposed to glucolipotoxicity or tunicamycin and studied insulin secretion along with alterations in ER stress markers. SEAP activity assay was measured using the Great EscAPe SEAP kit, insulin levels were determined by Mercodia reagents and mRNA expression of ER stress markers was quantified by real-time PCR. SEAP activity in β-cells was significantly decreased (indicating increased ER stress) on exposure either to glucolipotoxicity or tunicamycin. This was accompanied by an increased mRNA expression of ER stress markers (GRP-78, PERK, IRE1α, ATF6, XBP-1, and CHOP) and decreased insulin secretion. Treating the cells with phenylbutyric acid normalized SEAP activity, decreased mRNA expression of ER stress markers and improved insulin secretion. Interestingly, cells exposed to different classes of anti-diabetes agents or compounds such as resveratrol resisted ER stress. Methylglyoxal also induces ER stress and this was counteracted by aminoguanidine. Out study demonstrates SEAP activity as a novel ER stress monitoring assay to investigate the therapeutic value of agents with ER stress inhibitory potential. Future studies should focus on the exercise of adopting this reporter assay for high-throughput screening mode of drug discovery. PMID:25776571

  5. Systemic effects of AGEs in ER stress induction in vivo.

    PubMed

    Adamopoulos, Christos; Mihailidou, Chrysovalantou; Grivaki, Christofora; Papavassiliou, Kostas A; Kiaris, Hippokratis; Piperi, Christina; Papavassiliou, Athanasios G

    2016-08-01

    Emerging evidence indicates that accumulation of advanced glycation end products (AGEs) in human tissues may contribute to cell injury, inflammation and apoptosis through induction of endoplasmic reticulum (ER) stress. Human metabolism relies on ER homeostasis for the coordinated response of all metabolic organs by controlling the synthesis and catabolism of various nutrients. In vitro studies have demonstrated AGE-induced enhancement of unfolded protein response (UPR) in different cell types including endothelial, neuronal, pancreatic cells and podocytes, suggesting this crosstalk as an underlying pathological mechanism that contributes to metabolic diseases. In this minireview, we describe in vivo studies undertaken by our group and others that demonstrate the diverse systemic effects of AGEs in ER stress induction in major metabolic tissues such as brain, kidney, liver and pancreas of normal mice. Administration of high-AGEs content diet to normal mice for the period of 4 weeks upergulates the mRNA and protein levels of ER chaperone Bip (GRP78) indicative of UPR initiation in all major metabolic organs and induces activation of the pivotal transcription factor XBP1 that regulates glucose and lipid metabolism. Furthermore, animals with genetic ablation of UPR-activated transcription factor C/EBP homologous protein CHOP allocated in high-AGEs diet, exhibited relative resistance to UPR induction (BiP levels) and XBP1 activation in major metabolic organs. Since CHOP presents a critical mediator that links accumulation and aggregation of unfolded proteins with induction of oxidative stress and ER stress-related apoptosis, it is revealed as an important molecular target for the management of metabolic diseases. PMID:27236787

  6. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

    PubMed

    Mota, Sandra I; Costa, Rui O; Ferreira, Ildete L; Santana, Isabel; Caldeira, Gladys L; Padovano, Carmela; Fonseca, Ana C; Baldeiras, Inês; Cunha, Catarina; Letra, Liliana; Oliveira, Catarina R; Pereira, Cláudia M F; Rego, Ana Cristina

    2015-07-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells. PMID:25857617

  7. Involvement of ER stress in retinal cell death

    PubMed Central

    Shimazawa, Masamitsu; Inokuchi, Yuta; Ito, Yasushi; Murata, Hiroshi; Aihara, Makoto; Miura, Masayuki; Araie, Makoto

    2007-01-01

    Purpose To clarify whether endoplasmic reticulum (ER) stress is involved in retinal cell death, using cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed with E1A virus), and transgenic mice ER stress-activated indicator (ERAI) mice carrying a human XBP1 and venus a variant of green fluorescent protein (GFP) fusion gene. Methods RGC-5 damage was induced by tunicamycin, and cell viability was measured by double nuclear staining (Hoechst 33342 and either YO-PRO-1 or propidium iodide). The expressions of glucose-regulated protein 78(GRP78)/BiP, the phosphorylated form of eukaryotic initiation factor 2α (p-eIF2α), and C/EBP-homologous (CHOP) protein after tunicamycin (in vitro or in vivo) or N-methyl-D-aspartate (NMDA; in vivo) treatment were measured using immunoblot or immunostaining. ERAI mice carrying the F-XBP1-DBD-venus expression gene were used to monitor ER-stress in vivo. Twenty-four hours after intravitreal injection of tunicamycin or NMDA, or after raising intraocular pressure (IOP), the retinal fluorescence intensity was visualized in anesthetized animals using an ophthalmoscope and in retinal flatmount or cross-section specimens using laser confocal microscopy. Results Treatment with tunicamycin induced apoptotic cell death in RGC-5 and also induced production of ER stress-related proteins (BiP, the phosphorylated form of eIF2α, and CHOP protein). In vivo, tunicamycin induced retinal ganglion cell (RGC) loss and thinning of the inner plexiform layer, 7 days after intravitreal injection. In flatmounted retinas of ERAI mice, the fluorescence intensity arising from the XBP-1-venus fusion protein, indicating ER-stress activation, was increased at 24 h after tunicamycin, NMDA, or IOP elevation. In transverse cross-sections from ERAI mice, the fluorescence intensity was first increased in cells of the ganglion cell and inner plexiform layers at 12 and 24 h, respectively, after NMDA injection, and it was localized to ganglion and

  8. Capsaicin induces apoptosis in PC12 cells through ER stress.

    PubMed

    Krizanova, Olga; Steliarova, Iveta; Csaderova, Lucia; Pastorek, Michal; Hudecova, Sona

    2014-02-01

    Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 µM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress. PMID:24337105

  9. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  10. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin

    PubMed Central

    Müllebner, Andrea; Moldzio, Rudolf; Redl, Heinz; Kozlov, Andrey V.; Duvigneau, J. Catharina

    2015-01-01

    Heme oxygenase (HO), in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR); the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER). The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted by BR still have

  11. ER-stress in Alzheimer's disease: turning the scale?

    PubMed

    Endres, Kristina; Reinhardt, Sven

    2013-01-01

    Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. PMID:24319643

  12. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    SciTech Connect

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  13. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade.

    PubMed

    Jun, Do Y; Kim, Jun S; Park, Hae S; Han, Cho R; Fang, Zhe; Woo, Mi H; Rhee, In K; Kim, Young H

    2007-06-01

    To isolate pharmacologically safe compounds that can induce apoptosis of tumor cells, leaves of an aromatic plant (Zanthoxylum schinifolium), which are widely used as a food flavor and herbal medicine in Korea and Japan, were sequentially extracted by organic solvents. An apoptogenic ingredient in the methylene chloride extract was further purified by silica gel column chromatography and identified as auraptene (AUR). The IC(50) value of AUR against Jurkat T cells was 16.5 microg/ml. After the treatment of Jurkat T cells with AUR, the endoplasmic reticulum (ER) stress-mediated activation of caspase-12 and -8 and subsequent apoptotic events including c-Jun N-terminal kinase (JNK) activation, cleavage of FLICE inhibitory protein and Bid, mitochondrial cytochrome c release, activation of caspase-9 and -3, degradation of poly (ADP-ribose) polymerase and apoptotic DNA fragmentation were induced in a dose-dependent manner. The cytotoxicity of AUR was not blocked by the anti-Fas neutralizing antibody ZB-4. The AUR-induced cytotoxicity and apoptotic events were abrogated by ectopic over-expression of Bcl-xL or addition of the pan-caspase inhibitor z-VAD-fmk. The individual or simultaneous addition of the m-calpain inhibitor (E64d), JNK inhibitor (SP600125) and mitochondrial permeability transition pore inhibitor (CsA) failed to prevent apoptotic events including caspase-8 activation and Bid cleavage, unless the caspase-8 inhibitor (z-IETD-fmk) was combined, whereas AUR-induced caspase-12 activation was sustained even in the concomitant presence of z-IETD-fmk. These results demonstrated that the apoptotic effect of AUR on Jurkat T cells was exerted by the ER stress-mediated activation of caspase-8, and the subsequent induction of mitochondria-dependent or -independent activation of caspase cascade, which could be suppressed by Bcl-xL. PMID:17301064

  14. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  15. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  16. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins

    PubMed Central

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z.; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D.; Sheng, Yong; Crane, Denis I.; Florin, Timothy H.

    2013-01-01

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER. PMID:23650437

  17. Thermal lensing and stress in Cr,Er:YSGG

    NASA Astrophysics Data System (ADS)

    Gollihar, William A.; Margo, Satrijo T.; DeShazer, Larry G.; Kennedy, Chandler J.

    1995-04-01

    Thermal and stress lensing effects have been measured in a Cr,Er:YSGG rod by observing a transmitted 1064 nm Nd:YAG beam diverging from an operating Cr,Er:YSGG laser. The results compare favorably with theory and estimated thermal-optic properties of YSGG, which is intermediate between YAG and GSGG. Numerical simulations of the laser agree substantially with the threshold and power observed and show a heat generation rate which is consistent with our observations of lensing. Thermal fracture of the rod has been observed on several occasions, leading to an estimate of the thermal fracture figure of merit which is also intermediate between YAG and GSGG. Back focal distances of less than 20 cm occur in the vicinity of half the thermal rupture limit.

  18. Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages

    PubMed Central

    Ishiyama, Junichi; Taguchi, Ryoko; Akasaka, Yunike; Shibata, Saiko; Ito, Minoru; Nagasawa, Michiaki; Murakami, Koji

    2011-01-01

    Palmitic acid (PA) upregulates oxidized LDL receptor-1 (LOX-1), a scavenger receptor responsible for uptake of oxidized LDL (oxLDL), and enhances oxLDL uptake in macrophages. However, the precise underlying mechanism remains to be elucidated. PA is known to induce endoplasmic reticulum (ER) stress in various cell types. Therefore, we investigated whether ER stress is involved in PA-induced LOX-1 upregulation. PA induced ER stress, as determined by phosphorylation of PERK, eIF2α, and JNK, as well as induction of CHOP in macrophage-like THP-1 cells. Inhibitors [4-phenylbutyric acid (PBA), sodium tauroursodeoxycholate (TUDCA), and salubrinal] and small interfering RNA (siRNA) for the ER stress response decreased PA-induced LOX-1 upregulation. Thapsigargin, an ER stress inducer, upregulated LOX-1, which was decreased by PBA and TUDCA. We next examined whether unsaturated FAs could counteract the effect of PA. Both oleic acid (OA) and linoleic acid (LA) suppressed PA-induced LOX-1. Activation of the ER stress response observed in the PA-treated cells was markedly attenuated when the cells were cotreated with OA or LA. In addition, OA and LA suppressed thapsigargin-induced LOX-1 upregulation with reduced activation of ER stress markers. Our results indicate that activation of ER stress is involved in PA-induced LOX-1 upregulation in macrophages, and that OA and LA inhibit LOX-1 induction through suppression of ER stress. PMID:21078775

  19. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress inducing drugs

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Cruickshanks, Nichola; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors, and to determine the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knock down of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012, and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase 9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase 8 inhibitor c-FLIP-s, or knock down of death receptor CD95 or the death receptor – caspase 8 linker protein FADD, suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knock down of the autophagy regulatory proteins Beclin1 or ATG5 protected cells from OSU-03012 and of [OSU-03012 + PDE5 inhibitor] toxicity. Knock down of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor] –induced JNK activation and inhibition of JNK suppressed the elevated killing caused by IRE1 knock down. Knock down of CD95 blunted JNK activation. Collectively our data demonstrates that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in GBM cells. PMID:25103559

  20. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    SciTech Connect

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-06-25

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-L{alpha}, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm{sup 2} irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm{sup 2} UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  1. A novel role of c-FLIP protein in regulation of ER stress response.

    PubMed

    Conti, Silvia; Petrungaro, Simonetta; Marini, Elettra Sara; Masciarelli, Silvia; Tomaipitinca, Luana; Filippini, Antonio; Giampietri, Claudia; Ziparo, Elio

    2016-09-01

    Cellular-Flice-like inhibitory protein (c-FLIP) is an apoptosis modulator known to inhibit the extrinsic apoptotic pathway thus blocking Caspase-8 processing in the Death Inducing Signalling Complex (DISC). We previously demonstrated that c-FLIP localizes at the endoplasmic reticulum (ER) and that c-FLIP-deficient mouse embryonic fibroblasts (MEFs) display an enlarged ER morphology. In the present study, we have addressed the consequences of c-FLIP ablation in the ER stress response by investigating the effects of pharmacologically-induced ER stress in Wild Type (WT) and c-FLIP-/- MEFs. Surprisingly, c-FLIP-/- MEFs were found to be strikingly more resistant than WT MEFs to ER stress-mediated apoptosis. Analysis of Unfolded Protein Response (UPR) pathways revealed that Pancreatic ER Kinase (PERK) and Inositol-Requiring Enzyme 1 (IRE1) branch signalling is compromised in c-FLIP-/- cells when compared with WT cells. We found that c-FLIP modulates the PERK pathway by interfering with the activity of the serine threonine kinase AKT. Indeed, c-FLIP-/- MEFs display higher levels of active AKT than WT MEFs upon ER stress, while treatment with a specific AKT inhibitor of c-FLIP-/- MEFs subjected to ER stress restores the PERK but not the IRE1 pathway. Importantly, the AKT inhibitor or dominant negative AKT transfection sensitizes c-FLIP-/- cells to ER stress-induced cell death while the expression of a constitutively active AKT reduces WT cells sensitivity to ER stress-induced death. Thus, our results demonstrate that c-FLIP modulation of AKT activity is crucial in controlling PERK signalling and sensitivity to ER stress, and highlight c-FLIP as a novel molecular player in PERK and IRE1-mediated ER stress response. PMID:27267061

  2. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  3. When supply does not meet demand-ER stress and plant programmed cell death

    PubMed Central

    Williams, Brett; Verchot, Jeanmarie; Dickman, Martin B.

    2014-01-01

    The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility. PMID:24926295

  4. AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    PubMed

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  5. AMPK-independent inhibition of human macrophage ER stress response by AICAR

    PubMed Central

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  6. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma.

    PubMed

    Corazzari, M; Rapino, F; Ciccosanti, F; Giglio, P; Antonioli, M; Conti, B; Fimia, G M; Lovat, P E; Piacentini, M

    2015-06-01

    The notorious unresponsiveness of metastatic cutaneous melanoma to current treatment strategies coupled with its increasing incidence constitutes a serious worldwide clinical problem. Moreover, despite recent advances in targeted therapies for patients with BRAF(V600E) mutant melanomas, acquired resistance remains a limiting factor and hence emphasises the acute need for comprehensive pre-clinical studies to increase the biological understanding of such tumours in order to develop novel effective and longlasting therapeutic strategies. Autophagy and ER stress both have a role in melanoma development/progression and chemoresistance although their real impact is still unclear. Here, we show that BRAF(V600E) induces a chronic ER stress status directly increasing basal cell autophagy. BRAF(V600E)-mediated p38 activation stimulates both the IRE1/ASK1/JNK and TRB3 pathways. Bcl-XL/Bcl-2 phosphorylation by active JNK releases Beclin1 whereas TRB3 inhibits the Akt/mTor axes, together resulting in an increase in basal autophagy. Furthermore, we demonstrate chemical chaperones relieve the BRAF(V600E)-mediated chronic ER stress status, consequently reducing basal autophagic activity and increasing the sensitivity of melanoma cells to apoptosis. Taken together, these results suggest enhanced basal autophagy, typically observed in BRAF(V600E) melanomas, is a consequence of a chronic ER stress status, which ultimately results in the chemoresistance of such tumours. Targeted therapies that attenuate ER stress may therefore represent a novel and more effective therapeutic strategy for BRAF mutant melanoma. PMID:25361077

  7. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways

    PubMed Central

    Timmins, Jenelle M.; Ozcan, Lale; Seimon, Tracie A.; Li, Gang; Malagelada, Cristina; Backs, Johannes; Backs, Thea; Bassel-Duby, Rhonda; Olson, Eric N.; Anderson, Mark E.; Tabas, Ira

    2009-01-01

    ER stress–induced apoptosis is implicated in various pathological conditions, but the mechanisms linking ER stress–mediated signaling to downstream apoptotic pathways remain unclear. Using human and mouse cell culture and in vivo mouse models of ER stress–induced apoptosis, we have shown that cytosolic calcium resulting from ER stress induces expression of the Fas death receptor through a pathway involving calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ) and JNK. Remarkably, CaMKIIγ was also responsible for processes involved in mitochondrial-dependent apoptosis, including release of mitochondrial cytochrome c and loss of mitochondrial membrane potential. CaMKII-dependent apoptosis was also observed in a number of cultured human and mouse cells relevant to ER stress–induced pathology, including cultured macrophages, endothelial cells, and neuronal cells subjected to proapoptotic ER stress. Moreover, WT mice subjected to systemic ER stress showed evidence of macrophage mitochondrial dysfunction and apoptosis, renal epithelial cell apoptosis, and renal dysfunction, and these effects were markedly reduced in CaMKIIγ-deficient mice. These data support an integrated model in which CaMKII serves as a unifying link between ER stress and the Fas and mitochondrial apoptotic pathways. Our study also revealed what we believe to be a novel proapoptotic function for CaMKII, namely, promotion of mitochondrial calcium uptake. These findings raise the possibility that CaMKII inhibitors could be useful in preventing apoptosis in pathological settings involving ER stress–induced apoptosis. PMID:19741297

  8. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma

    PubMed Central

    Zode, Gulab S.; Sharma, Arti B.; Lin, Xiaolei; Searby, Charles C.; Bugge, Kevin; Kim, Gun Hee; Clark, Abbot F.; Sheffield, Val C.

    2014-01-01

    Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma. PMID:24691439

  9. p53 and Translation Attenuation Regulate Distinct Cell Cycle Checkpoints during Endoplasmic Reticulum (ER) Stress*

    PubMed Central

    Thomas, Sally E.; Malzer, Elke; Ordóñez, Adriana; Dalton, Lucy E.; van ′t Wout, Emily F. A.; Liniker, Elizabeth; Crowther, Damian C.; Lomas, David A.; Marciniak, Stefan J.

    2013-01-01

    Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G1 phase, although recent studies have identified a novel ER stress G2 checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G2 delay involving CHK1 and a later induction of G1 arrest associated both with the induction of p53 target genes and loss of cyclin D1. We show that substitution of p53/47 for p53 impairs the ER stress G1 checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G2 progression prior to ultimate G1 arrest. PMID:23341460

  10. When under pressure, get closer: PERKing up membrane contact sites during ER stress.

    PubMed

    van Vliet, Alexander R; Agostinis, Patrizia

    2016-04-15

    The endoplasmic reticulum (ER) is the main hub of cellular Ca(2+)signalling and protein synthesis and folding. The ER moreover is the central player in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM) and endosomes. The most studied of these, the ER-mitochondria contact sites, are crucial regulators of cellular Ca(2+)homoeostasis, metabolism and cell death signalling. Protein kinase RNA-like ER kinase (PERK), an ER stress kinase and crucial signalling protein in the unfolded protein response (UPR), was found to be able to orchestrate contact sites between the ER and mitochondria and to be indispensable for the pre-apoptotic trafficking of calreticulin (CRT) at the PM during immunogenic cell death (ICD). Furthermore, PERK has recently been linked with ER and PM contact sites through the mechanism of store-operated Ca(2+)entry (SOCE). Here we discuss emerging findings disclosing novel roles of the ER stress sensor PERK in orchestrating inter-organellar communication in the context of ER stress. PMID:27068961

  11. NOD1 and NOD2 signalling links ER stress with inflammation.

    PubMed

    Keestra-Gounder, A Marijke; Byndloss, Mariana X; Seyffert, Núbia; Young, Briana M; Chávez-Arroyo, Alfredo; Tsai, April Y; Cevallos, Stephanie A; Winter, Maria G; Pham, Oanh H; Tiffany, Connor R; de Jong, Maarten F; Kerrinnes, Tobias; Ravindran, Resmi; Luciw, Paul A; McSorley, Stephen J; Bäumler, Andreas J; Tsolis, Renée M

    2016-04-21

    Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1α. Once activated, IRE1α recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-κB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation. PMID:27007849

  12. A thrombospondin-dependent pathway for a protective ER stress response

    PubMed Central

    Lynch, Jeffrey M.; Maillet, Marjorie; Vanhoutte, Davy; Schloemer, Aryn; Sargent, Michelle A.; Blair, N. Scott; Lynch, Kaari A.; Okada, Tetsuya; Aronow, Bruce J.; Osinska, Hanna; Prywes, Ron; Lorenz, John N.; Mori, Kazutoshi; Lawler, Jack; Robbins, Jeffrey; Molkentin, Jeffery D.

    2012-01-01

    SUMMARY Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a novel function for Thbs’ as ER resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury while Thbs4−/− mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. The type-3 repeat domain in Thbs’ bind the ER luminal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4−/−mice failed to show activation of Atf6α and other ER stress response factors with injury, and Thbs4-mediated protection was lost when Atf6α was deleted. Hence, Thbs’ can function inside the cell during disease/remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α. PMID:22682248

  13. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  14. Expression of Human Gaucher Disease Gene GBA Generates Neurodevelopmental Defects and ER Stress in Drosophila Eye

    PubMed Central

    Ito, Kumpei; Hanai, Shuji; Aizawa, Hidenobu; Kato, Tomoki; Kawasaki, Kazunori; Yamaguchi, Terumi; Ryoo, Hyung Don; Goto-Inoue, Naoko; Setou, Mitsutoshi; Tsuji, Shoji; Ishida, Norio

    2013-01-01

    Gaucher disease (GD) is the most common of the lysosomal storage disorders and is caused by defects in the GBA gene encoding glucocerebrosidase (GlcCerase). The accumulation of its substrate, glucocylceramide (GlcCer) is considered the main cause of GD. We found here that the expression of human mutated GlcCerase gene (hGBA) that is associated with neuronopathy in GD patients causes neurodevelopmental defects in Drosophila eyes. The data indicate that endoplasmic reticulum (ER) stress was elevated in Drosophila eye carrying mutated hGBAs by using of the ER stress markers dXBP1 and dBiP. We also found that Ambroxol, a potential pharmacological chaperone for mutated hGBAs, can alleviate the neuronopathic phenotype through reducing ER stress. We demonstrate a novel mechanism of neurodevelopmental defects mediated by ER stress through expression of mutants of human GBA gene in the eye of Drosophila. PMID:23936319

  15. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress

    PubMed Central

    Bouman, L; Schlierf, A; Lutz, A K; Shan, J; Deinlein, A; Kast, J; Galehdar, Z; Palmisano, V; Patenge, N; Berg, D; Gasser, T; Augustin, R; Trümbach, D; Irrcher, I; Park, D S; Wurst, W; Kilberg, M S; Tatzelt, J; Winklhofer, K F

    2011-01-01

    Loss of parkin function is responsible for the majority of autosomal recessive parkinsonism. Here, we show that parkin is not only a stress-protective, but also a stress-inducible protein. Both mitochondrial and endoplasmic reticulum (ER) stress induce an increase in parkin-specific mRNA and protein levels. The stress-induced upregulation of parkin is mediated by ATF4, a transcription factor of the unfolded protein response (UPR) that binds to a specific CREB/ATF site within the parkin promoter. Interestingly, c-Jun can bind to the same site, but acts as a transcriptional repressor of parkin gene expression. We also present evidence that mitochondrial damage can induce ER stress, leading to the activation of the UPR, and thereby to an upregulation of parkin expression. Vice versa, ER stress results in mitochondrial damage, which can be prevented by parkin. Notably, the activity of parkin to protect cells from stress-induced cell death is independent of the proteasome, indicating that proteasomal degradation of parkin substrates cannot explain the cytoprotective activity of parkin. Our study supports the notion that parkin has a role in the interorganellar crosstalk between the ER and mitochondria to promote cell survival under stress, suggesting that both ER and mitochondrial stress can contribute to the pathogenesis of Parkinson's disease. PMID:21113145

  16. Acute psychological stress reduces plasma triglyceride clearance.

    PubMed

    Stoney, Catherine M; West, Sheila G; Hughes, Joel W; Lentino, Lisa M; Finney, Montenique L; Falko, James; Bausserman, Linda

    2002-01-01

    Acute stress elevates blood lipids, with the largest increases among men and postmenopausal women. The mechanisms for the effect are unknown, but may be due to altered lipid metabolism. This study investigated if acute stress induces transient reductions in triglyceride clearance in middle-aged men and women, and determined if gender and menopause affect triglyceride metabolism. Of the 35 women, half were premenopausal, and half were naturally postmenopausal; men (n = 35) were age matched. Clearance of an intravenously administered fat emulsion was assessed twice: once during a nonstress session, and again during a stress-testing session. During the stress session, a battery of behavioral stressors (serial subtraction, speech, mirror tracing, and Stroop) were performed for 40 min. The clearance rate of exogenous fat was significantly diminished during the stress, relative to the nonstress session. Women had more efficient clearance, relative to men, but there were no effects of menopausal status. The diminished ability to clear an intravenous fat emulsion during stress suggests one mechanism for stress-induced elevations in lipids. PMID:12206298

  17. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-01-01

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II. PMID:27277680

  18. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants.

    PubMed

    Wan, Shucen; Jiang, Liwen

    2016-05-01

    Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants. PMID:26060134

  19. RTN1 mediates progression of kidney disease by inducing ER stress

    PubMed Central

    Fan, Ying; Xiao, Wenzhen; Li, Zhengzhe; Li, Xuezhu; Chuang, Peter Y.; Jim, Belinda; Zhang, Weijia; Wei, Chengguo; Wang, Niansong; Jia, Weiping; Xiong, Huabao; Lee, Kyung; He, John C.

    2015-01-01

    Identification of new biomarkers and drug targets for chronic kidney disease (CKD) is required for the development of more effective therapy. Here we report an association between expression of reticulon 1 (RTN1) and severity of CKD. An isoform-specific increase in the expression of RTN1A is detected in the diseased kidneys from mice and humans, and correlates inversely with renal function in patients with diabetic nephropathy. RTN1 overexpression in renal cells induces ER stress and apoptosis, whereas RTN1 knockdown attenuates tunicamycin-induced and hyperglycaemia-induced ER stress and apoptosis. RTN1A interacts with PERK through its N-terminal and C-terminal domains, and mutation of these domains prevents this effect on ER stress. Knockdown of Rtn1a expression in vivo attenuates ER stress and renal fibrosis in mice with unilateral ureteral obstruction, and also attenuates ER stress, proteinuria, glomerular hypertrophy and mesangial expansion in diabetic mice. Together, these data indicate that RTN1A contributes to progression of kidney disease by inducing ER stress. PMID:26227493

  20. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    PubMed

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging. PMID:26551463

  1. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  2. Triptolide activates unfolded protein response leading to chronic ER stress in pancreatic cancer cells

    PubMed Central

    Mujumdar, Nameeta; Banerjee, Sulagna; Chen, Zhiyu; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Yamamoto, Masato; Vickers, Selwyn M.

    2014-01-01

    Pancreatic cancer is a devastating disease with a survival rate of <5%. Moreover, pancreatic cancer aggressiveness is closely related to high levels of prosurvival mediators, which can ultimately lead to rapid disease progression. One of the mechanisms that enables tumor cells to evade cellular stress and promote unhindered proliferation is the endoplasmic reticulum (ER) stress response. Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response (UPR). The UPR initially compensates for damage, but it eventually triggers cell death if ER dysfunction is severe or prolonged. Triptolide, a diterpene triepoxide, has been shown to be an effective compound against pancreatic cancer. Our results show that triptolide induces the UPR by activating the PKR-like ER kinase-eukaryotic initiation factor 2α axis and the inositol-requiring enzyme 1α-X-box-binding protein 1 axis of the UPR and leads to chronic ER stress in pancreatic cancer. Our results further show that glucose-regulated protein 78 (GRP78), one of the major regulators of ER stress, is downregulated by triptolide, leading to cell death by apoptosis in MIA PaCa-2 cells and autophagy in S2-VP10 cells. PMID:24699326

  3. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils

    SciTech Connect

    Binet, Francois; Chiasson, Sonia; Girard, Denis

    2010-01-01

    Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2{alpha} are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.

  4. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress

    PubMed Central

    Bravo, Roberto; Vicencio, Jose Miguel; Parra, Valentina; Troncoso, Rodrigo; Munoz, Juan Pablo; Bui, Michael; Quiroga, Clara; Rodriguez, Andrea E.; Verdejo, Hugo E.; Ferreira, Jorge; Iglewski, Myriam; Chiong, Mario; Simmen, Thomas; Zorzano, Antonio; Hill, Joseph A.; Rothermel, Beverly A.; Szabadkai, Gyorgy; Lavandero, Sergio

    2011-01-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca2+ uptake. Accordingly, uncoupling of the organelles or blocking Ca2+ transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca2+ transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response. PMID:21628424

  5. ER stress and unfolded protein response in amyotrophic lateral sclerosis-a controversial role of protein disulphide isomerase.

    PubMed

    Jaronen, Merja; Goldsteins, Gundars; Koistinaho, Jari

    2014-01-01

    Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER) and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS). During excessive ER stress unfolded protein response (UPR) is activated to return ER to its normal physiological balance. The exact mechanisms of protein misfolding, accumulation and the following ER stress, which could lead to neurodegeneration, and the question whether UPR is a beneficial compensatory mechanism slowing down the neurodegenerative processes, are of interest. Protein disulphide isomerase (PDI) is a disulphide bond-modulating ER chaperone, which can also facilitate the ER-associated degradation (ERAD) of misfolded proteins. In this review we discuss the recent findings of ER stress, UPR and especially the role of PDI in ALS. PMID:25520620

  6. Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1

    PubMed Central

    Ghemrawi, R; Pooya, S; Lorentz, S; Gauchotte, G; Arnold, C; Gueant, J-L; Battaglia-Hsu, S-F

    2013-01-01

    Vitamin B12 (cobalamin) is a key determinant of S-adenosyl methionine (SAM)-dependent epigenomic cellular regulations related to methylation/acetylation and its deficiency produces neurodegenerative disorders by elusive mechanisms. Sirtuin 1 deacetylase (SIRT1) triggers cell response to nutritional stress through endoplasmic reticulum (ER) stress. Recently, we have established a N1E115 dopaminergic cell model by stable expression of a transcobalamin–oleosin chimera (TO), which impairs cellular availability of vitamin B12, decreases methionine synthase activity and SAM level, and reduces cell proliferation. In contrast, oleosin-transcobalamin chimera (OT) does not modify the phenotype of transfected cells. Presently, the impaired cellular availability of vitamin B12 in TO cells activated irreversible ER stress pathways, with increased P-eIF-2α, P-PERK, P-IRE1α, ATF6, ATF4, decreased chaperon proteins and increased pro-apoptotic markers, CHOP and cleaved caspase 3, through reduced SIRT1 expression and consequently greater acetylation of heat-shock factor protein 1 (HSF1). Adding either B12, SIRT1, or HSF1 activators as well as overexpressing SIRT1 or HSF1 dramatically reduced the activation of ER stress pathways in TO cells. Conversely, impairing SIRT1 and HSF1 by siRNA, expressing a dominant negative form of HSF1, or adding a SIRT1 inhibitor led to B12-dependent ER stress in OT cells. Addition of B12 abolished the activation of stress transducers and apoptosis, and increased the expression of protein chaperons in OT cells subjected to thapsigargin, a strong ER stress stimulator. AdoX, an inhibitor of methyltransferase activities, produced similar effects than decreased B12 availability on SIRT1 and ER stress by a mechanism related to increased expression of hypermethylated in cancer 1 (HIC1). Taken together, these data show that cellular vitamin B12 has a strong modulating influence on ER stress in N1E115 dopaminergic cells. The impaired cellular availability in

  7. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.

    PubMed

    Ngoh, Gladys A; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2009-11-01

    We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc signaling could attenuate ER stress-induced cell death per se. Before induction of ER stress (with tunicamycin or brefeldin A), we adenovirally overexpressed O-GlcNAc transferase (AdOGT) or pharmacologically inhibited O-GlcNAcase [via O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate] to augment O-GlcNAc levels or adenovirally overexpressed O-GlcNAcase to reduce O-GlcNAc levels. AdOGT significantly (P < 0.05) attenuated the activation of the maladaptive arm of the unfolded protein response [according to C/EBP homologous protein (CHOP) activation] and cardiomyocyte death (reflected by percent propidium iodide positivity). Moreover, pharmacological inhibition of O-GlcNAcase significantly (P < 0.05) mitigated ER stress-induced CHOP activation and cardiac myocyte death. Interestingly, overexpression of GCA did not alter ER stress markers but exacerbated brefeldin A-induced cardiomyocyte death. We conclude that enhanced O-GlcNAc signaling represents a partially proadaptive response to reduce ER stress-induced cell death. These results provide new insights into a possible interaction between O-GlcNAc signaling and ER stress and may partially explain a mechanism of O-GlcNAc-mediated cardioprotection. PMID:19734355

  8. Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease.

    PubMed

    Celardo, I; Costa, A C; Lehmann, S; Jones, C; Wood, N; Mencacci, N E; Mallucci, G R; Loh, S H Y; Martins, L M

    2016-01-01

    Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information. PMID:27336715

  9. Interleukin-1 receptor-associated kinase-2 (IRAK2) is a critical mediator of endoplasmic reticulum (ER) stress signaling.

    PubMed

    Benosman, Samir; Ravanan, Palaniyandi; Correa, Ricardo G; Hou, Ying-Chen; Yu, Minjia; Gulen, Muhammet Fatih; Li, Xiaoxia; Thomas, James; Cuddy, Michael; Matsuzawa, Yasuko; Sano, Renata; Diaz, Paul; Matsuzawa, Shu-ichi; Reed, John C

    2013-01-01

    Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway. PMID:23724040

  10. Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) Is a Critical Mediator of Endoplasmic Reticulum (ER) Stress Signaling

    PubMed Central

    Correa, Ricardo G.; Hou, Ying-Chen; Yu, Minjia; Gulen, Muhammet Fatih; Li, Xiaoxia; Thomas, James; Cuddy, Michael; Matsuzawa, Yasuko; Sano, Renata; Diaz, Paul; Matsuzawa, Shu-ichi; Reed, John C.

    2013-01-01

    Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway. PMID:23724040

  11. Calnexin silencing in mouse neonatal cardiomyocytes induces Ca2+ cycling defects, ER stress, and apoptosis.

    PubMed

    Bousette, Nicolas; Abbasi, Cynthia; Chis, Roxana; Gramolini, Anthony O

    2014-03-01

    Calnexin (CNX) is an endoplasmic reticulum (ER) quality control chaperone that has been implicated in ER stress. ER stress is a prominent pathological feature of various pathologic conditions, including cardiovascular diseases. However, the role of CNX and ER stress has not been studied in the heart. In the present study, we aimed to characterize the role of CNX in cardiomyocyte physiology with respect to ER stress, apoptosis, and cardiomyocyte Ca(2+) cycling. We demonstrated significantly decreased CNX mRNA and protein levels by LentiVector mediated transduction of targeting shRNAs. CNX silenced cardiomyocytes exhibited ER stress as evidenced by increased GRP78 and ATF6 protein levels, increased levels of spliced XBP1 mRNA, ASK-1, ERO1a, and CHOP mRNA levels. CNX silencing also led to significant activation of caspases-3 and -9. This activation of caspases was associated with hallmark morphological features of apoptosis including loss of sarcomeric organization and nuclear integrity. Ca(2+) imaging in live cells showed that CNX silencing resulted in Ca(2+) transients with significantly larger amplitudes but decreased frequency and Ca(2+) uptake rates in the basal state. Interestingly, 5 mM caffeine stimulated Ca(2+) transients were similar between control and CNX silenced cardiomyocytes. Finally, we demonstrated that CNX silencing induced the expression of the L-type voltage dependent calcium channel (CAV1.2) but reduced the expression of the sarcoplasmic reticulum ATPase (SERCA2a). In conclusion, this is the first study to demonstrate CNX has a specific role in cardiomyocyte viability and Ca(2+) cycling through its effects on ER stress, apoptosis and Ca(2+) channel expression. PMID:24037923

  12. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress.

    PubMed

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca(2+) increase due to depletion of luminal ER Ca(2+). Palmitate-induced ER Ca(2+) depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca(2+) pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca(2+) depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca(2+) loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca(2+) depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA

  13. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress

    PubMed Central

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to

  14. Jagn1 Is Induced in Response to ER Stress and Regulates Proinsulin Biosynthesis

    PubMed Central

    Nosak, Courtney; Silva, Pamuditha N.; Sollazzo, Pietro; Moon, Kyung-Mee; Odisho, Tanya; Foster, Leonard J.; Rocheleau, Jonathan V.; Volchuk, Allen

    2016-01-01

    The Jagn1 protein was indentified in a SILAC proteomic screen of proteins that are increased in insulinoma cells expressing a folding-deficient proinsulin. Jagn1 mRNA was detected in primary rodent islets and in insulinoma cell lines and the levels were increased in response to ER stress. The function of Jagn1 was assessed in insulinoma cells by both knock-down and overexpression approaches. Knock-down of Jagn1 caused an increase in glucose-stimulated insulin secretion resulting from an increase in proinsulin biosynthesis. In contrast, overexpression of Jagn1 in insulinoma cells resulted in reduced cellular proinsulin and insulin levels. Our results identify a novel role for Jagn1 in regulating proinsulin biosynthesis in pancreatic β-cells. Under ER stress conditions Jagn1 is induced which might contribute to reducing proinsulin biosynthesis, in part by helping to relieve the protein folding load in the ER in an effort to restore ER homeostasis. PMID:26882284

  15. ER stress in pancreatic beta cells: the thin red line between adaptation and failure.

    PubMed

    Eizirik, Decio L; Cnop, Miriam

    2010-01-01

    Secretory cells, such as pancreatic beta cells, face the challenge of increasing protein synthesis severalfold during acute or chronic stimulation. This poses a burden on the endoplasmic reticulum (ER), the organelle where proinsulin synthesis and folding takes place. Thus, beta cells use various adaptive mechanisms to adjust the functional capacity of the ER to the prevailing demand. These check-and-balance mechanisms are collectively known as the unfolded protein response (UPR). It remains unclear how UPR signaling is ultimately regulated and what delineates the boundaries between a physiological and a pathological response. New discoveries point to the divergent effects of acute and chronic metabolic fluxes and chemical ER stressors on the formation of complexes among UPR transducers, scaffold proteins, and phosphatases. These and other findings provide a first glimpse on how different signals trigger diverging UPR outcomes. PMID:20179270

  16. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis

    PubMed Central

    Genereux, Joseph C; Qu, Song; Zhou, Minghai; Ryno, Lisa M; Wang, Shiyu; Shoulders, Matthew D; Kaufman, Randal J; Lasmézas, Corinne I; Kelly, Jeffery W; Wiseman, R Luke

    2015-01-01

    The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis. PMID:25361606

  17. β cell ER stress and the implications for immunogenicity in type 1 diabetes

    PubMed Central

    Marré, Meghan L.; James, Eddie A.; Piganelli, Jon D.

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by hyperglycemia due to progressive immune-mediated destruction of insulin-producing pancreatic islet β cells. Although many elegant studies have identified β cell autoantigens that are targeted by the autoimmune response, the mechanisms by which these autoantigens are generated remain poorly understood. Normal β cell physiology includes a high demand for insulin production and secretion in response to dynamic glucose sensing. This secretory function predisposes β cells to significantly higher levels of endoplasmic reticulum (ER) stress compared to nonsecretory cells. In addition, many environmental triggers associated with T1D onset further augment this inherent ER stress in β cells. ER stress may increase abnormal post-translational modification (PTM) of endogenous β cell proteins. Indeed, in other autoimmune disorders such as celiac disease, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis, abnormally modified neo-antigens are presented by antigen presenting cells (APCs) in draining lymph nodes. In the context of genetic susceptibility to autoimmunity, presentation of neo-antigens activates auto-reactive T cells and pathology ensues. Therefore, the ER stress induced by normal β cell secretory physiology and environmental triggers may be sufficient to generate neo-antigens for the autoimmune response in T1D. This review summarizes what is currently known about ER stress and protein PTM in target organs of other autoimmune disease models, as well as the data supporting a role for ER stress-induced neo-antigen formation in β cells in T1D. PMID:26579520

  18. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy.

    PubMed

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-08-01

    Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  19. Acute posttraumatic stress: nonacceptance of early intervention.

    PubMed

    Weisaeth, L

    2001-01-01

    Psychological resistance may be of considerable importance in the posttraumatic stress disorder (PTSD) population, considering that researchers in the field of traumatic stress are frequently unsuccessful in achieving high response rates, that many subjects suffering from PTSD never seek help, and that dropouts from therapy are frequent. This article presents data on the main complaints reported in the acute aftermath of an industrial disaster by 246 employees who had been exposed to the disaster. The dominant concerns were symptomatic complaints related to posttraumatic stress reactions rather than external problems. Sleep disturbance, anxiety/fear responses, and physical symptoms were reported by individuals with complaints in the acute phase as most problematic, while irritability and depressive symptoms appeared very infrequently among the reported main complaints. A high specificity and sensitivity were achieved in predicting later PTSD (as defined by DSM-III criteria) by applying early response variables: thus, there were few false-positives and false-negatives. There was a considerable overlap between the PTSD predictors and the main symptom complaints. From a prevention point of view, this should be advantageous, since it would bring the right people to seek help. However, in a significant proportion of the acutely distressed, the reluctance to seek help was motivated by the very symptoms that predicted PTSD. Even a relatively high rate of subjects agreeing to be screened (82.8%) would have lost 42% of those who qualified for a diagnosis of PTSD, and more than half of the subjects with severe outcomes would not have been included. For primary and secondary prevention, the findings suggest that early screening and outreach should be very active. PMID:11495094

  20. Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes

    PubMed Central

    Doroudgar, Shirin; Völkers, Mirko; Thuerauf, Donna J; Khan, Mohsin; Mohsin, Sadia; Respress, Jonathan L; Wang, Wei; Gude, Natalie; Müller, Oliver J; Wehrens, Xander HT; Sussman, Mark A; Glembotski, Christopher C

    2015-01-01

    Rationale Hrd1 is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD have been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. Objective The objectives of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. Methods and Results The effects of siRNA-mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus (AAV)-mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure-overload induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin (TG) and tunicamycin (TM) increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, TG and TM dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction, and increased apoptosis and cardiac hypertrophy, while Hrd1 overexpression preserved cardiac function, and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure-overload. Conclusions Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy. PMID:26137860

  1. ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice.

    PubMed

    Yao, Xiaomin; Li, Yue; Cheng, Xiaoyan; Li, Hongwei

    2016-06-01

    Endoplasmic reticulum (ER) stress is involved in the development of several liver diseases and tumors. This study investigated the underlying mechanisms of α-naphthyl isothiocyanate (ANIT)-induced liver injury with cholestasis in mice and found ER stress contributes to the injury. All animals were randomly divided into three groups. In the ANIT-intoxicated group, mice were intragastrically given 100mg/kg ANIT (dissolved in corn oil), while the other groups received an equal volume of vehicle as control. After 24 and 48h of ANIT administration, blood samples and liver tissues of all animals were collected for serum biochemistry and hepatic histopathological examinations to evaluate liver injuries with cholestasis. Hepatocellular apoptosis was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of hepatic ER stress-related markers was determined by real-time PCR, immunohistochemical assay and Western blot. ANIT was found to significantly induce liver injury with cholestasis compared with control mice as evidenced by the increase of serum transaminases and total bilirubin (TBil), and histopathological changes in mice. ANIT remarkably induced hepatocellular apoptosis, upregulated the expression of caspase-9 and cytochrome c, and inhibited the gene and protein expression of proliferating cell nuclear antigen (PCNA). The gene expression of ER stress-related markers, including glucose-regulated protein 78 (GRP78), protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol requiring enzyme-1α (IRE-1α) and activating transcription factor 6 (ATF6) was upregulated by ANIT in mice. ANIT also upregulated the protein expression of GRP78 and activated the phosphorylation of IRE1. These results suggested that ANIT induced liver injury with cholestasis partly due to its ability to activate the ER stress pathway. PMID:27173049

  2. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    PubMed Central

    Zughaier, Susu M.; Stauffer, Brandon B.; McCarty, Nael A.

    2014-01-01

    Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2) protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1) leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages. PMID:25762501

  3. Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages.

    PubMed

    Zughaier, Susu M; Stauffer, Brandon B; McCarty, Nael A

    2014-01-01

    Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2) protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1) leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages. PMID:25762501

  4. Comparison of proteomic datasets from hypertrophic chondrocytes in response to ER stress.

    PubMed

    Kudelko, Mateusz; Sharma, Rakesh; Cheah, Kathryn S E; Chan, Danny

    2016-06-01

    Cartilage proteomics is challenging due to the dominance of poorly soluble matrix components and limited available tissue. Using a "spatial" strategy coupled to MS/MS analysis we have specifically labeled and extracted hypertrophic chondrocytes within the growth plate providing thus a comprehensive proteomic map of normal hypertrophic chondrocytes. Furthermore our established 13del mouse model in which the activation of ER stress did not lead to apoptosis of the hypertrophic cells allowed us to address the natural consequences of ER stress in vivo. Thus our data provide also an overview of proteomic changes occurring in cells under ER stress. Associated with the published study [1] this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS) identification. Furthermore the data presented here allow the reader to assert the extent of proteomic changes occurring under ER stress in hypertrophic chondrocytes as well as address the data technical reproducibility in both wild type and stress condition. The mass spectrometry proteomics data can be fully accessed from the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD002125. PMID:27014728

  5. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    PubMed

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. PMID:23567652

  6. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    SciTech Connect

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-08-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.

  7. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma.

    PubMed

    Ma, Xiao-Hong; Piao, Sheng-Fu; Dey, Souvik; McAfee, Quentin; Karakousis, Giorgos; Villanueva, Jessie; Hart, Lori S; Levi, Samuel; Hu, Janice; Zhang, Gao; Lazova, Rossitza; Klump, Vincent; Pawelek, John M; Xu, Xiaowei; Xu, Wei; Schuchter, Lynn M; Davies, Michael A; Herlyn, Meenhard; Winkler, Jeffrey; Koumenis, Constantinos; Amaravadi, Ravi K

    2014-03-01

    Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAF(V600E) melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline. Patients with higher levels of therapy-induced autophagy had drastically lower response rates to BRAFi and a shorter duration of progression-free survival. In BRAF(V600E) melanoma cell lines, BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, and autophagy inhibition enhanced BRAFi-induced cell death. Shortly after BRAF inhibitor treatment in melanoma cell lines, mutant BRAF bound the ER stress gatekeeper GRP78, which rapidly expanded the ER. Disassociation of GRP78 from the PKR-like ER-kinase (PERK) promoted a PERK-dependent ER stress response that subsequently activated cytoprotective autophagy. Combined BRAF and autophagy inhibition promoted tumor regression in BRAFi-resistant xenografts. These data identify a molecular pathway for drug resistance connecting BRAFi, the ER stress response, and autophagy and provide a rationale for combination approaches targeting this resistance pathway. PMID:24569374

  8. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. PMID:25250721

  9. IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver.

    PubMed

    Liu, Dong; Liu, Xing; Zhou, Ti; Yao, William; Zhao, Jun; Zheng, Zhigang; Jiang, Wei; Wang, Fengsong; Aikhionbare, Felix O; Hill, Donald L; Emmett, Nerimah; Guo, Zhen; Wang, Dongmei; Yao, Xuebiao; Chen, Yong

    2016-04-01

    Endoplasmic reticulum (ER) stress is involved in ischemic preconditioning that protects various organs from ischemia/reperfusion (I/R) injury. We established an in vivo ER stress preconditioning model in which tunicamycin was injected into rats before hepatic I/R. The hepatic I/R injury, demonstrated by serum aminotransferase level and the ultra-structure of the liver, was alleviated by administration of tunicamycin, which induced ER stress in rat liver by activating inositol-requiring enzyme 1 (IRE1) and upregulating 78 kDa glucose-regulated protein (GRP78). The proteomic identification for IRE1 binders revealed interaction and cooperation among receptor for activated C kinase 1 (RACK1), phosphorylated AMPK, and IRE1 under ER stress conditions in a spatiotemporal manner. Furthermore, in vitro ER stress preconditioning was induced by thapsigargin and tunicamycin in L02 and HepG2 cells. Surprisingly, BCL2 was found to be phosphorylated by IRE1 under ER stress conditions to prevent apoptotic process by activation of autophagy. In conclusion, ER stress preconditioning protects against hepatic I/R injury, which is orchestrated by IRE1-RACK1 axis through the activation of BCL2. Our findings provide novel insights into the molecular pathways underlying ER stress preconditioning-elicited cytoprotective effect against hepatic I/R injury. PMID:26711306

  10. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    PubMed Central

    Kania, Elżbieta; Pająk, Beata

    2015-01-01

    Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death. PMID:25821797

  11. Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

    PubMed

    Lee, Sebum; Shang, Yulei; Redmond, Stephanie A; Urisman, Anatoly; Tang, Amy A; Li, Kathy H; Burlingame, Alma L; Pak, Ryan A; Jovičić, Ana; Gitler, Aaron D; Wang, Jinhua; Gray, Nathanael S; Seeley, William W; Siddique, Teepu; Bigio, Eileen H; Lee, Virginia M-Y; Trojanowski, John Q; Chan, Jonah R; Huang, Eric J

    2016-07-01

    Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT. PMID:27321923

  12. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis

    PubMed Central

    Condamine, Thomas; Kumar, Vinit; Ramachandran, Indu R.; Youn, Je-In; Celis, Esteban; Finnberg, Niklas; El-Deiry, Wafik S.; Winograd, Rafael; Vonderheide, Robert H.; English, Nickolas R.; Knight, Stella C.; Yagita, Hideo; McCaffrey, Judith C.; Antonia, Scott; Hockstein, Neil; Witt, Robert; Masters, Gregory; Bauer, Thomas; Gabrilovich, Dmitry I.

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis–induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs. PMID:24789911

  13. α-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation

    PubMed Central

    Kim, Sung-Jin; Hong, Eun-Hye; Lee, Bo-Ra; Park, Moon-Ho; Kim, Ji-Won; Pyun, A-Rim; Kim, Yeon-Jeong; Chang, Sun-Young; Chin, Young-Won

    2012-01-01

    α-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of α-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although α-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum Ca2+ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that α-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of α-Mangostin daily for three days. However, the activation of autophagy by α-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of eIF2α, thapsigargin-induced ER stress was significantly reduced by α-Mangostin. However, coadministration of thapsigargin with α-Mangostin completely blocked the antitumor activity of α-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of α-Mangostin can be ascribable to the autophagy activation rather than ER stress induction. PMID:23396851

  14. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  15. Acute Painful Stress and Inflammatory Mediator Production

    PubMed Central

    Griffis, Charles A.; Breen, Elizabeth Crabb; Compton, Peggy; Goldberg, Alyssa; Witarama, Tuff; Kotlerman, Jenny; Irwin, Michael R.

    2014-01-01

    Pro-inflammatory pathways may be activated under conditions of painful stress, which is hypothesized to worsen the pain experience and place medically-vulnerable populations at risk for increased morbidity. Objectives To evaluate the effects of pain and subjective pain-related stress on pro-inflammatory activity. Methods A total of 19 healthy control subjects underwent a single standard cold-pressor pain test (CPT) and a no-pain control condition. Indicators of pain and stress were measured and related to inflammatory immune responses (CD811a, IL-1RA, and IL-6) immediately following the painful stimulus, and compared to responses under non-pain conditions. Heart rate and mean arterial pressure were measured as indicators of sympathetic stimulation. Results CPT was clearly painful and generated an activation of the sympathetic nervous system. CD811a increased in both conditions, but with no statistically significant greater increase following CPT (p < .06). IL-1RA demonstrated a non-statistically significant increase following CPT (p < .07). The change in IL-6 following CPT differed significantly from the response seen in the control condition (p < .02). Conclusions These findings suggest that CP acute pain may affect proinflammatory pathways, possibly through mechanisms related to adrenergic activation. PMID:23407214

  16. TULP1 Missense Mutations Induces the Endoplasmic Reticulum Unfolded Protein Response Stress Complex (ER-UPR).

    PubMed

    Lobo, Glenn P; Ebke, Lindsey A; Au, Adrian; Hagstrom, Stephanie A

    2016-01-01

    Mutations in the TULP1 gene are associated with early-onset retinitis pigmentosa (RP); however, the molecular mechanisms related to the deleterious effects of TULP1 mutations remains unknown. Several studies have shown that misfolded proteins secondary to genetic mutations can accumulate within the endoplasmic reticulum (ER), causing activation of the unfolded protein response (UPR) complex followed by cellular apoptosis. We hypothesize that TULP1 mutations produce misfolded protein products that accumulate in the ER and induce cellular apoptosis via the UPR. To test our hypothesis, we first performed three in-silico analyses of TULP1 missense mutations (I459K, R420P and F491L), which predicted misfolded protein products. Subsequently, the three mutant TULP1-GFP constructs and wild-type (wt) TULP1-GFP were transiently transfected into hTERT-RPE-1 cells. Staining of cells using ER tracker followed by confocal microscopy showed wt-TULP1 localized predominantly to the cytoplasm and plasma membrane. In contrast, all three mutant TULP1 proteins revealed cytoplasmic punctate staining which co-localized with the ER. Furthermore, western blot analysis of cells expressing mutant TULP1 proteins revealed induction of downstream targets of the ER-UPR complex, including BiP/GPR-78, phosphorylated-PERK (Thr980) and CHOP. Our in-vitro analyses suggest that mutant TULP1 proteins are misfolded and accumulate within the ER leading to induction of the UPR stress response complex. PMID:26427415

  17. SIL1 Rescued Bip Elevation-Related Tau Hyperphosphorylation in ER Stress.

    PubMed

    Liu, Zan-Chao; Chu, Jiang; Lin, Li; Song, Jie; Ning, Lin-Na; Luo, Hong-Bin; Yang, Shu-Sheng; Shi, Yan; Wang, Qun; Qu, Na; Zhang, Qi; Wang, Jian-Zhi; Tian, Qing

    2016-03-01

    Endoplasmic reticulum (ER) stress has been indicated in the early stage of Alzheimer's disease (AD), in which tau hyperphosphorylation is one major pathological alteration. The elevation of binding immunoglobulin protein (Bip), an important ER chaperon, was reported in AD brain. It is important to study the roles of ER-related chaperons in tau hyperphosphorylation. In this research, increased Bip was found in the brains of the AD model mice (Tg2576) compared to the age-matched control mice. Meanwhile, deficiency of SIL1, an important co-chaperon of Bip, was observed in brains of Tg2576 mice and in ER stress both in vivo and in vitro. Then, we transfected Bip-EGFP plasmid into HEK293 cells stably expressing the longest human tau (HEK293/tau) or N2a cells and found that increased Bip induced tau hyperphosphorylation via activating glycogen synthase kinase-3β (GSK-3β), an important tau kinase, and increased the association with tau and GSK-3β. When we overexpressed SIL1 in Bip-transfected HEK293/tau cells and thapsigargin-treated HEK293/tau cells, significantly reduced tau hyperphosphorylation and GSK-3β activation were observed. These results suggested the important roles of ER-related chaperons, Bip and SIL1, in AD-like tau hyperphosphorylation. PMID:25575678

  18. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells.

    PubMed

    Wang, Liping; Fu, Pengcheng; Zhao, Yuan; Wang, Guo; Yu, Richard; Wang, Xin; Tang, Zehai; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2016-08-01

    Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells. PMID:27277821

  19. Iron depletion increases manganese uptake and potentiates apoptosis through ER stress

    PubMed Central

    Seo, Young Ah; Li, Yuan; Wessling-Resnick, Marianne

    2013-01-01

    Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60 mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1. PMID:23764342

  20. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress.

  1. Acute Stress Symptoms in Young Children with Burns

    ERIC Educational Resources Information Center

    Stoddard, Frederick J.; Saxe, Glenn; Ronfeldt, Heidi; Drake, Jennifer E.; Burns, Jennifer; Edgren, Christy; Sheridan, Robert

    2006-01-01

    Objective: Posttraumatic stress disorder symptoms are a focus of much research with older children, but little research has been conducted with young children, who account for about 50% of all pediatric burn injuries. This is a 3-year study of 12- to 48-month-old acutely burned children to assess acute traumatic stress outcomes. The aims were to…

  2. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure.

    PubMed

    Alejandro, Emilyn U; Bozadjieva, Nadejda; Kumusoglu, Doga; Abdulhamid, Sarah; Levine, Hannah; Haataja, Leena; Vadrevu, Suryakiran; Satin, Leslie S; Arvan, Peter; Bernal-Mizrachi, Ernesto

    2015-12-22

    Nutrient levels dictate the activity of O-linked N-acetylglucosamine transferase (OGT) to regulate O-GlcNAcylation, a post-translational modification mechanism to "fine-tune" intracellular signaling and metabolic status. However, the requirement of O-GlcNAcylation for maintaining glucose homeostasis by regulating pancreatic β cell mass and function is unclear. Here, we reveal that mice lacking β cell OGT (βOGT-KO) develop diabetes and β cell failure. βOGT-KO mice demonstrated increased ER stress and distended ER architecture, and these changes ultimately caused the loss of β cell mass due to ER-stress-induced apoptosis and decreased proliferation. Akt1/2 signaling was also dampened in βOGT-KO islets. The mechanistic role of these processes was demonstrated by rescuing the phenotype of βOGT-KO mice with concomitant Chop gene deletion or genetic reconstitution of Akt2. These findings identify OGT as a regulator of β cell mass and function and provide a direct link between O-GlcNAcylation and β cell survival by regulation of ER stress responses and modulation of Akt1/2 signaling. PMID:26673325

  3. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney.

    PubMed

    Li, Chunling; Lin, Yu; Luo, Renfei; Chen, Shaoming; Wang, Feifei; Zheng, Peili; Levi, Moshe; Yang, Tianxin; Wang, Weidong

    2016-03-01

    Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid. PMID:26672616

  4. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences

    PubMed Central

    Arensdorf, Angela M.; Diedrichs, Danilo; Rutkowski, D. Thomas

    2013-01-01

    The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes. PMID:24348511

  5. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity

    PubMed Central

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  6. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy

    PubMed Central

    Caviglia, Jorge Matias; Gayet, Constance; Ota, Tsuguhito; Hernandez-Ono, Antonio; Conlon, Donna M.; Jiang, Hongfeng; Fisher, Edward A.; Ginsberg, Henry N.

    2011-01-01

    Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis. PMID:21719579

  7. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism.

    PubMed

    Kwak, Hyun Jeong; Choi, Hye-Eun; Jang, Jinsun; Park, Soo Kyung; Bae, Young-An; Cheon, Hyae Gyeong

    2016-08-01

    Bortezomib is an anti-cancer agent that induces ER stress by inhibiting proteasomal degradation. However, the effects of bortezomib appear to be dependent on its concentration and cellular context. Since ER stress is closely related to type 2 diabetes, the authors examined the effects of bortezomib on palmitic acid (PA)-induced ER stress in C2C12 murine myotubes. At low concentrations (<20nM), bortezomib protected myotubes from PA (750μM)-induced ER stress and inflammation. Either tunicamycin or thapsigargin-induced ER stress was also reduced by bortezomib. In addition, reduced glucose uptake and Akt phosphorylation induced by PA were prevented by co-treating bortezomib (10nM) both in the presence or absence of insulin. These protective effects of bortezomib were found to be associated with reduced JNK phosphorylation. Furthermore, bortezomib-induced AMPK phosphorylation, and the protective effects of bortezomib were diminished by AMPK knockdown, suggesting that AMPK activation underlies the effects of bortezomib. The in vivo administration of bortezomib at nontoxic levels (at 50 or 200μg/kg, i.p.) twice weekly for 5weeks to ob/ob mice improved insulin resistance, increased AMPK phosphorylation, reduced ER stress marker levels, and JNK inhibition in skeletal muscle. The study shows that bortezomib reduces ER stress, inflammation, and insulin resistance in vitro and in vivo, and suggests that bortezomib has novel applications for the treatment of metabolic disorders. PMID:27049873

  8. 2,4-dichlorophenol induces ER stress-mediated apoptosis via eIF2α dephosphorylation in vitro.

    PubMed

    Zhang, Xiaoning; Zhang, Xiaona; Qi, Yongmei; Huang, Dejun; Zhang, Yingmei

    2016-02-01

    2,4-Dichlorophenol (2,4-DCP) has been widely used to produce herbicides and pharmaceutical intermediates, which exhibits various toxic effects including apoptosis. However, the mechanisms underlying 2,4-DCP-induced apoptosis, especially mediated by endoplasmic reticulum (ER) stress, are still unknown. In the present study, the mouse embryonic fibroblasts (MEFs) were used as an in vitro model system to figure out whether 2,4-DCP could induce ER stress, and further to elucidate the role of ER stress in 2,4-DCP-induced apoptosis. The results showed that 2,4-DCP dramatically caused the decrease of cell viability, the increase of apoptotic cells, the collapse of mitochondrial membrane potential (MMP) and the activation of caspase-3, suggesting that 2,4-DCP did induce apoptosis. Meanwhile, 2,4-DCP acted similarly as ER stress agonist tunicamycin (Tu) to activate all three branches (IRE1α, ATF6 and eIF2α) of ER stress. Furthermore, repression of ER stress or inhibition of eIF2α dephosphorylation significantly alleviated 2,4-DCP-induced apoptosis. Taking these results together, the present study firstly showed that 2,4-DCP induced ER stress-mediated apoptosis via eIF2α dephosphorylation in mammalian cells. These findings will provide new insights into the mechanisms underlying apoptosis after chlorophenols exposure. PMID:25160872

  9. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    PubMed

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  10. An autosomal recessive mutation of DSG4 causes monilethrix through the ER stress response.

    PubMed

    Kato, Madoka; Shimizu, Akira; Yokoyama, Yoko; Kaira, Kyoichi; Shimomura, Yutaka; Ishida-Yamamoto, Akemi; Kamei, Kiyoko; Tokunaga, Fuminori; Ishikawa, Osamu

    2015-05-01

    Monilethrix is a hair shaft anomaly characterized by beaded hair with periodic changes in hair thickness. Mutations in the desmoglein 4 (DSG4) gene reportedly underlie the autosomal recessive form of the disease. However, the pathogenesis and cellular basis for the DSG4 mutation-induced monilethrix remained largely unknown. We report a Japanese female patient with monilethrix. Observation of her hair shaft by means of transmission electron microscopy showed fewer desmosomes and abnormal keratinization. Genetic analysis revealed a homozygous mutation, c.2119delG (p.Asp707Ilefs*109), in the DSG4 gene, which was predicted to cause a frameshift and premature termination in the intracellular region of the DSG4 protein. The mutation has not been reported previously. In the patient's hair shaft, we detected reduced but partial expression of the mutant DSG4 protein. Cellular analyses demonstrated that the mutant DSG4 lost its affinity to plakoglobin and accumulated in the endoplasmic reticulum (ER). The amounts of mutant DSG4 were increased by proteasome inhibitor treatment, and the expression of an ER chaperone, GRP78/BiP, was elevated in the patient's skin. Collectively, these results suggest that the dysfunctional mutated DSG4, tethered in the ER, undergoes ER-associated degradation, leading to unfolded protein response induction, and thus ER stress may have a role in the pathogenesis of monilethrix. PMID:25615553

  11. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death.

    PubMed

    Costa, Blaise Mathias; Yao, Honghong; Yang, Lu; Buch, Shilpa

    2013-06-01

    While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determined by MTS and TUNEL assays. Microglial toxicity of cocaine was accompanied by an increase in the expression of cleaved caspase-3 as demonstrated by western blot assays. Furthermore, increased microglial toxicity was also associated with a concomitant increase in the production of intracellular reactive oxygen species, an effect that was ameliorated in cells pretreated with NADPH oxidase inhibitor apocynin, thus emphasizing the role of oxidative stress in this process. A novel finding of this study was the involvement of endoplasmic reticulum (ER) signaling mediators such as PERK, Elf2α, and CHOP, which were up regulated in cells exposed to cocaine. Reciprocally, blocking CHOP expression using siRNA ameliorated cocaine-mediated cell death. In conclusion these findings underscore the importance of ER stress in modulating cocaine induced microglial toxicity. Understanding the link between ER stress, oxidative stress and apoptosis could lead to the development of therapeutic strategies targeting cocaine-mediated microglial death/dysfunction. PMID:23404095

  12. Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma

    PubMed Central

    Giglio, Paola; Fimia, Gian Maria; Lovat, Penny E; Piacentini, Mauro; Corazzari, Marco

    2015-01-01

    Autophagy and endoplasmic reticulum (ER) stress are involved in the development, progression, and chemoresistance of melanoma. We recently reported that oncogenic serine/threonine-protein kinase BRAF induces chronic ER stress, hence increasing baseline autophagy and promoting chemoresistance. The attenuation of ER stress restores basal autophagic activity and resensitizes melanoma cells to apoptosis. PMID:27308477

  13. Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma.

    PubMed

    Giglio, Paola; Fimia, Gian Maria; Lovat, Penny E; Piacentini, Mauro; Corazzari, Marco

    2015-01-01

    Autophagy and endoplasmic reticulum (ER) stress are involved in the development, progression, and chemoresistance of melanoma. We recently reported that oncogenic serine/threonine-protein kinase BRAF induces chronic ER stress, hence increasing baseline autophagy and promoting chemoresistance. The attenuation of ER stress restores basal autophagic activity and resensitizes melanoma cells to apoptosis. PMID:27308477

  14. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury.

    PubMed

    Begum, Gulnaz; Yan, Hong Q; Li, Liaoliao; Singh, Amneet; Dixon, C Edward; Sun, Dandan

    2014-03-01

    In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits. PMID:24599472

  15. Effects of ER stress on unfolded protein responses, cell survival, and viral replication in primary effusion lymphoma.

    PubMed

    Shigemi, Zenpei; Baba, Yusuke; Hara, Naoko; Matsuhiro, Jumpei; Kagawa, Hiroki; Watanabe, Tadashi; Fujimuro, Masahiro

    2016-01-15

    Primary effusion lymphoma (PEL), a subtype of non-Hodgkin's B-lymphoma, is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. Endoplasmic reticulum (ER) stress induces activation of the unfolded protein response (UPR), which induces expression of ER chaperones, which in turn decrease ER stress, leading to ER homeostasis. The UPR is necessary for not only ER homeostasis but also persistent infection by, and replication of, many viruses. However, the precise roles and regulation of the UPR in KSHV infection remain poorly understood. Here, we found that IRE1α and PERK were significantly downregulated in PEL cells cultured under normal conditions, compared with KSHV-uninfected B-lymphoma cells. IRE1α and PERK mRNA levels were decreased in PEL cells, and KSHV-encoded LANA and v-cyclin D led to suppressed IRE1α transcription. Thapsigargin-induced ER stress activated the UPR and increased the mRNA levels of UPR-related molecules, including IRE1α and PERK, in PEL cells. However the IRE1α and PERK mRNA levels in PEL cells were lower than those in KSHV-uninfected cells. Furthermore, ER stress induced by brefeldin A and thapsigargin dramatically reduced the viability of PEL cells, compared with KSHV-uninfected cells, and induced apoptosis of PEL cells via the pro-apoptotic UPR through expression of CHOP and activation of caspase-9. In addition to the pro-apoptotic UPR, thapsigargin-induced ER stress enhanced transcription of lytic genes, including RTA, K-bZIP and K8.1, and viral production in PEL cells resulted in induction of the lytic cycle. Thus, we demonstrated downregulation of IRE1α and PERK in PEL cells, transcriptional suppression of IRE1α by LANA and v-cyclin D, apoptosis induction in PEL cells by ER stress, and potentiation of lytic replication by ER stress. PMID:26692493

  16. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size.

    PubMed

    Bourdier, Guillaume; Flore, Patrice; Sanchez, Hervé; Pepin, Jean-Louis; Belaidi, Elise; Arnaud, Claire

    2016-01-15

    Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients. PMID:26566725

  17. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection.

    PubMed

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida T G; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-08-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s--the active form of the UPR mediator XBP1--and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366

  18. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection

    PubMed Central

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida TG; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-01-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s—the active form of the UPR mediator XBP1—and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366

  19. AtHSPR may function in salt-induced cell death and ER stress in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Peng; Wang, Chongying

    2016-07-01

    Salt stress is a harmful and global abiotic stress to plants and has an adverse effect on all physiological processes of plants. Recently, we cloned and identified a novel AtHSPR (Arabidopsis thaliana Heat Shock Protein Related), which encodes a nuclear-localized protein with ATPase activity, participates in salt and drought tolerance in Arabidopsis. Transcript profiling analysis revealed a differential expression of genes involved in accumulation of reactive oxygen species (ROS), abscisic acid (ABA) signaling, stress response and photosynthesis between athspr mutant and WT under salt stress. Here, we provide further analysis of the data showing the regulation of salt-induced cell death and endoplasmic reticulum (ER) stress response in Arabidopsis and propose a hypothetical model for the role of AtHSPR in the regulation of the salt tolerance in Arabidopsis. PMID:27302034

  20. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    PubMed Central

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  1. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes.

    PubMed

    Marré, Meghan L; Profozich, Jennifer L; Coneybeer, Jorge T; Geng, Xuehui; Bertera, Suzanne; Ford, Michael J; Trucco, Massimo; Piganelli, Jon D

    2016-08-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic β cell destruction induced by islet reactive T cells that have escaped central tolerance. Many physiological and environmental triggers associated with T1D result in β cell endoplasmic reticulum (ER) stress and dysfunction, increasing the potential for abnormal post-translational modification (PTM) of proteins. We hypothesized that β cell ER stress induced by environmental and physiological conditions generates abnormally-modified proteins for the T1D autoimmune response. To test this hypothesis we exposed the murine CD4(+) diabetogenic BDC2.5 T cell clone to murine islets in which ER stress had been induced chemically (Thapsigargin). The BDC2.5 T cell IFNγ response to these cells was significantly increased compared to non-treated islets. This β cell ER stress increased activity of the calcium (Ca(2+))-dependent PTM enzyme tissue transglutaminase 2 (Tgase2), which was necessary for full stress-dependent immunogenicity. Indeed, BDC2.5 T cells responded more strongly to their antigen after its modification by Tgase2. Finally, exposure of non-antigenic murine insulinomas to chemical ER stress in vitro or physiological ER stress in vivo caused increased ER stress and Tgase2 activity, culminating in higher BDC2.5 responses. Thus, β cell ER stress induced by chemical and physiological triggers leads to β cell immunogenicity through Ca(2+)-dependent PTM. These findings elucidate a mechanism of how β cell proteins are modified and become immunogenic, and reveal a novel opportunity for preventing β cell recognition by autoreactive T cells. PMID:27173406

  2. Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis

    PubMed Central

    Gupta, S; Read, D E; Deepti, A; Cawley, K; Gupta, A; Oommen, D; Verfaillie, T; Matus, S; Smith, M A; Mott, J L; Agostinis, P; Hetz, C; Samali, A

    2012-01-01

    Activation of the unfolded protein response sensor PKR-like endoplasmic reticulum kinase (Perk) attenuates endoplasmic reticulum (ER) stress levels. Conversantly, if the damage is too severe and ER function cannot be restored, this signaling branch triggers apoptosis. Bcl-2 homology 3-only family member Bim is essential for ER stress-induced apoptosis. However, the regulatory mechanisms controlling Bim activation under ER stress conditions are not well understood. Here, we show that downregulation of the miR-106b-25 cluster contributes to ER stress-induced apoptosis and the upregulation of Bim. Hypericin-mediated photo-oxidative ER damage induced Perk-dependent cell death and led to a significant decrease in the levels of miRNAs belonging to miR-106b-25 cluster in wild-type (WT) but not in Perk−/− MEFs. Further, we show that expression of miR-106b-25 and Mcm-7 (host gene of miR-106b-25) is co-regulated through the transcription factors Atf4 (activating transcription factor 4) and Nrf2 (nuclear factor-erythroid-2-related factor 2). ER stress increased the activity of WT Bim 3′UTR (untranslated region) construct but not the miR-106b-25 recognition site-mutated Bim 3′UTR construct. Overexpression of miR-106b-25 cluster inhibits ER stress-induced cell death in WT but did not confer any further protection in Bim-knockdown cells. Further, we show downregulation in the levels of miR-106b-25 cluster in the symptomatic SOD1G86R transgenic mice. Our results suggest a molecular mechanism whereby repression of miR-106b-25 cluster has an important role in ER stress-mediated increase in Bim and apoptosis. PMID:22739985

  3. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

    PubMed Central

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-01-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis. PMID:26442866

  4. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes

    PubMed Central

    Brozzi, Flora

    2016-01-01

    Components of the unfolded protein response (UPR) modulate beta cell inflammation and death in early type 1 diabetes (T1D). The UPR is a mechanism by which cells react to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). It aims to restore cellular homeostasis, but in case of chronic or overwhelming ER stress the persistent activation of the UPR triggers apoptosis, contributing to the loss of beta cells in both T1D and type 2 diabetes. It remains to be determined how and why the transition from ‘physiological’ to ‘pathological’ UPR takes place. A key component of the UPR is the ER transmembrane protein IRE1α (inositol-requiring enzyme 1α). IRE1α activity is modulated by both intra-ER signals and by the formation of protein complexes at its cytosolic domain. The amplitude and duration of IRE1α signaling is critical for the transition between the adaptive and cell death programs, with particular relevance for the activation of the pro-apoptotic c-Jun N-terminal kinase (JNK) in beta cells. In the present review we discuss the available information on IRE1α-regulating proteins in beta cells and their downstream targets, and the important differences observed between cytokine-induced UPR in human and rodent beta cells. PMID:26899404

  5. Hormonal, cardiovascular, and subjective responses to acute stress in smokers

    PubMed Central

    de Wit, Harriet

    2009-01-01

    Rationale There are complex relationships between stress and smoking; smoking may reduce the emotional discomfort of stress, yet nicotine activates stress systems and may alter responses to acute stress. It is important to understand how smoking affects physiological and psychological outcomes after stress and how these may interact to motivate smoking. Objectives This study aimed to examine the magnitude and time course of hormonal, cardiovascular, and psychological responses to acute psychosocial stress in smokers and non-smokers to investigate whether responses to acute stress are altered in smokers. Materials and methods Healthy male non-smokers (n=20) and smokers (n=15) participated in two experimental sessions involving a standardized public speaking stress procedure and a control non-stressful task. The outcome measures included self-reported mood, cardiovascular measures (heart rate and blood pressure), and plasma hormone levels (noradrenaline, cortisol, progesterone, and allopregnanolone). Results Smokers exhibited blunted increases in cortisol after the Trier Social Stress Test, and they reported greater and more prolonged subjective agitation than non-smokers. Stress-induced changes in progesterone were similar between smokers and non-smokers, although responses overall were smaller among smokers. Stress did not significantly alter levels of allopregnanolone, but smokers exhibited lower plasma concentrations of this neurosteroid. Conclusions These findings suggest that smoking dampens hormonal responses to stress and prolongs subjective discomfort. Dysregulated stress responses may represent a breakdown in the body’s ability to cope efficiently and effectively with stress and may contribute to smokers’ susceptibility to acute stress, especially during abstinence. PMID:18936915

  6. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  7. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  8. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells

    PubMed Central

    SHI, SHAOMIN; TAN, PING; YAN, BINGDI; GAO, RONG; ZHAO, JIANJUN; WANG, JING; GUO, JIA; LI, NING; MA, ZHONGSEN

    2016-01-01

    Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells. PMID:26985651

  9. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation

    PubMed Central

    Datan, E; Roy, S G; Germain, G; Zali, N; McLean, J E; Golshan, G; Harbajan, S; Lockshin, R A; Zakeri, Z

    2016-01-01

    A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress. PMID:26938301

  10. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells.

    PubMed

    Shi, Shaomin; Tan, Ping; Yan, Bingdi; Gao, Rong; Zhao, Jianjun; Wang, Jing; Guo, Jia; Li, Ning; Ma, Zhongsen

    2016-05-01

    Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells. PMID:26985651

  11. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma.

    PubMed

    Kikuchi, S; Suzuki, R; Ohguchi, H; Yoshida, Y; Lu, D; Cottini, F; Jakubikova, J; Bianchi, G; Harada, T; Gorgun, G; Tai, Y-T; Richardson, P G; Hideshima, T; Anderson, K C

    2015-09-01

    Histone deacetylase (HDAC) inhibitors have been extensively investigated as therapeutic agents in cancer. However, the biological role of class IIa HDACs (HDAC4, 5, 7 and 9) in cancer cells, including multiple myeloma (MM), remains unclear. Recent studies show HDAC4 interacts with activating transcription factor 4 (ATF4) and inhibits activation of endoplasmic reticulum (ER) stress-associated proapoptotic transcription factor C/EBP homologous protein (CHOP). In this study, we hypothesized that HDAC4 knockdown and/or inhibition could enhance apoptosis in MM cells under ER stress condition by upregulating ATF4, followed by CHOP. HDAC4 knockdown showed modest cell growth inhibition; however, it markedly enhanced cytotoxicity induced by either tunicamycin or carfilzomib (CFZ), associated with upregulating ATF4 and CHOP. For pharmacological inhibition of HDAC4, we employed a novel and selective class IIa HDAC inhibitor TMP269, alone and in combination with CFZ. As with HDAC4 knockdown, TMP269 significantly enhanced cytotoxicity induced by CFZ in MM cell lines, upregulating ATF4 and CHOP and inducing apoptosis. Conversely, enhanced cytotoxicity was abrogated by ATF4 knockdown, confirming that ATF4 has a pivotal role mediating cytotoxicity in this setting. These results provide the rationale for novel treatment strategies combining class IIa HDAC inhibitors with ER stressors, including proteasome inhibitors, to improve patient outcome in MM. PMID:25801913

  12. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway.

    PubMed

    Song, Qing; Gou, Wen-Li; Zhang, Rong

    2016-03-01

    Endoplasmic reticulum (ER) stress is linked to several neurological disorders, and neuronal injury cascades initiated by excessive ER stress are mediated, in part, via mitochondrial dysfunction. In the present study, we identified FAM3A as an important regulator of ER stress-induced cell death in neuronal HT22 cells. The ER stress inductor tunicamycin (TM) significantly decreased the expression of FAM3A at both mRNA and protein levels, which was shown to be dependent on the induction of reactive oxygen species (ROS). Overexpression of FAM3A attenuated TM-induced apoptosis and activation of ER stress factors, but had no effect on ER calcium metabolism in HT22 cells. We also found decreased mitochondrial ROS generation, inhibited cytochrome c release and preserved mitochondrial membrane potential (MMP) in FAM3A overexpressed cells. In addition, the experiments using isolated mitochondria showed that overexpression of FAM3A attenuated mitochondrial swelling and loss of mitochondrial Ca(2+) buffering capacity after TM exposure. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that FAM3A-induced protection and inhibition of ER stress was mediated by inverting TM-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of FAM3A in protecting against TM-induced cytotoxicity via regulating CHOP-Wnt pathway, and suggests the therapeutic values of FAM3A overexpression against ER stress-associated neuronal injury. PMID:26939760

  13. How does the stressed out ER find relief during virus infection?

    PubMed

    Verchot, Jeanmarie

    2016-04-01

    The endoplasmic reticulum and Golgi network (ERGN) is vital to most cellular biosynthetic processes. Many positive strand RNA viruses depend upon the ERGN for replication, maturation, and egress. Viruses induce changes in ER architecture and stimulate fatty acid synthesis to create environments that can scaffold replication complexes, plant virus movement complexes, or virion maturation. Potato virus X (PVX) and Turnip mosaic virus (TuMV) each encode small membrane binding proteins that embed in the ERGN and activate the unfolded protein response (UPR). The UPR ensures ERGN homeostasis in the face of environmental assaults that could negatively impact the biosynthetic functions of the ERGN. This article explores the relationship between ER stress, the UPR, and membrane synthesis occurring during virus infection. PMID:26871502

  14. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  15. The expression of thioredoxin-1 in acute epinephrine stressed mice.

    PubMed

    Jia, Jin-Jing; Zeng, Xian-Si; Li, Kun; Ma, Li-Fang; Chen, Lei; Song, Xin-Qiang

    2016-09-01

    Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress. PMID:27511023

  16. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  17. Lens ER-stress response during cataract development in Mip-mutant mice.

    PubMed

    Zhou, Yuefang; Bennett, Thomas M; Shiels, Alan

    2016-08-01

    Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress. PMID:27155571

  18. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  19. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  20. Acute Stress Modulates Risk Taking in Financial Decision Making

    PubMed Central

    Porcelli, Anthony J.; Delgado, Mauricio R.

    2016-01-01

    People’s decisions are often susceptible to various demands exerted by the environment, leading to stressful conditions. Although a goal for researchers is to elucidate stress-coping mechanisms to facilitate decision-making processes, it is important to first understand the interaction between the state created by a stressful environment and how decisions are performed in such environments. The objective of this experiment was to probe the impact of exposure to acute stress on financial decision-making and examine the particular influence of stress on decisions with a positive or negative valence. Participants’ choices exhibited a stronger reflection effect when participants were under stress than when they were in the no-stress control phase. This suggests that stress modulates risk taking, potentially exacerbating behavioral bias in subsequent decision making. Consistent with dual-process approaches, decision makers fall back on automatized reactions to risk under the influence of disruptive stress. PMID:19207694

  1. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity

    PubMed Central

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-01-01

    Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression

  2. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress.

    PubMed

    Shi, Y; Yang, Y; Hoang, B; Bardeleben, C; Holmes, B; Gera, J; Lichtenstein, A

    2016-02-25

    Protein translation is inhibited by the unfolded protein response (UPR)-induced eIF-2α phosphorylation to protect against endoplasmic reticulum (ER) stress. In addition, we found additional inhibition of protein translation owing to diminished mTORC1 (mammalian target of rapamycin complex1) activity in ER-stressed multiple myeloma (MM) cells. However, c-myc protein levels and myc translation was maintained. To ascertain how c-myc was maintained, we studied myc IRES (internal ribosome entry site) function, which does not require mTORC1 activity. Myc IRES activity was upregulated in MM cells during ER stress induced by thapsigargin, tunicamycin or the myeloma therapeutic bortezomib. IRES activity was dependent on upstream MAPK (mitogen-activated protein kinase) and MNK1 (MAPK-interacting serine/threonine kinase 1) signaling. A screen identified hnRNP A1 (A1) and RPS25 as IRES-binding trans-acting factors required for ER stress-activated activity. A1 associated with RPS25 during ER stress and this was prevented by an MNK inhibitor. In a proof of principle, we identified a compound that prevented binding of A1 to the myc IRES and specifically inhibited myc IRES activity in MM cells. This compound, when used alone, was not cytotoxic nor did it inhibit myc translation or protein expression. However, when combined with ER stress inducers, especially bortezomib, a remarkable synergistic cytotoxicity ensued with associated inhibition of myc translation and expression. These results underscore the potential for targeting A1-mediated myc IRES activity in MM cells during ER stress. PMID:25961916

  3. ET-66ER-STRESS INDUCING DRUGS SENSITIZES GBM TO TEMOZOLOMIDE THROUGH DOWNREGULATION OF MGMT AND INDUCTION OF REGULATED NECROSIS

    PubMed Central

    Xipell, Enric; Martínez-Velez, Naiara; Vera-Cano, Beatriz; Idoate, Miguel Angel; Garzón, Antonia García; Acanda, Arlet M.; Fueyo, Juan; Gomez-Manzano, Candelaria; Alonso, Marta M

    2014-01-01

    Termozolamide (TMZ) is the standard treatment against GBM, unfortunately its therapeutic effect is limited due to the expression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Therefore, approaches that overcome the resistance to TMZ could be feasible therapeutic alternatives for this deadly disease. Endoplasmic reticulum (ER) stress suppresses several DNA damage proteins through the unfolding protein response. In this work we sought to evaluate whether ER-stress inducing drugs were able to downmodulate MGMT and sensitize GBM cells to TMZ treatment. Salinomycin (SLM) is a potassium ionophore that has proven effective against cancer stem cells and a possible candidate to induce ER stress. Our data showed that SLM triggered ER stress that was accompanied by the downregulation of MGMT. We obtained the same results with other ER stress inducing drugs (thapsigergin, tunicamycin) suggesting that this is a general mechanism. Chemical inhibition of ER stress reverted the abrogation of MGMT downregulation. Of importance, SLM induced an aberrant autophagic flux that led to regulated necrosis cell death mediated by the action of AIF protein, which induces DNA damage when localized in the nucleus. Combination of TMZ and SLM displayed a potent antitumor effect in vitro and in vivo in mice bearing a GBM stem cell model. Combination treatment induced a significant increase in DNA damage as shown by H2AX activation and PARP. Moreover, we observed AIF in the nucleus, as a result of the regulated necrosis, furthering favoring the DNA damage. Combination treatment showed an increment of the median survival and of long term survivors. Moreover tissue analysis confirmed a dramatic increase in the level of DNA damage. Altogether our results showed that combination treatment induces a potent antiglioma effect in vitro and in vivo. Our data uncover the possibility to exploit ER stress and regulated necrosis as therapeutic strategies for GBM treatment.

  4. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  5. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  6. ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner

    PubMed Central

    2011-01-01

    Background Tumor cells adapt to endoplasmic reticulum (ER) stress through a set of conserved intracellular pathways, as part of a process termed the unfolded protein response (UPR). The expression of UPR genes/proteins correlates with increasing progression and poor clinical outcome of several tumor types, including prostate cancer. UPR signaling can activate NF-κB, a master regulator of transcription of pro-inflammatory, tumorigenic cytokines. Previous studies have shown that Lipocalin 2 (Lcn2) is upregulated in several epithelial cancers, including prostate cancer, and recently Lcn2 was implicated as a key mediator of breast cancer progression. Here, we hypothesize that the tumor cell UPR regulates Lcn2 production. Methods We interrogated Lcn2 regulation in murine and human prostate cancer cells undergoing pharmacological and physiological ER stress, and tested UPR and NF-κB dependence by using pharmacological inhibitors of these signaling pathways. Results Induction of ER stress using thapsigargin (Tg), a canonical pharmacologic ER stress inducer, or via glucose deprivation, a physiologic ER stressor present in the tumor microenvironment, upregulates LCN2 production in murine and human prostate cancer cells. Inhibition of the UPR using 4-phenylbutyric acid (PBA) dramatically decreases Lcn2 transcription and translation. Inhibition of NF-κB in prostate cancer cells undergoing Tg-mediated ER stress by BAY 11-7082 abrogates Lcn2 upregulation. Conclusions We conclude that the UPR activates Lcn2 production in prostate cancer cells in an NF-κB-dependent manner. Our results imply that the observed upregulation of Lipocalin 2 in various types of cancer cells may be the direct consequence of concomitant UPR activation, and that the ER stress/Lipocalin 2 axis is a potential new target for intervention in cancer progression. PMID:21649922

  7. Blood-brain barrier-permeable fluorone-labeled dieckols acting as neuronal ER stress signaling inhibitors.

    PubMed

    Kwak, Jong Hwan; Yang, Zhigang; Yoon, Byungkwon; He, Yanxia; Uhm, Soojin; Shin, Hyeon-Cheol; Lee, Bong Ho; Yoo, Yung Choon; Lee, Kyung Bok; Han, Seung-Yun; Kim, Jong Seung

    2015-08-01

    We studied the blood-brain barrier (BBB) permeability and intracellular localization of a fluorescein isothiocyanate (FITC)-labeled dieckol (1) and a rhodamine B-labeled dieckol (7), for exploring the possible therapeutic application of fluorone-labeled dieckols in neurodegenerative diseases. Both compounds (1 &7) were synthesized through a click reaction and were found to be localized in the endoplasmic reticulum (ER) of the two types of brain cell lines (SH-SY5Y and BV-2 cells) tested; they also reduced ER stress in the SH-SY5Y human neuroblastoma cells. In addition, 1 and 7 were shown to pass the BBB in rats upon intravenous administration. Altogether, our study demonstrates, for the first time, that targeted ER-stress reduction in brain cells can be achieved by introducing fluorone-dieckol conjugates into systemic circulation. Therefore, 1 and 7 provide a novel and promising ER-targeting therapeutic strategy for neurodegenerative diseases. PMID:25996411

  8. Individual Differences in Delay Discounting Under Acute Stress: The Role of Trait Perceived Stress

    PubMed Central

    Lempert, Karolina M.; Porcelli, Anthony J.; Delgado, Mauricio R.; Tricomi, Elizabeth

    2012-01-01

    Delay discounting refers to the reduction of the value of a future reward as the delay to that reward increases. The rate at which individuals discount future rewards varies as a function of both individual and contextual differences, and high delay discounting rates have been linked with problematic behaviors, including drug abuse and gambling. The current study investigated the effects of acute anticipatory stress on delay discounting, while considering two important factors: individual perceptions of stress and whether the stressful situation is future-focused or present-focused. Half of the participants experienced acute stress by anticipating giving a videotaped speech. This stress was either future-oriented (speech about future job) or present-oriented (speech about physical appearance). They then performed a delay discounting task, in which they chose between smaller, immediate rewards, and larger, delayed rewards. Their scores on the Perceived Stress Scale were also collected. The way in which one appraises stressful situations interacts with acute stress to influence choices; under stressful conditions, delay discounting rate was highest in individuals with low trait perceived stress and lowest for individuals with high trait perceived stress. This result might be related to individual variation in reward responsiveness under stress. Furthermore, the time orientation of the task interacted with its stressfulness to affect the individual’s propensity to choose immediate rewards. These findings add to our understanding of the intermediary factors between stress and decision-making. PMID:22833731

  9. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  10. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis.

    PubMed

    Ben Salem, Intidhar; Boussabbeh, Manel; Prola, Alexandre; Guilbert, Arnaud; Bacha, Hassen; Lemaire, Christophe; Abid-Essefi, Salwa

    2016-08-01

    α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity. PMID:27121014

  11. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  12. Microcystin-LR induced developmental toxicity and apoptosis in zebrafish (Danio rerio) larvae by activation of ER stress response.

    PubMed

    Qi, Mei; Dang, Yao; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Yuan, Yongchao; Wang, Jianghua

    2016-08-01

    Recent studies have demonstrated that cyanobacteria-derived Microcystin-LR (MC-LR) can cause developmental toxicity and trigger apoptosis in zebrafish (Danio rerio) larvae, but the underlying mechanisms remain largely unknown. In this study, we tested the hypothesis that the mechanism by which MC-LR induces developmental toxicity is through activation of endoplasmic reticulum (ER) stress. MC-LR (4.0 μM) exposure through submersion caused serious developmental toxicity, such as malformation, growth delay and decreased heart rates in zebrafish larvae, which could be inhibited by ER stress blocker, tauroursodeoxycholic acid (TUDCA, 20 μM). Meanwhile, acridine orange (AO) staining showed TUDCA could rescue cell apoptosis in heart area in zebrafish larvae resulted by MC-LR exposure. Real-time polymerase chain reaction (real-time PCR) analysis demonstrated that MC-LR induced activation of ER stress which consequently triggered apoptosis in zebrafish larvae. Protein expression examined by western blot indicated that MC-LR could activate MAPK8/Bcl-2/Bax pathway and caspase-dependent apoptotic pathway in zebrafish larva and the effects were mitigated by inhibition of ER stress. Taken together, the results observed in this study suggested that ER stress plays a critical role in developmental toxicity and apoptosis in zebrafish embryos exposed to MC-LR. PMID:27219292

  13. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in ER stress

    PubMed Central

    Bochkis, Irina M.; Rubins, Nir E.; White, Peter; Furth, Emma E.; Friedman, Joshua R.; Kaestner, Klaus H.

    2014-01-01

    Summary Production of bile by the liver is crucial for the absorption of lipophilic nutrients. Dysregulation of bile acid homeostasis can lead to cholestatic liver disease and ER stress. We show using global location analysis (“ChIP-on-Chip”) and cell-type specific gene ablation that the winged helix transcription factor Foxa2 is required for normal bile acid homeostasis. As suggested by the location analysis, deletion of Foxa2 in hepatocytes in Foxa2loxP/loxPAlfp.Cre mice leads to decreased transcription of genes encoding bile acid transporters on both the basolateral and canalicular membranes, resulting in intrahepatic cholestasis. Foxa2-deficient mice are strikingly sensitive to a diet containing cholic acid, which results in toxic accumulation of hepatic bile salts, ER stress, and liver injury. In addition, we demonstrate that expression of FOXA2 is dramatically decreased in liver samples from patients with different cholestatic syndromes, suggesting that reduced FOXA2 levels could exacerbate the injury. PMID:18660816

  14. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  15. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    PubMed Central

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  16. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production.

    PubMed

    Maria, Durvanei Augusto; de Souza, Jean Gabriel; Morais, Katia L P; Berra, Carolina Maria; Zampolli, Hamilton de Campos; Demasi, Marilene; Simons, Simone Michaela; de Freitas Saito, Renata; Chammas, Roger; Chudzinski-Tavassi, Ana Marisa

    2013-06-01

    In cancer-treatment, potentially therapeutic drugs trigger their effects through apoptotic mechanisms. Generally, cell response is manifested by Bcl-2 family protein regulation, the impairment of mitochondrial functions, and ROS production. Notwithstanding, several drugs operate through proteasome inhibition, which, by inducing the accumulation and aggregation of misfolded or unfolded proteins, can lead to endoplasmic reticulum (ER) stress. Accordingly, it was shown that Amblyomin-X, a Kunitz-type inhibitor identified in the transcriptome of the Amblyomma cajennense tick by ESTs sequence analysis of a cDNA library, obtained in recombinant protein form, induces apoptosis in murine renal adenocarcinoma (RENCA) cells by: inducing imbalance between pro- and anti-apoptotic Bcl-2 family proteins, dysfunction/mitochondrial damage, production of reactive oxygen species (ROS), caspase cascade activation, and proteasome inhibition, all ER-stress inductive. Moreover, there was no manifest action on normal mouse-fibroblast cells (NHI3T3), suggesting an Amblyomin-X tumor-cell selectivity. Taken together, these evidences indicate that Amblyomin-X could be a promising candidate for cancer therapy. PMID:22975862

  17. Lithium Induces ER Stress and N-Glycan Modification in Galactose-Grown Jurkat Cells

    PubMed Central

    Kátai, Emese; Yahiro, Rikki K. K.; Poór, Viktor S.; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L.; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca2+ regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response. PMID:23894652

  18. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis

    PubMed Central

    Cubillos-Ruiz, Juan R.; Silberman, Pedro C.; Rutkowski, Melanie R.; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E.; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H.; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R.; Glimcher, Laurie H.

    2015-01-01

    SUMMARY Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy. PMID:26073941

  19. Cantharidins Induce ER Stress and a Terminal Unfolded Protein Response in OSCC

    PubMed Central

    Xi, Y.; Garshott, D.M.; Brownell, A.L.; Yoo, G.H.; Lin, H.-S.; Freeburg, T.L.; Yoo, N.G.; Kaufman, R.J.; Callaghan, M.U.

    2015-01-01

    Mortality and morbidity associated with oral squamous cell carcinoma (OSCC) remain unacceptably high with disfiguring treatment options and a death rate of 1 per hour in the United States. The approval of cituximab for advanced OSCC has been the only new treatment for these patients since the 1970s, although it has not significantly increased overall survival. To address the paucity of effective new therapies, we undertook a high-throughput screen to discover small molecules and natural products that could induce endoplasmic reticulum (ER) stress and enforce a terminal unfolded protein response (UPR) in OSCC. The terpenoid cantharidin (CNT), previously used to treat various malignancies in culture-specific medical practices for over 2,000 y, emerged as a hit. CNT and its analog, cantharidic acid, potently induced protein and gene expression profiles consistent with the activation of ER stress, the UPR, and apoptosis in OSCC cells. Murine embryonic fibroblasts null for the UPR-associated transcription factors Atf4 or Chop were significantly protected from CNT, implicating a key role for the UPR in the death response. These data validate that our high-throughput screen can identify novel modulators of UPR signaling and that such compounds might provide a new therapeutic approach to treating patients with OSCC. PMID:25425581

  20. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    SciTech Connect

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang . E-mail: huangdy@stu.edu.cn

    2007-08-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 {mu}M CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca{sup 2+} from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.

  1. Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress.

    PubMed

    Zhang, Guo-Feng; Zhang, Yi; Zhao, Gang

    2015-10-01

    The molecular machinery that mediates neuronal injury in neurodegenerative conditions such as Parkinson's disease (PD) remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Crocin, one of the water-soluble carotenoids isolated from the Crocus sativus L (saffron) stigma, has been reported to exert therapeutic potential in many disease models. Here, we establish an in vitro PD model using 1-methyl-4-phenylpyridinium (MPP(+))-injured PC12 cells to investigate the protective effects of crocin. Crocin treatment significantly attenuated MPP(+)-induced cell injury and apoptosis with little toxicity, and these protective effects were still observed even if crocin treatment was delayed to 6 h after injury. Crocin also inhibited MPP(+)-induced mitochondrial dysfunction, as evidenced by preservation of mitochondrial membrane potential (MMP) and ATP synthesis, which correlates with suppressed endoplasmic reticulum (ER) stress through inhibiting ER chaperone and ER related apoptotic factors. In addition, ER calcium release and morphological changes in ER lumen after MPP(+) exposure were all partially prevented by crocin. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that crocin-induced protection and inhibition of ER stress was mediated by inverting MPP(+)-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of ER stress in mediating PD related neuronal injury via the regulation of CHOP-Wnt pathway, and suggests the therapeutic values of crocin against ER stress-associated cytotoxicity. PMID:26209153

  2. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study

    PubMed Central

    Nevell, Lisa; Zhang, Kezhong; Aiello, Allison; Koenen, Karestan; Galea, Sandro; Soliven, Richelo; Zhang, Chao; Wildman, Derek E.; Uddin, Monica

    2014-01-01

    Background The role of Endoplasmic Reticulum (ER) stress response in mental illness is not well understood. Human studies and animal models of depression show elevated brain ER stress response. In addition, some ER stress associated disorders (e.g. cardiovascular disease) show higher rates of depression compared to the general population, raising the possibility that ER stress response contributes to depression risk. It remains unknown, however, if ER stress response is present among individuals suffering from other stress-related mental illness, and whether such a response would be evident in a non-clinical sample. This study tests for systemic changes in ER stress response associated with major depressive disorder (MDD) or post-traumatic stress disorder (PTSD) among community-dwelling individuals. Methods We analyzed expression of BiP, EDEM1, CHOP, and XBP1, the major indicators of ER stress response, with Real-Time PCR in leukocyte-derived RNA samples from 86 participants of the Detroit Neighborhood Health Study. Participants were selected based on the presence of either past year MDD or past year PTSD; controls were age and sex matched. Results Relative to controls, MDD is associated with a 1.34-fold increase in BiP (P=0.004), 1.35-fold increase in EDEM1 (P=0.001), 1.68-fold increase in CHOP (P=0.002), and 1.60-fold increase in XBP1 (P=0.004). These results remained significant after correction for multiple testing. In contrast, PTSD is associated with a 1.27 fold increase in EDEM1 expression only (P=0.027), a result that is attenuated to non-significance following adjustment for multiple testing; however, a subsample of participants with past month PTSD showed elevated expression of BiP and EDEM1 (uncorrected p value 0.049 and 0.017, respectively). Conclusions These data indicate systemic and persistent activation of the ER stress response pathway in MDD among community-dwelling individuals. Systemic activation of the ER stress response may also occur in PTSD

  3. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  4. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  5. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  6. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    PubMed Central

    Zhang, Li; Ren, Feng; Zhang, Xiangying; Wang, Xinxin; Shi, Hongbo; Zhou, Li; Zheng, Sujun; Chen, Yu; Chen, Dexi; Li, Liying; Duan, Zhongping

    2016-01-01

    ABSTRACT Peroxisome proliferator-activated receptor α (PPARα) is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF). However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress) plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA) was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1) PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78), Grp94 and C/EBP-homologous protein (CHOP) in vivo; (2) the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA) treatment reversed liver protection and increased hepatocyte apoptosis; (3) in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF. PMID:27482818

  7. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure.

    PubMed

    Zhang, Li; Ren, Feng; Zhang, Xiangying; Wang, Xinxin; Shi, Hongbo; Zhou, Li; Zheng, Sujun; Chen, Yu; Chen, Dexi; Li, Liying; Zhao, Caiyan; Duan, Zhongping

    2016-07-01

    Peroxisome proliferator-activated receptor α (PPARα) is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF). However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress) plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA) was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1) PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78), Grp94 and C/EBP-homologous protein (CHOP) in vivo; (2) the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA) treatment reversed liver protection and increased hepatocyte apoptosis; (3) in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF. PMID:27482818

  8. Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa

    PubMed Central

    Jin, H R; Liao, Y; Li, X; Zhang, Z; Zhao, J; Wang, C-Z; Huang, W-H; Li, S-P; Yuan, C-S; Du, W

    2014-01-01

    Oplopantriol-A (OPT) is a natural polyyne from Oplopanax horridus. We show here that OPT preferentially kills cancer cells and inhibits tumor growth. We demonstrate that OPT-induced cancer cell death is mediated by excessive endoplasmic reticulum (ER) stress. Decreasing the level of ER stress either by inactivating components of the unfolded protein response (UPR) pathway or by expression of ER chaperone protein glucose-regulated protein 78 (GRP78) decreases OPT-induced cell death. We show that OPT induces the accumulation of ubiquitinated proteins and the stabilization of unstable proteins, suggesting that OPT functions, at least in part, through interfering with the ubiquitin/proteasome pathway. In support of this, inhibition of protein synthesis significantly decreased the accumulation of ubiquitinated proteins, which is correlated with significantly decreased OPT-induced ER stress and cell death. Finally, we show that OPT treatment significantly induced the expression of BH3-only proteins, Noxa and Bim. Knockdown of both Noxa and Bim significantly blocked OPT-induced cell death. Taken together, our results suggest that OPT is a potential new anticancer agent that induces cancer cell death through inducing ER stress and BH3 proteins Noxa and Bim. PMID:24763047

  9. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

    PubMed

    Brunner, Jean-Marc; Plattet, Philippe; Doucey, Marie-Agnès; Rosso, Lia; Curie, Thomas; Montagner, Alexandra; Wittek, Riccardo; Vandelvelde, Marc; Zurbriggen, Andreas; Hirling, Harald; Desvergne, Béatrice

    2012-01-01

    Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+) homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+) homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses. PMID:22403712

  10. Morbillivirus Glycoprotein Expression Induces ER Stress, Alters Ca2+ Homeostasis and Results in the Release of Vasostatin

    PubMed Central

    Doucey, Marie-Agnès; Rosso, Lia; Curie, Thomas; Montagner, Alexandra; Wittek, Riccardo; Vandelvelde, Marc; Zurbriggen, Andreas; Hirling, Harald; Desvergne, Béatrice

    2012-01-01

    Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses. PMID:22403712

  11. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  12. Site-specific Proteolysis Mobilizes TorsinA from the Membrane of the Endoplasmic Reticulum (ER) in Response to ER Stress and B Cell Stimulation.

    PubMed

    Zhao, Chenguang; Brown, Rebecca S H; Tang, Chih-Hang Anthony; Hu, Chih-Chi Andrew; Schlieker, Christian

    2016-04-29

    Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation. PMID:26953341

  13. DEFECTIVE TRAFFICKING OF CONE PHOTORECEPTOR CNG CHANNELS INDUCES THE UNFOLDED PROTEIN RESPONSE AND ER STRESS-ASSOCIATED CELL DEATH

    PubMed Central

    Duricka, Deborah L.; Brown, R. Lane; Varnum, Michael D.

    2011-01-01

    SYNOPSIS Mutations that perturb the function of photoreceptor cyclic nucleotide-gated (CNG) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the endoplasmic reticulum (ER) is known to cause ER stress and trigger the unfolded protein response (UPR), an evolutionarily conserved cellular program that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared to wild type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones (TUDCA, 4PBA, and the cGMP analog CPT-cGMP) differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization defective CNG channels, and may represent a contributing factor for photoreceptor degeneration. PMID:21992067

  14. Acute kidney injury mediated by oxidative stress in Egyptian horses with exertional rhabdomyolysis.

    PubMed

    el-Ashker, Maged R

    2011-06-01

    The present study was carried out to evaluate the role of oxidative stress in the pathophysiologic process of acute renal failure associated with exertional rhabdomyolysis (ER) in Egyptian horses. ER was tentatively diagnosed in 31 Baladi horses based on case history, physical examination findings and confirmed by elevation of plasma creatine kinase (CK) and urine myoglobin concentrations. According to severity of the condition, the diseased horses were categorized into two main groups; the first group included 18 horses with minimal clinical signs and plasma CK <60 000 IU/L; whereas, the second group included 13 horses with overt clinical signs and plasma CK >100 000 IU/L). It was found that plasma creatol (CTL) was positively correlated (p < 0.01) with plasma malondialdehyde (MDA) (r = 0.775), nitric oxide (NO) (r = 0.768), methyguanididne (MG) (r = 0.995), CK (r = 0.768), urine glucose (r = 0.778), urine protein (r = 0.767), renal failure index (RFI) (r = 0.814) and urine sodium (r = 0.799) and negatively correlated (p < 0.01) with total antioxidant capacity (TAC) (r = -0.795), superoxide dismutase (SOD) (r = -0.815), glutathione peroxidase (GSH-Px) (r = -0.675), Vitamin C (r = -0.830), urine creatinine (r = -0.800), urine/plasma creatinine ratio (r = -0.827) and urine/plasma urea ratio (r = -0.807). The correlation between these biochemical variables might suggest a possible role of oxidative stress in renal injury associated with severe rhabdomyolysis in horses. It is suggested that exaggeration of oxidative stress associated with increased muscle membrane leakage plays a key role in acute kidney injury in Baladi horses with severe rhabdomyolysis. PMID:21461642

  15. Acute Stress Disorder: Conceptual Issues and Treatment Outcomes

    ERIC Educational Resources Information Center

    Koucky, Ellen M.; Galovski, Tara E.; Nixon, Reginald D. V.

    2012-01-01

    Acute stress disorder (ASD) was included as a diagnosis to the 4th edition of the "Diagnostic and Statistical Manual" (American Psychiatric Association, 1994) as a way of describing pathological reactions in the first month following a trauma. Since that time, ASD has been the focus of some controversy, particularly regarding the theoretical basis…

  16. Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation

    NASA Astrophysics Data System (ADS)

    Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.

    1999-12-01

    Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

  17. 4-Phenylbutyrate Attenuates the ER Stress Response and Cyclic AMP Accumulation in DYT1 Dystonia Cell Models

    PubMed Central

    Cho, Jin A.; Zhang, Xuan; Miller, Gregory M.; Lencer, Wayne I.; Nery, Flavia C.

    2014-01-01

    Dystonia is a neurological disorder in which sustained muscle contractions induce twisting and repetitive movements or abnormal posturing. DYT1 early-onset primary dystonia is the most common form of hereditary dystonia and is caused by deletion of a glutamic acid residue (302/303) near the carboxyl-terminus of encoded torsinA. TorsinA is localized primarily within the contiguous lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), and is hypothesized to function as a molecular chaperone and an important regulator of the ER stress-signaling pathway, but how the mutation in torsinA causes disease remains unclear. Multiple lines of evidence suggest that the clinical symptoms of dystonia result from abnormalities in dopamine (DA) signaling, and possibly involving its down-stream effector adenylate cyclase that produces the second messenger cyclic adenosine-3′, 5′-monophosphate (cAMP). Here we find that mutation in torsinA induces ER stress, and inhibits the cyclic adenosine-3′, 5′-monophosphate (cAMP) response to the adenylate cyclase agonist forskolin. Both defective mechanins are corrected by the small molecule 4-phenylbutyrate (4-PBA) that alleviates ER stress. Our results link torsinA, the ER-stress-response, and cAMP-dependent signaling, and suggest 4-PBA could also be used in dystonia treatment. Other pharmacological agents known to modulate the cAMP cascade, and ER stress may also be therapeutic in dystonia patients and can be tested in the models described here, thus supplementing current efforts centered on the dopamine pathway. PMID:25379658

  18. Acute stress affects the physiology and behavior of allergic mice.

    PubMed

    Sutherland, M A; Shome, G P; Hulbert, L E; Krebs, N; Wachtel, M; McGlone, J J

    2009-09-01

    Physical and psychological stressors have been implicated in acute asthma exacerbation. The objective of the current study was to determine the effects of forced swimming stress (FST) on allergic pulmonary inflammation in BALB/c mice. Eighty female mice were allocated to one of four treatments arranged in a 2 x 2 factorial consisting of two levels of allergy and two levels of stress. The effects of stress and allergy were assessed by examination of cytokines and leukocyte differentials in the bronchoalveolar lavage fluid, corticosterone and immunoglobulin (Ig) E in the plasma, leukocyte differentials in the peripheral blood, natural killer cytotoxicity, and histopathology of the lungs. Behavior was recorded during the FST. Stress and allergy increased plasma corticosterone in mice. Allergy increased IgE concentrations and pulmonary inflammation. Interleukin-4 was greater among allergic stressed and non-stressed mice and stressed, non-allergic mice compared with non-stressed, non-allergic mice. Interleukin-5 (IL-5) and 6 (IL-6) were greater among allergic stressed and non-stressed mice compared with non-allergic mice. Interleukin-5 and 6 were reduced among stressed-allergic mice compared with non-stressed, allergic mice. Stress and allergy shifted mice towards a T-helper 2 response as shown by increased interleukin-4. Stress reduced IL-5 and IL-6 in allergic mice but not non-allergic mice. Pulmonary inflammation was not reduced among allergic stressed mice in spite of elevated glucocorticoids. Mice induced to be allergic responded to FST differently than non-allergic mice. Our findings suggest that stress induces a differential response among allergic and non-allergic mice. PMID:19527741

  19. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress.

    PubMed

    Bu, Xuefeng; Zhao, Yinghai; Zhang, Zhijian; Wang, Mubin; Li, Mi; Yan, Yulan

    2016-01-01

    We have reported that the recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) could induce autophagy and apoptosis in gastric carcinoma cells. In the present study, we explored the upstream regulators, endoplasmic reticulum (ER) stress that induce autophagy and apoptosis and the relationships among them. For this purpose, SGC-7901 and HGC cells were infected with rL-RVG. NDV LaSota strain and phosphate-buffered saline (PBS) were treated as the control groups. Western blotting and immunofluorescence microscopy were used to detect the expression of the ER stress-related proteins glucose-regulated protein 78 (GRP78) and the transcription factor GADD153 (CHOP), among others. The expression of beclin-1 and the conversion of light chain (LC) 3-I were used to determine the occurrence of autophagy, and flow cytometry (FCM) and western blotting were used to examine apoptosis-related protein expression. Transmission electron microscopy was also performed to monitor the ultrastructure of the cells. Moreover, small interfering (si) RNA was used to knock down CHOP expression. rL-RVG treatment increased the expression of ER stress-related proteins, such as GRP78, CHOP, activating transcriptional factor 6 (ATF6), X-box-binding protein 1 (XBP-1), and phosphorylated eukaryotic initiation factor 2 (p-eIF2α), in a time- and concentration-dependent manner, and knockdown of CHOP reduced LC3-II conversion and beclin-1 expression. When ER stress was inhibited with 4-PBA, the expression of both autophagy-related proteins and apoptosis-related proteins markedly decreased. Interestingly, inhibition of autophagy with 3-methyladenine (3MA) decreased not only apoptosis-related protein expression but also ER stress-related protein expression. Moreover, we found that downregulation of the c-Jun N-terminal kinase (JNK) pathway by SP600125 reduced LC3-II conversion, beclin-1 expression and caspase-3 activation. Collectively, the

  20. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress

    PubMed Central

    Bu, Xuefeng; Zhao, Yinghai; Zhang, Zhijian; Wang, Mubin; Li, Mi; Yan, Yulan

    2016-01-01

    We have reported that the recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) could induce autophagy and apoptosis in gastric carcinoma cells. In the present study, we explored the upstream regulators, endoplasmic reticulum (ER) stress that induce autophagy and apoptosis and the relationships among them. For this purpose, SGC-7901 and HGC cells were infected with rL-RVG. NDV LaSota strain and phosphate-buffered saline (PBS) were treated as the control groups. Western blotting and immunofluorescence microscopy were used to detect the expression of the ER stress-related proteins glucose-regulated protein 78 (GRP78) and the transcription factor GADD153 (CHOP), among others. The expression of beclin-1 and the conversion of light chain (LC) 3-I were used to determine the occurrence of autophagy, and flow cytometry (FCM) and western blotting were used to examine apoptosis-related protein expression. Transmission electron microscopy was also performed to monitor the ultrastructure of the cells. Moreover, small interfering (si) RNA was used to knock down CHOP expression. rL-RVG treatment increased the expression of ER stress-related proteins, such as GRP78, CHOP, activating transcriptional factor 6 (ATF6), X-box-binding protein 1 (XBP-1), and phosphorylated eukaryotic initiation factor 2 (p-eIF2α), in a time- and concentration-dependent manner, and knockdown of CHOP reduced LC3-II conversion and beclin-1 expression. When ER stress was inhibited with 4-PBA, the expression of both autophagy-related proteins and apoptosis-related proteins markedly decreased. Interestingly, inhibition of autophagy with 3-methyladenine (3MA) decreased not only apoptosis-related protein expression but also ER stress-related protein expression. Moreover, we found that downregulation of the c-Jun N-terminal kinase (JNK) pathway by SP600125 reduced LC3-II conversion, beclin-1 expression and caspase-3 activation. Collectively, the

  1. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network

    PubMed Central

    Arensdorf, Angela M.; DeZwaan McCabe, Diane; Kaufman, Randal J.; Rutkowski, D. Thomas

    2013-01-01

    The unfolded protein response (UPR) responds to disruption of endoplasmic reticulum (ER) function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a “bottom-up” approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER stress in the liver leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α—a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal regulation of

  2. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    NASA Astrophysics Data System (ADS)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  3. Immune modulation by ER stress and inflammation in the tumor microenvironment.

    PubMed

    Rodvold, Jeffrey J; Mahadevan, Navin R; Zanetti, Maurizio

    2016-09-28

    It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion. PMID:26525580

  4. Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance.

    PubMed

    Cerezo, Michaël; Lehraiki, Abdelali; Millet, Antoine; Rouaud, Florian; Plaisant, Magali; Jaune, Emilie; Botton, Thomas; Ronco, Cyril; Abbe, Patricia; Amdouni, Hella; Passeron, Thierry; Hofman, Veronique; Mograbi, Baharia; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Alcor, Damien; Rabhi, Nabil; Annicotte, Jean-Sébastien; Héliot, Laurent; Gonzalez-Pisfil, Mariano; Robert, Caroline; Moréra, Solange; Virougoux, Armelle; Gual, Philippe; Ali, Maruf M U; Bertolotto, Corine; Hofman, Paul; Ballotti, Robert; Benhida, Rachid; Rocchi, Stéphane

    2016-06-13

    We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms. PMID:27238082

  5. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice.

    PubMed

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-08-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2(-/-) mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2(-/-) mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2(-/-) mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2(-/-) mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2(-/-) mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2(-/-) mice had spontaneous nonalcoholic fatty liver disease (NAFLD) accompanied by

  6. Acute Stress Disorder as a Predictor of Post-Traumatic Stress Disorder in Physical Assault Victims

    ERIC Educational Resources Information Center

    Elklit, Ask; Brink, Ole

    2004-01-01

    The authors' objective was to examine the ability of acute stress disorder (ASD) and other trauma-related factors in a group of physical assault victims in predicting post-traumatic stress disorder (PTSD) 6 months later. Subjects included 214 victims of violence who completed a questionnaire 1 to 2 weeks after the assault, with 128 participating…

  7. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    ERIC Educational Resources Information Center

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  8. The Relationship between Acute Stress Disorder and Posttraumatic Stress Disorder Following Cancer

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    In this study, the authors investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) following cancer diagnosis. Patients who were recently diagnosed with 1st onset head and neck or lung malignancy (N = 82) were assessed for ASD within the initial month following their diagnosis and reassessed (n =…

  9. Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

    PubMed

    Desjardin, Clémence; Chat, Sophie; Gilles, Mailys; Legendre, Rachel; Riviere, Julie; Mata, Xavier; Balliau, Thierry; Esquerré, Diane; Cribiu, Edmond P; Betch, Jean-Marc; Schibler, Laurent

    2014-06-01

    Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and

  10. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  11. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  12. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  13. Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1.

    PubMed

    Kim, Hyung-Ryong; Lee, Geum-Hwa; Cho, Eun Yi; Chae, Soo-Wan; Ahn, Taeho; Chae, Han-Jung

    2009-04-15

    This study investigated the molecular mechanism by which Bax inhibitor 1 (BI1) abrogates the accumulation of reactive oxygen species (ROS) in the endoplasmic reticulum (ER). Electron uncoupling between NADPH-dependent cytochrome P450 reductase (NPR) and cytochrome P450 2E1 (P450 2E1) is a major source of ROS on the ER membrane. ER stress produced ROS accumulation and lipid peroxidation of the ER membrane, but BI1 reduced this accumulation. Under ER stress, expression of P450 2E1 in control cells was upregulated more than in BI1-overexpressing cells. In control cells, inhibiting P450 2E1 through chemical or siRNA approaches suppressed ROS accumulation, ER membrane lipid peroxidation and the resultant cell death after ER stress. However, it had little effect in BI1-overexpressing cells. In addition, BI1 knock down also increased ROS accumulation and expression of P450 2E1. In a reconstituted phospholipid membrane containing purified BI1, NPR and P450 2E1, BI1 dose-dependently decreased the production of ROS. BI1 bound to NPR with higher affinity than P450 2E1. Furthermore, BI1 overexpression reduced the interaction of NPR and P450 2E1, and decreased the catalytic activity of P450 2E1, suggesting that the flow of electrons from NPR to P450 2E1 can be modulated by BI1. In summary, BI1 reduces the accumulation of ROS and the resultant cell death through regulating P450 2E1. PMID:19339548

  14. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  15. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Özcan, Umut; Yilmaz, Erkan; Özcan, Lale; Furuhashi, Masato; Vaillancourt, Eric; Smith, Ross O.; Görgün, Cem Z.; Hotamisligil, Gökhan S.

    2006-08-01

    Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.

  16. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

    PubMed Central

    Özcan, Umut; Yilmaz, Erkan; Özcan, Lale; Furuhashi, Masato; Vaillancourt, Eric; Smith, Ross O.; Görgün, Cem Z.; Hotamisligil, Gökhan S.

    2015-01-01

    Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes. PMID:16931765

  17. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I; Dent, Paul; Grant, Steven

    2009-05-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2alpha phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2alpha) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  18. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress

    PubMed Central

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I.; Dent, Paul; Grant, Steven

    2010-01-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2α phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2α) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  19. Analytical investigation of thermal stress in enamel and dentin under CW and pulse Er:YAG solid-state laser

    NASA Astrophysics Data System (ADS)

    Elahi, Parviz; Ebrahimi, Marjan

    2014-02-01

    The aim of this work is to evaluate thermal stress of Er:YAG laser radiation on enamel and dentin of the dental. The transient state heat conduction equation for pulse wave laser regime with energy of 100 mJ, 300 mJ and steady state heat conduction equation for CW regime with powers of 1 W, 5 W was solved analytically. Then, the thermally induced stress was investigated following the calculation of the temperature distribution. Using the thermo-mechanical characteristics of the dentin and the enamel, all components of stress were obtained. The thermal stress of Er:YAG laser radiation on the enamel and the dentin calculated in this work may be useful for clinical applications.

  20. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses

    PubMed Central

    Hotokezaka, Y; Katayama, I; van Leyen, K; Nakamura, T

    2015-01-01

    The signaling pathway leading to the endoplasmic reticulum (ER) stress responses has not been fully elucidated. Here we showed that glycogen synthase kinase-3β (GSK-3β)-dependent downregulation of γ-taxilin and nascent polypeptide-associated complex α-subunit (αNAC) mediates hypoxia-induced unfolded protein responses (UPRs) and the subsequent apoptotic and autophagic pathways. The degradation of γ-taxilin or αNAC was sufficient to initiate UPRs in normoxic cells. However, the ER stress signaling pathways initiated by γ-taxilin or αNAC were distinct, triggering different ER stress sensors and activating different downstream pathways. Hypoxia caused GSK-3β-dependent tau hyperphosphorylation and cleavage in neuronal cells, but γ-taxilin ablation induced tau hyperphosphorylation alone and αNAC ablation induced neither changes. Notably, downregulation of γ-taxilin and αNAC occurs in the brain of patients with Alzheimer's disease. These results suggest that GSK-3β-dependent downregulation of γ-taxilin and αNAC, which differently activate the UPRs, merge to regulate hypoxia-induced ER stress responses and provide a new insight into the pathogenesis of neurodegenerative diseases. PMID:25880086

  1. Triangulated Mal-Signaling in Alzheimer's Disease: Roles of Neurotoxic Ceramides, ER Stress, and Insulin Resistance Reviewed

    PubMed Central

    de la Monte, Suzanne M.

    2015-01-01

    Ceramides are lipid signaling molecules that cause cytotoxicity and cell death mediated by insulin resistance, inflammation, and endoplasmic reticulum (ER) stress. However, insulin resistance dysregulates lipid metabolism, which promotes ceramide accumulation with attendant inflammation and ER stress. Herein, we discuss two major pathways, extrinsic and intrinsic, that converge and often overlap in propagating AD-type neurodegeneration via a triangulated mal-signaling network. First, we review evidence that systemic insulin resistance diseases linked to obesity, type 2 diabetes, and non-alcoholic steatohepatitis promote neurodegeneration. Mechanistically, we propose that toxic ceramides generated in extra-CNS tissues (e.g., liver) get released into peripheral blood, and subsequently transit across the blood-brain barrier into the brain where they induce brain insulin resistance, inflammation, and cell death (extrinsic pathway). Then we discuss the role of the intrinsic pathway of neurodegeneration which is mediated by endogenous or primary brain insulin/IGF resistance, and impairs neuronal and oligodendrocyte survival, energy metabolism, membrane integrity, cytoskeletal function, and AβPP-Aβ secretion. The end result is increased ER stress and ceramide generation, which exacerbate brain insulin resistance, cell death, myelin degeneration, and neuroinflammation. Altogether, the data suggest that the triangulated mal-signaling network mediated by toxic ceramides, ER stress, and insulin resistance should be targeted to disrupt positive feedback loops that drive the AD neurodegeneration cascade. PMID:22337830

  2. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  3. Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling.

    PubMed

    Lee, Hyunjung; Im, Sung Won; Jung, Chang Hwa; Jang, Young Jin; Ha, Tae Youl; Ahn, Jiyun

    2016-01-15

    Dysfunction of pancreatic β-cell is a major determinant for the development of type 2 diabetes. Because of the stimulated insulin secretion in metabolic syndrome, endoplasmic reticulum (ER) stress plays a central mediator for β-cell failure. In this study, we investigated whether an antioxidant phenolic compound, tyrosol protects against β-cell dysfunction associated with ER stress. To address this issue, we exposed pancreatic β cells, NIT-1 to tunicamycin with tyrosol. We found tyrosol diminished tunicamycin-induced cell death in a dose-dependent manner. We also detected tyrosol decreased the expressions of apoptosis-related markers. Exposure to tunicamycin evoked UPR response and co-treatment of tyrosol led to reduction of ER stress. These effects of tyrosol were mediated by the phosphorylation of JNK. Moreover, we confirmed supplement of tyrosol ameliorated β-cell loss induced by high fat feeding. Taken together, our study provides a molecular basis for signaling transduction of protective effect of tyrosol against ER stress-induced β-cell death. Therefore, we suggest tyrosol could be a potential therapeutic candidate for amelioration of type 2 diabetes. PMID:26692476

  4. Interferon-gamma inducible protein 10 (IP10) induced cisplatin resistance of HCC after liver transplantation through ER stress signaling pathway.

    PubMed

    Geng, Wei; Lo, Chung-Mau; Ng, Kevin T P; Ling, Chang-Chun; Qi, Xiang; Li, Chang-Xian; Zhai, Yuan; Liu, Xiao-Bing; Ma, Yuen-Yuen; Man, Kwan

    2015-09-29

    Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment. PMID:26336986

  5. Smyd1 Facilitates Heart Development by Antagonizing Oxidative and ER Stress Responses

    PubMed Central

    Park, Chong Yon; Harriss, June; Pierce, Stephanie A.; Dekker, Joseph D.; Valenzuela, Nicolas; Srivastava, Deepak; Schwartz, Robert J.; Stewart, M. David; Tucker, Haley O.

    2015-01-01

    Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense—a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality. PMID:25803368

  6. Arecoline Induces Neurotoxicity to PC12 Cells: Involvement in ER Stress and Disturbance of Endogenous H2S Generation.

    PubMed

    Jiang, Jia-Mei; Wang, Li; Gu, Hong-Feng; Wu, Keng; Xiao, Fan; Chen, Ying; Guo, Run-Min; Tang, Xiao-Qing

    2016-08-01

    Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity. PMID:27255601

  7. Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells.

    PubMed

    Sharma, Kapil; Ishaq, Mohammad; Sharma, Gaurav; Khan, Mohammad Aslam; Dutta, Rajesh Kumar; Majumdar, Sekhar

    2016-03-01

    Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor is known to inhibit the growth of various cancer cells including melanoma. Here in this study, we have found that PTX induces autophagy in human melanoma cell lines (A375 and MeWo). Induction of autophagy is associated with the increase in Atg5 expression as knockdown of Atg5 effectively inhibited PTX mediated autophagy. A decrease in mTOR activation was also observed after PTX treatment. We observed that autophagy was activated as a downstream effector mechanism of ER stress induced by PTX. ER stress response was confirmed by upregulation of IRE-1α, GRP78 and CHOP expression. PTX treatment also resulted in an increase in intracellular calcium (Ca(2+)) level. Ca(2+) is the central player as blocking Ca(2+) by intracellular calcium chelator (BAPTA-AM) effectively inhibited the PTX induced ER stress response as well as autophagy. Moreover, silencing of CHOP also resulted in autophagy inhibition with a decrease in Atg5 expression. Collectively, PTX triggers ER stress response followed by induction of autophagy via involvement of Ca(2+)→CHOP→Atg5 signalling cascade. Interestingly, inhibition of intracellular calcium level by BAPTA-AM significantly increased PTX mediated cell death by augmenting intrinsic apoptotic pathway. Inhibition of autophagy by the ATG5 siRNA and pharmacological inhibitor, chloroquine also enhances PTX induced cell death. Taken together, our results clearly indicate that activation of ER stress response and autophagy provides resistance to PTX mediated apoptosis, and thus, interferes with the anticancer activity of PTX in human melanoma cells. PMID:26793997

  8. The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model

    PubMed Central

    Demay, Y; Perochon, J; Szuplewski, S; Mignotte, B; Gaumer, S

    2014-01-01

    The endoplasmic reticulum (ER) has a major role in protein folding. The accumulation of unfolded proteins in the ER induces a stress, which can be resolved by the unfolded protein response (UPR). Chronicity of ER stress leads to UPR-induced apoptosis and in turn to an unbalance of tissue homeostasis. Although ER stress-dependent apoptosis is observed in a great number of devastating human diseases, how cells activate apoptosis and promote tissue homeostasis after chronic ER stress remains poorly understood. Here, using the Drosophila wing imaginal disc as a model system, we validated that Presenilin overexpression induces chronic ER stress in vivo. We observed, in this novel model of chronic ER-stress, a PERK/ATF4-dependent apoptosis requiring downregulation of the antiapoptotic diap1 gene. PERK/ATF4 also activated the JNK pathway through Rac1 and Slpr activation in apoptotic cells, leading to the expression of Dilp8. This insulin-like peptide caused a developmental delay, which partially allowed the replacement of apoptotic cells. Thanks to a novel chronic ER stress model, these results establish a new pathway that both participates in tissue homeostasis and triggers apoptosis through an original regulation. PMID:25299777

  9. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats.

    PubMed

    Pinto, Bruno Araújo Serra; Melo, Thamys Marinho; Flister, Karla Frida Torres; França, Lucas Martins; Kajihara, Daniela; Tanaka, Leonardo Yuji; Laurindo, Francisco Rafael Martins; Paes, Antonio Marcus de Andrade

    2016-08-01

    Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions. PMID:27154727

  10. Expression of bioactive anti-CD20 antibody fragments and induction of ER stress response in Arabidopsis seeds.

    PubMed

    Wang, Dezhong; Ma, Jisheng; Sun, Difei; Li, Haiyan; Jiang, Chao; Li, Xiaokun

    2015-08-01

    Seed-based expression system is an attractive platform for the production of recombinant proteins in molecular farming. Despite the many advantages of molecular farming, little is known about the effect of the different subcellular accumulation of recombinant proteins on the endoplasmic reticulum (ER) quality control system in host plants. In this study, we analyzed the expression of anti-CD20 antibody fragments in seeds of Arabidopsis thaliana (ecotype Columbia) and corresponding glycosylation mutants, and evaluated the influence of three different signal sequences on the expression levels of scFv-Fc of C2B8. The highest protein accumulation level, with a maximum of 6.12 % total soluble proteins, was observed upon fusing proteins to the signal peptide of Arabidopsis seed storage albumin 2. The ER stress responses in developing seeds at 13 days post-anthesis were also compared across different transgenic lines under normal and heat shock conditions. Based on the gene expression profiles of ER stress transducers, our results suggest that accumulation of antibody fragments in the ER exerts more stress on ER homeostasis. In addition, quantitative PCR results also implicate enhanced activation of ER-associated degradation in transgenic lines. Last but not the least, we also demonstrate the anti-tumor potency of plant-derived proteins by showing the anti-tumor activity of purified scFv-Fc proteins against Daudi cells. Together, our data implies that better understanding of the interaction between exogenous protein production and the cellular quality control system of the host plant is necessary for the development of an optimal expression strategy that will be especially beneficial to commercial protein manufacturing. PMID:25957150

  11. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  12. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish. PMID:26403161

  13. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  14. Acute stress is detrimental to heart regeneration in zebrafish.

    PubMed

    Sallin, Pauline; Jaźwińska, Anna

    2016-03-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, includingigfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  15. Severe physical exertion, oxidative stress, and acute lung injury.

    PubMed

    Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

    2011-11-01

    We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

  16. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma.

    PubMed

    van Roosmalen, Ingrid A M; Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V; Tepper, Pieter G; Kruyt, Frank A E; Quax, Wim J

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-inducing ligand (TRAIL WT) or the DR5-specific TRAIL D269H/E195R variant as a potential new strategy to eradicate GBM cells using TRAIL-resistant and -sensitive GBM cells. GBM cell lines were investigated for their sensitivity to TRAIL, DMC and combination of both agents. Cell viability was measured by MTS assay and apoptosis was assessed by Annexin V/PI and acridine orange staining. Caspase activation and protein expression levels were analysed with Western blotting. Death Receptor (DR) cell surface expression levels were quantified by flow cytometry. DR5 expression was increased in U87 cells by ectopic expression using a retroviral plasmid and survivin expression was silenced using specific siRNAs. We demonstrate that A172 expresses mainly DR5 on the cell surface and that these cells show increased sensitivity for the DR5-specific rhTRAIL D269H/E195R variant. In contrast, U87 cells show low DR cell surface levels and is insensitive via both DR4 and DR5. We determined that DMC treatment displays a dose-dependent reduction in cell viability against a number of GBM cells, associated with ER stress induction, as shown by the up-regulation of glucose-regulated protein 78 (GRP78) and CCAAT/-enhancer-binding protein homologous protein (CHOP) in A172 and U87 cells. The dramatic decrease in cell viability is not accompanied by a correspondent increase in Annexin V/PI or caspase activation typically seen in apoptotic or/and necrotic cells within 24h of treatment. Although DMC did not affect DR5 expression in the GBM cells, it increased TRAIL-induced caspase-8 activation in both TRAIL-sensitive and -resistant cells, indicating that DMC potentiates initiator caspase activation in these

  17. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation.

    PubMed

    Takatani, Tomozumi; Shirakawa, Jun; Roe, Michael W; Leech, Colin A; Maier, Bernhard F; Mirmira, Raghavendra G; Kulkarni, Rohit N

    2016-01-01

    Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca(2+)) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca(2+) storage in the ER. PMID:27378176

  18. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation

    PubMed Central

    Takatani, Tomozumi; Shirakawa, Jun; Roe, Michael W.; Leech, Colin A.; Maier, Bernhard F.; Mirmira, Raghavendra G.; Kulkarni, Rohit N.

    2016-01-01

    Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER. PMID:27378176

  19. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  20. Ablation of aldehyde reductase aggravates carbon tetrachloride-induced acute hepatic injury involving oxidative stress and endoplasmic reticulum stress.

    PubMed

    Akihara, Ryusuke; Homma, Takujiro; Lee, Jaeyong; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2016-09-16

    Aldehyde reductase (Akr1a) has been reported to be involved in the biosynthesis of ascorbic acid (AsA) in the mouse liver. Because Akr1a is expressed at high levels in the liver, we aimed to investigate the role of Akr1a in liver homeostasis by employing a carbon tetrachloride (CCl4)-induced hepatotoxicity model. Akr1a-deficient (Akr1a(-/-)) and wild-type (WT) mice were injected intraperitoneally with CCl4 and the extent of hepatic injury in the acute phase was assessed. Liver damage was heavier in the Akr1a(-/-) mice than in the WT mice. Furthermore, severe hepatic steatosis was observed in the livers of Akr1a(-/-) mice compared to WT mice and was restored to the levels in WT mice by AsA supplementation. Since the presence or absence of AsA had no effect on the decrease in CYP2E1 activity after the CCl4 treatment, it appears that AsA plays a role in the process after the bioactivation of CCl4. Biomarkers for oxidative stress and ER stress were markedly increased in the livers of Akr1a(-/-) mice and were effectively suppressed by AsA supplementation. Based on these collective results, we conclude that Akr1a exerts a protective effect against CCl4-induced hepatic steatosis by replenishing AsA via its antioxidative properties. PMID:27501753

  1. FAD-linked Presenilin-1 V97L mutation impede tranport regulation and intracellular Ca2+ homeostasis under ER stress

    PubMed Central

    Shao, Yankun; Li, Miao; Wu, Miao; Shi, Kai; Fang, Boyan; Wang, Jie

    2015-01-01

    We report a PS1 gene mutation (Val 97Leu) in a Chinese familial Alzheimer’s disease (FAD) pedigree and a cell model of FAD built by transfecting PS1 v97L mutants into human neuroblastoma SH-SY5Y cells. To test our hypothesis that the PS1 v97L mutation is pathogenic, we investigated possible alterations in transport regulation and intracellular Ca2+ homeostasis in endoplasmic reticulum (ER). Grp78 is an ER-resident chaperone mediating the unfolded protein response (UPR) and is a key regulator of ER stress transducers. KDEL is a 4-amino-acid retention sequence made of Lys-Asp-Glu-Leu-COO. KDEL is a “resident” sequence as protein residence in ER is consistently associated with KDEL at the C-extremity. Our group used KDEL recognizing anti-Grp78 monoclonal antibody to detect the level of Grp78. We found increased KDEL level in all the transfected cells including cells transfected with PS1 V97L genes, wild-type and the mock. However cells with PS1 V97L mutation expressed a relatively lower KDEL compared with the wild-type and the mock, and a significantly lower Grp78 level compared with the wild-type, the mock and control. These results suggest that PS1 V97L mutation impedes intracellular transport regulation in ER. PS1 V97L mutation mediates increased ER Ca2+ content in human neuroblastoma SH-SY5Y cells. The increased intracellular Ca2+ release is due to depleted Ca2+ storing content of ER but not due to extracellular environment as capacitative Ca2+ entry (CCE) is invariant. PS1 V97L mutation interferes with intracellular Ca2+ homeostasis. Abnormal transport regulation and Ca2+ homeostasis attributed to PS1 V97L mutation may be associated with the pathology of Chinese familial FAD. PMID:26884997

  2. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  3. CCAAT/Enhancer Binding Protein β in relation to ER Stress, Inflammation, and Metabolic Disturbances

    PubMed Central

    van der Krieken, Sophie E.; Popeijus, Herman E.; Mensink, Ronald P.; Plat, Jogchum

    2015-01-01

    The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various molecular targets are currently under investigation to unravel the molecular mechanisms that cause these disturbances. This is done in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current knowledge on the role of C/EBP-β in these metabolic disturbances. C/EBP-β deletion in mice resulted in downregulation of hepatic lipogenic genes and increased expression of β-oxidation genes in brown adipose tissue. Furthermore, C/EBP-β is important in the differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies were only conducted in animals and in cell systems. The results found that C/EBP-β is an important transcription factor within the metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-β at molecular and physiological level in humans. PMID:25699273

  4. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes

    PubMed Central

    Chen, Chun-yan; Zhang, Shao-li; Liu, Zhi-yong; Tian, Yong; Sun, Qian

    2015-01-01

    Cadmium, a highly toxic environmental pollutant, is reported to induce toxicity and apoptosis in multiple organs and cells, all possibly contributing to apoptosis in certain pathophysiologic situations. Previous studies have described that cadmium toxicity induces biochemical and physiological changes in the heart and finally leads to cardiac dysfunctions, such as decreasing contractile tension, rate of tension development, heart rate, coronary flow rate and atrioventricular node conductivity. Although many progresses have been made, the mechanism responsible for cadmium-induced cellular alternations and cardiac toxicity is still not fully understood. In the present study, we demonstrated that cadmium toxicity induced dramatic endoplasmic reticulum (ER) stress and impaired energy homoeostasis in cultured cardiomyocytes. Moreover, cadmium toxicity may inhibit protein kinase B (AKT)/mTOR (mammalian target of rapamycin) pathway to reduce energy productions, by either disrupting the glucose metabolism or inhibiting mitochondrial respiratory gene expressions. Our work will help to reveal a novel mechanism to clarify the role of cadmium toxicity to cardiomyocytes and provide new possibilities for the treatment of cardiovascular diseases related to cadmium toxicity. PMID:26182376

  5. Sirtuin-3 (SIRT3) protects pancreatic β-cells from endoplasmic reticulum (ER) stress-induced apoptosis and dysfunction.

    PubMed

    Zhang, Hao-Hao; Ma, Xiao-Jun; Wu, Li-Na; Zhao, Yan-Yan; Zhang, Peng-Yu; Zhang, Ying-Hui; Shao, Ming-Wei; Liu, Fei; Li, Fei; Qin, Gui-Jun

    2016-09-01

    Insufficient insulin produced by pancreatic β-cells in the control of blood sugar is a central feature of the etiology of diabetes. Reports have shown that endoplasmic reticulum (ER) stress is fundamentally involved in β-cell dysfunction. In this study, we hypothesized that NAD-dependent deacetylase sirtuin-3 (SIRT3), an important regulator of cell metabolism, protects pancreatic β-cells from ER stress-mediated apoptosis. To validate our hypothesis, a rat diabetic model was established by a high-fat diet (HFD). We found that SIRT3 expression was markedly decreased in NIT1 and INS1 cells incubated with palmitate. Palmitate treatment significantly decreased β-cell viability and insulin secretion, and promoted malondialdehyde (MDA) formation. However, SIRT3 overexpression in NIT1 and INS1 cells reversed these effects, resulting in higher insulin secretion, decreased β-cell apoptosis, and downregulation of the expression of ER stress-associated genes. Moreover, SIRT3 overexpression also inhibited calcium influx and the hyperacetylation of glucose-regulated protein of 78 kDa (GRP78). SIRT3 knockdown effectively enhanced the upregulation of phospho-extracellular regulated protein kinases (pERK), inositol-requiring enzyme-1 (IRE1), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) induced by palmitate, and promoted palmitate-induced β-cell apoptosis and dysfunction. Taken together, our results suggest that SIRT3 is an integral regulator of ER function and that its depletion might result in the hyperacetylation of critical ER proteins that protect against islet lipotoxicity under conditions of nutrient excess. PMID:27449933

  6. Glutamatergic Mechanisms of Comorbidity Between Acute Stress and Cocaine Self-administration

    PubMed Central

    Garcia-Keller, Constanza; Kupchik, Yonatan; Gipson, Cassandra D; Brown, Robyn M; Spencer, Sade; Bollati, Flavia; Esparza, Maria A; Roberts-Wolfe, Doug; Heinsbroek, Jasper; Bobadilla, Ana-Clara; Cancela, Liliana M; Kalivas, Peter W

    2015-01-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining if the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate mediated synaptic currents, and dendritic spine morphology. We also determined if acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport, and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  7. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration.

    PubMed

    Garcia-Keller, C; Kupchik, Y M; Gipson, C D; Brown, R M; Spencer, S; Bollati, F; Esparza, M A; Roberts-Wolfe, D J; Heinsbroek, J A; Bobadilla, A-C; Cancela, L M; Kalivas, P W

    2016-08-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  8. Autobiographical memory after acute stress in healthy young men.

    PubMed

    Tollenaar, Marieke S; Elzinga, Bernet M; Spinhoven, Philip; Everaerd, Walter

    2009-04-01

    Autobiographical memories have been found to be less specific after hydrocortisone administration in healthy men, resembling memory deficits in, for example, depression. This is the first study to investigate the effects of stress-induced elevated cortisol levels on autobiographic memory specificity and experience in healthy young men. Autobiographical memories were elicited by neutral and negative cue words, with instructions to recall either recent or remote memories. No effect of psychosocial stress was found on memory specificity or experience, but cortisol increases tended to be related to less specific, recent memories elicited by neutral cue words, especially when participants were physically aroused during memory retrieval. These results indicate that autobiographical memories are fairly resistant to an acute stressor in healthy young men, but that endogenous cortisol increases might be related to autobiographical memory retrieval. More research into the relation between endogenous cortisol increases and autobiographic memory retrieval is needed, especially in stress-related disorders. PMID:19156564

  9. An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress

    NASA Astrophysics Data System (ADS)

    El Wahed, A. K.; Sproston, J. L.; Stanway, R.; Williams, E. W.

    2003-11-01

    In the squeeze-flow mode of operation, electrorheological (ER) fluid is placed between two electrodes, which are free to translate in a direction roughly parallel to the direction of the applied electric field. Consequently, the ER fluid is subjected to alternate tensile and compressive strokes and shearing of the fluid also occurs. Available displacements are small but large forces are available from compact devices and there are many potential applications, notably in vibration isolation. The present authors have spent several years developing mathematical models to account for the observed behaviour of ER fluids in squeeze-flow. Previous attempts at modelling squeeze-flow behaviour have been partially successful but there have always been discrepancies. These discrepancies have generally been attributed to the difficulty of estimating the yield stress developed within the ER fluid when an electric field is applied. In the present paper, the authors describe a new approach in which the yield stress is determined iteratively by minimizing the difference between observed and predicted values of the transmitted force. Using this technique, force/displacement and force/velocity plots are predicted and compared with values from an experimental facility. It is shown that agreement between model predictions and experimental observation is excellent and significantly better than those obtained using existing models.

  10. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells.

    PubMed

    Xiang, Xi-Yan; Yang, Xiao-Chun; Su, Jin; Kang, Jing-Song; Wu, Yao; Xue, Ya-Nan; Dong, Yu-Tong; Sun, Lian-Kun

    2016-06-01

    As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress. PMID:27035858

  11. ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts

    PubMed Central

    Wang, Zhenheng; Liu, Naicheng; Shi, Tongguo; Zhou, Gang; Wang, Zhenzhen; Gan, Jingjing; Guo, Ting; Qian, Hongbo; Bao, Nirong; Zhao, Jianning

    2015-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown. In the present study, we investigated the effect of ER (endoplasmic reticulum) stress induced by TiAl6V4 particles (TiPs) in human synovial fibroblasts and calvarial resorption animal models. The expression of ER stress markers, including IRE1-α, GRP78/Bip and CHOP, were determined by western blot in fibroblasts that had been treated with TiPs for various times and concentration. To address whether ER stress was involved in the expression of RANKL, the effects of ER stress blockers (including 4-PBA and TUDCA) on the expression of RANKL in TiPs-treated fibroblasts were examined by real-time PCR, western blot and ELISA. Osteoclastogenesis was assessed by tartrate resistant acid phosphatase (TRAP) staining. Our study demonstrated that ER stress markers were markedly upregulated in TiPs-treated fibroblasts. Blocking ER stress significantly reduced the TiPs-induced expression of RANKL both in vitro and in vivo. Moreover, the inhibition of ER stress ameliorated wear particle-induced osteolysis in animal models. Taken together, these results suggested that the expression of RANKL induced by TiPs was mediated by ER stress in fibroblasts. Therefore, down regulating the ER stress of fibroblasts represents a potential therapeutic approach for wear particle-induced periprosthetic osteolysis. PMID:26366858

  12. ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts.

    PubMed

    Wang, Zhenheng; Liu, Naicheng; Shi, Tongguo; Zhou, Gang; Wang, Zhenzhen; Gan, Jingjing; Guo, Ting; Qian, Hongbo; Bao, Nirong; Zhao, Jianning

    2015-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown. In the present study, we investigated the effect of ER (endoplasmic reticulum) stress induced by TiAl6V4 particles (TiPs) in human synovial fibroblasts and calvarial resorption animal models. The expression of ER stress markers, including IRE1-α, GRP78/Bip and CHOP, were determined by western blot in fibroblasts that had been treated with TiPs for various times and concentration. To address whether ER stress was involved in the expression of RANKL, the effects of ER stress blockers (including 4-PBA and TUDCA) on the expression of RANKL in TiPs-treated fibroblasts were examined by real-time PCR, western blot and ELISA. Osteoclastogenesis was assessed by tartrate resistant acid phosphatase (TRAP) staining. Our study demonstrated that ER stress markers were markedly upregulated in TiPs-treated fibroblasts. Blocking ER stress significantly reduced the TiPs-induced expression of RANKL both in vitro and in vivo. Moreover, the inhibition of ER stress ameliorated wear particle-induced osteolysis in animal models. Taken together, these results suggested that the expression of RANKL induced by TiPs was mediated by ER stress in fibroblasts. Therefore, down regulating the ER stress of fibroblasts represents a potential therapeutic approach for wear particle-induced periprosthetic osteolysis. PMID:26366858

  13. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  14. Think aloud: acute stress and coping strategies during golf performances.

    PubMed

    Nicholls, Adam R; Polman, Remco C J

    2008-07-01

    A limitation of the sport psychology coping literature is the amount of time between a stressful episode and the recall of the coping strategies used in the stressful event (Nicholls & Polman, 2007). The purpose of this study was to develop and implement a technique to measure acute stress and coping during performance. Five high-performance adolescent golfers took part in Level 2 verbalization think aloud trials (Ericsson & Simon, 1993), which involved participants verbalizing their thoughts, over six holes of golf. Verbal reports were audio-recorded during each performance, transcribed verbatim, and analyzed using protocol analysis (Ericsson & Simon, 1993). Stressors and coping strategies varied throughout the six holes, which support the proposition that stress and coping is a dynamic process that changes across phases of the same performance (Lazarus, 1999). The results also revealed information regarding the sequential patterning of stress and coping, suggesting that the golfers experienced up to five stressors before reporting a coping strategy. Think aloud appears a suitable method to collect concurrent stress and coping data. PMID:18612855

  15. Memory and executive dysfunctions associated with acute posttraumatic stress disorder.

    PubMed

    Lagarde, Geneviève; Doyon, Julien; Brunet, Alain

    2010-05-15

    Posttraumatic stress disorder (PTSD) in its chronic form has been associated with a number of neurocognitive impairments involving emotionally neutral stimuli. It remains unknown whether such impairments also characterize acute PTSD. In the present investigation, neurocognitive functions were examined in trauma exposed individuals with (n=21) and without (n=16) acute PTSD, as well as in a group of individuals never exposed to trauma (n=17) using specific and standardized tasks such as the Rey Auditory Verbal Learning Test, the Aggie's Figure Learning Test, the Autobiographical Memory Interview, the D2 test, the Stroop task, the digit and visual span tasks of the Wechsler Memory Scale-III, the Trail Making Test, the Tower of London and the vocabulary subtest of the Wechsler Adult Intelligence Scale-III. A number of deficits in the cognitive domains of memory, high-level attentional resources, executive function and working memory were found in the group with a diagnosis of acute PTSD only and not among the other groups. The findings, which point to the possibility of disturbed fronto-temporal system function in trauma-exposed individuals with acute PTSD, are particularly relevant for the early clinical management of this disorder. PMID:20381880

  16. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells.

    PubMed

    Li, Xu; Zhu, Feng; Jiang, Jianxin; Sun, Chengyi; Zhong, Qing; Shen, Ming; Wang, Xin; Tian, Rui; Shi, Chengjian; Xu, Meng; Peng, Feng; Guo, Xingjun; Hu, Jun; Ye, Dawei; Wang, Min; Qin, Renyi

    2016-09-01

    In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease. PMID:27308733

  17. Mitochondrial ubiquitin ligase activator of NF-κB regulates NF-κB signaling in cells subjected to ER stress.

    PubMed

    Fujita, Hidetoshi; Aratani, Satoko; Fujii, Ryouji; Yamano, Yoshihisa; Yagishita, Naoko; Araya, Natsumi; Izumi, Toshihiko; Azakami, Kazuko; Hasegawa, Daisuke; Nishioka, Kusuki; Nakajima, Toshihiro

    2016-06-01

    The nuclear factor-κB (NF-κB) transcription factor family members control various biological processes, such as apoptosis and proliferation. The endoplasmic reticulum (ER) has emerged as a major site of cellular homeostasis regulation. The accumulation of misfolded protein in the ER causes stress and ER stress-induced NF-κB activation to protect cells from apoptosis. In this study, we found a putative ER stress-response element (ERSE) on the promoter of mitochondrial ubiquitin ligase activator of NF-κB (MULAN), and that MULAN expression was upregulated by ER stress. MULAN specifically activated NF-κB dependent gene expression in an E3 ligase activity-dependent manner. The ectopic expression of MULAN induced the nuclear translocation of endogenous p65 and the degradation of IκB. Binding assay revealed that MULAN was associated with transforming growth factor β-activated kinase (TAK1). The knockdown of MULAN using siRNA inhibited the activation of NF-κB in the cells subjected to ER stress. The findings of our study indicate that MULAN is an E3 ligase that regulates NF-κB activation to protect cells from ER stress-induced apoptosis. PMID:27082251

  18. Endoplasmic Reticulum Stress Regulator XBP-1 Contributes to Effector CD8+ T Cell Differentiation during Acute Infection1

    PubMed Central

    Kamimura, Daisuke; Bevan, Michael J.

    2009-01-01

    The transcription factor X-box-binding protein-1 (XBP-1) plays an essential role in activating the unfolded protein response in the endoplasmic reticulum (ER). Transcribed XBP-1 mRNA is converted to its active form by unconventional cytoplasmic splicing mediated by inositol-requiring enzyme-1 (IRE-1) upon ER stress. We report activation of the IRE-1/XBP-1 pathway in effector CD8+ T cells during the response to acute infection. Transcription of unspliced XBP-1 mRNA is up-regulated by IL-2 signals, while its splicing is induced after TCR ligation. Splicing of XBP-1 mRNA was evident during the expansion of Ag-specific CD8+ T cells in response to viral or bacterial infection. An XBP-1 splicing reporter revealed that splicing activity was enriched in terminal effector cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1). Overexpression of the spliced form of XBP-1 in CD8+ T cells enhanced KLRG1 expression during infection, whereas XBP-1−/− CD8+ T cells or cells expressing a dominant-negative form of XBP-1 showed a decreased proportion of KLRG1high effector cells. These results suggest that, in the response to pathogen, activation of ER stress sensors and XBP-1 splicing contribute to the differentiation of end-stage effector CD8+ T cells. PMID:18832700

  19. ER stress related factor ATF6 and caspase-12 trigger apoptosis in neonatal hypoxic-ischemic encephalopathy

    PubMed Central

    Liu, Luran; Liu, Chang; Lu, Yuting; Liu, Lina; Jiang, Yan

    2015-01-01

    The specific and available markers proteins of neonatal hypoxic-ischemic encephalopathy (HIE) injury are correlated with disease severity and the disability in childhood. Exploring the mechanism of HIE is very helpful to the targeted therapeutic approach in clinical. This study aims to explore the cell death-related proteins or biomarkers that plays roles in the HIE injury. In this study, 15 patients were included the 487 autopsies patients performed at the Department of Pathology. The lactate dehydrogenase (LDH) assay was used to detect the cell viability of NGF-differentiated PC12 cell. TUNEL assay was employed to examine the apoptotic cells in embedded slides samples. Three ER stress-related protein, including ATF6, p-Perk and IRE-1 were investigated using Western blot assay for the ER stress examination. The apoptosis associated caspase-12 and CHOP protein were detected by Western blot. The results indicated that LDH activity of living cells during hypoxia was significantly enhanced to 45% and 64% after 8 hours and 24 hours. The TUNEL results showed that plenty of the PC12 cells became the positive staining cells when treated with 0.1% O2 hypoxia. ER stress UPR pathway protein, cleaved ATF6, was increased significantly when treated with 0.1% O2 compared with the cells treated with 20% O2. Furthermore, the caspase 12 activation was triggered when the cells treated with the 0.1% O2. In conclusion, apoptosis is served as an important factor that triggers the HIE brain injury through cleaving the ATF6 and caspase-12 ER stress-related protein. PMID:26261584

  20. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    PubMed Central

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  1. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress

    PubMed Central

    Lin, Yu-Chin; Huang, Wen-Chih; Huang, Liang-Yu; Lin, Yi-Ting; Chen, Ching-Chow

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) is an important endemic disease in Taiwan with aggressive course and dismal outcome. Dasatinib is a Bcr-bl and Src kinase inhibitor that has potential against HNSCC. We recently disclosed that EGFR degradation is critical for dasatinib-induced apoptosis. Here, we further demonstrate that AMPK-dependent ER stress is responsible for this event. Dasatinib induced ER stress which mediated EGFR degradation in a c-cbl-dependent manner. AMPK activation induced by dasatinib might be due to ATP decrease through the up-regulation of pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, activation of AMPK by metformin sensitized dasatinib-induced in vitro and in vivo anti-cancer effect. The correlation of AMPK activation and EGFR expression was seen in HNSCC cells and human tumor specimens. Our results disclose that AMPK-dependent ER stress plays a crucial role in the anti-cancer effect of dasatinib in HNSCC and further activation of AMPK by metformin might enhance dasatinib efficacy. PMID:24457597

  2. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    PubMed

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine. PMID:27137651

  3. Selective killing of gastric cancer cells by a small molecule targeting ROS-mediated ER stress activation.

    PubMed

    Zou, Peng; Xia, Yiqun; Chen, Tongke; Zhang, Junru; Wang, Zhe; Chen, Wenbo; Chen, Minxiao; Kanchana, Karvannan; Yang, Shulin; Liang, Guang

    2016-06-01

    Gastric cancer is one of the leading causes of cancer mortality in the world. Curcumin is a natural product with multiple pharmacological activities, while its clinical application has been limited by the poor chemical stability. We have previously designed a series of curcumin derivatives with high stability and anticancer potentials. The present study aims to identify the anti-cancer effects and mechanisms of WZ26, an analog of curcumin, in gastric cancer cells. In vitro, WZ26 showed higher chemical stability and much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, the novel compound WZ26 induced ROS production, resulting in the activation of JNK-mitochondrial and ER stress apoptotic pathways. Blockage of ROS production totally reversed WZ26-induced JNK activation, Bcl-2/Bax decrease, ER stress activation, and final cell apoptosis in SGC-7901 cells. WZ26 also exhibited potent anti-tumor effects in human gastric cancer cell xenograft models. WZ26 could be considered as a potential chemotherapeutic agent for the treatment of advanced gastric cancer. In addition, this study also demonstrated that ROS production could be act as a vital candidate pathway for inducing tumor cell apoptosis by targeting mitochondrial and ER stress-related death pathway. © 2015 Wiley Periodicals, Inc. PMID:26086416

  4. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  5. Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death.

    PubMed

    Zhang, Changfeng; Bose, Diptiman D; Thomas, David W

    2015-09-01

    Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways. PMID:26033206

  6. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress.

    PubMed

    Zhang, Xudong; Zhang, Hongqiu; Liang, Xin; Zhang, Jinxie; Tao, Wei; Zhu, Xianbing; Chang, Danfeng; Zeng, Xiaowei; Liu, Gan; Mei, Lin

    2016-07-01

    Magnetite (iron oxide, Fe3O4) nanoparticles have been widely used for drug delivery and magnetic resonance imaging (MRI). Previous studies have shown that many metal-based nanoparticles including Fe3O4 nanoparticles can induce autophagosome accumulation in treated cells. However, the underlying mechanism is still not clear. To investigate the biosafety of Fe3O4 and PLGA-coated Fe3O4 nanoparticles, some experiments related to the mechanism of autophagy induction by these nanoparticles have been investigated. In this study, the results showed that Fe3O4, PLGA-coated Fe3O4, and PLGA nanoparticles could be taken up by the cells through cellular endocytosis. Fe3O4 nanoparticles extensively impair lysosomes and lead to the accumulation of LC3-positive autophagosomes, while PLGA-coated Fe3O4 nanoparticles reduce this destructive effect on lysosomes. Moreover, Fe3O4 nanoparticles could also cause mitochondrial damage and ER and Golgi body stresses, which induce autophagy, while PLGA-coated Fe3O4 nanoparticles reduce the destructive effect on these organelles. Thus, the Fe3O4 nanoparticle-induced autophagosome accumulation may be caused by multiple mechanisms. The autophagosome accumulation induced by Fe3O4 was also investigated. The Fe3O4, PLGA-coated Fe3O4, and PLGA nanoparticle-treated mice were sacrificed to evaluate the toxicity of these nanoparticles on the mice. The data showed that Fe3O4 nanoparticle treated mice would lead to the extensive accumulation of autophagosomes in the kidney and spleen in comparison to the PLGA-coated Fe3O4 and PLGA nanoparticles. Our data clarifies the mechanism by which Fe3O4 induces autophagosome accumulation and the mechanism of its toxicity on cell organelles and mice organs. These findings may have an important impact on the clinical application of Fe3O4 based nanoparticles. PMID:27287467

  7. Crohn’s disease: NOD2, autophagy and ER stress converge

    PubMed Central

    Fritz, Teresa; Niederreiter, Lukas; Adolph, Timon; Blumberg, Richard S; Kaser, Arthur

    2014-01-01

    Polymorphisms in NOD2, encoding an intracellular pattern recognition receptor, contribute the largest fraction of genetic risk for Crohn’s disease among the >40 risk loci identified so far. Autophagy plays a prominent role in the innate immune response towards intracellular bacteria. The discovery of the autophagy genes ATG16L1 and IRGM as risk factors for Crohn’s disease turned autophagy into the spotlight in inflammatory bowel disease (IBD). Remarkably, NOD2 has recently been identified as a potent autophagy inducer. A physical interaction of NOD2 and ATG16L1 appears to be required for autophagic clearance of intracellular pathogens. Moreover, Crohn’s disease-associated NOD2 and ATG16L1 variants exhibit a defect in the induction of an autophagic response and hence predict autophagy as a key converging mechanism that leads to Crohn’s disease. Another pathway that is closely intertwined with autophagy and mutually cross-regulated is the unfolded protein response (UPR), which is induced by endoplasmic reticulum (ER) stress. Genes involved in the UPR (XBP1, ORMDL3) have also been genetically associated with Crohn’s disease and ulcerative colitis. Moreover, the intestinal epithelium at the interface between host and microbe appears particularly affected by IBD-associated hypomorphic function of autophagy and the UPR. The functional convergence of main genetic risk factors for IBD on these innate immune pathways has hence important implications for the host’s interaction with the microbiota. Moreover, the genetic convergence on these molecular mechanisms may open novel therapeutic options for IBD that deserve further exploration. PMID:21252204

  8. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test

    PubMed Central

    Al-Alawi, Abdullah M.; Janardan, Jyotsna; Peck, Kah Y.; Soward, Alan

    2016-01-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health. PMID:27226918

  9. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude. PMID:15072717

  10. Effects of acute restraint stress on set-shifting and reversal learning in male rats

    PubMed Central

    Thai, Chester A.; Zhang, Ying

    2015-01-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone. PMID:23055093

  11. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt.

    PubMed

    Shen, M; Wang, L; Wang, B; Wang, T; Yang, G; Shen, L; Wang, T; Guo, X; Liu, Y; Xia, Y; Jia, L; Wang, X

    2014-01-01

    Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl(-) currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl(-) channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl(-) channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl(-) channel blockers against ER stress-associated cardiac anomalies. PMID:25412307

  12. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt

    PubMed Central

    Shen, M; Wang, L; Wang, B; Wang, T; Yang, G; Shen, L; Wang, T; Guo, X; Liu, Y; Xia, Y; Jia, L; Wang, X

    2014-01-01

    Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl− currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl− channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl− channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl− channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl− channel blockers against ER stress-associated cardiac anomalies. PMID:25412307

  13. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.

    PubMed

    Gwak, HyeRan; Kim, Soochi; Dhanasekaran, Danny N; Song, Yong Sang

    2016-02-28

    Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation. Application of either biochemical intermediates of the hexosamine pathway or small molecular inhibitors of GSK3β reversed the effects of resveratrol on the disruption of protein glycosylation. Additionally, an ER UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), modulated protein glycosylation by Akt attenuation in response to resveratrol. By inhibition or overexpression of Akt functions, we confirmed that the glycosylation activities were dependent on ENTPD5 expression and regulated by the action of Akt in ovarian cancer cells. Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α). Thus, our results provide novel insight into cancer cell metabolism and protein glycosylation as a therapeutic target for cancers. PMID:26704305

  14. Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages[S

    PubMed Central

    Sekiya, Motohiro; Yamamuro, Daisuke; Ohshiro, Taichi; Honda, Akira; Takahashi, Manabu; Kumagai, Masayoshi; Sakai, Kent; Nagashima, Shuichi; Tomoda, Hiroshi; Igarashi, Masaki; Okazaki, Hiroaki; Yagyu, Hiroaki; Osuga, Jun-ichi; Ishibashi, Shun

    2014-01-01

    An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis. PMID:24891333

  15. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-09-01

    Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and

  16. Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB

    PubMed Central

    Buontempo, Francesca; Orsini, Ester; Lonetti, Annalisa; Cappellini, Alessandra; Chiarini, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; Bertacchini, Jessika; Neri, Luca Maria; McCubrey, James A.; Martelli, Alberto Maria

    2016-01-01

    The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX-4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomib-mediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL. PMID:26593250

  17. The interaction of acute and chronic stress impairs model-based behavioral control.

    PubMed

    Radenbach, Christoph; Reiter, Andrea M F; Engert, Veronika; Sjoerds, Zsuzsika; Villringer, Arno; Heinze, Hans-Jochen; Deserno, Lorenz; Schlagenhauf, Florian

    2015-03-01

    It is suggested that acute stress shifts behavioral control from goal-directed, model-based toward habitual, model-free strategies. Recent findings indicate that interindividual differences in the cortisol stress response influence model-based decision-making. Although not yet investigated in humans, animal studies show that chronic stress also shifts decision-making toward more habitual behavior. Here, we ask whether acute stress and individual vulnerability factors, such as stress reactivity and previous exposure to stressful life events, impact the balance between model-free and model-based control systems. To test this, 39 male participants (21-30 years old) were exposed to a potent psychosocial stressor (Trier Social Stress Test) and a control condition in a within-subjects design before they performed a sequential decision-making task which evaluates the balance between the two systems. Physiological and subjective stress reactivity was assessed before, during, and after acute stress exposure. By means of computational modeling, we demonstrate that interindividual variability in stress reactivity predicts impairments in model-based decision-making. Whereas acute psychosocial stress did not alter model-based behavioral control, we found chronic and acute stress to interact in their detrimental effect on decision-making: subjects with high but not low chronic stress levels as indicated by stressful life events exhibited reduced model-based control in response to acute psychosocial stress. These findings emphasize that stress reactivity and chronic stress play an important role in mediating the relationship between stress and decision-making. Our results might stimulate new insights into the interplay between chronic and acute stress, attenuated model-based control, and the pathogenesis of various psychiatric diseases. PMID:25662093

  18. 3 β-hydroxysteroid-Δ 24 reductase (DHCR24) protects neuronal cells from apoptotic cell death induced by endoplasmic reticulum (ER) stress.

    PubMed

    Lu, Xiuli; Li, Yang; Wang, Weiqi; Chen, Shuchao; Liu, Ting; Jia, Dan; Quan, Xiaoping; Sun, Deliang; Chang, Alan K; Gao, Bing

    2014-01-01

    3β-Hydroxysteroid-Δ24 reductase (DHCR24) is an endoplasmic reticulum (ER)-localized multifunctional enzyme that possesses anti-apoptotic and cholesterol-synthesizing activities. Accumulating evidence suggests that ER stress is involved in the pathogenesis of neurodegenerative disease. In this study, we investigated whether DHCR24 may function as a neuroprotective protein under ER stress. Neuroblastoma N2A cells were infected with adenovirus expressing myc-tagged DHCR24 (Ad-DHCR24) or lacZ (Ad-lacZ, serving as a control) and subjected to ER-stress, induced with Tunicamycin (TM). Cells infected with Ad-DHCR24-myc were resistant to TM-induced apoptosis, and showed weaker level of caspase-12 activity. These cells also exhibited lower levels of Bip and CHOP proteins than Ad-LacZ-infected cells. Moreover, a stronger and rapid activation of PERK, and a prolonged activation of JNK and p38 were observed in Ad-LacZ-infected cells. The generation of intracellular reactive oxygen species from ER stress was also diminished by the overexpression of DHCR24. Additionally, intracellular cholesterol level was also elevated in the Ad-DHCR24-infected cells, accompanied by a well-organized formation of caveolae (cholesterol-rich microdomain) on the plasma membrane, and improved colocalization of caveolin-1 and insulin-like growth factor 1 receptor. These results demonstrated for the first time that DHCR24 could protect neuronal cells from apoptosis induced by ER stress. PMID:24489783

  19. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex

    PubMed Central

    Park, Kyungho; Ikushiro, Hiroko; Shin, Kyong-Oh; Kim, Young il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M.; Elias, Peter; Uchida, Yoshikazu

    2016-01-01

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP. PMID:26903652

  20. Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity.

    PubMed

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P; Pasquier, Miriella; Kanaani, Jamil; Nano, Rita; Lavallard, Vanessa; Billestrup, Nils; Hubbell, Jeffrey A; Baekkeskov, Steinunn

    2016-09-01

    Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity. PMID:27284108

  1. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress

    PubMed Central

    Gallagher, Ciara M; Walter, Peter

    2016-01-01

    The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state. DOI: http://dx.doi.org/10.7554/eLife.11880.001 PMID:27435962

  2. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress.

    PubMed

    Gallagher, Ciara M; Walter, Peter

    2016-01-01

    The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state. PMID:27435962

  3. Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells.

    PubMed

    Moon, Jeong Yong; Cho, Somi Kim

    2016-01-01

    Nobiletin, a major component of citrus fruits, is a polymethoxyflavone derivative that exhibits anticancer activity against several forms of cancer, including SNU-16 human gastric cancer cells. To explore the nobiletin-induced cell death mechanism, we examined the changes in protein expression caused by nobiletin in human gastric cancer SNU-16 cells by means of two-dimensional gel electrophoresis (2-DGE), followed by peptide mass fingerprinting (PMF) analysis. Seventeen of 20 selected protein spots were successfully identified, including nine upregulated and eight downregulated proteins. In nobiletin-treated SNU-16 cells the glucose-regulated protein 78 kDa (GRP78) mRNA level was induced most significantly among six proteins related to cell survival and death. Western blot analysis was used to confirm the expression of GRP78 protein. We detected increases in the levels of the ER-stress related proteins inositol requiring enzyme 1 alpha (IRE1-α), activating transcription factor 4 (ATF-4), and C/EBP homology protein (CHOP), as well as GRP78, in response to nobiletin in SNU-16 cells. Furthermore, the ER stress-mediated apoptotic protein caspase-4 was proteolytically activated by nobiletin. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in SNU-16 cells, as evidenced by decreased cell viability, an increased number of sub-G1 phase cells and increased levels of cleaved PARP. Our results suggest that nobiletin-induced apoptosis in SNU-16 cells is mediated by pathways involving intracellular ER stress-mediated protective autophagy. Thus, the combination of nobiletin and an autophagy inhibitor could be a promising treatment for gastric cancer patients. PMID:27428937

  4. Traumatic Memories in Acute Stress Disorder: An Analysis of Narratives before and after Treatment

    ERIC Educational Resources Information Center

    Moulds, Michelle L.; Bryant, Richard A.

    2005-01-01

    The dissociative reactions in acute stress disorder purportedly impede encoding and organization of traumatic memories and consequently impair the individual's ability to retrieve trauma-related details. A qualitative examination was conducted on trauma narratives of individuals with acute stress disorder (N = 15) prior to cognitive behavior…

  5. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000), in a…

  6. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and concurrent…

  7. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice

    PubMed Central

    Kieran, Dairín; Woods, Ina; Villunger, Andreas; Strasser, Andreas; Prehn, Jochen H. M.

    2007-01-01

    BH3-only proteins couple diverse stress signals to the evolutionarily conserved mitochondrial apoptosis pathway. Previously, we reported that the activation of the BH3-only protein p53-up-regulated mediator of apoptosis (Puma) was necessary and sufficient for endoplasmic reticulum (ER) stress- and proteasome inhibition-induced apoptosis in neuroblastoma and other cancer cells. Defects in protein quality control have also been suggested to be a key event in ALS, a fatal neurodegenerative condition characterized by motoneuron degeneration. Using the SOD1G93A mouse model as well as human post mortem samples from ALS patients, we show evidence for increased ER stress and defects in protein degradation in motoneurons during disease progression. Before symptom onset, we detected a significant up-regulation of Puma in motoneurons of SOD1G93A mice. Genetic deletion of puma significantly improved motoneuron survival and delayed disease onset and motor dysfunction in SOD1G93A mice. However, it had no significant effect on lifespan, suggesting that other ER stress-related cell-death proteins or other factors, such as excitotoxicity, necrosis, or inflammatory injury, may contribute at later disease stages. Indeed, further experiments using cultured motoneurons revealed that genetic deletion of puma protected motoneurons against ER stress-induced apoptosis but showed no effect against excitotoxic injury. These findings demonstrate that a single BH3-only protein, the ER stress-associated protein Puma, plays an important role during the early stages of chronic neurodegeneration in vivo. PMID:18077368

  8. An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia.

    PubMed

    Spycher, Cornelia; Herman, Emily K; Morf, Laura; Qi, Weihong; Rehrauer, Hubert; Aquino Fournier, Catharine; Dacks, Joel B; Hehl, Adrian B

    2013-05-01

    The protozoan Giardia lamblia has a minimized organelle repertoire, and most strikingly lacks a classical stacked Golgi apparatus. Nevertheless, Giardia trophozoites constitutively secrete variant surface proteins, and dramatically increase the volume of protein secretion during differentiation to cysts. Eukaryotic cells have evolved an elaborate system for quality control (QC) of protein folding and capacity in the endoplasmic reticulum (ER). Upon ER-overload, an unfolded protein response (UPR) is triggered on transcriptional/translational level aiming at alleviating ER stress. In Giardia, a minimized secretory machinery and absence of glycan-dependent QC suggests that a genetically conserved UPR (or functional equivalent) to cope with insults to the secretory system has been eliminated. We tested this hypothesis of UPR elimination by profiling the transcriptional response during induced ER-folding stress. We show that on the contrary, ER-folding stress triggers a stressor-specific, ER-directed response with upregulation of only ~ 30 genes, with different kinetics and scope compared with the UPR of other eukaryotes. Computational genomics revealed conserved cis-acting motifs in upstream regions of responder genes capable of stressor-specific gene regulation in transfected cells. Interestingly, the sensors/transducers of folding stress, well conserved in model eukaryotes, are absent in Giardia suggesting the presence of a novel version of this essential eukaryotic function. PMID:23617761

  9. Effects of acute and chronic psychological stress on isolated islets' insulin release

    PubMed Central

    Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah

    2012-01-01

    This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status.

  10. Acute phase proteins in cattle after exposure to complex stress.

    PubMed

    Lomborg, S R; Nielsen, L R; Heegaard, P M H; Jacobsen, S

    2008-10-01

    Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin concentrations were obtained before (0-sample) and at 8, 24 and 48 hours after the start of transportation. Upon arrival the animals gave the impression of being anxious, and they appeared to have difficulty coping with isolation and with being tied on the slippery floors of the research stable. Serum concentrations of SAA and haptoglobin increased significantly in response to the stressors (P < 0.01 and 0.05 at 48 hours, respectively). Additionally, the animals had transient neutrophilia at 8 and 24 hours (P < 0.05). In conclusion, the results of the study suggest that SAA and haptoglobin may serve as markers of stress in adult cattle. PMID:18461465

  11. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  12. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice.

    PubMed

    Sato, Amy Y; Tu, Xiaolin; McAndrews, Kevin A; Plotkin, Lilian I; Bellido, Teresita

    2015-04-01

    Endoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GCs) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells is mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton. PMID:25532480

  13. Prevention of Glucocorticoid Induced-Apoptosis of Osteoblasts and Osteocytes by Protecting against Endoplasmic Reticulum (ER) Stress in vitro and in vivo in Female Mice

    PubMed Central

    Sato, Amy Y.; Tu, Xiaolin; McAndrews, Kevin A.; Plotkin, Lilian I.; Bellido, Teresita

    2014-01-01

    Endoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GC) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells are mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton. PMID:25532480

  14. Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses.

    PubMed

    Guthrie, Lauren N; Abiraman, Kavitha; Plyler, Emily S; Sprenkle, Neil T; Gibson, Sara A; McFarland, Braden C; Rajbhandari, Rajani; Rowse, Amber L; Benveniste, Etty N; Meares, Gordon P

    2016-07-22

    Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function. PMID:27226638

  15. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models.

    PubMed

    Kim, Hee Suk; Lim, Jang Mi; Kim, Joo Young; Kim, Yongjin; Park, Serkin; Sohn, Jeongwon

    2016-03-15

    We reported previously that panaxydol, a component of Panax ginseng roots, induced mitochondria-mediated apoptosis preferentially in transformed cells. This study demonstrates that EGFR activation and the resulting ER stress mediate panaxydol-induced apoptosis, and that panaxydol suppresses in vivo tumor growth in syngeneic and xenogeneic mouse tumor models. In addition, we elucidated that CaMKII and TGF-β-activated kinase (TAK1) participate in p38/JNK activation by elevated cytoplasmic Ca(2+) concentration ([Ca(2+)]c). In MCF-7 cells, EGFR was activated immediately after exposure to panaxydol, and this activation was necessary for induction of apoptosis, suggesting that panaxydol might be a promising anticancer candidate, especially for EGFR-addicted cancer. Activation of PLCγ followed EGFR activation, resulting in Ca(2+) release from the endoplasmic reticulum (ER) via inositol triphosphate and ryanodine receptors. ER Ca(2+) release triggered mitochondrial Ca(2+) uptake indirectly through oxidative stress and ensuing ER stress. Elevated [Ca(2+)]c triggered sequential activation of calmodulin/CaMKII, TAK1 and p38/JNK. As shown previously, p38 and JNK activate NADPH oxidase. Here, it was shown that the resulting oxidative stress triggered ER stress. Among the three signaling branches of the unfolded protein response, protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 or activating transcription factor 6, played a role in transmitting the apoptosis signal. PERK induced C/EBP homologous protein (CHOP), and CHOP elevated Bim expression, initiating mitochondrial Ca(2+) uptake and apoptosis. In summary, we identified roles of EGFR, the CAMKII-TAK1-p38/JNK pathway, and ER stress in panaxydol-induced apoptosis and demonstrated the in vivo anticancer effect of panaxydol. PMID:26421996

  16. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    PubMed

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  17. Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice.

    PubMed

    O'Neill, Christina M; Lu, Christine; Corbin, Kathryn L; Sharma, Poonam R; Dula, Stacey B; Carter, Jeffrey D; Ramadan, James W; Xin, Wenjun; Lee, Jae K; Nunemaker, Craig S

    2013-09-01

    Elevated levels of circulating proinflammatory cytokines are associated with obesity and increased risk of type 2 diabetes, but the mechanism is unknown. We tested whether proinflammatory cytokines IL-1B+IL-6 at low picogram per milliliter concentrations (consistent with serum levels) could directly trigger pancreatic islet dysfunction. Overnight exposure to IL-1B+IL-6 in islets isolated from normal mice and humans disrupted glucose-stimulated intracellular calcium responses; cytokine-induced effects were more severe among islets from prediabetic db/db mice that otherwise showed no signs of dysfunction. IL-1B+IL-6 exposure reduced endoplasmic reticulum (ER) calcium storage, activated ER stress responses (Nos2, Bip, Atf4, and Ddit3 [CHOP]), impaired glucose-stimulated insulin secretion, and increased cell death only in islets from prediabetic db/db mice. Furthermore, we found increased serum levels of IL-1B and IL-6 in diabetes-prone mice at an age before hyperglycemia was exhibited, suggesting that low-grade systemic inflammation develops early in the disease process. In addition, we implanted normal outbred and inbred mice with subcutaneous osmotic mini-pumps containing IL-1B+IL-6 to mimic the serum increases found in prediabetic db/db mice. Both IL-1B and IL-6 were elevated in serum from cytokine-pump mice, but glucose tolerance and blood glucose levels did not differ from controls. However, when compared with controls, isolated islets from cytokine-pump mice showed deficiencies in calcium handling and insulin secretion that were similar to observations with islets exposed to cytokines in vitro. These findings provide proof of principle that low-grade systemic inflammation is present early in the development of type 2 diabetes and can trigger ER stress-mediated islet dysfunction that can lead to islet failure. PMID:23836031

  18. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    PubMed

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. PMID:26551431

  19. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. PMID:23218453

  20. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 10(8) CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  1. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  2. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway.

    PubMed

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  3. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway

    PubMed Central

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  4. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease.

    PubMed

    Olympiou, Margarita; Sargiannidou, Irene; Markoullis, Kyriaki; Karaiskos, Christos; Kagiava, Alexia; Kyriakoudi, Styliana; Abrams, Charles K; Kleopa, Kleopas A

    2016-01-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte

  5. Biweekly Maps of Wind Stress for the North Pacific from the ERS-1 Scatterometer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The European Remote-sensing Satellite (ERS-1) was launched in July 1991 and contained several instruments for observing the Earth's ocean including a wind scatterometer. The scatterometer measurements were processed by the European Space Agency (ESA) and the Jet Propulsion Laboratory (JPL). JPL reprocessed (Freilich and Dunbar, 1992) the ERS-1 backscatter measurements to produced a 'value added' data set that contained the ESA wind vector as well as a set of up to four ambiguities. These ambiguities were further processed using a maximum-likelihood estimation (MLE) and a median filter to produce a 'selected vector.' This report describes a technique developed to produce time-averaged wind field estimates with their expected errors using only scatterometer wind vectors. The processing described in this report involved extracting regions of interest from the data tapes, checking the quality and creating the wind field estimate. This analysis also includes the derivation of biweekly average wind vectors over the North Pacific Ocean at a resolution of 0.50 x 0.50. This was done with an optimal average algorithm temporally and an over-determined biharmonic spline spatially. There have been other attempts at creating gridded wind files from ERS-1 winds, e.g., kriging techniques (Bentamy et al., 1996) and successive corrections schemes (Tang and Liu, 1996). There are several inherent problems with the ERS-1 scatterometer. Since this is a multidisciplinary mission, the satellite is flown in different orbits optimized for each phase of the mission. The scatterometer also shares several sub-systems with the Synthetic Aperture Radar (SAR) and cannot be operated while the SAR is in operation. The scatterometer is also a single-sided instrument and only measures backscatter along the right side of the satellite. The processing described here generates biweekly wind maps during the wktwo years analysis period regardless of the satellite orbit or missing data.

  6. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis

    SciTech Connect

    Katika, Madhumohan R.; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-08-01

    Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5 {mu}M TBTO for 3, 6, 12 and 24 h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO. - Research Highlights: > The human T lymphocyte cell line Jurkat was exposed to TBTO. > Whole-genome microarray experiments were performed. > Data analysis revealed the induction of ER stress and activation of NFAT and NFKB. > Exposure to TBTO also led to T cell activation, oxidative stress and apoptosis.

  7. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo. PMID:26073568

  8. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle

    PubMed Central

    Wang, Zong-Heng; Rabouille, Catherine; Geisbrecht, Erika R.

    2015-01-01

    Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers. PMID:25862246

  9. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex.

    PubMed

    Nakatsuka, Atsuko; Wada, Jun; Iseda, Izumi; Teshigawara, Sanae; Higashio, Kanji; Murakami, Kazutoshi; Kanzaki, Motoko; Inoue, Kentaro; Terami, Takahiro; Katayama, Akihiro; Hida, Kazuyuki; Eguchi, Jun; Horiguchi, Chikage Sato; Ogawa, Daisuke; Matsuki, Yasushi; Hiramatsu, Ryuji; Yagita, Hideo; Kakuta, Shigeru; Iwakura, Yoichiro; Makino, Hirofumi

    2012-11-01

    It is unknown whether adipokines derived from adipose tissues modulate endoplasmic reticulum (ER) stress induced in obesity. Here, we show that visceral adipose tissue-derived serine protease inhibitor (vaspin) binds to cell-surface 78-kDa glucose-regulated protein (GRP78), which is recruited from ER to plasma membrane under ER stress. Vaspin transgenic mice were protected from diet-induced obesity, glucose intolerance, and hepatic steatosis, while vaspin-deficient mice developed glucose intolerance associated with upregulation of ER stress markers. With tandem affinity tag purification using HepG2 cells, we identified GRP78 as an interacting molecule. The complex formation of vaspin, GRP78, and murine tumor cell DnaJ-like protein 1 (MTJ-1) (DnaJ homolog, subfamily C, member 1) on plasma membrane was confirmed by cell-surface labeling with biotin and immunoprecipitation in liver tissues and H-4-II-E-C3 cells. The addition of recombinant human vaspin in the cultured H-4-II-E-C3 cells also increased the phosphorylation of Akt and AMP-activated protein kinase (AMPK) in a dose-dependent manner, and anti-GRP78 antibodies completely abrogated the vaspin-induced upregulation of pAkt and pAMPK. Vaspin is a novel ligand for cell-surface GRP78/MTJ-1 complex, and its subsequent signals exert beneficial effects on ER stress-induced metabolic dysfunctions. PMID:22837305

  10. Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21(waf-1).

    PubMed

    Chakraborty, Souneek; Rasool, Reyaz Ur; Kumar, Sunil; Nayak, Debasis; Rah, Bilal; Katoch, Archana; Amin, Hina; Ali, Asif; Goswami, Anindya

    2016-06-01

    Stress-induced premature senescence (SIPS) is quite similar to replicative senescence that is committed by cells exposed to various stress conditions viz. ultraviolet radiation (DNA damage), hydrogen peroxide (oxidative stress), chemotherapeutic agents (cytotoxic threat), etc. Here, we report that cristacarpin, a natural product obtained from the stem bark of Erythrina suberosa, promotes endoplasmic reticulum (ER) stress, leading to sub-lethal reactive oxygen species (ROS) generation and which eventually terminates by triggering senescence in pancreatic and breast cancer cells through blocking the cell cycle in the G1 phase. The majority of cristacarpin-treated cells responded to conventional SA-β-gal stains; showed characteristic p21(waf1) upregulation along with enlarged and flattened morphology; and increased volume, granularity, and formation of heterochromatin foci-all of these features are the hallmarks of senescence. Inhibition of ROS generation by N-acetyl-L-cysteine (NAC) significantly reduced the expression of p21(waf1), confirming that the modulation in p21(waf1) by anti-proliferative cristacarpin was ROS dependent. Further, the elevation in p21(waf1) expression in PANC-1 and MCF-7 cells was consistent with the decrease in the expression of Cdk-2 and cyclinD1. Here, we provide evidence that cristacarpin promotes senescence in a p53-independent manner. Moreover, cristacarpin treatment induced p38MAPK, indicating the ROS-dependent activation of the MAP kinase pathway, and thus abrogates the tumor growth in mouse allograft tumor model. PMID:27246693

  11. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.

    PubMed

    Bashiri, Amir; Nesan, Dinushan; Tavallaee, Ghazaleh; Sue-Chue-Lam, Ian; Chien, Kevin; Maguire, Graham F; Naples, Mark; Zhang, Jing; Magomedova, Lilia; Adeli, Khosrow; Cummins, Carolyn L; Ng, Dominic S

    2016-07-01

    Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH. PMID:27090939

  12. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  13. The effect of acute stress on memory depends on word valence.

    PubMed

    Smeets, Tom; Jelicic, Marko; Merckelbach, Harald

    2006-10-01

    The present study investigated the effect of acute stress on working memory and memory for neutral, emotionally negative, and emotionally positive words in healthy undergraduates. Participants (N=60) were exposed to either the Trier Social Stress Test (stress group) or a non-stressful task (control group). Analyses of salivary cortisol samples taken throughout the study showed elevated glucocorticoid levels after the experimental manipulation in the stress group, but not in the control group. Recall performance was impaired in the stress group, but only so for neutral words. No differences between the stress and control group were found on working memory measures. For the stress group, digit span forward and digit span total scores were associated with correct recall of neutral words. All in all, this study lends further support to the notion that the memory effects of exposure to acute stress depend on the valence of the memory material. PMID:16388863

  14. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction

    PubMed Central

    LI, PENG; ZHANG, LINA; ZHANG, MEI; ZHOU, CHANGYONG; LIN, NAN

    2016-01-01

    The mechanism by which hyperuricemia induced-endothelial dysfunction contributes to cardiovascular diseases (CVDs) is not yet fully understood. In the present study, we used uric acid (UA) to trigger endothelial dysfunction in cultured endothelial cells, and investigated the effects of induced reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress induction, and the protein kinase C (PKC)-dependent endothelial nitric oxide synthase (eNOS) signaling pathway. Human umbilical vein endothelial cells (HUVECs) were incubated with 6, 9 or 12 mg/dl UA, ROS scavenger polyethylene glycol-superoxide dismutase (PEG-SOD), ER stress inhibitor 4-phenylbutyric acid (4-PBA), and PKC inhibitor polymyxin B for 6–48 h. Nitric oxide (NO) production, eNOS activity, intracellular ROS, ER stress levels, and the interaction between eNOS and calmodulin (CaM) and cytosolic calcium levels were assessed using fluorescence microscopy and western blot analysis. Apoptosis was assessed by annexin V staining. UA increased HUVEC apoptosis and reduced eNOS activity and NO production in a dose- and time-dependent manner. Intracellular ROS was elevated after 3 h, while ER stress level increased after 6 h. UA did not alter intracellular Ca2+, CaM, or eNOS concentration, or eNOS Ser1177 phosphorylation. However, PKC-dependent eNOS phosphorylation at Thr495 was greatly enhanced, and consequently interaction between eNOS and CaM was reduced. Cellular ROS depletion, ER stress inhibition and PKC activity reduction inhibited the effect of UA on eNOS activity, NO release and apoptosis in HUVECs. Thus, we concluded that UA induced HUVEC apoptosis and endothelial dysfunction by triggering oxidative and ER stress through PKC/eNOS-mediated eNOS activity and NO production. PMID:26935704

  15. Nicotinamide ameliorates palmitate-induced ER stress in hepatocytes via cAMP/PKA/CREB pathway-dependent Sirt1 upregulation.

    PubMed

    Li, Jiaxin; Dou, Xiaobing; Li, Songtao; Zhang, Ximei; Zeng, Yong; Song, Zhenyuan

    2015-11-01

    Nicotinamide (NAM) is the amide of nicotinic acid and a predominant precursor for NAD(+) biosynthesis via the salvage pathway. Sirt1 is a NAD(+)-dependent deacetylase, playing an important role in regulating cellular functions. Although hepatoprotective effect of NAM has been reported, the underlying mechanism remains elusive. ER stress, induced by saturated fatty acids, in specific palmitate, plays a pathological role in the development of nonalcoholic fatty liver disease. This study aims to determine the effect of NAM on palmitate-induced ER stress in hepatocytes and to elucidate molecular mechanisms behind. Both HepG2 cells and primary mouse hepatocytes were exposed to palmitate (conjugated to BSA at a 2:1 M ratio), NAM, or their combination for different durations. Cellular NAD(+) level, Sirt1 expression/activity, ER stress, as well as cAMP/PKA/CREB pathway activation were determined. NAM increased Sirt1 expression and enzymatic activity, which contributes to the ameliorative effect of NAM on palmitate-triggered ER stress. NAM increased intracellular NAD(+) level in hepatocytes, however, blocking the salvage pathway, a pathway for NAD(+) synthesis from NAM, only partially prevented NAM-induced Sirt1 upregulation while completely prevented NAD+ increase in response to NAM. Further mechanistic investigations revealed that NAM elevated intracellular cAMP level via suppressing PDE activity, leading to downstream PKA and CREB activation. Importantly, cAMP/PKA/CREB pathway blockade abolished not only NAM-induced Sirt1 upregulation, but also its protective effect against ER stress. Our results demonstrate that NAM protects hepatocytes against palmitate-induced ER stress in hepatocytes via upregulating Sirt1. Activation of the cAMP/PKA/CREB pathway plays a key role in NAM-induced Sirt1 upregulation. PMID:26352206

  16. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    PubMed

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. PMID:25499032

  17. Cognitive Load Undermines Thought Suppression in Acute Stress Disorder.

    PubMed

    Nixon, Reginald D V; Rackebrandt, Julie

    2016-05-01

    Thought suppression studies demonstrate that attempts to suppress can be undermined by cognitive load. We report the first instance in which this has been tested experimentally in a sample of recently traumatized individuals. Individuals with and without acute stress disorder (ASD) were recruited following recent trauma and randomized to load or no load conditions (N=56). They monitored intrusive memories during baseline, suppression, and think anything phases. The impact of suppression and load on self-reported intrusions, attention bias (dot-probe), and memory priming (word-stem task) was assessed. The ASD load group were less able to suppress memories (d=0.32, CI95 [-0.15, 0.83], p=.088) than the ASD no load group (d=0.63, CI95 [0.08, 1.24], p<.001). In the think anything phase, the ASD load group reported more intrusions than the ASD no load or non-ASD groups (with and without load). No consistent findings were observed in relation to attentional bias. ASD load individuals exhibited stronger priming responses for motor vehicle accident and assault words than all other groups (ds between 0.35-0.73). Working memory did not moderate any outcomes of interest. The findings indicate that cognitive load interferes with suppression and may enhance access to trauma memories and associated material. The study extends previous research by demonstrating these effects for the first time in a clinical sample of recent survivors of trauma. PMID:27157032

  18. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  19. Androgen-inducible gene 1 increases the ER Ca(2+) content and cell death susceptibility against oxidative stress.

    PubMed

    Nickel, Nadine; Cleven, Astrid; Enders, Vitalij; Lisak, Dmitrij; Schneider, Lars; Methner, Axel

    2016-07-15

    Androgen-induced gene 1 (AIG1) is a transmembrane protein implicated with survival (its expression level was shown to correlate with the survival of patients suffering from hepatocellular carcinoma) and Ca(2+) signaling (over-expression of AIG1 increased transcription mediated by the Ca(2+)-dependent nuclear factor of activated T cells). We aimed to shed light on this less-studied protein and investigated its tissue expression, genomic organization, intracellular localization and membrane topology as well as its effects on cell death susceptibility and the Ca(2+) content of the endoplasmic reticulum. Immunoblotting of mouse tissues demonstrated highest expression of AIG1 in the liver, lung and heart. AIG1 has a complex genomic organization and expresses several splice variants in a tissue-dependent manner. Analyzing the topology of AIG1 in the ER membrane using a protease-protection assay suggested that AIG has five transmembrane domains with a luminal N- and cytosolic C-terminus and a hydrophobic stretch between the third and fourth membrane domain that does not cross the membrane. AIG1 over-expression slightly increased susceptibility to oxidative stress, which correlated with an increased ER Ca(2+) concentration in two different cell lines. Together, these results indicate that AIG1 plays a role in the control of the intracellular Ca(2+) concentration and cell death susceptibility. PMID:27040980

  20. Resolvin D1 reduces ER stress-induced apoptosis and triglyceride accumulation through JNK pathway in HepG2 cells.

    PubMed

    Jung, Tae Woo; Hwang, Hwan-Jin; Hong, Ho Cheol; Choi, Hae Yoon; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2014-06-25

    Research has indicated that stress on the endoplasmic reticulum (ER) of a cell affects the pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Resolvins, a novel family derived from ω-3 polyunsaturated fatty acids, have anti-inflammatory and insulin sensitizing properties, and it has been suggested that they play a role in the amelioration of obesity-related metabolic dysfunctions. This study showed that pretreatment with resolvin D1 (RvD1) attenuated ER stress-induced apoptosis and also decreased caspase 3 activity in HepG2 cells. Furthermore, RvD1 significantly decreased tunicamycin-induced triglycerides accumulation as well as SREBP-1 expression. However, tunicamycin-induced ER stress markers were not significantly affected by RvD1 treatment. Moreover, RvD1 treatment did not affect the tunicamycin-induced expression of chaperones that assist protein folding in the ER. These results suggest that RvD1-conferred cellular protection may occur downstream of the ER stress. This was supported by the finding that RvD1 significantly inhibited tunicamycin-induced c-Jun N-terminal kinase (JNK) expression, although P38 and ERK1/2 phosphorylation were not affected. In addition, anisomycin, a JNK activator, increased caspase 3 activity and apoptosis as well as triglycerides accumulation and SREBP1 expression, and RvD1 treatment reversed these changes. In conclusion, RvD1 attenuated ER stress-induced hepatic steatosis and apoptosis via the JNK-mediated pathway. This study may provide insight into a novel underlying mechanism and a strategy for treating NAFLD. PMID:24784707

  1. Prostaglandin EP2 receptor signaling protects human trabecular meshwork cells from apoptosis induced by ER stress through down-regulation of p53.

    PubMed

    Kalouche, Georges; Boucher, Céline; Coste, Annick; Debussche, Laurent; Orsini, Cécile; Baudouin, Christophe; Debeir, Thomas; Vigé, Xavier; Rostène, William

    2016-09-01

    E-prostanoid receptor subtype 2 (EP2) agonists are currently under clinical development as hypotensive agents for the treatment of ocular hypertension. However, the effects of EP2 receptor agonists on trabecular meshwork (TM) alterations leading to primary open-angle glaucoma (POAG) are still unknown. Here, we evaluated whether EP2 receptor activation exhibits protective functions on TM cell death induced by endoplasmic reticulum (ER) stress. We show that the EP2 receptor agonist butaprost protects TM cell death mediated by the ER stress inducer tunicamycin through a cyclic AMP (cAMP)-dependent mechanism, but independent of the classical cAMP sensors, protein kinase A and exchange proteins activated by cAMP. The ER stress-induced intrinsic apoptosis inhibited by the EP2 receptor agonist was correlated with a decreased accumulation of the cellular stress sensor p53. In addition, p53 down-regulation was associated with inhibition of its transcriptional activity, which led to decreased expression of the pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The stabilization of p53 by nutlin-3a abolished butaprost-mediated cell death protection. In conclusion, we showed that EP2 receptor activation protects against ER stress-dependent mitochondrial apoptosis through down-regulation of p53. The specific inhibition of this pathway could reduce TM alterations observed in POAG patients. PMID:27321910

  2. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  3. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition.

    PubMed

    Liu, Shing-Hwa; Lee, Wen-Jane; Lai, De-Wei; Wu, Sheng-Mao; Liu, Chia-Yu; Tien, Hsing-Ru; Chiu, Chien-Shan; Peng, Yen-Chun; Jan, Yee-Jee; Chao, Te-Hsin; Pan, Hung-Chuan; Sheu, Meei-Ling

    2015-04-01

    Peritoneal dissemination is a major clinical obstacle in gastrointestinal cancer therapy, and it accounts for the majority of cancer-related mortality. Calreticulin (CRT) is over-expressed in gastric tumors and has been linked to poor prognosis. In this study, immunohistochemistry studies revealed that the up-regulation of CRT was associated with lymph node and distant metastasis in patients with gastric cancer specimens. CRT was significantly down-regulated in highly metastatic gastric cancer cell lines and metastatic animal by Honokiol-treated. Small RNA interference blocking CRT by siRNA-CRT was translocated to the cells in the early immunogenic response to Honokiol. Honokiol activated endoplasmic reticulum (ER) stress and down-regulated peroxisome proliferator-activated receptor-γ (PPARγ) activity resulting in PPARγ and CRT degradation through calpain-II activity, which could be reversed by siRNA-calpain-II. The Calpain-II/PPARγ/CRT axis and interaction evoked by Honokiol could be blocked by gene silencing or pharmacological agents. Both transforming growth factor (TGF)-β1 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced cell migration, invasion and reciprocal down-regulation of epithelial marker E-cadherin, which could be abrogated by siRNA-CRT. Moreover, Honokiol significantly suppressed MNNG-induced gastrointestinal tumor growth and over-expression of CRT in mice. Knockdown CRT in gastric cancer cells was found to effectively reduce growth ability and metastasis in vivo. The present study provides insight into the specific biological behavior of CRT in epithelial-to-mesenchymal transition (EMT) and metastasis. Taken together, our results suggest that the therapeutic inhibition of CRT by Honokiol suppresses both gastric tumor growth and peritoneal dissemination by dictating early translocation of CRT in immunogenic cell death, activating ER stress, and blocking EMT. PMID:25619450

  4. Brucella suis vaccine strain S2-infected immortalized caprine endometrial epithelial cell lines induce non-apoptotic ER-stress.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Yin, Yanlong; Zhou, Jinhua; Lei, Lanjie; Zhou, Xudong; Jin, Yaping; Wang, Aihua

    2015-05-01

    Brucella, which is regarded as an intracellular pathogen responsible for a zoonotic disease called brucellosis, survives and proliferates within several types of phagocytic and non-phagocytic cells. Brucella infects not only their preferred hosts but also other domestic and wild animal species, inducing abortion and infertility. Therefore, the interaction between uterine cells and Brucella is important for understanding the pathogenesis of this disease. In this study, we describe the Brucella suis vaccine strain S2 (B.suis.S2) infection and replication in the immortalized caprine endometrial epithelial cell line hTERT-EECs and the induced cellular and molecular response modulation in vitro. We found that B.suis S2 was able to infect and replicate to high titers and inhibit the proliferation of EECs and induce non-apoptotic pathways, as determined by B.suis.S2 detection using MTT and acridine orange/ethidium bromide (AO/EB) staining and flow cytometry. We explored the evidence of non-apoptotic pathways using real-time quantitative RT-PCR and by western blot analysis. Finally, we discovered the over-expression of GRP78, ATF4, ATF6, PERK, eIF2α, CHOP, and cytochrome c (Cyt-c) but not IRE1, xbp-1, and caspase-3 in B.suis.S2 (HK)-attacked and B.suis.S2-infected cells, suggesting that the molecular mechanism of ER stress sensor activation by B.suis.S2 is basically concomitant with that by B.suis.S2 (HK) and that ER stress, especially the PERK pathway, plays an important role in the process of B.suis.S2 infecting EEC, which may, in part, explain the role of the uterus in the pathogenesis of B.suis.S2. PMID:25633898

  5. Methyl donor deficiency in H9c2 cardiomyoblasts induces ER stress as an important part of the proteome response.

    PubMed

    Martinez, Emilie; Deval, Christiane; Jousse, Céline; Mazur, Andrzej; Brachet, Patrick; Comte, Blandine

    2015-02-01

    Deficiency of methyl donors (MDs, folate, vitamin B12, and choline) causes increased plasma level of Hcy, a risk factor for cardiovascular diseases. Previously, we showed that maternal MD deprivation altered the cardiac proteome of rat pups. To better understand its impact on cardiac cells, we exposed rat H9c2 cardiomyoblasts to selectively a synthetic folate- or MD-deficient (FD or MDD) medium. We found that a 4-day exposure to the FD medium, unlike the MDD one, did not cause an abnormal extracellular release of Hcy relatively to similar exposure to the control complete (C) medium. Comparative analyses of the proteomes of FD, MDD, and C cells identified 7 and 6 proteins up- or downregulated by either deficiency, respectively. Most proteins were found interrelated in a single network dealing with "post-translational modification, protein folding and cell death/survival" (FD cells) or "DNA replication/recombination/repair and cell morphology/compromise" (MDD cells). Both deficiencies altered the protein and mRNA levels of the chaperones α-crystallin B, protein disulfide-isomerase A4, and prohibitin. This was concurrent with rapid induction of several key genes of the ER stress response, notably gadd153/chop, and increased expression of the E3 ubiquitin ligases, Hrd1, and MAFbx. In conclusion, the effects of folate and MD deficiencies on the cardiomyoblast proteome display some dissimilarities possibly related to different cellular production of Hcy. In both cases activation of the ER stress could occur in response to accumulation of ubiquitinated misfolded proteins. PMID:25486180

  6. Inhibition of food intake induced by acute stress in rats is due to satiation effects.

    PubMed

    Calvez, J; Fromentin, G; Nadkarni, N; Darcel, N; Even, P; Tomé, D; Ballet, N; Chaumontet, C

    2011-10-24

    Acute mild stress induces an inhibition of food intake in rats. In most studies, the cumulative daily food intake is measured but this only provides a quantitative assessment of ingestive behavior. The present study was designed to analyze the reduction in food intake induced by acute stress and to understand which behavioral and central mechanisms are responsible for it. Two different stressors, restraint stress (RS) and forced swimming stress (FSS), were applied acutely to male Wistar rats. We first measured corticosterone and ACTH in plasma samples collected immediately after acute RS and FSS in order to validate our stress models. We measured food intake after RS and FSS and determined meal patterns and behavioral satiety sequences. The expressions of CRF, NPY and POMC in the hypothalamus were also determined immediately after acute RS and FSS. The rise in corticosterone and ACTH levels after both acute RS and FSS validated our models. Furthermore, we showed that acute stress induced a reduction in cumulative food intake which lasted the whole day for RS but only for the first hour after FSS. For both stressors, this stress-induced food intake inhibition was explained by a decrease in meal size and duration, but there was no difference in ingestion speed. The behavioral satiety sequence was preserved after RS and FSS but grooming was markedly increased, which thus competed with, and could reduce, other behaviors, including eating. Lastly, we showed that RS induced an increase in hypothalamic POMC expression. These results suggest that acute stress may affect ingestive behavior by increasing satiation and to some extent by enhancing grooming, and this may be due to stimulation of the hypothalamic POMC neurons. PMID:21787797

  7. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons.

    PubMed

    Fernandes, Hugo J R; Hartfield, Elizabeth M; Christian, Helen C; Emmanoulidou, Evangelia; Zheng, Ying; Booth, Heather; Bogetofte, Helle; Lang, Charmaine; Ryan, Brent J; Sardi, S Pablo; Badger, Jennifer; Vowles, Jane; Evetts, Samuel; Tofaris, George K; Vekrellis, Kostas; Talbot, Kevin; Hu, Michele T; James, William; Cowley, Sally A; Wade-Martins, Richard

    2016-03-01

    Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. PMID:26905200

  8. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  9. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to recent acute and chronic stress.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-08-01

    Research suggests that environmental stress contributes to health by altering the regulation of the hypothalamic pituitary adrenal (HPA) axis. Recent evidence indicates that early life stress alters trait indicators of HPA axis activity, but whether recent stress alters such indicators is unknown. Using objective contextual stress interviews with adolescent girls and their mothers, we examined the impact of recent acute and chronic stress occurring during the past year on early adolescent girls' latent trait cortisol (LTC) level. We also examined whether associations between recent stress and LTC level: a) varied according to the interpersonal nature and controllability of the stress; and b) remained after accounting for the effect of early life stress. Adolescents (n=117;M age=12.39years) provided salivary cortisol samples three times a day (waking, 30min post-waking and bedtime) over 3days. Results indicated that greater recent interpersonal acute stress and greater recent independent (i.e., uncontrollable) acute stress were each associated with a higher LTC level, over and above the effect of early adversity. In contrast, greater recent chronic stress was associated with a lower LTC level. Findings were similar in the overall sample and a subsample of participants who strictly adhered to the timed schedule of saliva sample collection. Implications for understanding the impact of recent stress on trait-like individual differences in HPA axis activity are discussed. PMID:27155256

  10. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress.

    PubMed

    Moench, Kelly M; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2016-06-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  11. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  12. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    SciTech Connect

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  13. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    SciTech Connect

    Kito, Hiroaki; Yamazaki, Daiju; Ohya, Susumu; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  14. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    PubMed Central

    2014-01-01

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732

  15. Ultraviolet (UV) and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE) Cell Apoptosis

    PubMed Central

    Yao, Jin; Bi, Hui-E; Sheng, Yi; Cheng, Li-Bo; Wendu, Ri-Le; Wang, Cheng-Hu; Cao, Guo-Fan; Jiang, Qin

    2013-01-01

    Ultraviolet (UV) radiation and reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelium (RPE) cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD). The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER) stress-AMP activated protein kinase (AMPK) signaling axis in UV and hydrogen peroxide (H2O2)-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal), ceramide production (fumonisin B1) and AMPK activation (compound C) suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis. PMID:23685869

  16. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway

    PubMed Central

    Shah, Ankit; Vaidya, Naveen K.; Bhat, Hari K.; Kumar, Anil

    2016-01-01

    The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS. PMID:26740125

  17. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis

    PubMed Central

    Chen, Yingqing; Pandiri, Indira; Joe, Yeonsoo; Kim, Hyo Jeong; Kim, Seul-Ki; Park, Jeongmin; Ryu, Jinhyun; Cho, Gyeong Jae; Park, Jeong Woo; Ryter, Stefan W.; Chung, Hun Taeg

    2016-01-01

    The selective type-3 phosphodiesterase inhibitor cilostazol and the antihyperlipidemic agent probucol have antioxidative, anti-inflammatory, and antiatherogenic properties. Moreover, cilostazol and probucol can regulate mitochondrial biogenesis. However, the combinatorial effect of cilostazol and probucol on mitochondrial biogenesis remains unknown. Endoplasmic reticulum (ER) stress is a well-known causative factor of nonalcoholic fatty liver disease (NAFLD) which can impair mitochondrial function in hepatocytes. Here, we investigated the synergistic effects of cilostazol and probucol on mitochondrial biogenesis and ER stress-induced hepatic steatosis. A synergistic effect of cilostazol and probucol on HO-1 and mitochondrial biogenesis gene expression was found in human hepatocellular carcinoma cells (HepG2) and murine primary hepatocytes. Furthermore, in an animal model of ER stress involving tunicamycin, combinatorial treatment with cilostazol and probucol significantly increased the expression of HO-1 and mitochondrial biogenesis-related genes and proteins, whereas it downregulated serum ALT, eIF2 phosphorylation, and CHOP expression, as well as the lipogenesis-related genes SREBP-1c and FAS. Based on these results, we conclude that cilostazol and probucol exhibit a synergistic effect on the activation of mitochondrial biogenesis via upregulation of HO-1, which confers protection against ER stress-induced hepatic steatosis. PMID:27057275

  18. Acute stress and cardiovascular health: is there an ACE gene connection?

    PubMed

    Holman, E Alison

    2012-10-01

    Cardiovascular disorders (CVD) are associated with acute and posttraumatic stress responses, yet biological processes underlying this association are poorly understood. This study examined whether renin-angiotensin-aldosterone system activity, as indicated by a functional single nucleotide polymorphism (SNP) in the angiotensin converting enzyme (ACE) gene, is associated with both CVD and acute stress related to the September 11, 2001 (9/11) terrorist attacks. European-American respondents (N = 527) from a nationally representative longitudinal study of coping following 9/11 provided saliva for genotyping. Respondents had completed health surveys before 9/11 and annually for 3 years after, and acute stress assessments 9 to 23 days after 9/11. Respondents with rs4291 AA or TT genotypes reported high acute stress twice as often as those with the AT genotype. Individuals with the TT genotype were 43% more likely to report increased physician-diagnosed CVD over 3 years following 9/11, when the following variables were included in the model: (a) pre-9/11 CVD, mental health, and non-CVD ailments; (b) cardiac risk factors; (c) ongoing endocrine disorders; and (d) significant demographics. The ACE rs4291 TT genotype, which has been associated with HPA axis hyperactivity and higher levels of serum angiotensin converting enzyme (ACE), predicted acute stress response and reports of physician-diagnosed CVD in a national sample following collective stress. ACE gene function may be associated with both mental and physical health disorders following collective stress. PMID:23055331

  19. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells.

    PubMed

    Duan, Zhiqing; Zhao, Jianya; Fan, Xikang; Tang, Cuiying; Liang, Lingwei; Nie, Xiaoke; Liu, Jiao; Wu, Qiyun; Xu, Guangfei

    2014-09-01

    Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells. PMID:24932542

  20. An experimental test of the capture-restraint protocol for estimating the acute stress response.

    PubMed

    Pakkala, Jesse J; Norris, D Ryan; Newman, Amy E M

    2013-01-01

    Stress-induced increases in glucocorticoids (GCs) modulate behavior and are key in directing energy reserves. The capture-restraint protocol was developed to experimentally stimulate and quantify the magnitude of the acute stress response by comparing baseline GC levels with those collected after restraining a subject for a period of time, typically 30 min. This protocol has been used extensively in the field and lab, yet few studies have investigated whether it parallels hypothalamic-pituitary-adrenal (HPA) activation under natural acute stressors. We examined the hypothesis that acute stress from the capture-restraint protocol accurately mimics the adrenocortical response induced by a natural acute stressor. Using wild-caught rock pigeons Columba livia in a repeated-measures design, we compared plasma corticosterone (CORT) concentrations at baseline, after exposure to acute capture-restraint (30 min in a cloth bag), after tethering in a harness (30 min), and after a real but nonlethal attack by a predatory raptor. As found in previous studies, the capture-restraint treatment significantly increased CORT levels of pigeons compared with baseline. However, we also found that when pigeons were exposed to an attack by a raptor, their CORT levels were more than twice as high compared with the capture-restraint treatment. Our results provide evidence that an authentic acute stressor can activate the HPA axis to a greater extent than the capture-restraint protocol and also suggest that real predation attempts can have a significant effect on acute stress levels of wild birds. PMID:23434787

  1. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2016-01-01

    It has been known that overexposure to Ni can induce nephrotoxicity. However, the mechanisms of underlying Ni nephrotoxicity are still elusive, and also Ni- and Ni compound-induced ER stress has been not reported in vivo at present. Our aim was to use broiler chickens as animal model to test whether the ER stress was induced and UPR was activated by NiCl2 in the kidney using histopathology, immunohistochemistry and qRT-PCR. Two hundred and eighty one-day-old broiler chickens were divided into 4 groups and fed on a control diet and the same basal diet supplemented with 300 mg/kg, 600mg/kg and 900mg/kg of NiCl2 for 42 days. We found that dietary NiCl2 in excess of 300 mg/kg induced ER stress, which was characterized by increasing protein and mRNA expression of ER stress markers, e.g., GRP78 and GRP94. Concurrently, all the three UPR pathways were activated by dietary NiCl2. Firstly, the PERK pathway was activated by increasing eIF2a and ATF4 mRNA expression. Secondly, the IRE1 pathway was activated duo to increase in IRE1 and XBP1 mRNA expression. And thirdly, the increase of ATF6 mRNA expression suggested that ATF6 pathway was activated. The findings clearly demonstrate that NiCl2 induces the ER stress through activating PERK, IRE1 and ATF6 UPR pathways, which is proved to be a kind of molecular mechanism of Ni- or/and Ni compound-induced nephrotoxicity. PMID:26956054

  2. Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition.

    PubMed

    Yu, Su Jong; Yoon, Jung-Hwan; Yang, Jong-In; Cho, Eun Ju; Kwak, Min Sun; Jang, Eun Sun; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Hyo-Suk; Kim, Chung Yong

    2012-02-01

    3-bromopyruvate (3-BP), a hexokinase (HK) II inhibitor, promotes tumor cell death by inducing endoplasmic reticulum (ER) stress in human hepatocellular carcinoma (HCC) cell lines. Protein disulfide isomerase (PDI) is an essential folding catalyst and attenuates ER stress by folding the misfolded proteins. We examined if PDI is expressed in hypoxic HCC cells, and evaluated its inhibition potentiated HK II inhibitor-induced ER stress in hypoxic HCC cells. HCC apoptotic cell death was assessed by DAPI staining and apoptotic signaling pathways were explored by immunoblot analysis. An in vivo model of HCC was established in C3H mice intradermally with implanted MH134 cells. 3-BP with/without a PDI inhibitor (bacitracin) was subsequently administered. The anti-tumor efficacies were evaluated by measuring tumor volumes and quantifying apoptotic cells and microvessel densities (MVDs). HCC cells were found to express PDI in a hypoxia-inducible manner. The simultaneous treatment of bacitracin and 3-BP enhanced 3-BP-induced apoptosis. This enhancement was attributed to increased ER stress and JNK activation compared to the cells treated with just 3-BP. In an in vivo model of HCC, tumor growth was significantly suppressed in mice co-treated with bacitracin and 3-BP, and the percentages of apoptotic cells significantly increased and MVDs significantly decreased. These results demonstrated that PDI was induced in hypoxic HCC tissue and that PDI inhibition enhanced HK II inhibitor-induced anti-tumor efficacy synergistically via augmenting ER stress and anti-angiogenesis in vivo. Thus, blockage of PDI activity in combination with HK II inhibitor may be therapeutically useful in HCCs. PMID:22350012

  3. DOT1L Activity Promotes Proliferation and Protects Cortical Neural Stem Cells from Activation of ATF4-DDIT3-Mediated ER Stress In Vitro.

    PubMed

    Roidl, Deborah; Hellbach, Nicole; Bovio, Patrick P; Villarreal, Alejandro; Heidrich, Stefanie; Nestel, Sigrun; Grüning, Björn A; Boenisch, Ulrike; Vogel, Tanja

    2016-01-01

    Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs. PMID:26299268

  4. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure

    PubMed Central

    Barber, Beth A.; Kohl, Krista L.; Kassam-Adams, Nancy; Gold, Jeffrey I.

    2015-01-01

    A growing literature suggests the clinical importance of acute stress disorder (ASD) symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N=479) between the ages of 8 to 17, along with their caregivers completed interviews and self-report questionnaires between 2 days and one month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01), and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, re-experiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), re-experiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's rho = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  5. Down-regulation of Homer1 attenuates t-BHP-induced oxidative stress through regulating calcium homeostasis and ER stress in brain endothelial cells.

    PubMed

    Guo, Zhen-Yu; Zhang, Ya-Hong; Xie, Guo-Qiang; Liu, Chong-Xiao; Zhou, Ren; Shi, Wei

    2016-09-01

    Endothelial dysfunction in brain endothelial cells contributes to vasogenic cerebral edema and increased mortality after various neurological diseases. The postsynaptic density protein Homer1 plays an important role in neuronal synaptic activity and is extensively involved in neurological disorders. The present study investigated the role of Homer1 in modulating cell survival using an in vitro endothelial dysfunction model in murine brain endothelial cells (mBECs). Treatment with tert-butyl hydroperoxide (t-BHP) induced a dose-dependent toxicity in mBECs, with no effects on Homer1 expression and distribution. Knockdown of Homer1 using specific siRNA significantly alleviated lactate dehydrogenase (LDH) release, increased cell viability, and ultimately decreased apoptosis after t-BHP treatment. Moreover, Homer1 knockdown attenuated t-BHP-induced ROS generation, lipid peroxidation and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential (MMP), ATP synthesis collapse and mitochondrial swelling. The results of Ca(2+) imaging showed that Homer1 was involved in inositol trisphosphate receptors (IP3R)- and ryanodine receptor (RyR)-mediated intracellular Ca(2+) release, and also mediated t-BHP-induced Ca(2+) release from the endoplasmic reticulum (ER). In addition, knockdown of Homer1 significantly prevented activation of ER stress markers induced by t-BHP exposure. All these results showed that Homer1 is involved in t-BHP-induced endothelial dysfunction in mBECs, and may be an ideal candidate for searching gene intervention strategy for preventing endothelial oxidative stress in vitro. PMID:27396622

  6. Angiopoietin-1 attenuates angiotensin II-induced ER stress in glomerular endothelial cells via a Tie2 receptor/ERK1/2-p38 MAPK-dependent mechanism.

    PubMed

    Bi, Xiao; Niu, Jianying; Ding, Wei; Zhang, Minmin; Yang, Min; Gu, Yong

    2016-06-15

    Research has indicated that endoplasmic reticulum (ER) stress in endothelial cells affects vascular pathologies and induces cellular dysfunction and apoptosis. Angiopoietin1 (Angpt1) has been shown to have therapeutic potential in some vascular diseases, including chronic kidney disease. This study showed that Angpt1 is a powerful factor that attenuated ER stress-induced cellular dysfunction and apoptosis in glomerular endothelial cells (GEnCs). Furthermore, Angpt1 significantly decreased the angiotensin II (Ang II)-induced expression of the ER stress response proteins GRP78, GRP94, p-PERK and CHOP. These results suggest that the Angpt1-mediated cellular protection may occur downstream of the ER stress response. In addition, both specific inhibitors and siRNAs for Tie2 reversed these changes, implying the importance of Tie2 receptor activation in the signalling pathways that prevent ER stress. The protective effects of Angpt1 are related to the activation of two downstream signalling pathways, ERK1/2 and p38 MAPK. The inhibition of these pathways with specific inhibitors, PD98059 and SB203580, respectively, partially increased the expression of chaperones that assist in folding proteins in the ER and reduce the protective effects of Angpt1. In conclusion, Angpt1 attenuated ER stress-induced cellular dysfunction and apoptosis via the Tie2 receptor/ERK1/2-p38 MAPK pathways in GEnCs. This study may provide insights into a novel underlying mechanism and a strategy for alleviating ER stress-induced injury. PMID:27033326

  7. Cognitive Processing Therapy for Acute Stress Disorder Resulting from an Anti-Gay Assault

    ERIC Educational Resources Information Center

    Kaysen, Debra; Lostutter, Ty W.; Goines, Marie A.

    2005-01-01

    This case study describes Cognitive Processing Therapy (CPT) with a 30-year-old gay man with symptoms of acute stress disorder (ASD) following a recent homophobic assault. Treatment addressed assault-related posttraumatic stress disorder symptoms and depressive symptoms. Also addressed were low self-esteem, helplessness, and high degrees of…

  8. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  9. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages.

    PubMed

    Huang, Yan; Wang, Yarui; Li, Xiaofeng; Chen, Zhaolin; Li, Xiaohui; Wang, Huan; Ni, Mingming; Li, Jun

    2015-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages. PMID:25827060

  10. Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of ER stress and unfolded protein response

    PubMed Central

    Szokalska, Angelika; Makowski, Marcin; Nowis, Dominika; Wilczyński, Grzegorz M.; Kujawa, Marek; Wójcik, Cezary; Młynarczuk-Biały, Izabela; Salwa, Pawel; Bil, Jacek; Janowska, Sylwia; Agostinis, Patrizia; Verfaillie, Tom; Bugajski, Marek; Gietka, Jan; Issat, Tadeusz; Głodkowska, Eliza; Mrówka, Piotr; Stoklosa, Tomasz; Hamblin, Michael R; Mróz, Paweł; Jakóbisiak, Marek; Golab, Jakub

    2009-01-01

    Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity towards tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including numerous proteins that undergo multiple modifications such as fragmentation, cross-linking and carbonylation that result in protein unfolding and aggregation. Since the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmatic reticulum (ER), aggravated ER stress and potentiated cytotoxicity towards tumor cells. Indeed, we observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response (UPR). Pre-treatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132 and PSI gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60-100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application as bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors. PMID:19435917

  11. A rare variant in human fibroblast activation protein associated with ER stress, loss of enzymatic function and loss of cell surface localisation.

    PubMed

    Osborne, Brenna; Yao, Tsun-Wen; Wang, Xin Maggie; Chen, Yiqian; Kotan, L Damla; Nadvi, Naveed A; Herdem, Mustafa; McCaughan, Geoffrey W; Allen, John D; Yu, Denise M T; Topaloglu, A Kemal; Gorrell, Mark D

    2014-07-01

    Fibroblast activation protein (FAP) is a focus of interest as a potential cancer therapy target. This membrane bound protease possesses the unique catalytic activity of hydrolysis of the post-proline bond two or more residues from the N-terminus of substrates. FAP is highly expressed in activated fibroblastic cells in tumours, arthritis and fibrosis. A rare, novel, human polymorphism, C1088T, encoding Ser363 to Leu, occurring in the sixth blade of the β propeller domain, was identified in a family. Both in primary human fibroblasts and in Ser363LeuFAP transfected cells, we showed that this single substitution ablates FAP dimerisation and causes loss of enzyme activity. Ser363LeuFAP was detectable only in endoplasmic reticulum (ER), in contrast to the distribution of wild-type FAP on the cell surface. The variant FAP showed decreased conformational antibody binding, consistent with an altered tertiary structure. Ser363LeuFAP expression was associated with upregulation of the ER chaperone BiP/GRP78, ER stress sensor ATF6, and the ER stress response target phospho-eIF2α, all indicators of ER stress. Proteasomal inhibition resulted in accumulation of Ser363LeuFAP, indicating the involvement of ER associated degradation (ERAD). Neither CHOP expression nor apoptosis was elevated, so ERAD is probably important for protecting Ser363LeuFAP expressing cells. These data on the first loss of function human FAP gene variant indicates that although the protein is vulnerable to an amino acid substitution in the β-propeller domain, inactive, unfolded FAP can be tolerated by cells. PMID:24717288

  12. Globular adiponectin reduces vascular calcification via inhibition of ER-stress-mediated smooth muscle cell apoptosis

    PubMed Central

    Lu, Yan; Bian, Yunfei; Wang, Yueru; Bai, Rui; Wang, Jiapu; Xiao, Chuanshi

    2015-01-01

    Objective: This study aims to explore the mechanism of globular adiponectin inhibiting vascular calcification. Methods: We established drug-induced rat vascular calcification model, globular adiponectin was given to observe the effect of globular Adiponectin on the degree of calcification. The markers of vascular calcification and apoptosis were also investigated. Meanwhile, the in vitro effect of globular Adiponectin on vascular calcification was also evaluated using primary cultured rat vascular smooth muscle cells. Results: We found that globular adiponectin could inhibit drug-induced rat vascular calcification significantly in vivo. The apoptosis of vascular smooth muscle cells was also reduced. The possible mechanism could be the down-regulation of endoplasmic reticulum stress by globular adiponectin. Experiments in primary cultured vascular smooth muscle cells also confirmed that globular adiponectin could reduce cell apoptosis to suppress vascular calcification via inhibition of endoplasmic reticulum stress. Conclusions: This study confirmed that globular adiponectin could suppress vascular calcification; one of the mechanisms could be inhibition of endoplasmic reticulum stress to reduce cell apoptosis. It could provide an effective method in the therapy of vascular calcification-associated diseases. PMID:26045760

  13. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

    PubMed

    Engeland, William C; Yoder, J Marina; Karsten, Carley A; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  14. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH

    PubMed Central

    Engeland, William C.; Yoder, J. Marina; Karsten, Carley A.; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  15. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  16. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. PMID:26511907

  17. 5-Hydroxymethylfurfural protects against ER stress-induced apoptosis in GalN/TNF-α-injured L02 hepatocytes through regulating the PERK-eIF2α signaling pathway.

    PubMed

    Jiang, Ze-Qun; Ma, Yan-Xia; Li, Mu-Han; Zhan, Xiu-Qin; Zhang, Xu; Wang, Ming-Yan

    2015-12-01

    5-Hydroxymethylfurfural (5-HMF), a water-soluble compound extracted from wine-processed Fructus corni, is a novel hepatic protectant for treating acute liver injury. The present study was designed to investigate the protective effect of 5-HMF in human L02 hepatocytes injured by D-galactosamine (GalN) and tumor necrosis factor-α (TNF-α) in vitro and to explore the underlying mechanisms of action. Our results showed that 5-HMF caused significant increase in the viability of L02 cells injured by GalN/TNF-α, in accordance with a dose-dependent decrease in apoptotic cell death confirmed by morphological and flow cytometric analyses. Based on immunofluorescence and Western blot assays, we found that GalN/TNF-α induced ER stress in the cells, as indicated by the disturbance of intracellular Ca(2+) concentration, the activation of protein kinase RNA (PKR)-like ER kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and expression of ATF4 and CHOP proteins, which was reversed by 5-HMF pre-treatment in a dose-dependent manner. The anti-apoptotic effect of 5-HMF was further evidenced by balancing the expression of Bcl-2 family members. In addition, the knockdown of PERK suppressed the expression of phospho-PERK, phospho-eIF2α, ATF4, and CHOP, resulting in a significant decrease in cell apoptosis after the treatment with GalN/TNF-α. 5-HMF could enhance the effects of PERK knockdown, protecting the cells against the GalN/TNF-α insult. In conclusion, these findings demonstrate that 5-HMF can effectively protect GalN/TNF-α-injured L02 hepatocytes against ER stress-induced apoptosis through the regulation of the PERK-eIF2α signaling pathway, suggesting that it is a possible candidate for liver disease therapy. PMID:26721708

  18. Fluoride Intensifies Hypercaloric Diet-Induced ER Oxidative Stress and Alters Lipid Metabolism

    PubMed Central

    Pereira, Heloisa Aparecida Barbosa Silva; Dionizio, Aline Salgado; Fernandes, Mileni Silva; Araujo, Tamara Teodoro; Cestari, Tânia Mary; Buzalaf, Camila Peres; Iano, Flávia Godoy; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    The role of fluoride (F) in oxidative stress is well reported, but its effects on the lipid metabolism has not been completely explored Background Here, we evaluated the relationship of diet and F-induced oxidative stress to lipid metabolism in the liver of rats eating normocaloric or hypercaloric diets for two time periods (20 or 60 days). Methods Seventy-two 21-day-old Wistar rats were divided into 2 groups (n = 36) based on the type of diet they were eating; each of these groups was then further divided into another two groups (n = 18) based on the time periods of either 20 or 60 days, for a total of four groups. Each of these was divided into 3 subgroups (n = 6 animals/subgroup), dependent on the dose of F administered in the drinking water (0 mg/L(control), 15 mg/L or 50 mg/L). After the experimental period, blood samples and the liver were collected. Plasma samples were analyzed for HDL, cholesterol and triglycerides. Western blots were performed to probe for GRP78, Erp29, SOD2, Apo-E and SREBP in hepatic tissues. Results As expected,the expression of target proteins involved in oxidative stress increased in the F-treated groups, especially in liver tissue obtained from animals eating a hypercaloric diet. Most changes in the lipid levels and pathological conditions were seen earlier in the time period, at day 20. The morphometric analyses showed a reduction in steatosis in groups on ahypercaloric diet and treated with 50 mg F/L compared to the control, while no changes were obtained in normocaloric-fed rats. Accordingly, plasma TG was reduced in the F-treated group. The reduced expression of Apo-E in a time- and diet-dependent pattern may account for the particular decrease in steatosis in hypercaloric-fed F-treated rats. Conclusions These results suggest that F changes liver lipid homeostasis, possibly because of the induction of oxidative stress, which seems to be higher in animals fed hypercaloric diets. PMID:27336443

  19. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task.

    PubMed

    Vargas-López, Viviana; Torres-Berrio, Angélica; González-Martínez, Lina; Múnera, Alejandro; Lamprea, Marisol R

    2015-09-15

    The object recognition task is a procedure based on rodents' natural tendency to explore novel objects which is frequently used for memory testing. However, in some instances novelty preference is replaced by familiarity preference, raising questions regarding the validity of novelty preference as a pure recognition memory index. Acute stress- and corticosterone administration-induced novel object preference disruption has been frequently interpreted as memory impairment; however, it is still not clear whether such effect can be actually attributed to either mnemonic disruption or altered novelty seeking. Seventy-five adult male Wistar rats were trained in an object recognition task and subjected to either acute stress or corticosterone administration to evaluate the effect of stress or corticosterone on an object recognition task. Acute stress was induced by restraining movement for 1 or 4h, ending 30 min before the sample trial. Corticosterone was injected intraperitoneally 10 min before the test trial which was performed either 1 or 24h after the sample trial. Four-hour, but not 1-h, stress induced familiar object preference during the test trial performed 1h after the sample trial; however, acute stress had no effects on the test when performed 24h after sample trial. Systemic administration of corticosterone before the test trial performed either 1 or 24h after the sample trial also resulted in familiar object preference. However, neither acute stress nor corticosterone induced changes in locomotor behaviour. Taken together, such results suggested that acute stress probably does not induce memory retrieval impairment but, instead, induces an emotional arousing state which motivates novelty avoidance. PMID:25986403

  20. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  1. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis

    PubMed Central

    2013-01-01

    Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In

  2. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    PubMed

    Bonnet Wersinger, Delphine; Benkafadar, Nesrine; Jagodzinska, Jolanta; Hamel, Christian; Tanizawa, Yukio; Lenaers, Guy; Delettre, Cécile

    2014-01-01

    Wolfram syndrome is an early onset genetic disease (1/180,000) featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs) were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC) abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP), protein disulfide isomerase (PDI) and inositol-requiring enzyme 1 alpha (Ire1α) markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways. PMID:24823368

  3. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  4. The evolution of the painful sensitivity in acute and chronic stress.

    PubMed

    Cristea, A; Ciobanu, A; Stoenescu, M; Rusei, I

    1994-01-01

    The clinical research was made on two groups of young volunteer students. We considered stress consisting in chronic informational overexposure during the examination session and the acute stress from their emotions before a hard examination. The painful sensitivity was analysed by measuring the retraction time of the finger from water at 55 degrees C. The experimental research was made on a group of 100 male mice. The acute stress was performed by subjecting each mouse to swim (behavioral despair test). Painful sensitivity was determined by the test of the hot plate heated at 50 degrees C. Individuals with hyper (H) and hypo (h) painful sensitivity were selected for the tests. In chronic stress, the results proved increased painful sensitivity (hyperalgia) more important at "h" compared to "H" (p < 0.05). In acute stress decreased painful sensitivity (stress analgesia) was noticed more significant at "H" compared to h" (p < 0.05). All these results suggested that the extreme "H" and "h" are two different stress behaviors with opposite mechanisms involved in stress analgesia. This hypothesis is related with studies which demonstrate the involvement in stress analgesia of non-opioid monoaminergic mechanisms together with the opioid mechanisms (Lewis, 1980). PMID:8640371

  5. Acute pulmonary edema due to stress cardiomyopathy in a patient with aortic stenosis: a case report

    PubMed Central

    2009-01-01

    Introduction Stress cardiomyopathy is a condition of chest pain, breathlessness, abnormal heart rhythms and sometimes congestive heart failure or shock precipitated by intense mental or physical stress. Case presentation A 64-year-old male with a known diagnosis of moderate-to-severe aortic stenosis and advised that valve replacement was not urgent, presented with acute pulmonary edema following extraordinary mental distress. The patient was misdiagnosed as having a "massive heart attack" and died when managed by a traditional protocol for acute myocardial infarction/coronary artery disease, irrespective of his known aortic stenosis. Conclusion Intense mental stress poses a considerable risk, particularly to patients with significant aortic stenosis. As described here, it can precipitate acute pulmonary edema. Importantly, effective management of acute pulmonary edema due to stress cardiomyopathy in patients with known aortic stenosis requires its distinction from acute pulmonary edema caused by an acute myocardial infarction. Treatment options include primarily urgent rhythm and/or rate control, as well as cautious vasodilation. PMID:20062645

  6. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  7. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses

    PubMed Central

    Chong, Lisa P.; Wang, Yao; Gad, Nanette; Anderson, Nathaniel; Shah, Bhavank; Zhao, Rongmin

    2015-01-01

    Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes under both physiological and stress conditions. In Arabidopsis, there are seven HSP90 isoforms (HSP90.1–HSP90.7) that are localized in the cytoplasm/nucleus, mitochondrion, chloroplast, and endoplasmic reticulum (ER) where protein folding actively takes place. In this study, we analysed the sequence of ER-localized Arabidopsis HSP90.7 and the other ER GRP94 proteins from plants and animals, and identified a short, charged region that is specifically present in the middle domain of plant-derived GRP94 proteins. To understand the role of this charged region, we analysed transgenic plants that expressed a mutant protein, HSP90.7Δ22, which had this charged region deleted. We showed that seedlings expressing HSP90.7Δ22 had significantly enhanced sensitivity to ER stress induced by tunicamycin or a high concentration of calcium, although its general chaperone activity in preventing the model protein from heat-induced aggregation was not significantly affected. We also analysed the ATP-binding and hydrolysis activity of both wild-type and mutant HSP90.7 proteins, and found that they had slightly different ATP-binding affinities. Finally, using a yeast two-hybrid screen, we identified a small set of HSP90.7 interactors and showed that the charged region is not required for the candidate client interaction, although it may affect their binding affinity, thus providing potential targets for further investigation of HSP90.7 functions. PMID:25297550

  8. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    PubMed Central

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative PCR and RNA sequencing. Restraint stress and cocaine induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components XBP1 and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  9. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  10. Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical response to acute stress in pigs.

    PubMed

    Janssens, C J; Helmond, F A; Loyens, L W; Schouten, W G; Wiegant, V M

    1995-04-01

    The role of endogenous opioid mechanisms in the pituitary-adrenocortical response to acute stress was investigated in a longitudinal study in cyclic female pigs before and after exposure to chronic stress (long term tethered housing). Challenge of loose-housed pigs with acute nose-sling stress for 15 min induced an activation of the hypothalamic-pituitary-adrenocortical axis, evidenced by a transient increase in plasma ACTH (peak height above basal, 98 +/- 12 pg/ml; mean +/- SEM) and cortisol (54 +/- 3 ng/ml) concentrations. Pretreatment with the opioid receptor antagonist naloxone (0.5 mg/kg BW, iv bolus) increased the challenge-induced ACTH and cortisol responses to 244 +/- 36 pg/ml and 65 +/- 5 ng/ml, respectively. This indicates that during acute nose-sling stress, endogenous opioid systems are activated that inhibit the pituitary-adrenocortical response. After exposure of the pigs to chronic stress (10-11 weeks of tethered housing), the challenge-induced ACTH response was attenuated, whereas the cortisol response remained unchanged, suggesting an increased adrenocortical sensitivity to circulating ACTH. In addition, pretreatment with naloxone induced a greater increment in the ACTH and cortisol responses in tethered pigs than in loose-housed pigs. As no such changes were found in control animals housed loose during the entire experimental period, this indicates that the impact of opioid systems had increased due to chronic stress. The increased impact of opioid systems during chronic stress may prevent excessive hypothalamic-pituitary-adrenocortical responses to acute stressors and, thus, may be of adaptive value. PMID:7895656

  11. Glucocorticoids Protect Against the Delayed Behavioral and Cellular Effects of Acute Stress on the Amygdala

    PubMed Central

    Rao, Rajnish P.; Anilkumar, Shobha; McEwen, Bruce; Chattarji, Sumantra

    2013-01-01

    Background A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. Methods We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. Results CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. Conclusions Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress. PMID:22572034

  12. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress. PMID:21645264

  13. Ophiopogonin D maintains Ca2+ homeostasis in rat cardiomyocytes in vitro by upregulating CYP2J3/EETs and suppressing ER stress

    PubMed Central

    You, Wen-ting; Zhou, Tao; Ma, Zeng-chun; Liang, Qian-de; Xiao, Cheng-rong; Tang, Xiang-lin; Tan, Hong-ling; Zhang, Bo-li; Wang, Yu-guang; Gao, Yue

    2016-01-01

    Aim: CYP2J3 in myocardium metabolizes arachidonic acid to 4 regioisomeric epoxyeicosatrienoic acids (EETs), which have diverse biological activities in rat heart. In this study we examined whether CYP2J3 was involved in cardioprotective effects of ophiopogonin D (OPD), a steroidal glycoside isolated from Chinese herb Radix ophiopogonis. Methods: Rat cardiomyoblast cell line (H9c2 cells) was tested. Intracellular Ca2+ concentrations ([Ca2+]i) were measured using Fluo-4/AM. The expression of calcium-regulating molecules and ER stress signaling molecules was measured with qRT-PCR and Western blot analyses. Cell apoptosis was quantified with Hoechst 33258 staining and TUNEL assay. The level of 14,15-DHET, a stable metabolite of 14,15-EET, was assessed with ELISA. Results: Angiotensin II (10−6 mol/L) significantly decreased the expression of calcium-regulating molecules (SERCA2a, PLB, RyR2 and FKBP12.6), and elevated [Ca2+]i in H9c2 cells. Furthermore, angiotensin II markedly increased the expression of ER stress signaling molecules (GRP78, CHOP, p-JNK and cleaved caspase-12) and ER stress-mediated apoptosis. OPD (100, 250 and 500 nmol/L) dose-dependently increased CYP2J3 expression and 14,15-DHET levels in normal H9c2 cells. Pretreatment of H9c2 cells with OPD suppressed angiotensin II-induced abnormalities in Ca2+ homeostasis, ER stress responses and apoptosis. Overexpression of CYP2J3 or addition of exogenous 14,15-EET also prevented angiotensin II-induced abnormalities in Ca2+ homeostasis, whereas transfection with CYP2J3 siRNA diminished the effects of OPD on Ca2+ homeostasis. Furthermore, the intracellular Ca2+ chelator BAPTA suppressed angiotensin II-induced ER stress responses and apoptosis in H9c2 cells. Conclusion: OPD is a novel CYP2J3 inducer that may offer a therapeutic benefit in treatment of cardiovascular diseases related to disturbance of Ca2+ homeostasis and ER stress. PMID:26838069

  14. The influence of acute stress on the regulation of conditioned fear

    PubMed Central

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology. PMID:25530986

  15. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell.

    PubMed

    Morais, Katia L P; Pacheco, Mario Thiego Fernandes; Berra, Carolina Maria; Bosch, Rosemary V; Sciani, Juliana Mozer; Chammas, Roger; de Freitas Saito, Renata; Iqbal, Asif; Chudzinski-Tavassi, Ana Marisa

    2016-04-01

    During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca(2+)] i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X. PMID:27015684

  16. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK.

    PubMed

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. PMID:25791922

  17. A Copper Chelate of Thiosemicarbazone NSC 689534 induces Oxidative/ER Stress and Inhibits Tumor Growth In Vitro and In Vivo

    PubMed Central

    Hancock, Chad N.; Stockwin, Luke H.; Han, Bingnan; Divelbiss, Raymond D.; Jun, Jung Ho; Malhotra, Sanjay V.; Hollingshead, Melinda G.; Newton, Dianne L.

    2010-01-01

    In this study, a Cu2+ chelate of the novel thiosemicarbazone NSC 689534 was evaluated for in vitro and in vivo anti-cancer activity. Results demonstrated that NSC 689534 activity (low µM range) was enhanced 4–5 fold by copper chelation and completely attenuated by iron. Importantly, once formed, the NSC 689534/Cu2+ complex retained activity in the presence of additional iron or iron-containing biomolecules. NSC 689534/Cu2+ mediated its effects primarily through the induction of ROS, with depletion of cellular glutathione and protein thiols. Pre-treatment of cells with the antioxidant L-NAC impaired activity, whereas NSC 689534/Cu2+ effectively synergized with the glutathione biosynthesis inhibitor, buthionine sulphoximine. Microarray analysis of NSC 689534/Cu2+-treated cells highlighted activation of pathways involved in oxidative and ER-stress/UPR, autophagy and metal metabolism. Further scrutiny of the role of ER-stress and autophagy indicated that NSC 689534/Cu2+ -induced cell death was ER-stress dependent and autophagy-independent. Lastly, NSC 689534/Cu2+ was shown to have activity in an HL60 xenograft model. These data suggest that NSC 689534/Cu2+ is a potent oxidative stress inducer worthy of further preclinical investigation. PMID:20971185

  18. Being a grump only makes things worse: a transactional account of acute stress on mind wandering

    PubMed Central

    Vinski, Melaina T.; Watter, Scott

    2013-01-01

    The current work investigates the influence of acute stress on mind wandering. Participants completed the Positive and Negative Affect Schedule as a measure of baseline negative mood, and were randomly assigned to either the high-stress or low-stress version of the Trier Social Stress Test. Participants then completed the Sustained Attention to Response Task as a measure of mind-wandering behavior. In Experiment 1, participants reporting a high degree of negative mood that were exposed to the high-stress condition were more likely to engage in a variable response time, make more errors, and were more likely to report thinking about the stressor relative to participants that report a low level of negative mood. These effects diminished throughout task performance, suggesting that acute stress induces a temporary mind-wandering state in participants with a negative mood. The temporary affect-dependent deficits observed in Experiment 1 were replicated in Experiment 2, with the high negative mood participants demonstrating limited resource availability (indicated by pupil diameter) immediately following stress induction. These experiments provide novel evidence to suggest that acute psychosocial stress briefly suppresses the availability of cognitive resources and promotes an internally oriented focus of attention in participants with a negative mood. PMID:24273520

  19. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  20. Hypoxic conditions increases H₂S-induced ER stress in A2870 cells.

    PubMed

    Lencesova, Lubomira; Vlcek, Miroslav; Krizanova, Olga; Hudecova, Sona

    2016-03-01

    Hypoxia - a state of lower oxygen demand-is responsible for a higher aggressiveness of tumors and therefore a worse prognosis. During hypoxia, several metabolic pathways are re-organized, e.g., energetic metabolism, modulation of pH, and calcium transport. Calcium is an important second messenger that regulates variety of processes in the cell. Thus, aim of this work was to compare H2S modulation of the intracellular calcium transport systems in hypoxia and in cells grown in standard culture conditions. For all experiments, we used ovarian cancer cell line (A2780). H2S is a novel gasotransmitter, known to be involved in a modulation of several calcium transport systems, thus resulting in altered calcium signaling. Two models of hypoxia were used in our study-chemical (induced by dimethyloxallyl glycine) and 2 % O2 hypoxia, both combined with a treatment using a slow H2S donor GYY4137. In hypoxia, we observed rapid changes in cytosolic and reticular calcium levels compared to cells grown in standard culture conditions, and these changes were even more exagerrated when combined with the GYY4137. Changes in a calcium homeostasis result from IP3 receptor´s up-regulation and down-regulation of the SERCA 2, which leads to a development of the endoplasmic reticulum stress. Based on our results, we propose a higher vulnerability of calcium transport systems to H2S regulation under hypoxia. PMID:26868821

  1. N-Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells.

    PubMed

    Thinon, Emmanuelle; Morales-Sanfrutos, Julia; Mann, David J; Tate, Edward W

    2016-08-19

    N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents. PMID:27267252

  2. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress.

    PubMed

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-01-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745

  3. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress

    PubMed Central

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-01-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745

  4. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S

    2016-02-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  5. Overcoming the effects of acute stress through good teamwork practices

    SciTech Connect

    Harrington, D.K. ); Gaddy, C.D. )

    1992-01-01

    Two recent industry studies have taken a look at operators in stressful situations. In the context of severe-accident management, Mumaw et al. discussed four approaches to training operators for severe accidents: (1) training for knowledge or procedural skills; (2) training decision makers about goals and plans; (3) training to avoid cognitive biases; and (4) training within a realistic setting. These four approaches address directly the cognitive skills important for decision making. These types of training can also address indirectly the effects of stress on performance. First, effects of stress on decision making, such as reduced working memory, can be addressed by training cognitive skills. Second, exposure to realistically stressful situations can reduce the novelty and uncertainty, which is a primary cause of stress reactions. In a second study reported by Desaulniers, the stress of requalification exams was the focus. Desaulniers concluded that repeated changes in the exam process, inconsistency in interpretation of examiner guidelines, and some content and grading practices resulted in undue stress for the operators. The US Nuclear Regulatory Commission staff actions to remedy these sources of undue stress were described.

  6. Models and Methods to Investigate Acute Stress Responses in Cattle

    PubMed Central

    Chen, Yi; Arsenault, Ryan; Napper, Scott; Griebel, Philip

    2015-01-01

    There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress. PMID:26633525

  7. Effects of Acute Laboratory Stress on Executive Functions

    PubMed Central

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning. PMID:27065926

  8. Metabolic Changes in Masseter Muscle of Rats Submitted to Acute Stress Associated with Exodontia

    PubMed Central

    Iyomasa, Mamie Mizusaki; Fernandes, Fernanda Silva; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Fernández, Rodrigo Alberto Restrepo; Calzzani, Ricardo Alexandre; Nascimento, Glauce Crivelaro; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan

    2015-01-01

    Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles. PMID:26053038

  9. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    PubMed Central

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  10. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  11. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences.

    PubMed

    Gagnon, Stephanie A; Wagner, Anthony D

    2016-04-01

    Episodic retrieval allows people to access memories from the past to guide current thoughts and decisions. In many real-world situations, retrieval occurs under conditions of acute stress, either elicited by the retrieval task or driven by other, unrelated concerns. Memory under such conditions may be hindered, as acute stress initiates a cascade of neuromodulatory changes that can impair episodic retrieval. Here, we review emerging evidence showing that dissociable stress systems interact over time, influencing neural function. In addition to the adverse effects of stress on hippocampal-dependent retrieval, we consider how stress biases attention and prefrontal cortical function, which could further affect controlled retrieval processes. Finally, we consider recent data indicating that stress at retrieval increases activity in a network of brain regions that enable reflexive, rapid responding to upcoming threats, while transiently taking offline regions supporting flexible, goal-directed thinking. Given the ubiquity of episodic memory retrieval in everyday life, it is critical to understand the theoretical and applied implications of acute stress. The present review highlights the progress that has been made, along with important open questions. PMID:26799371

  12. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others.

    PubMed

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  13. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others

    PubMed Central

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  14. Dual-task performance under acute stress in female adolescents with borderline personality disorder.

    PubMed

    Kaess, Michael; Parzer, Peter; Koenig, Julian; Resch, Franz; Brunner, Romuald

    2016-09-01

    Research to elucidate early alterations of higher cognitive processes in adolescents with BPD is rare. This study investigated differences in dual-task performance in adolescents with BPD during stress and non-stress conditions. The study sample comprised 30 female adolescents with BPD and 34 healthy controls. The impact of stress on dual-task performance was measured using a standardized stressor. Self-reports of distress and measures of heart rate (HR) were obtained to measure stress reactivity. There were no group differences in task performance. Under stress conditions, the performance on the auditory task decreased in both groups but without significant group differences. Healthy controls showed an increase of mean HR after stress induction compared to no change in the BPD group. The finding of attenuated HR response to acute stress in adolescent patients with BPD may contradict current theories that the affective hyperresponsivity in BPD is based on a biologically determined mechanism. PMID:26852226

  15. Acute Stress Increases Sex Differences in Risk Seeking in the Balloon Analogue Risk Task

    PubMed Central

    Lighthall, Nichole R.; Mather, Mara; Gorlick, Marissa A.

    2009-01-01

    Background Decisions involving risk often must be made under stressful circumstances. Research on behavioral and brain differences in stress responses suggest that stress might have different effects on risk taking in males and females. Methodology/Principal Findings In this study, participants played a computer game designed to measure risk taking (the Balloon Analogue Risk Task) fifteen minutes after completing a stress challenge or control task. Stress increased risk taking among men but decreased it among women. Conclusions/Significance Acute stress amplifies sex differences in risk seeking; making women more risk avoidant and men more risk seeking. Evolutionary principles may explain these stress-induced sex differences in risk taking behavior. PMID:19568417

  16. Acute Stress Induces Hyperacusis in Women with High Levels of Emotional Exhaustion

    PubMed Central

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Background Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Methods Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23–71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). Results There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5–6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Conclusion Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems. PMID:23301005

  17. Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α.

    PubMed

    Jain, Kanika; Suryakumar, Geetha; Ganju, Lilly; Singh, Shashi Bala

    2016-08-01

    While endoplasmic reticulum (ER) stress has been observed in several human diseases, few studies have reported the involvement of ER stress in chronic hypoxia (CH) induced cardiac damage. Hypoxia, such as that prevalent at high altitude (HA), forms the underlying cause of several maladies including cardiovascular diseases. While the role of hypoxia inducible factor-1 (HIF-1α) in the adaptive responses to hypoxia is known, the role of the unfolded protein response (UPR) is only recently being explored in the HA pathophysiologies. The present study investigates the effect of ER stress modulation on CH mediated injury and the cardioprotective action of 4-phenylbutyric acid (PBA) in enhancing survival response under hypoxia. Here, we observed that exposure of rats, for 1, 7 and 14days CH to a simulated altitude of 7620m, led to cardiac hypertrophy and significant protein oxidation. This induced the activation of UPR signaling mechanisms, mediated by PERK, IRE1α and ATF6. By 14days, there was a marked upregulation of apoptosis, evident in increased CHOP and caspase-3/9 activity. PBA reduced CH induced right ventricular enlargement and apoptosis. Further, in contrast to tunicamycin, PBA considerably enhanced hypoxic tolerance. An elevation in the level of antioxidant enzymes, HIF-1α and its regulated proteins (HO-1, GLUT-1) was observed in the PBA administered animals, along with a concomitant suppression of UPR markers. Our study thus emphasizes upon the attenuation of ER stress by PBA as a mechanism to diminish CH induced cardiac injury and boost hypoxic survival, providing an insight into the novel relationship between the HIF-1α and UPR under hypoxia. PMID:27058435

  18. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NFκB cleavage.

    PubMed

    Wu, Sheng-Mao; Lin, Wan-Yu; Shen, Chin-Chang; Pan, Hung-Chuan; Keh-Bin, Wang; Chen, Yi-Ching; Jan, Yee-Jee; Lai, De-Wei; Tang, Shu-Ching; Tien, Hsing-Ru; Chiu, Chien-Shan; Tsai, Tsung-Chih; Lai, Yi-Liang; Sheu, Meei-Ling

    2016-03-01

    Peritoneal dissemination of tumor has high mortality and is associated with the loss of epithelial features, acquisition of motile mesenchymal morphology characteristics, and invasive properties by tumor cells. Melatonin is an endogenously produced molecule in all plant species that is known to exert antitumor activity, but to date, its underlying mechanisms and antiperitoneal metastasis efficacy is not well defined. This study determined the antiperitoneal dissemination potential of melatonin in vivo and assessed its association with the inhibition of epithelial-to-mesenchymal transition (EMT) signaling mechanism by endoplasmic reticulum (ER) stress, which may be a major molecular mechanism of melatonin against cancer. The results demonstrate that melatonin inhibited peritoneal metastasis in vivo and activated ER stress in Cignal ERSE Reporter Assay, organelle structure in transmission electron microscopy images, calpain activity, and protein biomarkers like p-elf2α. Moreover, the overexpression of transcription factor C/EBPβ in gastric cancer interacted with NFκB and further regulates COX-2 expression. These were dissociated and downregulated by melatonin, as proven by immunofluorescence imaging, immunoprecipitation, EMSA, and ChIP assay. Melatonin or gene silencing of C/EBPβ decreased the EMT protein markers (E-cadherin, Snail, and Slug) and Wnt/beta-catenin activity by Topflash activity, and increased ER stress markers. In an animal study, the results of melatonin therapy were consistent with those of in vitro findings and attenuated systemic proangiogenesis factor production. In conclusion, C/EBPβ and NFκB inhibition by melatonin may impede both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT. PMID:26514342

  19. Stress among nurses working in an acute hospital in Ireland.

    PubMed

    Donnelly, Teresa

    Stress among nurses leads to absenteeism, reduced efficiency, long-term health problems and a decrease in the quality of patient care delivered. A quantitative cross-sectional study was conducted. The study's aim was to identify perceived stressors and influencing factors among nurses working in the critical and non-critical care practice areas. A convenience sample of 200 nurses were invited to complete the Bianchi Stress Questionnaire. Information was collected on demographics and daily nursing practice. Findings indicated that perceived stressors were similar in both groups. The most severe stressors included redeployment to work in other areas and staffing levels. Results from this study suggest that age, job title, professional experience and formal post-registration qualifications had no influence on stress perception. These results will increase awareness of nurses' occupational stress in Ireland. PMID:25072339

  20. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance

    PubMed Central

    Li, Li; Li, Xiaohua; Zhou, Wenjun; Messina, Joseph L.

    2013-01-01

    In recent years, the roles of chronic stress and depression as an independent risk factor for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding and the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES), followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared to normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue and brain. Additionally, a rise in murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism. PMID:23444388

  1. Longitudinal platelet reactivity to acute psychological stress among older men and women.

    PubMed

    Aschbacher, Kirstin; von Känel, Roland; Mills, Paul J; Roepke, Susan K; Hong, Suzi; Dimsdale, Joel E; Mausbach, Brent T; Patterson, Thomas L; Ziegler, Michael G; Ancoli-Israel, Sonia; Grant, Igor

    2009-09-01

    Platelet reactivity to acute stress is associated with increased cardiovascular disease risk; however, little research exists to provide systematic methodological foundations needed to generate strong longitudinal research designs. Study objectives were: 1) to evaluate whether markers of platelet function increase in response to an acute psychological stress test among older adults, 2) to establish whether reactivity remains robust upon repeated administration (i.e. three occasions approximately 1 year apart), and 3) to evaluate whether two different acute speech stress tasks elicit similar platelet responses. The 149 subjects (mean age 71 years) gave a brief impromptu speech on one of two randomly assigned topics involving interpersonal conflict. Blood samples drawn at baseline and post-speech were assayed using flow cytometry for platelet responses on three outcomes (% aggregates, % P-selectin expression, and % fibrinogen receptor expression). Three-level hierarchical linear modeling analyses revealed significant stress-induced increases in platelet activation on all outcomes (p < 0.001). No significant habituation on any measure was found. Additional reactivity differences were associated with male gender, history of myocardial infarction, and use of aspirin, statins, and antidepressants. The results demonstrate that laboratory acute stress tests continued to produce robust platelet reactivity on three activation markers among older adults over 3 years. PMID:19096987

  2. Humic Acid Increases Amyloid β-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells

    PubMed Central

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  3. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  4. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    PubMed

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. PMID:25934571

  5. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure.

    PubMed

    Barber, Beth A; Kohl, Krista L; Kassam-Adams, Nancy; Gold, Jeffrey I

    2014-03-01

    A growing literature suggests the clinical importance of acute stress disorder symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N = 479) between the ages of 8-17, along with their caregivers completed interviews and self-report questionnaires between 2 days and 1 month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01) and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, reexperiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), reexperiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's ρ = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  6. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    PubMed Central

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    Background To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. Methods We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K+ current. Results H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Conclusions Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress. PMID:24386440

  7. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  8. Effects of acute handling stress on cerebral monoaminergic neurotransmitters in juvenile Senegalese sole Solea senegalensis.

    PubMed

    Weber, R A; Pérez Maceira, J J; Aldegunde, M J; Peleteiro, J B; García Martín, L O; Aldegunde, M

    2015-11-01

    Juvenile Senegalese sole Solea senegalensis were subjected for short periods to two different types of handling-related stress: air exposure stress and net handling stress. The S. senegalensis were sacrificed 2 and 24 h after the stress events and the levels of serotonin (5-HT), noradrenaline (NA), dopamine (DA) and their respective major metabolites, 5-hydroxyindoleacetic acid (5-HIAA), 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylacetic acid (DOPAC), were measured in three brain regions (telencephalon, hypothalamus and optic tectum) and compared with those in control, non-stressed S. senegalensis. Neither type of stress caused any significant alteration of serotoninergic activity (5-HIAA:5-HT ratio) or NA levels. Dopaminergic activity (DOPAC:DA ratio) was lower in stressed fish in all of the brain regions studied. For both air exposure stress and net handling stress, DA levels were significantly higher (P < 0.05) than in the control S. senegalensis. In addition, the higher DA levels after net handling stress were always significantly higher (P < 0.05) than those observed after acute air exposure stress, except in the telencephalon after 24 h. The significantly lower DOPAC:DA ratio (P < 0.05) in all of the brain regions studied was only observed in response to net handling stress. PMID:26387448

  9. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  10. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Jeffrey, J D; Gollock, M J; Gilmour, K M

    2014-01-15

    In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated

  11. Differential changes in platelet reactivity induced by acute physical compared to persistent mental stress.

    PubMed

    Hüfner, Katharina; Koudouovoh-Tripp, Pia; Kandler, Christina; Hochstrasser, Tanja; Malik, Peter; Giesinger, Johannes; Semenitz, Barbara; Humpel, Christian; Sperner-Unterweger, Barbara

    2015-11-01

    Platelets are important in hemostasis, but also contain adhesion molecules, pro-inflammatory and immune-modulatory compounds, as well as most of the serotonin outside the central nervous system. Dysbalance in the serotonin pathways is involved in the pathogenesis of depressive symptoms. Thus, changes in platelet aggregation and content of bioactive compounds are of interest when investigating physiological stress-related mental processes as well as stress-related psychiatric diseases such as depression. In the present study, a characterization of platelet reactivity in acute physical and persistent mental stress was performed (aggregation, serotonin and serotonin 2A-receptor, P-selectin, CD40 ligand, matrix metalloproteinase-2 and -9 (MMP-2 and -9), platelet/endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), β-thromboglobulin (β-TG) and platelet factor 4 (PF-4). Acute physical stress increased platelet aggregability while leaving platelet content of bioactive compounds unchanged. Persistent mental stress led to changes in platelet content of bioactive compounds and serotonin 2A-receptor only. The values of most bioactive compounds correlated with each other. Acute physical and persistent mental stress influences platelets through distinct pathways, leading to differential changes in aggregability and content of bioactive compounds. PMID:26192713

  12. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  13. Chemical composition of rainbow trout urine following acute hypoxic stress

    USGS Publications Warehouse

    Hunn, Joseph B.

    1969-01-01

    Rainbow trout (Salmo gairdnerii) were anesthetized with MS-222, catheterized, and introduced into urine collecting chambers. Twenty-four hours after introduction, a 4-hour accumulation of urine was collected to serve as the control. Water flow to the chambers was then discontinued for 30 minutes during which the oxygen content of the water exiting in the chamber dropped from 4.9 to 2.8 mg/l. Following this hypoxic stress fresh water was restored and accumulated urine samples were taken for analysis at 1, 4, and 20 hours post-hypoxic stress. Rainbow trout excrete abnormally high concentrations of Na, K, Mg, Cl, and inorganic PO4 following hypoxia.

  14. Effects of Prepubertal Acute Immobilization Stress on Serum Kisspeptin Level and Testis Histology in Rats.

    PubMed

    Maalhagh, Mehrnoosh; Jahromi, Abdolreza Sotoodeh; Yusefi, Alireza; Razeghi, Ali; Zabetiyan, Hassan; Karami, Mohammad Yasin; Madani, Abdol Hossein

    2016-01-01

    Stress has inhibitory effect on HPG axis through increasing cortisol serum level. In this study, the effect of acute prepubertal stress on kisspeptin, which plays essential role in puberty achievement is assessed. To do this experimental study thirty immature healthy male wistar rats of 4 weeks old and without any symptoms of puberty were selected randomly. These rats were divided into three groups, randomly. Two groups were chosen as control and pretest and one as stress (test) group. Immobilization stress was applied for 10 days and serum level of cortisol, testosterone and kisspeptin were measured. Primary and secondary spermatocyte and sertoli cell evaluated and compared among groups. Mean serum level of kisspeptin in pretest group, control group and stress (test) group were 0.0381 ± 0.0079, 91.0500 ± 4.87430 and 15.2156 ± 3.88135 pg mL(-1) respectively. Serum level of kisspeptin had significant differences between three groups (p < 0.001). Acute prepubertal immobilization stress led to decrease in serum level of kisspeptin and testosterone in stress (test) group compared to control groups. Also stress caused a significant decrease in the numbers of secondary spermatocytes of the test group. PMID:26930799

  15. Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1

    PubMed Central

    Graham, Regina M; Hernandez, Fiorela; Puerta, Nataly; De Angulo, Guillermo; Webster, Keith A; Vanni, Steven

    2016-01-01

    Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death. PMID:26891914

  16. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  17. Symptom Differences in Acute and Chronic Presentation of Childhood Post-Traumatic Stress Disorder.

    ERIC Educational Resources Information Center

    Famularo, Richard; And Others

    1990-01-01

    Twenty-four child abuse victims, age 5-13, were diagnosed with posttraumatic stress disorder (PTSD). Children with the acute form of PTSD exhibited such symptoms as difficulty falling asleep, hypervigilance, nightmares, and generalized anxiety. Children exhibiting chronic PTSD exhibited increased detachment, restricted range of affect,…

  18. The Nature of Trauma Memories in Acute Stress Disorder in Children and Adolescents

    ERIC Educational Resources Information Center

    Salmond, C. H.; Meiser-Stedman, R.; Glucksman, E.; Thompson, P.; Dalgleish, T.; Smith, P.

    2011-01-01

    Background: There is increasing theoretical, clinical and research evidence for the role of trauma memory in the aetiology of acute pathological stress responses in adults. However, research into the phenomenology of trauma memories in young people is currently scarce. Methods: This study compared the nature of trauma narratives to narratives of…

  19. Family Stress Management Following Acute Myocardial Infarction: An Educational and Skills Training Intervention Program.

    ERIC Educational Resources Information Center

    Nelson, David V.; Cleveland, Sidney E.; Baer, Paul E.

    1998-01-01

    Provides a conceptual background for specific behavioral-therapy approach to family stress management in dealing with the sequelae of acute myocardial infarction for all family members with the goal of reducing morbidity for all family members as they cope with ongoing survivorship issues. Describes the program and discusses its pilot…

  20. The Additive Benefit of Hypnosis and Cognitive-Behavioral Therapy in Treating Acute Stress Disorder

    ERIC Educational Resources Information Center

    Bryant, Richard A.; Moulds, Michelle L.; Guthrie, Rachel M.; Nixon, Reginald D. V.

    2005-01-01

    This research represents the first controlled treatment study of hypnosis and cognitive- behavioral therapy (CBT) of acute stress disorder (ASD). Civilian trauma survivors (N = 87) who met criteria for ASD were randomly allocated to 6 sessions of CBT, CBT combined with hypnosis (CBT-hypnosis), or supportive counseling (SC). CBT comprised exposure,…

  1. Baroreflex sensitivity is higher during acute psychological stress in healthy subjects under β-adrenergic blockade

    PubMed Central

    Truijen, Jasper; Davis, Shyrin C.A.T.; Stok, Wim J.; Kim, Yu-Sok; van Westerloo, David J.; Levi, Marcel; van der Poll, Tom; Westerhof, Berend E.; Karemaker, John M.; van Lieshout, Johannes J.

    2010-01-01

    Acute psychological stress challenges the cardiovascular system with an increase in BP (blood pressure), HR (heart rate) and reduced BRS (baroreflex sensitivity). β-adrenergic blockade enhances BRS during rest, but its effect on BRS during acute psychological stress is unknown. This study tested the hypothesis that BRS is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Twenty healthy novice male bungee jumpers were randomized and studied with (PROP, n=10) or without (CTRL, n=10) propranolol. BP and HR responses and BRS [cross-correlation time-domain (BRSTD) and cross-spectral frequency-domain (BRSFD) analysis] were evaluated from 30 min prior up to 2 h after the jump. HR, cardiac output and pulse pressure were lower in the PROP group throughout the study. Prior to the bungee jump, BRS was higher in the PROP group compared with the CTRL group [BRSTD: 28 (24–42) compared with 17 (16–28) ms·mmHg−1, P<0.05; BRSFD: 27 (20–34) compared with 14 (9–19) ms·mmHg−1, P<0.05; values are medians (interquartile range)]. BP declined after the jump in both groups, and post-jump BRS did not differ between the groups. In conclusion, during acute psychological stress, BRS is higher in healthy subjects treated with non-selective β-adrenergic blockade with significantly lower HR but comparable BP. PMID:20828371

  2. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. PMID:25896419

  3. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  4. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  5. [Ischemic stroke as reaction to an acute stressful event].

    PubMed

    Ibrahimagić, Omer C; Sinanović, Osman; Cickusić, Amra; Smajlović, Dzevdet

    2005-01-01

    The period following ischemic stroke can be considered as a reaction to a stressful event. Changes in cortisol secretion are one of the indicators of stress reaction. The aim of the study was to determine morning serum levels of cortisol in stroke patients within 48 hours and 15 days of ischemic stroke onset. Study group included 40 patients, 20 of them were females, mean age 65.3 +/- 10.3 years. The patients did not receive any corticosteroid agents or spironolactone, and did not suffer from Cushing's or Addison's syndrome. Ischemic stroke was verified by computed tomography of the brain. The fluorometric method with DELFIA Cortisol immunoassay was used to determine morning serum cortisol levels. Reference values of the measured hormone were 201-681 nmol/l. The mean level of serum cortisol within 48 hours of stroke was 560.9 +/- 318.9 nmol/l, and on day 15 it was 426.2 +/- 159.3 nmol/l, i.e. significantly lower (p < 0.02). On the first measurement, the level of serum cortisol was elevated in 32%, and on the second measurement in only 7.5% patients, which was also significantly lower (p < 0.001). It was concluded that the stress reaction in ischemic stroke patients was more pronounced within the first 48 hours of stroke onset. Judging from the morning cortisol levels, the reaction to stress was considerably less pronounced 15 days after stroke onset. PMID:15875466

  6. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  7. Acute stress affects free recall and recognition of pictures differently depending on age and sex.

    PubMed

    Hidalgo, Vanesa; Pulopulos, Matias M; Puig-Perez, Sara; Espin, Laura; Gomez-Amor, Jesus; Salvador, Alicia

    2015-10-01

    Little is known about age differences in the effects of stress on memory retrieval. Our aim was to perform an in-depth examination of acute psychosocial stress effects on memory retrieval, depending on age and sex. For this purpose, data from 52 older subjects (27 men and 25 women) were reanalyzed along with data from a novel group of 50 young subjects (26 men and 24 women). Participants were exposed to an acute psychosocial stress task (Trier Social Stress Test) or a control task. After the experimental manipulation, the retrieval of positive, negative and neutral pictures learned the previous day was tested. As expected, there was a significant response to the exposure to the stress task, but the older participants had a lower cortisol response to TSST than the younger ones. Stress impaired free recall of emotional (positive and negative) and neutral pictures only in the group of young men. Also in this group, correlation analyses showed a marginally significant association between cortisol and free recall. However, exploratory analyses revealed only a negative relationship between the stress-induced cortisol response and free recall of negative pictures. Moreover, stress impaired recognition memory of positive pictures in all participants, although this effect was not related to the cortisol or alpha-amylase response. These results indicate that both age and sex are critical factors in acute stress effects on specific aspects of long-term memory retrieval of emotional and neutral material. They also point out that more research is needed to better understand their specific role. PMID:26149415

  8. Sex-specific variation in brown-headed cowbird immunity following acute stress: a mechanistic approach.

    PubMed

    Merrill, Loren; Angelier, Frédéric; O'Loghlen, Adrian L; Rothstein, Stephen I; Wingfield, John C

    2012-09-01

    There is some discrepancy in the literature regarding whether acute stress is immunostimulatory or immunosuppressive. Studies of domesticated (laboratory and food) animals and humans typically indicate that acute stress is immunostimulatory, whereas studies of non-domesticated species document both immunostimulatory and immunosuppressive results. Few studies have examined the mechanisms responsible for changes in immune activity in species other than those classically used in laboratory research. We examined the effect of both acute stress and exogenous corticosterone (CORT) on the bactericidal capacity (BC) of blood plasma from captive, wild-caught brown-headed cowbirds (Molothrus ater) to determine if CORT is responsible for changes in levels of immune activity. We conducted "stress tests" in which we handled birds to elicit a stress response and then measured the birds' total CORT and BC at 30 or 90 min post-stressor. We also conducted non-invasive tests in which we administered exogenous CORT by injecting it into mealworms that were fed to the cowbirds remotely. Total, free, and bound CORT levels, corticosteroid binding globulins (CBGs), and BC at 7 or 90 min post-mealworm ingestion were measured. Both males and females exhibited significant increases in total CORT following handling stress and the administration of exogenous CORT. Experimental males and females also exhibited a significant increase in CBG capacity at 7 min post-mealworm ingestion compared to controls. Male cowbirds exhibited a significant decline in their BC following both handling stress and the administration of exogenous CORT whereas female cowbirds exhibited no decline under either condition. Female CBG levels were not different than those of males, suggesting that differences in BC could be due to differences between the sexes in the number of corticosteroid receptors which, along with CBGs, regulate the stress response. Female cowbirds may modulate their stress response as an adaptive

  9. Proteomic Analysis of INS-1 Rat Insulinoma Cells: ER Stress Effects and the Protective Role of Exenatide, a GLP-1 Receptor Agonist

    PubMed Central

    Kim, Mi-Kyung; Cho, Jin-Hwan; Lee, Jae-Jin; Son, Moon-Ho; Lee, Kong-Joo

    2015-01-01

    Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide. PMID:25793496

  10. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    PubMed Central

    Fernandes, Hugo J.R.; Hartfield, Elizabeth M.; Christian, Helen C.; Emmanoulidou, Evangelia; Zheng, Ying; Booth, Heather; Bogetofte, Helle; Lang, Charmaine; Ryan, Brent J.; Sardi, S. Pablo; Badger, Jennifer; Vowles, Jane; Evetts, Samuel; Tofaris, George K.; Vekrellis, Kostas; Talbot, Kevin; Hu, Michele T.; James, William; Cowley, Sally A.; Wade-Martins, Richard

    2016-01-01

    Summary Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. PMID:26905200

  11. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response.

    PubMed

    Sargsyan, Ernest; Artemenko, Konstantin; Manukyan, Levon; Bergquist, Jonas; Bergsten, Peter

    2016-09-01

    Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids. PMID:27344025

  12. Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress.

    PubMed

    Mitsuda, Teruhiko; Omi, Tsubasa; Tanimukai, Hitoshi; Sakagami, Yukako; Tagami, Shinji; Okochi, Masayasu; Kudo, Takashi; Takeda, Masatoshi

    2011-11-25

    Sigma-1 receptors (Sig-1Rs) are the ER resident proteins. Sig-1Rs in the brain have been reported to be significantly reduced in patients with schizophrenia. The impediment of regulating Sig-1Rs expression levels increases the risk for schizophrenia. Thus elucidating the mechanism regulating Sig-1Rs expression might provide the strategy to prevent mental disorders. In this study, we have demonstrated that Sig-1Rs were transcriptionally upregulated by ATF4 in ER stress. Moreover, ATF4 directly bounds to the 5' flanking region of Sig-1R gene. The reporter activities using this region were enhanced in ER stress, or by ATF4 alone. The reporter activities with the pathogenic polymorphisms (GC-241-240TT, T-485A) were reduced. In addition, the processing of Caspase-4 was inhibited by Sig-1Rs. These results indicate that Sig-1Rs are transcriptionally upregulated via the PERK/eIF2α/ATF4 pathway and ameliolate cell death signaling. This study is the first report identifying the transcription factor regulating Sig-1Rs expression. PMID:22079628

  13. Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    PubMed Central

    Badiola, N; Penas, C; Miñano-Molina, A; Barneda-Zahonero, B; Fadó, R; Sánchez-Opazo, G; Comella, J X; Sabriá, J; Zhu, C; Blomgren, K; Casas, C; Rodríguez-Alvarez, J

    2011-01-01

    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress. PMID:21525936

  14. Guilt is associated with acute stress symptoms in children after road traffic accidents

    PubMed Central

    Haag, Ann-Christin; Zehnder, Daniel; Landolt, Markus A.

    2015-01-01

    Background Although previous research has consistently found considerable rates of acute stress disorder (ASD) in children with accidental injuries, knowledge about determinants of ASD remains incomplete. Guilt is a common reaction among children after a traumatic event and has been shown to contribute to posttraumatic stress disorder. However, its relationship to ASD has never been examined. Objective This study assessed the prevalence of ASD in children and adolescents following road traffic accidents (RTAs). Moreover, the association between peritraumatic guilt and ASD was investigated relying on current cognitive theories of posttraumatic stress and controlling for female sex, age, socioeconomic status (SES), injury severity, inpatient treatment, pretrauma psychopathology, and maternal posttraumatic stress symptoms (PTSS). Methods One hundred and one children and adolescents (aged 7–16 years) were assessed by means of a clinical interview approximately 10 days after an RTA. Mothers were assessed by questionnaires. Results Three participants (3.0%) met diagnostic criteria for full ASD according to DSM-IV, and 17 (16.8%) for subsyndromal ASD. In a multivariate regression model, guilt was found to be a significant predictor of ASD severity. Female sex, outpatient treatment, and maternal PTSS also predicted ASD severity. Child age, SES, injury severity, and pretraumatic child psychopathology were not related to ASD severity. Conclusions Future research should examine the association between peritraumatic guilt and acute stress symptoms in more detail. Moreover, guilt appraisals in the acute phase after an accident might be a relevant target for clinical attention. PMID:26514158

  15. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    PubMed

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis. PMID:25016451

  16. Effect of the acute crowding stress on the rat brown adipose tissue metabolic function.

    PubMed

    Djordjevic, Jelena; Cvijic, Gordana; Petrovic, Natasa; Davidovic, Vukosava

    2005-12-01

    Our previous results have shown that metabolic and thermal stressors influence interscapular brown adipose tissue (IBAT) metabolic activity by increasing oxygen consumption and, consequently, altering the toxic reactive oxygen species (ROS) production and the antioxidative system activity. Since there is not enough evidence about the effect of psychosocial stressors on these processes, we studied the effect of acute crowding stress on the IBAT and hypothalamic monoamine oxidase (MAO) activity as well as IBAT antioxidative enzymes, manganese (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT), as the relevant indicators of IBAT metabolic alternations under the stress exposure and the returning of animals to control conditions. The results indicated that acute crowding stress did not change the hypothalamic and IBAT MAO activities, the generation of ROS and, consequently, the IBAT CuZnSOD and CAT activities. However, all three antioxidative enzymes were affected only after the recovery period. It seems that peripheral overheating of rats during acute crowding changes the stress nature, by becoming more thermal than psychosocial and by suppression the hypothalamic efferent pathways involved in the IBAT thermogenesis regulation. However, it seems that returning of the animals to the control conditions after the stress termination causes the reactivation of IBAT thermogenesis with tendency to normalise the body temperature. PMID:16309937

  17. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  18. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    PubMed

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-01

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. PMID:27365395

  19. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  20. Traumatic bereavement, acute dissociation, and posttraumatic stress: 14 years after the MS Estonia disaster.

    PubMed

    Arnberg, Filip K; Eriksson, Nils-Gustaf; Hultman, Christina M; Lundin, Tom

    2011-04-01

    This prospective longitudinal study aimed to examine posttraumatic stress in survivors 14 years after a ferry disaster, and estimate short- and long-term changes in stress associated with traumatic bereavement and acute dissociation. There were 852 people who perished in the disaster, 137 survived. The 51 Swedish survivors were surveyed with the Impact of Event Scale-Revised (IES-R) at 3 months, 1, 3, and 14 years (response rates 82%, 65%, 51%, and 69%). Symptoms decreased from 3 months to 1 year; no change was found thereafter. After 14 years, 27% reported significant symptoms. Traumatic bereavement, but not acute dissociation, was associated with long-term symptom elevation. Chronic posttraumatic stress can persist in a minority of survivors, and traumatic bereavement appears to hinder recovery. PMID:21442665

  1. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    PubMed Central

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders. PMID

  2. Acute stress-related changes in eating in the absence of hunger.

    PubMed

    Rutters, Femke; Nieuwenhuizen, Arie G; Lemmens, Sofie G T; Born, Jurriaan M; Westerterp-Plantenga, Margriet S

    2009-01-01

    Obesity results from chronic deregulation of energy balance, which may in part be caused by stress. Our objective was to investigate the effect of acute and psychological stress on food intake, using the eating in the absence of hunger paradigm, in normal and overweight men and women (while taking dietary restraint and disinhibition into account). In 129 subjects (BMI = 24.5 +/- 3.4 kg/m(2) and age = 27.6 +/- 8.8 years), scores were determined on the Three Factor Eating Questionnaire (dietary restraint = 7.2 +/- 4.4; disinhibition = 4.5 +/- 2.6; feeling of hunger = 3.9 +/- 2.6) and State-Trait Anxiety Inventory (trait score = 31.7 +/- 24.2). In a randomized crossover design, the "eating in absence of hunger" protocol was measured as a function of acute stress vs. a control task and of state anxiety scores. Energy intake from sweet foods (708.1 kJ vs. 599.4 kJ, P < 0.03) and total energy intake (965.2 kJ vs. 793.8 kJ, P < 0.01) were significantly higher in the stress condition compared to the control condition. Differences in energy intake between the stress and control condition were a function of increase in state anxiety scores during the stress task (Delta state anxiety scores) (R(2) = 0.05, P < 0.01). This positive relationship was stronger in subjects with high disinhibition scores (R(2) = 0.12, P < 0.05). Differences in state anxiety scores were a function of trait anxiety scores (R(2) = 0.07, P < 0.05). We conclude that acute psychological stress is associated with eating in the absence of hunger, especially in vulnerable individuals characterized by disinhibited eating behavior and sensitivity to chronic stress. PMID:18997672

  3. FEMALE RESPONSES TO ACUTE AND REPEATED RESTRAINT STRESS DIFFER FROM THOSE IN MALES

    PubMed Central

    Zavala, Jaidee K.; Fernandez, Almendra A.; Gosselink, Kristin L.

    2011-01-01

    Chronic stress is implicated in diseases which differentially affect men and women. This study investigated how the activation of neuronal subpopulations contributes to changes in neuroendocrine regulation that predispose members of each sex to stress-related health challenges. Adult male and female rats were restrained in single (acute) or 14 consecutive daily (repeated) 30 min sessions; brain sections were immunohistochemically stained for Fos, arginine vasopressin (AVP) or glucocorticoid receptor (GR) within the paraventricular hypothalamic nucleus (PVH). Acute restraint increased the number of PVH cells expressing Fos, with greater increases in males than females. Habituated responses were seen following repeated stress in both sexes, with no sex differences between groups. No sex differences were found in the number of neurons co-expressing Fos and AVP. Absolute counts of cellular Fos and GR co-localization mirrored Fos expression. In contrast, when doubly-labeled cells were normalized to staining for Fos alone, females showed greater numbers of Fos- and GR-positive cells than males after both acute and repeated stress. These data demonstrate that sex-specific stress responses are evident at the level of neuronal activation, and may contribute to different consequences of chronic stress in females versus males. Females may be more sensitive to glucocorticoid negative feedback, suggesting that sex-dependent differences in the efficiency of initiating and terminating stress responses may exist. Understanding the neural and endocrine pathways that mediate these functions in males and females will inform targeted therapeutic strategies to alleviate stress and the sex-specific afflictions with which it is associated. PMID:21453715

  4. Infection with Mycoplasma gallisepticum buffers the effects of acute stress on innate immunity in house finches.

    PubMed

    Fratto, Melanie; Ezenwa, Vanessa O; Davis, Andrew K

    2014-01-01

    When wild animals become infected, they still must cope with the rigors of daily life, and, thus, they still can be exposed to acute stressors. The suite of physiological responses to acute stress includes modifying the innate immune system, but infections can also cause similar changes. We examined the effects of an acute stressor (capture stress) on leukocyte abundance and bacteria-killing ability (BKA) in wild birds (house finches Haemorhous mexicanus) with and without a naturally occurring infection (Mycoplasma gallisepticum) to determine whether infection alters the typical immune response to stress. Birds were captured and bled within 3 min (baseline sample) and then held in paper bags for 2 h and bled again (stress sample). From blood smears made at both time points, we obtained estimates of total white blood cell (WBC) counts and relative numbers of each cell. We also measured BKA of plasma at both time points. In uninfected birds (n = 26), total WBC count decreased by 30% over time, while in infected birds (n = 9), it decreased by 6%. Relative numbers of heterophils did not change over time in uninfected birds but increased in infected birds. Combined with a reduction in lymphocyte numbers, this led to a threefold increase in heterophil-lymphocyte values in infected birds after the stressor, compared to a twofold increase in uninfected birds. There was a nonsignificant tendency for BKA to decline with stress in uninfected birds but not in diseased birds. Collectively, these results suggest that infections can buffer the negative effects of acute stress on innate immunity. PMID:24642543

  5. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  6. Possible Involvement of Multidrug-Resistant Hepatitis B Virus sW172* Truncation Variant in the ER Stress Signaling Pathway during Hepatocarcinogenesis.

    PubMed

    Zheng, Jiajia; Jiang, Suzhen; Lu, Fengmin

    2016-07-22

    We investigated the biological effect of hepatitis B virus (HBV) rtA181T/sW172* point mutation on HBsAg secretion and the potential mechanisms involved in hepatocarcinogenesis. Full-length HBV wild type (wt) and HBV rtA181T/sW172* expression plasmids were transfected into HepG2 cell lines or were injected into C57BL/6 mice. The extracellular and intracellular expression levels of HBsAg and HBeAg proteins, in mouse serum and liver tissues were detected by ELISA. The localization of the truncated protein was characterized in vitro. The mRNA expression of endoplasmic reticulum (ER) stress gene GRP78 was determined. HBsAg levels were significantly higher in both supernatant of cells transfected with HBV wt and serum of mice injected with HBV wt, compared with that of HBV rtA181T/sW172* mutant. The reversed trend was observed in intracellular cells and intrahepatic liver cells. Wild type S protein alone could rescue this dysfunction. HBV rtA181T/sW172* truncated surface proteins showed a more aggregated cytoplasmic pattern which were also localized to the ER in comparison with HBV wt. Furthermore, GRP78 mRNA expression was increased 72 h post-transfection in HBV rtA181T/sW172* cells relative to HBV wt cells (P = 0.0154). The HBV sW172* truncation variant has a defect on HBsAg secretion which can lead to surface protein retention in the ER, where it may contribute to hepatocarcinogenesis through activating the ER stress signaling pathway. PMID:26567840

  7. Development and Psychometric Evaluation of Child Acute Stress Measures in Spanish and English

    PubMed Central

    Kassam-Adams, Nancy; Gold, Jeffrey I.; Montaño, Zorash; Kohser, Kristen L.; Cuadra, Anai; Muñoz, Cynthia; Armstrong, F. Daniel

    2015-01-01

    Clinicians and researchers need tools for accurate early assessment of children’s acute stress reactions and acute stress disorder (ASD). There is a particular need for independently validated Spanish-language measures. The current study reports on 2 measures of child acute stress (a self-report checklist and a semi-structured interview), describing the development of the Spanish version of each measure and psychometric evaluation of both the Spanish and English versions. Children between the ages of 8 to 17 years who had experienced a recent traumatic event completed study measures in Spanish (n = 225) or in English (n = 254). Results provide support for reliability (internal consistency of the measures in both languages ranges from .83 to .89; cross-language reliability of the checklist is .93) and for convergent validity (with later PTSD symptoms, and with concurrent anxiety symptoms). Comparing checklist and interview results revealed a strong association between severity scores within the Spanish and English samples. Checklist-interview differences in evaluating the presence of ASD appear to be linked to different content coverage for dissociation symptoms. Future studies should further assess the impact of differing assessment modes, content coverage, and the use of these measures in children with diverse types of acute trauma exposure in English- and Spanish-speaking children. PMID:23371337

  8. Hostility and Physiological Responses to Acute Stress in People With Type 2 Diabetes

    PubMed Central

    Hackett, Ruth A.; Lazzarino, Antonio I.; Carvalho, Livia A.; Hamer, Mark; Steptoe, Andrew

    2015-01-01

    ABSTRACT Objective Hostility is associated with cardiovascular mortality and morbidity, and one of the mechanisms may involve heightened reactivity to mental stress</