Science.gov

Sample records for acute ethanol consumption

  1. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    PubMed Central

    Morais-Silva, G.; Fernandes-Santos, J.; Moreira-Silva, D.; Marin, M.T.

    2015-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  2. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  3. Experimental Traumatic Brain Injury Alters Ethanol Consumption and Sensitivity

    PubMed Central

    Lowing, Jennifer L.; Susick, Laura L.; Caruso, James P.; Provenzano, Anthony M.; Raghupathi, Ramesh

    2014-01-01

    Abstract Altered alcohol consumption patterns after traumatic brain injury (TBI) can lead to significant impairments in TBI recovery. Few preclinical models have been used to examine alcohol use across distinct phases of the post-injury period, leaving mechanistic questions unanswered. To address this, the aim of this study was to describe the histological and behavioral outcomes of a noncontusive closed-head TBI in the mouse, after which sensitivity to and consumption of alcohol were quantified, in addition to dopaminergic signaling markers. We hypothesized that TBI would alter alcohol consumption patterns and related signal transduction pathways that were congruent to clinical observations. After midline impact to the skull, latency to right after injury, motor deficits, traumatic axonal injury, and reactive astrogliosis were evaluated in C57BL/6J mice. Amyloid precursor protein (APP) accumulation was observed in white matter tracts at 6, 24, and 72 h post-TBI. Increased intensity of glial fibrillary acidic protein (GFAP) immunoreactivity was observed by 24 h, primarily under the impact site and in the nucleus accumbens, a striatal subregion, as early as 72 h, persisting to 7 days, after TBI. At 14 days post-TBI, when mice were tested for ethanol sensitivity after acute high-dose ethanol (4 g/kg, intraperitoneally), brain-injured mice exhibited increased sedation time compared with uninjured mice, which was accompanied by deficits in striatal dopamine- and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32) phosphorylation. At 17 days post-TBI, ethanol intake was assessed using the Drinking-in-the-Dark paradigm. Intake across 7 days of consumption was significantly reduced in TBI mice compared with sham controls, paralleling the reduction in alcohol consumption observed clinically in the initial post-injury period. These data demonstrate that TBI increases sensitivity to ethanol-induced sedation and affects downstream signaling mediators of

  4. Declines in peak oxygen consumption due to both aging and chronic ethanol consumption

    SciTech Connect

    Farrar, R.P.; Walters, T.J.; Cartee, G.D.; Sweeney, H.L.

    1986-03-01

    The authors have previously reported that chronic ethanol consumption will depress peak oxygen consumption. This study was designed to determine whether the decline in peak oxygen consumption induced by chronic ethanol consumption was equivalent to that of aging and whether the interaction of aging and chronic ethanol consumption would further depress peak oxygen consumption. Male F344 rats 10 and 22 months of age were divided into 4 groups young pair-fed controls (YC), young ethanol (YE) old pair-fed control (OC) and old ethanol (OE). The YE and OE received 35% of their calories as ethanol in a liquid diet, while the pair-fed controls had dextrin isocalorically substituted for ethanol. All rats were kept on the diet for 10 weeks. The YE and OE rats averaged 10.1 +/- 0.15 g of ethanol/Kg over the 10 week protocol. The peak VO/sub 2/ declined 12% in the OC compared to YC. Chronic ethanol consumption depressed peak VO/sub 2/ 16% in YC compared to YE. In the OE the peak VO/sub 2/ was depressed 13% below that of OC.

  5. Low dose ethanol consumption improves insulin sensitivity in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While chronic consumption of high doses of ethanol is well known to have adverse health consequences, intake of low doses have been reported to improve several markers of health outcomes. Published results from our laboratory using total enteral nutrition (TEN) in rats, in which ethanol-containing d...

  6. Maternal ethanol consumption by pregnant guinea pigs causes neurobehavioral deficits and increases ethanol preference in offspring.

    PubMed

    Shea, Kayla M; Hewitt, Amy J; Olmstead, Mary C; Brien, James F; Reynolds, James N

    2012-02-01

    The objective of this study was to test the hypothesis that prenatal exposure to ethanol, through maternal consumption of an aqueous ethanol solution, induces neurobehavioral deficits and increases ethanol preference in offspring. Pregnant Dunkin-Hartley-strain guinea pigs were given 24-h access to an aqueous ethanol solution (5%, v/v) sweetened with sucralose (1 g/l), or water sweetened with sucralose (1 g/l), throughout gestation. Spontaneous locomotor activity was measured in the offspring on postnatal day (PD) 10. The offspring underwent either ethanol preference testing using a two-bottle-choice paradigm beginning on PD 40 or Morris water maze testing using a hidden moving platform design beginning on PD 60. Maternal consumption of a 5% (v/v) ethanol solution (average daily dose of 2.3±0.1 g of ethanol/kg maternal body weight; range: 1.8-2.8 g/kg) decreased offspring birth weight, increased spontaneous locomotor activity, and increased preference for an aqueous ethanol solution. In the Morris water maze test, sucralose-exposed offspring decreased escape latency on the second day of testing, whereas the ethanol-exposed offspring showed no improvement. These data demonstrate that moderate maternal consumption of ethanol produces hyperactivity, enhances ethanol preference, and impairs learning and memory in guinea pig offspring. PMID:22157142

  7. Increased vulnerability to ethanol consumption in adolescent maternal separated mice.

    PubMed

    García-Gutiérrez, María S; Navarrete, Francisco; Aracil, Auxiliadora; Bartoll, Adrián; Martínez-Gras, Isabel; Lanciego, José L; Rubio, Gabriel; Manzanares, Jorge

    2016-07-01

    The purpose of this study was to evaluate the effects of early life stress on the vulnerability to ethanol consumption in adolescence. To this aim, mice were separated from their mothers for 12 hours/day on postnatal days 8 and 12. Emotional behavior (light-dark box, elevated plus maze and tail suspension tests) and pre-attentional deficit (pre-pulse inhibition) were evaluated in adolescent maternal separated (MS) mice. Alterations of the corticotropin-releasing factor (CRF), glucocorticoid receptor (NR3C1), tyrosine hydroxylase (TH), mu-opioid receptor (MOr), brain-derived neurotrophic factor (BDNF), neuronal nuclei (NeuN), microtubule-associated protein 2 (MAP2) and neurofilament heavy (NF200)-immunoreactive fibers were studied in the paraventricular nucleus of the hypothalamus (PVN), ventral tegmental area (VTA), nucleus accumbens (NAc) or hippocampus (HIP). The effects of maternal separation (alone or in combination with additional stressful stimuli) on ethanol consumption during adolescence were evaluated using the oral ethanol self-administration paradigm. MS mice presented mood-related alterations and pre-attentional deficit. Increased CRF, MOr and TH, and reduced BDNF, NR3C1, NeuN, MAP2 and NF200-immunoreactive fibers were observed in the PVN, NAc and HIP of adolescent MS mice. In the oral ethanol self-administration test, adolescent MS mice presented higher ethanol consumption and motivation. Exposure to additional new stressful stimuli during adolescence significantly increased the vulnerability to ethanol consumption induced by maternal separation. These results clearly demonstrated that exposure to early life stress increased the vulnerability to ethanol consumption, potentiated the effects of stressful stimuli exposure during adolescence on ethanol consumption and modified the expression of key targets involved in the response to stress, ethanol reinforcing properties and cognitive processes. PMID:25988842

  8. Effects of voluntary ethanol consumption on emotional state and stress responsiveness in socially isolated rats.

    PubMed

    Pisu, Maria Giuseppina; Mostallino, Maria Cristina; Dore, Riccardo; Maciocco, Elisabetta; Secci, Pietro Paolo; Serra, Mariangela

    2011-05-01

    Social isolation of rats immediately after weaning is thought to represent an animal model of anxiety-like disorders. This mildly stressful condition reduces the cerebrocortical and plasma concentrations of 3α-hydroxy-5α-pregnan-20-one (3α,5α-TH PROG) as well as increases the sensitivity of rats to the effects of acute ethanol administration on the concentrations of this neuroactive steroid. We further investigated the effects of voluntary consumption of ethanol at concentrations increasing from 2.5 to 10% over 4 weeks of isolation. Isolated rats showed a reduced ethanol preference compared with group-housed animals. Ethanol consumption did not affect the isolation-induced down-regulation of BDNF or Arc, but it attenuated the increase in the cerebrocortical concentration of 3α,5α-TH PROG induced by foot-shock stress in both isolated and group-housed animals as well as increased the percentage of number of entries made by socially isolated rats into the open arms in the elevated plus-maze test. Ethanol consumption did not affect expression of the α₄ subunit of the GABA(A) receptor in the hippocampus of group-housed or isolated rats, whereas it up-regulated the δ subunit throughout the hippocampus under both conditions. The results suggest that low consumption of ethanol may ameliorate some negative effects of social isolation on stress sensitivity and behavior. PMID:21067904

  9. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats

    PubMed Central

    Godfrey, Jessica; Jeanguenin, Lisa; Castro, Norma; Olney, Jeffrey J.; Dudley, Jason; Pipkin, Joseph; Walls, Stanley M.; Wang, Wei; Herr, Deron R.; Harris, Greg L.; Brasser, Susan M.

    2015-01-01

    Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by

  10. Peripheral oxytocin administration reduces ethanol consumption in rats

    PubMed Central

    MacFadyen, Kaley; Loveless, Rebecca; DeLucca, Brandon; Wardley, Krystal; Deogan, Sumeet; Thomas, Cameron; Peris, Joanna

    2016-01-01

    The neuropeptide oxytocin interacts with mesolimbic dopamine neurons to mediate reward associated with filial behaviors, but also other rewarding behaviors such as eating or taking drugs of abuse. Based on its efficacy to decrease intake of other abused substances, oxytocin administration is implicated as a possible treatment for excessive alcohol consumption. We tested this hypothesis by measuring ethanol intake in male Sprague–Dawley rats injected with oxytocin or saline using two different ethanol self-administration paradigms. First, a dose–response curve was constructed for oxytocin inhibition of fluid intake using a modified drinking-in-the-dark model with three bottles containing .05% saccharine, 10% ethanol in saccharine, and 15% ethanol in saccharine. Doses of oxytocin tested were 0.05, 0.1, 0.3, and 0.5 mg/kg (I.P.). Next, rats received 0.3 mg/kg oxytocin preceding operant sessions in which they were trained to lever-press for either plain gelatin or ethanol gelatin in order to compare oxytocin inhibition of ethanol intake versus caloric intake. For the three-bottle choice study, rats consumed significantly less ethanol when treated with the three higher doses of oxytocin on the injection day. In the operant study, 0.3 mg/kg oxytocin significantly decreased ethanol gel consumption to a greater extent than plain gel consumption, both in terms of the amount of gel eaten and calories consumed. These data affirm oxytocin's efficacy for decreasing ethanol intake in rats, and confirm clinical studies suggesting oxytocin as a potential treatment for alcoholism. PMID:26519603

  11. Rsu1 regulates ethanol consumption in Drosophila and humans

    PubMed Central

    Ojelade, Shamsideen A.; Jia, Tianye; Rodan, Aylin R.; Chenyang, Tao; Kadrmas, Julie L.; Cattrell, Anna; Ruggeri, Barbara; Charoen, Pimphen; Lemaitre, Hervé; Banaschewski, Tobias; Büchel, Christian; Bokde, Arun L. W.; Carvalho, Fabiana; Conrod, Patricia J.; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A.; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lubbe, Steven; Martinot, Jean-Luc; Paus, Tomás; Smolka, Michael N.; Spanagel, Rainer; O’Reilly, Paul F.; Laitinen, Jaana; Veijola, Juha M.; Feng, Jianfeng; Desrivières, Sylvane; Jarvelin, Marjo-Riitta; Schumann, Gunter; Rothenfluh, Adrian

    2015-01-01

    Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla. PMID:26170296

  12. Rsu1 regulates ethanol consumption in Drosophila and humans.

    PubMed

    Ojelade, Shamsideen A; Jia, Tianye; Rodan, Aylin R; Chenyang, Tao; Kadrmas, Julie L; Cattrell, Anna; Ruggeri, Barbara; Charoen, Pimphen; Lemaitre, Hervé; Banaschewski, Tobias; Büchel, Christian; Bokde, Arun L W; Carvalho, Fabiana; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lubbe, Steven; Martinot, Jean-Luc; Paus, Tomás; Smolka, Michael N; Spanagel, Rainer; O'Reilly, Paul F; Laitinen, Jaana; Veijola, Juha M; Feng, Jianfeng; Desrivières, Sylvane; Jarvelin, Marjo-Riitta; Schumann, Gunter; Rothenfluh, Adrian

    2015-07-28

    Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla. PMID:26170296

  13. Rotation, locomotor activity and individual differences in voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Spontaneous turning behavior and locomotor activity were evaluated for their ability to predict differences in the voluntary consumption of ethanol in male Long-Evans rats. Animals were assessed for their preferred direction of turning behavior and for high vs. low levels of spontaneous locomotor activity, as determined during nocturnal testing in a rotometer. Subsequently, preference for a 10% ethanol solution vs. water was determined in a 24-h two-bottle home-cage free-choice paradigm. Rats exhibiting a right-turning preference consumed more ethanol than rats showing a left-turning preference. While locomotor activity alone did not predict differences in drinking, turning and locomotor activity together predicted differences in ethanol consumption. Low-activity right-turning rats consumed more ethanol than all the other groups of rats. Previous studies from this laboratory have shown that individual differences in turning behavior are accompanied by different asymmetries in dopamine (DA) function in the medial prefrontal cortex (mPFC). Individual differences in locomotor activity are associated with differences in nucleus accumbens (NAS) DA function. The present data suggest that variations in mPFC DA asymmetry and NAS DA function may underlie differences in the voluntary consumption of ethanol. PMID:10095014

  14. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice.

    PubMed

    Stragier, E; Martin, V; Davenas, E; Poilbout, C; Mongeau, R; Corradetti, R; Lanfumey, L

    2015-01-01

    Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol. PMID:26670281

  15. ACUTE ETHANOL SUPPRESSES GLUTAMATERGIC NEUROTRANSMISSION THROUGH ENDOCANNABINOIDS IN HIPPOCAMPAL NEURONS

    PubMed Central

    Basavarajappa, Balapal S.; Ninan, Ipe; Arancio, Ottavio

    2008-01-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature postsynaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on presynaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of postsynaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory postsynaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities. PMID:18796007

  16. Cerebroventricular tetrahydropapaveroline infusions and ethanol consumption in the rat.

    PubMed

    Sinclair, J D; Myers, R D

    1982-01-01

    Discrepant results have been reported from different laboratories on the effects of tetrahydropapaveroline (THP) and related compounds. In order to try to explore the discrepancy, an independent researcher participated in a partial replication attempt at the laboratory from which reports had previously come that THP markedly increased ethanol consumption by rats and produced withdrawal-like behavior. Withdrawal-like signs were observed after several once-daily bilateral ventricular infusions of 1.0 microgram THP. These abnormal behaviors varied in frequency and intensity but continued up to the last day of infusion and were rated independently by up to 5 judges. The mean ethanol intake, however, during THP treatment remained virtually the same as before THP (mean g ethanol per kg body wt. +/- SE: 1.60 +/- 0.29 before THP, 1.69 +/- 0.45 during THP). Control rats drank similar amounts of ethanol (1.60 +/- 0.33 before vehicle infusions, 1.65 +/- 0.42 during vehicle infusions). The individual THP animals tended to show greater variations than the controls from their own pre-treatment levels, but none of them showed a mean increase of greater than 2.0 g/kg in ethanol intake. Injections of THP or noreleagnine into cannulae aimed at hippocampal and periventricular grey sites also failed to increase alcohol drinking; however because histology was not available, it is not known whether or not the sites of injection were located in these structures. In comparison to the previously published report of Myers and Oblinger (25), this experiment differed in several variables. It is concluded that the precise experimental parameters necessary for once-daily THP reliably to increase ethanol consumption remain to be determined. PMID:6890240

  17. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced

    PubMed Central

    Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5–alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than an increased motivation. PMID:25595114

  18. Ethanol consumption in mice: relationships with circadian period and entrainment

    PubMed Central

    Trujillo, Jennifer L.; Do, David T.; Grahame, Nicholas J.; Roberts, Amanda J.; Gorman, Michael R.

    2011-01-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  19. Ethanol consumption in mice: relationships with circadian period and entrainment.

    PubMed

    Trujillo, Jennifer L; Do, David T; Grahame, Nicholas J; Roberts, Amanda J; Gorman, Michael R

    2011-03-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep, and body temperature; and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred high- (HAP) and low- (LAP) alcohol preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 or 22 h or remained in a standard 24 h cycle. On discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  20. Regulation of brain anandamide by acute administration of ethanol

    PubMed Central

    Ferrer, Belen; Bermúdez-Silva, Francisco Javier; Bilbao, Ainhoa; Alvarez-Jaimes, Lily; Sanchez-Vera, Irene; Giuffrida, Andrea; Serrano, Antonia; Baixeras, Elena; Khaturia, Satishe; Navarro, Miguel; Parsons, Loren H.; Piomelli, Daniele; Rodríguez de Fonseca, Fernando

    2007-01-01

    The endogenous cannabinoid acylethanolamide AEA (arachidonoylethanolamide; also known as anandamide) participates in the neuroadaptations associated with chronic ethanol exposure. However, no studies have described the acute actions of ethanol on AEA production and degradation. In the present study, we investigated the time course of the effects of the intraperitoneal administration of ethanol (4 g/kg of body mass) on the endogenous levels of AEA in central and peripheral tissues. Acute ethanol administration decreased AEA in the cerebellum, the hippocampus and the nucleus accumbens of the ventral striatum, as well as in plasma and adipose tissue. Parallel decreases of a second acylethanolamide, PEA (palmitoylethanolamide), were observed in the brain. Effects were observed 45–90 min after ethanol administration. In vivo studies revealed that AEA decreases were associated with a remarkable inhibition of the release of both anandamide and glutamate in the nucleus accumbens. There were no changes in the expression and enzymatic activity of the main enzyme that degrades AEA, the fatty acid amidohydrolase. Acute ethanol administration did not change either the activity of N-acyltransferase, the enzyme that catalyses the synthesis of the AEA precursor, or the expression of NAPE-PLD (N-acylphosphatidylethanolamine-hydrolysing phospholipase D), the enzyme that releases AEA from membrane phospholipid precursors. These results suggest that receptor-mediated release of acylethanolamide is inhibited by the acute administration of ethanol, and that this effect is not derived from increased fatty acid ethanolamide degradation. PMID:17302558

  1. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption

    PubMed Central

    Bell, Richard L.; Kimpel, Mark W.; McClintick, Jeanette N.; Strother, Wendy N.; Carr, Lucinda G.; Liang, Tiebing; Rodd, Zachary A.; Mayfield, R. Dayne; Edenberg, Howard J.; McBride, William J.

    2009-01-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-hr dark-cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24 hr/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hr after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p < 0.01; Storey false discovery rate = 0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein-coupled receptor signaling. Ingenuity® analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal. PMID:19666046

  2. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Translocation of p47phox and MAPKs phosphorylation are downstream effectors. ► Acute ethanol consumption increases the risk for acute vascular injury.

  3. Actions of acute and chronic ethanol on presynaptic terminals.

    PubMed

    Roberto, Marisa; Treistman, Steven N; Pietrzykowski, Andrzej Z; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A; Hendricson, Adam H; Morrisett, Richard; Siggins, George Robert

    2006-02-01

    This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication

  4. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. PMID:25712038

  5. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  6. Early Ethanol Consumption Predicts Relapse-Like Behavior in Adolescent Male Rats

    PubMed Central

    Schramm-Sapyta, Nicole L.; Kingsley, Megan A.; Rezvani, Amir H.; Propst, Kiayia; Swartzwelder, H. Scott; Kuhn, Cynthia M.

    2011-01-01

    Background Alcohol abuse disorders emerge over time with repeated consumption of ethanol, but not all ethanol drinkers develop these disorders. There are pre-existing characteristics that indicate which drinkers are most likely to abuse alcohol. Adolescence, novelty seeking, and high stress reactivity are among the characteristics of the most vulnerable individuals. In addition, an individual’s response to his or her first exposure to the drug influences future consumption. We assessed an array of behavioral and hormonal characteristics in adolescent (28-day-old) male rats before exposure to ethanol, and then determined which rats were most prone to high levels of alcohol drinking. Methods The assessments consisted of measures of anxiety (elevated plus maze), response to novelty (open field locomotion, novel object exploration), and circulating corticosterone levels after mild restraint and after the elevated plus maze task. After this test battery, the rats were placed in lickometer cages nightly (5 pm to 9 am) for evaluation of fluid consumption. Rats were first habituated to the cages with water in the lickometer bottles, and then given 10% (v/v) ethanol for 3 nights as the only available fluid. After this forced ethanol exposure, the rats were allowed to choose between 8% ethanol and water for 10 consecutive nights. After 2 nights of abstinence, the rats were again placed in the lickometer cages and given a choice between 8% ethanol and water to assess ethanol consumption in response to alcohol deprivation, a measure of relapse-like behavior. Results Ethanol consumption on the third day of forced consumption was significantly correlated with ethanol consumption on days 8 to 10 of the choice phase, which in turn was significantly correlated to relapse-like consumption. Preference for ethanol was also significantly correlated with early consumption. Novel object exploration, open field activity, open arm time in the elevated plus maze, initial water consumption

  7. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    PubMed

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-01

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. PMID:25108044

  8. The discriminative stimulus properties of ethanol and acute ethanol withdrawal states in rats.

    PubMed

    Gauvin, D V; Harland, R D; Criado, J R; Michaelis, R C; Holloway, F A

    1989-10-01

    Twelve male Sprague-Dawley rats were trained in a standard two-choice Drug 1-Drug 2 discrimination task utilizing 3.0 mg/kg chlordiazepoxide (CDP, an anxiolytic drug) and 20 mg/kg pentylenetetrazol (PTZ, an anxiogenic drug) as discriminative stimuli under a VR 5-15 schedule of food reinforcement. Saline tests conducted at specific time points after acute high doses of ethanol (3.0 and 4.0 g/kg) indicated a delayed rebound effect, evidenced by a shift to PTZ-appropriate responding. Insofar as such a shift in lever selection indexes a delayed anxiety-like state, this acute 'withdrawal' reaction can be said to induce an affective state similar to that seen with chronic ethanol withdrawal states. Ethanol generalization tests: (1) resulted in a dose- and time-dependent biphasic generalization to CDP, (2) failed to block the PTZ stimulus and (3) failed to block the time- and dose-dependent elicitation of an ethanol-rebound effect. These data suggest that ethanol's anxiolytic effects are tenuous. PMID:2791886

  9. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies

    PubMed Central

    Morganstern, I; Chang, G-Q; Chen, Y-W; Barson, J.R; Zhiyu, Y; Hoebel, B.G; Leibowitz, S.F

    2010-01-01

    The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2–4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior. PMID:20670637

  10. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. PMID:22944615

  11. Lycopene Pretreatment Ameliorates Acute Ethanol Induced NAD+ Depletion in Human Astroglial Cells

    PubMed Central

    Guest, Jade; Heng, Benjamin; Grant, Ross

    2015-01-01

    Excessive alcohol consumption is associated with reduced brain volume and cognition. While the mechanisms by which ethanol induces these deleterious effects in vivo are varied most are associated with increased inflammatory and oxidative processes. In order to further characterise the effect of acute ethanol exposure on oxidative damage and NAD+ levels in the brain, human U251 astroglioma cells were exposed to physiologically relevant doses of ethanol (11 mM, 22 mM, 65 mM, and 100 mM) for ≤ 30 minutes. Ethanol exposure resulted in a dose dependent increase in both ROS and poly(ADP-ribose) polymer production. Significant decreases in total NAD(H) and sirtuin 1 activity were also observed at concentrations ≥ 22 mM. Similar to U251 cells, exposure to ethanol (≥22 mM) decreased levels of NAD(H) in primary human astrocytes. NAD(H) depletion in primary astrocytes was prevented by pretreatment with 1 μM of lycopene for 3.5 hours. Unexpectedly, in U251 cells lycopene treatment at concentrations ≥ 5 μM resulted in significant reductions in [NAD(H)]. This study suggests that exposure of the brain to alcohol at commonly observed blood concentrations may cause transitory oxidative damage which may be at least partly ameliorated by lycopene. PMID:26075038

  12. Reduced ethanol consumption and preference in cocaine- and amphetamine-regulated transcript (CART) knockout mice.

    PubMed

    Salinas, Armando G; Nguyen, Chinh T Q; Ahmadi-Tehrani, Dara; Morrisett, Richard A

    2014-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide implicated in addiction to drugs of abuse. Several studies have characterized the role of CART in addiction to psychostimulants, but few have examined the role of CART in alcohol use disorders including alcoholism. The current study utilized a CART knockout (KO) mouse model to investigate the role of CART in ethanol appetitive behaviors. A two-bottle choice, unlimited-access paradigm was used to compare ethanol appetitive behaviors between CART wild type (WT) and KO mice. The mice were presented with an ethanol solution (3%-21%) and water, each concentration for 4 days, and their consumption was measured daily. Consumption of quinine (bitter) and saccharin (sweet) solutions was measured following the ethanol preference tests. In addition, ethanol metabolism rates and ethanol sensitivity were compared between genotypes. CART KO mice consumed and preferred ethanol less than their WT counterparts in both sexes. This genotype effect could not be attributed to differences in bitter or sweet taste perception or ethanol metabolism rates. There was also no difference in ethanol sensitivity in male mice; however, CART KO female mice showed a greater ethanol sensitivity than the WT females. Taken together, these data demonstrate a role for CART in ethanol appetitive behaviors and as a possible therapeutic drug target for alcoholism and abstinence enhancement. PMID:22823101

  13. Acute alcohol consumption, alcohol outlets, and gun suicide.

    PubMed

    Branas, Charles C; Richmond, Therese S; Ten Have, Thomas R; Wiebe, Douglas J

    2011-01-01

    A case-control study of 149 intentionally self-inflicted gun injury cases (including completed gun suicides) and 302 population-based controls was conducted from 2003 to 2006 in a major US city. Two focal independent variables, acute alcohol consumption and alcohol outlet availability, were measured. Conditional logistic regression was adjusted for confounding variables. Gun suicide risk to individuals in areas of high alcohol outlet availability was less than the gun suicide risk they incurred from acute alcohol consumption, especially to excess. This corroborates prior work but also uncovers new information about the relationships between acute alcohol consumption, alcohol outlets, and gun suicide. Study limitations and implications are discussed. PMID:21929327

  14. Acute Alcohol Consumption, Alcohol Outlets, and Gun Suicide

    PubMed Central

    Branas, Charles C.; Richmond, Therese S.; Ten Have, Thomas R.; Wiebe, Douglas J.

    2014-01-01

    A case–control study of 149 intentionally self-inflicted gun injury cases (including completed gun suicides) and 302 population-based controls was conducted from 2003 to 2006 in a major US city. Two focal independent variables, acute alcohol consumption and alcohol outlet availability, were measured. Conditional logistic regression was adjusted for confounding variables. Gun suicide risk to individuals in areas of high alcohol outlet availability was less than the gun suicide risk they incurred from acute alcohol consumption, especially to excess. This corroborates prior work but also uncovers new information about the relationships between acute alcohol consumption, alcohol outlets, and gun suicide. Study limitations and implications are discussed. PMID:21929327

  15. Environmental stressors influence limited-access ethanol consumption by C57BL/6J mice in a sex-dependent manner

    PubMed Central

    Cozzoli, Debra K.; Tanchuck-Nipper, Michelle A.; Kaufman, Moriah N.; Horowitz, Chloe B.; Finn, Deborah A.

    2015-01-01

    correlated with subsequent ethanol intake. In summary, the type of stressor administered had a profound impact on subsequent ethanol consumption, with subtle sex differences in the magnitude and persistence of the effect. These findings are the first to demonstrate that a single, acute exposure to restraint, tail suspension, and predator odor stress increased plasma CORT and ALLO levels in animals with a history of ethanol consumption and that female mice were more responsive than males to the ability of stress to increase CORT levels as well as to the ability of predator odor stress to produce a delayed increase in ethanol intake. Because predator odor stress is a model of posttraumatic stress disorder, the present sex differences have important implications for future preclinical studies modeling the comorbidity of posttraumatic stress disorder and alcohol use disorders. PMID:25459519

  16. Fish gall bladder consumption presenting as acute renal failure

    PubMed Central

    Gupta, A; Karnik, ND; Gupta, VA; Hase, NK

    2015-01-01

    A forty two year old male was admitted with history of anuria and breathlessness following consumption of raw rohu fish gall bladder. He had azotemia and required hemodialysis. His renal failure improved over a period of about four weeks. Incidences have been reported from South East Asian countries associating consumption of raw rohu fish gall bladder with acute renal failure. PMID:26440398

  17. The contribution of electrophysiology to knowledge of the acute and chronic effects of ethanol.

    PubMed

    Little, H J

    1999-12-01

    This review describes the effects of ethanol on the components of neuronal transmission and the relationship of such effects to the behavioural actions of ethanol. The concentrations of ethanol with acute actions on voltage-sensitive ion channels are first described, then the actions of ethanol on ligand-gated ion channels, including those controlled by cholinergic receptors, 5-hydroxytryptamine receptors, the various excitatory amino acid receptors, and gamma-aminobutyric acid receptors. Acute effects of ethanol are then described on brain areas thought to be involved in arousal and attention, the reinforcing effects of ethanol, the production of euphoria, the actions of ethanol on motor control, and the amnesic effects of ethanol; the acute effects of ethanol demonstrated by EEG studies are also discussed. Chronic effects of alcohol on neuronal transmission are described in the context of the various components of the ethanol withdrawal syndrome, withdrawal hyperexcitability, dysphoria and anhedonia, withdrawal anxiety, craving, and relapse drinking. Electrophysiological studies on the genetic influences on the effects of ethanol are discussed, particularly the acute actions of ethanol and electrophysiological differences reported in individuals predisposed to alcoholism. The conclusion notes the concentration of studies on the classical transmitters, with relative neglect of the effects of ethanol on peptides and on neuronal interactions between brain areas and integrated patterns of neuronal activity. PMID:10665833

  18. Chronic ethanol consumption depresses hypothalamic-pituitary-adrenal function in aged rats

    SciTech Connect

    Nolan, C.J.; Bestervelt, L.L.; Mousigian, C.A.; Maimansomsuk, P.; Yong Cai; Piper, W.N. )

    1991-01-01

    In separate experiments, nine (n=20) and fifteen (n=12) month old rats were treated with either 6% ethanol or 12% sucrose in the drinking water to examine the effect of chronic ethanol consumption on the hypothalamic-pituitary-adrenal axis of aged rats. Blood was collected and plasma concentrations of adrenocorticotropin (ACTH) and corticosterone were determined by radioimmunoassay. Adrenal glands were cleaned, quartered and used to test in vitro responsiveness to ACTH. Anterior pituitary glands from all 15 month old rats and one half of the nine month old rats were collected, frozen and extracted for measurement of tissue ACTH concentration. The remaining anterior pituitary glands from the nine month old rats were challenged with corticotropin releasing hormone (CRH) to test in vitro responsiveness. In nine month old rats, chronic ethanol consumption decreased plasma ACTH and corticosterone. Pituitary ACTH concentrations were unchanged in treated nine month old rats, but the amount of pituitary ACTH released in response to CRH was decreased in rats consuming ethanol. In vitro responsiveness of the adrenal gland to ACTH in nine month old rats consuming ethanol was unchanged. Plasma ACTH and corticosterone concentrations were also decreased in 15 month old rats chronically consuming ethanol. No differences were noted in responsiveness of the adrenal gland or in the amount of pituitary ACTH due to ethanol consumptions in 15 month old rats.

  19. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption.

    PubMed

    Wood, W G; Schroeder, F; Hogy, L; Rao, A M; Nemecz, G

    1990-06-27

    Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids. PMID:2364080

  20. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    SciTech Connect

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  1. Effects of Preconceptional Ethanol Consumption on ADHD-Like Symptoms in Sprague-Dawley Rat Offsprings

    PubMed Central

    Choi, Inah; Kim, Pitna; Joo, So Hyun; Kim, Min Kyeong; Park, Jin Hee; Kim, Hee Jin; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young

    2012-01-01

    Ethanol exposure during gestational period is related to growth retardation, morphological abnormality, and even in neurological abnormalities including attention deficit/hyperactivity disorder (ADHD)-like behaviors on offspring. However, relatively little is known about the effects of maternal ethanol consumption prior to conception on their offspring. In this study, we investi-gated whether maternal ethanol administration during preconceptional phase produces ADHD-like behaviors in the rat offspring. Sprague-Dawley (SD) female rats were administrated ethanol via intragastric intubation with dosing regimen of 6 g/kg daily for 10 consecutive days and treated female rats then mated with non-treated male SD rats after 8 weeks. Another group subjected to the same procedure as those conducted on ethanol treated group except the saline administration instead of ethanol. Offspring was tested for their ADHD-like behaviors using open field test, Y maze test and impulsivity test that is performed in the aversive electronic foot shock paradigm. Offspring of preconceptional ethanol treated (EtOH) group showed hyperlocomotive activity, attention deficit and impulsivity. And reduction of striatal dopamine transporter (DAT) level was observed by Western blot in the EtOH group, compared to control (Con) group, while the immunohistochemical analysis exhibited increased expression of norepinephrine transporter (NET) in the frontal cortex. These results suggest that maternal ethanol consumption in the preconceptional phase induces ADHD-like behaviors in offspring that might be related to the abnormal expression of DAT and NET in rat. PMID:24116300

  2. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    PubMed

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. PMID:23601929

  3. Male sexual behaviour and ethanol consumption from an evolutionary perspective: A comment on “Sexual Deprivation Increases Ethanol Intake in Drosophila”

    PubMed Central

    2014-01-01

    Shohat-Ophir et al.1 demonstrate a connection between sexual behaviour and ethanol consumption in male Drosophila flies, and how the neuropeptide F system regulates ethanol preference. Their results are rightly discussed only in a physiological context, but this has facilitated erroneous anthropomorphic interpretations by the media. Here we discuss the link between male sexual behaviour and ethanol consumption from an evolutionary perspective, providing a broader context to interpret their results. PMID:25970263

  4. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  5. Individual differences in voluntary ethanol consumption lead to differential activation of the central amygdala in rats: relationship to the anxiolytic and stimulant effects of low dose ethanol

    PubMed Central

    Sharko, Amanda C.; Kaigler, Kris F.; Fadel, Jim R.; Wilson, Marlene A.

    2016-01-01

    Background Although alcohol use disorders and anxiety disorders are highly comorbid, the relationship between these two disorders is not fully understood. Previous work from our laboratory shows that anxiety-like behavior is highly variable in outbred Long-Evans rats and is related to the level of voluntary ethanol consumption, suggesting that basal anxiety state influences ethanol intake. To further examine the relationship between the acquisition of ethanol consumption and anxiety phenotype, Long-Evans rats were assessed for anxiety-like behavior and neuronal activation following voluntary ethanol consumption in a limited access drinking paradigm. Methods Rats were allowed to self-administer ethanol (6%v/v) for four days using a limited access drinking in the dark (DID) paradigm and divided into high and low drinking groups based on a median split of average daily ethanol intake. Immediately following the fourth drinking session, animals were tested on the elevated plus maze and evaluated for anxiety-like behaviors. Fos immunoreactivity was assessed in the central and basolateral amygdala, as well as the bed nucleus of the stria terminalis. Results High ethanol drinkers spent significantly more time on the open arms of the plus maze than low ethanol drinkers. High ethanol drinkers also had increased locomotor activity as compared to both low ethanol drinkers and water drinkers. Fos immunoreactivity was positively correlated with ethanol consumption in all brain regions examined, although Fos positive cell counts were only significantly different between high and low ethanol drinkers in the central amygdala. Conclusions Our findings demonstrate that outbred rats will voluntarily consume behaviorally effective doses of ethanol in a short-term access model and ethanol consumption is positively correlated with increased neuronal activation in the central amygdala. PMID:22834974

  6. Functional Alterations in the Dorsal Raphe Nucleus Following Acute and Chronic Ethanol Exposure

    PubMed Central

    Lowery-Gionta, Emily G; Marcinkiewcz, Catherine A; Kash, Thomas L

    2015-01-01

    Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased anxiety-like behavior at both 24 h and 7 days post-ethanol exposure. At 24 h post-ethanol exposure, we observed increased excitability and decreased spontaneous inhibitory transmission (inhibitory postsynaptic currents, IPSCs) in the DR. At 7 days post-ethanol exposure, we observed increased spontaneous and miniature excitatory transmission (excitatory postsynaptic currents, EPSCs). Because acute ethanol alters GABA transmission in other brain regions, we assessed the effects of ex vivo ethanol (50 mM) on miniature IPSCs (mIPSCs) in the DR 24-h post-ethanol exposure. Bath application of ethanol enhanced the amplitude of mIPSCs in cells from ethanol-naive and chronic intermittent ethanol-exposed (CIE) mice, but significantly enhanced the frequency of mIPSCs only in cells from CIE mice, suggesting that DR neurons are more sensitive to the inhibitory effects of acute ethanol following CIE. On the basis of these findings, we hypothesize that net excitation of DR neurons following chronic ethanol exposure contributes to enhanced anxiety during ethanol withdrawal, and that increased sensitivity of DR neurons to subsequent ethanol exposure may mediate acute ethanol's ability to relieve anxiety during ethanol withdrawal. PMID:25120075

  7. Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially affect voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Dopaminergic projections to the medial prefrontal cortex (mPFC) were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) to examine how dopamine (DA) asymmetry in the mPFC influences voluntary ethanol consumption. Differences in nucleus accumbens (NAS) DA neurotransmission have been related to individual differences in locomotor activity and in the rewarding efficacy of ethanol. Therefore, differences in locomotor activity were used to further characterize the effects of unilateral mPFC 6-OHDA lesions on ethanol consumption. Male Long Evans rats were assessed for high versus low levels of spontaneous locomotor activity. DA terminals in the left or right mPFC were unilaterally lesioned with 6-OHDA, resulting in an average DA depletion of 54% and 50%, respectively. After a minimum seven-day recovery period, preference for a 10% ethanol solution vs. water was determined in a 24-h 2-bottle home-cage free-choice paradigm. Left mPFC 6-OHDA lesions increased and right lesions decreased ethanol consumption. These differential effects of left and right lesions were primarily attributable to rats exhibiting low locomotor activity prior to surgery. The present data suggest that right greater than left cortical DA asymmetry in combination with low endogenous NAS DA (predicted by low locomotor activity levels) may increase the vulnerability to abuse ethanol. PMID:10095012

  8. Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice.

    PubMed

    Maiya, Rajani; McMahon, Thomas; Wang, Dan; Kanter, Benjamin; Gandhi, Dev; Chapman, Holly L; Miller, Jacklyn; Messing, Robert O

    2016-08-01

    Reducing expression or inhibiting translocation of protein kinase C epsilon (PKCε) prolongs ethanol intoxication and decreases ethanol consumption in mice. However, we do not know if this phenotype is due to reduced PKCε kinase activity or to impairment of kinase-independent functions. In this study, we used a chemical-genetic strategy to determine whether a potent and highly selective inhibitor of PKCε catalytic activity reduces ethanol consumption. We generated ATP analog-specific PKCε (AS-PKCε) knock-in mice harboring a point mutation in the ATP binding site of PKCε that renders the mutant kinase highly sensitive to inhibition by 1-tert-butyl-3-naphthalen-1-ylpyrazolo[3,4-d]pyrimidin-4-amine (1-NA-PP1). Systemically administered 1-NA-PP1 readily crossed the blood brain barrier and inhibited PKCε-mediated phosphorylation. 1-NA-PP1 reversibly reduced ethanol consumption by AS-PKCε mice but not by wild type mice lacking the AS-PKCε mutation. These results support the development of inhibitors of PKCε catalytic activity as a strategy to reduce ethanol consumption, and they demonstrate that the AS- PKCε mouse is a useful tool to study the role of PKCε in behavior. PMID:26947945

  9. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and ...

  10. Sex differences in adult Wistar rats in the voluntary consumption of ethanol after pre-exposure to ethanol-induced flavor avoidance learning.

    PubMed

    de la Torre, M Lourdes; Escarabajal, M Dolores; Agüero, Ángeles

    2015-10-01

    Vulnerability to ethanol abuse may be a function of the balance between the opposing (aversive and rewarding) motivational effects of the drug. The study of these effects is particularly important for understanding alcohol addiction. Research in this field seems to point out that ethanol effects are determined by a set of internal factors (sex, ethanol intake history, etc.), as well as by environmental conditions surrounding the individual (i.e., stress) and, of course, the interactions between all these factors. This work explores sex differences in sensitivity to aversive effects of ethanol using the procedure of flavor avoidance learning (FAL), as well as the effect of this learning experience on subsequent voluntary ethanol consumption, in adult rats. The results obtained indicated a slight sex based difference in the amount of FAL acquired in that females acquisition was weaker (experiment 1), and a differing influence of previous experience with the aversive effects of ethanol on the voluntary consumption of the drug for each sex (experiment 2). In particular, it was observed that female ethanol-naive rats showed a higher intake level and preference for ethanol than both ethanol-experienced female rats and ethanol-naive male rats. In contrast, the ethanol-experienced male rats showed a greater consumption of and preference for ethanol than ethanol-naive male rats and ethanol-experienced female rats. These data are discussed noting a range of possible explicative factors (sex hormones, hedonic processing, etc.), but further studies are warranted to elucidate the mechanisms by which ethanol pre-exposure influences the subsequent intake of ethanol differently by sex. PMID:26216835

  11. Acute ethanol intoxication and the trauma patient: hemodynamic pitfalls.

    PubMed

    Bilello, John; McCray, Victor; Davis, James; Jackson, Lascienya; Danos, Leigh Ann

    2011-09-01

    Many trauma patients are acutely intoxicated with alcohol. Animal studies have demonstrated that acute alcohol intoxication inhibits the normal release of epinephrine, norepinephrine, and vasopressin in response to acute hemorrhage. Ethanol also increases nitric oxide release and inhibits antidiuretic hormone secretion. This article studies the effects of alcohol intoxication (measured by blood alcohol level, BAL) on the presentation and resuscitation of trauma patients with blunt hepatic injuries. A retrospective registry and chart review was conducted of all patients who presented with blunt liver injuries at an ACS-verified, level I trauma center. Data collected included admission BAL, systolic blood pressure, hematocrit, International Normalized Ratio (INR), liver injury grade, Injury Severity Score (ISS), intravenous fluid and blood product requirements, base deficit, and mortality. From September 2002 to May 2008, 723 patients were admitted with blunt hepatic injuries. Admission BAL was obtained in 569 patients, with 149 having levels >0.08%. Intoxicated patients were more likely to be hypotensive on admission (p = 0.01) despite a lower liver injury grade and no significant difference in ISS. There was no significant difference in the percent of intoxicated patients requiring blood transfusion. However, when blood was given, intoxicated patients required significantly more units of packed red blood cells (PRBC) than their nonintoxicated counterparts (p = 0.01). Intoxicated patients also required more intravenous fluid during their resuscitation (p = 0.002). Alcohol intoxication may impair the ability of blunt trauma patients to compensate for acute blood loss, making them more likely to be hypotensive on admission and increasing their PRBC and intravenous fluid requirements. All trauma patients should have BAL drawn upon admission and their resuscitation should be performed with an understanding of the physiologic alterations associated with acute alcohol

  12. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  13. Chronic Ethanol Consumption Inhibits Postlactational Anabolic Rebuilding in Female Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite significant loss of bone during lactation, bone mineral density (BMD) is restored by a powerful anabolic rebuilding process following weaning. A significant number of women resume alcohol consumption after weaning their offspring from breast feeding. The objectives of the present study were ...

  14. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  15. Long term ethanol consumption promotes hepatic tumorigenesis but impairs normal hepatocyte proliferation in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcoh...

  16. Dopamine D3 Receptor Is Necessary for Ethanol Consumption: An Approach with Buspirone

    PubMed Central

    Leggio, Gian Marco; Camillieri, Giovanni; Platania, Chiara B M; Castorina, Alessandro; Marrazzo, Giuseppina; Torrisi, Sebastiano Alfio; Nona, Christina N; D'Agata, Velia; Nobrega, José; Stark, Holger; Bucolo, Claudio; Le Foll, Bernard; Drago, Filippo; Salomone, Salvatore

    2014-01-01

    Mesolimbic dopamine (DA) controls drug- and alcohol-seeking behavior, but the role of specific DA receptor subtypes is unclear. We tested the hypothesis that D3R gene deletion or the D3R pharmacological blockade inhibits ethanol preference in mice. D3R-deficient mice (D3R−/−) and their wild-type (WT) littermates, treated or not with the D3R antagonists SB277011A and U99194A, were tested in a long-term free choice ethanol-drinking (two-bottle choice) and in a binge-like ethanol-drinking paradigm (drinking in the dark, DID). The selectivity of the D3R antagonists was further assessed by molecular modeling. Ethanol intake was negligible in D3R−/− and robust in WT both in the two-bottle choice and DID paradigms. Treatment with D3R antagonists inhibited ethanol intake in WT but was ineffective in D3R−/− mice. Ethanol intake increased the expression of RACK1 and brain-derived neurotrophic factor (BDNF) in both WT and D3R−/−; in WT there was also a robust overexpression of D3R. Thus, increased expression of D3R associated with activation of RACK1/BDNF seems to operate as a reinforcing mechanism in voluntary ethanol intake. Indeed, blockade of the BDNF pathway by the TrkB selective antagonist ANA-12 reversed chronic stable ethanol intake and strongly decreased the striatal expression of D3R. Finally, we evaluated buspirone, an approved drug for anxiety disorders endowed with D3R antagonist activity (confirmed by molecular modeling analysis), that resulted effective in inhibiting ethanol intake. Thus, DA signaling via D3R is essential for ethanol-related reward and consumption and may represent a novel therapeutic target for weaning. PMID:24584330

  17. Dopamine D3 receptor is necessary for ethanol consumption: an approach with buspirone.

    PubMed

    Leggio, Gian Marco; Camillieri, Giovanni; Platania, Chiara B M; Castorina, Alessandro; Marrazzo, Giuseppina; Torrisi, Sebastiano Alfio; Nona, Christina N; D'Agata, Velia; Nobrega, José; Stark, Holger; Bucolo, Claudio; Le Foll, Bernard; Drago, Filippo; Salomone, Salvatore

    2014-07-01

    Mesolimbic dopamine (DA) controls drug- and alcohol-seeking behavior, but the role of specific DA receptor subtypes is unclear. We tested the hypothesis that D3R gene deletion or the D3R pharmacological blockade inhibits ethanol preference in mice. D3R-deficient mice (D3R(-/-)) and their wild-type (WT) littermates, treated or not with the D3R antagonists SB277011A and U99194A, were tested in a long-term free choice ethanol-drinking (two-bottle choice) and in a binge-like ethanol-drinking paradigm (drinking in the dark, DID). The selectivity of the D3R antagonists was further assessed by molecular modeling. Ethanol intake was negligible in D3R(-/-) and robust in WT both in the two-bottle choice and DID paradigms. Treatment with D3R antagonists inhibited ethanol intake in WT but was ineffective in D3R(-/-) mice. Ethanol intake increased the expression of RACK1 and brain-derived neurotrophic factor (BDNF) in both WT and D3R(-/-); in WT there was also a robust overexpression of D3R. Thus, increased expression of D3R associated with activation of RACK1/BDNF seems to operate as a reinforcing mechanism in voluntary ethanol intake. Indeed, blockade of the BDNF pathway by the TrkB selective antagonist ANA-12 reversed chronic stable ethanol intake and strongly decreased the striatal expression of D3R. Finally, we evaluated buspirone, an approved drug for anxiety disorders endowed with D3R antagonist activity (confirmed by molecular modeling analysis), that resulted effective in inhibiting ethanol intake. Thus, DA signaling via D3R is essential for ethanol-related reward and consumption and may represent a novel therapeutic target for weaning. PMID:24584330

  18. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption

    PubMed Central

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  19. Chronic ethanol consumption impairs spatial remote memory in rats but does not affect cortical cholinergic parameters.

    PubMed

    Pereira, S R; Menezes, G A; Franco, G C; Costa, A E; Ribeiro, A M

    1998-06-01

    We have studied learning, memory and cortical cholinergic parameters after oral administration of 20% v/v ethanol solution to male Fisher rats for 6 months. A group of rats were trained to behave efficiently in an eight-arm radial maze and after that split into two subgroups submitted to ethanol or control treatment. Ethanol-treated rats had more difficulty in relearning the same task 1 year later, compared to ethanol-untreated rats (control). Differences in working memory performance were found, but only in the first 10 training sessions. Another group of rats, which had not been pretrained, was also split into two subgroups submitted to ethanol or control treatment. After that, these rats were trained in the radial maze task for the first time. No significant difference was found between the reference memory performance of the untreated subgroup and the treated one. These two subgroups did not significantly differ in their working memory performance either. Moreover, there were no significant differences between treated and control subjects in the following biochemical brain cortical parameters: in vitro acetylcholinesterase (AChE) activity, and stimulated acetylcholine (ACh) release. This work presents an experimental design that allows assessment of remote memory performance after ethanol chronic consumption and shows that the experimental subject is able to retain the behaviors learned 1 year before. It was concluded that chronic ethanol treatment may cause retrograde amnesia, which does not seem to be linked with a cortical cholinergic deficit. PMID:9632211

  20. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    NASA Astrophysics Data System (ADS)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  1. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo.

    PubMed

    Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho

    2014-09-26

    Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. PMID:25074928

  2. Chronic ethanol consumption in rats produces residual increases in anxiety 4 months after withdrawal.

    PubMed

    Santucci, Anthony C; Cortes, Christian; Bettica, Annemarie; Cortes, Francisco

    2008-03-17

    The present study investigated the long-term effects of ethanol consumption in rats. Subjects were maintained on either an ethanol (alcohol) (2.7-6.7%, v/v) or an isocaloric liquid control diet for 26 consecutive days (M=13.7 g/kg/day). Testing for working memory was conducted in a Morris water maze (2 trials/day for 8 days) and commenced after either a short (19 days) or long (120 days) abstinence period. This was followed by assessment of 72 h retention of passive avoidance. Animals were killed either 41 (short abstinence) or 152 days (long abstinence) post-ethanol and their brains stained with cresyl violet. Assessments of dorsal-ventral and medial-lateral cortical vertices were measured in sections derived from eight coronal planes extending +4.20 to -4.16 mm from Bregma. Results indicated that subjects in the ethanol/long abstinence group exhibited increased state anxiety due to their propensity to be thigmotaxtic (i.e., wall-hugging) in the water maze. Unfortunately, such a swim pattern precluded assessment of working memory in our subjects. No evidence of ethanol-induced memory decrements were observed on retention of passive avoidance. There was some evidence that animals in the ethanol/long abstinent group suffered cortical thinning and slight compression of the CA1 layer within the hippocampus, although age might have contributed to the former effect. It was concluded that chronic ethanol consumption increases anxiety even after an extended period of withdrawal and may conspire with age to affect cortical integrity. PMID:18061285

  3. Population-Based Study of Baseline Ethanol Consumption and Risk of Incident Essential Tremor

    PubMed Central

    Louis, Elan D.; Benito-León, Julián; Bermejo-Pareja, Félix

    2009-01-01

    Background Recent postmortem studies have demonstrated pathological changes, including Purkinje cell loss, in the cerebellum in essential tremor (ET). Toxic exposures that compromise cerebellar tissue could lower the threshold for developing ET. Ethanol is a well-established cerebellar toxin, resulting in Purkinje cell loss. Objective To test whether higher baseline ethanol consumption is a risk factor for the subsequent development of incident ET. Methods Lifetime ethanol consumption was assessed at baseline (1994-1995) in a prospective, population-based study in central Spain of 3,285 elderly participants, 76 of whom developed incident ET by follow-up (1997-1998). Results In a Cox proportional hazards model adjusting for cigarette pack-years, depressive symptoms and community, the baseline number of drink-years was marginally associated with higher risk of incident ET (relative risk, RR = 1.003, p = 0.059). In an adjusted Cox model, highest baseline drink-year quartile doubled the risk of incident ET (RR = 2.29, p = 0.018) while other quartiles were associated with more modest elevations in risk (RR3rd quartile = 1.82 [p = 0.10], RR2nd quartile = 1.75 [p = 0.10], RR1st quartile = 1.43 [p = 0.34] vs. non-drinkers [RR = 1.00]). With each higher drink-year quartile, risk of incident ET increased an average of 23% (p = 0.01, test for trend). Conclusions Higher levels of chronic ethanol consumption increased the risk of developing ET. Ethanol is often used for symptomatic relief; studies should explore whether higher consumption levels are a continued source of underlying cerebellar neurotoxicity in patients who already manifest this disease. PMID:19359288

  4. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  5. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice

    PubMed Central

    Ho, Ada Man-Choi; Qiu, Yanyan; Jia, Yun-Fang; Aguiar, Felipe S.; Hinton, David J.; Karpyak, Victor M.; Weinshilboum, Richard M.; Choi, Doo-Sup

    2016-01-01

    Background Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). Since negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergist effect of FDA approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol consumption in stress-induced depressed mice. Methods Forty singly-housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and ethanol consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/day), escitalopram (5 mg/kg; twice/day), or their combination (n = 9–11/drug group/stress group). Two-bottle choice limited access drinking of 15% ethanol and tap water was performed 3 hours into dark phase for 2 hours immediately after the dark phase daily injection. Ethanol drinking was monitored for another 7 days without drug administration. Results Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their non-stressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher ethanol consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in ethanol consumption in non-stressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the post-drug administration period. Conclusions The combination of

  6. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  7. Lesions of the Lateral Habenula Increase Voluntary Ethanol Consumption and Operant Self-Administration, Block Yohimbine-Induced Reinstatement of Ethanol Seeking, and Attenuate Ethanol-Induced Conditioned Taste Aversion

    PubMed Central

    Schwager, Andrea L.; Sinclair, Michael S.; Tandon, Shashank; Taha, Sharif A.

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug. PMID:24695107

  8. HINDBRAIN AND CRANIAL NERVE DYSMORPHOGENESIS RESULT FROM ACUTE MATERNAL ETHANOL ADMINISTRATION

    EPA Science Inventory

    Acute exposure of mouse embryos to ethanol during stages of hindbrain segmentation results in excessive cell death in specific cell populations. This study details the ethanol-induced cell loss and defines the subsequent effects of this early insult on rhombomere and cranial ner...

  9. Acute effects of tea consumption on attention and mood.

    PubMed

    Einöther, Suzanne J; Martens, Vanessa E

    2013-12-01

    Tea has historically been associated with mood and performance benefits, such as relaxation and concentration. This review summarizes the research on the acute effects of tea, and its ingredients theanine and caffeine, on attention and mood. Consistent with abundant research on the benefits of caffeine, the performance benefits of tea were identified in a number of studies, with particularly consistent evidence for improved attention. Tea consumption also consistently improved self-reported alertness and arousal, whereas effects on pleasure or relaxation were less consistent. In addition to the research on caffeine in real-life performance, 2 recent studies have provided a broader perspective on tea's effects on psychological function in that they showed beneficial effects in related areas such as work performance and creativity. These studies showed the validity of laboratory findings by supporting the idea that tea consumption has acute benefits on both mood and performance in real-life situations. PMID:24172303

  10. Sex differences in mania phenotype and ethanol consumption in the lateral hypothalamic kindled rat model

    PubMed Central

    Abulseoud, O A; Gawad, N A; Mohamed, K; Vadnie, C; Camsari, U M; Karpyak, V; Frye, M A; Choi, D-S

    2015-01-01

    Sex differences have been observed in mania phenotypes in humans. However the mechanisms underlying this difference are poorly understood. Activating the lateral hypothalamus is implicated in manic-like behaviors in rodents. Using newly established lateral hypothalamus kindled (LHK) rat mania model, we investigated sex differences of manic-like behaviors and its correlation with voluntary ethanol intake. We stimulated the lateral hypothalamus bilaterally in the male and female Wistar rats over five consecutive days. We recorded and quantified kindling-induced behaviors for each individual animal. We also assessed ethanol consumption using a two-bottle choice ethanol drinking as well as circadian locomotor activity counts daily throughout the experiment. We found notable sex differences in several aspects of manic-like behaviors during kindling. Males exhibited a significantly increased locomotor activity during the light phase, and reduced rest interval. On the other hand, females displayed significantly higher ethanol consumption and more frequent rearing behavior. However, no sex differences were present in the duration of sexual, feeding or grooming behaviors or in dark-phase activity counts. The excessive alcohol intake in LHK female rats is reminiscent of clinically reported sex differences in bipolar patients while the other phenotypic sex differences such as rearing and locomotor activity are less clearly described in clinical studies. Overall, our results lend further evidence for the validity of the LHK rat as a useful model to study brain region-specific molecular changes during mania and its correlation with alcohol use disorders. PMID:25803497

  11. Comparative study of the damage produced by acute ethanol and acetaldehyde treatment in a human fetal hepatic cell line.

    PubMed

    Olivares, I P; Bucio, L; Souza, V; Cárabez, A; Gutiérrez-Ruiz, M C

    1997-06-27

    The effects of acute ethanol and acetaldehyde treatment on cell proliferation, cell adhesion capacity, neutral red incorporation into lysosomes, glutathione content, protein sulfhydryl compounds, lipid peroxidation, inner mitochondrial membrane integrity (MTT test), lactate dehydrogenase activity (LDH) and ultrastructural alterations were investigated in a human fetal hepatic cell line (WRL-68 cells). WRL-68 cells were used, due to the fact that, although this cell line expresses some hepatic characteristics, it does not express alcohol dehydrogenase or cytochrome P450 activity, so it could be a good model to study the effect of the toxic agents per se. Cells were exposed during 120 min with 200 mM ethanol or 10 mM acetaldehyde. Under these conditions, cells presented 100% viability and no morphological alteration was observed by light microscopy. Acetaldehyde-treated cells reduced their proliferative capacity drastically while the ethanol-treated ones presented no difference with control cells. Cell adhesion to substrate, measured as time required to adhere to the substrate and time required to detach from the substrate, was diminished in acetaldehyde WRL-68-treated cells. Cytotoxicity measures as neutral red and MTT test showed that acetaldehyde-treated cells presented more damage than ethanol-treated ones. Cellular respiratory capacity was compromised by acetaldehyde treatment due to 40% less oxygen consumption than control cells. Lipid peroxidation values, measured as malondialdehyde production, were higher in ethanol-treated WRL-68 cells (127%) than in acetaldehyde-treated ones (60%) to control cell values. Lactate dehydrogenase activity (LDH) in extracellular media of ethanol-treated cells presented the highest values. GSH content was reduced 95% and thiol protein content was diminished severely in acetaldehyde-treated cells. Transmission electron microscopy showed more ultrastructural alterations in cells treated with acetaldehyde. The results indicate that

  12. Differential effects of naltrexone on cardiac, subjective and behavioural reactions to acute ethanol intoxication

    PubMed Central

    Peterson, Jordan B.; Conrod, Patricia; Vassileva, Jasmin; Gianoulakis, Christina; Pihl, Robert O.

    2006-01-01

    Objective Alcohol may have psychomotor stimulant properties during the rising limb of the blood alcohol curve at commonly self-administered doses. Increased heart rate (HR) immediately after alcohol consumption may serve as an indicator or marker of such properties, which appear to be potentially opiate-mediated and dopamine-dependent. Naltrexone, an opiate antagonist, has been used successfully in the treatment of alcoholism and may produce its therapeutic effects through its effects on alcohol metabolism or by blocking alcohol's rewarding effects. We hypothesized that, if naltrexone blocks the psychomotor stimulant properties of ethanol, then it would decrease or eliminate the HR increase associated with acute alcohol intoxication and that this would be independent of any effect on alcohol metabolism. Methods Twenty male subjects were administered placebo and alcohol (1.0 mL 95% USP ethanol/kg body weight) in a laboratory setting on one day and naltrexone (50 mg) and alcohol on another (counterbalanced). We assessed all subjects for a change in HR and for a subjective and behavioural response from 35 to 170 minutes after drug or alcohol administration. Results The placebo and alcohol mix produced a significant mean HR increase from baseline (F1,95 = 46.01, p < 0.0001, Cohen's d = 0.62), while naltrexone and alcohol did not (nonsignificant). The significant effects of naltrexone on blood alcohol level did not account for the effect of naltrexone on alcohol-induced HR change but did account for alterations in subjective and behavioural response to alcohol. Conclusions Naltrexone appears to substantially reduce the HR increase that is characteristic of alcohol intoxication. This finding appears to lend moderate support to the notions that, first, naltrexone has differential effects on alcohol reactions and, second, that it specifically blocks the acute psychomotor stimulant properties of alcohol. PMID:17136216

  13. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption

    SciTech Connect

    Dicker, E.; Cederbaum, A.I. )

    1988-10-01

    Enzymatic and nonenzymatic mixed-function oxidase systems have been shown to generate an oxidant that catalyzes the inactivation of glutamine synthetase and other metabolic enzymes. Recent studies have shown that microsomes isolated from rats chronically fed ethanol generate reactive oxygen intermediates at elevated rates compared with controls. Microsomes from rats fed ethanol were found to be more effective than control microsomes in catalyzing the inactivation of enzymes added to the incubation system. The enzymes studied were alcohol dehydrogenase, lactic dehydrogenase, and pyruvate kinase. The inactivation process by both types of microsomal preparations was sensitive to catalase and glutathione plus glutathione peroxidase, but was not affected by superoxide dismutase or hydroxyl radical scavengers. Iron was required for the inactivation of added enzymes; microsomes from the rats fed ethanol remained more effective than control microsomes in catalyzing the inactivation of enzymes in the absence or presence of several ferric complexes. The inactivation of enzymes was enhanced by the addition of menadione or paraquat to the microsomes, and rates of inactivation were higher with the microsomes from the ethanol-fed rats. The enhanced generation of reactive oxygen intermediates and increased inactivation of enzymes by microsomes may contribute toward the hepatotoxic effects associated with ethanol consumption.

  14. Inhibition of bacterial translocation by chronic ethanol consumption in the rat.

    PubMed

    Braulio, V B; De Queiroz Côrtes, M; Borges-Neto, A A; Bastos, M A; Cruz, M S; Fracalanza, S E

    2001-12-01

    Chronic ethanol ingestion has been associated with small intestine morphological changes, disrupted host mucosal defenses and bacterial overgrowth. Since bacterial translocation (BT) may result from such alterations, we have investigated the potential effect of chronic ethanol consumption on BT. For this purpose, male Wistar rats were fed a liquid diet containing 5% v/v ethanol for 4 weeks (EG, n=16), and a pair-fed group received equal daily amounts of calories in a similar diet without ethanol (PFG, n=16). On experimental day 29, distal ileum ligature and small intestine inoculation of a tetracycline-resistant E. coli strain (Tc E. coli R6) followed by duodenal ligature was performed. After 1 or 5 h post inoculation, mesenteric lymph nodes, liver, spleen and kidney were excised. Unexpectedly, rats of the EG presented markedly less BT to the mesenteric lymph nodes (p<0.001) and to the other organs examined compared to rats of the PFG. This BT inhibition was observed at 1 and 5 h after bacterial inoculation, and may be attributed exclusively to chronic ethanol ingestion. Since alcoholism is well known to decrease host immunity, these results suggest that other factors, independent of the immune function, may be involved in the BT inhibition observed in this study. PMID:11846721

  15. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. PMID:21803530

  16. Synaptic action of ethanol on cerebellar auditory granule cells reveals acute tolerance

    SciTech Connect

    Huang, C.M.; Liu, G.; Huang, R.H. )

    1991-03-11

    The cerebellum is very sensitive to acute intoxication by ethanol. The authors have recorded electrophysiological responses of granule cells to auditory stimulation from the posterior cerebellar vermis of cats before and after a relatively low dose of ethanol. Auditory responses of granule cells were severely inhibited by ethanol at a transient, peak ethanol concentration of 15-18 mM in the cerebrospinal fluid (CSF). Thereafter, the clearance of ethanol from CSF followed an exponential time course, with 50% of the CSF ethanol being cleared with every passing hour. Auditory responses of granule cells returned to control levels within 60-90 minutes, despite the presence of a DSF ethanol concentration at 8-10mM, indicating acute tolerance. Moreover, a second, identical dose of ethanol, delivered two hours after the first dose produced an attenuated inhibition in the auditory response of cerebellar granule cells. The inhibition took a longer time to be evident but a shorter time to recover than that followed by the first dose of ethanol.

  17. PKCε plays a causal role in acute ethanol-induced steatosis

    PubMed Central

    Kaiser, J. Phillip; Beier, Juliane I.; Zhang, Jun; Hoetker, J. David; von Montfort, Claudia; Guo, Luping; Zheng, Yuting; Monia, Brett P.; Bhatnagar, Aruni; Arteel, Gavin E.

    2009-01-01

    Steatosis is a critical stage in the pathology of alcoholic liver disease (ALD), and preventing steatosis could protect against later stages of ALD. PKCε has been shown to contribute to hepatic steatosis in experimental non-alcoholic fatty liver disease (NAFLD); however, the role of PKCε in ethanol-induced steatosis has not been determined. The purpose of this study was to therefore test the hypothesis that PKCε contributes to ethanol-induced steatosis. Accordingly, the effect of acute ethanol on indices of hepatic steatosis and insulin signaling were determined in PKCε knockout mice and in wild-type mice that received an antisense oligonucleotide (ASO) to knockdown PKCε expression. Acute ethanol (6 g/kg i.g.) caused a robust increase in hepatic non-esterified free fatty acids (NEFA), which peaked 1 h after ethanol exposure. This increase in NEFA was followed by elevated diacylglycerols (DAG), as well as by the concomitant activation of PKCε. Acute ethanol also changed the expression of insulin-responsive genes (i.e. increased G6Pase, downregulated GK), in a pattern indicative of impaired insulin signaling. Acute ethanol exposure subsequently caused a robust increase in hepatic triglycerides. The accumulation of triglycerides caused by ethanol was blunted in ASO-treated or in PKCε−/− mice. Taken together, these data suggest that the increase in NEFA caused by hepatic ethanol metabolism leads to an increase in DAG production via the triacylglycerol pathway. DAG then subsequently activates PKCε, which then exacerbates hepatic lipid accumulation by inducing insulin resistance. These data also suggest that PKCε plays a causal role in at least the early phases of ethanol-induced liver injury. PMID:19022218

  18. Chronic and acute ethanol treatment modifies fluidity and composition in plasma membranes of a human hepatic cell line (WRL-68).

    PubMed

    Gutiérrez-Ruiz, M C; Gómez, J L; Souza, V; Bucio, L

    1995-04-01

    The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanol in vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to the in vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to the in vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments. PMID:7583873

  19. Betaine (trimethylglycine) as a nutritional agent prevents oxidative stress after chronic ethanol consumption in pancreatic tissue of rats.

    PubMed

    Kanbak, Gungör; Dokumacioglu, Ali; Tektas, Aysegul; Kartkaya, Kazim; Erden Inal, Mine

    2009-03-01

    In this study, we investigated the free radical-mediated cytotoxic effects of chronic ethanol consumption on the pancreatic tissue and a possible cytoprotective effect of betaine as a methyl donor and an important participant in the methionine cycle. Twenty-four male Wistar rats were divided into control, ethanol, and ethanol+betaine groups. Prior to sacrifice, all groups were fed 60 mL/diet per day for two months. Rats in the ethanol group were fed with ethanol 8 g/kg/day. The ethanol+betaine groups were fed ethanol plus betaine (0.5 % w/v). Malondialdehyde levels and adenosine deaminase, superoxide dismutase, and xanthine oxidase activities were determined in pancreatic tissues of rats. Compared to control group, MDA levels increased significantly in the ethanol group (p<0.05). MDA levels in the ethanol+betaine group were significantly decreased compared to the ethanol group (p<0.05). ADA activity in the ethanol+betaine group decreased significantly when compared to the ethanol group (p<0.05). XO activities in ethanol-fed rats were decreased significantly compared to the control group (p<0.05). XO activity in the betaine group was increased significantly (p<0.05) compared to the ethanol group. SOD activity in the ethanol group decreased significantly compared to control group (p<0.001). SOD activity in the ethanol+betaine group decreased significantly (p<0.05) compared to the control group. We think that betaine, as a nutritional methylating agent, may be effective against ethanol-mediated oxidative stress in pancreatic tissue. PMID:20108209

  20. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  1. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  2. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training.

    PubMed

    Engi, Sheila A; Planeta, Cleopatra S; Crestani, Carlos C

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  3. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training

    PubMed Central

    Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  4. Increased ethanol consumption despite taste aversion in mice with a human tryptophan hydroxylase 2 loss of function mutation.

    PubMed

    Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin

    2015-11-16

    Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. PMID:26497913

  5. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  6. [Rapid tolerance to ethanol and high voluntary alcohol consumption in mice selected for brain weight].

    PubMed

    Salimov, R M; Markina, N V; Perepelkina, O V; Maĭskiĭ, A I; Poletaeva, I I

    2003-01-01

    Mice of two strains selected for small and large brain weight (SB and LB, respectively) had free access to 10% alcohol and water within three months. At the end of this period, they consumed alcohol in daily dose of 6.9 +/- 0.9 and 7.5 +/- 0.8 g/kg, respectively. After a period of imposed three-day abstinence, the alcohol consumption by the mice of these strains increased by 68.6 and 49.3%, respectively. Exploratory behavior of independent groups of mice from these strains was studied in the closed cross-maze. The animals were injected with ethanol (2.4 g/kg, i.p.) or vehicle twice with a weekly interval. In SB mice, the first ethanol administration increased the total time of maze exploration and the number of stereotyped visits. The second ethanol administration did not increase the time of exploration but increased the number of stereotyped visits even to the greater extent. The latter indicates the development of rapid tolerance and sensitization of these behaviors to the drug, respectively. The ethanol administration inhibited exploratory patrolling behavior and defecations. In LB mice, both the first and second ethanol administrations increased the number of stereotyped visits and decreased the exploration time and the number of defecations. The results do not support the psychomotor stimulant hypothesis of alcohol addiction. It is proposed that SB and LB mice may serve as models for Cloninger's types 1 and 2 alcoholics and may be useful for investigation of neuropharmacological mechanisms of stimulatory and inhibitory effects of ethanol. PMID:12669510

  7. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling.

    PubMed

    Darlington, T M; McCarthy, R D; Cox, R J; Miyamoto-Ditmon, J; Gallego, X; Ehringer, M A

    2016-06-01

    Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running. PMID:27063791

  8. Maternal metallothionein and zinc after acute ethanol exposure during gestation in the rat

    SciTech Connect

    Harris, J.E. )

    1992-02-26

    Acute exposure of the rat fetus to ethanol at critical periods can cause growth retardation and brain damage; the mechanism(s) is not known. Ethanol may cause redistribution of maternal zinc which results in fetal zinc deficiency and subsequent interruption of growth and development. The purpose was to determine if acute ethanol administration to the pregnant rat alters Zn and the Zn binding protein metallothionein (MT) in selected tissues. On gestational day (gd) 14, eighteen pregnant Sprague-Dawley rats were divided into groups. By intragastric tube, ethanol treated dams were given ethanol and pairfed controls were given a 0.85% NaCl solution. On gd 15, intragastric feedings were repeated. Throughout, the Lieber-DeCarli control diet was fed (adlibitum to untreated controls and ethanol treated dams and in appropriate quantities to pair fed controls). Blood ethanol concentrations at 90 minutes after the ethanol dose were 154 {plus minus} 46 and 265 {plus minus} 110 mg% on gd 14 and 15, respectively.

  9. Acute extracellular ethanol load does not produce hyponatremia by internal osmoregulation

    SciTech Connect

    Jackson, J.E.; Tzamaloukas, A.H.; Long, D.A.

    1986-03-05

    Hyponatremia is frequently present in subjects intoxicated with ethanol. To study whether an acute increase in extracellular osmolality by addition of ethanol creates any clinically appreciable osmotic shift of intracellular water extracellularly, they infused over 20 sec 11 mmol/kg of ethanol intravenously into 5 anesthetized dogs (2 with intact renal function, 3 anuric) and measured plasma sodium and ethanol concentrations and osmolality at frequent intervals for 100 min after the end of the infusion. For a range of ethanol concentration between 4 and 120 mmol/l, changes in osmolality were equal to ethanol concentration in plasma water (y = -0.49 + 1.06 x mosm/kg per mmol/l, r = 0.981, p < 0.01). Plasma sodium concentration remained unchanged from baseline throughout the experiments, even at 1 min post-infusion, when osmolality was 78 +/- 25 mosm/kg above the baseline. An acute increase in extracellular osmolality created by rapid intravenous infusion of a large dose of ethanol does not create any osmotic shift of intracellular water extracellularly, that can be detected by dilution of extracellular sodium. The mechanism of hyponatremia in ethanol intoxication is not internal osmoregulation, but abnormalities in external balance of body water and/or solute.

  10. Effect of chronic ethanol consumption on glycosylation processes in rat liver microsomes and Golgi apparatus.

    PubMed

    Cottalasso, D; Gazzo, P; Dapino, D; Domenicotti, C; Pronzato, M A; Traverso, N; Bellocchio, A; Nanni, G; Marinari, U M

    1996-01-01

    Previous studies have demonstrated that acute ethanol intoxication affects various steps of protein glycosylation at the level of rat liver endoplasmic reticulum and Golgi apparatus. The aim of this investigation was to demonstrate whether chronic ethanol intake can induce definitive changes of liver glycoprotein processing. Rats were given ethanol by liquid diet for 8 weeks. At the end of this period the triglyceride levels in liver homogenate and microsomes were significantly higher than in controls. Isolated hepatocytes prelabelled with [3H]Na palmitate and [14C]glucosamine showed a significant storage of the lipid and carbohydrate radioactivity in microsomes and Golgi apparatus and a significant impairment of labelled glycolipoprotein secretion. Changes of the glycosylation steps were observed both in endoplasmic reticulum and in Golgi apparatus: in the former the levels of dolichyl phosphate, which is rate-limiting for the synthesis of glycoprotein, showed a significant reduction; in the latter the activity of the main enzymes responsible for the terminal glycosylation process was significantly decreased. These data suggest that an impairment of glycoprotein maturation may be involved in the pathogenesis of liver injury induced by chronic ethanol intake. PMID:8672174

  11. Chronic ethanol consumption induces mitochondrial protein acetylation and oxidative stress in the kidney

    PubMed Central

    Harris, Peter S.; Roy, Samantha R.; Coughlan, Christina; Orlicky, David J.; Liang, Yongliang; Shearn, Colin T.; Roede, James R.; Fritz, Kristofer S.

    2015-01-01

    In this study, we present the novel findings that chronic ethanol consumption induces mitochondrial protein hyperacetylation in the kidney and correlates with significantly increased renal oxidative stress. A major proteomic footprint of alcoholic liver disease (ALD) is an increase in hepatic mitochondrial protein acetylation. Protein hyperacetylation has been shown to alter enzymatic function of numerous proteins and plays a role in regulating metabolic processes. Renal mitochondrial targets of hyperacetylation include numerous metabolic and antioxidant pathways, such as lipid metabolism, oxidative phosphorylation, and amino acid metabolism, as well as glutathione and thioredoxin pathways. Disruption of protein lysine acetylation has the potential to impair renal function through metabolic dysregulation and decreased antioxidant capacity. Due to a significant elevation in ethanol-mediated renal oxidative stress, we highlight the acetylation of superoxide dismutase, peroxiredoxins, glutathione reductase, and glutathione transferase enzymes. Since oxidative stress is a known factor in ethanol-induced nephrotoxicity, we examined biochemical markers of protein hyperacetylation and oxidative stress. Our results demonstrate increased protein acetylation concurrent with depleted glutathione, altered Cys redox potential, and the presence of 4-HNE protein modifications in our 6-week model of early-stage alcoholic nephrotoxicity. These findings support the hypothesis that ethanol metabolism causes an influx of mitochondrial metabolic substrate, resulting in mitochondrial protein hyperacetylation with the potential to impact mitochondrial metabolic and antioxidant processes. PMID:26177469

  12. Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat.

    PubMed

    Adermark, Louise; Jonsson, Susanne; Ericson, Mia; Söderpalm, Bo

    2011-12-01

    Recent research suggests that adaptations elicited by drugs of abuse share common features with traditional learning models, and that drugs of abuse cause long-term changes in behavior by altering synaptic function and plasticity. In this study, endocannabinoid (eCB) signaling in the dorsolateral striatum, a brain region vital for habit formation, was evaluated in acutely isolated brain slices from ethanol (EtOH)-consuming rats and control rats. EtOH-consuming rats had free access to a 20% EtOH solution for three 24 hour sessions a week during seven weeks and consumed an average of 3.4 g/kg per session. eCB-mediated long-lasting disinhibition (DLL) of population spike (PS) amplitude induced by moderate frequency stimulation was impaired in EtOH-consuming rats, and was not restored by the muscarinic receptor antagonist scopolamine (10 μM). The lack of DLL could be linked to a reduced GABA(A) receptor tone, since bicuculline-mediated disinhibition of striatal output was significantly reduced in slices from EtOH-consuming rats. However, eCB signaling induced by high frequency stimulation (HFS) was also impaired in slices from EtOH-consuming rats and isolated control rats. Activation of presynaptic cannabinoid 1 receptors (CB1R) with WIN55,212-2 (250 nM, 1 μM) significantly modulated PS amplitude in slices from age-matched control rats while slices from EtOH-consuming rats remained unaffected, indicating that eCB signaling is inhibited at a level that is downstream from CB1R activation. Intermittent alcohol intake for seven weeks might thus be sufficient to modulate a presynaptic mechanism that needs to be synergized with CB1R activation for induction of long-term depression (LTD). In conclusion, alcohol consumption inhibits striatal eCB signaling in a way that could be of importance for understanding the neurological underpinnings of addictive behavior. PMID:21251919

  13. Acute Tryptophan Depletion and Sweet Food Consumption by Overweight Adults

    PubMed Central

    Pagoto, Sherry L.; Spring, Bonnie; McChargue, Dennis; Hitsman, Brian; Smith, Malaina; Appelhans, Bradley; Hedeker, Donald

    2009-01-01

    Serotonergic involvement has been implicated in preferential consumption of treat foods. We tested the effect of acute tryptophan depletion (ATD) on food consumption by overweight and lean adults with and without a history of recurrent major depressive disorder (MDD). ATD and taste-matched placebo challenges were administered double-blind in counter-balanced order. Participants were classified as lean (n = 36) or overweight (n=19) on the basis of body mass index (BMI). Total calorie, carbohydrate, protein, and sweet food consumption were assessed via a test meal 8-hours following ATD. Four food items of comparable palatability were offered as a part of the test: two sweet (one carbohydrate-rich, and one protein-rich) and two non-sweet (one carbohydrate-rich, and one protein-rich). As compared to the placebo challenge, ATD significantly increased sweet calorie intake among overweight participants and increased their propensity to consume sweet food first before any other type of food. Lean participants’ sweet calorie intake and food preference were unaffected by ATD. Findings suggest serotonergic involvement in the sweet food consumption by overweight individuals. PMID:19171315

  14. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis

    PubMed Central

    Jeanblanc, Jerome; Logrip, Marian L.; Janak, Patricia H.; Ron, Dorit

    2013-01-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494–13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-γ (PLC-γ) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-γ or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS. PMID:23189980

  15. Development of tolerance to the inhibitory effects of ethanol in the rat isolated vas deferens: effect of acute and chronic ethanol administration in vivo.

    PubMed Central

    DeTurck, K. H.; Pohorecky, L. A.

    1986-01-01

    Contractions of the rat vas deferens elicited by the addition of noradrenaline (NA), K+-depolarizing solutions or by electrical stimulation were recorded before and after incubation with ethanol 181 mM. In tissues from untreated rats, the contractions were inhibited 40-50% by such exposure. Injection of ethanol (2 g kg-1) significantly attenuated ethanol's reduction of peak tension generated by the lowest concentration of NA (10(-4) mM). Chronic administration of ethanol, 18-14 g kg-1 daily for two weeks, resulted in significant tolerance to ethanol. Tissues of treated animals demonstrated ethanol-induced decreases of roughly one-half those of the maltose dextrin (isocaloric) and water (fluid control) groups. This tolerance persisted for at least 48 h after ethanol treatment had been terminated. Overall, the data suggest that ethanol acts both pre- and postsynaptically to produce acute inhibition of smooth muscle contractions or tolerance to these actions upon chronic exposure. PMID:3730699

  16. Effect of ethanol consumption during gestation on maternal-fetal amino acid metabolism in the rat

    SciTech Connect

    Lin, G.W.

    1981-01-01

    The distribution of /sup 14/C-alpha-aminoisobutyric acid (AIB), administered intravenously, in maternal, fetal and placental tissues was examined in the rat on gestation-day 21. Ethanol consumption during gestation (day 6 through 21) significantly reduced the uptake of AIB by the placenta and fetus while exerting no influence on maternal tissue AIB uptake. The concentration of fetal plasma free histidine was decreased 50% as a result of maternal ethanol ingestion, but the free histidine level of maternal plasma was not altered. Since no effect on protein content of fetal tissue could be detected, it is speculated that reduced histidine to the fetus might significantly alter the amounts of histamine and carnosine formed via their precursor. The significance of these findings in relation to the Fetal Alcohol Syndrome is discussed.

  17. A rodent model of low- to moderate-dose ethanol consumption during pregnancy: patterns of ethanol consumption and effects on fetal and offspring growth.

    PubMed

    Probyn, Megan E; Zanini, Simone; Ward, Leigh C; Bertram, John F; Moritz, Karen M

    2012-01-01

    It is unknown whether low to moderate maternal alcohol consumption adversely affects postnatal health. The aim of the present study was to develop a rodent model of low-moderate-dose prenatal ethanol (EtOH) exposure. Sprague-Dawley rats were fed a liquid diet with or without 6% v/v EtOH throughout gestation and the pattern of dietary consumption determined. Fetal bodyweights and hepatic alcohol-metabolising gene expression were measured on embryonic Day (E) 20 and offspring growth studied until 1 year. At E8 the plasma EtOH concentration was 0.03%. There was little difference in dietary consumption between the two treatment groups. At E20, EtOH-exposed fetuses were significantly lighter than controls and had significantly decreased ADH4 and increased CYP2E1 gene expression. Offspring killed on postnatal Day (PN) 30 did not exhibit any growth deficits. Longitudinal repeated measures of offspring growth demonstrated slower growth in males from EtOH-fed dams between 7 and 12 months of age; a cohort of male pups killed at 8 months of age had a reduced crown-rump length and kidney weight. In conclusion, a liquid diet of 6% v/v EtOH fed to pregnant dams throughout gestation caused a 3-8% reduction in fetal growth and brain sparing, with growth differences observed in male offspring later in life. This model will be useful for future studies on the effects of low-moderate EtOH on the developmental origins of health and disease. PMID:22781937

  18. Effects of chronic dietary beer and ethanol consumption on experimental colonic carcinogenesis by azoxymethane in rats.

    PubMed

    Hamilton, S R; Hyland, J; McAvinchey, D; Chaudhry, Y; Hartka, L; Kim, H T; Cichon, P; Floyd, J; Turjman, N; Kessie, G

    1987-03-15

    Epidemiological studies have shown an association between consumption of alcoholic beverages, particularly beer, and carcinoma of the large bowel, especially the rectum. We studied the effects of chronic dietary beer and ethanol consumption on experimental colonic carcinogenesis, fecal bile acid and neutral sterol levels, fecal bacterial flora, and colonic epithelial DNA synthesis. Ten-week-old male Fischer 344 rats were pair fed throughout the study with Lieber-DeCarli-type liquid diets providing comparable total carbohydrates, proteins, fats, and calories. The diets provided 23 or 12% of calories as alcohol in beer (Hi-Beer and Lo-Beer groups), 18 or 9% of calories as reagent ethanol (Hi-EtOH and Lo-EtOH groups), or no alcohol (control group). After 3 weeks of dietary acclimatization, 10 weekly s.c. injections of the bowel carcinogen azoxymethane, 7 mg/kg, were given (weeks 1-10). At necropsy in week 26, the high alcohol groups (Hi-Beer and Hi-EtOH) showed a significantly reduced incidence of tumors in the right colon (42 and 46% versus 81% in control, P less than 0.01 and P = 0.02) but no effect on left colonic tumorigenesis. By contrast, the low alcohol groups (Lo-Beer and Lo-EtOH) showed a trend toward increased incidence and proportion of tumors in the left colon (incidence of 42 and 35% versus 15% in control, P = 0.06 for Lo-Beer; 28 and 30% of tumors in left colon versus 11%, P = 0.08 and P = 0.07) but no effect on right colonic tumorigenesis. Numbers of right colonic tumors were inversely correlated with alcohol consumption of all rats (r = -0.350, P less than 0.001), but left colonic tumors were not correlated. Fecal bile acid and neutral sterol levels, fecal bacterial counts, and colonic epithelial DNA synthesis did not correlate with the effects of alcohol consumption on colonic tumorigenesis. Our findings suggest that: modulation of experimental colonic tumorigenesis by chronic dietary beer and ethanol consumption was due to alcohol rather than other

  19. Evaluation of acute skin irritation and phototoxicity by aqueous and ethanol fractions of Angelica keiskei

    PubMed Central

    LEE, SANG-HAN

    2013-01-01

    In this study, to assess whether aqueous and ethanol fractions of Angelica keiskei induce acute skin irritation and phototoxicity, acute skin irritancy and phototoxicity tests were performed. The skin of rabbits or guinea pigs was treated with these fractions (100 mg/dose) and whether the animals sustained significant skin damage was determined. The data demonstrated that the aqueous and ethanol fractions of Angelica keiskei did not induce acute toxicity in the skin of the animals, as assessed by anatomical and pathological observations. The results from the present study suggest that these aqueous and ethanol fractions of Angelica keiskei have promising potential uses as cosmetic ingredients that do not induce significant levels of skin irritation or phototoxicity. PMID:23251240

  20. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    SciTech Connect

    Creighton, J.A.; Rudeen, P.K.

    1988-01-01

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effect upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.

  1. Alterations in rat brain polyphosphoinositide metabolism due to acute ethanol administration.

    PubMed

    Chandrasekhar, R; Huang, H M; Sun, G Y

    1988-04-01

    The effects of acute ethanol administration on the polyphosphoinositide metabolism of rat brain cerebral cortex were examined. Intracerebral injections of [gamma-32P]ATP proved to be an effective in vivo method to prelabel brain phospholipids, especially the polyphosphoinositides. High acute doses of ethanol (8 or 6 g/kg b.wt.) administered by gavage significantly inhibited the breakdown of polyphosphoinositides as judged by an elevation in the concentration as well as the labeling of these compounds. Concomitantly, there was a significant reduction in the level of diacylglycerols. Low acute doses of ethanol (2 g/kg b.wt.) did not seem to have any effects on the basal levels or labeling of these compounds. The changes in polyphosphoinositide labeling due to ethanol intoxication were reverted to near control values when animals regained their righting reflex (approximately 4 hr). These studies demonstrate that, under normal conditions, polyphosphoinositides and diacylglycerols are maintained in a dynamic equilibrium and that acute doses of ethanol can suppress the signal transduction process and disturb this equilibrium. PMID:2834532

  2. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    SciTech Connect

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.; Ruginsk, Silvia G.; Uchoa, Ernane T.; Correa, Fernando M.A.; Elias, Lucila L.K.; Antunes-Rodrigues, José; Resstel, Leonardo B.M.

    2014-10-15

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  3. Acute and Cytotoxicity Studies of Aqueous and Ethanolic Leaf Extracts of Chromolaena odorata.

    PubMed

    Asomugha, R N; Ezejiofor, A N; Okafor, P N; Ijeh, I I

    2015-01-01

    Chromolaena odorata, a commonly used traditional remedy for different ailments, believed to be quite safe in terms of toxicity was evaluated for acute toxicity and cytotoxic potentials. Acute toxicity was done on albino Wistar rats using the Lorke method while brine shrimps were used to test for cytotoxicity. The results showed that the estimated LD50 for the aqueous and ethanolic extracts was 2154 and > 5000 mg kg(-1) body weight, respectively. Cytotoxicity to brine shrimps showed LC50 values of 324 and 392 ppm for aqueous and ethanolic extracts, respectively. These results indicate the relative non toxic nature of Chromolaena odorata extracts. PMID:26353417

  4. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads. PMID:26630309

  5. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium

    PubMed Central

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26–34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0–110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  6. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium.

    PubMed

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26-34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0-110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  7. Acute behavioural comparisons of toluene and ethanol in human subjects.

    PubMed Central

    Echeverria, D; Fine, L; Langolf, G; Schork, T; Sampaio, C

    1991-01-01

    A comparison of toluene and ethanol (EtOH) induced changes in central nervous system (CNS) function and symptoms were evaluated in two studies, and when possible the effects of toluene were expressed in EtOH equivalent units. The toluene concentrations were 0, 75, and 150 ppm, bracketing the American Conference of Governmental Industrial Hygienists threshold limit value (ACGIH TLV) of 100 ppm. The socially relevant EtOH doses were 0.00, 0.33, and 0.66 g EtOH/kg body weight, equivalent to two and four 3.5% 12 ounce beers. Forty two paid college students were used in each study. In the first study, subjects were exposed to toluene and an odour masking agent menthol (0.078 ppm) for seven hours over three days. In the second study EtOH or a placebo was administered at 1530 across three days also in the presence of menthol. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory), perception (pattern recognition), psychomotor skill (simple reaction time, continuous performance, symbol-digit, hand-eye coordination, finger tapping, and critical tracking), manual dexterity (one hole), mood (profile on mood scales (POMS), fatigue (fatigue checklist), and verbal ability were evaluated at 0800, 1200, and 1600. Voluntary symptoms and observations of sleep were collected daily. A 3 x 3 latin square design evaluated solvent effects simultaneously controlling for learning and dose sequence. An analysis of variance and test for trend were performed on am-pm differences reflecting an eight hour workday and on pm scores for each solvent, in which subjects were their own control Intersubject variation in absorbance was monitored in breath. A 5 to 10% decrement was considered meaningful if consistent with a linear trend at p less than 0.05. At 150 ppm toluene, losses in performance were 6.0% for digit span, 12.1% for pattern recognition (latency), 5% for pattern memory (number correct), 6.5% for one hole, and 3% for critical tracking. The number of headaches

  8. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes.

    PubMed

    Lu, Xiao-Yu; Liu, Bing-Chen; Wang, Li-Hua; Yang, Li-Li; Bao, Qing; Zhai, Yu-Jia; Alli, Abdel A; Thai, Tiffany L; Eaton, Douglas C; Wang, Wei-Zhi; Ma, He-Ping

    2015-05-01

    Our recent studies indicate that hydrogen peroxide (H2O2) only at high concentrations can cause oxidative stress in renal epithelial cells and induce apoptosis of podocytes. Consistently, the present study shows that H2O2, even at 1 mM, failed to induce intracellular oxidative stress and apoptosis of the podocytes due to efficient activity of catalase, an enzyme which degrades H2O2 to produce water and oxygen (O2). However, H2O2 acted as a source of O2 to allow acute ethanol to induce superoxide production and cause apoptosis of the podocytes. In contrast, acute ethanol alone did not elevate intracellular superoxide, even though it stimulates expression and translocation of p47phox to the plasma membrane. Inhibition of catalase abolished not only O2 production from H2O2 degradation, but also NOX2-dependent superoxide production in the podocytes challenged by both H2O2 and acute ethanol. In parallel, acute ethanol in the presence of H2O2, but neither ethanol nor H2O2 alone, stimulated transient receptor potential canonical 6 (TRPC6) channels and caused TRPC6-dependent elevation of intracellular Ca2+. These data suggest that exogenous H2O2 does not induce oxidative stress due to rapid degradation to produce O2 in the podocytes, but the oxygenated podocytes become sensitive to acute ethanol challenge and undergo apoptosis via a TRPC6-dependent elevation of intracellular Ca2+. Since cultured podocytes are considered in hypoxic conditions, H2O2 may be used as a source of O2 to establish an ischemia-reperfusion model in some type of cultured cells in which H2O2 does not directly induce intracellular oxidative stress. PMID:25601712

  9. Ablation of μ opioid receptor-expressing GABA neurons in rostromedial tegmental nucleus increases ethanol consumption and regulates ethanol-related behaviors.

    PubMed

    Fu, Rao; Chen, Xing; Zuo, Wanhong; Li, Jing; Kang, Seungwoo; Zhou, Li-Hua; Siegel, Allan; Bekker, Alex; Ye, Jiang-Hong

    2016-08-01

    There has been increasing interest in the rostromedial tegmental nucleus (RMTg), given its potential regulatory role in many aversion-related behaviors. The RMTg contains mostly GABAergic neurons, sends a dense inhibitory projection to dopamine neurons in the midbrain, and is rich with μ-opioid receptors (MOR). Like most addictive drugs, ethanol has both aversive and rewarding properties. However, the cellular mechanisms underlying the effects of ethanol, particularly the aversive effect that limits its intake are not well understood. Recent studies have linked aversion with synaptic inhibition of dopamine neurons in the ventral tegmental area. To determine a potential role that the RMTg plays in the effect of ethanol, in this study, we employed a neurotoxin, dermorphin-saporin (DS), to lesion RMTg neurons prior to assessing ethanol-related behaviors. Rats were infused with DS bilaterally into the RMTg. This manipulation substantially increased the intake and preference for ethanol but not sucrose. It also reduced the number of neurons with MOR and glutamic acid decarboxylase 67 immunoreactivity within the RMTg. These changes did not occur after intra-RMTg infusion of blank saporin or vehicle. Importantly, intra-RMTg DS infusion significantly enhanced expression of conditioned place preference induced by ethanol (2 g/kg, i.p.), and slowed the extinction process. These results suggest that MOR-expressing GABAergic neurons in the RMTg contribute significantly to the regulation of ethanol consumption and related behaviors. PMID:26921770

  10. Alterations in mesolimbic dopamine function during the abstinence period following chronic ethanol consumption.

    PubMed

    Bailey, C P; O'Callaghan, M J; Croft, A P; Manley, S J; Little, H J

    2001-12-01

    Previous work demonstrated that the locomotor stimulant actions of amphetamine, cocaine and nicotine were increased when these drugs were given during the abstinence phase after chronic ethanol consumption. These changes were seen at 6 days and at 2 months after cessation of alcohol. The present study examined neuronal alterations which might be related to these changes in behaviour. Markedly reduced spontaneous firing rates of dopaminergic cells in the ventral tegmental area (VTA) in midbrain slices were seen 6 days into the abstinence period after cessation of chronic ethanol consumption, but by 2 months the firing rates had returned to control values. Increased affinity of striatal receptors for the D1-like receptor ligand 3H-SCH23390, but no change in the receptor density, was found both at the 6 day and the 2 month intervals. The binding properties of striatal D2-like receptors, of D1-like and D2-like receptors in the frontal cerebral cortex, and the release of tritiated dopamine from slices of striatum or frontal cerebral cortex, were unchanged at 6 days and 2 months. It is suggested that the decreased neuronal firing leads to a persistent increase in sensitivity of D1-like receptors and that these changes could explain the increased effects of the other drugs of abuse. PMID:11747903

  11. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

    PubMed Central

    Smith, Maren L.; Lopez, Marcelo F.; Archer, Kellie J.; Wolen, Aaron R.; Becker, Howard C.; Miles, Michael F.

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal

  12. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    PubMed

    Smith, Maren L; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R; Becker, Howard C; Miles, Michael F

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal

  13. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  14. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β.

    PubMed

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30-80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25-100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  15. The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice.

    PubMed

    Zeng, Tao; Guo, Fang-Fang; Zhang, Cui-Li; Zhao, Sheng; Dou, Dan-Dan; Gao, Xu-Cong; Xie, Ke-Qin

    2008-11-25

    The protective effects of single dose of garlic oil (GO) on acute ethanol-induced fatty liver were investigated. Mice were treated with ethanol (4.8 g/kg bw) to induce acute fatty liver. The liver index, the serum and hepatic triglyceride (TG) levels and the histological changes were examined to evaluate the protective effects. Hepatic malondialdehyde (MDA), glutathione (GSH) levels and superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities were determined for the antioxidant capacity assay. Acute ethanol exposure resulted in the enlargement of the liver index and the increase of the serum and hepatic TG levels (P<0.01), which were dramatically attenuated by GO pretreatment in a dose-dependent manner (P<0.01). GO treatment (simultaneously with ethanol exposure) exhibited similar effects to those of pretreatment, while no obviously protective effects were displayed when it was used at 2h after ethanol intake. Histological changes were paralleled to these indices. Beside this, GO dramatically prolonged the drunken time and shortened the waking time, and these effects were superior to those of silymarin and tea polyphenol. In addition, GO dose-dependently suppressed the elevation of MDA levels, restored the GSH levels and enhanced the SOD, GR and GST activities. Compared with the ethanol group, the MDA levels decreased by 14.2% (P<0.05), 29.9% and 32.8% (P<0.01) in GO groups 50, 100 and 200 mg/kg, respectively. The GST activity increased by 9.97%, 19.94% (P<0.05) and 42.12% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively, while the GR activity increased by 28.57% (P<0.05), 37.97% (P<0.01), 50.45% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively. These data indicated that single dose of GO possessed ability to prevent acute ethanol-induced fatty liver, but may lose its capacity when used after ethanol exposure. The protective effects

  16. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice.

    PubMed

    Blagaic, Alenka Boban; Blagaic, Vladimir; Romic, Zeljko; Sikiric, Predrag

    2004-09-24

    The stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W.1419), which was promising in inflammatory bowel disease (PL-10, PLD-116, PL-14736, Pliva) trials, protects against both acute and chronic alcohol-induced lesions in stomach and liver, but also, given peripherally, affects various centrally mediated disturbances. Now, in male NMRI mice BPC 157 (10 pg intraperitoneally, 10 ng and 10 microg, intraperitoneally or intragastrically) (i) strongly opposed acute alcohol (4 g/kg intraperitoneally) intoxication (i.e., quickly produced and sustained anesthesia, hypothermia, increased ethanol blood values, 25% fatality, 90-min assessment period) given before or after ethanol, and (ii) when given after abrupt cessation of ethanol (at 0 or 3 or 7 h withdrawal time), attenuated withdrawal (assessed through 24 hours) after 20%-alcohol drinking (7.6 g/kg) through 13 days, with provocation on the 14th day. PMID:15381050

  17. Inhibitory Effect of Helicteres gardneriana Ethanol Extract on Acute Inflammation

    PubMed Central

    de Melo, Juliana Oliveira; de Arruda, Laura Lícia Milani; Baroni, Silmara; Truiti, Maria da Conceição Torrado; Caparroz-Assef, Silvana Martins; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2012-01-01

    The anti-inflammatory effect of an ethanol extract of Helicteres gardneriana (Nees) Castiglioni was assayed in experimental models of pleurisy and microcirculation in situ. Treatment of animals with 500 mg/kg body weight reduced the exudate volume (35% reduction) induced by intrapleural injection of carrageenan and the migration of polymorphonuclear cells into the inflamed pleural cavity of rats (40%). Additionally, rolling and adhesion of leukocytes and the number of leukocytes that migrated toward the perivascular space in response to the carrageenan injection were decreased by the extract (500 mg/kg). These data demonstrate the anti-inflammatory effect of the ethanol extract of Helicteres gardneriana and imply that inhibition of leukocyte-endothelial interactions is important in the extract's mechanism of action. PMID:22028731

  18. Acute and chronic exposure to ethanol and the electrophysiology of the brush border membrane of rat small intestine.

    PubMed Central

    al-Balool, F; Debnam, E S; Mazzanti, R

    1989-01-01

    In this study we have investigated the effects of (a) chronic ethanol intake on glucose and galactose absorption across the rat jejunum in vivo and on the potential difference across the isolated brush border membrane (Vm) and (b) acute exposure to ethanol (4% or 8%) and acetaldehyde (0.25%) on changes in Vm associated with Na(+)-dependent galactose absorption across the jejunum and ileum. Chronic ethanol intake was associated with hyperpolarization of Vm and an enhanced galactose but not glucose transport. Acute ethanol and acetaldehyde were without effect on Vm whether or not galactose was present. We conclude that while a greater electrochemical gradient across the brush border membrane is a likely explanation for the stimulation of galactose absorption induced by ethanol feeding, factors other than changes in Vm are responsible for the inhibitory effects of acute ethanol. PMID:2612984

  19. Predator-scent stress, ethanol consumption and the opioid system in an animal model of PTSD.

    PubMed

    Manjoch, Hadar; Vainer, Ella; Matar, Michael; Ifergane, Gal; Zohar, Joseph; Kaplan, Zeev; Cohen, Hagit

    2016-06-01

    Emerging literature points to stress exposure as a potential contributor to the development of alcohol abuse, but animal models have yielded inconsistent results. Converging experimental data indicate that the endogenous opioid system modulates alcohol consumption and stress regulation. The aim of the present study is to examine the interplay between stress exposure, behavioral stress responses, ethanol (EtOH) consumption and the endogenous opioid system in an animal model of posttraumatic stress disorder. Rats were exposed to stress and then tested in a two-bottle free choice (TBC) assay or in a conditioned place preference paradigm. In some experiments, the endogenous opioid system was pharmacologically manipulated prior to stress exposure. The behavioral outcomes of stress exposure were assessed in an elevated plus-maze, with the acoustic startle response, and by monitoring the freezing response to trauma reminder. Immunoreactivity of phosphorylated opioid receptors in hippocampal subregions was also measured. Stress significantly increased the consumption of EtOH in the TBC assay. The severity of the behavioral response to stress was associated with EtOH consumption, cue-triggered freezing response to a trauma reminder, and endogenous levels of phosphorylated opioid receptors in the hippocampus. Pharmacologically manipulating the endogenous opioid system prior to stress exposure attenuated trauma cue-triggered freezing responses and blocked predator scent stress-induced potentiation of EtOH consumption. These data demonstrate a stress-induced potentiation of EtOH self-administration and reveal a clear association between individual patterns of the behavioral response to stress and alcohol preference, while indicating a role for the endogenous opioid system in the neurobiological response to stress. PMID:26965572

  20. Assessment of Expression of Genes Coding GABAA Receptors during Chronic and Acute Intoxication of Laboratory Rats with Ethanol.

    PubMed

    Osechkina, N S; Ivanov, M B; Nazarov, G V; Batotsyrenova, E G; Lapina, N V; Babkin, A V; Berdinskikh, I S; Melekhova, A S; Voitsekhovich, K O; Lisitskii, D S; Kashina, T V

    2016-02-01

    Expression of genes encoding the individual subunits of ionotropic GABAA receptor was assessed after acute and chronic intoxication of rats with ethanol. The chronic 1-month-long exposure to ethanol signifi cantly decreased (by 38%) expression of Gabrb1 gene in the hippocampus. Acute exposure to ethanol elevated expression of genes Gabrb1 (by 1.7 times), Gabra1 (by 3.8 times), and Gabra4 (by 6.5 times), although it diminished expression of Gabra2 gene by 1.4 times. In preliminarily alcoholized rats, acute intoxication with ethanol enhanced expression of genes Gabrb1 and Gabra5 by 1.7 and 8.7 times, respectively. There was neither acute nor chronic effect of ethanol on expression of gene Gabra3. PMID:26902358

  1. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption

    PubMed Central

    Kasten, Chelsea R.; Blasingame, Shelby N.; Boehm, Stephen L.

    2014-01-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides “binge-like” ethanol access to mice by restricting access to a two hour period, three hours into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-hour two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)- baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)- baclofen, chronic intake was not significantly altered. S(-)- baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. PMID:25557834

  2. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    PubMed

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. PMID:25557834

  3. Acute effects of ethanol in the control of protein synthesis in isolated rat liver cells

    SciTech Connect

    Girbes, T.; Susin, A.; Ayuso, M.S.; Parrilla, R.

    1983-10-01

    The acute effect of ethanol on hepatic protein synthesis is a rather controversial issue. In view of the conflicting reports on this subject, the effect of ethanol on protein labeling from L-(/sup 3/H)valine in isolated liver cells was studied under a variety of experimental conditions. When tracer doses of the isotope were utilized, ethanol consistently decreased the rate of protein labeling, regardless of the metabolic conditions of the cells. This inhibition was not prevented by doses of 4-methylpyrazole large enough to abolish all the characteristic metabolic effects of ethanol, and it was not related to perturbations on the rates of L-valine transport and/or proteolysis. When ethanol was tested in the presence of saturating doses of L-(/sup 3/H)valine no effect on protein labeling was observed. These observations suggest that the ethanol effect in decreasing protein labeling from tracer doses of the radioactive precursor does not reflect variations in the rate of protein synthesis but reflects changes in the specific activity of the precursor. These changes probably are secondary to variations in the dimensions of the amino acid pool utilized for protein synthesis. Even though it showed a lack of effect when tested alone, in the presence of saturating doses of the radioactive precursor ethanol inhibited the stimulatory effects on protein synthesis mediated by glucose and several gluconeogenic substrates. This effect of ethanol was not prevented by inhibitors of alcohol dehydrogenase, indicating that a shift of the NAD system to a more reduced state is not the mediator of its action. It is suggested that ethanol probably acted by changing the steady-state levels of some common effector(s) generated from the metabolism of all these fuels or else by preventing the inactivation of a translational repressor.

  4. Effects of chronic ethanol consumption on sterol transfer proteins in mouse brain.

    PubMed

    Myers-Payne, S C; Fontaine, R N; Loeffler, A; Pu, L; Rao, A M; Kier, A B; Wood, W G; Schroeder, F

    1996-01-01

    Although lipids are essential to brain function, almost nothing is known of lipid transfer proteins in the brain. Early reports indicates cross-reactivity of brain proteins with antisera against two native liver sterol transfer proteins, sterol carrier protein-2 (SCP-2) and the liver form of fatty acid-binding protein (L-FABP). Herein, polyclonal antibodies raised against the recombinant liver sterol transfer proteins SCP-2 and L-FABP were used to identify the lipid transfer proteins in the brains of alcohol-treated and control mice. L-FABP was not detectable in brain of either control or chronic ethanol-treated mice. In contrast, SCP-2 not only was present, but its level was significantly (p < 0.05) increased 23 and 50%, respectively, in brain homogenates and synaptosomes of mice exposed to alcohol. To determine whether antibodies against the recombinant liver SCP-2 reflected true levels of SCP-2 in brain, the cDNA sequence for brain SCP-2 was isolated from a brain cDNA library. The mouse brain SCP-2 sequence was 99.99% identical to the mouse liver SCP-2 sequence. The translated sequence differed by only one amino acid, and the replacement was conservative. Thus, unlike the fatty acid binding proteins, the SCP-2 moieties of brain and liver are essentially identical. Polyclonal antibodies against acyl-CoA binding protein, a lipid-binding protein that does not bind or transfer sterol, showed that increased levels of brain SCP-2 with chronic ethanol consumption did not represent a general increase in content of all lipid transfer proteins. Changes in the amount of SCP-2 may contribute to membrane tolerance to ethanol. PMID:8522969

  5. The effect of Hoe-427 (an ACTH sub 4-9 analog) on free-choice ethanol consumption in male and female rats

    SciTech Connect

    Krishnan, S.; Maickel, R.P. )

    1991-01-01

    Ethanol consummatory patterns of individual male and female rats and the effects of Hoe-427 (Ebiratide), and ACTH{sub 4-9} analog, thereon, were studied in a test system using 24 hour, two-bottle free choice consumption between 0.2% saccharin and 10% ethanol in 0.2% saccharin. Single, daily i.p. doses of either ACTH{sub 4-10} or its analog resulted in a significant reduction of daily ethanol consumption with no effects on saccharin consumption. After 4 days of treatment, male rats consistently exhibited a rebound increase in ethanol consumption; this effect was not seen in females. The daily ethanol consummatory patterns of the female animals seemed to exhibit a 4-6 day cyclic rhythymicity, suggesting an interaction with estrous cycles. These results support a role for ACTH{sub 4-10} in the initiation of ethanol consummatory behavior in rats and suggests the existence of sex differences in this phenomenon.

  6. DRD1 5′UTR Variation, Sex and Early Infant Stress Influence Ethanol Consumption in Rhesus Macaques

    PubMed Central

    Newman, Timothy K.; Parker, Clarissa C.; Suomi, Stephen J.; Goldman, David; Barr, Christina S.; Higley, J. Dee

    2009-01-01

    The mesolimbic dopamine system plays an important role in mediating a variety of behaviors and is involved in mediating the reinforcing effects of ethanol. Genes encoding dopamine receptor subtypes are thus good candidate loci for understanding the genetic etiologies of susceptibility to alcohol dependence and its antecedent behavioral phenotypes. We tested whether variation in DRD1 influences alcohol consumption in rhesus macaques and whether its influence is mediated by sex and early rearing experience. We genotyped a single nucleotide polymorphism (-111 G/T) in the 5′ UTR of DRD1 in 96 subjects raised with their mothers until six months of age (n=43) or in peer-only groups (n=53). As young adults they underwent a seven-week voluntary ethanol consumption experiment. ANOVA revealed a significant main effect of sex (F (1,95) = 6.3, p = .014) and an interaction between genotype, sex and rearing on ethanol consumption (F (7,95) = 4.63, p =.0002). Maternally deprived males heterozygous for the T allele consumed significantly more ethanol (Prob > t = <.0001) than the other sub-groups. Maternal deprivation can produce individuals that are anxious and impulsive, both of which are known risk factors for alcohol dependence. Our work demonstrates a potential role for the dopamine D1 receptor gene in modulating alcohol consumption, especially in the context of early environmental stress. PMID:19563515

  7. Ethanol Potentiates the Acute Fatty Infiltration of Liver Caused by Burn Injury: Prevention by Insulin Treatment

    PubMed Central

    Emanuele, Nicholas V.; Emanuele, Mary Ann; Morgan, Michelle O.; Sulo, Denise; Yong, Sheri; Kovacs, Elizabeth J.; Himes, Ryan D.; Callaci, John J.

    2011-01-01

    Burn injury is a significant and severe representation of critical illness. Nearly, 50% of patients admitted to hospitals for burn injuries have detectable levels of ethanol in their circulations and these patients have poorer clinical outcomes than burned individuals without measurable circulating ethanol. We report here data on a clinically relevant form of hepatic injury, the development of microvesicular steatosis, in a murine model wherein animals were either given ethanol or saline, and were subjected to burn or sham injury. Because better glycemic control with insulin has been shown in clinical studies to impart major clinical benefit, an additional group of burn ethanol animals were treated with insulin. Insulin significantly reduced blood glucose in injured animals to levels no different from those seen in animals that were neither ethanol exposed nor burned. A single intraperitoneal injection of ethanol was insufficient to raise blood alanine aminotransferase (ALT), measured as an index of liver injury. However, burn injury led to significant increases in ALT at 24 and 48 hours, which had returned to preinjury levels by 7 days. This ALT rise was completely prevented with insulin treatment. A single injection of ethanol did not evoke increased microvesicular steatosis but did potentiate the ability of burn to do so at 24 hours after injury. The burn induced increase in microvesicular steatosis was also seen at 48 hours, but had subsided by 7 days. The increased microvesicular steatosis was prevented by insulin therapy. Thus, ethanol potentiates the ability of burn to cause acute liver injury, which is completely preventable by insulin therapy. These findings may have substantial clinical significance and suggest this model may be useful for the study of the mechanisms of hepatic injury as well as the mechanisms, probably multiple, of insulin action in this setting. PMID:19349879

  8. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion.

    PubMed

    Sripanyakorn, Supannee; Jugdaohsingh, Ravin; Mander, Adrian; Davidson, Sarah L; Thompson, Richard Ph; Powell, Jonathan J

    2009-08-01

    The "J shape" curve linking the risk of poor bone health to alcohol intake is now well recognized from epidemiological studies. Ethanol and nonethanol components of alcoholic beverages could influence bone remodeling. However, in the absence of a solid underlying mechanism, the positive association between moderate alcoholic intake and BMD remains questionable because of confounding associated social factors. The objective of this work was to characterize the short-term effects of moderate alcohol consumption on circulating bone markers, especially those involved in bone resorption. Two sequential blood-sampling studies were undertaken in fasted healthy volunteers (age, 20-47 yr) over a 6-h period using beer of different alcohol levels (<0.05-4.6%), solutions of ethanol or orthosilicic acid (two major components of beer), and water +/- calcium chloride (positive and negative controls, respectively). Study 1 (24 subjects) assessed the effects of the different solutions, whereas study 2 (26 subjects) focused on ethanol/beer dose. Using all data in a "mixed effect model," we identified the contributions of the individual components of beer, namely ethanol, energy, low-dose calcium, and high-dose orthosilicic acid, on acute bone resorption. Markers of bone formation were unchanged throughout the study for all solutions investigated. In contrast, the bone resorption marker, serum carboxy terminal telopeptide of type I collagen (CTX), was significantly reduced after ingestion of a 0.6 liters of ethanol solution (>2% ethanol; p ethanol; p < 0.02), or a solution of calcium (180 mg calcium; p < 0.001), but only after calcium ingestion was the reduction in CTX preceded by a significant fall in serum PTH (p < 0.001). Orthosilicic acid had no acute effect. Similar reductions in CTX, from baseline, were measured in urine after ingestion of the test solutions; however, the biological variability in urine CTX was greater

  9. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  10. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  11. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  12. Acute and subacute toxicity evaluation of ethanolic extract from fruits of Schinus molle in rats.

    PubMed

    Ferrero, Adriana; Minetti, Alejandra; Bras, Cristina; Zanetti, Noelia

    2007-09-25

    Ethanolic and hexanic extracts from fruits and leaves of Schinus molle showed ability to control several insect pests. Potential vertebrate toxicity associated with insecticidal plants requires investigation before institutional promotion. The aim of the present study was to evaluate the acute and subacute toxicity of ethanolic extracts from fruits of Schinus molle in rats. The plant extract was added to the diet at 2g/kg body weight/day during 1 day to evaluate acute toxicity and at 1g/kg body weight/day during 14 days to evaluate subacute toxicity. At the end of the exposure and after 7 days, behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed. Finally, histopathological examinations were conducted on several organs. In both exposures, an increase in the arousal level was observed in experimental groups. Also, the landing foot splay parameter increased in the experimental group after acute exposure. Only the subacute exposure produced a significant increase in the motor activity in the open field. All these changes disappeared after 7 days. None of the exposures affected the different organs evaluated. Our results suggest that ethanolic extracts from fruits and leaves of Schinus molle should be relatively safe to use as insecticide. PMID:17716846

  13. Effects of acute ethanol administration of female rat liver as a function of aging

    SciTech Connect

    Rikans, L.E.; Snowden, C.D. )

    1989-01-01

    Female Fischer 344 rats, aged 4, 14, and 25 months, received 4.0 g/kg of ethanol by intraperitoneal (i.p.) injection. Blood alcohol concentrations 2.5, 6 and 16 hr after ethanol injection were similar in the three age groups. Hepatic glutathione (GSH) levels were diminished 6 hr after ethanol injection, and there were no age-dependent differences in the depleted levels (3.2 {plus minus} 0.1, 3.5 {plus minus} 0.2, and 3.0 {plus minus} 0.5 {mu}g GSH/g liver). However, GSH contents in livers of young-adult rats approached control levels after 16 hr, whereas they remained depressed in older rats. Serum levels of hepatic enzymes were significantly elevated 6 hr after ethanol administration. The increases were greater in middle-aged and old rats than in young-adult rats. The results suggest that middle-aged and old rats are more susceptible than young rats to the acute toxicity of ethanol.

  14. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    SciTech Connect

    Yin Huquan; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2007-09-15

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed {>=} 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1.

  15. Protective Effects of the Traditional Herbal Formula Oryeongsan Water Extract on Ethanol-Induced Acute Gastric Mucosal Injury in Rats

    PubMed Central

    Jeon, Woo-Young; Lee, Mee-Young; Shin, In-Sik; Lim, Hye-Sun; Shin, Hyeun-Kyoo

    2012-01-01

    This study was performed to evaluate the protective effect and safety of Oryeongsan water extract (OSWE) on ethanol-induced acute gastric mucosal injury and an acute toxicity study in rats. Acute gastric lesions were induced via intragastric oral administration of absolute ethanol at a dose of 5 mL/kg. OSWE (100 and 200 mg/kg) was administered to rats 2 h prior to the oral administration of absolute ethanol. The stomach of animal models was opened and gastric mucosal lesions were examined. Gastric mucosal injuries were evaluated by measuring the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of antioxidant enzymes. In the acute toxicity study, no adverse effects of OSWE were observed at doses up to 2000 mg/kg/day. Administration of OSWE reduced the damage by conditioning the gastric mucosa against ethanol-induced acute gastric injury, which included hemorrhage, hyperemia, and loss of epithelial cells. The level of MDA was reduced in OSWE-treated groups compared with the ethanol-induced group. Moreover, the level of GSH and the activity of antioxidant enzymes were significantly increased in the OSWE-treated groups. Our findings suggest that OSWE has a protective effect on the gastric mucosa against ethanol-induced acute gastric injury via the upregulation of antioxidant enzymes. PMID:23118790

  16. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  17. Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death.

    PubMed

    Thierauf, Annette; Kempf, Jürgen; Perdekamp, Markus Grosse; Auwärter, Volker; Gnann, Heike; Wohlfarth, Ariane; Weinmann, Wolfgang

    2011-07-15

    To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices. PMID:21367549

  18. Acute Cor Pulmonale and Right Heat Failure Complicating Ethanol Ablative Therapy: Anesthetic and Radiologic Considerations and Management

    SciTech Connect

    Naik, Bhiken; Matsumoto, Alan H.

    2013-10-15

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  19. A Standardized Composition from Extracts of Myristica Fragrans, Astragalus Membranaceus, and Poria Cocos Protects Liver from Acute Ethanol Insult.

    PubMed

    Yimam, Mesfin; Jiao, Ping; Hong, Mei; Jia, Qi

    2016-08-01

    Despite the promising advances in therapeutic discovery, there still is a major challenge in the development of a safe, effective, and economical intervention for managing alcohol-related liver disorders. In this study, we describe the potential use of "MAP," a standardized composition comprising three extracts from Myristica fragrans, Astragalus membranaceus, and Poria cocos, in ameliorating alcohol-induced acute liver toxicity. Ethanol-induced acute hepatotoxicity as an animal model of binge drinking was utilized. Mice received oral doses of MAP at 300 mg/kg for four consecutive days. Mice were orally gavaged with 50% ethanol in 12 mL/kg dosing volume following the third dose of MAP every 12 h thereafter for a total of three doses. Hepatic functional tests from serum collected at T12, and hepatic glutathione (GSH), superoxide dismutases (SODs), and triglyceride from liver homogenates were evaluated. Histopathology analysis and alcoholic steatohepatitis (ASH) scoring were also determined. Excessive increases of serum alanine aminotransferase and aspartate aminotransferase were significantly inhibited at 46.3% and 43.6%, respectively, when mice were treated with MAP. MAP replenished the depleted SOD by more than 60%, while causing significant stimulation of GSH productions. MAP showed statistically significant reduction in ballooning degeneration, vascular steatosis, cytoplasmic or nuclear condensation, and shrinkage, as well as inflammations when compared to vehicle-treated alcohol-induced liver toxicity model. Mice treated with MAP showed statistically significant reduction in ASH scoring when compared to vehicle control. Therefore, the composition MAP could be potentially utilized as an effective hepatic-detoxifying agent for the protection of liver damage caused by alcohol consumptions. PMID:27355692

  20. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice

    PubMed Central

    Deshpande, Krutika T.; Liu, Shinlan; McCracken, Jennifer M.; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N.; Richard, Zachary C.; O’Neil, Maura F.; Pritchard, Michele T.

    2016-01-01

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl4 and euthanized 24–96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure. PMID:26751492

  1. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. PMID:24355753

  2. Anti-anxiety self-medication in rats: oral consumption of chlordiazepoxide and ethanol after reward devaluation.

    PubMed

    Manzo, Lidia; Donaire, Rocío; Sabariego, Marta; Papini, Mauricio R; Torres, Carmen

    2015-02-01

    Rats increased preference for ethanol after sessions of appetitive extinction, but not after acquisition (reinforced) sessions (Manzo et al., 2014). Drinking was not influenced by appetitive extinction in control groups with postsession access to water, rather than ethanol. Because ethanol has anxiolytic properties in tasks involving reward loss, these results were interpreted as anti-anxiety self-medication. The present experiment tested the potential for self-medication with the prescription anxiolytic chlordiazepoxide, a benzodiazepine with an addictive profile used in the treatment of anxiety disorders. To test this hypothesis, Wistar rats exposed to a 32-to-4% sucrose devaluation received a two-bottle, 2-h preference test immediately after consummatory training. One bottle contained 1 mg/kg of chlordiazepoxide, 2% ethanol, or water for different groups (the second bottle contained water for all groups). Three additional groups received the same postsession preference tests, but were exposed to 4% sucrose during consummatory training. Rats showed suppression of consummatory behavior after reward devaluation relative to unshifted controls. This effect was accompanied by a selective increase in preference for chlordiazepoxide and ethanol. Downshifted animals with access to water or unshifted controls with access to the anxiolytics failed to exhibit postsession changes in preference. Similar results were observed in terms of absolute consumption and consumption relative to body weight. This study shows for the first time that a prescription anxiolytic supports enhanced voluntary consumption during periods of emotional distress triggered by reward loss. Such anti-anxiety self-medication provides insights into the early stages of addictive behavior. PMID:25242284

  3. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    PubMed Central

    Shukla, Shivendra D.; Aroor, Annayya R.; Restrepo, Ricardo; Kharbanda, Kusum K.; Ibdah, Jamal A.

    2015-01-01

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease. PMID:26610587

  4. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    PubMed

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity. PMID:27314669

  5. Subacute ethanol consumption reverses p-xylene-induced decreases in axonal transport

    SciTech Connect

    Padilla, S.; Lyerly, D.L.; Pope, C.N.

    1992-01-01

    Organic solvants, as a class, have been implicated as neurotoxic agents in humans and laboratory animals. The study was designed to assess the interaction between subacute ingestion of moderate levels of ethanol and the p-xylene-induced decreases in protein and glycoprotein synthesis and axonal transport in the rat optic system. The results indicated that animals maintained on 10% ethanol as a drinking liquid show less p-xylene-induced neurotoxicity than animals receiving no ethanol supplement.

  6. Development of a mouse model of ethanol addiction: naltrexone efficacy in reducing consumption but not craving.

    PubMed

    Fachin-Scheit, D J; Frozino Ribeiro, A; Pigatto, G; Oliveira Goeldner, F; Boerngen de Lacerda, R

    2006-09-01

    The aim of the present study was validating pharmacologically a mouse model of alcohol addiction. Mice (n = 60) were offered ethanol (5% and 10%) and water in a free choice paradigm consisting of four phases: free choice (10 weeks), withdrawal (2 weeks), re-exposure (2 weeks) and quinine- adulteration (2 weeks). Control mice (n = 10) had access to water. They were housed individually with food ad libitum. The animals' behaviour was evaluated at the beginning of the treatment and during the withdrawal period. After the exposure to the model, mice received i.p. naltrexone (0.0; 0.125; 2.0 and 16.0 mg/kg) or saline. Mice were characterized as: addicted (n = 15, preference for ethanol without reducing intake when ethanol were adulterated with quinine); heavy drinker (n = 14, preference for ethanol but reduced intake when ethanol were adulterated); and light drinker (n = 16, no preference for ethanol). Naltrexone reduced ethanol intake in the heavy and light groups (p ethanol but does not seem to have anti-craving properties. It was concluded that the addicted mice had a compulsive behavior manifested by the continued ethanol intake even under aversive conditions and under naltrexone treatment suggesting that this model might be useful to study addiction. PMID:16465467

  7. The influence of acute or chronic nicotine treatment on ethanol-induced gastric mucosal damage in rats.

    PubMed

    Cho, C H; Chen, B W; Hui, W M; Lam, S K

    1990-01-01

    The influences of acute or chronic nicotine pretreatment on ethanol-induced changes on gastric secretion, mucosal blood flow (GMBF), and glandular mucosal damage were studied in anesthetized rats. Ethanol administration decreased gastric acid secretion and GMBF, which were accompanied by a marked increase in gastric mucosal damage. Acute nicotine incubation 2 or 4 mg dose-dependently elevated both the titratable acid in the luminal solution and the gastric secretory volume; it also prevented the depressive action on GMBF and gastric mucosal damage in ethanol-treated animals. Chronic nicotine treatment for 10 days reduced the inhibitory action of ethanol on gastric acid secretion; the higher dose (25 micrograms/ml drinking water) potentiated the decrease of GMBF and the ulcerogenic property of ethanol. However, chronic treatment with the lower dose (5 micrograms/ml drinking water) had the opposite effects; it also markedly increased the gastric secretory volume. It is concluded that acute nicotine pretreatment elevates, whereas chronic nicotine pretreatment differentially affects GMBF. These effects could account for their protective or preventive actions on ethanol ulceration. The increase in nonacid gastric secretory volume by nicotine could partially explain its antiulcer effect. Furthermore, the acid secretory state of the stomach appears unrelated to the ulcerogenic property of ethanol. PMID:2295286

  8. Chronic social isolation during adolescence augments catecholamine response to acute ethanol in the basolateral amygdala.

    PubMed

    Karkhanis, Anushree N; Alexander, Nancy J; McCool, Brian A; Weiner, Jeffrey L; Jones, Sara R

    2015-08-01

    Adolescent social isolation (SI) results in numerous behavioral alterations associated with increased risk of alcoholism. Notably, many of these changes involve the basolateral amygdala (BLA), including increased alcohol seeking. The BLA sends a strong glutamatergic projection to the nucleus accumbens and activation of this pathway potentiates reward-seeking behavior. Dopamine (DA) and norepinephrine (NE) exert powerful excitatory and inhibitory effects on BLA activity and chronic stress can disrupt the excitation-inhibition balance maintained by these catecholamines. Notably, the impact of SI on BLA DA and NE neurotransmission is unknown. Thus the aim of this study was to characterize SI-mediated catecholamine alterations in the BLA. Male Long Evans rats were housed in groups of four (GH) or in SI for 6 weeks during adolescence. DA and NE transporter levels were then measured using Western blot hybridization and baseline and ethanol-stimulated DA and NE levels were quantified using microdialysis. DA transporter levels were increased and baseline DA levels were decreased in SI compared to GH rats. SI also increased DA responses to an acute ethanol (2 g kg(-1)) challenge. While no group differences were noted in NE transporter or baseline NE levels, acute ethanol (2 g kg(-1)) only significantly increased NE levels in SI animals. Collectively, these SI-dependent changes in BLA catecholamine signaling may lead to an increase in BLA excitability and a strengthening of the glutamatergic projection between the BLA and NAc. Such changes may promote the elevated ethanol drinking behavior observed in rats subjected to chronic adolescent stress. PMID:25963724

  9. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect

    Szybist, James P.; Curran, Scott

    2015-05-01

    the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  10. In vitro anti oxidant activity and acute oral toxicity of Terminalia paniculata bark ethanolic extract on Sprague Dawley rats

    PubMed Central

    Mopuri, Ramgopal; Meriga, Balaji

    2014-01-01

    Objective To ensure the safety and evaluate the anti oxidant activity of Terminalia paniculata (T. paniculata) ethanolic extract in Sprague Dawley rats. Methods The solvent extracts (hexane, ethyl acetate and ethanol) of T. paniculata were subjected to phytochemical analysis and their DPPH radical scavenging activity was assayed. The oral acute toxicity was evaluated using ethanolic extract of T. paniculata. Results Ethyl acetate and ethanolic extracts showed more phytochemicals, whereas highest DPPH scavenging activity was found in ethanolic extract. In an acute toxicity study, T. paniculata ethanolic extract was orally administered (1 000 mg/kg body weight) to rats and observed for 72 h for any toxic symptoms and the dose was continued up to 14 d. On the 15th day rats were sacrificed and blood samples were collected from control and test animals and analyzed for some biochemical parameters. We did not observe any behavioral changes in test groups in comparison with their controls. Also, there were no significant alterations in biochemical, hematological (hemoglobin content and blood cells count) and liver function parameters such as serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, alkaline phosphatase, total proteins, albumin and bilirubin levels between T. paniculata ethanolic extract treated and normal control groups. Conclusions Together our results demonstrated that T. paniculata ethanolic possessed potent antioxidant activity and it was safer and non toxic to rats even at higher doses and therefore could be well considered for further investigation for its medicinal and therapeutic efficacy. PMID:25182554

  11. SUBACUTE ETHANOL CONSUMPTION REVERSES P-XYLENE-INDUCED DECREASES IN AXONAL TRANSPORT

    EPA Science Inventory

    Real world human exposure to organic solvents is often complicated by ethanol ingestion, and the literature is replete with demonstrations of metabolic interactions between ethanol and organic solvents at a pharmacokinetic level. ue to these factors we have investigated the effec...

  12. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-01-01

    This study investigated the effects of acute moderate alcohol intake on muscular performance during recovery from eccentric exercise-induced muscle damage. Eleven healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed a beverage containing 1g/kg bodyweight ethanol (as vodka and orange juice) (ALC). On another occasion they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed an isocaloric quantity of orange juice (OJ). Measurement of maximal isokinetic (concentric and eccentric) and isometric torque produced across the knee, plasma creatine kinase (CK) concentrations and muscle soreness were made before and at 36 and 60h following each exercise bout. All measures of muscle performance were significantly reduced at 36 and 60h post-exercise compared to pre-exercise measures (all p<0.05). The greatest decreases in peak strength were observed at 36h with losses of 12%, 28% and 19% occurring for OJ isometric, concentric, and eccentric contractions, respectively. However, peak strength loss was significantly greater in ALC with the same performance measures decreasing by 34%, 40% and 34%, respectively. Post-exercise plasma creatine kinase activity and ratings of muscle soreness were not different between conditions (both p>0.05). These results indicate that consumption of even moderate amounts of alcohol following eccentric-based exercise magnifies the normally observed losses in dynamic and static strength. Therefore, to minimise exercise related losses in muscle function and expedite recovery, participants in sports involving eccentric muscle work should avoid alcohol-containing beverages in the post-event period. PMID:19230764

  13. Microarray characterization of gene expression changes in blood during acute ethanol exposure

    PubMed Central

    2013-01-01

    and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607

  14. Abatement Cost of GHG Emissions for Wood-Based Electricity and Ethanol at Production and Consumption Levels

    PubMed Central

    Dwivedi, Puneet; Khanna, Madhu

    2014-01-01

    Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ−1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ−1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ−1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km−1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e−1 and $30 Mg CO2e−1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation. PMID:24937461

  15. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    PubMed

    Dwivedi, Puneet; Khanna, Madhu

    2014-01-01

    Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation. PMID:24937461

  16. Effect of chronic ethanol consumption on fatty acid profile of heart tissue in rats.

    PubMed

    Gómez-Tubío, A; Carreras, O; Tavares, E; Delgado, M J

    1999-03-01

    The effect of chronic ethanol ingestion on fatty acid composition and lipid content of heart tissue in rats, and whether this effect depends on age, was studied. Rats were maintained on a 30% ethanol solution in drinking water for 3 and 5 months. Control animals were given water. Phospholipid concentration was unchanged in the ethanol-fed groups, compared with control groups, whereas total cholesterol content was increased at 5 months of treatment. An increase in stearic acid, palmitoleic acid, and 22:5n6 were observed at 3 months of ethanol ingestion. When ethanol was administered for 5 months, polyunsaturated fatty acids series n3 were decreased with respect to control. The effect of age on the profile of fatty acids of heart showed an increase of monounsaturated fatty acids and a decrease of long-chain polyunsaturated fatty acids in both control and ethanol-fed rats. The effect of ethanol ingestion on fatty acid composition of heart tissue is not very pronounced, but the small changes observed could contribute to the development of functional and electrophysiological features of alcoholic heart disease. PMID:10195810

  17. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex. PMID:26428091

  18. Refeeding after acute food restriction: differential reduction in preference for ethanol and ethanol-paired flavors in selectively bred rats.

    PubMed

    Dess, Nancy K; Chapman, Clinton D; Cousins, Laura A; Monroe, Derek C; Nguyen, Phuong

    2013-01-17

    Rats' voluntary ethanol intake varies with dispositional factors and energy status. The joint influences of these were of interest here. We previously reported that rats selectively bred for high voluntary saccharin intake (HiS) consume more ethanol and express more robust conditioning of preference for flavors paired with voluntarily consumed ethanol than do low-saccharin consuming counterparts (LoS). Three new experiments examined the effect of refeeding after an episode of food restriction on ethanol intake and on preference for ethanol-paired flavors in HiS and LoS rats. A 48-h episode of food restriction with wheel running reduced intake of and preference for 4% ethanol (Exp. 1a) and preference for an ethanol-paired flavor (Exp. 1b) during refeeding. Food restriction alone was sufficient to reduce the flavor preference (Exp. 2). Adding fat to the refeeding diet or extending the food restriction period exacerbated the effect (Exp. 3), yielding a frank aversion to ethanol-paired flavors in LoS rats. These studies indicate that rebound from negative energy balance shifts responses to ethanol-associated cues from preference toward aversion. Analyses of bodyweight changes and caloric intake during refeeding support this conclusion and further suggest that lower metabolic efficiency may be a marker for enhanced preference mutability. PMID:23231850

  19. The effect of ethanol consumption during gestation on maternal-fetal amino acid metabolism in the rat.

    PubMed

    Lin, G W

    1981-01-01

    The distribution of 14C-alpha-aminoisobutyric acid (AIB), administered intravenously, in maternal, fetal and placental tissues was examined in the rat on gestation-day 21. Ethanol consumption during gestation (day 6 through 21) significantly reduced the uptake of AIB by the placenta and fetus while exerting no influence on maternal tissue AIB uptake. The concentration of fetal plasma free histidine was decreased 50% as a result of maternal ethanol ingestion, but the free histidine level of maternal plasma was not altered. Since no effect on protein content of fetal tissue could be detected, it is speculated that reduced histidine to the fetus might significantly alter the amounts of histamine and carnosine formed via their precursor. The significance of these findings in relation to the Fetal Alcohol Syndrome is discussed. PMID:7343192

  20. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism.

    PubMed Central

    Keung, W M; Lazo, O; Kunze, L; Vallee, B L

    1995-01-01

    Daidzin is a potent, selective, and reversible inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH) that suppresses free-choice ethanol intake by Syrian golden hamsters. Other ALDH inhibitors, such as disulfiram (Antabuse) and calcium citrate carbimide (Temposil), have also been shown to suppress ethanol intake of laboratory animals and are thought to act by inhibiting the metabolism of acetaldehyde produced from ingested ethanol. To determine whether or not daidzin inhibits acetaldehyde metabolism in vivo, plasma acetaldehyde in daidzin-treated hamsters was measured after the administration of a test dose of ethanol. Daidzin treatment (150 mg/kg per day i.p. for 6 days) significantly suppresses (> 70%) hamster ethanol intake but does not affect overall acetaldehyde metabolism. In contrast, after administration of the same ethanol dose, plasma acetaldehyde concentration in disulfiram-treated hamsters reaches 0.9 mM, 70 times higher than that of the control. In vitro, daidzin suppresses hamster liver mitochondria-catalyzed acetaldehyde oxidation very potently with an IC50 value of 0.4 microM, which is substantially lower than the daidzin concentration (70 microM) found in the liver mitochondria of daidzin-treated hamsters. These results indicate that (i) the action of daidzin differs from that proposed for the classic, broad-acting ALDH inhibitors (e.g., disulfiram), and (ii) the daidzin-sensitive mitochondrial ALDH is not the one and only enzyme that is essential for acetaldehyde metabolism in golden hamsters. PMID:7568058

  1. [Proposal for early detection of ethanol consumption in students of the Universidad Autónoma del Estado de Morelos].

    PubMed

    García-Jiménez, Sara; Erazo-Mijares, Miguel; Toledano-Jaimes, Cairo D; Monroy-Noyola, Antonio; Bilbao-Marcos, Fernando; Sánchez-Alemán, Miguel A; Déciga-Campos, Myrna

    2016-01-01

    The present study determined through analytic techniques the quantification of some biomarkers that have been useful to detect early ethanol consumption in a college population. A group of 117 students of recent entry to the Universidad Autónoma del Estado de Morelos was analyzed. The enzyme determination of aspartate aminotransferase, alanine aminotransferase, and gamma glutamyltransferase as metabolic markers of ethanol, as well as the carbohydrate-deficient transferrin (CDT) detected by high chromatographic liquid (up to 1.8% of CDT), allowed us to identify that 6% of the college population presented a potential risk of alcohol consumption. The use of the biochemical-analytical method overall with the psychological drug and a risk factor instrument established by the Universidad Autónoma del Estado de Morelos permit us to identify students whose substance abuse consumption puts their terminal efficiency at risk as well as their academic level. The timely detection on admission to college can monitor and support a student consumer's substance abuse. PMID:27160612

  2. Acute Alcohol Consumption Elevates Serum Bilirubin, an Endogenous Antioxidant

    PubMed Central

    O’Malley, Stephanie S.; Gueorguieva, Ralitza; Wu, Ran; Jatlow, Peter I.

    2015-01-01

    Background Moderate alcohol consumption has been associated with both negative and favorable effects on health. The mechanisms responsible for reported favorable effects remain unclear. Higher (not necessarily elevated) concentrations of serum bilirubin, an antioxidant, have also been associated with reduced risk of cardiovascular disease and all-cause mortality. This study tests the hypothesis that single dose alcohol consumption elevates bilirubin providing a potential link between these observations. Methods 18 healthy individuals (8 cigarette smokers) were administered alcohol, calibrated to achieve blood concentrations of 20, 80 and 120 mg/dL, in random order in 3 laboratory sessions separated by a week. Each session was preceded by and followed by 5–7 days of alcohol abstinence. Serum bilirubin was measured at 7:45 am prior to drinking, at 2 pm, and at 7:45 the next morning. Mixed effects regression models compared baseline and 24 hr. post-drinking bilirubin concentrations. Results Total serum bilirubin (sum of indirect and direct) concentration increased significantly after drinking from baseline to 24 hours in non-smokers (from Mean=0.38, SD=0.24 to Mean=0.51 SD=0.30, F(1, 32.2) =24.24, p<.0001) but not in smokers (from Mean=0.25, SD=0.12 to Mean=0.26, SD=0.15, F(1, 31.1) =0.04, p=0.84). In nonsmokers the indirect bilirubin concentration and the ratio of indirect (unconjugated) to direct (conjugated) bilirubin also increased significantly. Conclusions Alcohol consumption leads to increases in serum bilirubin in nonsmokers. Considering the antioxidant properties of bilirubin, our findings suggest one possible mechanism for the reported association between alcohol consumption and reduced risk of some disorders that could be tested in future longitudinal studies. PMID:25707709

  3. Acute Effusive Pericarditis due to Horse Chestnut Consumption

    PubMed Central

    Edem, Efe; Kahyaoğlu, Behlül; Çakar, Mehmet Akif

    2016-01-01

    Patient: Male, 32 Final Diagnosis: Pericardial effusion related to the consumption of herbal product Symptoms: Dyspnea Medication: Horse chestnut (Aesculus hippocastanum L) Clinical Procedure: Pericardial and pleural effusions were drained through a pericardiopleural window Specialty: Cardiology Objective: Unusual clinical course Background: There are many well-known causes of pericardial effusion, such as cancer metastasis, bacterial or viral pericarditis, and uremic pericarditis; however, no reports exist in the literature demonstrating a pericardial effusion that led to cardiac tamponade following consumption of an herbal remedy. Case Report: A 32-year-old male patient was referred to our cardiology outpatient clinic with a complaint of dyspnea. The patient’s medical history was unremarkable; however, he had consumed 3 boxes of horse chestnut (Aesculus hippocastanum L) paste over the previous 1.5 months. His chest x-ray examination revealed an enlarged cardiac shadow and bilateral pleural effusion. On transthoracic echocardiographic examination, his ejection fraction was found to be 55% with circumferentially extended pericardial effusion that reached 3.9 cm at its maximal thickness. No growth had been detected in the pericardial and pleural biopsies or blood samples; there was no evidence of an infectious process in the physical examination. Based on this information, we diagnosed pericarditis resulting from the use of herbal remedies. This is the first report to demonstrate that herbal remedy consumption may cause this type of clinical condition. Conclusions: Besides other well-known causes, pericardial effusion related to the consumption of herbal remedies should always be considered when treating patients with pericardial effusion caused by unclear etiologies. PMID:27141926

  4. Acute Effusive Pericarditis due to Horse Chestnut Consumption.

    PubMed

    Edem, Efe; Kahyaoğlu, Behlül; Çakar, Mehmet Akif

    2016-01-01

    BACKGROUND There are many well-known causes of pericardial effusion, such as cancer metastasis, bacterial or viral pericarditis, and uremic pericarditis; however, no reports exist in the literature demonstrating a pericardial effusion that led to cardiac tamponade following consumption of an herbal remedy. CASE REPORT A 32-year-old male patient was referred to our cardiology outpatient clinic with a complaint of dyspnea. The patient's medical history was unremarkable; however, he had consumed 3 boxes of horse chestnut (Aesculus hippocastanum L) paste over the previous 1.5 months. His chest x-ray examination revealed an enlarged cardiac shadow and bilateral pleural effusion. On transthoracic echocardiographic examination, his ejection fraction was found to be 55% with circumferentially extended pericardial effusion that reached 3.9 cm at its maximal thickness. No growth had been detected in the pericardial and pleural biopsies or blood samples; there was no evidence of an infectious process in the physical examination. Based on this information, we diagnosed pericarditis resulting from the use of herbal remedies. This is the first report to demonstrate that herbal remedy consumption may cause this type of clinical condition. CONCLUSIONS Besides other well-known causes, pericardial effusion related to the consumption of herbal remedies should always be considered when treating patients with pericardial effusion caused by unclear etiologies. PMID:27141926

  5. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. PMID:22024161

  6. Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish.

    PubMed

    Lin, Xudong; Li, Vincent W T; Chen, Siya; Chan, Chung-Yuen; Cheng, Shuk-Han; Shi, Peng

    2016-03-01

    Ethanol is widely consumed and has been associated with various diseases in different organs. It is therefore important to study ethanol-induced responses in living organisms with the capability to address specific organs in an integrative manner. Here, we developed an autonomous system based on a series of microfluidic chips for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish. This system enabled high-throughput, gel-free, and anesthetic-free manipulation of larvae, and thus allowed real-time observation of behavioral responses, and associated physiological changes at cellular resolution within specific organs in response to acute ethanol stimuli, which would otherwise be impossible by using traditional methods for larva immobilization and orientation. Specifically, three types of chips ("motion," "lateral," and "dorsal"), based on a simple hydrodynamic design, were used to perform analysis in animal behavior, cardiac, and brain physiology, respectively. We found that ethanol affected larval zebrafish in a dose-dependent manner. The motor function of different body parts was significantly modulated by ethanol treatment, especially at a high dose of 3%. These behavioral changes were temporally associated with a slow-down of heart-beating and a stereotyped activation of certain brain regions. As we demonstrated in this proof-of-concept study, this versatile Fish-on-Chip platform could potentially be adopted for systematic cross-organ investigations involving chemical or genetic manipulations in zebrafish model. PMID:27158291

  7. The influence of chronic or acute nicotine pretreatment on ethanol-induced gastric ulceration in the rat.

    PubMed

    Wong, S H; Ogle, C W; Cho, C H

    1986-07-01

    The effects in rats of chronic or acute nicotine pretreatment were studied on three gastric parameters: ethanol-induced ulceration, gastric wall mucus content and gastric acid secretion, under basal or histamine-stimulated conditions. Oral administration of ethanol (40%, 10 ml kg-1) depleted gastric wall mucus and produced ulceration in the gastric glandular mucosa. Ten-day nicotine pretreatment (15 or 25 micrograms ml-1 drinking water) worsened the adverse effects of ethanol on mucosal ulceration and mucus content, potentiated the gastric secretory action of histamine, but did not affect basal acid secretion. Single oral doses of nicotine (2 or 4 mg kg-1, given 1 h beforehand) prevented ulceration and mucus depletion in ethanol-treated animals; however, they did not influence either basal or histamine-stimulated gastric acid output. It is concluded that chronic nicotine administration aggravates ethanol ulceration, possibly by decreasing gastric wall mucus content and sensitizing the stomach to the acid secretory action of histamine. On the other hand, an acute oral dose of nicotine preserves the mucus content and prevents ethanol-induced ulcer formation. PMID:2427681

  8. ONTOGENY OF ETHANOL INDUCED MOTOR IMPAIRMENT FOLLOWING ACUTE ETHANOL: ASSESSMENT VIA THE NEGATIVE GEOTAXIS REFLEX IN ADOLESCENT AND ADULT RATS

    PubMed Central

    Ramirez, Ruby Liane; Spear, Linda Patia

    2010-01-01

    Adolescent rats have been observed to be less sensitive than adults to a number of ethanol effects that may serve as feedback cues to reduce further ethanol intake. Among these findings are a few reports of attenuated sensitivities of adolescents to ethanol-induced motor impairment. The purpose of the present study was to further explore potential age-related differences in ethanol-induced motor impairment in both male and female adolescent (postnatal day [P]28–32), and adult (P68-72) Sprague-Dawley rats using an inclined plane assessment of the negative geotaxis reflex. Adult males displayed significant motor impairment at 1.5 g/kg, whereas adolescent males required higher doses, showing significant motor impairment only at doses of 2.25 g/kg ethanol or greater. Intoxicated practice did not significantly influence level of motor impairment at either age. When female rats of both ages were separately analyzed in terms of their response to ethanol, a dose of 1.5 g/kg ethanol was found to significantly impair adults, whereas adolescent females showed significant motor impairment when challenged with 2.25 g/kg but not 1.5 g/kg ethanol. Yet when the 1.5 g/kg data of females at the two ages were directly compared, no significant age difference was seen at this dose. These data document an attenuated sensitivity of adolescent relative to adult rats to the motor impairing effects of ethanol using a stationary inclined plane test, an effect particularly robust in male animals, and demonstrates the utility of this test for assessment of motor coordination in adolescent and adult rats. PMID:20138187

  9. Chronic ethanol consumption alters effects of ethanol in vitro on brain membrane structure of high alcohol sensitivity and low alcohol sensitivity rats.

    PubMed

    Avdulov, N A; Chochina, S V; Draski, L J; Deitrich, R A; Wood, W G

    1995-08-01

    In this study, we examined if differences in initial membrane sensitivity to ethanol were associated with development of membrane tolerance to ethanol. High Alcohol Sensitivity (HAS) and Low Alcohol Sensitivity (LAS) rats were administered a 15% ethanol solution in water as the sole source of fluid for 30 days. The amount of ethanol consumed per day did not significantly differ between the HAS and LAS rats. Development of membrane tolerance to in vitro effects of ethanol has been previously reported for bulk membrane fluidity and protein-lipid interaction. Our data expands the understanding of "membrane tolerance" phenomenon to protein distribution and bilayer interdigitation. We also introduce genotype-dependent and genotype-independent properties of the membrane tolerance to ethanol. ethanol treatment produced genotype-dependent and genotype-independent membrane tolerance to ethanol. The in vitro effects of ethanol on synaptic plasma membrane (SPM) protein distribution and lipid bilayer interdigitation were abolished or decreased in the SPM of chronic ethanol-treated HAS rats, as compared with the SPM of HAS control rats (genotype-dependent tolerance). Protein distribution and bilayer interdigitation were not affected by ethanol in vitro in either chronic ethanol-treated or control LAS rats. Genotype-independent tolerance to ethanol in vitro was observed for SPM annular and bulk bilayer fluidity in chronic ethanol-treated HAS and LAS rats. It is concluded that initial sensitivity to ethanol contributes to the development of membrane tolerance to ethanol in HAS and LAS rats. PMID:7485835

  10. Large-Scale Analysis of Acute Ethanol Exposure in Zebrafish Development: A Critical Time Window and Resilience

    PubMed Central

    Ali, Shaukat; Champagne, Danielle L.; Alia, Alia; Richardson, Michael K.

    2011-01-01

    Background In humans, ethanol exposure during pregnancy causes a spectrum of developmental defects (fetal alcohol syndrome or FAS). Individuals vary in phenotypic expression. Zebrafish embryos develop FAS-like features after ethanol exposure. In this study, we ask whether stage-specific effects of ethanol can be identified in the zebrafish, and if so, whether they allow the pinpointing of sensitive developmental mechanisms. We have therefore conducted the first large-scale (>1500 embryos) analysis of acute, stage-specific drug effects on zebrafish development, with a large panel of readouts. Methodology/Principal Findings Zebrafish embryos were raised in 96-well plates. Range-finding indicated that 10% ethanol for 1 h was suitable for an acute exposure regime. High-resolution magic-angle spinning proton magnetic resonance spectroscopy showed that this produced a transient pulse of 0.86% concentration of ethanol in the embryo within the chorion. Survivors at 5 days postfertilisation were analysed. Phenotypes ranged from normal (resilient) to severely malformed. Ethanol exposure at early stages caused high mortality (≥88%). At later stages of exposure, mortality declined and malformations developed. Pharyngeal arch hypoplasia and behavioral impairment were most common after prim-6 and prim-16 exposure. By contrast, microphthalmia and growth retardation were stage-independent. Conclusions Our findings show that some ethanol effects are strongly stage-dependent. The phenotypes mimic key aspects of FAS including craniofacial abnormality, microphthalmia, growth retardation and behavioral impairment. We also identify a critical time window (prim-6 and prim-16) for ethanol sensitivity. Finally, our identification of a wide phenotypic spectrum is reminiscent of human FAS, and may provide a useful model for studying disease resilience. PMID:21625530

  11. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat.

    PubMed

    Souli, Abdelaziz; Sebai, Hichem; Chehimi, Latifa; Rtibi, Kaïs; Tounsi, Haifa; Boubaker, Samir; Sakly, Mohsen; El-Benna, Jamel; Amri, Mohamed

    2015-09-01

    The present study was undertaken to determine whether subacute treatment with aqueous extract of carob (Ceratonia siliqua L.) pods (AECPs) protects against ethanol (EtOH)-induced oxidative stress in rat liver. Animals were divided into four groups: control, carob, EtOH and EtOH + carob. Wistar rats were intraperitoneally pretreated with AECP (600 mg/kg body weight (bw)) during 7 days and intoxicated for 6 h by acute oral administration of EtOH (6 g/kg bw) 24 h after the last injection. We found that acute administration of EtOH leads to hepatotoxicity as monitored by the increase in the levels of hepatic marker aspartate aminotransferase and alanine aminotransferase as well as hepatic tissue injury. EtOH also increased the formation of malondialdehyde in the liver, indicating an increase in lipid peroxidation and depletion of antioxidant enzyme activities as superoxide dismutase, catalase and glutathione peroxidase. Subacute carob pretreatment prevented all the alterations induced by EtOH and returned their levels to near normal. Importantly, we showed that acute alcohol increased hepatic and plasmatic hydrogen peroxide and free iron levels. The carob pretreatment reversed EtOH effects to near control levels. These data suggest that carob could have a beneficial effect in inhibiting the oxidative damage induced by acute EtOH administration and that its mode of action may involve an opposite effect on plasma and tissue-free iron accumulation. Indeed, carob can be offered as a food additive to protect against EtOH-induced oxidative damage. PMID:23363576

  12. The involvement of NMDA receptors in acute and chronic effects of ethanol.

    PubMed

    Danysz, W; Dyr, W; Jankowska, E; Glazewski, S; Kostowski, W

    1992-06-01

    Recent evidence indicates involvement of excitatory amino acid receptors sensitive to N-methyl-d-aspartate (NMDA) in the action of ethanol (EtOH). Pronounced inhibition of NMDA receptor function is seen in vitro with concentrations of EtOH corresponding to those present during alcohol intoxication in humans. The present study was devoted to investigate the role of NMDA receptors in the action of EtOH in rats. Acute experiments showed antagonism by EtOH of convulsions induced by intracerebroventricular injection of NMDA. A similar effect was seen with a high dose of diazepam. Convulsions induced by an agonist of another excitatory amino acid receptor subtype, kainate, were also inhibited by EtOH. An uncompetitive antagonist of NMDA receptors, 5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine maleate (MK-801), potentiated EtOH-induced loss of righting, but attenuated the hypothermic action of EtOH. Moreover, MK-801 inhibited audiogenic convulsions in EtOH withdrawn rats. At the same time the effect of a proconvulsive dose of NMDA was not enhanced. Tolerance to the myorelaxant action of both EtOH and MK-801 upon repetitive administration was seen. Also some degree of cross-tolerance was observed. Moreover, MK-801 failed to modify EtOH preference in rats. The present results support involvement of NMDA receptors in expression of some acute and subchronic actions of EtOH and in expression of EtOH withdrawal. PMID:1385679

  13. Model studies for evaluating the acute neurobehavioral effects of complex hydrocarbon solvents I. Validation of methods with ethanol.

    PubMed

    McKee, R H; Lammers, J H C M; Hoogendijk, E M G; Emmen, H H; Muijser, H; Barsotti, D A; Owen, D E; Kulig, B M

    2006-12-01

    As a preliminary step to evaluating the acute neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, joint neurobehavioral/toxicokinetic studies were conducted which involved administering ethanol to rats and volunteers. The specific objectives of the present studies were to evaluate the acute central nervous system (CNS) effects of ethanol in rats and humans and to assess relationships between internal levels of exposure and behavioral effects. A more general objective was to validate a battery of neurobehavioral tests that could be used to carry out comparative studies in both species. Accordingly, a range of tests including standardized observational measures, spontaneous motor activity assessments and learned visual discrimination performance was utilized in rat studies to evaluate acute CNS effects. Groups of rats were given ethanol at levels of approximately 0.5, 1.0 or 2.0g/kg, with blood level measurements to verify internal doses. In a volunteer study, 12 healthy male subjects were given 0.65g/kg ethanol, a level approximating the limit for motor vehicle operation in The Netherlands, and neurobehavioral effects were measured prior to and 1 and 3h after ethanol administration, with a computerized neurobehavioral test battery. Blood and air measurements were made to quantify internal doses. Results of the behavioral tests in rats provided evidence of ethanol-induced changes in neuromuscular, sensori-motor, and activity domains. There were also significant changes in visual discrimination, particularly in the areas of general measures of responding and psychomotor speed. In humans there were small but statistically significant effects on learning and memory, psychomotor skills and attention. However, the effects were subtle and not all parameters within given domains were affected. These studies demonstrated a qualitative similarity in response between rats and humans. PMID:16831461

  14. Role of interleukin-10 (IL-10) in regulation of GABAergic transmission and acute response to ethanol.

    PubMed

    Suryanarayanan, A; Carter, J M; Landin, J D; Morrow, A L; Werner, D F; Spigelman, I

    2016-08-01

    Mounting evidence indicates that ethanol (EtOH) exposure activates neuroimmune signaling. Alterations in pro-inflammatory cytokines after acute and chronic EtOH exposure have been heavily investigated. In contrast, little is known about the regulation of neurotransmission and/or modulation by anti-inflammatory cytokines in the brain after an acute EtOH exposure. Recent evidence suggests that interleukin-10 (IL-10), an anti-inflammatory cytokine, is upregulated during withdrawal from chronic EtOH exposure. In the present study, we show that IL-10 is increased early (1 h) after a single intoxicating dose of EtOH (5 g/kg, intragastric) in Sprague Dawley rats. We also show that IL-10 rapidly regulates GABAergic transmission in dentate gyrus neurons. In brain slice recordings, IL-10 application dose-dependently decreases miniature inhibitory postsynaptic current (mIPSC) area and frequency, and decreases the magnitude of the picrotoxin sensitive tonic current (Itonic), indicating both pre- and postsynaptic mechanisms. A PI3K inhibitor LY294002 (but not the negative control LY303511) ablated the inhibitory effects of IL-10 on mIPSC area and Itonic, but not on mIPSC frequency, indicating the involvement of PI3K in postsynaptic effects of IL-10 on GABAergic transmission. Lastly, we also identify a novel neurobehavioral regulation of EtOH sensitivity by IL-10, whereby IL-10 attenuates acute EtOH-induced hypnosis. These results suggest that EtOH causes an early release of IL-10 in the brain, which may contribute to neuronal hyperexcitability as well as disturbed sleep seen after binge exposure to EtOH. These results also identify IL-10 signaling as a potential therapeutic target in alcohol-use disorders and other CNS disorders where GABAergic transmission is altered. PMID:27016017

  15. Influence of chronic nicotine intake and acute ethanol challenge on gastric mucus level and blood flow in rabbits.

    PubMed

    Luk, I S; Ho, J; Wong, W M; Yuen, S T; Luk, C T; Cho, C H

    1994-01-01

    The effects of nicotine pretreatment on ethanol-induced gastric mucosal lesions and changes of gastric mucosal mucus levels and blood flow (GBF) were studied in anaesthetized rabbits. Nicotine treatment 25 or 50 micrograms/ml drinking water did not affect the volume of water consumption during the 10-day experimental period. It did not produce gastric mucosal lesions or affect the superficial adherent mucus content. The length of mucus-containing cells and the basal GBF were also unaffected. Intragastric administration of absolute ethanol reduced GBF, this effect was not altered by nicotine. However, the alkaloid potentiated the ulcerogenic actions of ethanol both on lesion formation and mucus depletion evoked by graded oral doses of ethanol (50 or 100%, v/v). Ultrastructurally, the mucous cells were more degenerated in the animals co-treated with nicotine and ethanol. It is concluded that reductions of mucus-containing cells and adherent mucus on the gastric mucosa are likely to be the contributory factors involved in the aggravating action of nicotine on ethanol-induced gastric mucosal lesions in rabbits. PMID:7535712

  16. Assessment of the effects of six standard rodent diets on binge-like and voluntary ethanol consumption in male C57BL/6J mice

    PubMed Central

    Marshall, S. Alex; Rinker, Jennifer A.; Harrison, Langston K.; Fletcher, Craig A.; Herfel, Tina M.; Thiele, Todd E.

    2015-01-01

    Background In recent years much attention has been given to the lack of reproducibility in biomedical research, particularly in pre-clinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in pre-clinical studies. Methods Herein, two well-established models of alcohol consumption, the “drinking in the dark” (DID) procedure and the continuous two-bottle choice paradigm (C2BC), were employed to determine the effects of diet on ethanol consumption. Male C57BL/6J were given one of six standard rodent-chow diets obtained from Purina LabDiet®, Inc. [St. Louis, MO; Prolab® RMH 3000] or Harlan Laboratories Inc. [Indianapolis, IN; Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940]. A separate group of animals were used to test dietary effects on ethanol pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of ethanol. Results Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less ethanol and exhibited lower blood ethanol concentrations (BECs) during DID; however, during C2BC animals maintained on Harlan T.7912 (H7912) consumed more ethanol and had a higher ethanol preference than the other diet groups. Ethanol consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered ethanol IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex. Conclusions Although these data do not identify a specific mechanism, together they clearly show that the maintenance diet impacts ethanol consumption. It is incumbent upon the research

  17. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice.

    PubMed

    Marshall, S Alex; Casachahua, John D; Rinker, Jennifer A; Blose, Allyson K; Lysle, Donald T; Thiele, Todd E

    2016-01-01

    Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse. PMID:26365025

  18. Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress.

    PubMed

    Ding, Ren-Bo; Tian, Ke; Cao, Yi-Wei; Bao, Jiao-Lin; Wang, Meng; He, Chengwei; Hu, Yuanjia; Su, Huanxing; Wan, Jian-Bo

    2015-03-11

    The aim of present study was to evaluate the effects of Panax notoginseng saponins (PNS) against acute ethanol-induced liver injury and further to elucidate its probable mechanisms. Mice were treated with PNS (100 or 300 mg/kg) once daily for seven consecutive days priors to ethanol gavage (4.7 g/kg) every 12 h for a total of three doses. Acute alcohol gavage dramatically significantly increased serum activities of alanine aminotransferase (ALT) (23.4 ± 5.0 IU/L vs 11.7 ± 4.1 IU/L) and aspartate aminotransferase (AST) (52.6 ± 14.9 IU/L vs 31.1 ± 12.9 IU/L), and hepatic triglyceride level (4.04 ± 0.64 mg/g vs 1.92 ± 0.34 mg/g), these elevations were significantly diminished by pretreatment with PNS at dose of 100 mg/kg or 300 mg/kg. Alcohol exposure markedly induced the lipolysis of white adipose tissue (WAT), up-regulated protein expression of the phosphorylated hormone-sensitive lipase (p-HSL, p < 0.01), and total HSL (p < 0.01), and enhanced fatty acid uptake capacity in liver as indicated by increasing hepatic CD36 expression (p < 0.01), these effects were attenuated by PNS treatment. Additionally, PNS suppressed the elevation of reactive oxygen species (ROS) production and malondialdehyde (MDA) content, reduced TNF-α and IL-6 levels, restored glutathione (GSH) level, enhanced the superoxide dismutase (SOD) activity in liver, and abrogated cytochrome P450 2E1 (CYP2E1) induction. These data demonstrated that pretreatment with PNS protected against acute ethanol-induced liver injury, possibly through ameliorating hepatic lipid accumulation and reducing CYP2E1-mediated oxidative stress. Our findings also suggested that PNS may be potential to be developed as an effective agent for acute ethanol-induced liver injury. PMID:25665731

  19. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. PMID:27189965

  20. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  1. Ethanol consumption in the Sprague-Dawley rat increases sensitivity of the dorsal raphe nucleus to 5,7-dihydroxytryptamine.

    PubMed

    Vasudeva, Rani K; Hobby, Alexander R; Kirby, Lynn G

    2015-12-15

    Alcoholism afflicts 1 in 13 US adults, and comorbidity with depression is common. Levels of serotonin (5-HT) metabolites in alcoholic or depressed humans and rat strains are lower compared to healthy counterparts. Rats bred for ethanol (EtOH) preference are common in EtOH studies, however out-bred strains better model the range of EtOH consumption in humans. We examined voluntary EtOH consumption in out-bred Sprague-Dawley (SD) rats placed in the 20% EtOH intermittent access drinking paradigm (IA). Acquisition of 20% EtOH consumption (g EtOH/kg/24h) was assessed during the first 6-8 weeks of IA. Rats naturally separated into two groups (Drinkers or Non-drinkers) based on EtOH intake above or below 0.5 g/kg/24h prior to treatment intervention. We examined the effect of central 5-HT depletion on EtOH consumption by infusing 5,7-dihyroxytryptamine (5,7-DHT; i.c.v., 200-300 μg) or vehicle and measured EtOH consumption for 4 weeks post-operatively in IA. Compared to baseline, there was no effect of vehicle or 5,7-DHT on EtOH consumption during the post-operative period. Quantification of 5-HT depletion in the dorsal raphe nucleus (DRN) using tryptophan hydroxylase-2 (TPH2) immunohistochemistry resulted in a 76% decrease in staining with 5,7-DHT treatment. Interestingly, preservation of the ventromedial (VM) sub-regions was evident in all animals treated with 5,7-DHT, regardless of drinking behavior. In addition, Drinkers treated with 5,7-DHT had significantly more TPH2 depletion in the DRN compared to Non-drinkers. Our findings indicate that out-bred SD rats exhibit a natural EtOH consumption behavior (Drinker or Non-drinker) that is stable across time and independent of 5-HT depletion in the CNS. In addition, rats that regularly consumed >0.5 g EtOH/kg had greater sensitivity to 5,7-DHT in the DRN, indicating an interaction between EtOH and sensitivity of DRN 5-HT cells to neurotoxic substances. This may contribute to the dysfunctionality of the 5-HT system in

  2. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    PubMed

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS. PMID:26675916

  3. Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-08-01

    A L9(3)(4) orthogonal array (OA) experimental design was applied to study the four parameters considered most important in the ozonolysis pretreatment (moisture content, ozone concentration, ozone/oxygen flow and particle size) on ethanol production from sugarcane bagasse (SCB). Statistical analysis highlighted ozone concentration as the highest influence parameter on reaction time and sugars release after enzymatic hydrolysis. The increase on reaction time when decreasing the ozone/oxygen flow resulted in small differences of ozone consumptions. Design optimization for sugars release provided a parameters combination close to the best experimental run, where 77.55% and 56.95% of glucose and xylose yields were obtained, respectively. When optimizing the grams of sugar released by gram of ozone, the highest influence parameter was moisture content, with a maximum yield of 2.98gSUGARS/gO3. In experiments on hydrolysates fermentation, Saccharomyces cerevisiae provided ethanol yields around 80%, while Pichia stipitis was completely inhibited. PMID:27132222

  4. Ethanol Consumption: How Should We Measure It? Achieving Consilience between Human and Animal Phenotypes

    PubMed Central

    Leeman, Robert F.; Heilig, Markus; Cunningham, Christopher L.; Stephens, David N.; Duka, Taheodora; O’Malley, Stephanie S.

    2010-01-01

    There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: 1) abstinence/the decision to drink or abstain; 2) the actual amount of alcohol consumed and 3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical trials should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies provides one means of achieving greater consilience of alcohol consumption phenotypes. PMID:20148775

  5. Consequences of Adolescent Ethanol Consumption on Risk Preference and Orbitofrontal Cortex Encoding of Reward.

    PubMed

    McMurray, Matthew Stephen; Amodeo, Leslie Renee; Roitman, Jamie Donahey

    2016-04-01

    Critical development of the prefrontal cortex occurs during adolescence, a period of increased independence marked by decision making that often includes engagement in risky behaviors, such as substance use. Consumption of alcohol during adolescence has been associated with increased impulsivity that persists across the lifespan, an effect which may be caused by long-term disruptions in cortical processing of rewards. To determine if alcohol consumption alters cortical encoding of rewards of different sizes and probabilities, we gave rats limited access to alcohol in gelatin during adolescence only. In adulthood, we recorded the electrophysiological activity of individual neurons of the orbitofrontal cortex while rats performed a risk task that varied the level of risk from day-to-day. Rats that had consumed higher levels of alcohol showed increased risk preference in the task compared with control and low alcohol-consuming rats. Patterns of neuronal responses were identified using principal component analysis. Of the multiple patterns observed, only one was modulated by adolescent alcohol consumption and showed strongest modulation after reward receipt. This subpopulation of neurons showed blunted firing rates following rewards in alcohol-consuming rats, suggesting a mechanism through which adolescent alcohol exposure may have lasting effects on reward processing in the context of decision making. The differences in OFC responses between high alcohol consumers and control animals not given access to alcohol support the idea that, regardless of potential variability in innate alcohol preferences, voluntary consumption of alcohol during adolescence biases choice patterns longitudinally through alterations in cortical function. PMID:26370327

  6. Conditional stimulation by galanin of saccharin and ethanol consumption under free and response contingent access.

    PubMed

    McNamara, I M; Robinson, J K

    2010-10-01

    Prior research has shown that the neuropeptide galanin strongly stimulates food intake in sated rats when food is made freely available. However, when access to food is made contingent upon lever pressing on a reinforcement schedule, no such stimulation occurs. This dissociation is consistent with the theorized "behavioral energizing" function of the ascending mesolimbic dopamine system, which purports that this ascending dopamine system is involved in only the goal directed effort maintaining (appetitive) and not the hedonic (consummatory) aspects of reward. Further, these results suggest that galanin may play an inhibitory role therein, or itself may be inhibited by mesolimbic dopamine activity underlying instrumental behavior. Prior research into this phenomenon has only utilized caloric foods or water, so the current work assessed the generality of this finding by determining if a similar dissociation also applies to commodities with other properties. For the present experiments, two commodities which varied in the dimensions of palatability and caloric load but which are both known to serve as reinforcers in other settings were chosen. In the first experiment, under the current single commodity free consumption test conditions shown to be sensitive to galanin effects of food and water consumption, galanin did not significantly alter the consumption of caloric laden but poorly palatable 7% alcohol solution. However, in the second experiment, galanin significantly increased free consumption of a highly palatable but non-caloric 0.2% saccharin solution but not when operant responding was required for access to saccharin, extending the basic appetitive-consummatory dissociation observed for food. Taken together, these results suggest that the gustatory properties may be a specific factor involved in galanin stimulation of free consumption, and that there may be a continuum of influence of galanin based on the relative "elasticity" of the commodities as reinforcers

  7. Risk-adjusted antibiotic consumption in 34 public acute hospitals in Ireland, 2006 to 2014.

    PubMed

    Oza, Ajay; Donohue, Fionnuala; Johnson, Howard; Cunney, Robert

    2016-08-11

    As antibiotic consumption rates between hospitals can vary depending on the characteristics of the patients treated, risk-adjustment that compensates for the patient-based variation is required to assess the impact of any stewardship measures. The aim of this study was to investigate the usefulness of patient-based administrative data variables for adjusting aggregate hospital antibiotic consumption rates. Data on total inpatient antibiotics and six broad subclasses were sourced from 34 acute hospitals from 2006 to 2014. Aggregate annual patient administration data were divided into explanatory variables, including major diagnostic categories, for each hospital. Multivariable regression models were used to identify factors affecting antibiotic consumption. Coefficient of variation of the root mean squared errors (CV-RMSE) for the total antibiotic usage model was very good (11%), however, the value for two of the models was poor (> 30%). The overall inpatient antibiotic consumption increased from 82.5 defined daily doses (DDD)/100 bed-days used in 2006 to 89.2 DDD/100 bed-days used in 2014; the increase was not significant after risk-adjustment. During the same period, consumption of carbapenems increased significantly, while usage of fluoroquinolones decreased. In conclusion, patient-based administrative data variables are useful for adjusting hospital antibiotic consumption rates, although additional variables should also be employed. PMID:27541730

  8. Effect of acute and chronic ethanol pre-treatment on the disposition of phencyclidine (PCP) in the rat.

    PubMed

    Vadlamani, N L; Pontani, R B; Misra, A L

    1982-05-01

    Disposition of [H] Phencyclidine in brain, plasma and adipose tissue of rats acutely and chronically-treated with ethanol was studied using a method possessing high sensitivity and specificity for PCP. In rats acutely-treated with ethanol (5 g/kg PO dose) and PCP (10 mg/kg IP dose), dispositional factors did not play a role in the intensifies pharmacological and behavioral effects of PCP. However in rats chronically-treated with 2.5 g/kg PO dose of ethanol twice a day for 19 days, the disposition of PCP (5 mg/kg IP dose) was significantly altered and the values of PCP in brain, plasma and adipose tissue were significantly higher than those in the control group. Although inhibition of PCP metabolism and a comparatively slower rate of its elimination appear to account for the potentiation of drug effects in animals chronically-treated with ethanol, interaction of drugs at the level of the central nervous system cannot be ruled out. PMID:7089042

  9. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells.

    PubMed

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S; Calhoun, William J

    2016-02-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. PMID:26721307

  10. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol.

    PubMed

    Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J; Woodward, John J

    2016-03-01

    Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals. PMID:26286839

  11. Dual-Trait Selection for Ethanol Consumption and Withdrawal: Genetic and Transcriptional Network Effects

    PubMed Central

    Metten, Pamela; Dan Iancu, Ovidiu; Spence, Stephanie E.; Walter, Nicole A. R.; Oberbeck, Denesa; Harrington, Christina A.; Colville, Alexandre; McWeeney, Shannon; Phillips, Tamara J.; Buck, Kari J.; Crabbe, John C.; Belknap, John K.; Hitzemann, Robert J.

    2015-01-01

    Background Data from C57BL/6J (B6) × DBA/2J (D2) F2 intercrosses (B6×D2 F2), standard and recombinant inbred strains, and heterogeneous stock mice indicate that a reciprocal (or inverse) genetic relationship exists between alcohol consumption and withdrawal severity. Furthermore, some genetic studies have detected reciprocal quantitative trait loci (QTLs) for these traits. We used a novel mouse model developed by simultaneous selection for both high alcohol consumption/low withdrawal and low alcohol consumption/high withdrawal and analyzed the gene expression and genome-wide genotypic differences. Methods Randomly chosen third selected generation (S3) mice (N=24/sex/line), bred from a B6×D2 F2, were genotyped using the Mouse Universal Genotyping Array, which provided 2,760 informative markers. QTL analysis used a marker-by-marker strategy with the threshold for a significant log of the odds (LOD) set at 10. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented. Results Significant QTLs for consumption/withdrawal were detected on Chromosomes (Chr) 2, 4, 9, and 12. A suggestive QTL mapped to Chr 6. Some of the QTLs overlapped with known QTLs mapped for one of the traits individually. 1745 transcripts were detected as being differentially expressed between the lines; there was some overlap with known withdrawal genes (e.g. Mpdz) located within QTL regions. WGCNA revealed several modules of co-expressed genes showing significant effects in both differential expression and intramodular connectivity; a module richly annotated with kinase-related annotations was most affected. Discussion Marked effects of selection on expression and network structure were detected. QTLs overlapping with differentially expressed genes on Chr 2 (distal) and 4 suggest that these are cis-eQTLs (Chr 2: Kif3b, Kcnq2; Chr 4: Mpdz, Snapc3). Other QTLs

  12. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    SciTech Connect

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R. )

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.

  13. Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption.

    PubMed

    Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz A; Bordon, Juliana G; Pires, Rafaelle B; Braga, Camila P; Seiva, Fábio R F; Fernandes, Ana Angélica H

    2014-06-01

    Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg(-1) rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST, ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption. PMID:25204084

  14. Comparative studies of oral administration of marine collagen peptides from Chum Salmon (Oncorhynchus keta) pre- and post-acute ethanol intoxication in female Sprague-Dawley rats.

    PubMed

    Liang, Jiang; Li, Qiong; Lin, Bing; Yu, Yongchao; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2014-09-01

    The present study aimed to evaluate the effect of an oral administration of marine collagen peptides (MCPs) pre- and post-acute ethanol intoxication in female Sprague-Dawley (SD) rats. MCPs were orally administered to rats at doses of 0 g per kg bw, 2.25 g per kg bw, 4.5 g per kg bw and 9.0 g per kg bw, prior to or after the oral administration of ethanol. Thirty minutes after ethanol treatment, the effect of MCPs on motor incoordination and hypnosis induced by ethanol were investigated using a screen test, fixed speed rotarod test (5 g per kg bw ethanol) and loss of righting reflex (7 g per kg bw ethanol). In addition, the blood ethanol concentrations at 30, 60, 90, and 120 minutes after ethanol administration (5 g per kg bw ethanol) were measured. The results of the screen test and fixed speed rotarod test suggested that treatment with MCPs at 4.5 g per kg bw and 9.0 g per kg bw prior to ethanol could attenuate ethanol-induced loss of motor coordination. Moreover, MCP administered both pre- and post-ethanol treatment had significant potency to alleviate the acute ethanol induced hypnotic states in the loss of righting reflex test. At 30, 60, 90 and 120 minutes after ethanol ingestion at 5 g per kg bw, the blood ethanol concentration (BEC) of control rats significantly increased compared with that in the 4.5 g per kg bw and 9.0 g per kg bw MCP pre-treated groups. However, post-treatment with MCPs did not exert a significant inhibitory effect on the BEC of the post-treated groups until 120 minutes after ethanol administration. Therefore, the anti-inebriation effect of MCPs was verified in SD rats with the possible mechanisms related to inhibiting ethanol absorption and facilitating ethanol metabolism. Moreover, the efficiency was better when MCPs were administered prior to ethanol. PMID:24992080

  15. Effects of acute alcohol consumption on the perception of eye gaze direction.

    PubMed

    Penton-Voak, Ian S; Cooper, Robbie M; Roberts, Rachel E; Attwood, Angela S; Munafò, Marcus R

    2012-02-01

    Alcohol consumption is associated with increases in aggressive behaviour, but the mechanisms underlying this relationship are poorly understood. One mechanism by which alcohol consumption may influence behaviour is via alterations in the processing of social cues such as gaze. We investigated the effects of acute alcohol consumption on the perception of gaze, using a task in which participants determined whether a stimulus face was looking towards or away from them. Gaze direction varied across trials, allowing calculation of a threshold at which participants considered gaze to switch from direct to averted. Target faces varied in both sex and attractiveness. Thirty social drinkers attended three randomized experimental sessions. At each session, participants consumed 0.0, 0.2 or 0.4 g/kg alcohol, and completed the gaze perception task. A significant three-way interaction involving target sex, participant sex and alcohol dose indicated that alcohol increased the cone of gaze for females viewing male targets (i.e. females were biased towards making a direct gaze judgement), but decreased the cone of gaze for males viewing male targets. Our data indicate that alcohol consumption influences gaze perception, but that these effects vary across sex of both stimulus and rater. These effects may have important implications for alcohol-related violence. PMID:20937615

  16. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats.

    PubMed

    Ehlers, Cindy L; Desikan, Anita; Wills, Derek N

    2013-12-01

    Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years. PMID:24169089

  17. The Zebrafish, a Novel Model Organism for Screening Compounds Affecting Acute and Chronic Ethanol-Induced Effects.

    PubMed

    Tran, S; Facciol, A; Gerlai, R

    2016-01-01

    Alcohol addiction is a major unmet medical and economic issue for which very few efficacious pharmacological treatment options are currently available. The development and identification of new compounds and drugs to treat alcohol addiction is hampered by the high costs and low amenability of traditional laboratory rodents to high-throughput behavioral screens. The zebrafish represents an excellent compromise between systems complexity and practical simplicity by overcoming many limitations inherent in these rodent models. In this chapter, we review current advances in the behavioral and neurochemical characterization of ethanol-induced changes in zebrafish. We also discuss the basic principles and methods of and the most recent advances in using paradigms with which one can screen for compounds altering acute and chronic ethanol-induced effects in zebrafish. PMID:27055623

  18. Excretion of malondialdehyde, formaldehyde, acetaldehyde and acetone in the urine of rats following acute and chronic administration of ethanol.

    PubMed

    Moser, J; Bagchi, D; Akubue, P I; Stohs, S J

    1993-05-01

    Recent studies have shown that xenobiotics which induce oxidative stress result in an increased production and excretion of acetaldehyde (ACT), formaldehyde (FA), acetone (ACON) and malondialdehyde (MDA) in the urine of rats. We have therefore examined the effect of acute and chronic ethanol administration on the excretion of these four lipid metabolites in female Sprague-Dawley rats. Urine samples were collected over dry ice for 6 hr time periods. Aliquots of urine were derivatized with 2,4-dinitrophenylhydrazine HCl, and extracted with n-pentane. High pressure lipid chromatogrpahy (HPLC) was used to quantitate and the hydrazones of the four lipid metabolite products. Following a single, oral, acute dose of 5 g ethanol/kg, urinary excretion of ACT increased approximately 5.8-fold from 6 to 12 hr posttreatment, and decreased thereafter. FA excretion decreased by approximately 50% from 0 to 12 hr, returned to control values in the 18-24 hr urine samples, and was 1.3-fold greater than control values at 42-48 hr. ACON increased 3.1-fold over control values from 0 to 30 hr and remained elevated throughout the remaining 18 hr of the study. The excretion of MDA increased approximately 1.5-fold from 18 to 36 hr, then remained constant through the 48 hr time point. In a separate series of experiments, a chronic oral dose of 0.5 g ethanol/kg was administered to rats for 10 consecutive days and the urinary excretion of the lipid metabolites MDA, FA, ACT and ACON was examined for 11 days, beginning with the first day of ethanol administration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8352840

  19. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    PubMed Central

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  20. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  1. Factors affecting the estimated probabilistic acute dietary exposure to captan from apple consumption.

    PubMed

    Zentai, A; Sali, J; Szabó, I J; Szeitzné-Szabó, M; Ambrus, A; Vásárhelyi, A

    2013-01-01

    The effect of the number of pesticide residue values below the LOQ/LOD of analytical methods, the variability of residues in individual fruits, mass of fruit units and the number of bootstrap iterations was studied on the probabilistically estimated acute exposure of consumers. The 4720 daily apple consumption data and the results of 1239 apple sample analyses for captan residues, performed within the Hungarian monitoring programme between 2005 and 2011, were used in this study as model matrix. Up to about 95th percentile exposure (µg/(kg bw·day)), simply multiplying each residue in composite samples with each consumption value gave similar estimates to those obtained with the complex procedure taking also into account the mass of and residues in individual fruits. However, the exposure above the 95th percentile calculated with the complex procedure gradually increased with increasing percentile level compared to the simple procedure. Including the high number of non-detects reduced the estimated exposure, which was the highest when only the residues measured in treated fruits were taken into account. The number of bootstrap iterations between 100 and 10,000 did not significantly affect the calculated exposure. The 99.99th percentile exposure amounted to 17.9% of the acute reference dose of 300 µg/(kg bw·day) for women of childbearing age. PMID:23742211

  2. Acute effects of oral and intravenous ethanol on rat hepatic enzyme activities.

    PubMed

    Stifel, F B; Greene, H L; Lufkin, E G; Wrensch, M R; Hagler, L; Herman, R H

    1976-05-28

    1. Oral administration of ethanol (3 ml) of 95% in 12 ml total volume over a two day period) significantly decrease plasma glucose and insulin levels and the activities of two key gluconeogenic enzymes, pyruvate carboxylase (pyruvate: CO2 ligase (ADP), EC 6.4.1.1) and fructose diphosphatase, (D-Fru-1,6-P2 1-phosphohydrolase, EC 3.1.3.11), and one glycolytic enzyme, fructose-1,6-P2 aldolase (Fru-1,6-P2 D-glyceraldehyde-3-P lyase, EC 4.1.2.13). In each instance, the administration of 2400 mug daily of oral folate in conjuction with the ethanol prevented these alterations in carbohydrate metabolism. 2. Intravenous injection of ethanol produced a rapid decrease (within 10--15 min) in the activities of hepatic phosphofructokinase, (ATP:D-fructose-6-phosphate 6-phosphotransferase, EC 2.7.1.11), pyruvate kinase, (ATP:pyruvate phosphotransferase, EC 2.7.1.40), fructose diphosphatase and fructose-1,6-P2 aldolase. 3. Intravenous ethanol significantly increased hepatic cyclic AMP concentration approximately 60% within 10 min, while oral ethanol did not alter hepatic cyclic AMP concentrations. 4. These data confirm the known antagonism ethanol and folate and suggest that oral folate might offer a protective effect against hypoglycemia in rats receiving ethanol. PMID:179581

  3. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  4. [On the importance of a comprehensive study for diagnostics of death from acute ethanol poisoning and coronary heart disease].

    PubMed

    Porodenko, V A; Korkhmazov, V T

    2011-01-01

    Over 30 000 cases of acute poisoning with ethyl alcohol and its surrogates are recorded annually in this country. Differential diagnostics between fatal poisoning and death from coronary heart disease encounters serious difficulties. The authors report a comprehensive forensic chemical, morphometric, and pathomorphological study of the activity of ethanol-oxidizing enzyme systems in the internal organs. The results of histochemical examination provide a basis for the extension of diagnostic potential of the available methods and the enhancement of the objective value of expert reports. PMID:21866846

  5. Ethanol consumption and early murine retrovirus infection influence liver, heart, and muscle levels of iron, zinc, and copper in C57BL/6 mice.

    PubMed

    Shahbazian, L M; Wood, S; Watson, R R

    1994-08-01

    The relative and combined roles of ethanol and murine acquired immunodeficiency syndrome (MAIDS) on the mineral status (Fe, Zn, and Cu) of liver (storage site), heart, muscle (nutrient mobile sites) were investigated. C57BL/6 mice were randomly assigned to four groups: (a) uninfected mice fed isocaloric, adequate nutrient diet (NRC), (b) uninfected mice fed the NRC diet with 25% of energy derived from ethanol, (c) LP-BM5 retrovirus-infected mice fed the isocaloric NRC diet, and (d) retrovirus-infected mice fed the NRC diet with 25% of its energy derived from ethanol. The levels of Cu and Zn levels in the liver did not significantly change as a result of ethanol consumption. However hepatic Zn concentration was increased significantly in retrovirus-infected mice. This may be correlated to the increase in their liver weight. Ethanol administration significantly increased Fe concentration in the liver, yet significantly decreased concentration of Cu in the heart. Retrovirus infection alone, which had not proceeded to murine AIDS, resulted in a significant increase in heart Cu and Zn concentration as compared with uninfected mice. Retrovirus infection in C57BL/6 mice significantly increased Fe and Zn level/g of muscle. Early retrovirus infection alters tissue micronutrient levels, and may thus contribute to immunological changes. PMID:7978111

  6. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence

    PubMed Central

    Varlinskaya, Elena I.; Truxell, Eric M.; Spear, Linda P.

    2015-01-01

    In human adolescents, sociable males frequently drink to enhance positive emotional states, whereas anxious females often drink to avoid negative affective states. This study used a rat model of adolescence to provide information regarding possible sex differences in contributors to social drinking. The effects of ethanol (0, 0.5, and 0.75 g/kg) on play fighting and social preference were assessed on P30, P32, and P34 using a within-subject design. Then animals were tested in a social drinking paradigm (P37-P40), with this testing revealing high drinkers and low drinkers. Sex differences in sensitivity to ethanol emerged among high and low drinkers. High socially drinking males, but not females, when tested prior to drinking sessions, showed significant increases in play fighting at both doses. In low drinking males, play fighting was increased by 0.5 g/kg ethanol, whereas the higher dose of 0.75 g/kg produced significant decreases in play fighting. High drinking females initially showed low levels of social preference than high drinking males and low drinking females and were extremely sensitive to ethanol-induced enhancement of this social measure. Low social drinkers, both males and females, were more sensitive to the suppressing effects of ethanol on social preference following 0.75 g/kg ethanol. These findings indicate that during adolescence enhanced sensitivity to the facilitating effects of ethanol on play fighting is associated with heavy drinking among males, whereas low social preference together with high sensitivity to ethanol-induced enhancement of social preference is related to high social drinking in females. PMID:25557799

  7. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric M; Spear, Linda P

    2015-04-01

    In human adolescents, sociable males frequently drink to enhance positive emotional states, whereas anxious females often drink to avoid negative affective states. This study used a rat model of adolescence to provide information regarding possible sex differences in contributors to social drinking. The effects of ethanol (0, 0.5, and 0.75g/kg) on play fighting and social preference were assessed on P30, P32, and P34 using a within-subject design. Then animals were tested in a social drinking paradigm (P37-P40), with this testing revealing high drinkers and low drinkers. Sex differences in sensitivity to ethanol emerged among high and low drinkers. High socially drinking males, but not females, when tested prior to drinking sessions, showed significant increases in play fighting at both doses. In low drinking males, play fighting was increased by 0.5g/kg ethanol, whereas the higher dose of 0.75g/kg produced significant decreases in play fighting. High drinking females initially showed low levels of social preference than high drinking males and low drinking females and were extremely sensitive to ethanol-induced enhancement of this social measure. Low social drinkers, both males and females, were more sensitive to the suppressing effects of ethanol on social preference following 0.75g/kg ethanol. These findings indicate that during adolescence enhanced sensitivity to the facilitating effects of ethanol on play fighting is associated with heavy drinking among males, whereas low social preference together with high sensitivity to ethanol-induced enhancement of social preference is related to high social drinking in females. PMID:25557799

  8. Alcohol consumption and hormonal alterations related to muscle hypertrophy: a review

    PubMed Central

    2014-01-01

    Detrimental effects of acute and chronic alcohol (ethanol) consumption on human physiology are well documented in the literature. These adversely influence neural, metabolic, cardiovascular, and thermoregulatory functions. However, the side effects of ethanol consumption on hormonal fluctuations and subsequent related skeletal muscle alterations have received less attention and as such are not entirely understood. The focus of this review is to identify the side effects of ethanol consumption on the major hormones related to muscle metabolism and clarify how the hormonal profiles are altered by such consumption. PMID:24932207

  9. Chronic Intermittent Ethanol Inhalation Increases Ethanol Self-administration in both C57BL/6J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2015-01-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650

  10. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  11. Patterns and Predictors of Fast Food Consumption After Acute Myocardial Infarction

    PubMed Central

    Salisbury, Adam C.; Chan, Paul S.; Gosch, Kensey L.; Buchanan, Donna M.; Spertus, John A.

    2011-01-01

    Although fast food is affordable and convenient, it is also high in calories, saturated fat and sodium. The frequency of fast food intake at the time of, and after, acute myocardial infarction (AMI) is modifiable. However, patterns of fast food intake and characteristics associated with its consumption among AMI patients are unknown. We studied fast food consumption at the time of AMI and 6 months later in 2481 patients from the prospective, 24-center TRIUMPH study of AMI patients. Fast food intake was categorized as frequent (≥ weekly) vs. infrequent (< weekly). Multivariable log-binomial regression was used to identify patient characteristics associated with frequent fast food intake 6 months after AMI. At baseline, 884 patients (36%) reported frequent fast food intake, which decreased to 503 (20%) 6 months after discharge (p-value <0.001). Male sex, white race, lack of college education, current employment and dyslipidemia were independently associated with frequent fast food intake 6 months after AMI. In contrast, older patients and those who had coronary bypass surgery were less likely to eat fast food frequently. Documentation of discharge dietary counseling was not associated with 6-month fast food intake. In conclusion, fast food consumption by AMI patients declined 6 months after the index hospitalization, but certain populations, including younger patients, men, those currently working, and less educated patients were more likely to consume fast food, at least weekly, during follow-up. Novel interventions that go beyond traditional dietary counseling may be needed to address continued fast food consumption after AMI in these patients. PMID:21306695

  12. The effect of chronic and acute ethanol treatment on morphology, lipid peroxidation, enzyme activities and Na+ transport systems on WRL-68 cells.

    PubMed

    Gutiérrez-Ruiz, M C; Bucio, L; Souza, V; Cárabez, A

    1995-04-01

    In this study we measured some parameters that are associated with ethanol damage to the liver. The method allowed us to determine the injury that chronic and acute ethanol treatments produce at the cellular level without interference from homeostatic or compensatory mechanisms. The system used is a hepatic fetal human cell line, WRL-68, which retains, in culture, many of the liver-specific functions. WRL-68 cells do not metabolise ethanol, and consequently we could evaluate the effect of ethanol alone. We explored two different conditions: 30 days with 0.1 M ethanol (chronic treatment) and 24 h in the presence of 0.5 M ethanol (acute treatment). 1. The transmission electron microscopy studies revealed, in both treatments, the presence of granules not usually present in the cytoplasm of control cells and morphological mitochondrial alterations in chronically treated cells. 2. Lipid peroxidation, measured as the rate of malondialdehyde production, increased three and a half times in acutely treated cells and about twofold in chronically treated cells. 3. The percentage of total activity (activity in the medium/(activity in the medium + activity of the cells). 100) and the enzymatic activity in the culture medium of gamma glutamyl transpeptidase (GGT), alanine amino transferase (ALAT), aspartate amino transferase (ASAT) and alkaline phosphatase (AI-P), increased. 4. We measured some parameters related to the transport of sodium across the membrane. Cells chronically treated with ethanol had higher rate constants and effluxes than control cells. There was no difference between the total and passive efflux. Ethanol treated cells apparently lacked the ouabain sensitive pathway. In acutely treated cells, the total sodium efflux and the rate constant were enhanced. Sodium pools in the acutely treated cells were diminished and active sodium pumping was seven times higher than in control cells. 5. We determined the number of high affinity ouabain binding sites per cell

  13. Alcohol consumption and the risk of acute myocardial infarction in women.

    PubMed Central

    Bianchi, C; Negri, E; La Vecchia, C; Franceschi, S

    1993-01-01

    STUDY OBJECTIVE--To investigate the relationship between alcohol consumption and the risk of acute myocardial infarction in women. DESIGN--This was a hospital based, case-control study carried out between 1983 and 1990. Main outcome measures were average daily number of drinks of various alcoholic beverages consumed and corresponding multivariate relative risk estimates and 95% confidence intervals (CI). SETTING--A network including major teaching and general hospitals in northern Italy. SUBJECTS--Cases were 298 women with acute myocardial infarction but no history of ischaemic heart disease and controls 685 women admitted to hospital for acute conditions, unrelated to alcohol consumption or to known or suspected risk factors for ischaemic heart disease. MEASUREMENTS AND MAIN RESULTS--Compared with non-drinkers, the estimated relative risks (RR) were 0.7 (95% CI 0.5, 1.0) for one drink or less per day, 0.8 (95% CI 0.6, 1.2) for more than one to two drinks per day, 1.4 (95% CI 0.8, 2.3) for more than two to three, and 2.6 (95% CI 1.5, 4.6) for more than three drinks per day. These estimates were consistent across strata of selected covariates, including age, education, and smoking. Allowance for major identified risk factors for myocardial infarction did not materially modify the risk estimate for light drinkers (RR 0.7, 95% CI 0.5, 1.1), but reduced the RR in heavy drinkers to 1.8 (95% CI 0.9, 3.5). CONCLUSIONS--This study indicates that women who do not drink alcohol have a risk of myocardial infarction that is higher than that of light drinkers, although the protection of light drinking was not significant. Among drinkers, however, there was a significant direct trend in risk with dose. The raised risks in heavy drinkers may reflect a real association or result from other unfavourable characteristics or habits associated with high alcohol consumption. PMID:8228768

  14. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning.

    PubMed

    Hunt, Pamela S; Barnet, Robert C

    2016-02-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  15. Gynura procumbens Reverses Acute and Chronic Ethanol-Induced Liver Steatosis through MAPK/SREBP-1c-Dependent and -Independent Pathways.

    PubMed

    Li, Xiao-Jun; Mu, Yun-Mei; Li, Ting-Ting; Yang, Yan-Ling; Zhang, Mei-Tuo; Li, Yu-Sang; Zhang, Wei Kevin; Tang, He-Bin; Shang, Hong-Cai

    2015-09-30

    The present study aimed to evaluate the hepatoprotective effect and mechanism of action of Gynura procumbens on acute and chronic ethanol-induced liver injuries. Ethanol extract from G. procumbens stems (EEGS) attenuated acute ethanol-induced serum alanine aminotransferase levels and hepatic lipid accumulation. Therefore, EEGS was successively extracted by petroleum, ethyl acetate, and n-butyl alcohol. The results showed that the n-butyl alcohol extract was the active fraction of EEGS, and hence it was further fractionated on a polyamide glass column. The 60% ethanol-eluted fraction that contained 13.6% chlorogenic acid was the most active fraction, and its effect was further evaluated using a chronic model. Both the n-butyl alcohol extract and the 60% ethanol-eluted fraction inhibited chronic ethanol-induced hepatic lipid accumulation by modulating lipid metabolism-related regulators through MAPK/SREBP-1c-dependent and -independent signaling pathways and ameliorated liver steatosis. Our findings suggest that EEGS and one of its active ingredients, chlorogenic acid, may be developed as potential effective agents for ethanol-induced liver injury. PMID:26345299

  16. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment.

    PubMed

    Ignacio, Cherry; Mooney, Sandra M; Middleton, Frank A

    2014-01-01

    Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression. PMID:25309888

  17. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo.

    PubMed

    Sidahmed, Heyam M A; Hashim, Najihah Mohd; Amir, Junaidah; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Hassandarvish, Pouya; Teh, Xinsheng; Loke, Mun Fai; Vadivelu, Jamuna; Rahmani, Mawardi; Mohan, Syam

    2013-07-15

    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori. PMID:23570997

  18. Beneficial effects of Foeniculum vulgare on ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Birdane, Fatih Mehmet; Cemek, Mustafa; Birdane, Yavuz Osman; Gülçin, İlhami; Büyükokuroğlu, Mehmet Emin

    2007-01-01

    AIM: To examine the anti-ulcerogenic and antioxidant effects of aqueous extracts of Foeniculum vulgare (FVE) on ethanol-induced gastric lesions in rats. METHODS: FVE was administered by gavage at doses of 75, 150 and 300 mg/kg, and famotidine was used at the dose of 20 mg/kg. Following a 60 min period, all the rats were given 1 mL of ethanol (80%) by gavage. One hour after the administration of ethanol, all groups were sacrificed, and the gastric ulcer index was calculated; whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum nitrate, nitrite, ascorbic acid, retinol and β-carotene levels were measured in all the groups. RESULTS: It was found that pretreatment with FVE significantly reduced ethanol-induced gastric damage. This effect of FVE was highest and statistically significant in 300 mg/kg group compared with the control (4.18 ± 2.81 vs 13.15 ± 4.08, P < 0.001). Also, pretreatment with FVE significantly reduced the MDA levels, while significantly increased GSH, nitrite, nitrate, ascorbic acid, retinol and β-carotene levels. CONCLUSION: FVE has clearly a protective effect against ethanol-induced gastric mucosal lesion, and this effect, at least in part, depends upon the reduction in lipid peroxidation and augmentation in the antioxidant activity. PMID:17278229

  19. Acute ethanol administration affects zebrafish preference for a biologically inspired robot.

    PubMed

    Spinello, Chiara; Macrì, Simone; Porfiri, Maurizio

    2013-08-01

    Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol. PMID:23725654

  20. How Acute and Chronic Alcohol Consumption Affects Brain Networks: Insights from Multimodal Neuroimaging

    PubMed Central

    Schulte, Tilman; Oberlin, Brandon G.; Kareken, David A.; Marinkovic, Ksenija; Müller-Oehring, Eva M.; Meyerhoff, Dieter J.; Tapert, Susan

    2015-01-01

    Background Multimodal imaging combining 2 or more techniques is becoming increasingly important because no single imaging approach has the capacity to elucidate all clinically relevant characteristics of a network. Methods This review highlights recent advances in multimodal neuroimaging (i.e., combined use and interpretation of data collected through magnetic resonance imaging [MRI], functional MRI, diffusion tensor imaging, positron emission tomography, magnetoencephalography, MR perfusion, and MR spectroscopy methods) that leads to a more comprehensive understanding of how acute and chronic alcohol consumption affect neural networks underlying cognition, emotion, reward processing, and drinking behavior. Results Several innovative investigators have started utilizing multiple imaging approaches within the same individual to better understand how alcohol influences brain systems, both during intoxication and after years of chronic heavy use. Conclusions Their findings can help identify mechanism-based therapeutic and pharmacological treatment options, and they may increase the efficacy and cost effectiveness of such treatments by predicting those at greatest risk for relapse. PMID:22577873

  1. [The protective effect of pantothenic acid derivatives and changes in the system of acetyl CoA metabolism in acute ethanol poisoning].

    PubMed

    Moiseenok, A G; Dorofeev, B F; Omel'ianchik, S N

    1988-01-01

    Calcium pantothenate (CaP), calcium 4'-phosphopantothenate (CaPP), pantethine, panthenol, sulfopantetheine and CoA decrease acute toxicity of acetaldehyde in mice. All studied compounds diminish duration of the narcotic action of ethanol--ET (3.5 g/kg intraperitoneally) in mice and rats. In the latter this effect is realized at the expense of "long sleeping" and "middle sleeping" animals. CaP (150 mg/kg subcutaneously) and CaPP (100 mg/kg subcutaneously) prevent hypothermia and a decrease of oxygen consumption in rats induced by ET administration. Combined administration of ET, CaP and CaPP leads to a characteristic increase of acid-soluble CoA fractions in the rat liver and a relative decrease of acetyl CoA synthetase and N-acetyltransferase reactions. The antitoxic effect of preparations of pantothenic acid is not mediated by CoA-dependent reactions of detoxication, but most probably is due to intensification of ET oxidation and perhaps to its elimination from the organism. PMID:2905277

  2. ESTIMATED RATE OF FATAL AUTOMOBILE ACCIDENTS ATTRIBUTABLE TO ACUTE SOLVENT EXPOSURE AT LOW INHALED CONCENTRATIONS

    EPA Science Inventory

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mecha...

  3. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  4. Enhanced Deficits in Long-Term Potentiation in the Adult Dentate Gyrus with 2nd Trimester Ethanol Consumption

    PubMed Central

    Helfer, Jennifer L.; White, Emily R.; Christie, Brian R.

    2012-01-01

    Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders. PMID:23227262

  5. Effects of acute ethanol administration and chronic stress exposure on social investigation and 50kHz ultrasonic vocalizations in adolescent and adult male Sprague-Dawley rats.

    PubMed

    Willey, Amanda R; Spear, Linda P

    2013-04-01

    Adolescents drink largely in social situations, likely in an attempt to facilitate social interactions. This study sought to examine alterations in the incentive salience of a social stimulus following repeated stress exposure and acute ethanol administration in adolescent and adult male Sprague-Dawley rats. Subjects were either exposed to 5days of restraint stress, chronic variable stress (CVS), which consisted of a different stressor every day, or non-stressed. On test day, the animals were injected with 0, 0.25, 0.5, or 0.75g/kg ethanol and placed in a social approach test in which they could see, hear, and smell a social conspecific, but could not physically interact with it. All the animals showed an interest in the social stimulus, with adolescents engaging in more social investigation than adults. Restraint stressed adults showed ethanol-induced increases in social investigation, while ethanol effects were not seen in any other group. An ethanol-associated increase in 50kHz ultrasonic vocalization (USV) production was only evident in restraint stressed adolescents following 0.75g/kg ethanol. 50kHz USVs were not correlated with time spent investigating the social stimulus in any test condition. These results show that age differences in the facilitatory effects of ethanol on incentive salience of social stimuli are moderated by stress, with the facilitation of social approach by ethanol only evident in restraint stressed adults. PMID:23360955

  6. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats.

    PubMed

    Diaz, Marvin R; Mooney, Sandra M; Varlinskaya, Elena I

    2016-09-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. PMID:27154534

  7. Up-regulation of gamma-aminobutyric acid transporter I mediates ethanol sensitivity in mice.

    PubMed

    Hu, J-H; Ma, Y-H; Yang, N; Mei, Z-T; Zhang, M-H; Fei, J; Guo, L-H

    2004-01-01

    Ethanol is among the most widely abused drugs in the world. Chronic ethanol consumption leads to ethanol tolerance and addiction, and impairs learning and memory. Na+/Cl- dependent GABA transporters play an important role in controlling the concentration of GABA in the synaptic cleft, and thus they control the intensity and duration of synaptic transmission of GABA. It has been suggested that GABAergic system is involved in ethanol consumption, tolerance and addiction, because chronic ethanol consumption alters the expression of GABAA receptors and drugs on GABA receptors affect ethanol actions. The results of the present study reveal that that activity of GABA transporters in mouse brain after 15-min acute ethanol injection or after chronic ethanol consumption is increased. Moreover, mice pre-injected with a competitive or a noncompetitive antagonist of gamma-aminobutyric acid transporter subtype 1 (GAT1) showed high sensitivity to the sedative/hypnotic effects of ethanol. In contrast, transgenic mice overexpressing GAT1 displayed low sensitivity to ethanol, as shown by the righting reflex test. Mice overexpressing GAT1 survived a lethal dose of ethanol (9 g/kg, i.p.) longer, maintained locomotor activity longer after a sub-lethal dose (1.75 g/kg, i.p.) and exhibited a higher median lethal dose than wild-type littermates. These results suggest that GAT1 plays an important role in sensitivity to ethanol, and might be a therapeutic target for alcoholism prevention and treatment. Acute and chronic ethanol administration resulted in the increase of GABA transporter function. Use of GAT1 selective inhibitors and GAT1 overexpressing mice thus demonstrate that GAT1 should be an important protein mediating sensitivity to ethanol in mice. PMID:14751274

  8. Interactions of ethanol on the acute toxicity of cocaine in the rat

    SciTech Connect

    Trouve, R. ); Latour, C ); Nahas, G.G. Columbia Univ., New York, NY )

    1992-02-26

    Administration of 65 mg/kg in the awake rate, restrained and instrumented, is associated with cardiovascular toxicity, convulsions and lethality within 9 feet 44 inches {plus minus} 4 feet 56 inches. Such an outcome is prevented if selected Ca{sup 2+} antagonists are administered intraarterially 5 minutes following cocaine. Four additional groups of Sprague Dawley rats were studied. The first was administered I.P. ethanol 1.5-2.0 gr. Such doses were well tolerated only producing hypertension of 50 minutes duration and all animals survived without apparent ill effects. Second and third groups were first administered the same doses of ethanol and 15 minutes later 65 mg/kg of cocaine. Survival time was 5 feet 49 inches with 1.5 mg/kg ethanol and 5 feet 57 inches {plus minus} 1 foot 26 inches with 2 mg/kg, significantly less than after cocaine administration alone. In a fourth group, animals were treated intraarterially with nicardipine or flunarizine, 2 minutes after cocaine. Survival time was not different from saline control. Ethanol enhances significantly cocaine lethal toxicity in the rate and prevents the protective effects of antidotes to this alkaloid.

  9. CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE

    PubMed Central

    Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.

    2015-01-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462

  10. Effects of Acute Alcohol Consumption on the Processing of Emotion in Faces: Implications for Understanding Alcohol-Related Aggression

    PubMed Central

    Attwood, Angela S.; Munafò, Marcus R.

    2016-01-01

    The negative consequences of chronic alcohol abuse are well known, but heavy episodic consumption ("binge drinking") is also associated with significant personal and societal harms. Aggressive tendencies are increased after alcohol but the mechanisms underlying these changes are not fully understood. While effects on behavioural control are likely to be important, other effects may be involved given the widespread action of alcohol. Altered processing of social signals is associated with changes in social behaviours, including aggression, but until recently there has been little research investigating the effects of acute alcohol consumption on these outcomes. Recent work investigating the effects of acute alcohol on emotional face processing has suggested reduced sensitivity to submissive signals (sad faces) and increased perceptual bias towards provocative signals (angry faces) after alcohol consumption, which may play a role in alcohol-related aggression. Here we discuss a putative mechanism that may explain how alcohol consumption influences emotional processing and subsequent aggressive responding, via disruption of OFC-amygdala connectivity. While the importance of emotional processing on social behaviours is well established, research into acute alcohol consumption and emotional processing is still in its infancy. Further research is needed and we outline a research agenda to address gaps in the literature. PMID:24920135

  11. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats

    PubMed Central

    Hassandarvish, Pouya; Gwaram, Nura Suleiman; A. Hadi, A. Hamid; Mohd Ali, Hapipah; Majid, Nazia; Abdulla, Mahmood Ameen

    2012-01-01

    Background Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats. Methodology/Principal Findings Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4–7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2–7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4–7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4–7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound. Conclusions/Significance The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE2 synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein. PMID:23251568

  12. Chronic ethanol consumption induces gene expression of pancreatic monitor peptide, but not SPINK1/PSTI-56, in rats.

    PubMed

    Li, H S; Deng, X Y; Thompson, B S; Zhang, J Y; Wood, P G; Eagon, P K; Whitcomb, D C

    2001-08-01

    The primary factors that predispose humans to the development of alcoholic pancreatitis are unknown. One of the earliest observations in humans in whom this disease develops is pancreatic hypersecretion caused by unknown mechanisms. Messenger RNA (mRNA) differential display was performed in a rat model to investigate the molecular mechanisms associated with ethanol-induced pancreatic hypersecretion. Male Wistar rats were pair-fed Lieber-DeCarli diets with or without ethanol for 7 days or 4 weeks. Total RNA was extracted from the pancreas and its neurohormonal control sites. Differentially expressed complementary DNA (cDNA) tags were isolated, cloned, and sequenced. One 248-bp cDNA was consistently and strongly induced in the pancreata of rats fed ethanol for 4 weeks. The sequence was highly homologous to both rat pancreatic monitor peptide (MP) and pancreatic secretory trypsin inhibitor (PSTI-56), also known as serine protease inhibitor, Kazal type 1 (SPINK1). Confirmatory reverse-transcription-polymerase chain reaction showed that PSTI-56 expression remained unchanged, whereas MP mRNA levels were elevated more than four times in the pancreata of ethanol-fed rats. These results indicate that long-term ethanol ingestion increases MP mRNA levels in the rat pancreas. Because MP stimulates cholecystokinin release and cholecystokinin is an important stimulant of pancreatic secretion, the enhanced MP gene expression may contribute to pancreatic hypersecretion. PMID:11484913

  13. The effects of acute alcohol consumption and eccentric muscle damage on neuromuscular function.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2012-02-01

    Voluntary and electrically stimulated muscular performance was examined to identify the effects of acute alcohol consumption on neuromuscular function in the presence and absence of exercise-induced muscle damage (EIMD). After initial neuromuscular performance measures were made, 12 subjects completed a bout of eccentric exercise (EX) using the quadriceps muscles of 1 leg while the remaining 11 subjects did not exercise (NX). Subjects then consumed either an alcoholic beverage containing 1 g·kg(-1) body weight (ALC) or a nonalcoholic beverage (OJ). On another occasion the contralateral leg of both groups was tested and those in the EX group performed an equivalent bout of eccentric exercise after which the other beverage was consumed. Measurements of neuromuscular function were made pre-exercise and 36 and 60 h post-beverage consumption. Creatine kinase (CK) was measured pre-exercise and at 12, 36, and 60 h. Significantly greater (p < 0.01) decrements in maximal voluntary isometric contraction were observed with EX ALC at 36 and 60 h compared with EX OJ, and no change was seen in the NX group. Significant decreases in voluntary activation were observed at 36 h (p = 0.003) and 60 h (p = 0.01) with EX ALC only. Elevations in CK were observed at all posteccentric exercise time points (all p < 0.05) under both EX OJ and ALC. No change in electromyography or low-frequency fatigue was observed under either treatment in either group. These results suggest that decreased neural drive appears to contribute to alcohol's effect on the magnitude of EIMD-related decrements in voluntary force generation. PMID:22185621

  14. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.

    2013-01-01

    Acute ethanol lowers blood pressure (BP) and cardiac output in proestrus and after chronic estrogen (E2) replacement in ovariectomized (OVX) female rats. However, whether rapid nongenomic effects of estrogen mediate these hemodynamic effects of ethanol remains unanswered. To test this hypothesis, we investigated the effect of ethanol (0.5 or 1.5 g/kg iv) on left ventricular (LV) function and oxidative markers in OVX rats pretreated 30 min earlier with 1 μg/kg E2 (OVXE2) or vehicle (OVX) and in proestrus sham-operated (SO) rats. In SO rats, ethanol caused significant and dose-related reductions in BP, rate of rise in LV pressure (LV dP/dtmax), and LV developed pressure (LVDP). These effects of ethanol disappeared in OVX rats and were restored in OVXE2 rats, suggesting rapid estrogen receptor signaling mediates the detrimental effects of ethanol on LV function. Ex vivo studies revealed that the estrogen-dependent myocardial dysfunction caused by ethanol was coupled with higher LV 1) generation of reactive oxygen species (ROS), 2) expression of malondialdehyde and 4-hydroxynonenal protein adducts, 3) phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2), and 4) catalase activity. ERK1/2 inhibition by PD-98059 (1 mg/kg iv) abrogated the myocardial dysfunction, hypotension, and the elevation in myocardial ROS generation caused by ethanol. We conclude that rapid estrogen receptor signaling is implicated in cellular events that lead to the generation of aldehyde protein adducts and Akt/ERK1/2 phosphorylation, which ultimately mediate the estrogen-dependent LV oxidative stress and dysfunction caused by ethanol in female rats. PMID:24368668

  15. Effects of ethanol ingestion on alpha-adrenoceptor-mediated circulatory responses in man.

    PubMed Central

    Eisenhofer, G; Lambie, D G; Johnson, R H

    1984-01-01

    The acute effects of ethanol on pressor responses to graded intravenous infusions of noradrenaline (24, 48, 90 ng kg-1 min-1) and methoxamine (0.2, 0.4, 0.8, 1.6, 2.0 mg/min, 1 min each) were each investigated in eight normal male subjects. The effects of ethanol on blood pressure, heart rate and plasma catecholamine responses to lower body negative pressure were also examined in six normal male subjects. Each subject acted as his own control by participating twice, once after consumption of ethanol (1.0 ml/kg, 20% v/v, in orange juice) and once after an equivalent volume of orange juice. Ethanol consumption significantly reduced the diastolic blood pressure response to infusion of noradrenaline. This occurred despite a significantly greater increase in plasma noradrenaline concentrations during infusion after ethanol. The systolic and diastolic blood pressure responses to infusion of methoxamine were both significantly reduced after ethanol. During lower body negative pressure, prior consumption of ethanol resulted in a greater fall in systolic blood pressure and a smaller rise in diastolic blood pressure. Plasma noradrenaline responses to lower body negative pressure were significantly increased after ethanol. It is concluded that acute ethanol ingestion depresses alpha-adrenoceptor-mediated vasoconstriction, with resulting impairment of blood pressure control. PMID:6091712

  16. Antitumor activity of ethanol extract from Hippophae rhamnoides L. leaves towards human acute myeloid leukemia cells in vitro.

    PubMed

    Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P

    2014-12-01

    We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction. PMID:25432283

  17. Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice.

    PubMed

    Qiu, Ping; Li, Xiang; Kong, De-Song; Li, Huan-Zhou; Niu, Cong-Cong; Pan, Su-Hua

    2015-01-01

    Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200 mg/kg/d bw) for 30 d before being exposed to ethanol (4.8 g/kg bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-α (TNF-α), peroxisome proliferators-activated receptor-α (PPAR-α), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-α and increased adiponectin, PPAR-α, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16 g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis. PMID:26101535

  18. Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice

    PubMed Central

    Qiu, Ping; Li, Xiang; Kong, De-song; Li, Huan-zhou; Niu, Cong-cong; Pan, Su-hua

    2015-01-01

    Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200 mg/kg/d bw) for 30 d before being exposed to ethanol (4.8 g/kg bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-α (TNF-α), peroxisome proliferators-activated receptor-α (PPAR-α), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-α and increased adiponectin, PPAR-α, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16 g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis. PMID:26101535

  19. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes.

    PubMed

    Fang, Deyu; Gao, Guanyue; Yu, Yuan; Shen, Jie; Zhi, Jinfang

    2016-05-10

    In this study, a new method for acute biotoxicity assessment was proposed by measuring the glucose consumption of microbes with a personal glucose meter (PGM). To obtain an ideal biotoxicity assessment performance, an appropriate microbe was selected first, and then the relevant parameters, such as temperature and microbial concentration were optimized. Under the optimized parameters, the acute biotoxicity of four environmental pollutants (As(3+), Ni(2+), 4-chlorophenol, and 2,4-dichlorophenol), three wastewater samples and three soil samples were evaluated. This technology breakthrough will help us develop a low cost, easy to use water-environmental early-warning kit. PMID:27055358

  20. Acute obtundation in a 9-month-old patient: ethanol ingestion.

    PubMed

    Edmunds, Suzanne M; Ajizian, Samuel J; Liguori, Anthony

    2014-10-01

    Alcohol ingestion in the pediatric patient can be life threatening. Younger patients consume larger volumes per body weight with accidental ingestions, and children have more serious adverse effects at lower blood alcohol levels. Complications of alcohol poisoning can include hypothermia, hypoglycemia, seizures, coma, and death. We present the course of a 9-month-old female infant who became unresponsive at home and presented to the emergency department comatose. When her blood alcohol level registered 489 mg/dL, it was revealed that she had accidentally been given a bottle of formula mixed with vodka rather than water. The infant required intubation for severely depressed level of consciousness and aggressive fluid resuscitation for hemodynamic instability. She had a peak lactate level of 24 mmol/L and a peak blood alcohol level of 524 mg/dL. Based on the severity of her initial presentation, preparations were made for hemodialysis. The infant responded to supportive measures including mechanical ventilation, fluids, and dextrose, and hemodialysis was not necessary. Her alcohol clearance followed zero-order kinetics at an average rate of 28.6 mg/dL per hour over 15.5 hours from her peak level of 524 mg/dL to the lowest measured value of 80 mg/dL. The kinetics of ethanol clearance at this level of toxicity, which is the highest reported in an infant to date, enhance our knowledge of ethanol metabolism and will assist in management decisions in cases of severe intoxication. PMID:25275356

  1. Spin-trapping studies of hepatic free radicals formed following the acute administration of ethanol to rats: In vivo detection of 1-hydroxyethyl radicals with PBN

    SciTech Connect

    Reinke, L.A.; Kotake, Y.; McCay, P.B.; Janzen, E.G. )

    1991-01-01

    The generation of free radicals in rat liver following the acute oral administration of ethanol was studied with the spin-trapping method, using a deuterated derivative of phenyl-N-tert-butylnitrone (PBN-d14) as the spin-trapping agent. After administration of ethanol and PBN-d14 to rats, organic extracts of the liver were prepared and subjected to ESR spectroscopy. In the case of ethanol-treated rats, the ESR spectra indicated that mixtures of radicals had been trapped, while spectra from control rats were essentially negative. The predominant spin adduct detected after ethanol treatment is proposed to be from a carbon-centered, primary alkyl radical, based on gamma-hydrogen hyperfine splitting patterns observed with PBN-d14. Oxygen-centered radicals also contributed to the ESR spectra. Liver extracts also contained low concentrations of the 1-hydroxyethyl radical spin adduct, which was indicated by weak spectral lines corresponding to those of the 1-13C-ethanol adduct. These data confirm previous suggestions that ethanol is metabolized to a free radical metabolite in rat liver. In addition, some information on types of lipid radicals generated during alcohol intoxication has been obtained.

  2. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    PubMed

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  3. Acute consumption of p-synephrine does not enhance performance in sprint athletes.

    PubMed

    Gutiérrez-Hellín, Jorge; Salinero, Juan José; Abían-Vicen, Javier; Areces, Francisco; Lara, Beatriz; Gallo, Cesar; Puente, Carlos; Del Coso, Juan

    2016-01-01

    P-Synephrine is a protoalkaloid widely used as an ergogenic aid in sports. This substance has been included in the World Anti-Doping Agency monitoring program, although scientific information about its effects on performance and athletes' well-being is scarce. The purpose of this investigation was to determine the effectiveness of p-synephrine to increase performance in sprint athletes. In a randomized and counterbalanced order, 13 experienced sprinters performed 2 acute experimental trials after the ingestion of p-synephrine (3 mg·kg(-1)) or after the ingestion of a placebo (control trial). Forty-five minutes after the ingestion of the substances, the sprinters performed a squat jump, a countermovement jump, a 15-s repeated jump test, and subsequently performed 60-m and 100-m simulated sprint competitions. Self-reported questionnaires were used to assess side-effect prevalence. In comparison with the control trial, the ingestion of p-synephrine did not change countermovement jump height (37.4 ± 4.2 vs 36.7 ± 3.3 cm, respectively; P = 0.52), squat jump height (34.4 ± 3.6 vs 33.9 ± 3.7 cm; P = 0.34), or average 15-s repeated jumps height (31.8 ± 4.1 vs 32.2 ± 3.6 cm; P = 0.18). P-Synephrine did not modify maximal running speed during the 60-m (9.0 ± 0.5 vs 9.0 ± 0.4 m·s(-1), respectively; P = 0.55) and 100-m sprint competitions (8.8 ± 0.5 vs 8.8 ± 0.5 m·s(-1), respectively; P = 0.92). The ingestion of p-synephrine did not alter the prevalence of headache, gastrointestinal discomforts, muscle pain, or insomnia during the hours following the tests. Acute consumption of 3 mg·kg(-1) of p-synephrine was ineffective to increase performance in competitive sprint athletes. Moreover, p-synephrine did not increase the occurrence of side effects after the competition. PMID:26673246

  4. Phytochemical and acute toxicity of ethanolic extract of Enantia chlorantha (oliv) stem bark in albino rats

    PubMed Central

    Abatan, Mathew O.

    2013-01-01

    It is presumed that drugs sourced from herbs have lesser side effects than allopathic drugs. Enantia chlorantha is widely used in herbal medicine for the treatment of several ailments such as jaundice, malaria, fever, infective hepatitis, etc. However its toxicity profiles are not well documented. The effects of ethanolic extract of E. chlorantha stem bark on body weight changes, biochemical and haematological parameters as well as histology of vital organs (heart, kidneys and liver) were assessed. Also, the phytochemical constituent of the plant was analysed. Albino rats of both sexes were randomly divided into five groups (A–E) of five rats each and the ethanolic extract of E. chlorantha stem bark extract was administered by oral gavage in a single dose. Group A rats were administered 500 mg/kg of the extract, group B; 1000 mg/kg, group C; 2000 mg/kg, group D; 3000 mg/kg and group E rats received distilled water (10 ml/kg) and served as control. The extract caused significant (p<0.05) decreases in the levels of packed cell volume, haemoglobin concentration and red blood cell counts in a dose dependent manner. Further, significant alterations were not observed in the serum biochemical parameters analysed (AST, ALP, ALT, blood urea nitrogen, total protein, albumin, globulin and bilirubin). In addition, the extract at 1000, 2000 and 3000 mg/kg caused congestion in the heart and kidney of experimental rats. These results suggest that oral administration of E. chlorantha may produce severe toxic effects at relatively high doses, thus caution should be exercised in its use. PMID:24678252

  5. Acute Resveratrol Consumption Improves Neurovascular Coupling Capacity in Adults with Type 2 Diabetes Mellitus

    PubMed Central

    Wong, Rachel H.X.; Raederstorff, Daniel; Howe, Peter R.C.

    2016-01-01

    Background: Poor cerebral perfusion may contribute to cognitive impairment in type 2 diabetes mellitus (T2DM). We conducted a randomized controlled trial to test the hypothesis that resveratrol can enhance cerebral vasodilator function and thereby alleviate the cognitive deficits in T2DM. We have already reported that acute resveratrol consumption improved cerebrovascular responsiveness (CVR) to hypercapnia. We now report the effects of resveratrol on neurovascular coupling capacity (CVR to cognitive stimuli), cognitive performance and correlations with plasma resveratrol concentrations. Methods: Thirty-six T2DM adults aged 40–80 years were randomized to consume single doses of resveratrol (0, 75, 150 and 300 mg) at weekly intervals. Transcranial Doppler ultrasound was used to monitor changes in blood flow velocity (BFV) during a cognitive test battery. The battery consisted of dual-tasking (finger tapping with both Trail Making task and Serial Subtraction 3 task) and a computerized multi-tasking test that required attending to four tasks simultaneously. CVR to cognitive tasks was calculated as the per cent increase in BFV from pre-test basal to peak mean blood flow velocity and also as the area under the curve for BFV. Results: Compared to placebo, 75 mg resveratrol significantly improved neurovascular coupling capacity, which correlated with plasma total resveratrol levels. Enhanced performance on the multi-tasking test battery was also evident following 75 mg and 300 mg of resveratrol. Conclusion: a single 75 mg dose of resveratrol was able to improve neurovascular coupling and cognitive performance in T2DM. Evaluation of benefits of chronic resveratrol supplementation is now warranted. PMID:27420093

  6. [A case of acute ethanol intoxication with remarkable hyperglycemia by "ume-shu", a Japanese apricot liquor made with a large amount of sugar].

    PubMed

    Sugano, Takayuki; Kojima, Naoki; Kaneko, Susumu; Ishida, Junro; Terada, Taizo; Inagawa, Hiroshi; Okada, Yasusei

    2002-07-01

    A 19-year-old woman ingested 2.2 L of "umeshu", a Japanese apricot liquor made with a large amount of sugar. She was unconscious and in shock. The estimated blood ethanol concentration was 607 mg/dl, and the blood glucose level was 576 mg/dl. Because her respiration and circulation was highly suppressed, blood purification was indicated. Continuous hemodiafiltration (CHDF) was performed instead of hemodialysis because her hemodynamics was unstable. After CHDF was instituted, her blood glucose level reduced to normal range, and her consciousness became alert. CHDF was effective in eliminating ethanol and stabilizing her hemodynamics within an early stage. Though acute ethanol intoxication is known to inhibit glucogenesis, leading to hypoglycemia, marked hyperglycemia was seen in this case. Ingestion of a large amount of glucose-rich liquor and being in shock seemed to be the causes of hyperglycemia. PMID:12415871

  7. Prooxidant activity of norbixin in model of acute gastric ulcer induced by ethanol in rats.

    PubMed

    Rovani, B T; de Freitas, R B; Augusti, P R; Araldi, I C; Somacal, S; Quatrin, A; Emanuelli, T; da Rocha, M P; Bauermann, L de Freitas

    2016-07-01

    Free radicals and oxidative stress play a central role in gastric injuries caused by ethanol (EtOH). Antioxidant strategies to counteract EtOH toxicity are highly desirable. Norbixin (NBIX) is a carotenoid with antioxidant potential largely used in the food industry. This study evaluated the NBIX effects in a model of gastric ulcer induced by EtOH in rats. Male Wistar rats received NBIX doses of 0, 10, and 25 mg/kg by gavage 1 h after EtOH administration (0 or 75% solution, 1 mL/200 g of animal). The animals were euthanized 1 h after the NBIX administration, and their stomachs were removed for macroscopic and histopathological analyses, quantification of nonprotein sulfhydryl (NPSH) groups, lipid peroxidation (LPO) levels, and catalase (CAT) activity determination. NBIX increased LPO in gastric mucosa and caused CAT inhibition and NPSH depletion in EtOH-treated animals. Results showed that NBIX did not protect gastric tissue against EtOH damage, and this could be associated to a prooxidant effect. PMID:26353805

  8. Lithium-mediated protection against ethanol neurotoxicity.

    PubMed

    Luo, Jia

    2010-01-01

    Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar) disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD) are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke-Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3) which has recently been identified as a mediator of ethanol neurotoxicity. Lithium's neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms. PMID:20661453

  9. Ethyl glucuronide in human hair after daily consumption of 16 or 32 g of ethanol for 3 months.

    PubMed

    Kronstrand, Robert; Brinkhagen, Linda; Nyström, Fredrik H

    2012-02-10

    The overall objectives of the study were to develop a sensitive method for ethyl glucuronide (EtG) determination in hair and then investigate if a low or moderate intake of ethanol could be differentiated from total abstinence. Forty-four subjects were included in the study, 12 males (7 drinkers and 5 abstinent) and 32 females (14 drinkers and 18 abstinent). The study lasted 3 months and the female drinkers consumed one glass (16 g of ethanol) and the males consumed two glasses (32 g of ethanol) of wine (13.5-14%) daily. Hair samples were collected as close as possible above the skin and the proximal 2 cm were analyzed for EtG. Hair was cut into pieces of about 0.5 cm length and washed before incubation overnight in water and then extracted on Clean Screen EtG Carbon columns. The LC/MS/MS system consisted of a Waters ACQUITY UPLC connected to an API 4000 triple quadrupole instrument. Two transitions for EtG and one for the internal standard EtG-D(5) were measured. The method was linear from 60 to 10,000 pg/sample. Imprecision studies were performed at three levels as well as with an authentic sample. Total imprecision was 16% at 200 pg/sample, 8% at 1000 pg/sample, 6% at 8000 pg/sample and 13% at 29 pg/mg in the authentic sample. Of those who drank two glasses of wine every day, four had measurable amounts of EtG in their hair (5-11 pg/mg), and in only one of the females drinking one glass of wine EtG was quantified (3 pg/mg). Among the 23 abstinent subjects two had traces of EtG in the hair. We conclude that persons who ingested 16 or 32 g of ethanol daily for 3 months presented with low concentrations of EtG in hair, well below the proposed threshold for overconsumption set at 30 pg/mg. In addition, none of those who ingested 16 g/day had concentrations over the proposed abstinence threshold of 7 pg/mg. PMID:21367545

  10. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain

    PubMed Central

    Contet, Candice

    2013-01-01

    Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics. PMID:24078902

  11. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice.

    PubMed

    Shearn, Colin T; Fritz, Kristofer S; Shearn, Alisabeth H; Saba, Laura M; Mercer, Kelly E; Engi, Bridgette; Galligan, James J; Zimniak, Piotr; Orlicky, David J; Ronis, Martin J; Petersen, Dennis R

    2016-04-01

    Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4(-/-) mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4(-/-) mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4(-)(/-) mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4(-/-) mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4(-/-) PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important

  12. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice

    PubMed Central

    Shearn, Colin T.; Fritz, Kristofer S.; Shearn, Alisabeth H.; Saba, Laura M.; Mercer, Kelly E.; Engi, Bridgette; Galligan, James J.; Zimniak, Piotr; Orlicky, David J.; Ronis, Martin J.; Petersen, Dennis R.

    2015-01-01

    Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an

  13. [Pharmacological correction of toxic liver damage in patients with heavy forms of acute ethanol intoxication].

    PubMed

    Shikalova, I A; Shilov, V V; Vasil'ev, S A; Batotsyrenov, B V; Loladze, A T

    2012-01-01

    The efficiency of using remaxol and ademethionine in the therapy of patients with heavy acute alcohol intoxication on the background of toxic liver damage has been studied. The administration of remaxol led to improvement of the clinical treatment of alcohol intoxication, which is manifested by a decrease in the rate and duration of delirium tremens (from 33.9 to 10.8%), frequency of secondary lung disorders (from 18.5 to 3.1%), duration of stay in hospital (from 7.3 +/- 0.6 to 5.6 +/- 0.3 days), and total therapy duration (from 11.8 +/- 1.05 to 5.6 +/- 0.3 days). The results of biochemical investigations confirmed that remaxol and ademethionine provide effective treatment of the toxic liver damage. Remaxol decreases the degree of metabolic disorders to a greater extent than does ademethionine. PMID:22702109

  14. Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures

    SciTech Connect

    Sarkar, D.K.; Minami, S. )

    1990-01-01

    To characterize the effect of ethanol on the hypothalamic {beta}-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of {beta}-endorphin ({beta}-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of {beta}-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of {beta}-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on {beta}-EP secretion for a longer time. The magnitude of the {beta}-EP response to 50 mM ethanol is similar to that of the {beta}-EP response to 56 mM of potassium. Ethanol-stimulated {beta}-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.

  15. Acute Consumption of Walnuts and Walnut Components Differentially Affect Postprandial Lipemia, Endothelial Function, Oxidative Stress, and Cholesterol Efflux in Humans with Mild Hypercholesterolemia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Walnut consumption improves cardiovascular disease risk; however, to our knowledge, the contribution of individual walnut components has not been assessed. This study evaluated the acute consumption of whole walnuts (85 g), separated nut skins (5.6 g), de-fatted nutmeat (34 g), and nut oil (51 g) on...

  16. Ethanol Induction of CYP2A5: Role of CYP2E1-ROS-Nrf2 Pathway

    PubMed Central

    Lu, Yongke; Zhang, Xu Hannah

    2012-01-01

    Chronic ethanol consumption was previously shown to induce CYP2A5 in mice, and this induction of CYP2A5 by ethanol was CYP2E1 dependent. In this study, the mechanisms of CYP2E1-dependent ethanol induction of CYP2A5 were investigated. CYP2E1 was induced by chronic ethanol consumption to the same degree in wild-type (WT) mice and CYP2A5 knockout (Cyp2a5 –/–) mice, suggesting that unlike the CYP2E1-dependent ethanol induction of CYP2A5, ethanol induction of CYP2E1 is not CYP2A5 dependent. Microsomal ethanol oxidation was about 25% lower in Cyp2a5 –/– mice compared with that in WT mice, suggesting that CYP2A5 can oxidize ethanol although to a lesser extent than CYP2E1 does. CYP2A5 was induced by short-term ethanol consumption in human CYP2E1 transgenic knockin (Cyp2e1 –/– KI) mice but not in CYP2E1 knockout (Cyp2e1 –/–) mice. The redox-sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) was also induced by acute ethanol in Cyp2e1 –/– KI mice but not in Cyp2e1 –/– mice. Ethanol induction of CYP2A5 in Nrf2 knockout (Nrf2 –/–) mice was lower compared with that in WT mice, whereas CYP2E1 induction by ethanol was comparable in WT and Nrf2 –/– mice. Antioxidants (N-acetyl-cysteine and vitamin C), which blocked oxidative stress induced by chronic ethanol in WT mice and acute ethanol in Cyp2e1 –/– KI mice, also blunted the induction of CYP2A5 and Nrf2 by ethanol but not the induction of CYP2E1 by ethanol. These results suggest that oxidative stress induced by ethanol via induction of CYP2E1 upregulates Nrf2 activity, which in turn regulates ethanol induction of CYP2A5. Results obtained from primary hepatocytes, mice gavaged with binge ethanol or fed chronic ethanol, show that Nrf2-regulated ethanol induction of CYP2A5 protects against ethanol-induced steatosis. PMID:22552773

  17. Acute Caffeine Consumption Enhances the Executive Control of Visual Attention in Habitual Consumers

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Giles, Grace E.; Taylor, Holly A.

    2010-01-01

    Recent work suggests that a dose of 200-400mg caffeine can enhance both vigilance and the executive control of visual attention in individuals with low caffeine consumption profiles. The present study seeks to determine whether individuals with relatively high caffeine consumption profiles would show similar advantages. To this end, we examined…

  18. Acute, sub-acute and long-term subjective consequences of 'ecstasy' (MDMA) consumption in 430 regular users.

    PubMed

    Verheyden, Suzanne L; Henry, John A; Curran, H Valerie

    2003-10-01

    This study examined the reported psychological effects of different patterns of MDMA use in men and women, and how they are modified by use of other psychoactive substances. A semi-structured interview was conducted with 466 regular MDMA users, exploring the perceived acute, sub-acute and long-term subjective effects of this drug. Factor analysis established three main categories of acute effects of MDMA: (i) positive and (ii) negative effects on mental health, and (iii) physical effects. In terms of subacute effects, 83% of participants reported experiencing low mood and 80% reported impaired concentration between ecstasy-taking sessions. Factors affecting these effects included age, gender, extent of MDMA use and concomitant use of cocaine or amphetamine. The long-term effects most frequently reported included the development of tolerance to MDMA (59%), impaired ability to concentrate (38%), depression (37%) and 'feeling more open towards people' (31%). In terms of what might persuade users to stop using MDMA, their most prominent concern was the drug's long-term effects on mental health. PMID:14533132

  19. A case-control study of alcohol consumption and drinking behaviour in patients with acute gout.

    PubMed Central

    Sharpe, C R

    1984-01-01

    The alcohol intake and drinking behaviour of 24 patients who presented with acute gout in a family practice over a 5-year period were compared with these features of a control population matched for sex, age, weight and use of hyperuricemia-inducing diuretics. The average weekly alcohol intake of the group with gout was twice that of the control group (p less than 0.02), and a statistically significant relation was found between alcohol abuse and acute gout (p less than 0.05). About half of the patients with gout drank excessively. Acute gout should be considered a possible clinical sign of alcohol abuse. PMID:6478339

  20. Acute High-Dose and Chronic Lifetime Exposure to Alcohol Consumption and Differentiated Thyroid Cancer: T-CALOS Korea

    PubMed Central

    Hwang, Yunji; Lee, Kyu Eun; Weiderpass, Elisabete; Park, Young Joo; Chai, Young Jun; Kwon, Hyungju; Park, Do Joon; Cho, BeLong; Choi, Ho-Chun; Kang, Daehee; Park, Sue K.

    2016-01-01

    Background This study evaluated the effects of acute high-dose and chronic lifetime exposure to alcohol and exposure patterns on the development of differentiated thyroid cancer (DTC). Methods The Thyroid Cancer Longitudinal Study (T-CALOS) included 2,258 DTC patients (449 men and 1,809 women) and 22,580 healthy participants (4,490 men and 18,090 women) who were individually matched by age, gender, and enrollment year. In-person interviews were conducted with a structured questionnaire to obtain epidemiologic data. Clinicopathologic features of the patients were obtained by chart reviews. Odds ratios (ORs) and 95% confidence intervals (95%CI) were estimated using conditional regression models. Results While light or moderate drinking behavior was related to a reduced risk of DTC, acute heavy alcohol consumption (151 g or more per event or on a single occasion) was associated with increased risks in men (OR = 2.22, 95%CI = 1.27–3.87) and women (OR = 3.61, 95%CI = 1.52–8.58) compared with never-drinkers. The consumption of alcohol for 31 or more years was a significant risk factor for DTC for both men (31–40 years: OR = 1.58, 95%CI = 1.10–2.28; 41+ years: OR = 3.46, 95%CI = 2.06–5.80) and women (31–40 years: OR = 2.18, 95%CI = 1.62–2.92; 41+ years: OR = 2.71, 95%CI = 1.36–5.05) compared with never-drinkers. The consumption of a large amount of alcohol on a single occasion was also a significant risk factor, even after restricting DTC outcomes to tumor size, lymph node metastasis, extrathyroidal extension and TNM stage. Conclusion The findings of this study suggest that the threshold effects of acute high-dose alcohol consumption and long-term alcohol consumption are linked to an increased risk of DTC. PMID:26985827

  1. Involvement of protein kinase C and Src tyrosine kinase in acute tolerance to ethanol inhibition of spinal NMDA-induced pressor responses in rats

    PubMed Central

    Hsieh, W-K; Lin, H-H; Lai, C-C

    2009-01-01

    Background and purpose: The present study was carried out to examine the role of protein kinases in the development of acute tolerance to the effects of ethanol on spinal N-methyl-D-aspartate (NMDA) receptor-mediated pressor responses during prolonged ethanol exposure. Experimental approach: Blood pressure responses induced by intrathecal injection of NMDA were recorded. The levels of several phosphorylated residues on NMDA receptor NR1 (GluN1) (NR1) and NMDA receptor NR2B (GluN2B) (NR2B) subunits were determined by immunohistochemistry and Western blot analysis. Key results: Ethanol inhibited spinal NMDA-induced pressor responses at 10 min, but the inhibition was significantly reduced at 40 min following continuous infusion. This effect was dose-dependently blocked by chelerythrine [a protein kinase C (PKC) inhibitor, 1–1000 pmol] or PP2 (a Src family tyrosine kinase inhibitor, 1–100 pmol) administered intrathecally 10 min following ethanol infusion. A significant increase in the immunoreactivity of phosphoserine 896 of NR1 subunits (pNR1-Ser896) and phosphotyrosine 1336 of NR2B subunits (pNR2B-Tyr1336) was found in neurons of intermediolateral cell column during the development of tolerance. Levels of pNR1-Ser896 and pNR2B-Tyr1336 were also significantly increased in lateral horn regions of the spinal cord slices incubated with ethanol for 40 min in vitro. The increases in pNR1-Ser896 and pNR2B-Tyr1336 levels were inhibited by post-treatment with chelerythrine and PP2, respectively, both in the in vivo and in vitro studies. Conclusions and implications: The results suggest that activation of PKC and Src tyrosine kinase during prolonged ethanol exposure leading to increases in the levels of pNR1-Ser896 and pNR2B-Tyr1336 may contribute to acute tolerance to inhibition by ethanol of NMDA receptor function. PMID:19703167

  2. Maternal care alterations induced by repeated ethanol leads to heightened consumption of the drug and motor impairment during adolescence: a dose-response analysis.

    PubMed

    Ponce, Luciano F; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan C

    2011-07-01

    Maternal ethanol exposure during lactation induces behavioral alterations in offspring, including disruptions in motor skills and heightened ethanol ingestion during adolescence. These behavioral outcomes appear to partially depend on ethanol-induced disruptions in maternal care. The present study assessed motor skills and ethanol intake in adolescent rats raised by dams that had been repeatedly given ethanol during lactation. Female rats (postpartum days [PDs] 3-13) were administered ethanol (0.5, 1.5, or 2.5 g/kg) or vehicle every other day and allowed to freely interact with their pups. During adolescence, the offspring were evaluated for motor coordination (accelerating rotarod test) and oral ethanol self administration. The lowest maternal ethanol dose (0.5 g/kg) mildly affected motor performance, whereas the higher doses (1.5 and 2.5 g/kg) resulted in motor coordination impairment and greater ethanol intake. Maternal care behavior was affected by ethanol in a dose-dependent fashion. These results indicate that early experience with ethanol during lactation, even when the drug dosage is kept relatively low, leads to long-term consequences in offspring. Dose-response effects on maternal care behavior (i.e., nest building, crouching) may underlie disruptions in motor development and greater ethanol intake resulting from these early ethanol experiences. PMID:21334354

  3. Acute ethanol intoxication shows no effect on Ca sup 2+ -uptake of Ca sup 2+ -dependent ATPase activity in myocardial sarcoplasmic reticulum vesicles

    SciTech Connect

    McAllister, K.P.; Horton, J.W.; Kaufman, T.M.; White, D.J. )

    1989-02-09

    We have previously shown that acute ethanolism impairs left ventricular (LV) function. We hypothesized that cardiac dysfunction may be related to altered Ca{sup 2+} pump function by the sarcoplasmic reticulum (SR). In this study, LV function (in isolated perfused hearts) was compared to Ca{sup 2+} transport in SR vesicles isolated from nonperfused hearts in control (C) and acutely intoxicated (ETOH, 2.5 ml/kg IV) guinea pigs. Compared to control hearts, ETOH hearts had significantly lower LV systolic pressure maximal rate of LV pressure rise and fall. Ca{sup 2+}-ATPase activity was not significantly different in either group of animals. Although maximum Ca{sup 2+} uptake tended to be slightly lower in ETOH compared to control hearts coupling ratios (mol Ca{sup 2+} transported/mol ATP hydrolyzed) were not significantly different. We conclude that changes in SR Ca{sup 2+} pump function are not responsible for the depressed LV function seen in acute ethanolism.

  4. Oxygen consumption and haematology of juvenile shortnose sturgeon Acipenser brevirostrum during an acute 24 h saltwater challenge.

    PubMed

    Penny, F M; Kieffer, J D

    2014-04-01

    This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year-old A. brevirostrum were exposed to either full (32) or half-strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full-strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater-exposed fish had significantly increased plasma osmolality, ions (Na(+) and Cl(-)) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half-strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full-strength seawater. While plasma protein was elevated following 24 h in full-strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full-strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments. PMID:24628001

  5. Lack of effect of nucleus accumbens dopamine D1 receptor blockade on consumption during the first two days of operant self-administration of sweetened ethanol in adult Long-Evans rats

    PubMed Central

    Doherty, James M.; Gonzales, Rueben A.

    2014-01-01

    The mechanisms underlying ethanol self-administration are not fully understood; however, it is clear that ethanol self-administration stimulates nucleus accumbens dopamine release in well trained animals. During operant sweetened ethanol self-administration behavior, an adaptation in the nucleus accumbens dopamine system occurs between the first and second exposure paralleling a dramatic increase in sweetened ethanol intake, which suggests a single exposure to sweetened ethanol may be sufficient to learn the association between sweetened ethanol cues and its reinforcing properties. In the present experiment, we test the effects of blockade of nucleus accumbens dopamine D1 receptors on operant sweetened ethanol self-administration behavior during the first two days of exposure. Adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) across six days in an appetitive and consummatory operant model (appetitive interval: 10 min pre-drinking wait period and a lever response requirement of 4; consummatory interval: 20 min access to the drinking solution). After training on 10S, the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E); control rats remained drinking 10S throughout the experiment. Bilateral nucleus accumbens microinjections of the dopamine D1 antagonist, SCH-23390 (0, 1.0, or 3.0 μg/side), immediately preceded the first two sessions of drinking 10S10E. Results show that blocking nucleus accumbens dopamine D1 receptors has little or no influence on consumption during the first two days of exposure to the sweetened ethanol solution or maintenance of sucrose only drinking. Furthermore, the high dose of SCH-23390, 3.0 μg/side, reduced open field locomotor activity. In conclusion, we found no evidence to suggest that nucleus accumbens D1 receptor activation is involved in consumption of a sweetened ethanol solution during the first two days of exposure or maintenance of sucrose drinking, but rather D1 receptors

  6. alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol.

    PubMed

    Walker, Brendan M; Rasmussen, Dennis D; Raskind, Murray A; Koob, George F

    2008-03-01

    The purpose of this study was to test the hypothesis that blockade of alpha1-adrenergic receptors may suppress the excessive ethanol consumption associated with acute withdrawal in ethanol-dependent rats. Following the acquisition and stabilization of operant ethanol self-administration in male Wistar rats, dependence was induced in half the animals by subjecting them to a 4-week intermittent vapor exposure period in which animals were exposed to ethanol vapor for 14h/day. Subsequent to dependence induction, the effect of alpha1-noradrenergic receptor antagonist prazosin (0.0, 0.25, 0.5, 1, 1.5, and 2.0mg/kg IP) was tested on operant responding for ethanol in vapor-exposed and control rats during acute withdrawal. In ethanol-dependent animals, prazosin significantly suppressed responding at the 1.5 and 2.0mg/kg doses, whereas only the 2.0mg/kg dose was effective in nondependent animals, identifying an increase in the sensitivity to prazosin in dependent animals. Conversely, at the lowest dose tested (0.25mg/kg), prazosin increased responding in nondependent animals, which is consistent with the effect of anxiolytics on ethanol self-administration in nondependent animals. None of the doses tested reliably affected concurrent water self-administration. These results suggest the involvement of the noradrenergic system in the excessive alcohol drinking seen during acute withdrawal in ethanol-dependent rats. PMID:18358987

  7. Pre-pubertal gonadectomy and the social consequences of acute ethanol in adolescent male and female rats.

    PubMed

    Morales, Melissa; Varlinskaya, Elena I; Spear, Linda P

    2014-07-01

    It has previously been shown that pre-pubertal or adult gonadectomy (GX) increases ethanol intake in male rats. This study examined whether this sex-selective increase reflects a GX-induced maintenance in males of more adolescent-typical responsiveness to ethanol characterized by enhanced sensitivity to positive (e.g., socially facilitating) and a decreased sensitivity to adverse (e.g., socially inhibitory) effects of ethanol. Male and female Sprague-Dawley rats were pre-pubertally GX, sham (SH)-operated, or non-manipulated (NM) at postnatal day (P) 25. During the late adolescent transition into adulthood (P48 - baseline day), rats were given a saline injection, placed alone into a familiar test apparatus for 30min and then exposed for 10min to an unfamiliar partner of the same age and sex. On the following day (P49), similar testing occurred after administration of 0.5, 0.75, 1.0 or 1.25g/kg ethanol. At baseline, GX males and females displayed higher levels of social activity (especially adolescent-typical play and contact behavior) than SH and NM animals, with GX females displaying greater social activity than GX males. Neither males nor females demonstrated social facilitation at lower ethanol doses, regardless of hormonal status. Whereas the social inhibitory effects of higher doses of ethanol were similar across groups among females, SH males were less sensitive than both GX and NM males to ethanol-induced social inhibition. These results suggest that enhanced ethanol intake in GX males is not related to alterations in sensitivity to ethanol's social inhibitory effects. GX, however, results in retention of adolescent-typical social behaviors, with older GX adolescent rats resembling early adolescents in exhibiting elevated social activity-particularly play and contact behavior. PMID:24816080

  8. Spin trapping of free radical metabolites of carbon tetrachloride in vitro and in vivo: Effect of acute ethanol administration

    SciTech Connect

    Reinke, L.A.; Towner, R.A.; Janzen, E.G. )

    1992-01-01

    A single dose of ethanol, when administered 18 hr prior to CCl4, potentiates the hepatotoxicity of the halocarbon. In these studies, spin trapping and electron spin resonance (ESR) spectroscopy methods were utilized to determine whether a single ethanol dose increased the metabolism of CCl4 to free radical intermediates. When hepatic microsomes from ethanol-treated or control rats were incubated with CCl4 and the spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN), the ESR signal of the trichloromethyl radical adduct of PBN was of similar intensity in both groups. The ethanol dose also failed to induce p-nitrophenol hydroxylase activity. When PBN and CCl4 were administered to rats, liver extracts contained ESR signals resulting primarily from the trichloromethyl radical adduct of PBN, and the signals were of similar intensity in both experimental groups. Higher concentrations of the carbon dioxide anion radical adduct of PBN were detected in plasma samples from ethanol-treated rats. However, when hepatocytes from ethanol-treated and control rats were incubated with PBN and CCl4, ESR signals of the carbon dioxide adduct were of similar intensity. These data suggest that the higher concentrations of the carbon dioxide adduct in the blood of ethanol-treated rats may be explained by early CCl4-induced damage to liver cell membranes, rather than increased rates of formation. The data in this report fail to support the hypothesis that a single dose of ethanol stimulates the hepatic metabolism of CCl4 to the trichloromethyl radical. Alternatively, ethanol may potentiate CCl4 toxicity by affecting some critical metabolic step subsequent to trichloromethyl radical formation.

  9. Comparison of ethanol toxicity to Daphnia magna and Ceriodaphnia dubia tested at two different temperatures: static acute toxicity test results

    SciTech Connect

    Takahashi, I.T.; Cowgill, U.M.; Murphy, P.G.

    1987-08-01

    Ethanol is a commonly used solvent in toxicity testing, yet there are few studies in the literature devoted to its toxicity to zooplankton. The purpose of this study was to compare the response of Daphnia magna Straus 1820 and Ceriodaphnia dubia J. Richard 1894 to ethanol. Two temperatures were selected because most toxicity data involving D. magna has been carried out at 20/sup 0/C while all discussions concerning C. dubia appear to relate to temperatures oscillating around 25/sup 0/C. Thus, the response of these two organisms to ethanol was examined at 20/sup 0/C and at 24/sup 0/C.r

  10. Prenatal ethanol exposure affects temperature responses of adult rats to pentobarbital and diazepam alone and in combination with ethanol.

    PubMed

    Taylor, A N; Branch, B J; Randolph, D; Hill, M A; Kokka, N

    1987-06-01

    Long-term effects of prenatal alcohol exposure on body temperature responses to pentobarbital and diazepam and to either drug in combination with ethanol were studied in adult rats who were the offspring of dams fed a 5.0% w/v ethanol-containing liquid diet during the last 2 weeks of gestation. Adult offspring of pair-fed and chow-fed dams served as nutritional and normal controls, respectively. Pentobarbital (6.25-25.0 mg/kg) and diazepam (2.5-10.0 mg/kg) produced significantly greater dose-related hypothermic responses in females than males. Following either pentobarbital or diazepam administration female prenatally ethanol-exposed (E) rats responded with a greater fall in body temperature than the controls. Significantly greater hypothermia occurred in both male and female E rats than in controls when ethanol (1.5 g/kg) was administered together with pentobarbital or diazepam. However, the drug combinations did not produce additive effects on body temperature in any prenatal treatment group. Pentobarbital produced acute cross-tolerance to ethanol while diazepam potentiated ethanol's effect. These studies confirm and extend our previous findings of enhanced hypothermic responses to ethanol in adult rats exposed to ethanol in utero and indicate that maternal alcohol consumption produces long-term effects on the central thermoregulatory systems of offspring. PMID:3307489

  11. A Blocker of N- and T-type Voltage-Gated Calcium Channels Attenuates Ethanol-Induced Intoxication, Place Preference, Self-Administration, and Reinstatement

    PubMed Central

    Newton, Philip M.; Zeng, Lily; Wang, Victoria; Connolly, Jacklyn; Wallace, Melisa J.; Kim, Chanki; Shin, Hee-Sup; Belardetti, Francesco; Snutch, Terrance P.; Messing, Robert O.

    2011-01-01

    There is a clear need for new therapeutics to treat alcoholism. Here, we test our hypothesis that selective inhibitors of neuronal calcium channels will reduce ethanol consumption and intoxication, based on our previous studies using knock-out mice and cell culture systems. We demonstrate that pretreatment with the novel mixed N-type and T-type calcium channel antagonist 1-(6,6-bis(4-fluorophenyl)hexyl)-4-(3,4,5-trimethoxybenzyl)piperazine (NP078585) reduced ethanol intoxication. NP078585 also attenuated the reinforcing and rewarding properties of ethanol, measured by operant self-administration and the expression of an ethanol conditioned place preference, and abolished stress-induced reinstatement of ethanol seeking. NP078585 did not affect alcohol responses in mice lacking N-type calcium channels. These results suggest that selective calcium channel inhibitors may be useful in reducing acute ethanol intoxication and alcohol consumption by human alcoholics. PMID:18987207

  12. Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats

    PubMed Central

    Kulkarny, V.V.; Wiest, N. E; Marquez, C.P.; Nixon, S. C.; Valenzuela, C.F.; Perrone-Bizzozero, N.I.

    2011-01-01

    The adolescent brain is particularly vulnerable to the effects of alcohol, with intoxications at this developmental age often producing long-lasting effects. The present study addresses the effects of a single acute ethanol exposure on GAP-43 and BDNF gene expression in neurons in the cerebellum and hippocampus of adolescent rats. Male postnatal day 23 (P23) Sprague-Dawley rats were exposed to ethanol vapors for two hours and after a recovery period of two hours, the cerebellum and hippocampus were harvested and samples were taken for blood alcohol concentration (BAC) determinations. We found that this exposure resulted in a mean BAC of 174 mg/dl, which resembles levels in human adolescents after binge drinking. Analyses of total RNA and protein by qRT-PCR and western blotting, respectively, revealed that this single ethanol exposure significantly decreased the levels of GAP-43 mRNA and protein in the cerebellum but increased the levels of mRNA and protein in the hippocampus. BDNF mRNA and protein levels were also increased in the hippocampus but not in the cerebellum of these animals. In situ hybridizations revealed that GAP-43 and BDNF mRNA levels were primarily increased by alcohol exposure in hippocampal dentate granule cells and CA3 neurons. Overall, the reported alterations in the expression of the plasticity-associated genes GAP-43 and BDNF in juvenile rats are consistent with the known deleterious effects of binge drinking on motor coordination and cognitive function. PMID:21367572

  13. Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2015-01-01

    The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA) against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO) activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE) staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-α, IL-6, and IL-1β in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-κB in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers. PMID:26694339

  14. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    PubMed

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  15. Autophagy and ethanol neurotoxicity

    PubMed Central

    Luo, Jia

    2015-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  16. Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption.

    PubMed

    Braun, W A; Hawthorne, W E; Markofski, M M

    2005-08-01

    The purpose of the study was to evaluate the effects of circuit training (CT) and treadmill exercise performed at matched rates of oxygen consumption and exercise duration on elevated post-exercise oxygen consumption (EPOC) in untrained women, while controlling for the menstrual cycle. Eight, untrained females (31.3 +/- 9.1 years; 2.04 +/- 0.26 l min(-1) estimated VO2max; BMI=24.6+/-3.9 kg/m2) volunteered to participate in the study. Testing was performed during the early follicular phase for each subject to minimize hormonal variability between tests. Subjects performed two exercise sessions approximately 28 days apart. Resting, supine energy expenditure was measured for 30 min preceding exercise and for 1 h after completion of exercise. Respiratory gas exchange data were collected continuously during rest and exercise periods via indirect calorimetry. CT consisted of three sets of eight common resistance exercises. Pre-exercise and exercise oxygen consumption was not different between testing days (P>0.05). Thus, exercise conditions were appropriately matched. Analysis of EPOC data revealed that CT resulted in a significantly higher (p<0.05) oxygen uptake during the first 30 min of recovery (0.27 +/- 0.01 l min(-1) vs 0.23+/-0.01 l min(-1)); though, at 60 min, treatment differences were not present. Mean VO2 remained significantly higher (0.231 +/- 0.01 l min(-1)) than pre-exercise measures (0.193 +/- 0.01 l min(-1)) throughout the 60-min EPOC period (p<0.05). Heart rate, RPE, V(E) and RER were all significantly greater during CT (p<0.05). When exercise VO2 and exercise duration were matched, CT was associated with a greater metabolic disturbance and cost during the early phases of EPOC. PMID:15942765

  17. Ethanol and psychotropic drug interaction during pregnancy and lactation.

    PubMed

    Rawat, A K

    1981-09-01

    Prolonged maternal ethanol consumption for 8 days during pregnancy or for five days immediately after birth resulted in 30-46 per cent inhibition in the rate of chlorpromazine metabolism by the rat fetal and neonatal livers respectively. A significant increase in hepatic NADH/NAD and UDPG/UDPGA ratios was observed in suckling neonatal and maternal livers from the ethanol-fed group. Acute administration of ethanol with chlorpromazine led to about 60 per cent inhibition of the metabolism of chlorpromazine. This inhibitory effect of ethanol on the metabolism of chlorpromazine was largely abolished by preincubation of liver homogenates with pyrazole (2 mM). Lactate (10 mM) addition to liver homogenates resulted in a significant inhibition of chlorpromazine metabolism. It is suggested that maternal ethanol consumption during preganancy and lactation inhibits the hepatic metabolism of drugs such as chlorpromazine which require glucuronidation for their detoxification. This ethanol-mediated inhibition is largely exerted through the decrease in the NAD-dependent conversion of UDP-glucose (UDPG) to UDP-glucuronic acid, (UDPGA). PMID:21043245

  18. Reducing consumption in periods of acute scarcity: the case of water

    SciTech Connect

    Berk, R.A.; Cooley, T.F.; LaCivita, C.J.; Parker, S.; Sredl, K.; Brewer, M.

    1980-06-01

    This paper examines the impact of water conservation efforts in four California communities selected in part because of the range of conservation programs launched. The analysis will rest on 8 years of monthly data aggregated to the community level and will employ both Box-Jenkins (1976) procedures and techniques for pooled cross-sectional and time-series data (Kmenta, 1971, pp. 508 to 517). Theory will be drawn from social psychology and microeconomics; the former used to characterize certain shifts in the demand curve for water, the latter used to explain changes in consumption as a function of exogenous changes in price.

  19. Changes in heart rate variability associated with acute alcohol consumption: current knowledge and implications for practice and research.

    PubMed

    Romanowicz, Magdalena; Schmidt, John E; Bostwick, John M; Mrazek, David A; Karpyak, Victor M

    2011-06-01

    Alcohol consumption is associated with a broad array of physiologic and behavioral effects including changes in heart rate. However, the physiologic mechanisms of alcohol effects and the reasons for individual differences in the cardiac response remain unknown. Measuring changes in resting heart rate (measured as beats/min) has not been found to be as sensitive to alcohol's effects as changes in heart rate variability (HRV). HRV is defined as fluctuations in interbeat interval length which reflect the heart's response to extracardiac factors that affect heart rate. HRV allows simultaneous assessment of both sympathetic and parasympathetic activity and the interplay between them. Increased HRV has been associated with exercise and aerobic fitness, while decreased HRV has been associated with aging, chronic stress, and a wide variety of medical and psychiatric disorders. Decreased HRV has predictive value for mortality in general population samples and patients with myocardial infarction and used as an indicator of altered autonomic function. A significant inverse correlation was found between HRV and both the severity of depression and the duration of the depressive episode. HRV analysis provides insights into mechanisms of autonomic regulation and is extensively used to clarify relationships between depression and cardiovascular disease. This article will review the methodology of HRV measurements and contemporary knowledge about effects of acute alcohol consumption on HRV. Potential implications of this research include HRV response to alcohol that could serve as a marker for susceptibility to alcoholism. At present however there is almost no research data supporting this hypothesis. PMID:21332532

  20. Acute Toxicity and Gastroprotective Role of M. pruriens in Ethanol-Induced Gastric Mucosal Injuries in Rats

    PubMed Central

    Hassandarvish, Pouya; Abdul Majid, Nazia; Hadi, A. Hamid A.; Nordin, Noraziah; Abdulla, Mahmood A.

    2013-01-01

    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions. PMID:23781513

  1. Acute toxicity and gastroprotective role of M. pruriens in ethanol-induced gastric mucosal injuries in rats.

    PubMed

    Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Abdul Majid, Nazia; Hadi, A Hamid A; Nordin, Noraziah; Abdulla, Mahmood A

    2013-01-01

    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions. PMID:23781513

  2. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    PubMed Central

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-01-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications. PMID:7138735

  3. Novel role of Zn(II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers.

    PubMed

    Mei, Xueting; Xu, Donghui; Xu, Sika; Zheng, Yanping; Xu, Shibo

    2012-04-15

    Alcohol consumption can induce gastric ulcers and zinc deficiency. Zinc complexes were reported to have anti-ulcer activity as it acts as an anti-inflammatory and antioxidant. Zn(II)-curcumin complex and its solid dispersions (SDs) were synthesized and evaluated for its gastroprotective activity and mechanism against ethanol-induced ulcer. The Swiss murine fibroblast cell line (3T3) was used as an alternative in vitro model to evaluate the effects of Zn(II)-curcumin on cell proliferation. Zn(II)-curcumin were administered orally for seven consecutive days prior to induction of ulcers using ethanol. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that solid dispersions (SDs) of Zn(II)-curcumin (2.5-20 μM) enhanced the proliferation of 3T3 cells more significantly than curcumin at the same concentrations (P<0.01). Oral administration of Zn(II)-curcumin (12, 24 and 48 mg/kg) SDs dose-dependently prevented formation of ulcer lesions induced by ethanol. The levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and oxidative stress superoxide dismutase (SOD), glutathione peroxidase (GPX-Px), malonaldehyde (MDA) and H(+)-K(+)-ATPase were in the rats exposed to ethanol in ulceration have been altered. Zn(II)-curcumin prevented formation of ulcer lesions, significantly inhibited TNF-α and IL-6 mRNA expression, increased the activity of SOD and GSH-Px, reduced MDA levels and H(+)-K(+)-ATPase in mucosa of rats compared to controls (P<0.05). These findings suggest that the gastroprotective activity of Zn(II)-curcumin complex might contribute in stimulating cell proliferation and adjusting the proinflammatory cytokine-mediated oxidative damage to the gastric mucosa. PMID:22465177

  4. Brucine suppresses ethanol intake and preference in alcohol-preferring Fawn-Hooded rats

    PubMed Central

    Li, Yu-ling; Liu, Qing; Gong, Qi; Li, Jun-xu; Wei, Shou-peng; Wang, Yan-ting; Liang, Hui; Zhang, Min; Jing, Li; Yong, Zheng; Lawrence, Andrew J; Liang, Jian-hui

    2014-01-01

    Aim: Brucine (BRU) extracted from the seeds of Strychnos nux-vomica L is glycine receptor antagonist. We hypothesize that BRU may modify alcohol consumption by acting at glycine receptors, and evaluated the pharmacodynamic profiles and adverse effects of BRU in rat models of alcohol abuse. Methods: Alcohol-preferring Fawn-Hooded (FH/Wjd) rats were administered BRU (10, 20 or 30 mg/kg, sc). The effects of BRU on alcohol consumption were examined in ethanol 2-bottle-choice drinking paradigm, ethanol/sucrose operant self-administration paradigm and 5-d ethanol deprivation test. In addition, open field test was used to assess the general locomotor activity of FH/Wjd rats, and conditioned place preference (CPP) was conducted to assess conditioned reinforcing effect. Results: In ethanol 2-bottle-choice drinking paradigm, treatment with BRU for 10 consecutive days dose-dependently decreased the ethanol intake associated with a compensatory increase of water intake, but unchanged the daily total fluid intake and body weight. In ethanol/sucrose operant self-administration paradigms, BRU (30 mg/kg) administered before each testing session significantly decreased the number of lever presses for ethanol and the ethanol intake, without affecting the number of sucrose (10%) responses, total sucrose intake, and the number of lever presses for water. Acute treatment with BRU (30 mg/kg) completely suppressed the deprivation-induced elevation of ethanol consumption. Treatment with BRU (10, 20, and 30 mg/kg) did not alter locomotion of FH/Wjd rats, nor did it produce place preference or aversion. Conclusion: BRU selectively decreases ethanol consumption with minimal adverse effects. Therefore, BRU may represent a new pharmacotherapy for alcoholism. PMID:24909512

  5. Mechanism of the beneficial effects of dantrolene sodium on ethanol-induced acute gastric mucosal injury in rats.

    PubMed

    Büyükokuroğlu, Mehmet Emin; Taysi, Seyithan; Polat, Fevzi; Göçer, Fatma

    2002-05-01

    In our study, we examined anti-ulcerogen and antioxidant effects of dantrolene sodium on ethanol-induced gastric lesions in rats. Dantrolene sodium was administered intraperitoneally (i.p.) in several doses, and famotidine was used at a dose of 20 mg kg (-1). It was found that pretreatment with dantrolene sodium at doses of 1, 5 and 10 mg kg(-1) significantly reduced ethanol-induced gastric damage and malondialdehyde levels, and significantly increased antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. We conclude that dantrolene sodium clearly has antioxidant properties and that the protective effect of dantrolene sodium against ethanol-induced gastric mucosal lesion, at least in part, depends upon the reduction in the lipid peroxidation and an increase in the activity of antioxidant enzymes SOD and GSH-Px. PMID:12123631

  6. Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons

    PubMed Central

    Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme

    2013-01-01

    Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621

  7. Effects of acute ethanol or amphetamine administration on the acoustic startle response and prepulse inhibition in adolescent and adult rats

    PubMed Central

    Brunell, Steven Craig

    2007-01-01

    Rationale Adolescents differ from adults in their sensitivity to a variety of psychoactive drugs. For example, adolescent rats are less sensitive to locomotor stimulant and stereotypic effects of amphetamine as well as to motor-impairing and hypnotic effects of ethanol while more sensitive to ethanol-induced disruption of brain plasticity. Objective The current study further explored age differences in psychopharmacological sersitivity by examining the effects of d-amphetamine (1.0 and 4.0 mg/kg) or ethanol (0.5, 1.0 and 1.5 g/kg) given interperitoneally on the acoustic startle reposnse (ASR) and prepulse inhibition (PPI) in male adolescent and adult Sprague-Dawley rats. Materials and methods The animals were given five startle trials (120 dB for 40 ms) before semi-randomized presentation of 12 startle trials interspersed with ten trials at each prepulse intensity (40 ms pulse of 5, 10, or 20 dB above background; 100 ms before the startle stimulus). Results Adolescent controls showed significantly less PPI than adults, replicating previous ontogenetic findings. The higher dose of amphetamine disrupted PPI in adult but not in adolescent insensitivity to amphetamine to include this measure of sensorimotor gating. Ethanol exposure failed to alter PPI at either age, although both the 1.0 and 1.5 g/kg doses of ethanol significantly suppressed the magnitude of the ASR at both ages, potentially reflecting sedative or anxiolytic effects. Conclusion These data provide further evidence of the relative insensitivity of adolescent animals to amphetamine, although no age effects were found in terms of ethanol sensitivity using these measures of startle and sensorimotor gating. PMID:16758242

  8. Acute Consumption of an Energy Drink Does Not Improve Physical Performance of Female Volleyball Players.

    PubMed

    Fernández-Campos, Catalina; Dengo, Ana L; Moncada-Jiménez, José

    2015-06-01

    To determine the acute effect of an energy drink (ED) on physical performance of professional female volleyball players. 19 females (age= 22.3 ± 4.9 yr.; height= 171.8 ± 9.4 cm; weight= 65.2 ± 10.1 kg) participated in a randomized, crossover, double-blind study to measure grip strength, vertical jump and anaerobic power in 3 different sessions (ED, placebo [PL] or no beverage [CTL]). For each session, participants arrived in a fasted state, consumed a standardized breakfast meal, and 1 hr later completed the 3 baseline performance tests without having ingested the beverage. After completing the premeasurements, the athletes drank 6 ml/kg of body weight of the ED or PL and in the CTL condition no beverage was consumed. Posttest measurements were taken 30 min after the ingestion of liquids. A 3 × 2 repeated-measures ANOVA revealed no significant within-session and measurement time interactions for each performance test. Regardless of the measurement time, right hand grip strength was significantly higher in the ED condition (34.6 ± 0.9 kg) compared with PL (33.4 ± 1.1 kg) and CTL (33.6 ± 1.0 kg) (p < 0.05). Regardless of the beverage ingested, averaged right hand grip strength, taking into account all 3 testing conditions, increased from pre to posttesting (Pre = 33.8 ± 0.9 kg vs. Post = 33.9 ± 1.0 kg; p = 0.029), as did the averaged fatigue index, obtained from the anaerobic power test (Pre = 65.9± 2.2% vs. Post = 68.7± 2.0%; p= 0.049). The acute ingestion of an ED did not improve physical performance of professional Costa Rican female volleyball players. PMID:25387127

  9. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  10. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  11. Acute Alcohol Consumption Impairs Controlled but Not Automatic Processes in a Psychophysical Pointing Paradigm

    PubMed Central

    Johnston, Kevin; Timney, Brian; Goodale, Melvyn A.

    2013-01-01

    Numerous studies have investigated the effects of alcohol consumption on controlled and automatic cognitive processes. Such studies have shown that alcohol impairs performance on tasks requiring conscious, intentional control, while leaving automatic performance relatively intact. Here, we sought to extend these findings to aspects of visuomotor control by investigating the effects of alcohol in a visuomotor pointing paradigm that allowed us to separate the influence of controlled and automatic processes. Six male participants were assigned to an experimental “correction” condition in which they were instructed to point at a visual target as quickly and accurately as possible. On a small percentage of trials, the target “jumped” to a new location. On these trials, the participants’ task was to amend their movement such that they pointed to the new target location. A second group of 6 participants were assigned to a “countermanding” condition, in which they were instructed to terminate their movements upon detection of target “jumps”. In both the correction and countermanding conditions, participants served as their own controls, taking part in alcohol and no-alcohol conditions on separate days. Alcohol had no effect on participants’ ability to correct movements “in flight”, but impaired the ability to withhold such automatic corrections. Our data support the notion that alcohol selectively impairs controlled processes in the visuomotor domain. PMID:23861934

  12. Antimicrobial activity, acute toxicity and cytoprotective effect of Crassocephalum vitellinum (Benth.) S. Moore extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2014-01-01

    Background A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. Methods An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. Results The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. Conclusion The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the

  13. Binge ethanol exposure in late gestation induces ethanol aversion in the dam but enhances ethanol intake in the offspring and affects their postnatal learning about ethanol

    PubMed Central

    Chotro, M. Gabriela; Arias, Carlos; Spear, Norman E.

    2009-01-01

    Previous studies show that exposure to 1 or 2 g/kg ethanol during the last days of gestation increases ethanol acceptance in infant rats. We tested whether prenatal exposure to 3 g/kg, a relatively high ethanol dose, generates an aversion to ethanol in both the dam and offspring, and whether this prenatal experience affects the expression of learning derived from ethanol exposure postnatally. The answer was uncertain, since postnatal administration of a 3 g/kg ethanol dose induces an aversion to ethanol after postnatal day 10 but increases ethanol acceptance when administered during the first postnatal week. In the present study pregnant rats received intragastric administrations of water or ethanol (3 g/kg) on gestation days 17-20. On postnatal days 7-8 or 10-11 the offspring were administered water or ethanol (3 g/kg). Intake of ethanol and water, locomotor activity in an open-field and ethanol odor preference were evaluated in the pups, while the mothers were evaluated in terms of ethanol intake. Results indicated an aversion to ethanol in dams that had been administered ethanol during gestation, despite a general increase in ethanol intake observed in their pups relative to controls. The prenatal ethanol exposure also potentiated the increase in ethanol intake observed after intoxication on postnatal days 7-8. Ethanol intoxication on postnatal days 10-11 reduced ethanol consumption; this ethanol aversion was still evident in infant rats exposed prenatally to ethanol despite their general increase in ethanol intake. No effects of prenatal ethanol exposure were observed in terms of motor activity or odor preference. It is concluded that prenatal exposure to ethanol, even in a dose that induces ethanol aversion in the gestating dam, increases ethanol intake in infant rats and that this experience modulates age-related differences in subsequent postnatal learning about ethanol. PMID:19801275

  14. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    PubMed

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; P<0.05) and maximal force during the handgrip test with the right hand (481 (SD 49) v. 498 (SD 43) N; P<0.05). Furthermore, the caffeinated energy drink reduced the time needed to complete the 50 m simulated swimming competition (27.8 (SD 3.4) v. 27.5 (SD 3.2) s; P<0.05), and it increased peak power (273 (SD 55) v. 303 (SD 49) W; P <0.05) and blood lactate concentration (11.0 (SD 2.0) v. 11.7 (SD 2.1) mM; P<0.05) during the ergometer test. The caffeinated energy drink did not modify the prevalence of insomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage. PMID:26279580

  15. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats.

    PubMed

    Fabio, María Carolina; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2014-04-01

    A question still to be answered is whether ethanol initiation has a greater effect on ethanol consumption if it occurs during adolescence than in adulthood. This study assessed the effect of ethanol initiation during adolescence or adulthood on voluntary ethanol consumption when animals were still within the same age range. Adolescent or adult rats were given 5, 2, or 0 ethanol exposures. The animals were tested for ethanol consumption through two-bottle choice tests, before undergoing a 1-week deprivation. A two-bottle assessment was conducted after the deprivation. Adolescents, but not adults, given two ethanol administrations during initiation exhibited significantly higher ethanol intake during the pre-deprivation period. These adolescents also exhibited a threefold increase in ethanol intake after 7 days of drug withdrawal, when compared with controls. These findings suggest that very brief experience with binge ethanol intoxication in adolescence, but not in adulthood, impacts later predisposition to drink. PMID:23341340

  16. Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.

    PubMed

    Li, Weifeng; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Wang, Yu; Niu, Xiaofeng

    2016-09-01

    Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines. PMID:27380619

  17. Effects of acute consumption of a fruit and vegetable purée-based drink on vasodilation and oxidative status.

    PubMed

    George, Trevor W; Waroonphan, Saran; Niwat, Chutamat; Gordon, Michael H; Lovegrove, Julie A

    2013-04-28

    Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against CVD. Puréed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. The present study aimed to establish the physiological effects of acute ingestion of a F&V purée-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. A total of twenty-four subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml of the FVPD, or a fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 d. Blood and urine samples were collected throughout the study day, and vascular reactivity was assessed at 90 min intervals using laser Doppler iontophoresis. The FVPD significantly increased plasma vitamin C (P= 0·002) and total nitrate/nitrite (P= 0·001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P= 0·068), with a longer lag phase after consuming the FVPD. During the 6 h after juice consumption, the antioxidant capacity of plasma increased significantly (P= 0·003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P< 0·05). There were significantly lower glucose and insulin peaks after ingestion of the FVPD compared with control (P= 0·019 and 0·003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P= 0·061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Puréed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction. PMID:23017441

  18. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder. PMID:21526272

  19. Chronic ethanol administration downregulates neurotensin receptors in long- and short-sleep mice.

    PubMed

    Campbell, A D; Erwin, V G

    1993-05-01

    Neurotensin (NT) has been shown to differentially alter many of the physiologic responses to ethanol administration in long-sleep (LS) and short-sleep (SS) mice, which were selectively bred for differences in hypnotic sensitivity to ethanol. These mice have been shown to differ in NT receptor densities in cortical and mesolimbic brain regions and it has been suggested that ethanol actions may be mediated, in part, by neurotensinergic processes. The present study was conducted to further examine this hypothesis by determining the effects of acute and chronic ethanol administration on NT receptor systems in these mice. Scatchard analysis of [3H]NT binding in brain membranes from mice chronically treated with ethanol yielded a one-site model, whereas binding in membranes from control mice were best described by a two-site model. Values for binding capacity (Bmax) were significantly reduced in several brain regions, and binding site density for total, levocabastine-sensitive, and levocabastine-insensitive binding sites were also reduced. The maximum effect was seen after 2 weeks of chronic ethanol consumption. Three weeks after withdrawal from ethanol, Kd and Bmax had returned to control values. Similarly, binding density in all regions for total, levocabastine-sensitive, and levocabastine-insensitive sites had returned to control values within 2 weeks. NT receptor characteristics measured 2 h post-3.0 g/kg ethanol revealed that ethanol caused a rapid downregulation of both subtypes of NT receptors. The finding that both acute and chronic ethanol significantly downregulate the neurotensin receptor systems further supports the hypothesis that ethanol's actions may be mediated in part by neurotensinergic systems. PMID:8100076

  20. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual

  1. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  2. Binge Ethanol and Liver: New Molecular Developments

    PubMed Central

    Shukla, Shivendra D.; Pruett, Stephen B.; Szabo, Gyongyi; Arteel, Gavin E.

    2016-01-01

    Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments. PMID:23347137

  3. Acute Alcohol Consumption and Secondary Psychopathic Traits Increase Ratings of the Attractiveness and Health of Ethnic Ingroup Faces but Not Outgroup Faces

    PubMed Central

    Mitchell, Ian J.; Gillespie, Steven M.; Leverton, Monica; Llewellyn, Victoria; Neale, Emily; Stevenson, Isobel

    2015-01-01

    Studies have consistently shown that both consumption of acute amounts of alcohol and elevated antisocial psychopathic traits are associated with an impaired ability for prepotent response inhibition. This may manifest as a reduced ability to inhibit prepotent race biased responses. Here, we tested the effects of acute alcohol consumption, and elevated antisocial psychopathic traits, on judgments of the attractiveness and health of ethnic ingroup and outgroup faces. In the first study, we show that following acute alcohol consumption, at a dose that is sufficient to result in impaired performance on tests of executive function, Caucasian participants judged White faces to be more attractive and healthier compared to when sober. However, this effect did not extend to Black faces. A similar effect was found in a second study involving sober Caucasian participants where secondary psychopathic traits were related to an intergroup bias in the ratings of attractiveness for White versus Black faces. These results are discussed in terms of a model which postulates that poor prefrontal functioning leads to increases in ingroup liking as a result of impaired abilities for prepotent response inhibition. PMID:25745403

  4. Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling

    PubMed Central

    Du, Feng; Chai, Yu-Shuang; Jiang, Jing-Fei; Wang, Yu-Gang; Yu, Xuan; Yan, Xiao-Jin; Xing, Dong-Ming; Du, Li-Jun

    2015-01-01

    The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously. Our research details how BBR protects against gastrointestinal injuries from acute alcohol exposure using both in vivo and in vitro experiments. Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa. Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions. Alcohol consumption is a popular human social behavior worldwide, and the present study reports a comprehensive mechanism by which BBR protects against gastrointestinal injuries from alcohol stress, providing people with a novel application of BBR. PMID:26226164

  5. Chronic Ethanol Potentiates the Effect of Neuropeptide S in the Basolateral Amygdala and Shows Increased Anxiolytic and Anti-Depressive Effects

    PubMed Central

    Enquist, Johan; Ferwerda, Madeline; Madhavan, Anuradha; Hok, Derek; Whistler, Jennifer L

    2012-01-01

    Alleviating anxiety and depression is pivotal for reducing the risk of relapse in alcoholics. Currently available anxiolytic treatments are limited by side effects, including reduced efficacy in alcoholics, addiction, and sedation. We examined whether the neuropeptide S receptor (NPSR) was effective at controlling ethanol consumption and the anxiety and depression produced by forced abstinence from ethanol. We found that the anxiolytic and anti-depressant effects of NPS are enhanced in acute ethanol abstinent mice. In addition, we found that NPS reduced ethanol consumption and is not in and of itself rewarding. We also provide evidence that ethanol consumption increases the ability of NPS to modulate neuronal activity in the basolateral amygdala. Finally, we found that local injection of NPS in the basolateral amygdala promotes anxiolysis after chronic ethanol consumption, thereby providing insight into the molecular mechanism underlying the changes in behavioral response to NPS. In light of the improved anxiolytic efficacy and benign side effects of NPS in ethanol-withdrawn animals, the NPSR may prove a suitable target for reducing relapse in alcoholism. PMID:22739468

  6. Minocycline reduces ethanol drinking.

    PubMed

    Agrawal, R G; Hewetson, A; George, C M; Syapin, P J; Bergeson, S E

    2011-06-01

    Alcoholism is a disease characterized by continued alcohol consumption despite recurring negative consequences. Thus, medications that reduce the drive to consume alcohol can be beneficial in treating alcoholism. The neurobiological systems that regulate alcohol consumption are complex and not fully understood. Currently, medications are available to treat alcoholism that act either by causing accumulation of a toxic metabolite of ethanol, or by targeting specific transmitter receptors. The purpose of our study was to investigate a new potential therapeutic pathway, neuroimmune interactions, for effects on ethanol consumption. We hypothesized that neuroimmune activity of brain glia may have a role in drinking. We utilized minocycline, a second generation tetracycline antibiotic that has immune modulatory actions, to test our hypothesis because it is known to suppress microglia, and to a lesser extent astroglia, activity following many types of insults to the brain. Treatment with 50mg/kg minocycline significantly reduced ethanol intake in male and female C57Bl/6J mice using a free choice voluntary drinking model. Saline injections did not alter ethanol intake. Minocycline had little effect on water intake or body weight change. The underlying mechanism whereby minocycline reduced ethanol intake requires further study. The results suggest that drugs that alter neuroimmune pathways may represent a new approach to developing additional therapies to treat alcoholism. PMID:21397005

  7. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  8. Impact of traditional practices on food safety: a case of acute toxoplasmosis related to the consumption of contaminated raw pork sausage in Italy.

    PubMed

    Vitale, Maria; Tumino, Giovanni; Partanna, Samanta; La Chiusa, Stella; Mancuso, Giorgio; Giglia, Maria La; Presti, Vincenzo Di Marco Lo

    2014-04-01

    A case of acute toxoplasmosis in an adolescent girl, almost certainly related to the consumption of raw sausage, is described. The girl suffered of fever and weakness and presented a swollen lymph node in the submandibular region. Serology analysis was positive for Toxoplasma gondii and excluded other infections. Further analysis, with avidity test and immunoblot, confirmed the acute toxoplasmosis. She reported that about a month before the appearance of the symptoms, she had eaten a piece of raw sausage while it was being prepared by her father. We analyzed sausage samples prepared from this same batch that had been frozen for later consumption, and they demonstrated evidence of T. gondii DNA when using a specific nested PCR assay. The sausage was prepared from the meat of a pig that had been backyard raised and slaughtered at home, a traditional practice in rural communities in many countries. The tasting of fresh prepared raw sausage is a common practice throughout Italy, and it could be a major cause for toxoplasmosis as suggested by the results of a questionnaire administered in the province of Palermo, Sicily. Contact with cats and, to a lesser extent, raw salad consumption were also referred to as presumptive causes for the symptomatic cases. Two additional cases of acute toxoplasmosis reported during questionnaire administration were alleged to have been caused by the consumption of fresh sausage made with the meat of a pig raised in the yard. Traditional practices in animal farming, and the processing of meat from animals raised in the backyard or meat from wild game animals, might have a big impact on food safety. PMID:24680078

  9. Acute Sodium Arsenite-Induced Hematological and Biochemical Changes in Wistar Rats: Protective Effects of Ethanol Extract of Ageratum conyzoides

    PubMed Central

    Ola-Davies, Olufunke Eunice; Akinrinde, Akinleye Stephen

    2016-01-01

    Background: Ageratum conyzoides L. (Asteraceae) is an annual herbaceous plant used in folklore medicine for the treatment of a wide range of diseases. Objective: To investigate the protective effect of the ethanol leaf extract of A. conyzoides (EEAC) against hematological, serum biochemical and histological alterations induced by Sodium arsenite administration to Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly assigned into four groups of five rats each. Group I received propylene glycol and Group II rats were given the (EEAC, 100 mg/kg b.w.) orally for 7 days. Group III were given a single oral dose of sodium arsenite (NaAsO2, 2.5 mg/kg b.w.). Animals in Group IV were pretreated with 100 mg/kg EEAC for 7 days followed by a single oral dose of sodium arsenite. Results: Arsenic exposure resulted in significant reductions (P < 0.05) in values of packed cell volume (PCV), hemoglobin concentration (Hb) and red blood cell (RBC) count, and elevation in total white blood cell (WBC) count with insignificant reductions in serum total protein, albumin, and globulin levels. Alterations in aspartate aminotransferase, alanine transferase, alkaline phosphatase, and gamma glutamyl transferase activities, as well as in serum levels of urea, creatinine, glucose, cholesterol, and triglyceride levels, were not statistically significant. EEAC significantly restored (P < 0.05) the PCV, Hb, RBC, and WBC as well as serum albumin, globulin, and total protein to normal values. Conclusion: The results of this study indicate that EEAC possess strong potentials to protect against toxicities induced by sodium arsenite. SUMMARY Ageratum conyzoides produced significant reversal of the reduction in the erythrocytic indices (packed cell volume, red blood cell, and Hb) caused by sodium arseniteSodium arsenite-induced slight elevations in serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), correlating with the

  10. Ethanol and oxidative stress.

    PubMed

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  11. Antioxidant Properties and Gastroprotective Effects of 2-(Ethylthio)Benzohydrazones on Ethanol-Induced Acute Gastric Mucosal Lesions in Rats

    PubMed Central

    Ariffin, Azhar; Abdulla, Mahmood A.; Abdullah, Zanariah

    2016-01-01

    A series of new 2-(ethylthio)benzohydrazone derivatives (1–6) were prepared and characterised by IR, 1H NMR, and 13C NMR spectroscopy and mass spectrometry. The newly prepared compounds were screened for their in vitro antioxidant activities using free radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Among them, most powerful antioxidant, compound 1 has been selected in order to illustrate anti-ulcer effect on ethanol-induced gastric mucosal lesions in rats. Four groups of Sprague Dawley rats were respectively treated with 10% Tween 20 as ulcer control group, 20 mg/kg omeprazole as reference group, 50 mg/kg and 100 mg/kg compound 1 as experimental animals. Macroscopically, ulcer control group showed extensive hemorrhagic lesions of gastric mucosa compared with omeprazole or compound 1. Rats pre-treated with compound 1 showed increased in gastric pH and gastric mucus. Histologically, ulcer control group showed severe damage to gastric mucosa with edema and leucocytes infiltration of submucosal layer. In immunohistochemical analysis, rats which were pre-treated with compound 1 showed up-regulation of HSP70 and down-regulation of Bax proteins. In conclusion, the gastroprotective effect of compound 1 may be due to its antioxidant activity, and/or due to up-regulation of HSP70 and down-regulation of Bax protein in stained tissue section. PMID:27272221

  12. The more you drink, the harder you fall: a systematic review and meta-analysis of how acute alcohol consumption and injury or collision risk increase together.

    PubMed

    Taylor, B; Irving, H M; Kanteres, F; Room, R; Borges, G; Cherpitel, C; Greenfield, T; Rehm, J

    2010-07-01

    Alcohol consumption causes injury in a dose-response manner. The most common mode of sustaining an alcohol-attributable injury is from a single occasion of acute alcohol consumption, but much of the injury literature employs usual consumption habits to assess risk instead. An analysis of the acute dose-response relationship between alcohol and injury is warranted to generate single occasion- and dose-specific relative risks. A systematic literature review and meta-analysis was conducted to fill this gap. Linear and best-fit first-order model were used to model the data. Usual tests of heterogeneity and publication bias were run. Separate meta-analyses were run for motor vehicle and non-motor vehicle injuries, as well as case-control and case-crossover studies. The risk of injury increases non-linearly with increasing alcohol consumption. For motor vehicle accidents, the odds ratio increases by 1.24 (95% CI: 1.18-1.31) per 10-g in pure alcohol increase to 52.0 (95% CI: 34.50-78.28) at 120 g. For non-motor vehicle injury, the OR increases by 1.30 (95% CI: 1.26-1.34) to an OR of 24.2 at 140 g (95% CI: 16.2-36.2). Case-crossover studies of non-MVA injury result in overall higher risks than case-control studies and the per-drink increase in odds of injury was highest for intentional injury, at 1.38 (95% CI: 1.22-1.55). Efforts to reduce drinking both on an individual level and a population level are important. No level of consumption is safe when driving and less than 2 drinks per occasion should be encouraged to reduce the risk of injury. PMID:20236774

  13. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat. PMID:25811813

  14. Ethanol Extract of Fructus Schisandrae Decreases Hepatic Triglyceride Level in Mice Fed with a High Fat/Cholesterol Diet, with Attention to Acute Toxicity

    PubMed Central

    Pan, Si-Yuan; Yu, Zhi-Ling; Dong, Hang; Xiang, Chun-Jing; Fong, Wang-Fun; Ko, Kam-Ming

    2011-01-01

    Effects of the ethanol extract of Fructus Schisandrae (EtFSC) on serum and liver lipid contents were investigated in mice fed with high fat/cholesterol (HFC) diet for 8 or 15 days. The induction of hypercholesterolemia by HFC diet caused significant increases in serum and hepatic total cholesterol (TC) levels (up to 62% and 165%, resp.) and hepatic triglyceride (TG) levels (up to 528%) in mice. EtFSC treatment (1 or 5 g/kg/day for 7 days; from Day 1 to 7 or from Day 8 to 14, i.g.) significantly decreased the hepatic TG level (down to 35%) and slightly increased the hepatic index (by 8%) in hypercholesterolemic mice. Whereas fenofibrate treatment (0.1 g/kg/day for 7 days, i.g.) significantly lowered the hepatic TG level (by 61%), it elevated the hepatic index (by 77%) in hypercholesterolemic mice. Acute toxicity test showed that EtFSC was relatively non-toxic, with an LD50 value of 35.63 ± 6.46 g/kg in mice. The results indicate that EtFSC treatment can invariably decrease hepatic TG in hypercholesterolemic mice, as assessed by both preventive and therapeutic protocols, suggesting its potential use for fatty liver treatment. PMID:19592476

  15. INACTIVATION OF THE LATERAL ORBITOFRONTAL CORTEX INCREASES DRINKING IN ETHANOL-DEPENDENT BUT NOT NON-DEPENDENT MICE

    PubMed Central

    den Hartog, Carolina; Zamudio-Bulcock, Paula; Nimitvilai, Sudarat; Gilstrap, Meghin; Fedarovich, Hleb; Motts, Andrew; Woodward, John J.

    2016-01-01

    Long-term consumption of ethanol affects cortical areas that are important for learning and memory, cognition, and decision-making. Deficits in cortical function may contribute to alcohol-abuse disorders by impeding an individual’s ability to control drinking. Previous studies from this laboratory show that acute ethanol reduces activity of lateral orbitofrontal cortex (LOFC) neurons while chronic exposure impairs LOFC-dependent reversal learning and induces changes in LOFC excitability. Despite these findings, the role of LOFC neurons in ethanol consumption is unknown. To address this issue, we examined ethanol drinking in adult C57Bl/6J mice that received an excitotoxic lesion or viral injection of the inhibitory DREADD (designer receptor exclusively activated by designer drug) into the LOFC. No differences in ethanol consumption were observed between sham and lesioned mice during access to increasing concentrations of ethanol (3–40%) every other day for 7 weeks. Adulterating the ethanol solution with saccharin (0.2%) or quinine (0.06 mM) enhanced or inhibited, respectively, consumption of the 40% ethanol solution similarly in both groups. Using a chronic intermittent ethanol (CIE) vapor exposure model that produces dependence, we found no difference in baseline drinking between sham and lesioned mice prior to vapor treatments. CIE enhanced drinking in both groups as compared to air-treated animals and CIE treated lesioned mice showed an additional increase in ethanol drinking as compared to CIE sham controls. This effect persisted during the first week when quinine was added to the ethanol solution but consumption decreased to control levels in CIE lesioned mice in the following 2 weeks. In viral injected mice, baseline drinking was not altered by expression of the inhibitory DREADD receptor and repeated cycles of CIE exposure enhanced drinking in DREADD and virus control groups. Consistent with the lesion study, treatment with clozapine-N-oxide (CNO

  16. Inactivation of the lateral orbitofrontal cortex increases drinking in ethanol-dependent but not non-dependent mice.

    PubMed

    den Hartog, Carolina; Zamudio-Bulcock, Paula; Nimitvilai, Sudarat; Gilstrap, Meghin; Eaton, Bethany; Fedarovich, Hleb; Motts, Andrew; Woodward, John J

    2016-08-01

    Long-term consumption of ethanol affects cortical areas that are important for learning and memory, cognition, and decision-making. Deficits in cortical function may contribute to alcohol-abuse disorders by impeding an individual's ability to control drinking. Previous studies from this laboratory show that acute ethanol reduces activity of lateral orbitofrontal cortex (LOFC) neurons while chronic exposure impairs LOFC-dependent reversal learning and induces changes in LOFC excitability. Despite these findings, the role of LOFC neurons in ethanol consumption is unknown. To address this issue, we examined ethanol drinking in adult C57Bl/6J mice that received an excitotoxic lesion or viral injection of the inhibitory DREADD (designer receptor exclusively activated by designer drug) into the LOFC. No differences in ethanol consumption were observed between sham and lesioned mice during access to increasing concentrations of ethanol (3-40%) every other day for 7 weeks. Adulterating the ethanol solution with saccharin (0.2%) or quinine (0.06 mM) enhanced or inhibited, respectively, consumption of the 40% ethanol solution similarly in both groups. Using a chronic intermittent ethanol (CIE) vapor exposure model that produces dependence, we found no difference in baseline drinking between sham and lesioned mice prior to vapor treatments. CIE enhanced drinking in both groups as compared to air-treated animals and CIE treated lesioned mice showed an additional increase in ethanol drinking as compared to CIE sham controls. This effect persisted during the first week when quinine was added to the ethanol solution but consumption decreased to control levels in CIE lesioned mice in the following 2 weeks. In viral injected mice, baseline drinking was not altered by expression of the inhibitory DREADD receptor and repeated cycles of CIE exposure enhanced drinking in DREADD and virus control groups. Consistent with the lesion study, treatment with clozapine-N-oxide (CNO) further

  17. Effect of acute treatment with cadmium on ethanol anesthesia, body termperature, and synaptosomal Na/sup +/-K/sup +/-ATPase of rat brain

    SciTech Connect

    Magour, S.; Kristof, V.; Baumann, M.; Assmann, G.

    1981-12-01

    The effect of a single intraperitoneal dose of 0.56, 1.12, and 1.68 mg cadmium/kg on the duration of ethanol-induced sleep was investigated in male rats. Cadmium potentiated ethanol sleeping time in a dose dependent manner up to 300% over controls. No significant difference in the elimination rate of ethanol from blood and brain and observed between control and cadmium-pretreated rats. Cadmium slightly inhibited the hepatic alcohol dehydrogenase in vivo and also potentiated ethanol hypothermia but these changes did not play a significant role in the observed prolongation of ethanol sleeping time. However, cadmium and ethanol additively inhibited brain synaptosomal Na/sup +/-K/sup +/-ATPase in a noncompetitive manner. The results so far indicate that cadmium may increase brain responsiveness toward ethanol partly through inhibition of snaptosomal Na/sup +/-K/sup +/-ATPase.

  18. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    PubMed

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children. PMID:27405361

  19. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    PubMed Central

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H.

    2013-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arach-idonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption. PMID:19650871

  20. High ethanol dose during early adolescence induces locomotor activation and increases subsequent ethanol intake during late adolescence.

    PubMed

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2010-07-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescent rats were assessed for ethanol-induced locomotor activation on postnatal Day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal Day 28. Females that were more sensitive to ethanol's locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  1. Ethanol Concentration-Dependent Alterations in Gene Expression During Acute Binge Drinking in the HIV-1 Transgenic Rat

    PubMed Central

    Sarkar, Sraboni; Chang, Sulie L

    2013-01-01

    Background Binge drinking of high ethanol (EtOH) concentration beverages is common among young adults and can be a risk factor for exposure to sexually transmitted diseases, including HIV-1. We used a novel noninfectious HIV-1 transgenic (HIV-1Tg) rat model that mimics HIV-1 patients in terms of altered immune responses and deficits in cognitive learning and memory to investigate EtOH concentration-dependent effects on 48 alcohol-modulated genes during binge EtOH administration. Methods HIV-1Tg and control F344 rats were administered water, 8% EtOH, or 52% EtOH by gavage (i.g.) for 3 days (2.0 g/kg/d). Two hours after final treatment, blood, liver, and spleen were collected from each animal. Serum blood EtOH concentration (BEC) was measured, and gene expression in the liver and spleen was determined using a specifically designed PCR array. Results The BEC was significantly higher in the 52% EtOH-treated HIV-1Tg rats compared with the 8% EtOH group; however, the BEC was higher in the 8% EtOH-treated control rats compared with the 52% EtOH group. There was no change in expression of the EtOH metabolism-related genes, Adh1, Adh4, and Cyp2e1, in either the 8 or 52% EtOH-treated HIV-1Tg rats, whereas expression of those genes was significantly higher in the liver of the 52% EtOH control rats, but not in the 8% EtOH group. In the HIV-1Tg rats, expression of the GABAA, metabotropic glutamate, and dopamine neurotransmitter receptor genes was significantly increased in the spleen of the 52% EtOH group, but not in the 8% EtOH group, whereas no change was observed in those genes in either of the control groups. Conclusions Our data indicate that, in the presence of HIV-1 infection, EtOH concentration-dependent binge drinking can have significantly different molecular effects. PMID:23413777

  2. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  3. The role of coffee consumption on the 10-year (2004-2014) Acute Coronary Syndrome (ACS) incidence among cardiac patients: the GREECS observational study.

    PubMed

    Notara, Venetia; Panagiotakos, Demosthenes B; Kouvari, Matina; Tzanoglou, Despoina; Kouli, Georgia; Mantas, Yannis; Kogias, Yannis; Stravopodis, Petros; Papanagnou, George; Zombolos, Spyros; Babatsikou, Fotοula; Koutis, Charilaos; Pitsavos, Christos

    2015-01-01

    The association between long-term coffee consumption and 10-year cardiovascular disease incidence among Acute Coronary Syndrome (ACS) patients was evaluated. From 2003 to 2004, 2172 ACS consecutive patients from six major Greek hospitals were enrolled. During 2013-2014, the 10-year follow-up was performed (88% participation rate) and recurrent fatal or non-fatal ACS was recorded. Baseline coffee consumption (cups/day) was assessed using a semi-quantitative Food Frequency Questionnaire. Multi adjusted analysis revealed that 1-2 cups of coffee/day versus no consumption had an adverse effect on the ACS incidence [odds ratio (OR) = 1.35, 95% confidence interval (CI) 1.01, 1.79]. In subgroup analysis, with hypertension as strata, only the normotensive reached significance. Odds ratios for 1-2 and ≥3 cups relative to no consumption were [OR = 1.66, 95% CI 1.07, 2.60] and [OR = 1.86, 95% CI 1.06, 3.27], respectively, after controlling for potential confounders. Thus, avoidance of coffee may be of high importance to ameliorate disease prognosis among cardiac patients. PMID:26307525

  4. GM1 ganglioside reduces the motor incoordination and loss of righting reflex caused by acute ethanol in C57BL/6J mice

    SciTech Connect

    Wallis, C.; Rezazadeh, S.M.; Forster, M.J.; Lal, H. )

    1992-02-26

    Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination. Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.

  5. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  7. Differential response of GFAP-positive astrocytes in the rat prefrontal cortex following ethanol self-administration

    PubMed Central

    Bull, Cecilia; Syed, Wahab A.; Minter, Sabrina C.; Bowers, M. Scott

    2015-01-01

    Background Prefrontal cortex (PFC) dysfunction is believed to contribute to the transition from controlled substance use to abuse. Because astrocytes have been suggested to play a key role in the development and maintenance of drug-seeking behaviors, we sought to determine if PFC astrocytes are affected by ethanol self-administration. Methods Ethanol consumption was modeled in rats by three self-administration paradigms where ethanol was made concurrently available with water in the home cage either continuously (CEA) or intermittently (IEA). In the third paradigm, ethanol was only available in the operant chamber (OEA). To avoid the potential confound of acute ethanol effects, all rats were sacrificed either 24 h or 3 wks abstinence. In all groups, the effect of ethanol consumption on PFC astrocytes was measured using unbiased stereological counting of cells expressing the astrocyte marker glial fibrillary acidic protein (GFAP). GFAP immunoreactivity commonly changes in response to pharmacological insult or injury. Results GFAP-positive astrocyte number increased in the prelimbic and anterior cingulate cortex regions of the PFC after IEA. No change was found in the infralimbic or orbitofrontal cortex after IEA. After 3 weeks abstinence, there was a reduction of astrocytes in the prelimbic and orbitofrontal cortex of the CEA cohort as well as a reduction in the orbitofrontal cortex of the OEA cohort. Conclusion These findings demonstrate that discrete PFC subregions contain GFAP-positive astrocyte populations that respond differentially to distinct ethanol consumption paradigms. A better understanding of how specific astrocyte populations uniquely adapt to ethanol consumption could provide insight for targeted therapeutic interventions. PMID:25833026

  8. Positive relationship between dietary fat, ethanol intake, triglycerides and hypothalamic peptides: Counteraction by lipid-lowering drugs

    PubMed Central

    Barson, Jessica R.; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F.; Bocarsly, Miriam E.; Hoebel, Bartley G.; Leibowitz, Sarah F.

    2009-01-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TG), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TG and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected with ethanol (1 g/kg i.p.) and tested in terms of their preference for a high-fat compared to low-fat diet, showed a significant increase in their fat preference, compared to rats injected with saline, in measures of 2 h and 24 h intake. Experiment 2 tested the relationship of circulating TG in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol vs. water and given acute meal tests (25 kcal) of a high-fat vs. low-fat diet. Levels of TG were elevated in response to both chronic drinking of ethanol vs. water and acute eating of a high-fat vs. low-fat meal. Most importantly, ethanol and a high-fat diet showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a low-fat diet (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After administration of gemfibrozil (50 mg/kg i.g.) compared to vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide OX, in the perifornical lateral hypothalamus. These results support the existence of a vicious

  9. Ethanol-Induced Alterations in Purkinje Neuron Dendrites in Adult and Aging Rats: a Review.

    PubMed

    Dlugos, Cynthia A

    2015-08-01

    Uncomplicated alcoholics suffer from discrete motor dysfunctions that become more pronounced with age. These deficits involve the structure and function of Purkinje neurons (PN), the sole output neurons from the cerebellar cortex. This review focuses on alterations to the PN dendritic arbor in the adult and aging Fischer 344 rat following lengthy alcohol consumption. It describes seminal studies using the Golgi-Cox method which proposed a model for ethanol-induced dendritic regression. Subsequent ultrastructural studies of PN dendrites showed dilation of the extensive smooth endoplasmic reticulum (SER) which preceded and accompanied dendritic regression. The component of the SER that was most affected by ethanol was the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) responsible for resequestration of calcium into the SER. Ethanol-induced decreases in SERCA pump levels, similar to the finding of SER dilation, preceded and occurred concomitantly with dendritic regression. Discrete ethanol-induced deficits in balance also accompanied these decreases. Ethanol-induced ER stress within the SER of PN dendrites was proposed as an underlying cause of dendritic regression. It was recently shown that increased activation of caspase 12, inherent to the ER, occurred in PN of acute slices in ethanol-fed rats and was most pronounced following 40 weeks of ethanol treatment. These findings shed new light into alcohol-induced disruption in PN dendrites providing a new model for the discrete but critical changes in motor function in aging, adult alcoholics. PMID:25648753

  10. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats

    PubMed Central

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2013-01-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kg i.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol

  11. Withdrawal severity after chronic intermittent ethanol in inbred mouse strains

    PubMed Central

    Metten, Pamela; Sorensen, Michelle L.; Cameron, Andy Jade; Yu, Chia-Hua; Crabbe, John C.

    2010-01-01

    Background To study withdrawal, ethanol is usually administered chronically without interruption. However, interest has recurred in models of episodic exposure. Increasing evidence suggests that chronic intermittent exposure to ethanol leads to a sensitization effect in both withdrawal severity and in ethanol consumption. The goal of the present study was to examine mouse inbred strain differences in withdrawal severity following chronic intermittent exposure using the handling induced convulsion as the behavioral endpoint. We also sought to compare the withdrawal responses of inbred strains across acute, chronic continuous, and chronic intermittent exposure regimens. Methods Male mice from 15 standard inbred strains were exposed to ethanol vapor for 16 hours each day for 3 days and removed to an air chamber during the intervening 8 hours. Mice in the control groups were handled the same, except that they were exposed only to air. Daily blood ethanol concentrations were averaged for each mouse to estimate total dose of ethanol experienced. Results Across strains, mice had an average daily blood ethanol concentration (BEC) of 1.45 ± 0.02 mg/ml and we restricted the range of this value to 1.00 to 2.00 mg/ml. To evaluate strain differences, we divided data into two dose groups based on BEC, Low Dose (1.29 ± 0.1 mg/ml) and High Dose (1.71 ± 0.02 mg/ml). After the third inhalation exposure, ethanol- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at hr 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of air control values) in both dose groups. Conclusion The chronic intermittent exposure paradigm is sufficient to elicit differential withdrawal responses across nearly all strains. Data from the High Dose groups correlated well with withdrawal data derived from prior acute (single high dose) and chronic continuous (for 72 hrs) ethanol withdrawal studies, supporting the influence of common

  12. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects. PMID:27070930

  13. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons

    PubMed Central

    Pla, Antoni

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects. PMID:27070930

  14. Avenanthramides Are Bioavailable and Have Antioxidant Activity in Humans After Acute Consumption of an Enriched Mixture from Oats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of polyphenols is associated with a decreased risk of cardiovascular disease. Avenanthramides (AV), alkaloids occurring only in oats, may have anti-atherosclerotic activity, but no information is available on their bioavailability and bioactivity in humans. We characterized the pharmacok...

  15. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell

    PubMed Central

    Wilden, Jessica A.; Qing, Kurt Y.; Hauser, Sheketha R.; McBride, William J.; Irazoqui, Pedro P.; Rodd, Zachary A.

    2015-01-01

    Object There is increasing interest in deep brain stimulation (DBS) for the treatment of addiction. Initial testing must be conducted in animals, and the alcohol-preferring (P) rat meets the criteria for an animal model of alcoholism. This study is composed of 2 experiments designed to examine the effects of 1) pharmacological inactivation and 2) DBS of the nucleus accumbens shell (AcbSh) on the consumption of alcohol by P rats. Methods In the first experiment, the effects of reversible inactivation of the AcbSh were investigated by administering intracranial injections of γ–aminobutyric acid (GABA) agonists. Bilateral microinjections of drug were administered to the AcbSh in P rats (8–10 rats/group), after which the animals were placed in operant chambers containing 2 levers—one used to administer water and the other to administer 15% EtOH—to examine the acquisition and maintenance of oral EtOH self-administration. In the second experiment, a DBS electrode was placed in each P rat’s left AcbSh. The animals then received 100 or 200 μA (3–4 rats/group) of DBS to examine the effect on daily consumption of oral EtOH in a free-access paradigm. Results In the first experiment, pharmacological silencing of the AcbSh with GABA agonists did not decrease the acquisition of EtOH drinking behavior but did reduce EtOH consumption by 55% in chronically drinking rats. Similarly, in the second experiment, 200 μA of DBS consistently reduced EtOH intake by 47% in chronically drinking rats. The amount of EtOH consumption returned to baseline levels following termination of therapy in both experiments. Conclusions Pharmacological silencing and DBS of the AcbSh reduced EtOH intake after chronic EtOH use had been established in rodents. The AcbSh is a neuroanatomical substrate for the reinforcing effects of alcohol and may be a target for surgical intervention in cases of alcoholism. PMID:24460492

  16. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  17. Problematic Internet Use, Excessive Alcohol Consumption, Their Comorbidity and Cardiovascular and Cortisol Reactions to Acute Psychological Stress in a Student Population

    PubMed Central

    Bibbey, Adam; Phillips, Anna C.; Ginty, Annie T.; Carroll, Douglas

    2015-01-01

    Background and Aims Problematic Internet use and excessive alcohol consumption have been associated with a host of maladaptive outcomes. Further, low (blunted) cardiovascular and stress hormone (e.g. cortisol) reactions to acute psychological stress are a feature of individuals with a range of adverse health and behavioural characteristics, including dependencies such as tobacco and alcohol addiction. The present study extended this research by examining whether behavioural dependencies, namely problematic Internet use, excessive alcohol consumption, and their comorbidity would also be associated with blunted stress reactivity. Methods A large sample of university students (N = 2313) were screened using Internet and alcohol dependency questionnaires to select four groups for laboratory testing: comorbid Internet and alcohol dependence (N = 17), Internet dependence (N = 17), alcohol dependence (N = 28), and non-dependent controls (N = 26). Cardiovascular activity and salivary cortisol were measured at rest and in response to a psychological stress protocol comprising of mental arithmetic and public speaking tasks. Results Neither problematic Internet behaviour nor excessive alcohol consumption, either individually or in combination, were associated with blunted cardiovascular or cortisol stress reactions. Discussion It is possible that problematic Internet behaviour and excessive alcohol consumption in a student population were not related to physiological reactivity as they may not reflect ingrained addictions but rather an impulse control disorder and binging tendency. Conclusions The present results serve to indicate some of the limits of the developing hypothesis that blunted stress reactivity is a peripheral marker of the central motivational dysregulation in the brain underpinning a wide range of health and behavioural problems. PMID:26014670

  18. Local 5,7-dihydroxytryptamine lesions of rat amygdala: release of punished drinking, unaffected plus-maze behavior and ethanol consumption.

    PubMed

    Sommer, W; Möller, C; Wiklund, L; Thorsell, A; Rimondini, R; Nissbrandt, H; Heilig, M

    2001-04-01

    Several serotonergic drugs are effective for anxiety disorders, but underlying mechanisms are unclear, and findings in experimental animals are difficult to reconcile with human data. It has been proposed that differential effects of serotonin within specific anatomical systems may account for these difficulties, and the amygdala has been suggested as one of the structures involved. To examine this hypothesis, the neurotoxin 5,7-dihydroxytryptamine was administered locally in rat amygdala. Within the amygdala, serotonin was depleted by approximately 80%, with other transmitters unaffected, and serotonin transporter labelling was decreased by approximately 85%. Cortical areas near the lesion site were also affected, although to a lesser degree. Other forebrain areas were unaffected. Lesions resulted in a specific anti-conflict effect in a punished drinking test, but did not influence elevated plus-maze behavior (under baseline conditions and after restraint stress), locomotor activity or ethanol intake. These data suggest that the punished drinking test and the elevated plus-maze may activate different components of fear circuitry, and that the serotonergic input to the amygdala specifically participates in fear-related behavioral suppression mediated by this structure. PMID:11182538

  19. The effects of acute and chronic nicotine hydrogen (+)-tartrate administration and subsequent withdrawal on rat liver tryptophan pyrrolase activity and their comparison with those of morphine, phenobarbitone and ethanol.

    PubMed Central

    Badawy, A A; Evans, M

    1975-01-01

    Acute administration of nicotine hydrogen (+)-tartrate enhances the activity of rat liver tryptophan pyrrolase by a hormonal mechanism. Chronic nicotine treatment inhibits, and subsequent withdrawal enhances, the pyrrolase activity. The inhibition during chronic treatment is not due to a defective apoenzyme synthesis nor a decreased cofactor availability. Regeneration of liver NADP+ in vitro and in vivo reverses the inhibition. Chronic nicotine administration increases the liver NADPH concentration. The above effects of nicotine resemble to a remarkable degree those previously shown for morphine, phenobarbitone and ethanol. All effects are compared, and their possible significance in relation to drug dependence is discussed. PMID:989

  20. The role of connexin-36 gap junctions in alcohol intoxication and consumption.

    PubMed

    Steffensen, Scott C; Bradley, Katie D; Hansen, David M; Wilcox, Jeffrey D; Wilcox, Rebecca S; Allison, David W; Merrill, Collin B; Edwards, Jeffrey G

    2011-08-01

    Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. PMID:21638336

  1. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    PubMed

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications. PMID:25578036

  2. The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running

    PubMed Central

    Peschek, Katelyn; Pritchett, Robert; Bergman, Ethan; Pritchett, Kelly

    2013-01-01

    Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4 ± 7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p = 0.97) between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s). No significant difference was found for creatine kinase (CK) levels (p = 0.31), or muscle soreness (p = 0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits. PMID:24362706

  3. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A

    2015-07-15

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation. PMID:25980023

  4. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms.

    PubMed

    Krenz, Maike; Korthuis, Ronald J

    2012-01-01

    While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol

  5. Comparative acute inhalation toxicity of a saline suspension and an ethanol solution of t-2 mycotoxin in mice. (Reannouncement with new availability information)

    SciTech Connect

    Creasia, D.A.; Thurman, J.D.

    1993-12-31

    We compared retention, distribution, toxicity, and histopathological change in mice after exposure to aerosols of T-2 suspended in saline or dissolved in ethanol. We found that the LC50 for mice exposed for 10 min to an aerosol of a saline suspension of T-2 was 0.035 plus or minus 0.02 T-2 per liter of air, which was lower than the LC50 (0.380 plus or minus 0.08 mg T-2 per liter air) for an aerosol of T-2 dissolved in ethanol. However, within about 15 min postexposure, most of the T-2 deposited in the respiratory tract was translocated from the respiratory tract regardless of whether the T-2 aerosol was from a saline suspension or ethanol solution. Also, although T-2 is an inflammatory agent to dermis and gastrointestinal epithelium, T-2 from either aerosol did not produce any histological evidence of inflammation in the respiratory tract.

  6. A prospective study of the influence of acute alcohol intoxication versus chronic alcohol consumption on outcome following traumatic brain injury.

    PubMed

    Lange, Rael T; Shewchuk, Jason R; Rauscher, Alexander; Jarrett, Michael; Heran, Manraj K S; Brubacher, Jeffrey R; Iverson, Grant L

    2014-08-01

    The purpose of the study was to disentangle the relative contributions of day-of-injury alcohol intoxication and pre-injury alcohol misuse on outcome from TBI. Participants were 142 patients enrolled from a Level 1 Trauma Center (in Vancouver, Canada) following a traumatic brain injury (TBI; 43 uncomplicated mild TBI and 63 complicated mild-severe TBI) or orthopedic injury [36 trauma controls (TC)]. At 6-8 weeks post-injury, diffusion tensor imaging (DTI) of the whole brain was undertaken using a Phillips 3T scanner. Participants also completed neuropsychological testing, an evaluation of lifetime alcohol consumption (LAC), and had blood alcohol levels (BALs) taken at the time of injury. Participants in the uncomplicated mild TBI and complicated mild-severe TBI groups had higher scores on measures of depression and postconcussion symptoms (d = 0.45-0.83), but not anxiety, compared with the TC group. The complicated mild-severe TBI group had more areas of abnormal white matter on DTI measures (all p < .05; d = 0.54-0.61) than the TC group. There were no difference between groups on all neurocognitive measures. Using hierarchical regression analyses and generalized linear modeling, LAC and BAL did provide a unique contribution toward the prediction of attention and executive functioning abilities; however, the variance accounted for was small. LAC and BAL did not provide a unique and meaningful contribution toward the prediction of self-reported symptoms, DTI measures, or the majority of neurocognitive measures. In this study, BAL and LAC were not predictive of mental health symptoms, postconcussion symptoms, cognition, or white-matter changes at 6-8 weeks following TBI. PMID:24964748

  7. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. PMID:26635348

  8. Cellular and Mitochondrial Effects of Alcohol Consumption

    PubMed Central

    Manzo-Avalos, Salvador; Saavedra-Molina, Alfredo

    2010-01-01

    Alcohol dependence is correlated with a wide spectrum of medical, psychological, behavioral, and social problems. Acute alcohol abuse causes damage to and functional impairment of several organs affecting protein, carbohydrate, and fat metabolism. Mitochondria participate with the conversion of acetaldehyde into acetate and the generation of increased amounts of NADH. Prenatal exposure to ethanol during fetal development induces a wide spectrum of adverse effects in offspring, such as neurologic abnormalities and pre- and post-natal growth retardation. Antioxidant effects have been described due to that alcoholic beverages contain different compounds, such as polyphenols as well as resveratrol. This review analyzes diverse topics on the alcohol consumption effects in several human organs and demonstrates the direct participation of mitochondria as potential target of compounds that can be used to prevent therapies for alcohol abusers. PMID:21318009

  9. Xanthine oxidase status in ethanol-intoxicated rat liver.

    PubMed

    Abbondanza, A; Battelli, M G; Soffritti, M; Cessi, C

    1989-12-01

    The status of xanthine oxidase in ethanol-induced liver injury has been investigated in the rat, by acute and chronic ethanol treatments. A 38% increase of the enzyme O-form was observed after repeated ethanol administration. Chronic intoxication caused a significant decrease of total xanthine oxidase activity after both prolonged ethanol feeding and life span ethanol ingestion. The intermediate D/O-form of xanthine oxidase (that can act either as an oxidase or as a dehydrogenase, being able to react with O2 as well as with NAD+ as electron acceptor) increased 5.5-fold after prolonged ethanol feeding. PMID:2690670

  10. Similar effects of intranasal oxytocin administration and acute alcohol consumption on socio-cognitions, emotions and behaviour: Implications for the mechanisms of action.

    PubMed

    Mitchell, Ian J; Gillespie, Steven M; Abu-Akel, Ahmad

    2015-08-01

    Oxytocin (OT) plays a critical role in the formation of long lasting social attachments across a range of mammalian species. Raising intracerebral OT levels by intranasal administration of the neuropeptide (inOT) can also have pronounced effects on human sociocognitive functioning. inOT has been associated with increasing altruism, generosity, empathy and trust while decreasing fear, anxiety and stress reactions via neural mechanisms which are yet to be fully elucidated. The observation of the prosocial effects of OT has led to speculation about the role the peptide might play in some psychiatric conditions and debate as to its potential therapeutic uses. Here we note the great similarity in the sociocognitive effects that can be induced by inOT and the effects of acute consumption of modest does of alcohol. We further reflect on how both compounds may act on limbic and prefrontal cortical structures to increase GABAergic transmission, thereby facilitating the release of prepotent responses, that is, more automatic responses which are associated with earlier developmental stages. PMID:25956250

  11. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus

  12. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  13. Circadian Activity Rhythms and Voluntary Ethanol Intake in Male and Female Ethanol-Preferring Rats: Effects of Long-Term Ethanol Access

    PubMed Central

    Rosenwasser, Alan M.; McCulley, Walter D.; Fecteau, Matthew

    2014-01-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  14. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Manganese (II) Complex against HCl/Ethanol-Induced Gastric Ulcerations in Rats

    PubMed Central

    Ibrahim, Mohamed Yousif; Hashim, Najihah Mohd; Dhiyaaldeen, Summaya M.; Al-Obaidi, Mazen M.Jamil; El-Ferjani, Rashd M.; Adam, Hoyam; Alkotaini, Bassam; Batran, Rami Al; Ali, Hapipah Mohd

    2016-01-01

    Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2–5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3–5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3–5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex. PMID:27229938

  15. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Manganese (II) Complex against HCl/Ethanol-Induced Gastric Ulcerations in Rats.

    PubMed

    Ibrahim, Mohamed Yousif; Hashim, Najihah Mohd; Dhiyaaldeen, Summaya M; Al-Obaidi, Mazen M Jamil; El-Ferjani, Rashd M; Adam, Hoyam; Alkotaini, Bassam; Batran, Rami Al; Ali, Hapipah Mohd

    2016-01-01

    Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2-5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3-5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3-5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex. PMID:27229938

  16. Endogenous opioids and excessive alcohol consumption.

    PubMed Central

    Gianoulakis, C

    1993-01-01

    Alcohol is one of the most popular drugs of abuse in our society, and alcoholism is an important cause of absenteeism at work and a major health and social problem. Ethanol induces a number of effects, such as disinhibition, a feeling of general well-being, tolerance and physical dependence. Since there are no specific receptors with which ethanol interacts, it has been proposed that ethanol exerts its effects by altering the activity of a number of neuronal and neuroendocrine systems. Studies have indicated that alcohol influences the activity of the dopaminergic, serotonergic and opioidergic systems. The implication of the endogenous opioid system in mediating some of the effects of ethanol is indicated by the observations that some of the behavioral and pharmacological effects of ethanol are similar to those of the opiates. Indeed, injections of small amounts of morphine increased ethanol consumption, while the administration of naltrexone decreased ethanol consumption among rats and other experimental animals, in a number of experimental paradigms, suggesting that endogenous opioids may play an important role in controlling voluntary ethanol consumption. This paper reviews studies of the effects of ethanol on the activity of the endogenous opioid system and on the importance of endogenous opioids in controlling alcohol consumption. PMID:7690585

  17. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood

    PubMed Central

    Varlinskaya, Elena I.; Truxell, Eric; Spear, Linda P.

    2014-01-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25–45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45–65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later in

  18. The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury

    PubMed Central

    Luo, Pei; Dong, Gengting; Liu, Liang; Zhou, Hua

    2015-01-01

    Background A large number of experimental studies using young adult subjects have shown that ginseng (Panax ginseng C.A. Meyer) protects against ischemia heart disease. However, ginseng has not been explored for its anti-I/R effect and mechanism of action in the aged myocardium. The present study was designed to evaluate the effects of the long-term consumption of ginseng extract on myocardial I/R in an in vivo rat model and explore the potential underlying mechanism. Methods and Results Young (6-mo-old) and intermediate-aged (18-mo-old) rats were gavaged with either standardized ginseng extract (RSE) at 80 mg/kg or vehicle for 90 days. The rats were sacrificed after LAD coronary artery ligation was performed to induce 30 min of ischemia, followed by 90 min of reperfusion. The myocardial infarct size was measured. Left ventricular function was evaluated using pressure-volume loops. The levels of survival, apoptotic and longevity protein expression were assessed through Western blot analysis. Myocardial pathology was detected through H&E or Masson’s trichrome staining. We observed higher infarct expansion with impairment in the LV functional parameters, such as LVSP and LVEDP, in aged rats compared with young rats. Enhanced Akt phosphorylation and eNOS expression in RSE-treated aged hearts were accompanied with reduced infarct size, improved cardiac performance, and inducted survival signals. In contrast, p-Erk and caspase 7 were significantly downregulated in aged rats, suggesting that cardiomyocyte apoptosis was suppressed after RSE treatment. RSE also inhibited caspase-3/7 activation and decreased Bax/Bcl-2 ratio. Consistent with the results of apoptosis, Sirt1 and Sirt3 were significantly increased in the RSE-treated aged heart compared with vehicle-treated I/R, suggesting that the anti-aging effect was correlated with the anti-apoptotic activity of RSE. Conclusion These findings suggest that the long-term consumption of ginseng extract reduced the

  19. Anti-Ulcerogenic Effect of Methanolic Extracts from Enicosanthellum pulchrum (King) Heusden against Ethanol-Induced Acute Gastric Lesion in Animal Models

    PubMed Central

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712

  20. Assessing Ethanol's Actions in the Suprachiasmatic Circadian Clock Using In vivo and In vitro Approaches

    PubMed Central

    2014-01-01

    Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts. PMID:25457753

  1. Acute exposure to ethanol potentiates human immunodeficiency virus type 1 Tat-induced Ca(2+) overload and neuronal death in cultured rat cortical neurons.

    PubMed

    Brailoiu, Eugen; Brailoiu, G Cristina; Mameli, Giuseppe; Dolei, Antonina; Sawaya, Bassel E; Dun, Nae J

    2006-02-01

    A significant number of human immunodeficiency virus type 1 (HIV-1)-infected patients are alcoholics. Either alcohol or HIV alone induces morphological and functional damage to the nervous system. HIV-1 Tat is a potent transcriptional activator of the viral promoter, with the ability to modulate a number of cellular regulatory circuits including apoptosis and to cause neuronal injury. To further evaluate the involvement of alcohol in neuronal injury, the authors examined the effect of ethanol on Tat-induced calcium responses in rat cerebral cortical neurons, using microfluorimetric calcium determination. HIV Tat protein (10 or 500 nM) elicited two types of calcium responses in cortical neurons: a fast-onset, short-lasting response and a slow-onset, sustained response. The responses were concentration-dependent and diminished in calcium-free saline. A short exposure to ethanol (50 mM) potentiated both types of calcium response, which was markedly decreased when the cells were pretreated with BAPTA-AM (20 microM). In addition, an increase in the neurotoxic effect of Tat, which was assessed by trypan blue exclusion assay, was observed. The result led the authors to conclude that alcohol exposure significantly potentiates Tat-induced calcium overload and neuronal death. PMID:16595370

  2. Alcohol consumption and plasma homocysteine.

    PubMed

    Sakuta, Hidenari; Suzuki, Takashi

    2005-10-01

    A few reports show that consumption of spirits and of wine correlate with elevated plasma total homocysteine (tHcy), which is associated with the risk of cardiovascular disease. We analyzed the relation between tHcy and current daily ethanol consumption cross-sectionally in middle-aged Japanese men (n = 974, age 51-59 years). Plasma tHcy was positively associated with consumption of whiskey but not with consumption of shochu (Japanese spirits), sake, beer, or wine. Odds ratios of an increase in daily intake of 30 ml ethanol (approximately 1 standard deviation) for hyperhomocysteinemia (>14.0 micromol/l) were 2.58 (95% confidence interval, 1.29-5.14) for whiskey, 1.08 (0.78-1.50) for shochu, 0.99 (0.59-1.66) for sake, 0.98 (0.58-1.63) for beer, and 1.70 (0.31-9.50) for wine in a multivariate logistic regression analysis adjusted for the daily number of cigarettes smoked, physical activity, vegetable consumption, and serum creatinine levels. After inclusion of plasma folate and vitamin B12 in the multivariate analysis model, the association between whiskey ethanol consumption and hyperhomocysteinemia remained significant with odds ratio of 2.79 (1.36-5.72). These results suggest that whiskey consumption correlates with hyperhomocysteinemia independently of plasma folate or vitamin B12 or lifestyle factors in the population studied. PMID:16584970

  3. Ethanol impairs post-prandial hepatic protein metabolism.

    PubMed Central

    De Feo, P; Volpi, E; Lucidi, P; Cruciani, G; Monacchia, F; Reboldi, G; Santeusanio, F; Bolli, G B; Brunetti, P

    1995-01-01

    The effects of acute ethanol ingestion on whole body and hepatic protein metabolism in humans are not known. To simulate social drinking, we compared the effects of the association of a mixed meal (632 kcal, 17% amino acids, 50% glucose, 33% lipids) with a bottle of either table wine (ethanol content 71 g) or water on the estimates ([1-14C]-leucine infusion) of whole body protein breakdown, oxidation, and synthesis, and on the intravascular fractional secretory rates (FSR) of hepatically (albumin, fibrinogen) and extrahepatically (IgG) synthesized plasma proteins in two randomized groups (ethanol n = 7, water n = 7) of healthy nonalcoholic volunteers. Each study was carried out for 8 h. Protein kinetics were measured in the overnight post-absorptive state, over the first 4 h, and during a meal infusion (via a nasogastric feeding tube at constant rate) combined with the oral ingestion of wine or water, over the last 4 h. When compared with water, wine ingestion during the meal reduced (P < 0.03) by 24% the rate of leucine oxidation, did not modify the estimates of whole body protein breakdown and synthesis, reduced (P < 0.01) by approximately 30% the FSR of albumin and fibrinogen, but did not affect IgG FSR. In conclusion, 70 g of ethanol, an amount usual among social drinkers, impairs hepatic protein metabolism. The habitual consumption of such amounts by reducing the synthesis and/or secretion of hepatic proteins might lead to the progressive development of liver injury and to hypoalbuminemia also in the absence of protein malnutrition. PMID:7706451

  4. Environmental implications of municipal solid waste-derived ethanol.

    PubMed

    Kalogo, Youssouf; Habibi, Shiva; MacLean, Heather L; Joshi, Satish V

    2007-01-01

    We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion. PMID:17265924

  5. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  6. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  7. The effects of acute and chronic administration of n-6 and n-3 polyunsaturated fatty acids on ethanol-induced gastric haemorrhage in rats.

    PubMed

    Hunter, B; McDonald, G S; Gibney, M J

    1992-05-01

    Female weanling rats in three equal groups (n 12) were given orally by intubation 1 ml micellar solution of taurocholic acid (10 mM) and either arachidonic acid (20:4 n-6), linoleic acid (18:2 n-6) or eicosapentaenoic acid (20:5 n-3) at a concentration of 120 mM. After 1 h the rats were given intragastrically 2 ml absolute ethanol and were killed 1 h later. Rats given oral 20:4 n-6 showed a significant reduction (P less than 0.05) in the extent (%) of gastric mucosal haemorrhage compared with either the rats given 20:5 n-3 or 18:2 n-6 (8.3 (SD 7.3), 23.2 (SD 10.4) and 21.4 (SD 10.4) respectively. In a second experiment, four equal groups (n 12) of female Wistar rats were fed for 5 weeks on either a control diet of standard laboratory rat food, or the same diet enriched with either maize oil or fish oil or butterfat at a level of 100 g/kg. Following a 24 h fast the rats received an intragastric dose of 2 ml ethanol and were killed 1 h later. Examination of the extent (%) of gastric lesion showed a significant reduction (P less than 0.05) with the feeding of either maize oil or fish oil compared with the controls (12.2 (SD 8.2), 15.3 (SD 13.2) and 29.3 (SD 14.0) respectively). The butterfat diet was not significantly different from the control diet (23.8 (SD 8.1)). PMID:1622986

  8. The ethanol program in Brazil

    NASA Astrophysics Data System (ADS)

    Goldemberg, José

    2006-10-01

    The number of automobiles in the world has been growing fast and today requires one quarter of the global petroleum consumption. This problem requires adequate solutions, one of which Brazil has achieved with the Sugarcane Ethanol Program. This paper presents the history of this program, from its launch in the 1970s to the today's condition of full competitiveness in a free market. It also shows how it can be replicated to other countries, in order to replace 10 per cent of the world's gasoline consumption.

  9. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  10. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  11. Sex-dependent consequences of pre-pubertal gonadectomy: Social behavior, stress and ethanol responsivity.

    PubMed

    Kim, Esther U; Spear, Linda P

    2016-01-01

    Alcohol consumption can be enhanced or moderated by sensitivity to its aversive and appetitive properties, including positive social outcomes. These differences emerge post-pubertally, suggesting a potential role of gonadal hormones. To determine the role of gonadal hormones in sensitivity to the social impairing and social context-related attenuations in the aversive effects of ethanol, prepubertal male and female rats were gonadectomized (GX) or sham (SH) operated on postnatal day (P) 25, or left non-manipulated (NM). In adulthood (P70), rats were restrained for 90 min prior to challenge with 0.0 or 1.0 g/kg ethanol and social interaction (SI) testing. At P77, groups of 4 same-sex littermates from the same surgical condition were given access to a supersaccharin (SS) solution (3% sucrose, 0.125% saccharin), followed by an intraperitoneal injection of ethanol (0.0, 0.50, 1.0, 1.5 g/kg). Intakes of SS were examined 24h later for expression of conditioned taste aversions. Acute stress prior to SI testing increased frequency of play fighting in both sexes, whereas there were no GX effects on this measure, social investigation nor contact. GX, however, decreased baseline social preference (a social anxiety-like effect) in males, while inducing anxiolytic-like increases in baseline social preference in females. The social drinking test revealed that females developed ethanol conditioned taste aversions at a lower dose relative to males, regardless of surgical condition. These findings suggest a potential role for gonadal hormones in moderating social-anxiety like behaviors but not sensitivity to the social impairing effects of ethanol or ethanol's aversive consequences in a social context. PMID:26386303

  12. Histopathological and imaging modifications in chronic ethanolic encephalopathy.

    PubMed

    Folescu, Roxana; Zamfir, Carmen Lăcrămioara; Sişu, Alina Maria; Motoc, Andrei Gheorghe Marius; Ilie, Adrian Cosmin; Moise, Marius

    2014-01-01

    Chronic abuse of alcohol triggers different types of brain damage. The Wernicke-Korsakoff syndrome gets together Wernicke's encephalopathy and Korsakoff's syndrome. Another type of encephalopathy associated with chronic ethanol consumption is represented by the Marchiafava-Bignami malady or syndrome, an extremely rare neurological disorder, which is characterized by a demielinization of corpus callosum, extending as far as a necrosis. Because the frequency of ethanolic encephalopathy is increased and plays a major role in the sudden death of ethanolic patients, we have studied the chronic ethanolic encephalopathy both in deceased and in living patients, presenting different pathologies related to the chronic ethanol consumption. The present study investigated the effects of chronic ethanolic encephalopathy on the central nervous system based both on the histopathological exam of the tissular samples and the imaging investigation, such as MRI and CT. PMID:25329105

  13. Chronic Ethanol Consumption Leads to Disruption of Vitamin D3 Homeostasis Associated with Induction of Renal 1,25 Dihydroxyvitamin D3-24-Hydroxylase (CYP24A1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone loss resulting from chronic ethanol (EtOH) abuse is frequently accompanied by altered vitamin D3 homeostasis. In the current study, we examined EtOH effects in a female rat model in which control or EtOH-containing diets were infused intragastrically. EtOH treatment reduced plasma 1,25-dihydrox...

  14. Model for voluntary wine and alcohol consumption in rats.

    PubMed

    Arola, L; Roig, R; Cascón, E; Brunet, M J; Fornós, N; Sabaté, M; Raga, X; Batista, J; Salvadó, M J; Bladé, C

    1997-08-01

    It has been suggested that moderate consumption of ethanol and wine has a protective effect on human health. Animal models used to date for alcohol consumption can not mimic real situations in humans because the consumption is forced and/or excessive. The present study proposes to determine the effects of a voluntary and ad lib consumption model more similar to that of human behavior. Male Wistar rats had free access to either standard diet and water or the same diet plus red wine, sweet wine, or a solution equivalent to red wine (13.5% ethanol) or to sweet wine (20% ethanol + 130 g/L sucrose) for 30 days or 6 months. Daily wine consumption was 15.8 +/- 0.9 and 2.0 +/- 0.2 ml/day for sweet and red wines, respectively. The consumption of each of the alcoholic solutions was similar to that of the wine they were simulating. Drinking wine or ethanol did not affect food and water intakes or growth rate. Plasma metabolites were not substantially affected by consumption of wine or ethanol. Although moderate and high wine consumption did not change the activity of plasma marker enzymes of tissue damage, the consumption of the 2 alcoholic solutions caused a long-term increase in the activity of aspartate aminotransferase. It seems that wine consumption protects the organism from hepatic lesions induced by ethanol alone. PMID:9251979

  15. Ethanol Extract of Antrodia camphorata Grown on Germinated Brown Rice Suppresses Inflammatory Responses in Mice with Acute DSS-Induced Colitis

    PubMed Central

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The anti-inflammatory activity of Antrodia camphorata (AC) grown on germinated brown rice (CBR) extract was evaluated in vitro and in vivo. CBR suppressed the release of nitric oxide (NO) and prostaglandin (PG) E2 from lipopolysaccharide-(LPS-)stimulated RAW264.7 cells. CBR inhibited the level of inducible nitric oxide synthase (iNOS) and cyclooxygenase-(COX-)2 proteins, and it activated p38-MAPK, extracellular signal-related kinases (ERK), and NF-κB in LPS-stimulated RAW264.7 macrophages. LPS-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression was reduced in CBR-treated RAW264.7 cells. In concert with in vitro data, CBR suppressed the levels of dextran-sulfate-sodium-(DSS-)induced iNOS and COX-2 proteins in the colon tissue. CBR treatment inhibited activated p38-MAPK, ERK, and NF-κB proteins in the colon tissue of DSS-induced mice. TNF-α and IL-6 mRNA expression was reduced in DSS+CBR-treated mice. The disease activity index and histological scores were significantly lower in CBR-treated mice (500 mg/kg/day) than in DSS-treated mice (P < 0.05 versus DSS). This is the first report of anti-inflammatory activity of CBR in DSS-induced acute colitis. These results suggest that CBR is a promising, potential agent for preventing acute colitis through the inhibition of NF-κB signaling and its upstream signaling molecules, including MAPKs. PMID:23818935

  16. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  17. Ethanol sensitivity in rats: effect of prenatal stress.

    PubMed

    DeTurck, K H; Pohorecky, L A

    1987-01-01

    The present study examined whether sensitivity to ethanol could be altered by prenatal stress exposure. Pregnant female rats were handled during the third week of gestation and the offspring were tested for ethanol sensitivity as adults. Compared to control offspring, the following characteristic responses to acute ethanol were significantly attenuated in prenatally stress-exposed rats: the decreases in body temperature, motor coordination and startle amplitude, and the increases in circulating corticosterone and free fatty acids. Ethanol-induced impairment of swim performance, in contrast, was potentiated in these animals. Since no differences were found in blood or breath ethanol levels, the rate of ethanol metabolism was probably not affected by prenatal stress. Rather, the altered responses appear to result from long-term changes in central nervous system sensitivity to ethanol. PMID:3659158

  18. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process. PMID:16767974

  19. Sub-acute effects of ethanol extract of Sarcocephalus latifolius root on some physiologically important electrolytes in serum of normal Wistar albino rats.

    PubMed

    Enemor, V H A; Okaka, A N C

    2013-12-01

    Sarcocephalus latifolius (Synonym, Nauclea latifolia) is a shrub commonly seen in the South East of Nigeria. It is widely applied as herbal remedy in the treatment of various illnesses. The effect of ethanol extract of the root of the plant on some serum electrolytes was studied. A total of thirty Wistar albino rats were used to determine serum concentrations of K+, Ca2+, Cl- and HCO3-. The animals were divided into six groups of five rats each. Five groups labeled A, B, C, D and E, were administered orally with graded doses of root extract of Sarcocephalus latifolius at concentration of 300, 350, 400, 450 and 500 mg kg(-1) body weight, respectively. The sixth group (Group F) was used as the control and its animals were simply sustained on normal diet and water. Administration of the extract lasted for twenty-one days after which the animals were sacrificed by cardiac puncture. K+, Ca2+, Cl- and HCO3- were determined from each sample and the mean concentration was calculated for each dose and the control. Potassium, calcium and chloride determination were done by colorimetric methods while determination of bicarbonate concentration was done by simple titration. Na+ was separately assayed, by flame photometer, from a set of 18 rats of six animals in each of three groups. For K+, non dose dependent increases were observed which was non-significant (p > 0.05), for A, D and E but significant (p < 0.05) for B and C. Ca2+ showed a dose dependent and significant (p < 0.05) decreases, except for A (p > 0.05). Decreases (p < 0.05) for C, D, E and (p > 0.05) for A and B were observed for Cl-. Serum bicarbonate appeared almost completely unaffected by the extract, showing no significant changes. Na+ levels were depressed for the two test groups, A and B compared with the control (group C), with test group B showing a significant decrease (p < 0.05). From the analysis, it could be concluded that Sarcocephalus latifolius has the capacity to influence various electrolytes to

  20. The role of fat and alcohol in acute pancreatitis: A dangerous liaison.

    PubMed

    Criddle, David N

    2015-07-01

    Excessive alcohol consumption is a major trigger for severe acute pancreatitis which may lead to multi-organ dysfunction and premature death of the individual. Hyperlipidaemia is a risk factor for both acute and chronic pancreatitis and the role of fatty acids in mediating damage has received increasing attention in recent years. In the pancreas ethanol is metabolised by both oxidative and non-oxidative pathways. The latter, predominant route generates fatty acid ethyl esters (FAEEs) from fatty acid substrates via the action of diverse enzymes called FAEE synthases, including carboxylester lipase an enzyme synthesized and secreted by the acinar cells. Inhibition of the oxidative pathway promotes formation of FAEEs which induce sustained elevations of cytosolic calcium leading to inhibition of mitochondrial function, loss of ATP and necrosis of isolated pancreatic acinar cells. Furthermore, FAEEs undergo hydrolysis in the mitochondria releasing free fatty acids that exert toxic effects. Our recent work has shown that pharmacological inhibition of carboxylester lipase ameliorated detrimental effects of non-oxidative ethanol metabolism in isolated pancreatic acinar cells in vitro and in a new in vivo experimental model of alcoholic acute pancreatitis, revealing a specific enzyme target for ethanol-induced injury. Strategies that prevent FAEE synthesis, protect mitochondria, reduce calcium overload or sustain calcium homeostasis by ATP provision may provide promising therapeutic avenues for the treatment of alcoholic acute pancreatitis. PMID:25845855

  1. Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference

    SciTech Connect

    Sandi, C.; Borrell, J.; Guaza, C. )

    1990-01-01

    Using a paradigm by which rats forced to drink a weak ethanol solution develop ethanol preference in consecutive retention testing days, the effects of the administration of the kappa opioid antagonist MR-2266-BS, prior to or after the forced ethanol session, were studied. Pre-conditioning subcutaneous (s.c.) administration of 1 mg/kg of MR-2266-BS induced a decrease in subsequent ethanol consumption without significantly modifying the acquisition of ethanol preference. Post-conditioning administration of MR-2266-BS induced both a dose-dependent reduction in ethanol consumption and in preference throughout the three following days. The results of the present study provide further support of the involvement of kappa-type opioids on drinking behavior, and suggest that kappa receptors may be involved in the consumption and development of preference to ethanol.

  2. GSK3β in Ethanol Neurotoxicity

    PubMed Central

    2016-01-01

    Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/ threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects. PMID:19507062

  3. Ethanol production from carbon dioxide using cyanobacterial biomass

    SciTech Connect

    Mustaqim, Dani; Ohtaguchi, Kazuhisa

    1996-12-31

    An ethanol production system, which consists of chemical and biochemical reaction processes for (1) biomass production using cyanobacterium Synechococcus leopoliensis through photosynthetic CO{sub 2} fixation, (2) glucose extraction from that biomass, and (3) ethanol fermentation from the extracted glucose using yeast Saccharomyces sake, was conceptually developed. S. sake was grown on the medium containing the cyanobacterial biomass extract and that containing reagent glucose. It was found that the specific rates of cell growth, glucose consumption, ethanol production and the yeast ethanol tolerance were enhanced by the addition of cyanobacterial biomass extract. 4 refs., 5 figs., 1 tab.

  4. Ethanol promotes T cell apoptosis through the mitochondrial pathway

    PubMed Central

    Kapasi, Aditi A; Patel, Geeta; Goenka, Anuj; Nahar, Nilay; Modi, Neeraj; Bhaskaran, Madhu; Reddy, Krishna; Franki, Nicholas; Patel, Jaimita; Singhal, Pravin C

    2003-01-01

    Clinical reports suggest that acute ethanol intoxication is often associated with lymphopenia. Previously, ethanol was reported to invoke thymocyte apoptosis. We studied the effect of ethanol on T cell apoptosis. In addition, we evaluated the molecular mechanism of ethanol-induced T cell apoptosis. Human T cells harvested from healthy subjects after an alcohol drinking binge showed enhanced T cell apoptosis (before, 0·4 ± 0·2% versus after, 19·6 ± 2·5% apoptotic lymphocytes/field; P < 0·001). In in vitro studies, ethanol in a concentration of 50 mm and higher enhanced the apoptosis of Jurkat cells. DNA isolated from ethanol-treated Jurkat cells displayed integer multiples of 180 base pairs. Ethanol decreased Jurkat cell expression of Bcl-2, whereas ethanol increased Jurkat cell expression of Bax. Jurkat cells treated with ethanol also showed translocation of cytochrome C into cytosol. Moreover, a caspase-9 inhibitor partially inhibited ethanol-induced Jurkat cell apoptosis. In in vivo studies, after binge drinking, T cell expression of Bcl-2 also decreased. In addition, binge drinking induced the cleavage of caspase-3, suggesting activation of caspase-3 in T cells. These results suggest that ethanol promotes T cell apoptosis through the activation of intrinsic or mitochondrial pathway. PMID:12603597

  5. Effects of ethanol on red blood cell rheological behavior

    PubMed Central

    Rabai, M.; Detterich, J.A.; Wenby, R.B.; Toth, K.; Meiselman, H.J.

    2016-01-01

    Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol’s effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3 – 30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25% – 2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25% – 6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p<0.05) and higher concentrations only if ethanol was in the LORCA medium; no changes occurred for cells previously incubated with ethanol then tested in ethanol-free medium. The impaired deformability of cells pre-exposed to oxidative stress was improved only if ethanol was in the LORCA medium. RBC aggregation decreased with concentration at 0.25% and higher for cells in both autologous plasma and dextran 70. Our results indicate that ethanol reversibly improves erythrocyte deformability and irreversibly decreases erythrocyte aggregation; the relevance of these results to the health benefits of moderate wine consumption require further investigation. PMID:23089886

  6. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  7. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    PubMed

    Cavaliere, Sonia; Gillespie, John M; Hodge, James J L

    2012-01-01

    In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ) has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50) = 19.8 mM) being more sensitive than its mammalian ortholog (IC(50) = 42.1 mM). This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation. PMID:23209695

  8. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression

    PubMed Central

    Follesa, Paolo; Floris, Gabriele; Asuni, Gino P.; Ibba, Antonio; Tocco, Maria G.; Zicca, Luca; Mercante, Beniamina; Deriu, Franca; Gorini, Giorgio

    2015-01-01

    Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission. PMID:26617492

  9. Inhalation delivery of proteins from ethanol suspensions.

    PubMed

    Choi, W S; Murthy, G G; Edwards, D A; Langer, R; Klibanov, A M

    2001-09-25

    To circumvent inherent problems associated with pulmonary administration of aqueous-solution and dry-powder protein drugs, inhalation delivery of proteins from their suspensions in absolute ethanol was explored both in vitro and in vivo. Protein suspensions in ethanol of up to 9% (wt/vol) were readily aerosolized with a commercial compressor nebulizer. Experiments with enzymic proteins revealed that nebulization caused no detectable loss of catalytic activity; furthermore, enzyme suspensions in anhydrous ethanol retained their full catalytic activity for at least 3 weeks at room temperature. With the use of Zn(2+)-insulin, conditions were elaborated that produced submicron protein particles in ethanol suspensions. The latter (insulin/EtOH) afforded respirable-size aerosol particles after nebulization. A 40-min exposure of laboratory rats to 10 mg/ml insulin/EtOH aerosols resulted in a 2-fold drop in the blood glucose level and a marked rise in the serum insulin level. The bioavailability based on estimated deposited lung dose of insulin delivered by inhalation of ethanol suspension aerosols was 33% (relative to an equivalent s.c. injection), i.e., comparable to those observed in rats after inhalation administration of dry powder and aqueous solutions of insulin. Inhalation of ethanol in a relevant amount/time frame resulted in no detectable acute toxic effects on rat lungs or airways, as reflected by the absence of statistically significant inflammatory or allergic responses, damage to the alveolar/capillary barrier, and lysed and/or damaged cells. PMID:11562495

  10. Ethanol alters estrogen receptor signaling and activates senescence pathways in osteoblasts while estradiol attenuates ethanol effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological and animal studies suggest that chronic alcohol consumption increases the risk of osteoporosis. However, the mechanisms underlying alcohol-induced bone loss are largely unknown. Using bone from chronic ethanol (EtOH) infused cycling female rats and osteoblastic cells in vitro, we hav...

  11. Prenatal ethanol increases ethanol intake throughout adolescence, alters ethanol-mediated aversive learning, and affects μ but not δ or κ opioid receptor mRNA expression.

    PubMed

    Fabio, María Carolina; Macchione, Ana Fabiola; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2015-06-01

    Animal models of prenatal ethanol exposure (PEE) have indicated a facilitatory effect of PEE on adolescent ethanol intake, but few studies have assessed the effects of moderate PEE throughout adolescence. The mechanisms underlying this facilitatory effect remain largely unknown. In the present study, we analysed ethanol intake in male and female Wistar rats with or without PEE (2.0 g/kg, gestational days 17-20) from postnatal days 37 to 62. The results revealed greater ethanol consumption in PEE rats than in controls, which persisted throughout adolescence. By the end of testing, ethanol ingestion in PEE rats was nearly 6.0 g/kg. PEE was associated with insensitivity to ethanol-induced aversion. PEE and control rats were further analysed for levels of μ, δ and κ opioid receptor mRNA in the infralimbic cortex, nucleus accumbens shell, and ventral tegmental area. Similar levels of mRNA were observed across most areas and opioid receptors, but μ receptor mRNA in the ventral tegmental area was significantly increased by PEE. Unlike previous studies that assessed the effects of PEE on ethanol intake close to birth, or in only a few sessions during adolescence, the present study observed a facilitatory effect of PEE that lasted throughout adolescence. PEE was associated with insensitivity to the aversive effect of ethanol, and increased levels of μ opioid receptor transcripts. PEE is a prominent vulnerability factor that probably favors the engagement of adolescents in risky trajectories of ethanol use. PMID:25865037

  12. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita.

    PubMed

    Vutukuru, S S

    2005-12-01

    An attempt has been made in the present investigation to determine the acute toxicity of hexavalent chromium and its toxicological effects on survival, physiological, hematological and biochemical parameters of the widely consumed Indian major carp, Labeo rohita. Short-term acute toxicity tests were performed adopting renewal bioassay technique (USEPA, 1975) over a period of 96 h, using different concentrations of potassium dichromate to the fish and the 96 h LC[50] value was found to be 111.45 mg/l (Cr(+6) as 39.40 mg/l). ANOVA results showed that the normal respiratory activity of the fish was significantly affected and there is a depression in the metabolic rate at the end of 24, 48, 72 and 96 h exposure. The metal also induced significant decrease (p<0.001) in the hematological parameters of the fish like total erythrocyte count, hemoglobin percent and absolute value Mean cell hemoglobin (MCH) both at the end of 24h and 96 h exposure indicating anemia. Appreciable decline in the biochemical profiles such as total glycogen, total lipids and total protein contents of the fish was also observed. However, the decrease in protein content was significant only at the end of 96 h. This study reflects the extent of the toxic effects of hexavalent chromium and the metal induced cumulative deleterious effects at various functional levels in the widely consumed freshwater fish, Labeo rohita. PMID:16819101

  13. Effects of ethanol on cAMP production in murine embryonic palate mesenchymal cells

    SciTech Connect

    Weston, W.M.; Greene, R.M. )

    1991-01-01

    Ethanol affected the ability of murine embryonic palate mesenchymal (MEPM) cells to produce cAMP in response to hormone treatment. Acute exposure to ethanol resulted in an increase in hormone-stimulated cAMP levels, while chronic ethanol treatment led to decreased sensitivity to hormone. Forskolin-stimulated cAMP levels were decreased by both acute and chronic ethanol treatment, while the cells' response to cholera toxin was unchanged by ethanol treatment. The lack of sensitivity of the cholera toxin response to ethanol suggests that,in contrast to what has been observed in other systems, ethanol does not affect the production or activity of G{alpha}s in MEPM cells. These results suggest a possible explanation for the molecular basis for the craniofacial abnormalities observed in the fetal alcohol syndrome.

  14. Acamprosate {monocalcium bis(3-acetamidopropane-1-sulfonate)} reduces ethanol-drinking behavior in rats and glutamate-induced toxicity in ethanol-exposed primary rat cortical neuronal cultures.

    PubMed

    Oka, Michiko; Hirouchi, Masaaki; Tamura, Masaru; Sugahara, Seishi; Oyama, Tatsuya

    2013-10-15

    Acamprosate, the calcium salt of bis(3-acetamidopropane-1-sulfonate), contributes to the maintenance of abstinence in alcohol-dependent patients, but its mechanism of action in the central nervous system is unclear. Here, we report the effect of acamprosate on ethanol-drinking behavior in standard laboratory Wistar rats, including voluntary ethanol consumption and the ethanol-deprivation effect. After forced ethanol consumption arranged by the provision of only one drinking bottle containing 10% ethanol, the rats were given a choice between two drinking bottles, one containing water and the other containing 10% ethanol. In rats selected for high ethanol preference, repeated oral administration of acamprosate diminished voluntary ethanol drinking. After three months of continuous access to two bottles, rats were deprived of ethanol for three days and then presented with two bottles again. After ethanol deprivation, ethanol preference was increased, and the increase was largely abolished by acamprosate. After exposure of primary neuronal cultures of rat cerebral cortex to ethanol for four days, neurotoxicity, as measured by the extracellular leakage of lactate dehydrogenase (LDH), was induced by incubation with glutamate for 1h followed by incubation in the absence of ethanol for 24h. The N-methyl-D-aspartate receptor blocker 5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine, the metabotropic glutamate receptor subtype 5 antagonist 6-methyl-2-(phenylethynyl)pyridine and the voltage-gated calcium-channel blocker nifedipine all inhibited glutamate-induced LDH leakage from ethanol-exposed neurons. Acamprosate inhibited the glutamate-induced LDH leakage from ethanol-exposed neurons more strongly than that from intact neurons. In conclusion, acamprosate showed effective reduction of drinking behavior in rats and protected ethanol-exposed neurons by multiple blocking of glutamate signaling. PMID:24012782

  15. Influence of ethanol on human T-lymphocyte migration

    SciTech Connect

    Kaelin, R.M.; Semerjian, A.; Center, D.M.; Bernardo, J.

    1984-11-01

    Because ethanol consumption is associated with increased susceptibility to infection, an examination was made of the effects of ethanol and its metabolite acetaldehyde on human T-lymphocyte migration, an important functional component of cellular inflammatory responses. With a modified Boyden chamber system, ethanol at 0.25% and 0.50% (vol/vol) inhibited spontaneous motility of human T-lymphocytes, in a noncytotoxic manner, to 65% +/- 7% (mean +/- SEM) and 62% +/- 7% of control values of migration, respectively. When T-lymphocyte migration was stimulated by colchicine (10/sup -5/ mol/L), incubation with ethanol (0.25% and 0.50%, vol/vol) decreased migration to 80% +/- 4% and 66% +/- 8% of control values, respectively. Similar degrees of inhibition of migration were obtained with acetaldehyde at concentrations five to 10 times less than ethanol. Ethanol was similarly capable of inhibiting T cell migration induced by dibutyryl cyclic guanosine monophosphate, but it had no effect on stimulated migration induced by a human chemokinetic lymphokine. The study demonstrates that ethanol, at concentrations achievable in vivo, is capable of depressing T-lymphocyte migration. This effect might contribute to the immunosuppression associated with ethanol consumption. 36 references, 4 figures.

  16. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice

    PubMed Central

    Fritz, Brandon M.; Boehm, Stephen L.

    2014-01-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predis-posed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance. PMID:25454537

  17. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed. PMID:25267448

  18. Ethanol and neuronal metabolism.

    PubMed

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  19. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    SciTech Connect

    Mangmeechai, Aweewan; Pavasant, Prasert

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  20. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  1. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  2. Dissociation of μ-opioid receptor and CRF-R1 antagonist effects on escalated ethanol consumption and mPFC serotonin in C57BL/6J mice.

    PubMed

    Hwa, Lara S; Shimamoto, Akiko; Kayyali, Tala; Norman, Kevin J; Valentino, Rita J; DeBold, Joseph F; Miczek, Klaus A

    2016-01-01

    Both the opioid antagonist naltrexone and corticotropin-releasing factor type-1 receptor (CRF-R1) antagonists have been investigated for the treatment of alcoholism. The current study examines the combination of naltrexone and CP154526 to reduce intermittent access ethanol drinking [intermittent access to alcohol (IAA)] in C57BL/6J male mice, and if these compounds reduce drinking via serotonergic mechanisms in the dorsal raphe nucleus (DRN). Systemic injections and chronic intracerebroventricular infusions of naltrexone, CP154526 or CP376395 transiently decreased IAA drinking. Immunohistochemistry revealed CRF-R1 or μ-opioid receptor immunoreactivity was co-localized in tryptophan hydroxylase (TPH)-immunoreactive neurons as well as non-TPH neurons in the DRN. Mice with a history of IAA or continuous access to alcohol were microinjected with artificial cerebral spinal fluid, naltrexone, CP154526 or the combination into the DRN or the median raphe nucleus (MRN). Either intra-DRN naltrexone or CP154526 reduced IAA in the initial 2 hours of fluid access, but the combination did not additively suppress IAA, suggesting a common mechanism via which these two compounds affect intermittent drinking. These alcohol-reducing effects were localized to the DRN of IAA drinkers, as intra-MRN injections only significantly suppressed water drinking, and continuous access drinkers were not affected by CRF-R1 antagonism. Extracellular serotonin was measured in the medial prefrontal cortex (mPFC) using in vivo microdialysis after intra-DRN microinjections in another group of mice. Intra-DRN CP154526 increased serotonin impulse flow to the mPFC while naltrexone did not. This suggests the mPFC may not be an essential location to intermittent drinking, as evidenced by different effects on serotonin signaling to the forebrain yet similar behavioral findings. PMID:25262980

  3. Characterization of the Ethanol Deprivation Effect in Substrains of C57BL/6 Mice

    PubMed Central

    Khisti, Rahul T.; Wolstenholme, Jennifer; Shelton, Keith L.; Miles, Michael F.

    2007-01-01

    Ethanol craving plays a major role in relapse drinking behavior. Relapse and ethanol craving are an important focus for the treatment of alcoholism. The ethanol deprivation effect (EDE) is a widely used animal model of alcohol craving. While the EDE is widely studied in rats, the molecular mechanisms underlying EDE are not clearly understood. The C57BL/6 inbred mouse strain is widely used for behavioral and molecular analyses of ethanol drinking but studies on the EDE have not been reported in this strain. In the present study, we characterized a simple behavioral protocol that rapidly and reliably induced EDE in C57BL/6 mice. Briefly, single-housed adult male C57BL/6NCrl and C57BL/6J mice were presented at the beginning of dark phase with two-bottle choice drinking containing either 10 % w/v ethanol or tap water for 18-hrs/day, as well as food ad libitum. Following ethanol drinking for 4 days or 14-days, mice were deprived of ethanol for a period of 4 days. To study EDE, mice were reinstated with two-bottles containing either ethanol (10 % w/v) or water. Mice were exposed to single or multiple ethanol deprivation cycles. Ethanol consumption (g/kg/18-hrs) and percent ethanol preference (% preference/18-hrs) was recorded for individual mice. C57BL/6NCrl mice consumed moderate amounts (4.78 ± 0.63 g/kg) of ethanol but showed robust EDE after ethanol drinking episodes (4 days or 14 days) as evidenced by increased ethanol consumption and ethanol preference following re-instatement of ethanol. While repeated ethanol deprivation in C57BL/6NCrl mice transiently increased ethanol consumption and ethanol preference, the magnitude of these behaviors was reduced as compared to the first deprivation cycle. In contrast, the C57BL/6J substrain consumed substantially higher levels (9.65 ± 0.90 g/kg) of ethanol but did not show a clear EDE after single or multiple ethanol deprivation cycles. In conclusion, we established a simple and reliable behavioral model to study EDE in C57

  4. Ethanol immunosuppression in vitro

    SciTech Connect

    Kaplan, D.R.

    1986-03-01

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2 production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.

  5. Chlordiazepoxide effects on ethanol self-administration: dependence on concurrent conditions.

    PubMed Central

    Samson, H H; Grant, K A

    1985-01-01

    Experiments examined the effects of acute doses of chlordiazepoxide upon ethanol self-administration in the rat. A concurrent-schedule procedure was used that employed choice between ethanol (5%) and a second fluid (either water or a 1% sucrose solution). When ethanol and water were the available fluids, chlordiazepoxide at doses of 15 and 20 mg/kg reduced ethanol-reinforced responding and intake, with a greater reduction occurring at the 20 mg/kg dose. However, when ethanol and sucrose were concurrently available, in many rats only the 20 mg/kg dose of chlordiazepoxide reduced ethanol-reinforced responding. The differences in dose response function occurred in most animals without large changes in the baseline ethanol-reinforced responding across the two concurrent conditions. Thus the dose-effect curve relating chlordiazepoxide and ethanol self-administration can be altered, dependent upon the nature of the concurrently available reinforcers. PMID:4020323

  6. Biofuel Food Disasters and Cellulosic Ethanol Problems

    ERIC Educational Resources Information Center

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  7. The effect of interrupted alcohol supply on spontaneous alcohol consumption by rhesus monkeys.

    PubMed

    Kornet, M; Goosen, C; Van Ree, J M

    1990-01-01

    The alcohol supply (a 16% and a 32%, v/v, ethanol-in-water solution) for eight male rhesus monkeys, who already have had free access to water and ethanol solutions concurrently for about one year, was interrupted for 1, 2 or 7 days. The previously acquired ethanol consuming behaviour appeared very resistant to extinction, because ethanol consumption was immediately resumed after renewed access, even at a temporarily increased level. Since physical withdrawal distress was not observed and the increase was higher when interruption lasted longer, the observed behaviour could be attributed to the reinforcing effects of ethanol, leading to specific ethanol-directed behaviour. PMID:2222574

  8. Effects of Acute Caffeinated Coffee Consumption on Energy Utilization Related to Glucose and Lipid Oxidation from Short Submaximal Treadmill Exercise in Sedentary Men

    PubMed Central

    Leelarungrayub, Donrawee; Sallepan, Maliwan; Charoenwattana, Sukanya

    2011-01-01

    Objective: Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. Methods: This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine in blood was evaluated. After drinking coffee for 1 hr, the submaximal exercise test with a modified Bruce protocol was carried out, and the VO2 and RER were analyzed individually at 80% maximal heart rate, then the blood was repeat evaluated. Results: Three groups showed a nonsignificant difference in CBC results and physical characteristics. The caffeine group showed significant changes in all parameters; higher VO2 levels, (P = 0.037) and lower RER (P = 0.047), when compared to the baseline. Furthermore, the glucose level after exercise test increased significantly (P = 0.033) as well as lipid peroxide levels (P = 0.005), whereas antioxidant capacity did not change significantly (P = 0.759), when compared to the before exercise testing. In addition, the blood caffeine level also increased only in the caffeine group (P = 0.008). Conclusion: Short consumption of caffeinated coffee (5 mg/kg of caffeine), improves energy utilization and relates to glucose derivation and lipid oxidation. PMID:23946663

  9. Acute, food-induced moderate elevation of plasma uric acid protects against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans.

    PubMed

    Vukovic, Jonatan; Modun, Darko; Budimir, Danijela; Sutlovic, Davorka; Salamunic, Ilza; Zaja, Ivan; Boban, Mladen

    2009-11-01

    We examined the effects of acute, food-induced moderate increase of plasma uric acid (UA) on arterial stiffness and markers of oxidative damage in plasma in healthy males exposed to 100% normobaric oxygen. Acute elevation of plasma UA was induced by consumption of red wine, combination of ethanol and glycerol, or fructose. By using these beverages we were able to separate the effects of UA, wine polyphenols and ethanol. Water was used as a control beverage. Ten males randomly consumed test beverages in a cross-over design over the period of 4 weeks, one beverage per week. They breathed 100% O(2) between 60(th) and 90(th)min of the 4-h study protocol. Pulse wave augmentation index (AIx) at brachial and radial arteries, plasma antioxidant capacity (AOC), thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOH) assessed by xylenol orange method, UA and blood ethanol concentrations were determined before and 60, 90, 120, 150 and 240 min after beverage consumption. Consumption of the beverages did not affect the AIx, TBARS or LOOH values during 60 min before exposure to hyperoxia, while AOC and plasma UA increased except in the water group. Significant increase of AIx, plasma TBARS and LOOH, which occurred during 30 min of hyperoxia in the water group, was largely prevented in the groups that consumed red wine, glycerol+ethanol or fructose. In contrast to chronic hyperuricemia, generally considered as a risk factor for cardiovascular diseases and metabolic syndrome, acute increase of UA acts protectively against hyperoxia-induced oxidative stress and related increase of arterial stiffness in large peripheral arteries. PMID:19457484

  10. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    PubMed Central

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  11. Involvement of kappa type opioids on ethanol drinking

    SciTech Connect

    Sandi, C.; Borrell, J.; Guaza, C.

    1988-01-01

    The effects of the administration of the kappa agonist dynorphin/sub 1/..sqrt../sub 17/ andor the kappa antagonist MR-2266-BS on ethanol preference was investigated using a paradigm by which rats develop alcohol preference. Administration of dynorphin shortly before or after the conditioning session (forced ethanol exposure) failed to affect later ethanol preference. However, dynorphin treatment prior to the first choice session reduced ethanol preference during the three consecutive testing days. This effect was reversed by the simultaneous administration of the kappa antagonist MR-2266-BS. The results of the present study provide further support for evidence of the involvement of dynorphinergic systems on drinking behavior and suggest that kappa-type opioid mechanisms may be involved in the consumption and development of preference to ethanol in rats. 32 references, 3 figures, 2 tables

  12. Ethanol exposure represses osteogenesis in the developing chick embryo.

    PubMed

    Li, Zhong-Yang; Ma, Zheng-Lai; Lu, Wen-Hui; Cheng, Xin; Chen, Jian-Long; Song, Xiao-Yu; Chuai, Manli; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-07-01

    It is known that excess alcohol consumption during pregnancy can increase the risk of fetal alcohol spectrum disorder (FASD). However, the effect of ethanol exposure on bone morphogenesis in fetus is largely unknown. In this study, we demonstrated that ethanol treatment of gastrulating chick embryos could inhibit long bone (humerus, radius and ulna) development. Histological examination revealed that ethanol exposure reduced the width of the proliferation and hypertrophic zones. In addition, cell proliferation and alkaline phosphatase activities were repressed. We also investigated the effect on chondrogenesis and chondrogenesis was inhibited. Ethanol exposure also induced excess reactive oxygen species (ROS) production and altered the expression of osteogenesis-related genes. The inhibiting effect on flat bone (sclerotic ossicle) and the generation of cranial neural crest cells (progenitors of craniofacial bones) was also presented. In conclusion, ethanol exposure during the embryonic period retards bone development through excess ROS production and altered bone-associated gene expression. PMID:27112526

  13. S6 Kinase Reflects and Regulates Ethanol-Induced Sedation

    PubMed Central

    Acevedo, Summer F.; Peru y Colón de Portugal, Raniero L.; Gonzalez, Dante A.; Rodan, Aylin R.

    2015-01-01

    Alcohol use disorders (AUDs) affect people at great individual and societal cost. Individuals at risk for AUDs are sensitive to alcohol's rewarding effects and/or resistant to its aversive and sedating effects. The molecular basis for these traits is poorly understood. Here, we show that p70 S6 kinase (S6k), acting downstream of the insulin receptor (InR) and the small GTPase Arf6, is a key mediator of ethanol-induced sedation in Drosophila. S6k signaling in the adult nervous system determines flies' sensitivity to sedation. Furthermore, S6k activity, measured via levels of phosphorylation (P-S6k), is a molecular marker for sedation and overall neuronal activity: P-S6k levels are decreased when neurons are silenced, as well as after acute ethanol sedation. Conversely, P-S6k levels rebound upon recovery from sedation and are increased when neuronal activity is enhanced. Reducing neural activity increases sensitivity to ethanol-induced sedation, whereas neuronal activation decreases ethanol sensitivity. These data suggest that ethanol has acute silencing effects on adult neuronal activity, which suppresses InR/Arf6/S6k signaling and results in behavioral sedation. In addition, we show that activity of InR/Arf6/S6k signaling determines flies' behavioral sensitivity to ethanol-induced sedation, highlighting this pathway in acute responses to ethanol. SIGNIFICANCE STATEMENT Genetic factors play a major role in the development of addiction. Identifying these genes and understanding their molecular mechanisms is a necessary first step in the development of targeted therapeutic intervention. Here, we show that signaling from the insulin receptor in Drosophila neurons determines flies' sensitivity to ethanol-induced sedation. We show that this signaling cascade includes the small GTPase Arf6 and S6 kinase (S6k). In addition, activity of S6k is regulated by acute ethanol exposure and by neuronal activity. S6k activity is therefore both an acute target of ethanol exposure and

  14. Ethanol Effects On Physiological Retinoic Acid Levels

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    Summary All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand whether interference with atRA biosynthesis and/or action may explain (in part) pathology associated with excess ethanol consumption. Ethanol affects many aspects of retinoid metabolism and mechanisms of action site-specifically, but no robust data support inhibition of vitamin A metabolism, resulting in decreased atRA in vivo during normal vitamin A nutriture. Actually, ethanol either has no effect on or increases atRA at select sites. Despite this realization, insight into whether interactions between ethanol and retinoids represent cause vs. effect requires additional research. PMID:21766417

  15. Controlled, double-blind, randomized clinical trial to evaluate the impact of fruit juice consumption on the evolution of infants with acute diarrhea

    PubMed Central

    Valois, Sandra; Costa-Ribeiro, Hugo; Mattos, Ângela; Ribeiro, Tereza Cristina; Mendes, Carlos Maurício; Lifshitz, Fima

    2005-01-01

    In order to assess the effects of juice feedings during acute diarrhea a double-blind, randomized study was performed in 90 children, mean age of 10 ± 4.28 months. Thirty patients with acute diarrhea were fed twice-daily 15 ml/kg of Apple Juice (AJ), 30 received White Grape Juice (WGJ), and 30 were given colored and flavored water (WA) as part of their age appropriate dietary intake. The duration and severity of diarrhea were the main endpoint variables of the study performed in a metabolic unit. The patients were similar among the 3 groups, had diarrhea for 50–64 hours prior to admission, and were dehydrated when admitted to the unit for study. Half of the patients in each group were well nourished and the others had mild to moderate degrees of malnutrition. Rotavirus infection was the agent causing the illness in 63% of the patients. The infants fed juice ingested 14–17% more calories than those given WA, (those receiving AJ and WGJ ingested 95 and 98 Calories/Kg/d respectively) whereas those receiving WA consumed 81 cal/kg/d). The increased energy intake was not at the expense of other foods or milk formula. The mean body weight gain was greater among patients receiving WGJ (+ 50.7 gm) as compared with the patients in the AJ group (+ 18.3 gm) or the patients fed WA (- 0.7 gm) (p = 0.08). The duration of the illness was longer in the infants fed juice as compared with those given WA (p = 0.006), the mean +/- SD duration in hours was 49.4 ± 32.6, 47.5 ± 38.9 and 26.5 ± 27.4 in patients fed AJ, WGJ and WA respectively. All patients improved while ingesting juice and none of them developed persistent diarrhea; most recovered within 50 hours of the beginning of treatment and less than one fourth had diarrhea longer than 96 hours in the unit. The fecal losses were also increased among the juice fed patients (p = 0.001); the mean ± SD fecal excretion in g/kg/h was 3.94 ± 2.35, 3.59 ± 2.35, and 2.19 ± 1.63 in AJ, WGJ and WA respectively. The stool output was

  16. Wastewater-based epidemiological evaluation of the effect of air pollution on short-acting beta-agonist consumption for acute asthma treatment.

    PubMed

    Fattore, Elena; Davoli, Enrico; Castiglioni, Sara; Bosetti, Cristina; Re Depaolini, Andrea; Marzona, Irene; Zuccato, Ettore; Fanelli, Roberto

    2016-10-01

    Asthma, one of the most common chronic diseases in the world and a leading cause of hospitalization among children, has been associated with outdoor air pollution. We applied the wastewater-based epidemiology (WBE) approach to study the association between the use of salbutamol, a short-acting beta-agonist used to treat acute bronchospasm, and air pollution in the population of Milan, Italy. Composite 24-h samples of untreated wastewater were collected daily and analyzed for human metabolic residues of salbutamol by liquid chromatography tandem mass spectrometry. Corresponding daily outdoor concentrations of particular matter up to 10µm (PM10) and 2.5µm (PM2.5) in aerodynamic diameter, nitrogen dioxide, ozone, sulfur dioxide, and benzene were collected from the public air monitoring network. Associations at different lag times (0-10 days) were assessed by a log-linear Poisson regression model. We found significant direct associations between defined daily doses (DDD) of salbutamol and mean daily concentrations of PM10 and PM2.5 up to nine days of lag time. The highest rate ratio, and 95% confidence interval (CI), of DDD of salbutamol was 1.06 (95% CI: 1.02-1.10) and 1.07 (95% CI: 1.02-1.12) at seven days of lag time and for an increase of 10 μg/m(3) of PM10 and PM2.5, respectively. Reducing the mean daily PM10 concentration in Milan from 50 to 30μg/m(3) means that 852 (95% CI: 483-1504) daily doses of salbutamol per day would not be used. These results confirm the association between asthma and outdoor PM10 and PM2.5 and prove the potential of the WBE approach to quantitatively estimate the relation between environmental exposures and diseases. PMID:27281687

  17. Chronic ethanol-induced changes in cardiac and neuronal ATP-sensitive potassium channels

    SciTech Connect

    Bangalore, R.; Hawthorn, M.; Triggle, D.J. )

    1992-02-26

    The present study was designed to investigate the effect of chronic ethanol consumption on cardiac and neuronal ATP-sensitive potassium channels. These channels have been shown to be regulated under diseased conditions such as congestive heart failure. Rats were chronically fed with a liquid diet containing ethanol or equicaloric amount of dextrin for the three weeks. This diet induced tolerance to ethanol as assessed by the longer time the ethanol fed rats could stay on a rotorod compared to control rats when challenged with an i.p. injection of ethanol, ATP-sensitive potassium channels were characterized using ({sup 3}H)glibenclamide binding to membrane preparations from heart, olfactory bulb, hippocampus, striatum, cerebellum, cortex, brain stem and spinal cord. Chronic ethanol consumption caused a significant increase in the K{sub D} value in the hippocampus and cerebellum, and a significant decrease in the K{sub D} value in the cortex. The K{sub D} value did not change in other brain areas and heart with chronic ethanol consumption. In contrast, chronic ethanol caused a significant decrease in the B{sub max} value in the heart, and a slight but significant increase in the B{sub max} value in the spinal cord. Chronic ethanol did not affect the B{sub max} value in other brain areas. ATP-sensitive potassium channels are differently regulated by ethanol in cardiac and neuronal preparations.

  18. Identification of quantitative trait loci and candidate genes for an anxiolytic-like response to ethanol in BXD recombinant inbred strains.

    PubMed

    Putman, A H; Wolen, A R; Harenza, J L; Yordanova, R K; Webb, B T; Chesler, E J; Miles, M F

    2016-04-01

    Genetic differences in acute behavioral responses to ethanol contribute to the susceptibility to alcohol use disorder and the reduction of anxiety is a commonly reported motive underlying ethanol consumption among alcoholics. Therefore, we studied the genetic variance in anxiolytic-like responses to ethanol across the BXD recombinant inbred (RI) mouse panel using the light-dark transition model of anxiety. Strain-mean genetic mapping and a mixed-model quantitative trait loci (QTL) analysis replicated several previously published QTL for locomotor activity and identified several novel anxiety-related loci. Significant loci included a chromosome 11 saline anxiety-like QTL (Salanq1) and a chromosome 12 locus (Etanq1) influencing the anxiolytic-like response to ethanol. Etanq1 was successfully validated by studies with BXD advanced intercross strains and fine-mapped to a region comprising less than 3.5 Mb. Through integration of genome-wide mRNA expression profiles of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across the BXD RI panel, we identified high priority candidate genes within Etanq1, the strongest of which was Ninein (Nin), a Gsk3β-interacting protein that is highly expressed in the brain. PMID:26948279

  19. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind. PMID:15768676

  20. Low blood alcohol levels in rats despite chronic alcohol consumption

    SciTech Connect

    Sankaran, H.; Deveney, C.W.; Lin, J.C.; Larkin, E.C.; Rao, G.A. )

    1989-02-09

    Rats fed liquid diets containing 36% or 26% of calories from ethanol consume similar amounts of alcohol each day. After 3 weeks on ethanol diet, the blood alcohol levels (BAL) are high in rats fed the 36% alcohol diet, but low or insignificant in those fed the 26% alcohol diet. Rats in either alcohol diet group consume most of their diet in the night. Hence, the low BAL in 26% ethanol diet-fed rats may not be due to a more rapid diet consumption after feeding and clearance of the bulk of ingested alcohol as compared to the rats fed the 36% alcohol diet. BAL at various times during the day (7 AM, 10 AM, 1 PM, 4 PM, 7 PM and 10 PM) are high in rats fed the 36% ethanol diet. However, BAL in those fed the 26% ethanol diet are low during the corresponding times. It appears that the low BAL produced by the enhanced hepatic metabolism of ethanol is related to the improved nutritional status in rats fed the 26% ethanol diet, compared to those fed 36% ethanol diet, because rats fed the 36% ethanol diet ingest reduced amounts of calories and other nutrients. Extrahepatic effects of chronic alcohol consumption caused by high BAL may be abated by an enhanced daily intake of nutrients by the animal.

  1. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  2. Consumption bomb.

    PubMed

    Harrison, P

    1999-01-01

    This article focuses on the issue of consumption in relation to the growing world population. Over the past 25 years, world population increased by 53%, while world consumption per person increased by only 39%. If consumption continues to grow at 1.4%, the world consumption per person will rise by 100% over the next 50 years with the population increasing by only half that amount. The burden of reducing the environmental impact brought about by this increase lies on technology. Technology needs to deliver major changes in improving resource productivity, and decreasing the amount of waste created. Productivity such as global food production has kept up with demand. Malnutrition persists due to poverty, and not because of the inability of the world to produce enough food. However, the prospects are much worse for resources that are not traded on markets or subject to sustainable management such as groundwater, state forests, ocean fish, and communal waste sinks like rivers, lakes, and the global atmosphere. These resources are not under the direct control of people affected by shortage. People who want to change the way these resources are used or managed have to pass through the legal or political system. Usually, political responses are slow and there has to be a very widespread environmental damage before action is taken. PMID:12295543

  3. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    SciTech Connect

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  4. Effects of exercise and ethanol on liver mitochondrial function

    SciTech Connect

    Ardies, C.M.; Morris, G.S.; Erickson, C.K.; Farrar, R.P.

    1987-03-16

    Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria. 32 references, 2 figures, 1 table.

  5. Tolerance of yeast to ethanol decreased after space flight

    NASA Astrophysics Data System (ADS)

    Xia, B.; Sun, Y.; Yi, Z.; He, J.; Jiang, X.; Fan, Y.; Zhuang, F.

    Background Saccharomyces cerevisiae is an important industry microorganism and the tolerance to ethanol is one of the main characteristics to decide its yield potential USA researchers reported that E coli cells growing in simulated microgravity environment were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks In this research we will investigate the tolerance of yeast to ethanol in real microgravity environment Method S cerevisiae cells were cultured for 18 d in YPD medium containing various concentrations of ethanol 0 6 8 and 10 V V during the China s 22 th recoverable satellite mission Optical density living cells counts metabolism and morphology in each culture were measured S cerevisiae cells were exposed to 20 V V ethanol to investigate the tolerance to ethanol Result The biomass of cells culture at 0 times g is 40 lower than that of the ground control in medium of YPD With the increase of concentration of ethanol in medium the rate of living cells decreased steeply especially in 0 times g culture The living cell of 0 times g is 65 5 lower than the control cells The viability of 0 times g cells and ground control cells exposed to 20 ethanol for 6h is 1 7 and 10 5 respectively No remarkable differences were found in the cell morphology and glucose consumption Conclusion These results suggest that under

  6. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. PMID:26177723

  7. Tolerance and withdrawal in goldfish exposed to ethanol.

    PubMed

    Crawshaw, Larry I; Wallace, Helen L; O'Connor, Candace S; Yoda, Tamae; Crabbe, John C

    2006-03-30

    Acute ethanol exposure decreases regulated body temperature. Tolerance and dependence develop with continued exposure. Removal of ethanol following chronic exposure produces withdrawal. There is little information on the time course for the development of tolerance and disagreement about the presence of a rebound effect on body temperature during withdrawal. For tolerance, we monitored the selected temperature [T(sel)] of goldfish [Carassius auratus] for 8 h while they were exposed to one of three doses of ethanol. During the period from 90 to 150 min post-exposure, T(sel) was: control: 24.1+/-0.07 degrees C; 0.4% ethanol: 21.9+/-0.09 degrees C; 0.8% ethanol: 21.3+/-0.05 degrees C; 1.1% ethanol: 18.4+/-0.10 degrees C. The difference between control and experimental T(sel) decreased by the following amounts for the final 1.5 h in the gradient: 0.4% ethanol: 2.60+/-0.12 degrees C; 0.8% ethanol: 1.58+/-0.09 degrees C; 1.1% ethanol: 4.08+/-0.12 degrees C. At all 3 doses, tolerance proceeded in a stepwise manner rather than continuously. Temperature regulation during withdrawal was evaluated by maintaining the goldfish in 0.8% ethanol for three days and subsequently monitoring T(sel) in an ethanol-free temperature gradient for 36 h. During withdrawal there was no evidence for an effect on T(sel); experimental and control values were nearly identical. PMID:16448677

  8. Dehydrate ethanol without distillation

    SciTech Connect

    Not Available

    1993-10-01

    Usina da Pedra (Serrana, state of Sao Paulo, Brazil) produces 60 million gal/yr of ethanol in 180 operating days. Until this year, the plant made 96 vol.% ethanol that is used as automotive fuel, and absolute ethanol (99.5 vol. %), which is blended with gasoline. Water is the remainder in both products. The ethanol is produced from the fermentation of sugar cane, and distilled with benzene. Benzene lowers the boiling point of the ethanol-water mixture and ties up the water. In May, Usina da Pedra installed a process that dehydrates ethanol by adsorption, not distillation. A vapor-phase process containing molecular sieves, handles throughputs as high as 160,000 acfh and has a maximum capacity of 70 million gal/yr. In addition to generating safer products, the energy savings gained by switching from distillation to adsorption are significant. The adsorptive system requires input of only 2,900 Btu per gallon of ethanol; one-third the energy consumed by distillation systems that employ benzene or cyclohexane.

  9. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  10. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  11. “Jello® Shots” and Cocktails as Ethanol Vehicles: Parametric Studies with High- and Low-Saccharin-Consuming Rats

    PubMed Central

    Dess, Nancy K.; Madkins, Chardonnay D.; Geary, Bree A.; Chapman, Clinton D.

    2013-01-01

    Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose); ethanol concentration (4% or 10%); and feeding status (chow deprived or ad lib.) during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS) or low (LoS) saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed. PMID:24284614

  12. Overfueling a diesel engine with carbureted ethanol. Paper 81-1048

    SciTech Connect

    Goering, C.E.; Wood, D.R.

    1982-03-01

    A carburetor from which the choke and throttle plates had been removed was used to fumigate aqueous ethanol into a naturally aspirated diesel engine. The fumigated ethanol partially reduced diesel fuel consumption but also increased total fuel delivery. Overfuelling increased power output, exhaust temperature and exhaust emissions, but lowered thermal efficiency. (Refs. 8).

  13. The Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  14. An Update on Ethanol Production and Utilization in Thailand

    SciTech Connect

    Bloyd, Cary N.

    2009-10-01

    Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

  15. UNC-18 modulates ethanol sensitivity in Caenorhabditis elegans.

    PubMed

    Graham, Margaret E; Edwards, Mark R; Holden-Dye, Lindy; Morgan, Alan; Burgoyne, Robert D; Barclay, Jeff W

    2009-01-01

    Acute ethanol exposure affects the nervous system as a stimulant at low concentrations and as a depressant at higher concentrations, eventually resulting in motor dysfunction and uncoordination. A recent genetic study of two mouse strains with varying ethanol preference indicated a correlation with a polymorphism (D216N) in the synaptic protein Munc18-1. Munc18-1 functions in exocytosis via a number of discrete interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1. We report that the mutation affects binding to syntaxin but not through either a closed conformation mode of interaction or through binding to the syntaxin N terminus. The D216N mutant instead has a specific impairment in binding the assembled SNARE complex. Furthermore, the mutation broadens the duration of single exocytotic events. Expression of the orthologous mutation (D214N) in the Caenorhabditis elegans UNC-18 null background generated transgenic rescues with phenotypically similar locomotion to worms rescued with the wild-type protein. Strikingly, D214N worms were strongly resistant to both stimulatory and sedative effects of acute ethanol. Analysis of an alternative Munc18-1 mutation (I133V) supported the link between reduced SNARE complex binding and ethanol resistance. We conclude that ethanol acts, at least partially, at the level of vesicle fusion and that its acute effects are ameliorated by point mutations in UNC-18. PMID:18923141

  16. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    SciTech Connect

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-03-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of /sup 3/H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration.

  17. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  18. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  19. Effects of ethanol on the osteogenesis around porous hydroxyapatite implants.

    PubMed

    Lima, C C; Silva, T D; Santos, L; Nakagaki, W R; Loyola, Y C S; Resck, M C C; Camilli, J A; Soares, E A; Garcia, J A D

    2011-02-01

    Alcohol consumption compromises bone tissue, and thus may either impair or stop the fixation and maintenance of osseointegrated implants. To evaluate the effects of 5% and 15% ethanol on bone neoformation around porous hydroxiapatite implants. Fifteen rats were separated into 3 groups of 5 animals each: control (CT); 5% alcohol (A); and 15% alcohol (AA). After four weeks of ethanol consumption, the rats received porous hydroxiapatite implants into surgically made cavities in the femur. After surgery, the animals continued to consume ethanol until day 90 of the experiment, when they were euthanised and their femurs removed for histological processing. Bone tissue was found around the ceramic specimens of all the animals. The largest volume of neoformed bone around ceramic specimens occurred in the CT group, and the smallest in the AA group, followed by the A group. It was concluded that ethanol consumption produced a negative effect on osteogenesis around hydroxyapatite implants. Even small doses, such as the 5% ethanol dilution can interfere with bone repair. PMID:21437407

  20. Effects of caffeine and Bombesin on ethanol and food intake

    SciTech Connect

    Dietze, M.A.; Kulkosky, P.J. )

    1991-01-01

    The methylxanthine caffeine and ethyl alcohol are widely used and powerful psychotropic drugs, but their interactions are not well understood. Bombesin is a brain-gut neuropeptide which is thought to function as a neurochemical factor in the inhibitory control of voluntary alcohol ingestion. We assessed the effects of combinations of intraperitoneal doses of caffeine and bombesin on 5% w/v ethanol solution and food intake in deprived rats. Deprived male and female Wistar rats received access to 5% ethanol or Purina chow for 30 minutes after i.p. injections. In single doses, CAF and BBS significantly decreased both ethanol and food consumption, at 50 mg/kg and 10 {mu}g/kg, respectively. CAF and BBS combinations produced infra-additive, or less-than-expected inhibitory effects on ethanol intake, but simple additive inhibitory effects on food intake. This experimental evidence suggests a reciprocal blocking of effects of CAF and BBS on ethanol intake but not food intake. Caffeine, when interacting and bombesin, increases alcohol consumption beyond expected values. Caffeine could affect the operation of endogenous satisfy signals for alcohol consumption.

  1. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  2. Comparison of ethanol production performance in 10 varieties of sweet potato at different growth stages

    NASA Astrophysics Data System (ADS)

    Jin, Yanling; Fang, Yang; Zhang, Guohua; Zhou, Lingling; Zhao, Hai

    2012-10-01

    The performance in the ethanol production of 10 vari