Science.gov

Sample records for acute ethanol sensitivity

  1. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects of Acute and Chronic Ethanol Treatment

    DTIC Science & Technology

    1987-01-01

    No. 2 C4"ght 0 1967 by "he Amusca Soiety for Pharmacolog and Kxporuont Therpadu" Prud m U.S.A. Actions of Ethanol on Voltage-Sensitive Sodium ...inhibitory effect of ethanol in vitro on sodium benzoate binding to neuronal sodium channels were studi-d in uptake for up to 20 days after withdrawal...adapt rapidly to some sodium uptake in the absence of ethanol in vitro, however, a effects of ethanol and that chronic ethanol administration can

  2. Acute Oral Ethanol Exposure Triggers Asthma In Cockroach Allergen–Sensitized Mice

    PubMed Central

    Bouchard, Jacqueline C.; Kim, Jiyoun; Beal, Dominic R.; Vaickus, Louis J.; Craciun, Florin L.; Remick, Daniel G.

    2013-01-01

    Asthma may be triggered by multiple mediators, including allergen-IgE cross-linking and non-IgE mechanisms. Several clinical studies have shown acute ethanol consumption exacerbates asthma, yet no animal model exists to study this process. We developed a model of ethanol-triggered asthma in allergen-sensitized mice to evaluate the mechanisms of ethanol inducing asthma-like responses. Outbred mice were exposed to cockroach allergens on Days 0 and 14; and on Day 21, mice received ethanol by oral gavage. Tracer studies confirmed alcohol aspiration did not occur. Within 30 minutes, alcohol induced degranulation of over 74% of mast cells, and multiple parameters of asthma-like pulmonary inflammation were triggered. Ethanol-gavaged mice had a fivefold increased production of eotaxin-2 (534 pg/mL) and a sevenfold increase in bronchoalveolar eosinophils (70,080 cells). Ethanol induced a 10-fold increase in IL-13, from 84 pg/mL in sensitized mice to 845 pg/mL in ethanol-gavaged sensitized mice. In cockroach allergen–sensitized mice, ethanol triggered asthma-like changes in respiratory physiology and a significant fivefold increase in airway mucin production. Importantly, none of these asthmatic exacerbations were observed in normal mice gavaged with ethanol. Cromolyn sodium effectively stabilized mast cells, yet increased mucin production and bronchoalveolar eosinophil recruitment. Together, these data show a single oral alcohol exposure will trigger asthma-like pulmonary inflammation in allergen-sensitized mice, providing a novel asthma model. PMID:22796441

  3. Developmental changes in the acute ethanol sensitivity of glutamatergic and GABAergic transmission in the BNST.

    PubMed

    Wills, T A; Kash, T L; Winder, D G

    2013-11-01

    Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.

  4. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  5. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure

    PubMed Central

    Susick, Laura L.; Lowing, Jennifer L.; Bosse, Kelly E.; Hildebrandt, Clara C.; Chrumka, Alexandria C.; Conti, Alana C.

    2014-01-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  6. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric M; Spear, Linda P

    2015-04-01

    In human adolescents, sociable males frequently drink to enhance positive emotional states, whereas anxious females often drink to avoid negative affective states. This study used a rat model of adolescence to provide information regarding possible sex differences in contributors to social drinking. The effects of ethanol (0, 0.5, and 0.75g/kg) on play fighting and social preference were assessed on P30, P32, and P34 using a within-subject design. Then animals were tested in a social drinking paradigm (P37-P40), with this testing revealing high drinkers and low drinkers. Sex differences in sensitivity to ethanol emerged among high and low drinkers. High socially drinking males, but not females, when tested prior to drinking sessions, showed significant increases in play fighting at both doses. In low drinking males, play fighting was increased by 0.5g/kg ethanol, whereas the higher dose of 0.75g/kg produced significant decreases in play fighting. High drinking females initially showed low levels of social preference than high drinking males and low drinking females and were extremely sensitive to ethanol-induced enhancement of this social measure. Low social drinkers, both males and females, were more sensitive to the suppressing effects of ethanol on social preference following 0.75g/kg ethanol. These findings indicate that during adolescence enhanced sensitivity to the facilitating effects of ethanol on play fighting is associated with heavy drinking among males, whereas low social preference together with high sensitivity to ethanol-induced enhancement of social preference is related to high social drinking in females.

  7. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence

    PubMed Central

    Varlinskaya, Elena I.; Truxell, Eric M.; Spear, Linda P.

    2015-01-01

    In human adolescents, sociable males frequently drink to enhance positive emotional states, whereas anxious females often drink to avoid negative affective states. This study used a rat model of adolescence to provide information regarding possible sex differences in contributors to social drinking. The effects of ethanol (0, 0.5, and 0.75 g/kg) on play fighting and social preference were assessed on P30, P32, and P34 using a within-subject design. Then animals were tested in a social drinking paradigm (P37-P40), with this testing revealing high drinkers and low drinkers. Sex differences in sensitivity to ethanol emerged among high and low drinkers. High socially drinking males, but not females, when tested prior to drinking sessions, showed significant increases in play fighting at both doses. In low drinking males, play fighting was increased by 0.5 g/kg ethanol, whereas the higher dose of 0.75 g/kg produced significant decreases in play fighting. High drinking females initially showed low levels of social preference than high drinking males and low drinking females and were extremely sensitive to ethanol-induced enhancement of this social measure. Low social drinkers, both males and females, were more sensitive to the suppressing effects of ethanol on social preference following 0.75 g/kg ethanol. These findings indicate that during adolescence enhanced sensitivity to the facilitating effects of ethanol on play fighting is associated with heavy drinking among males, whereas low social preference together with high sensitivity to ethanol-induced enhancement of social preference is related to high social drinking in females. PMID:25557799

  8. Short-term selection for acute ethanol tolerance and sensitization from an F2 population derived from the high and low alcohol-sensitive selectively bred rat lines.

    PubMed

    Radcliffe, Richard A; Bludeau, Pequita; Deng, Xin-Sheng; Erwin, V Gene; Deitrich, Richard A

    2007-12-01

    Previous studies have identified quantitative trait loci (QTL) in the inbred high and low alcohol-sensitive rat (IHAS1 and ILAS1) strains. The original development of the strains involved selection for ethanol sensitivity based on duration of the loss of the righting reflex (LORR) after a standard dose of ethanol. This paper confirms some of these QTL using a short-term selection procedure based on the difference between the blood ethanol level at LORR and regain of the righting response. An F(2) population of rats was developed by a reciprocal cross of IHAS1 and ILAS1 rats. Selection for five generations was carried out using delta-blood ethanol concentration (dBEC) as the selection trait, where dBEC=BECLR (BEC at loss of righting reflex)-BECRR (BEC at regain of righting reflex). The lines were labeled tolerant (TOL) or sensitive (SENS). Approximately one-third of the offspring for each generation in each line were genotyped using DNA markers that had been previously found to be linked to QTL on chromosomes 1, 2, 5, 12, and 13. By the fifth generation of selection, the lines showed a very large difference in dBEC, BECRR, and duration of LORR; BECLR showed little segregation during the selection, and latency to lose the righting reflex showed none. IHAS allele frequency increased in the SENS line for markers on chromosomes 1, 5, 12, and 13 while ILAS allele frequency increased in the TOL line. These results were in good agreement with the two previous QTL studies. On chromosome 2, the selection resulted in an accumulation of ILAS alleles in both lines. This study provides independent confirmation of the location of QTL on chromosomes 1, 5, 12, and 13 for ethanol sensitivity. It also suggests that genetic differences in duration of LORR are mediated primarily by the dBEC phenotype.

  9. Gender differences in ethanol-induced behavioral sensitivity in zebrafish.

    PubMed

    Dlugos, Cynthia A; Brown, Shereene J; Rabin, Richard A

    2011-02-01

    Gender-related differential sensitivity to ethanol has long been recognized. Our previous studies have demonstrated that the zebrafish, an animal model used currently to study genetics and development related to a variety of human diseases, is also sensitive to pharmacologically relevant concentrations of ethanol. Sensitivity to ethanol in the zebrafish can be easily gauged with a simple nonintrusive behavioral test that measures ethanol-related alterations in schooling by determining the distance between each fish and its nearest neighbor. The purpose of this study was to determine the influence of gender on the strain-specific ethanol sensitivity that we had observed previously. One hundred and sixty zebrafish of the wild-type (WT) and the long fin striped (LFS) strains were equally divided by gender for use in this study. For acute ethanol treatment, the fish were separated by gender and strain and exposed to 0.0, 0.125, 0.25 0.50, or 1.0% (vol/vol) ethanol. In the chronic study, eight fish of each strain and gender were exposed to 0.5% (vol/vol) ethanol for a period of 10 weeks and the swimming behavior tested before treatment and after each week of treatment. Results showed that female WT zebrafish displayed enhanced sensitivity to the effects of chronic ethanol exposure of increased nearest neighbor distances, whereas male and female LFS fish were not significantly affected by chronic ethanol exposure. Results of the acute ethanol study showed a dose-dependent effect in both strains and a gender effect that needs to be further investigated before enhanced female sensitivity to acute ethanol can be verified.

  10. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  11. Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats.

    PubMed

    Chin, Vivien S; Van Skike, Candice E; Berry, Raymond B; Kirk, Roger E; Diaz-Granados, Jamie; Matthews, Douglas B

    2011-08-01

    The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.

  12. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    PubMed Central

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity. PMID:28386220

  13. Ethanol sensitivity of rice and oat coleoptiles.

    PubMed

    Kato-Noguchi, Hisashi

    2002-05-01

    The ability to avoid the ethanol-induced injury was evaluated in rice (Oryza sativa L.) and oat (Avena sativa L.) coleoptiles. The growth of the rice and oat coleoptiles was inhibited by ethanol exogenously applied at concentrations greater than 200 and 30 mM, respectively. At 300 mM ethanol, oat coleoptiles were brown and flaccid but rice coleoptiles did not show any visible symptoms of toxicity. The acetaldehyde level in rice and oat coleoptiles was increased by exogenously applied ethanol and the increases were greater in oat than in rice coleoptiles under aerobic and anaerobic conditions. At 300 mM ethanol, the acetaldehyde concentrations in the rice and oat coleoptiles were 46 and 87 nmol g-1 FW under aerobic conditions, respectively, and 52 and 124 nmol g-1 FW under anaerobic conditions, respectively. The activity of alcohol dehydrogenase (ADH; EC 1.1.1.1) in the direction of ethanol to acetaldehyde was greater in oat than in rice coleoptiles and ADH protein in oat coleoptiles was more induced by exogenously applied ethanol than that in rice coleoptiles. These results suggest that in vivo conversion rate of ethanol to acetaldehyde by ADH is lower in rice than oat coleoptiles, which may be one of the reasons that ethanol sensitivity of rice is much lower than that of oat coleoptiles. The great ability of rice to avoid the ethanol-induced injuries may contribute its anoxia tolerance when glycolysis and ethanolic fermentation replace the Krebs cycle as the main source of energy under anaerobic conditions.

  14. Regulation of adenosine transport by acute and chronic ethanol exposure

    SciTech Connect

    Nagy, L.E.; Casso, D.; Diamond, I.; Gordon, A.S. )

    1989-02-09

    Chronic exposure to ethanol results in a desensitization of adenosine receptor-stimulated cAMP production. Since adenosine is released by cells and is known to desensitize its own as well as other receptors, it may be involved in ethanol-induced desensitization of adenosine receptor function. Therefore, we have examine the acute and chronic effects of ethanol on the transport of adenosine via the nucleoside transport. Acute exposure to ethanol caused an inhibition of adenosine uptake in S49 lymphoma cells. This decrease in uptake resulted in accumulation of extracellular adenosine after ethanol exposure. The effect of ethanol was specific to nucleoside transport. Uptake of uridine, also transported by the nucleoside transporter, was inhibited by ethanol to the same degree as adenosine uptake, while neither isoleucine nor deoxyglucose uptake was altered by ethanol treatment. Inhibition of adenosine uptake by ethanol was non-competitive and dependent on the concentration of ethanol. After chronic exposure to ethanol, cells became tolerant to the acute effects of ethanol. There was no longer an acute inhibition of adenosine uptake, nor was these accumulation of extracellular adenosine. Chronic ethanol exposure also resulted in a decrease in the absolute rate of adenosine uptake. Binding studies using a high affinity lignad for the nucleoside transporter, nitrobenzylthioinosine (NBMPR), indicate that this decreased uptake was due to a decrease in the maximal number of binding sites. These ethanol-induced changes in adenosine transport may be important for the acute and chronic effects of ethanol.

  15. Chronic tolerance to ethanol-induced sedation: implication for age-related differences in locomotor sensitization.

    PubMed

    Quoilin, Caroline; Didone, Vincent; Tirelli, Ezio; Quertemont, Etienne

    2013-06-01

    The adolescent brain has been suggested to be particularly sensitive to ethanol-induced neuroadaptations, which in turn could increase the risk of youths for alcohol abuse and dependence. Sensitization to the locomotor stimulant effects of ethanol has often been used as an animal model of ethanol-induced neuroadaptations. Previously, we showed that young mice were more sensitive than adults to the locomotor sensitization induced by high ethanol doses. However, this effect could be due to age-related differences in chronic tolerance to the sedative effects of ethanol. The aim of the present study is to assess chronic tolerance to the sedative effects of ethanol in weaning 21-day-old (P21), adolescent 35-day-old (P35) and adult 63-day-old (P63) female Swiss mice. After a daily injection of saline or 4 g/kg ethanol during 6 consecutive days, all P21, P35 and P63 mice were injected with 4 g/kg ethanol and submitted to the loss of righting reflex procedure. Our results confirm that the sensitivity to the acute sedative effects of ethanol gradually increases with age. Although this schedule of ethanol injections induces significant age-related differences in ethanol sensitization, it did not reveal significant differences between P21, P35 and P63 mice in the development of a chronic ethanol tolerance to its sedative effects. The present results show that age-related differences in the development of ethanol sensitization cannot be explained by differences in chronic ethanol tolerance to its sedative effects. More broadly, they do not support the idea that ethanol-induced sensitization is a by-product of chronic ethanol tolerance.

  16. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  17. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee

    PubMed Central

    Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L

    2008-01-01

    Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103

  18. Acute ethanol exposure affects spermatogonial stem cell homeostasis in pre-pubertal mice.

    PubMed

    Caires, Kyle C; Shima, Christina M; de Avila, Jeanene; McLean, Derek J

    2012-01-01

    Ethanol is a known modulator of neural stem cell development, but the consequences of ethanol toxicity on the cell fate decisions of spermatogonial stem cells (SSCs) is poorly understood. Using an in vivo treatment and stem cell transplantation approach, we investigated the effects of acute ethanol exposure on formation of the growing adult SSC population in neonatal and pre-pubertal mice. Treatment with a single dose of ethanol disrupted SSC homeostasis in vivo evidenced by a significant reduction (7-fold) of stem cell colonization efficiency in the testes of recipient mice following transplantation. Ethanol treatment also increased the rate of apoptosis in adult differentiating germ cells in situ. Gene expression analysis indicates that ethanol exposure has transient and long-term effects on the expression of GDNF and VEGF family molecules and supports the hypothesis that the niche microenvironment for SSCs is sensitive to ethanol toxicity during pre-pubertaland adult life.

  19. Acute ethanol suppresses glutamatergic neurotransmission through endocannabinoids in hippocampal neurons.

    PubMed

    Basavarajappa, Balapal S; Ninan, Ipe; Arancio, Ottavio

    2008-11-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.

  20. Ethanol intake and motor sensitization: the role of brain catalase activity in mice with different genotypes.

    PubMed

    Correa, M; Sanchis-Segura, C; Pastor, R; Aragon, C M G

    2004-09-15

    The C57BL/6J strain of inbred mice shows a characteristic pattern of ethanol-induced behaviors: very weak acute locomotor stimulation, a lack of locomotor-sensitizing effect of ethanol, and a high level of ethanol intake. This strain has relatively low levels of activity of the ethanol metabolizing enzyme catalase, and it has been proposed that brain catalase plays a role in the modulation of some behavioral effects of ethanol. In the first study of the present paper, we investigated the effects of pharmacological manipulations of brain catalase activity on C57BL/6J mice in acute ethanol-induced locomotion and ethanol intake. Results indicated that the reduction in motor activity produced by ethanol was reversed by pretreatment with catalase potentiators and it was enhanced by catalase inhibitors. In addition, ethanol intake was highly correlated with brain catalase activity in mice treated with a catalase potentiator. In the second study, F1 hybrid mice (SWXB6) from the outbred Swiss-Webster mice and the inbred C57BL/6J mice were used. Basal brain catalase activity levels of F1 mice were intermediate between to those of the two progenitor genotypes. That profile of catalase activity was parallel to the acute-ethanol-induced locomotion and to repeated-ethanol-induced motor sensitization effects observed across the three types of mice. These data suggest that brain catalase activity modifications in the C57BL/6J strain change the pattern of several ethanol-related behaviors in this inbred mouse.

  1. Correlation between ethanol behavioral sensitization and midbrain dopamine neuron reactivity to ethanol.

    PubMed

    Didone, Vincent; Masson, Sébastien; Quoilin, Caroline; Seutin, Vincent; Quertemont, Etienne

    2016-03-01

    Repeated ethanol injections lead to a sensitization of its stimulant effects in mice. Some recent results argue against a role for ventral tegmental area (VTA) dopamine neurons in ethanol behavioral sensitization. The aim of the present study was to test whether in vivo ethanol locomotor sensitization correlates with changes in either basal- or ethanol-evoked firing rates of dopamine neurons in vitro. Female Swiss mice were daily injected with 2.5 g/kg ethanol (or saline in the control group) for 7 days and their locomotor activity was recorded. At the end of the sensitization procedure, extracellular recordings were made from dopaminergic neurons in midbrain slices from these mice. Significantly higher spontaneous basal firing rates of dopamine neurons were recorded in ethanol-sensitized mice relative to control mice, but without correlations with the behavioral effects. The superfusion of sulpiride, a dopamine D2 antagonist, induced a stronger increase of dopamine neuron firing rates in ethanol-sensitized mice. This shows that the D2 feedback in dopamine neurons is preserved after chronic ethanol administration and argues against a reduced D2 feedback as an explanation for the increased dopamine neuron basal firing rates in ethanol-sensitized mice. Finally, ethanol superfusion (10-100 mM) significantly increased the firing rates of dopamine neurons and this effect was of higher magnitude in ethanol-sensitized mice. Furthermore, there were significant correlations between such a sensitization of dopamine neuron activity and ethanol behavioral sensitization. These results support the hypothesis that changes in brain dopamine neuron activity contribute to the behavioral sensitization of the stimulant effects of ethanol.

  2. On the sensitivity of intact cells to perturbation by ethanol

    SciTech Connect

    Hitzemann, R.; Whitaker-Azmitia, P. ); Dains, K.; Lin, J. )

    1989-01-01

    A comparison was made of ethanol's effects on the order of plasma membranes in intact cells and some isolated membrane preparations. Order was assessed by steady-state fluorescence polarization techniques using the non-permeant probe, TMA-DPH. The data show that two cultured cells, rat neonatal astroglial and N2A neuroblastoma, were sensitive to significant ethanol-induced disordering within the anesthetically relevant range. Human erythrocytes, cultured fibroblasts and homogenized astroglial cells required higher ethanol concentrations to produce a similar effect. Intact erythrocytes were approximately twice as sensitive as erythrocyte ghost membranes to ethanol induced perturbation. The neonatal glial and N2A cells were approximately five times more sensitive than synaptic membranes to ethanol effects. DMPC and DMPC + cholesterol liposomes and myelin membranes were insensitive to ethanol's effects. The incorporation of 10 mole % ganglioside GM{sub 1} sensitized the liposomes to ethanol-induced perturbation.

  3. Experimental traumatic brain injury alters ethanol consumption and sensitivity.

    PubMed

    Lowing, Jennifer L; Susick, Laura L; Caruso, James P; Provenzano, Anthony M; Raghupathi, Ramesh; Conti, Alana C

    2014-10-15

    Altered alcohol consumption patterns after traumatic brain injury (TBI) can lead to significant impairments in TBI recovery. Few preclinical models have been used to examine alcohol use across distinct phases of the post-injury period, leaving mechanistic questions unanswered. To address this, the aim of this study was to describe the histological and behavioral outcomes of a noncontusive closed-head TBI in the mouse, after which sensitivity to and consumption of alcohol were quantified, in addition to dopaminergic signaling markers. We hypothesized that TBI would alter alcohol consumption patterns and related signal transduction pathways that were congruent to clinical observations. After midline impact to the skull, latency to right after injury, motor deficits, traumatic axonal injury, and reactive astrogliosis were evaluated in C57BL/6J mice. Amyloid precursor protein (APP) accumulation was observed in white matter tracts at 6, 24, and 72 h post-TBI. Increased intensity of glial fibrillary acidic protein (GFAP) immunoreactivity was observed by 24 h, primarily under the impact site and in the nucleus accumbens, a striatal subregion, as early as 72 h, persisting to 7 days, after TBI. At 14 days post-TBI, when mice were tested for ethanol sensitivity after acute high-dose ethanol (4 g/kg, intraperitoneally), brain-injured mice exhibited increased sedation time compared with uninjured mice, which was accompanied by deficits in striatal dopamine- and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32) phosphorylation. At 17 days post-TBI, ethanol intake was assessed using the Drinking-in-the-Dark paradigm. Intake across 7 days of consumption was significantly reduced in TBI mice compared with sham controls, paralleling the reduction in alcohol consumption observed clinically in the initial post-injury period. These data demonstrate that TBI increases sensitivity to ethanol-induced sedation and affects downstream signaling mediators of striatal

  4. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries

    PubMed Central

    Simplicio, Janaina A.; Hipólito, Ulisses Vilela; do Vale, Gabriel Tavares; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R.

    2016-01-01

    Background The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. PMID:27812679

  5. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure

    PubMed Central

    Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.

    2014-01-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150

  6. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure.

    PubMed

    Gigante, Eduardo D; Santerre, Jessica L; Carter, Jenna M; Werner, David F

    2014-08-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults.

  7. Repeated restraint stress alters sensitivity to the social consequences of ethanol differentially in early and late adolescent rats.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric M; Spear, Linda P

    2013-11-15

    In rats, considerable differences in the social consequences of acute ethanol are seen across ontogeny, with adolescents being more sensitive to low dose ethanol-induced social facilitation and less sensitive to the social inhibition evident at higher ethanol doses relative to adults. Stressor exposure induces social anxiety-like behavior, indexed via decreases in social preference, and alters responsiveness to the social consequences of acute ethanol by enhancing ethanol-associated social facilitation and anxiolysis regardless of age. Given that substantial ontogenetic differences in the social consequences of ethanol are evident even within the adolescent period, the present study was designed to investigate whether similar stress-associated alterations in social behavior and ethanol responsiveness are evident in early and late adolescents. Juvenile-early adolescent [postnatal days (P) 24-28] and mid-late adolescent (P38-42) male and female Sprague-Dawley rats were repeatedly restrained (90 min/day) for 5 days, followed by examination of ethanol-induced (0, 0.25, 0.5, or 1.0 g/kg) alterations in social behaviors on the last day. Responsiveness to restraint stress in terms of both stress-induced behavioral alterations and stress-associated changes in sensitivity to the social consequences of acute ethanol challenge differed drastically at the two ages. Repeated restraint increased anxiety-like behavior in a social context in older adolescents, whereas previously stressed young adolescent males showed substantial increases in play fighting - an effect of stress not evident in P28 females or P42 adolescents of either sex. Unexpectedly, repeated restraint eliminated sensitivity to ethanol-induced social facilitation in P28 adolescent males and made their female counterparts less sensitive to this effect. In contrast, previously stressed late adolescents became sensitive to the socially facilitating and anxiolytic effects of acute ethanol.

  8. Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release.

    PubMed

    Olive, M Foster; Nannini, Michelle A; Ou, Christine J; Koenig, Heather N; Hodge, Clyde W

    2002-02-15

    The purpose of the present study was to determine the acute effects of the anticraving compound acamprosate (calcium acetylhomotaurinate) and the closely related compound homotaurine on ethanol intake and ethanol-stimulated dopamine release in the nucleus accumbens. Male rats were treated with acamprosate (200 or 400 mg/kg intraperitoneally, i.p.) or homotaurine (10, 50, or 100 mg/kg i.p.) 15 min prior to access to 10% ethanol and water for 1 h in a two-bottle choice restricted access paradigm. A separate group of rats was implanted with microdialysis probes in the nucleus accumbens and given an acute injection of ethanol (1.5 g/kg i.p.) that was preceded by saline, acamprosate, or homotaurine. Acamprosate and homotaurine dose-dependently reduced ethanol intake and preference. These compounds also delayed or suppressed ethanol-stimulated increases in nucleus accumbens dopamine release, suggesting that acamprosate and homotaurine may reduce ethanol intake by interfering with the ability of ethanol to activate the mesolimbic dopamine reward system.

  9. Soymilk products affect ethanol absorption and metabolism in rats during acute and chronic ethanol intake.

    PubMed

    Kano, M; Ishikawa, F; Matsubara, S; Kikuchi-Hayakawa, H; Shimakawa, Y

    2002-02-01

    In this study we evaluated the effects of soy products on ethanol metabolism during periods of acute and chronic consumption in rats. Gastric ethanol content and blood ethanol and acetaldehyde concentrations were investigated after the oral administration of ethanol (34 mmol/kg) plus soy products such as soymilk (SM) or fermented soymilk (FSM). The gastric ethanol concentration of the FSM group was greater than that of the control group, whereas portal and aortal blood ethanol concentrations of the FSM group were lower than in controls. The aortal acetaldehyde concentration in the FSM group was lower than that of the control group. The direct effect of isoflavones on liver function was investigated by using hepatocytes isolated from untreated rats. Genistein (5 micromol/L) decreased ethanol (P = 0.045) and tended to decrease acetaldehyde (P = 0.10) concentrations in the culture filtrate. Some variables of ethanol metabolism in the liver were investigated after chronic ethanol exposure for 25 d. Rats consumed a 5% ethanol fluid plus the SM diet, the FSM diet or a control diet. Microsomal ethanol oxidizing activity was significantly lower in the FSM group than the control group. Furthermore, cytosolic glutathione S-transferase activity was higher in the SM and FSM groups than in the control group. Acetaldehyde dehydrogenase activity (low K(m)) in the FSM group (P = 0.15), but not in the SM group (P = 0.31), tended to be greater than in the control group. The amount of thiobarbituric acid reacting substances in the liver of the SM and FSM groups tended to be less than that of the control group (P = 0.18 and 0.10, respectively). These results demonstrate that soymilk products inhibit ethanol absorption and enhance ethanol metabolism in rats.

  10. Tolerance to ethanol-induced impairment of water escape in rats bred for ethanol sensitivity.

    PubMed

    Bass, M B; Lester, D

    1980-01-01

    Rats selectively bred for ethanol (EtOH)- induced reductions in locomotor activity ("least affected" = MA) showed a reversed order of senstivity (i.e., LA more sensitive) to EtOH-induced (1.75 g/kg, IP) impairment of swimming. Thirty days of daily EtOH intubation began the next day, starting at 3.5 g/kg for 4 days, and increasing by 0.5 g/kg after 4 days at each dose, until 6.0 and 6.5 g/kg were given for 5 days each. Subjects were retested on the swim task (1.75 g/kg, IP) following 10, 20, and 30 days of chronic EtOH, and at 10, 20, and 30 days after cessation of EtOH treatment. Rats of each line and sex showed progressively decreasing peak impairment during the chronic treatment period; impairment increased toward initial levels during the post-treatment period. LA rats were more impaired than MA rats prior to, throughout, and subsequent to the chronic treatment period; a significant positive correlation between initial impairment and impairment after 30 days of chronic EtOH was found. No line differences in rates of tolerance acquisition or loss, or in final levels of tolerance as indicated by post-treatment impairment relative to initial impairment were observed. The similarity of the dynamics of EtOH tolerance in rats selectively bred for sensitivity to its acute effects suggests independent genetic influences upon initial ethanol sensitivity as opposed to acquired ethanal tolerance.

  11. Ethanol Increases Mechanical Pain Sensitivity in Rats via Activation of GABAA Receptors in Medial Prefrontal Cortex.

    PubMed

    Geng, Kai-Wen; He, Ting; Wang, Rui-Rui; Li, Chun-Li; Luo, Wen-Jun; Wu, Fang-Fang; Wang, Yan; Li, Zhen; Lu, Yun-Fei; Guan, Su-Min; Chen, Jun

    2016-10-01

    Ethanol is widely known for its ability to cause dramatic changes in emotion, social cognition, and behavior following systemic administration in humans. Human neuroimaging studies suggest that alcohol dependence and chronic pain may share common mechanisms through amygdala-medial prefrontal cortex (mPFC) interactions. However, whether acute administration of ethanol in the mPFC can modulate pain perception is unknown. Here we showed that bilateral microinjections of ethanol into the prelimbic and infralimbic areas of the mPFC lowered the bilateral mechanical pain threshold for 48 h without influencing thermal pain sensitivity in adult rats. However, bilateral microinjections of artificial cerebrospinal fluid into the mPFC or bilateral microinjections of ethanol into the dorsolateral PFC (also termed as motor cortex area 1 in Paxinos and Watson's atlas of The Rat Brain. Elsevier Academic Press, Amsterdam, 2005) failed to do so, suggesting regional selectivity of the effects of ethanol. Moreover, bilateral microinjections of ethanol did not change the expression of either pro-apoptotic (caspase-3 and Bax) or anti-apoptotic (Bcl-2) proteins, suggesting that the dose was safe and validating the method used in the current study. To determine whether γ-aminobutyric acid A (GABAA) receptors are involved in mediating the ethanol effects, muscimol, a selective GABAA receptor agonist, or bicuculline, a selective GABAA receptor antagonist, was administered alone or co-administered with ethanol through the same route into the bilateral mPFC. The results showed that muscimol mimicked the effects of ethanol while bicuculline completely reversed the effects of ethanol and muscimol. In conclusion, ethanol increases mechanical pain sensitivity through activation of GABAA receptors in the mPFC of rats.

  12. Actions of Acute and Chronic Ethanol on Presynaptic Terminals

    PubMed Central

    Roberto, Marisa; Treistman, Steven N.; Pietrzykowski, Andrzej Z.; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A.; Hendricson, Adam H.; Morrisett, Richard; Siggins, George Robert

    2014-01-01

    This article presents the proceedings of a symposium entitled “The Tipsy Terminal: Presynaptic Effects of Ethanol” (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a “hot” topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol’s behavioral actions. Such studies could lead to new treatment strategies for alcohol

  13. Evaluation of acute effects of melatonin on ethanol drinking in ethanol naïve rats

    PubMed Central

    Rather, Zahoor Ahmad; Chowta, Mukta N.; Bolumbu, Ganaraja; Rakesh, K. B.

    2015-01-01

    Objective: The objective was to evaluate the acute effect of melatonin on ethanol drinking in ethanol naïve rats and to determine the specificity of the effect of melatonin on ethanol intake as compared to an intake of plain tap water or sugar water. Materials and Methods: A total of three experiments (2 weeks duration each) using different drinking solutions (ethanol, plain tap water, sugar water) was conducted in individually housed male wistar rats of 5 weeks age. Each animal had access to bottles containing drinking solutions for 2 h a day. In each experiment, on day 1, day 2, day 4, day 5, day 8, day 9, day 11, day 12 rats received drinking solutions. Each individual rat received single doses of saline, melatonin (50 mg and 100 mg/kg), and naltrexone on day 2, 5, 9, and 12, 1-h before receiving drinking solution. The order of drug administration is permuted such a way that each animal received the drugs in a different order in different experiments. Results: Melatonin has significantly decreased ethanol consumption by the rats and effect is dose-dependent. Naltrexone also has caused a significant reduction in the ethanol consumption. The maximum reduction in ethanol consumption was seen with melatonin 100 mg/kg dose compared to melatonin 50 mg/kg and naltrexone. There was no statistically significant effect of melatonin on plain water and sugar solution intake. Conclusions: Melatonin decreases ethanol consumption in ethanol naïve rats. The effect of melatonin is similar to naltrexone affecting selectively ethanol consumption, but not plain water and sugar water consumption. PMID:26288469

  14. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  15. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  16. Congenital brain serotonin deficiency leads to reduced ethanol sensitivity and increased ethanol consumption in mice.

    PubMed

    Sachs, Benjamin D; Salahi, A Ayten; Caron, Marc G

    2014-02-01

    Serotonergic dysfunction has been hypothesized to play an important role in the pathophysiology of alcoholism. However, whether congenital serotonin (5-HT) deficiency leads to increased alcohol consumption or affects ethanol-related behaviors has not been established. Here, we use a transgenic mouse line that expresses a hypofunctional variant of the 5-HT synthesis enzyme, tryptophan hydroxylase 2, to examine the impact of 5-HT deficiency on responses to alcohol. We demonstrate that these 5-HT-deficient transgenic animals (Tph2KI mice) recover their righting reflex more rapidly than wild-type controls following a high dose of ethanol and exhibit blunted locomotor retardation in response to repeated ethanol administration. In addition, compared to WT controls, 5-HT-deficient animals consume significantly more ethanol and exhibit increased preference for ethanol in two-bottle choice tests. Our data also suggest that 5-HT plays a critical role in mediating the effects of ethanol on Akt/GSK3β signaling in the nucleus accumbens. Overall, our results corroborate previous theories regarding the importance of brain 5-HT levels in mediating responsiveness to alcohol and demonstrate, for the first time, that congenital 5-HT deficiency leads to increased ethanol consumption and decreased sensitivity to the sedative-like effects of ethanol, perhaps in part through modulating Akt/GSK3β signaling.

  17. Effect of acute ethanol ingestion on fat absorption.

    PubMed

    Boquillon, M

    1976-12-01

    A test meal (300 mg casein, 600 mg sucrose, 100 mg corn oil, tracer dose of 9.10(3)H oleic acid) was given to fasting adult rats with intestinal lymph fistulas. One group received an acute oral dose of ethanol (3.2 g/kg body weight) simultaneously with the test meal. Controls received 2.5 ml of water instead of ethanol. Ingestion of ethanol temporarily delayed the removal of lipid radioactivity from the stomachs. More than 25% of radioactivity fed remained 8 hr after feeding whereas with control rats less than 10% of lipid radioactivity fed remained 6 hr after feeding. In controls and ethanol-treated rats, the amounts of exogenous lipids in the intestinal lumen and mucosa were low and similar enough. Quantities of endogenous and exogenous lipids found in the lymph collected during 24 hr after feeding were similar in the two groups, but the fat absorption peak was found after 6 hr in alcoholic rats and before 6 hr in controls. This delay was probably due to the retention of lipids in the stomach. More of the exogenous lipid was always transported by small particles moving in the region of alpha1 globulins in cellulose acetate electrophoresis than by larger particles remaining at the origin. This proportion was enhanced in the ethanol-treated animals. The larger fat particles were richer in endogenous fatty acids in alcohol-treated rats than in controls.

  18. [The significance of ethanolemia for the diagnosis of death from acute ethanol poisoning].

    PubMed

    Kapustin, A V; Panfilenko, O A; Serebriakova, V G

    2002-01-01

    Foci of myolysis of cardiac muscle fibers are suggested to be used for evaluation of thanatogenetic significance of ethanol concentration in cadaveric blood. This sign of acute ethanol poisoning is absent in case of other cause of death in a state of ethanol intoxication, even in the presence of high ethanolemia. Therefore, foci of myolysis are a sign of ethanol tolerance.

  19. [Experimental rationale for the use of enterosorbents in acute ethanol intoxication].

    PubMed

    Orbidans, A G; Terekhin, G A; Vladimirskiĭ, E V; Terekhina, N A

    2009-01-01

    The experiment on 83 rats has provided a rationale for the use of enterosorbents in acute ethanol intoxication. Polysorb reduces the halflife of ethanol, recovers physical fitness in the animals with acute poisoning. The enterosorbents polysorb, litovit, and sapropel have been found to have a corrective effect on the level of the major plasma antioxidant ceruloplasmin in acute ethanol intoxication. Enterosorbents are an effective detoxifying agent in this condition. Examining the mechanisms of toxic action of ethanol allows the most expedient treatment policy to be substantiated in acute poisonings.

  20. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats.

    PubMed

    Uzbay, Tayfun; Kayir, Hakan; Celik, Turgay; Yüksel, Nevzat

    2006-05-01

    Effects of acute and chronic tianeptine treatments on ethanol withdrawal syndrome were investigated in rats. Ethanol (7.2% v/v) was given to adult male Wistar rats by a liquid diet for 30 days. Acute or chronic (twice daily) tianeptine (5, 10 and 20 mg/kg) and saline were administered to rats intraperitoneally. Acute and last chronic tianeptine injections and saline were done 30 min before ethanol withdrawal testing. After 2nd, 4th and 6th hours of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, tremor, wet dog shakes, stereotyped behavior and audiogenic seizures were recorded or rated. Locomotor activity in naive (no ethanol-dependent rats) was also tested after acute tianeptine treatments. Acute but not chronic tianeptine treatment attenuated locomotor hyperactivity and agitation in ethanol-dependent rats. Both acute and chronic tianeptine treatment produced some significant inhibitory effects on tremor, wet dog shakes, stereotyped behaviors and audiogenic seizures during the ethanol withdrawal. Our results suggest that acute or chronic tianeptine treatment attenuates ethanol withdrawal syndrome in ethanol-dependent rats and this drug may be useful for treatment of ethanol-type dependence.

  1. Changes in CREB activation in the prefrontal cortex and hippocampus blunt ethanol-induced behavioral sensitization in adolescent mice

    PubMed Central

    Soares-Simi, Sabrina L.; Pastrello, Daniel M.; Ferreira, Zulma S.; Yonamine, Mauricio; Marcourakis, Tania; Scavone, Cristoforo; Camarini, Rosana

    2013-01-01

    Drug dependence is a major health problem in adults and has been recognized as a significant problem in adolescents. We previously demonstrated that repeated treatment with a behaviorally sensitizing dose of ethanol in adult mice induced tolerance or no sensitization in adolescents and that repeated ethanol-treated adolescents expressed lower Fos and Egr-1 expression than adult mice in the prefrontal cortex (PFC). In the present work, we investigated the effects of acute and repeated ethanol administration on cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) DNA-binding activity using the electrophoretic mobility shift assay (EMSA) and the phosphorylated CREB (pCREB)/CREB ratio using immunoblotting in both the PFC and hippocampus in adolescent and adult mice. Adult mice exhibited typical locomotor sensitization after 15 days of daily treatment with 2.0 g/kg ethanol, whereas adolescent mice did not exhibit sensitization. Overall, adolescent mice displayed lower CREB binding activity in the PFC compared with adult mice, whereas opposite effects were observed in the hippocampus. The present results indicate that ethanol exposure induces significant and differential neuroadaptive changes in CREB DNA-binding activity in the PFC and hippocampus in adolescent mice compared with adult mice. These differential molecular changes may contribute to the blunted ethanol-induced behavioral sensitization observed in adolescent mice. PMID:24379765

  2. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  3. The effects of acute ethanol administration on ethanol withdrawal-induced anxiety-like syndrome in rats: A biochemical study.

    PubMed

    Kumar, Jaya; Hapidin, Hermizi; Get Bee, Yvonne-Tee; Ismail, Zalina

    2016-02-01

    Withdrawal from long-term ethanol consumption results in overexcitation of glutamatergic neurotransmission in the amygdala, which induces an anxiety-like syndrome. Most alcoholics that suffer from such symptoms frequently depend on habitual drinking as self-medication to alleviate their symptoms. Metabotropic glutamate receptor subtype 5 (mGlu5) and protein kinase C (PKC) epsilon have been reported to mediate acute and chronic effects of ethanol. This study explores the changes in mGlu5 and PKC epsilon in the amygdala following acute administration of ethanol during ethanol withdrawal (EW) induced anxiety. Male Wistar rats were fed a modified liquid diet containing low-fat cow milk, sucrose, and maltodextrin, with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into EW, the rats were intraperitoneally injected with normal saline and ethanol (2.5 g/kg, 20% v/v), and exposed to open-field and elevated plus maze tests. Then, amygdala tissue was dissected from the rat brain for Western blot and gene expression studies. EW-induced anxiety was accompanied by a significant increase in mGlu5, total PKC epsilon, and phosphorylated PKC epsilon protein levels, and also of mRNA of mGlu5 (GRM5) in the amygdala. Acute administration of ethanol significantly attenuated EW-induced anxiety as well as an EW-induced increase in GRM5. The acute challenge of ethanol to EW rats had little effect on the phosphorylated and total protein levels of PKC epsilon in the amygdala. Our results demonstrate that amygdala PKC epsilon may not be directly involved in the development of anxiety following EW.

  4. Silymarin Protects Against Acute Ethanol-Induced Hepatotoxicity in Mice

    PubMed Central

    Song, Zhenyuan; Deaciuc, Ion; Song, Ming; Lee, David Y.-W.; Liu, Yanze; Ji, Xiaosheng; McClain, Craig

    2014-01-01

    Background Accumulated evidence has demonstrated that both oxidative stress and abnormal cytokine production, especially tumor necrosis factor-α (TNF), play important etiological roles in the pathogenesis of alcoholic liver disease (ALD). Agents that have both antioxidant and anti-inflammation properties, particularly anti-TNF production, represent promising therapeutic interventions for ALD. We investigated the effects and the possible mechanism(s) of silymarin on liver injury induced by acute ethanol (EtOH) administration. Methods Nine-week-old mice were divided into 4 groups, control, silymarin treatment, EtOH treatment, and silymarin/EtOH treatment, with 6 mice in each group. Because control and silymarin values were virtually identical, only control treatment is shown for ease of viewing. Ethanol-treated mice received EtOH [5 g/kg body weight (BW)] by gavage every 12 hours for a total of 3 doses. Control mice received an isocalorical maltose solution. In the silymarin/EtOH group, silymarin was dissolved in the EtOH and gavaged simultaneously with EtOH at a dose of 200 mg/kg BW. At 4 hours after the last dosing, the mice were anesthetized and subsequent serum alanine aminotransferase (ALT) level, hepatic lipid peroxidation, enzymatic activity of hepatic cytochrome P450 2E1, hepatic TNF-α, and glutathione (GSH) levels were measured. Histopathological change was assessed by hematoxylin and eosin staining. Results Acute EtOH administration caused prominent hepatic microvesicular steatosis with mild necrosis and an elevation of serum ALT activity, induced a significant decrease in hepatic GSH in conjunction with enhanced lipid peroxidation, and increased hepatic TNF production. Supplementation with a standardized silymarin attenuated these adverse changes induced by acute EtOH administration. Conclusions Silymarin protects against the liver injury caused by acute EtOH administration. In view of its nontoxic nature, it may be developed as an effective therapeutic

  5. NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol.

    PubMed

    Badanich, K A; Doremus-Fitzwater, T L; Mulholland, P J; Randall, P K; Delpire, E; Becker, H C

    2011-10-01

    The NR2B subunit of N-methyl d-aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa-driven tTA transgenic mice and the tetO-CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open-field locomotor activity following acute low- and high-dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N-methyl d-aspartate glutamate receptor is involved in regulating low-dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.

  6. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  7. Effect of sub-chronic intermittent ethanol exposure on spatial learning and ethanol sensitivity in adolescent and adult rats.

    PubMed

    Swartzwelder, H S; Hogan, A; Risher, M-Louise; Swartzwelder, Rita A; Wilson, Wilkie A; Acheson, Shawn K

    2014-06-01

    It has become clear that adolescence is a period of distinct responsiveness to the acute effects of ethanol on learning and other cognitive functions. However, the effects of repeated intermittent ethanol exposure during adolescence on learning and cognition are less well studied, and other effects of repeated ethanol exposure such as withdrawal and chronic tolerance complicate such experiments. Moreover, few studies have compared the effects of repeated ethanol exposure during adolescence and adulthood, and they have yielded mixed outcomes that may be related to methodological differences and/or secondary effects of ethanol on behavioral performance. One emerging question is whether relatively brief intermittent ethanol exposure (i.e., sub-chronic exposure) during adolescence or adulthood might alter learning at a time after exposure when chronic tolerance would be expected, and whether tolerance to the cognitive effects of ethanol might influence the effect of ethanol on learning at that time. To address this, male adolescent and adult rats were pre-treated with sub-chronic daily ethanol (five doses [4.0 g/kg, i.p.] or saline at 24-h intervals, across 5 days). Two days after the last pre-exposure, spatial learning was assessed on 4 consecutive days using the Morris water maze. Half of the animals from each treatment cell received ethanol (2.0 g/kg, i.p.) 30 min prior to each testing session and half of the animals received saline. Ethanol pre-exposure altered water maze performance in adult animals but not in adolescents, and acute ethanol exposure impaired learning in animals of both ages independent of pre-exposure condition. There was no evidence of cognitive tolerance in animals of either age group. These results indicate that a relatively short period of intermittent ethanol exposure during adulthood, but not adolescence, promotes thigmotaxis in the water maze shortly after pre-exposure but does not induce cognitive tolerance to the effects of ethanol in

  8. Differential effects of context on psychomotor sensitization to ethanol and cocaine.

    PubMed

    Didone, Vincent; Quoilin, Caroline; Dieupart, Julie; Tirelli, Ezio; Quertemont, Etienne

    2016-04-01

    Repeated drug injections lead to sensitization of their stimulant effects in mice, a phenomenon sometimes referred to as drug psychomotor sensitization. Previous studies showed that sensitization to cocaine is context dependent as its expression is reduced in an environment that was not paired with cocaine administration. In contrast, the effects of the test context on ethanol sensitization remain unclear. In the present study, female OF1 mice were repeatedly injected with 1.5 g/kg ethanol to test for both the effects of context novelty/familiarity and association on ethanol sensitization. A first group of mice was extensively pre-exposed to the test context before ethanol sensitization and ethanol injections were paired with the test context (familiar and paired group). A second group was not pre-exposed to the test context, but ethanol injections were paired with the test context (nonfamiliar and paired group). Finally, a third group of mice was not pre-exposed to the test context and ethanol was repeatedly injected in the home cage (unpaired group). Control groups were similarly exposed to the test context, but were injected with saline. In a second experiment, cocaine was used as a positive control. The same behavioral procedure was used, except that mice were injected with 10 mg/kg cocaine instead of ethanol. The results show a differential involvement of the test context in the sensitization to ethanol and cocaine. Cocaine sensitization is strongly context dependent and is not expressed in the unpaired group. In contrast, the expression of ethanol sensitization is independent of the context in which it was administered, but is strongly affected by the relative novelty/familiarity of the environment. Extensive pre-exposure to the test context prevented the expression of ethanol sensitization. One possible explanation is that expression of ethanol sensitization requires an arousing environment.

  9. HINDBRAIN AND CRANIAL NERVE DYSMORPHOGENESIS RESULT FROM ACUTE MATERNAL ETHANOL ADMINISTRATION

    EPA Science Inventory

    Acute exposure of mouse embryos to ethanol during stages of hindbrain segmentation results in excessive cell death in specific cell populations. This study details the ethanol-induced cell loss and defines the subsequent effects of this early insult on rhombomere and cranial ner...

  10. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats.

    PubMed

    Ehlers, Cindy L; Desikan, Anita; Wills, Derek N

    2013-12-01

    Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years.

  11. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  12. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects on Neurotoxin Binding

    DTIC Science & Technology

    1987-01-01

    Exprnmantal Trherpeutics Ped in I.SA. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects on Neurotoxin Binding1 MICHAEL J. MULLIN 2 and... sodium channels. This indirect allosteric mechanism for inhibition of [H]BTX-B binding. effect orethanol was concentration-dependent and was affected...ethanol increased the equilibrium binding constant without af- that ethanol can affect the voltage-sensitive sodium channels in fecting the apparent

  13. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats.

    PubMed

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P < 0.05 was accepted as statistically significant. All rats in group 3 developed acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate.

  14. Characterization of honey bee sensitivity to ethanol vapor and its correlation with aggression.

    PubMed

    Ammons, Andrew D; Hunt, Greg J

    2008-03-01

    Several candidate genes identified from quantitative trait loci (QTL) for defensive behavior in honey bees (Apis mellifera L.) are homologous to genes known to influence ethanol sensitivity in other organisms. To investigate this possible link between aggression/defense and ethanol sensitivity, assays were developed to evaluate ethanol vapor responses in worker bees from a low-defensive (gentle) colony and a high-defensive colony. Defensive workers exhibited characteristic signs of ethanol-induced sedation significantly faster than gentle workers upon exposure to ethanol vapor. Backcross workers displayed ethanol sensitivity intermediate to the parental defensive and gentle lines, suggesting a genetic basis for the trait. Workers were screened with sequence-tagged site markers linked to three defensive-behavior QTL and their genotypes were tested for associations with ethanol sensitivity. There were no significant associations, indicating that the defensive QTL were not having a pleiotropic effect on ethanol sensitivity. It is possible that gentle-source alleles at these QTL are dominant with respect to sensitivity, one or more of these QTL were not segregating in the backcross family, or unidentified QTL are influencing alcohol sensitivity.

  15. Localized brain differences in Arc expression between mice showing low vs. high propensity to ethanol sensitization.

    PubMed

    Nona, Christina N; Lam, Marcus; Nobrega, José N

    2016-03-01

    Behavioral sensitization to ethanol (EtOH) manifests as a progressive and enduring increase in locomotor activity with repeated drug exposure. However, not all mice sensitize to EtOH and the neuronal mechanisms mediating vulnerability and resistance to EtOH sensitization remain unclear. We examined regional brain expression of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) in order to identify brain areas in which neuroplastic changes may contribute to the development and expression of EtOH sensitization. Male DBA/2J mice received 5 biweekly injections of EtOH (2.2g/kg, i.p.) or saline (SAL). They were categorized as high- (HS) or low-sensitized (LS) on the basis of final locomotor activity scores. In both LS and HS mice sacrificed after the last sensitization injection, Arc expression was decreased throughout the brain in comparison to SAL animals. A similar pattern was seen in mice sacrificed after an EtOH challenge two weeks after the last sensitization injection. However in this cohort, Arc expression was significantly increased in the central amygdala (CeA) in LS mice and in SAL mice receiving EtOH for the first time. No significant increases in Arc expression were seen in brains of sensitized (HS) animals. These results indicate an acute EtOH challenge results in different patterns of Arc expression in brains of LS, HS, and SAL mice. The dramatic increases in Arc expression in the CeA in LS and SAL mice showing little or no behavioral activation suggests that neural activity in this region may serve to inhibit the stimulant effects of EtOH. The observation that HS mice do not show increases in Arc expression with an EtOH challenge suggests the possibility that increased tolerance to the Arc-inducing effects of EtOH may be a factor in behavioral sensitization.

  16. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  17. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    SciTech Connect

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.; Harris, R.A. )

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibited NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.

  18. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs.

  19. Rimonabant attenuates sensitization, cross-sensitization and cross-reinstatement of place preference induced by nicotine and ethanol.

    PubMed

    Biała, Grażyna; Budzyńska, Barbara

    2010-01-01

    The present study focused on the evaluation of behavioral sensitization, cross-sensitization, and cross-reinstatement processes induced by nicotine and ethanol in rodents. First, we showed that nicotine (0.175 mg/kg, base, intraperitoneally, ip) produced a conditioned place preference in rats. When the nicotine place preference was extinguished, nicotine-experienced animals were challenged with nicotine (0.175 mg/kg, ip) or ethanol (0.5 g/kg, ip), which reinstated a preference for the compartment previously paired with nicotine. In the second series of experiments, we demonstrated that after 9 days of nicotine administration (0.175 mg/kg, subcutaneously, sc) every other day and following its 7-day withdrawal, challenge doses of nicotine (0.175 mg/kg, sc) and ethanol (2 g/kg, ip) induced locomotor sensitization in mice. Finally, when we examined the influence of rimonabant (0.5, 1 and 2 mg/kg, ip), we found that this cannabinoid CB₁ receptor antagonist attenuated reinstatement effect of ethanol priming as well as nicotine sensitization and locomotor cross-sensitization between nicotine and ethanol. Our results indicate that similar endocannabinoid-dependent mechanisms re involved in the locomotor stimulant and reinforcing effects of nicotine and ethanol in rodents, and as such these data may provide further evidence for the use of cannabinoid CB₁ receptor antagonists in treatment of tobacco addiction with or without concomitant ethanol dependence.

  20. Development of tolerance to the inhibitory effects of ethanol in the rat isolated vas deferens: effect of acute and chronic ethanol administration in vivo.

    PubMed Central

    DeTurck, K. H.; Pohorecky, L. A.

    1986-01-01

    Contractions of the rat vas deferens elicited by the addition of noradrenaline (NA), K+-depolarizing solutions or by electrical stimulation were recorded before and after incubation with ethanol 181 mM. In tissues from untreated rats, the contractions were inhibited 40-50% by such exposure. Injection of ethanol (2 g kg-1) significantly attenuated ethanol's reduction of peak tension generated by the lowest concentration of NA (10(-4) mM). Chronic administration of ethanol, 18-14 g kg-1 daily for two weeks, resulted in significant tolerance to ethanol. Tissues of treated animals demonstrated ethanol-induced decreases of roughly one-half those of the maltose dextrin (isocaloric) and water (fluid control) groups. This tolerance persisted for at least 48 h after ethanol treatment had been terminated. Overall, the data suggest that ethanol acts both pre- and postsynaptically to produce acute inhibition of smooth muscle contractions or tolerance to these actions upon chronic exposure. PMID:3730699

  1. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.

  2. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    PubMed Central

    Guo, Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca2+ handling and AMPK signaling (including ACC and LKB1) were examined. Results Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca2+ properties, downregulated protein phosphatase PP2A subunit and PPAR-γ, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Cα and PGC-1α, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 µM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction. Conclusions In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca2+ mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade. PMID:20585647

  3. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    SciTech Connect

    Creighton, J.A.; Rudeen, P.K.

    1988-01-01

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effect upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.

  4. The ethanol withdrawal syndrome: A role for dihydropyridine-sensitive calcium channels in neuronal hyperexcitability states

    SciTech Connect

    Whittington, M.A.

    1990-01-01

    This project investigated the effects of dihydropyridine calcium channel blockers on behavioral and electrophysiological aspects of ethanol withdrawal. The effects of the dihydropyridine (+)-PN 200-110, on changes in neuronal function during ethanol withdrawal, were compared with effects on changes caused by the GABAergic convulsant drug bicuculline. Behavioral correlates of ethanol withdrawal were measured in two strains of mice using a rating of handling-induced convulsions. Concurrent chronic treatment with ethanol and the dihydropyridine calcium channel blockers ([plus minus])-nitrendipine, ([plus minus])-nimodipine or ([plus minus])-PN 200-110 prevented withdrawal-induced increased in convulsive behavior. This effect was dose dependent. The duration of chronic treatment with calcium channel blocker affected the degree of protection against increases in convulsive behavior seen during ethanol withdrawal. Concurrent chronic treatment with ethanol, and the mixed calcium channel activator/blocker ([plus minus])-BAY K 8644, prevented ethanol withdrawal-induced increases in convulsive behavior. Single acute injections of nitrendipine immediately on cessation of chronic treatment with ethanol, or 2h later, reduced withdrawal-induced increases in convulsive behavior in a dose-dependent manner throughout the 12h test period. Slices isolated from mice after chronic ethanol treatment showed a complex, time-dependent pattern of changes in the above measurements, culminating in epileptiform discharges seen from 4h to 7h into withdrawal.

  5. Liver necrosis induced by acute intraperitoneal ethanol administration in aged rats.

    PubMed

    Giavarotti, Leandro; D'Almeida, Vania; Giavarotti, Karin A S; Azzalis, Ligia A; Rodrigues, Luciano; Cravero, Amerys A M; Videla, Luis A; Koch, Osvaldo R; Junqueira, Virginia B C

    2002-03-01

    It is generally agreed that the deleterious pathophysiological effects of ethanol are caused, at least partially by an increase in free radical production. However, little attention has been directed to the effects of ethanol upon elderly organisms. Male Wistar rats at ages 3, 6, 12, 18 and 24 months were treated either with a single i.p. dose of 35% ethanol (v/v) at 3 g ethanol/kg body weight or an isovolumetric amount of 0.9% saline solution. We then assessed the plasma levels of transaminases and hepatic levels of oxidative stress-related parameters, followed by liver histological evaluation. The younger rats (3 months old) were not affected by the treatment with ethanol with respect to any of the studied parameters except for a lowering of total hepatic GSH and an increase in hepatic thiobarbituric acid reactants (TBARS) formation, while animals older than 3 months were increasingly more affected by the treatment. Acute ethanol treatment elicited the similar responses to those in the 3 months-old group, plus a decrease in the hepatic and plasma levels of beta-carotene and the plasma level of alpha-tocopherol, as well as an increase in the activity of plasma transaminases. In the 12,18 and 24 months old groups, there was increasing liver necrosis. These findings suggest that liver damage induced by acute ethanol administration in elderly rats may involve a lack of antioxidants.

  6. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  7. The relation of age to the acute effects of ethanol on acetanilide disposition.

    PubMed

    Wynne, H A; Mutch, E; Williams, F M; James, O F; Rawlins, M D; Woodhouse, K W

    1989-03-01

    The activity of the major drug-metabolizing enzymes, the mono-oxygenases, can be inhibited by an acute dose of ethanol. We set out to determine whether age has any relation to the degree of inhibition produced by ethanol, using acetanilide as a model substrate. Eight healthy young subjects (mean age 26 years) and eight healthy elderly subjects (mean age 72 years) were studied on two occasions, once receiving acetanilide alone and once acetanilide with 75 ml vodka (30 g ethanol). The clearance of acetanilide was significantly lower (p less than 0.05) in the elderly subjects at 27 +/- 3 l/h compared to 38 +/- 2 l/h in young subjects. No age-related differences in peak blood ethanol concentrations or ethanol elimination rates were noted. After ethanol, acetanilide clearance fell 18% to 31 +/- 3 l/h in young subjects (p = 0.05) and by 15% to 23 +/- 2 l/h in elderly subjects (p = 0.08). This suggests that the elderly do not suffer greater impairment of drug oxidation after acute ethanol ingestion than do the young.

  8. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs.

  9. Purification of ethanol for highly sensitive self-assembly experiments

    PubMed Central

    Barbe, Kathrin; Kind, Martin; Pfeiffer, Christian

    2014-01-01

    Summary Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol. PMID:25161861

  10. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  11. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure.

    PubMed

    Doremus-Fitzwater, Tamara L; Gano, Anny; Paniccia, Jacqueline E; Deak, Terrence

    2015-09-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31-33days of age) and adult (69-71days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250μg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3h later for measurement of blood ethanol concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. ethanol challenge, IL-6 and IκBα expression was significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS

  12. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice.

    PubMed

    Blagaic, Alenka Boban; Blagaic, Vladimir; Romic, Zeljko; Sikiric, Predrag

    2004-09-24

    The stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W.1419), which was promising in inflammatory bowel disease (PL-10, PLD-116, PL-14736, Pliva) trials, protects against both acute and chronic alcohol-induced lesions in stomach and liver, but also, given peripherally, affects various centrally mediated disturbances. Now, in male NMRI mice BPC 157 (10 pg intraperitoneally, 10 ng and 10 microg, intraperitoneally or intragastrically) (i) strongly opposed acute alcohol (4 g/kg intraperitoneally) intoxication (i.e., quickly produced and sustained anesthesia, hypothermia, increased ethanol blood values, 25% fatality, 90-min assessment period) given before or after ethanol, and (ii) when given after abrupt cessation of ethanol (at 0 or 3 or 7 h withdrawal time), attenuated withdrawal (assessed through 24 hours) after 20%-alcohol drinking (7.6 g/kg) through 13 days, with provocation on the 14th day.

  13. Inhibitory Effect of Helicteres gardneriana Ethanol Extract on Acute Inflammation

    PubMed Central

    de Melo, Juliana Oliveira; de Arruda, Laura Lícia Milani; Baroni, Silmara; Truiti, Maria da Conceição Torrado; Caparroz-Assef, Silvana Martins; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2012-01-01

    The anti-inflammatory effect of an ethanol extract of Helicteres gardneriana (Nees) Castiglioni was assayed in experimental models of pleurisy and microcirculation in situ. Treatment of animals with 500 mg/kg body weight reduced the exudate volume (35% reduction) induced by intrapleural injection of carrageenan and the migration of polymorphonuclear cells into the inflamed pleural cavity of rats (40%). Additionally, rolling and adhesion of leukocytes and the number of leukocytes that migrated toward the perivascular space in response to the carrageenan injection were decreased by the extract (500 mg/kg). These data demonstrate the anti-inflammatory effect of the ethanol extract of Helicteres gardneriana and imply that inhibition of leukocyte-endothelial interactions is important in the extract's mechanism of action. PMID:22028731

  14. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    PubMed

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  15. Low and moderate doses of acute ethanol do not impair spatial cognition but facilitate accelerating rotarod performance in adolescent and adult rats.

    PubMed

    Novier, Adelle; Van Skike, Candice E; Chin, Vivien S; Diaz-Granados, Jaime L; Matthews, Douglas B

    2012-03-14

    Adolescents and adult rodents have differing sensitivities to the acute effects of ethanol on a variety of behavioral and electrophysiological measures. Often, these differences are revealed using high ethanol doses and consequently little is known about these age-related effects using lower ethanol doses. We sought to determine if low-dose ethanol produces differential effects on cognition and motor behavior in adolescent and adult rats. Adolescent (postnatal day PD 30-32) and adult (PD 70-72) male Sprague Dawley rats were trained on the standard version of the Morris Water Maze (MWM) for 5 days or received 5 training trials on an accelerating rotarod (ARR). Adolescents learned the location of the submerged platform in the MWM significantly slower than adults during training and, acute ethanol administration (0.5 g/kg, 0.75 g/kg, or 1.0 g/kg) 30 min before testing did not impair spatial memory in either age group. On the ARR test, adolescent rats spent significantly more time on the rotarod compared to adults and, alcohol exposure (1.0 g/kg) significantly increased ARR performance 30 min following administration. Our findings address the utility of investigating low and moderate doses of ethanol during different developmental stages in rats.

  16. Temperature sensitivity of photonic crystal fibers infiltrated with ethanol solutions

    NASA Astrophysics Data System (ADS)

    Chu Van, Lanh; Stefaniuk, Tomasz; Kasztelanic, Rafał; Cao Long, Van; Klimczak, Mariusz; Le Van, Hieu; Trippenbach, Marek; Buczyński, Ryszard

    2015-12-01

    In this paper we present a numerical study on the optimization of dispersion of a photonic crystal fiber infiltrated with water-ethanol mixtures. The advantage of such an approach stems from the fact that the dependence of the refractive index on temperature is larger in liquids than in solid materials. Here, we examine photonic crystal fibers with a regular, hexagonal lattice and with various geometrical and material parameters, such as different number of rings of holes, various lattice constants and the size of core and air-holes. Additionally, for the optimized structure with flat dispersion characteristics, we analyze the influence of temperature and concentration of the ethanol solution on the dispersion characteristic and the zero dispersion wavelength shift of the fundamental mode.

  17. Assessment of Expression of Genes Coding GABAA Receptors during Chronic and Acute Intoxication of Laboratory Rats with Ethanol.

    PubMed

    Osechkina, N S; Ivanov, M B; Nazarov, G V; Batotsyrenova, E G; Lapina, N V; Babkin, A V; Berdinskikh, I S; Melekhova, A S; Voitsekhovich, K O; Lisitskii, D S; Kashina, T V

    2016-02-01

    Expression of genes encoding the individual subunits of ionotropic GABAA receptor was assessed after acute and chronic intoxication of rats with ethanol. The chronic 1-month-long exposure to ethanol signifi cantly decreased (by 38%) expression of Gabrb1 gene in the hippocampus. Acute exposure to ethanol elevated expression of genes Gabrb1 (by 1.7 times), Gabra1 (by 3.8 times), and Gabra4 (by 6.5 times), although it diminished expression of Gabra2 gene by 1.4 times. In preliminarily alcoholized rats, acute intoxication with ethanol enhanced expression of genes Gabrb1 and Gabra5 by 1.7 and 8.7 times, respectively. There was neither acute nor chronic effect of ethanol on expression of gene Gabra3.

  18. Transition from ethanol-induced sensitization to tolerance across early and late infancy in the rat.

    PubMed

    Castello, Stefania; D'Aloisio, Genesis; Arias, Carlos; Molina, Juan Carlos

    Drugs of abuse, as cocaine or amphetamine, induce locomotor sensitization during infancy and adulthood of the rat. This effect during the preweanling period is observed only after a short interval of time between training and testing. We recently reported short-term locomotor sensitization induced by ethanol in pups chronically exposed to the drug during the second postnatal week of life. The present series of experiments was designed to explore the persistence of the sensitization effect across the preweanling period. Pups were chronically exposed to ethanol in five consecutive days during the second or the third postnatal weeks, and their locomotor activity was evaluated in an open field 3, 8 or 15days later. Our results showed that, contrarily to what has been observed with other drugs during infancy, sensitization to ethanol persisted at least 8days in rats exposed to the drug during the second postnatal week. Surprisingly, in older pups, the same procedure induced tolerance instead sensitization. This ontogenetic model offers a potentially interesting tool for studying within the same species, how tolerance and sensitization are interrelated, and how these effects affect ethanol-mediated reinforcement and ethanol intake during ontogeny.

  19. Selank Inhibits Ethanol-Induced Hyperlocomotion and Manifestation of Behavioral Sensitization in DBA/2 Mice.

    PubMed

    Kolik, L G; Nadorova, A V; Seredenin, S B

    2016-11-01

    The effect of non-benzodiazepine anxiolytics on the ethanol-induced hyperlocomotion and behavioral sensitization was assessed in male DBA/2 mice. Selank that enhances activity of the endogenous opioid system (0.3 mg/kg, intraperitoneally), similar to the nonselective opiate receptor blocker naloxone (1.0 mg/kg, intraperitoneally), prevented the development of ethanol-induced (2.0 g/kg intraperitoneally) hyperlocomotion, in contrast to σ1-receptors agonist Afobazole (1.0 mg/kg, intraperitoneally) that did not inhibit ethanol-induced behavioral stimulation. Single dose of Selank significantly blocked manifestation of motor sensitization without affecting its formation. These findings suggest that Selank can modulate the motivational effects of ethanol.

  20. Acute ethanol intake attenuates inflammatory cytokines after brain injury in rats: a possible role for corticosterone.

    PubMed

    Gottesfeld, Zehava; Moore, Anthony N; Dash, Pramod K

    2002-03-01

    It has been reported that acute ethanol intoxication exerts dose-dependent effects, both beneficial and detrimental, on the outcome of traumatic brain injury (TBI), although the mechanism(s) has not been determined. Given that pro-inflammatory cytokines are either neuroprotective or neurotoxic, depending on their tissue levels, ethanol-induced alterations in brain cytokine production may be involved in determining the recovery after TBI. The present study was undertaken to examine the effect of acute ethanol pretreatments (producing blood alcohol concentrations of 100+/-16 mg/dL, and 220+/-10 mg/dL, considered low and intoxicating doses, respectively) on interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) levels in discrete brain regions. In addition, serum corticosterone levels were also examined because the hormone is a modulator of cytokine production, its secretion is stimulated by ethanol, and it has been associated with the severity of post-injury neurologic dysfunction. The data presented in this report demonstrate that moderate cortical impact brain injury elicits a marked increase in IL-1beta and TNF-alpha in the injured cortex as well as in the hippocampus ipsilateral to the injury. Ethanol pretreatment lowered cytokine levels in the cortex, hippocampus and hypothalamus in a dose-dependent manner after TBI compared to the untreated injured rats. Serum corticosterone levels were markedly increased in the injured rats, and were further augmented in the ethanol-pretreated injured animals in a dose-dependent manner. Our findings suggest that ethanol-induced decrease in pro-inflammatory cytokine production may be linked to increased circulating corticosterone, both of which may contribute to the outcome of brain injury.

  1. The role of L-type calcium channels in the development and expression of behavioral sensitization to ethanol.

    PubMed

    Broadbent, Julie

    2013-10-11

    Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1-7.5 mg/kg), diltiazem (12.5-50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates.

  2. The Role of L-Type Calcium Channels in the Development and Expression of Behavioral Sensitization to Ethanol

    PubMed Central

    Broadbent, Julie

    2013-01-01

    Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1 – 7.5 mg/kg), diltiazem (12.5 – 50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates. PMID:23994059

  3. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only.

  4. Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers

    PubMed Central

    Wezenberg, E.; Valkenberg, M. M. G. J.; de Jong, C. A. J.; Buitelaar, J. K.; van Gerven, J. M. A.; Verkes, R. J.

    2008-01-01

    Rationale In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. Objective The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. Materials and methods We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18–29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6‰ by an ethanol infusion regime. Results Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. Conclusions Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function. PMID:18305926

  5. Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia.

    PubMed

    Zhou, Chao; Zhao, Ji; Li, Jing; Wang, Haiying; Tang, Chengwei

    2013-05-01

    Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The

  6. Acute exposure of rabbit jejunum to ethanol. In vitro uptake of hexoses

    SciTech Connect

    Thomson, A.B.

    1984-03-01

    The effect of acute exposure of rabbit jejunum to ethanol on the uptake of three hexoses was examined in vitro. With ethanol present in the preincubation medium for 30 min, or directly in the incubation medium for 6 min, glucose uptake was reduced. Kinetic analysis demonstrated that ethanol in the preincubation medium was associated with a rise in the value of the apparent Michaelis constant (Km*), whereas the inhibition of glucose uptake observed with ethanol present directly in the incubation medium was associated with a reduction in the apparent passive permeability coefficient (Pd*), a reduction in the maximal transport rate (Jdm), and an increase in Km*. When increasing concentrations of ethanol were added to the preincubation or to the incubation medium, there was a reduction in the uptake of both 1 mM and 40 mM glucose, galactose, and 3-O-methyl glucose. The addition of 40 mM galactose or 1 mM phloridzin to 40 mM glucose was associated with a 50% reduction in glucose uptake, but this uptake was not further inhibited by the addition of 6% ethanol (v/v). Similarly, the uptake of 3-O-methyl glucose was inhibited by the addition of 40 mM glucose or galactose but no further reduction in uptake was achieved by adding ethanol. Finally, galactose uptake was inhibited by adding 40 mM glucose or 40 mM 3-O-MG, but the addition of 6% ethanol was associated with no further decline in the uptake of galactose.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol.

  8. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  9. [Acute ethanol intoxication among children and adolescents in Hamburg, Germany].

    PubMed

    Stolle, M; Sack, P-M; Spieles, H; Thomasius, R

    2010-09-01

    By using an anonymous postcard reporting system, data of n=358 children, adolescents, and young adults who were treated in 26 emergency departments because of acute alcohol intoxication were collected. The aim of this study was to estimate the prevalence of acute alcohol intoxications in Hamburg, compare these data with the official hospital diagnosis register, and analyze the circumstances that led to the intoxication. A total of 358 cases were reported by the postcard system. Age ranged from 11-21 years, with 64.5% being 14-17 years old. Data were collected in the municipal area of Hamburg during the calendar year of 2008. The percentage of female patients was 65.6% in the age group from 11-17 years and decreased in the age group of patients being 18 years and older. A vast majority of patients were admitted by ambulance and were reported as being a"first offender". On average, male patients showed a higher level of blood alcohol when being admitted (2.02 ‰) than female patients (1.76 ‰). The older the age group, the higher the blood alcohol level. Among drinking circumstances, the situation"drank together with friends" was most frequently reported. In comparison with the official hospital diagnosis register, prevalence was 31.6% higher. This could mean that the prevalence reported in the official hospital diagnosis register is an underestimation of the actual case numbers.

  10. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities.

  11. Lycopene Pretreatment Ameliorates Acute Ethanol Induced NAD+ Depletion in Human Astroglial Cells

    PubMed Central

    Guest, Jade; Heng, Benjamin; Grant, Ross

    2015-01-01

    Excessive alcohol consumption is associated with reduced brain volume and cognition. While the mechanisms by which ethanol induces these deleterious effects in vivo are varied most are associated with increased inflammatory and oxidative processes. In order to further characterise the effect of acute ethanol exposure on oxidative damage and NAD+ levels in the brain, human U251 astroglioma cells were exposed to physiologically relevant doses of ethanol (11 mM, 22 mM, 65 mM, and 100 mM) for ≤ 30 minutes. Ethanol exposure resulted in a dose dependent increase in both ROS and poly(ADP-ribose) polymer production. Significant decreases in total NAD(H) and sirtuin 1 activity were also observed at concentrations ≥ 22 mM. Similar to U251 cells, exposure to ethanol (≥22 mM) decreased levels of NAD(H) in primary human astrocytes. NAD(H) depletion in primary astrocytes was prevented by pretreatment with 1 μM of lycopene for 3.5 hours. Unexpectedly, in U251 cells lycopene treatment at concentrations ≥ 5 μM resulted in significant reductions in [NAD(H)]. This study suggests that exposure of the brain to alcohol at commonly observed blood concentrations may cause transitory oxidative damage which may be at least partly ameliorated by lycopene. PMID:26075038

  12. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    SciTech Connect

    Yin Huquan; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2007-09-15

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed {>=} 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1.

  13. Acute and subacute toxicity evaluation of ethanolic extract from fruits of Schinus molle in rats.

    PubMed

    Ferrero, Adriana; Minetti, Alejandra; Bras, Cristina; Zanetti, Noelia

    2007-09-25

    Ethanolic and hexanic extracts from fruits and leaves of Schinus molle showed ability to control several insect pests. Potential vertebrate toxicity associated with insecticidal plants requires investigation before institutional promotion. The aim of the present study was to evaluate the acute and subacute toxicity of ethanolic extracts from fruits of Schinus molle in rats. The plant extract was added to the diet at 2g/kg body weight/day during 1 day to evaluate acute toxicity and at 1g/kg body weight/day during 14 days to evaluate subacute toxicity. At the end of the exposure and after 7 days, behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed. Finally, histopathological examinations were conducted on several organs. In both exposures, an increase in the arousal level was observed in experimental groups. Also, the landing foot splay parameter increased in the experimental group after acute exposure. Only the subacute exposure produced a significant increase in the motor activity in the open field. All these changes disappeared after 7 days. None of the exposures affected the different organs evaluated. Our results suggest that ethanolic extracts from fruits and leaves of Schinus molle should be relatively safe to use as insecticide.

  14. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    PubMed Central

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  15. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří

    2016-10-01

    Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.

  16. Acute Cor Pulmonale and Right Heat Failure Complicating Ethanol Ablative Therapy: Anesthetic and Radiologic Considerations and Management

    SciTech Connect

    Naik, Bhiken; Matsumoto, Alan H.

    2013-10-15

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  17. Acute cor pulmonale and right heat failure complicating ethanol ablative therapy: anesthetic and radiologic considerations and management.

    PubMed

    Naik, Bhiken; Matsumoto, Alan H

    2013-10-01

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  18. Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury

    PubMed Central

    Jang, Sun-Hee; Cho, Sung-woo; Yoon, Hyun-Min; Jang, Kyung-Jeon; Song, Chun-Ho; Kim, Cheol-Hong

    2014-01-01

    Objectives: Alcohol abuse is a public issue and one of the major causes of liver disease worldwide. This study was aimed at investigating the protective effect of Ganoderma lucidum pharmacopuncture (GLP) against hepatotoxicity induced by acute ethanol (EtOH) intoxication in rats. Methods: Sprague-Dawley (SD) rats were divided into 4 groups of 8 animals each: normal, control, normal saline pharmacopuncture (NP) and GLP groups. The control, NP and GLP groups received ethanol orally. The NP and the GLP groups were treated daily with injections of normal saline and Ganoderma lucidum extract, respectively. The control group received no treatment. The rats in all groups, except the normal group, were intoxicated for 6 hours by oral administration of EtOH (6 g/kg BW). The same volume of distilled water was administered to the rats in the normal group. Two local acupoints were used: Qimen (LR14) and Taechung (LR3). A histopathological analysis was performed, and the liver function and the activities of antioxidant enzymes were assessed. Results: GLP treatment reduced the histological changes due to acute liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase (ALT) enzyme; however, it had an insignificant effect in reducing the increase in aspartate aminotransferase (AST) enzyme. It also significantly ameliorated the superoxide dismutase (SOD) and the catalase (CAT) activities. Conclusion: The present study suggests that GLP treatment is effective in protecting against ethanol-induced acute hepatic injury in SD rats by modulating the activities of ethanol-metabolizing enzymes and by attenuating oxidative stress. PMID:25780705

  19. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice

    PubMed Central

    Deshpande, Krutika T.; Liu, Shinlan; McCracken, Jennifer M.; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N.; Richard, Zachary C.; O’Neil, Maura F.; Pritchard, Michele T.

    2016-01-01

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl4 and euthanized 24–96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure. PMID:26751492

  20. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice.

    PubMed

    Deshpande, Krutika T; Liu, Shinlan; McCracken, Jennifer M; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N; Richard, Zachary C; O'Neil, Maura F; Pritchard, Michele T

    2016-01-06

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl₄-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl₄ exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl₄ and euthanized 24-96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl₄-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl₄ exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl₄-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl₄. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure.

  1. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  2. κ opioid regulation of anxiety-like behavior during acute ethanol withdrawal.

    PubMed

    Valdez, Glenn R; Harshberger, Erin

    2012-07-01

    Withdrawal is one of the defining characteristics of alcohol dependence, and is often characterized by impaired physiological function and enhanced negative affect. Recent evidence suggests that the dynorphin (DYN)/kappa opioid receptor (KOR) system may be a key mediator in the negative affect often associated with drugs of abuse. The objective of the present experiments was to determine the role of the DYN/KOR system in the regulation of anxiety-related behavior during acute withdrawal from ethanol. Rats were fed an ethanol liquid diet and following removal, the ability of the KOR antagonist nor-BNI to attenuate the increased anxiogenic-like response characteristic of ethanol withdrawal was investigated using the elevated plus maze. A comparison study was also conducted examining anxiety-related behavior following direct activation of KORs via injections of the KOR agonist U50,488. Rats experiencing ethanol withdrawal showed a significant decrease in open arm exploration compared to controls, an effect that was blocked by nor-BNI. Similar decreases in open arm exploration were observed following injections with the KOR agonist, U50,488, an effect also reversed by pretreatment with nor-BNI. These results suggest that similar mechanisms are involved in the regulation of ethanol withdrawal- and KOR agonist-induced changes in behavior. Given the potential role of enhanced negative affect in persistent ethanol drinking, understanding the role of the DYN/KOR system in regulating anxiety associated with withdrawal may be critical in understanding the factors associated with the nature of alcohol dependence.

  3. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    PubMed

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  4. The 5-HT3 receptor antagonist, ondansetron, blocks the development and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Umathe, Sudhir N; Bhutada, Pravinkumar S; Raut, Vivek S; Jain, Nishant S; Mundhada, Yogita R

    2009-02-01

    Manipulation of the serotonergic system has been shown to alter ethanol sensitization. Ondansetron is a 5-HT3 receptor antagonist, reported to attenuate cocaine and methamphetamine-induced behavioral sensitization, but no reports are available on its role in ethanol-induced behavioral sensitization. Therefore, an attempt has been made to assess this issue by using an earlier used animal model of ethanol-induced locomotor sensitization. Results indicated that ondansetron (0.25-1.0 mg/kg, subcutaneously) given before the challenge dose of ethanol (2.4 g/kg, intraperitoneally) injection, significantly and dose dependently attenuated the expression of sensitization. In addition, ondansetron (1.0 mg/kg, subcutaneously) given before ethanol injection on days 1, 4, 7, and 10 significantly blocked the development (days 1, 4, 7, and 10), and expression (day 15) of sensitization to the locomotor stimulant effect of ethanol injection. Ondansetron had no effect per se on locomotor activity and did not affect blood ethanol levels. Therefore, the results raise the possibility that ondansetron blocked the development and expression of ethanol-induced locomotor sensitization by acting on 5-HT3 receptors.

  5. Glycine and GABA(A) ultra-sensitive ethanol receptors as novel tools for alcohol and brain research.

    PubMed

    Naito, Anna; Muchhala, Karan H; Asatryan, Liana; Trudell, James R; Homanics, Gregg E; Perkins, Daya I; Davies, Daryl L; Alkana, Ronald L

    2014-12-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.

  6. The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress

    PubMed Central

    Kumar, Sandeep; Porcu, Patrizia; Werner, David F.; Matthews, Douglas B.; Diaz-Granados, Jaime L.; Helfand, Rebecca S.

    2010-01-01

    The past decade has brought many advances in our understanding of GABAA receptor-mediated ethanol action in the central nervous system. We now know that specific GABAA receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABAA receptors promoting increases in GABA sensitivity. Ethanol’s effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABAA receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism. PMID:19455309

  7. A possible role of atrial natriuretic peptide in ethanol-induced acute diuresis

    SciTech Connect

    Colantonio, D.; Casale, R.; Mammarella, M.; Pasqualetti, P. ); Desiati, P.; De Michele, G. )

    1991-01-01

    The acute effects of ethanol on plasma atrial natriuretic peptide levels were investigated in 4 clinically healthy males, aged 24-26 years, consumed either 750 ml of water as a control study, or the same beverage with 1 ml/kg alcohol added, which increased the plasma alcohol concentration to 99.12{plus minus}15.10 mg/dl at 60 min. Plasma atrial natriuretic peptide levels were significantly higher in the alcohol study compared to the control study at each time point, and with a peak at 10 min. Atrial natriuretic peptide levels showed a positive significant correlation with plasma antidiuretic hormone in the control group, while no relationship was found between the two peptides in the alcohol study. Moreover, a significant correlation exists between plasma atrial natriuretic peptide levels and systolic arterial blood pressure, and heart rate, and between the variations in atrial natriuretic peptide values and the variations in plasma sodium, serum ethanol, and plasma osmolality in the alcohol study. Acute ethanol intake causes an increase in urinary volume, and a decrease in urinary potassium excretion and urinary osmolality, and no change in urinary sodium excretion.

  8. Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis.

    PubMed

    Huang, Wei; Wang, Bin; Li, Xiangyong; Kang, Jing X

    2015-01-01

    Effective means for the prevention of alcohol-induced liver disease, a global health problem, have yet to be developed. We evaluated whether the high endogenous levels of omega-3 polyunsaturated acids (n-3 PUFA) in fat-1 transgenic mice could protect them against acute ethanol-induced liver steatosis. We induced alcoholic liver steatosis in 9-week-old male heterozygous fat-1 mice and their wild-type (WT) male littermates through three oral gavages of 60% ethanol at 4.7 g/kg body weight. Hepatic lipid accumulation was significantly increased in both alcohol treatment groups, but by much less in the fat-1 group compared with the WT group. Fat-1 mice exhibited significantly lower levels of total hepatic/plasma TG and plasma alanine aminotransferase activity. Accordingly, hepatic expression of lipogenesis-related genes (e.g., SREBP-1c, FAS, and SCD-1) and plasma levels of inflammatory cytokines (e.g., IL-6, TNF-α, and MCP-1) were reduced in the fat-1 mice. Furthermore, decreased hepatic expression of cytochrome P450 2E1 (CYP2E1) and increased hepatic levels of PPAR-α and HO-1 were observed in the fat-1 mice, compared to the WT mice. These findings show that elevated tissue n-3 PUFA protect against acute ethanol-induced liver steatosis in fat-1 mice, possibly through the down-regulation of hepatic lipogenesis, inflammatory response, and oxidative stress.

  9. Transgenic Mice with Increased Astrocyte Expression of IL-6 Show Altered Effects of Acute Ethanol on Synaptic Function

    PubMed Central

    Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.

    2015-01-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including

  10. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function.

    PubMed

    Hernandez, Ruben V; Puro, Alana C; Manos, Jessica C; Huitron-Resendiz, Salvador; Reyes, Kenneth C; Liu, Kevin; Vo, Khanh; Roberts, Amanda J; Gruol, Donna L

    2016-04-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including

  11. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  12. Neonatal sensitization to ethanol-induced breathing disruptions as a function of late prenatal exposure to the drug in the rat: modulatory effects of ethanol's chemosensory cues.

    PubMed

    Cullere, Marcela; Macchione, Ana Fabiola; Haymal, Beatriz; Paradelo, Martin; Langer, Marcos Daniel; Spear, Norman E; Molina, Juan Carlos

    2015-02-01

    Preclinical and clinical studies have systematically demonstrated abrupt changes in fetal respiratory patterns when the unborn organism is exposed to the effects of maternal ethanol intoxication. In subprimates, chronic exposure to this drug during gestation and infancy results in marked alterations of the plasticity of the respiratory network. These alterations are manifested in terms of an early incapability to overcome deleterious effects of hypoxic events as well as in terms of sensitization to ethanol's depressant effects upon breathing patterns. It has also been demonstrated that near term rat fetuses process ethanol's chemosensory cues when the drug contaminates the amniotic fluid and that associative learning processes occur due to the temporal contiguity existing between these cues and different ethanol-related physiological effects. In the present study during the course of late gestation (gestational days 17-20), pregnant rats were intragastrically administered with either 0.0 or 2.0 g/kg ethanol. Seven-day-old pups derived of these dams were evaluated in terms of respiration rates (breaths/min) and apneas when subjected to different experimental conditions. These conditions were defined by postnatal exposure to the drug (intragastric administrations of either 0.0, 0.5, 1.0 or 2.0 g/kg ethanol), postadministration time of evaluation (5-10 or 30-35 min) and olfactory context at test (no explicit ambient odor or ethanol ambient odor). The results, obtained via whole body plethysmography, indicated that brief prenatal experience with the drug sensitized the organisms to ethanol's depressant effects particularly when employing the higher ethanol doses. In turn, presence of ethanol odor at test potentiated the above mentioned respiratory alterations. Prenatal treatment with ethanol was not found to alter pharmacokinetic profiles resulting from postnatal exposure to the drug or to affect different morphometric parameters related with lung development. These

  13. REPLACEMENT WITH GABAERGIC STEROID PRECURSORS RESTORES THE ACUTE ETHANOL WITHDRAWAL PROFILE IN ADX/GDX MICE

    PubMed Central

    Kaufman, KR; Tanchuck, MA; Strong, MN; Finn, DA

    2010-01-01

    The neurosteroid allopregnanolone (ALLO) is a progesterone metabolite that is one of a family of neuroactive steroids (NAS) that are potent positive allosteric modulators of γ-aminobutyric acidA (GABAA) receptors. These GABAergic NAS are produced peripherally (in the adrenals and gonads) and centrally in the brain. Peripherally produced NAS modulate some effects of ethanol intoxication (e.g., anxiolytic, antidepressant, and anticonvulsant effects) in rodents. We have found that NAS also may be involved in the rebound neural hyperexcitability following a high ethanol dose. Removal of the adrenals and gonads (ADX/GDX) increased withdrawal severity following 4 g/kg ethanol, as measured by handling-induced convulsions (HICs) in male and female DBA/2J mice. NAS are produced through the metabolism of progesterone (PROG), deoxycorticosterone (DOC), or testosterone, which can be blocked with the administration of finasteride (FIN), a 5α-reductase enzyme inhibitor. The current investigation was undertaken to clarify the step(s) in the biosynthetic NAS pathway that were sufficient to restore the acute ethanol withdrawal profile in ADX/GDX mice to that seen in intact animals. Male and female DBA/2J mice underwent ADX/GDX or SHAM surgery. After recovery, separate groups of animals were administered PROG, DOC, PROG+FIN, DOC+FIN, FIN, ALLO, ganaxalone (a synthetic ALLO derivative), corticosterone, or vehicle. Animals were then administered a 4 g/kg ethanol dose and allowed to undergo withdrawal. HICs were measured for 12 hours and again at 24 hours. The results indicate that replacement with PROG and DOC restored the withdrawal profile in ADX/GDX animals to SHAM levels, and that this effect was blocked with co-administration of FIN. Administration of FIN alone increased the withdrawal profile in both SHAM and ADX/GDX males. These findings indicate that the increase in acute withdrawal severity after ADX/GDX may be due to the loss of GABAergic NAS, providing insight into the

  14. Gastroprotective Effects of PMK-S005 against Ethanol-Induced Acute Gastric Damage in Rats

    PubMed Central

    Choi, Yoon Jeong; Kim, Nayoung; Lee, Ju Yup; Nam, Ryoung Hee; Seo, Ji Hyung; Lee, Seonmin; Kim, Hee Jin; Choi, Yoon Jin; Lee, Hye Seung; Lee, Dong Ho

    2016-01-01

    Background/Aims This study aimed to examine the gastroprotective effects of PMK-S005, which is a synthetic S-allyl-l-cysteine (SAC; a sulfur-containing amino acid), against acute ethanol-induced gastric damage in rats. Methods Sprague-Dawley rats were divided into six groups, including a nonethanol group, groups treated with absolute ethanol 1 hour after pretreatment with various doses of PMK-S005 (1, 5, and 10 mg/kg) or rebamipide (50 mg/kg), and an absolute ethanol-only group. Ethanol-induced gross ulcer and mucus levels were measured. Myeloperoxidase, tumor necrosis factor α, interleukin 1β, PGE2, LTB4, cPLA2, COX-1, and COX-2 levels were estimated by enzyme-linked immunosorbent assay or Western blot analysis. Furthermore, the protein expression levels of antioxidant enzymes, including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO-1), GCLC, and GCLM, were assessed. Results PMK-S005 significantly attenuated the ethanol-induced gastric damage; it reduced mucosal inflammatory cytokine production and increased mucus levels. The expression levels of cPLA2, COX-1, and COX-2 were decreased by PMK-S005. PMK-S005 did not affect PGE2 synthesis, but LTB4 production was significantly suppressed. In addition, long-term administration of PMK-S005 significantly increased the expression of HO-1, NQO-1, GCLC, and GCLM. Conclusions These results strongly suggest that PMK-S005 prevents gastric mucosal damage and that these gastroprotective activities are due to anti-inflammatory effects and enhancement of the gastric defense system, including antioxidant enzymes. PMID:26347516

  15. Dose-dependent increase and decrease in active glucose uptake in jejunal epithelium of broilers after acute exposure to ethanol.

    PubMed

    Yunus, Agha Waqar; Awad, Wageha A; Kröger, Susan; Zentek, Jürgen; Böhm, Josef

    2011-06-01

    Little is known about the effects of ethanol on gastrointestinal tract of chicken. In this study, we investigated the effects of low levels of ethanol on electrophysiological variables of jejunal epithelium of commercial broilers. Jejunal tissues from 35- to 39-day-old broilers were exposed to either 0 or 0.1% ethanol in Ussing chambers, and electrophysiological variables were monitored for 40 min. After 40 and 60 min of incubation, glucose (20 mM) and carbamoylcholine (200 μM), respectively, were introduced into the chambers. The absolute and percent increase in short-circuit current (Isc) and potential difference (Vt) induced by glucose were increased significantly with 0.1% ethanol. There was no significant effect of 0.1% ethanol on carbamoylcholine-induced electrophysiological variables. To investigate if higher levels of ethanol have similar effects, we tested the effects of 0, 0.33, and 0.66% ethanol under similar experimental conditions until the glucose-addition step. Contrary to 0.1% ethanol, both the 0.33 and 0.66% ethanol levels significantly decreased the basal and glucose-induced Isc and Vt. Tissue conductivity remained unaffected in all cases. These results indicate that intestinal epithelia of chicken may be more sensitive to the effects of ethanol as compared with other species. This is the first report indicating dose-dependent increase and decrease in active glucose absorption in intestinal epithelia in the presence of ethanol.

  16. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.

    PubMed

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-02-18

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.

  17. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-02-01

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO2 (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO2), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.

  18. The effects of the acute administration of low-dosage ethanol on the phasic neurochemical oscillations of the basal ganglia.

    PubMed

    Noori, H R

    2012-09-01

    The effects of the acute ethanol consumption on the brain's neurochemistry are largely studied at the synaptic level. Here, the acute action of low dosages of ethanol, in terms of the inhibition of the glutamatergic system through antagonizing the N-methyl-D-aspartate receptors, on the neurochemical oscillations along the neurocircuitry of the basal ganglia is investigated by mathematical models. Substantial alterations in the dynamical behaviour of the neurochemical oscillations after single administration of low dosages of ethanol have been observed. Significant dynamical changes in the gamma-aminobutyric acid and glutamate systems along the subthalamic-pallidal feedback loop and the dopamine system of the striatal complex suggest new perspectives in the understanding of the ethanol-induced motor dysfunctions.

  19. Robust and sensitive analysis of methanol and ethanol from cellulose degradation in mineral oils.

    PubMed

    Jalbert, Jocelyn; Duchesne, Steve; Rodriguez-Celis, Esperanza; Tétreault, Pierre; Collin, Pascal

    2012-09-21

    Methanol and ethanol have been identified as oil-soluble by-products generated by the aging of oil-impregnated cellulosic insulation materials of power transformers. Their presence provides useful information for diagnostics and end-of-life transformer estimation. Despite their value as cellulose degradation indicators, their sensitive and accurate determination is challenged by the complex oil matrix. To overcome this constraint, we present a simple, fast and direct procedure for their simultaneous determination in mineral insulating oil samples. The procedure uses a static headspace sampler coupled with a gas chromatograph equipped with a mass spectrometer. The selected method parameters permitted adequate separation of these two compounds from the complex oil matrix and quantification at ng g(-1) concentrations. An original internal standard procedure was developed, in which ethanol-d6 was added to all studied samples and blanks, with adequate resolution between the internal standard and its isotopomer ethanol. The method was validated in terms of accuracy and reproducibility for both analytes. The method detection limit, 4 ng g(-1) for methanol and ethanol, is well below the value (μg g(-1)) achieved by a standardized method for methanol determination in crude oil. During method validation studies, a relative error of approximately 6% was obtained for both methanol and ethanol with excellent reproducibility, average %RSD, below 2%. An experiment control chart, constructed to evaluate long-term reproducibility, indicate an overall good reproducibility (%RSD<3%) for 1000 ng g(-1) control solutions. The applicability of the method to the direct analysis of trace methanol and ethanol in oil from field transformer samples was successfully demonstrated. This analytical method is of high relevance to the electrical utilities as it allows indirectly assessment of the level of deterioration of the critical cellulose, an inaccessible part of a power transformer.

  20. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice.

    PubMed

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2h and was 1.7-fold greater than that observed in the control group after 6h. The up-regulation of GPD1 began 2h after administering ethanol, and significantly increased 6h later with the concomitant escalation in the glycolytic gene expression. The incorporation of (14)C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  1. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.

    PubMed

    Park, Seung-Kyu; Qi, Xu-Feng; Song, Soon-Bong; Kim, Dong-Heui; Teng, Yung-Chien; Yoon, Yang-Suk; Kim, Kwang-Yong; Li, Jian-Hong; Jin, Dan; Lee, Kyu-Jae

    2009-10-01

    Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms.

  2. Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice.

    PubMed

    Baker, Jessica A; Li, Jingxin; Zhou, Diana; Yang, Ming; Cook, Melloni N; Jones, Byron C; Mulligan, Megan K; Hamre, Kristin M; Lu, Lu

    2017-02-01

    Alcohol abuse is a complex disorder, which is confounded by other factors, including stress. In the present study, we examined gene expression in the hippocampus of BXD recombinant inbred mice after exposure to ethanol (NOE), stress (RSS), and the combination of both (RSE). Mice were given an intraperitoneal (i.p.) injection of 1.8 g/kg ethanol or saline, and subsets of both groups were exposed to acute restraint stress for 15 min or controls. Gene expression in the hippocampus was examined using microarray analysis. Genes that were significantly (p < 0.05, q < 0.1) differentially expressed were further evaluated. Bioinformatic analyses were predominantly performed using tools available at GeneNetwork.org, and included gene ontology, presence of cis-regulation or polymorphisms, phenotype correlations, and principal component analyses. Comparisons of differential gene expression between groups showed little overlap. Gene Ontology demonstrated distinct biological processes in each group with the combined exposure (RSE) being unique from either the ethanol (NOE) or stress (RSS) group, suggesting that the interaction between these variables is mediated through diverse molecular pathways. This supports the hypothesis that exposure to stress alters ethanol-induced gene expression changes and that exposure to alcohol alters stress-induced gene expression changes. Behavior was profiled in all groups following treatment, and many of the differentially expressed genes are correlated with behavioral variation within experimental groups. Interestingly, in each group several genes were correlated with the same phenotype, suggesting that these genes are the potential origins of significant genetic networks. The distinct sets of differentially expressed genes within each group provide the basis for identifying molecular networks that may aid in understanding the complex interactions between stress and ethanol, and potentially provide relevant therapeutic targets. Using Ptp4

  3. Carnosic acid attenuates acute ethanol-induced liver injury via a SIRT1/p66Shc-mediated mitochondrial pathway.

    PubMed

    Tian, Xinyao; Hu, Yan; Li, Mingzhu; Xia, Kun; Yin, Jiye; Chen, Juan; Liu, Zhaoqian

    2016-04-01

    Ethanol-induced liver injury is associated with oxidative stress and hepatocyte apoptosis. We previously demonstrated that SIRT1/p66Shc pathway activation attenuates hepatocyte apoptosis in liver ischemia/reperfusion. The current study aimed to investigate whether carnosic acid (CA), a natural antioxidant, can inhibit acute ethanol-induced apoptosis of hepatocytes and to determine the effect of SIRT1/p66Shc on this process. Our results showed that CA pretreatment significantly reduced ethanol-induced histologic damage, serum aminotransferase activity, and oxidative stress in rats. Importantly, CA pretreatment increased SIRT1 expression following ethanol exposure. Furthermore, p66Shc expression was negatively correlated with SIRT1 expression. Consistent with the results demonstrating p66Shc inhibition, CA pretreatment inhibited the release of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria. After exposing L02 cells to ethanol, the increased SIRT1 expression induced by CA was abrogated by pharmacologic SIRT1 inhibition or the use of siRNA against SIRT1. Additionally, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and mitochondrial translocation induced by CA. Accordingly, CA-induced decreases in the release of cytochrome C and AIF and in mitochondrial apoptosis were nearly abolished by SIRT1 knockdown. These data indicated that CA-activated SIRT1 is protective against ethanol treatment. In summary, CA attenuates acute ethanol-induced liver injury via a SIRT1/p66Shc-mediated mitochondrial pathway.

  4. Effect of the consumption of ethanol on the microcirculation of the human optic nerve head in the acute phase

    PubMed

    Kojima; Sugiyama; Kojima; Azuma; Ito

    2000-05-01

    Purpose: The effect of the consumption of ethanol on the circulation of the optic nerve head (ONH) in the human eye in the acute phase and its mechanism were studied.Methods: Eleven volunteers drank a bottle of beer (633 mL) with or without ethanol (29.5 g). Normalized blur (NB), a quantitative index of blood flow velocity, was measured in the temporal site of the ONH. NB, blood pressure (BP) and pulse rate (PR) were measured before, immediately after, and every 15 minutes for 90 minutes after consumption. Intraocular pressure (IOP) and plasma ethanol concentration were measured before, and 30 and 90 minutes after consumption. Genotyping of the aldehyde dehydrogenase (ALDH) 2 gene was also performed.Results: NB in the ONH increased significantly from 15 to 45 minutes after consumption of ethanol and the maximum increase was 14% at 15 minutes. IOP was lowered at 90 minutes after consumption, but it was not significant. Mean BP was lowered significantly after 60 minutes. PR and ocular perfusion pressure did not change. A significant correlation was found between plasma ethanol concentration at 30 minutes and maximum NB. NB in the ALDH 2-deficient group was significantly larger from 15 to 45 minutes after consumption than in the proficient group.Conclusions: It appeared that the consumption of ethanol can increase the blood flow in the human ONH in the acute phase through decreased resistance in blood vessels induced by acetaldehyde, a metabolite of ethanol.

  5. Acute ethanol-induced changes in edema and metabolite concentrations in rat brain.

    PubMed

    Liu, Huimin; Zheng, Wenbin; Yan, Gen; Liu, Baoguo; Kong, Lingmei; Ding, Yan; Shen, Zhiwei; Tan, Hui; Zhang, Guishan

    2014-01-01

    The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy ((1)H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased significantly at 1 h and 3 h after ethanol administration. ADC values in frontal lobe were decreased significantly compared with other regions at 3 h. For EtOH/Cr+PCr and cerebral metabolites (Cho, Tau, and Glu) differing over time, no significant differences for Ins, NAA, and Cr were observed in frontal lobes. Regression analysis revealed a significant association between TSEtOH/Cr+PCr and TSCho, TSTau, TSGlu, and TSADC. The changes of ADC values in different brain regions reflect the process of the cytotoxic edema in vivo. The characterization of frontal lobes metabolites changes and the correlations between TSEtOH/Cr+PCr and TSCho, TSTau, and TSGlu provide a better understanding for the biological mechanisms in neurotoxic effects of EtOH on the brain. In addition, the correlations between TSEtOH/Cr+PCr and TSADC will help us to understand development of the ethanol-induced brain cytotoxic edema.

  6. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2.

    PubMed

    Xie, Weidong; Wang, Wei; Su, Hui; Xing, Dongming; Pan, Yang; Du, Lijun

    2006-08-01

    Ethanolic extracts of Ananas comosus L. leaves (AC) enriched with phenols have hypoglycemic activity in diabetic rats. Here, we investigated the effect of AC on insulin sensitivity in rats and HepG2. In high-fat diet-fed and low-dose streptozotozin-treated diabetic Wistar rats subjected to challenge with exogenous human insulin, AC treatment at an oral dose of 0.40 g/kg could significantly improve sensitivity to exogenous insulin. After a sub-acute treatment, AC also could inhibit the development of insulin resistance in high-fat diet-fed and low-dose streptozotozin-treated diabetic rats following the test of loss of tolbutamide-induced blood glucose lowering action. For intravenous insulin/glucose infusion test, high-fat diet-fed and low-dose alloxan-treated Wistar rats were associated with insulin resistance, which was improved after AC or fenofibrate treatment. AC application inhibited the development of insulin resistance in HepG2 cells. The above animal models were well developed to simulate type 2 diabetes. Taken together, our results suggest that AC may improve insulin sensitivity in type 2 diabetes and could be developed into a new potential natural product for handling of insulin resistance in diabetic patients.

  7. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    SciTech Connect

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  8. Acute effects of ethanol on the transfer of nicotine and two dietary carcinogens in human placental perfusion.

    PubMed

    Veid, Jenni; Karttunen, Vesa; Myöhänen, Kirsi; Myllynen, Päivi; Auriola, Seppo; Halonen, Toivo; Vähäkangas, Kirsi

    2011-09-10

    Many mothers use, against instructions, alcohol during pregnancy. Simultaneously mothers are exposed to a wide range of other environmental chemicals. These chemicals may also harm the developing fetus, because almost all toxic compounds can go through human placenta. Toxicokinetic effects of ethanol on the transfer of other environmental compounds through human placenta have not been studied before. It is known that ethanol has lytic properties and increases the permeability and fluidity of cell membranes. We studied the effects of ethanol on the transfer of three different environmental toxins: nicotine, PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine) and NDMA (N-nitrosodimethylamine) in placental perfusion. We tested in human breast cancer adenocarcinoma cell line MCF-7 whether ethanol affects ABCG2/BCRP, which is also the major transporter in human placenta. We found that the transfer of ethanol is comparable to that of antipyrine, which points to passive diffusion as the transfer mechanism. Unexpectedly, ethanol had no statistically significant effect on the transfer of the other studied compounds. Neither did ethanol inhibit the function of ABCG2/BCRP. These experiments represent only the effects of acute exposure to ethanol and chronic exposure remains to be studied.

  9. Biomarkers of Acute Respiratory Allergen Exposure: Screening For Sensitization Potential

    EPA Science Inventory

    Rationale: An in vitro assay to identify respiratory sensitizers will provide a rapid screen and reduce animal use. The study goal was to identify biomarkers that differentiate allergen versus non-allergen responses following an acute exposure. Methods: Female BALB/c mice rec...

  10. Highly sensitive gas chromatographic determination of ethanol in human urine samples.

    PubMed

    Zilly, Michael; Langmann, Peter; Lenker, Ulrike; Satzinger, Verena; Schirmer, Diana; Klinker, Hartwig

    2003-12-25

    In order to evaluate recent alcohol consumption, a very sensitive and specific gas chromatographic method for ethanol determination in human urine samples was developed. The non-invasive method was performed without any pretreatment and carried out on a Stabilwax capillary column, 30 m x 0.53 mm x 1.0 microm film thickness. Helium was used as carrier gas with a constant inlet pressure of 27.72 kPa (0.277 bar) and a flame ionization detector (FID). Quantification was performed with the use of acetonitrile as an internal standard (IS). The calibration curve was linear throughout the concentration range from 0.5 to 500 mg/l. The calculated intra- and inter-day coefficients of variation were below 8%. A clear chromatographic separation of ethanol from methanol, acetone, 1-propanol and 2-propanol was achieved.

  11. Changes in dendritic spine density in the nucleus accumbens do not underlie ethanol sensitization.

    PubMed

    Nona, Christina N; Bermejo, Marie Kristel; Ramsey, Amy J; Nobrega, José N

    2015-12-01

    Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.

  12. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice.

    PubMed

    Rustay, Nathan R; Wahlsten, Douglas; Crabbe, John C

    2003-05-15

    Motor performance in mice can be assessed with multiple apparatus and protocols. Use of the rotarod (a.k.a. rotorod, rota-rod, roto-rod, or accelerod) is very common, and it is often used with the apparent assumption by the experimenters that it is a straightforward and simple assay of coordination. The rotarod is sensitive to drugs that affect motor coordination, including ethanol. However, there are few systematic data assessing the range of "normal" performance in mice. There are also few data exploring optimal task parameters (e.g. the influence of different speeds of rotation). In these experiments, we show that both accelerating and fixed-speed rotarod (FSRR) performance vary under different test protocols and conditions, and that moderate to high doses of ethanol disrupt performance. Under certain conditions, low doses of ethanol were found to enhance performance on the accelerating rotarod (ARR). Therefore, it is not possible to characterize individual differences fully using a single set of test parameters. For example, because of the biphasic effect of ethanol on performance, at least two doses of the drug are necessary to explore individual sensitivity differences. We offer recommendations of parameters we believe to be generally suitable for exploring the performance of new genotypes using the rotarod. We suggest that other putative tests of "ataxia" are similarly complex, and that characterizing the contribution of genetic differences will require similar attention to the details of task apparatus and protocols. These data also underscore the need to employ multiple behavioral assays in order to model a complex domain such as "ataxia" or "coordination."

  13. Comparative studies of oral administration of marine collagen peptides from Chum Salmon (Oncorhynchus keta) pre- and post-acute ethanol intoxication in female Sprague-Dawley rats.

    PubMed

    Liang, Jiang; Li, Qiong; Lin, Bing; Yu, Yongchao; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2014-09-01

    The present study aimed to evaluate the effect of an oral administration of marine collagen peptides (MCPs) pre- and post-acute ethanol intoxication in female Sprague-Dawley (SD) rats. MCPs were orally administered to rats at doses of 0 g per kg bw, 2.25 g per kg bw, 4.5 g per kg bw and 9.0 g per kg bw, prior to or after the oral administration of ethanol. Thirty minutes after ethanol treatment, the effect of MCPs on motor incoordination and hypnosis induced by ethanol were investigated using a screen test, fixed speed rotarod test (5 g per kg bw ethanol) and loss of righting reflex (7 g per kg bw ethanol). In addition, the blood ethanol concentrations at 30, 60, 90, and 120 minutes after ethanol administration (5 g per kg bw ethanol) were measured. The results of the screen test and fixed speed rotarod test suggested that treatment with MCPs at 4.5 g per kg bw and 9.0 g per kg bw prior to ethanol could attenuate ethanol-induced loss of motor coordination. Moreover, MCP administered both pre- and post-ethanol treatment had significant potency to alleviate the acute ethanol induced hypnotic states in the loss of righting reflex test. At 30, 60, 90 and 120 minutes after ethanol ingestion at 5 g per kg bw, the blood ethanol concentration (BEC) of control rats significantly increased compared with that in the 4.5 g per kg bw and 9.0 g per kg bw MCP pre-treated groups. However, post-treatment with MCPs did not exert a significant inhibitory effect on the BEC of the post-treated groups until 120 minutes after ethanol administration. Therefore, the anti-inebriation effect of MCPs was verified in SD rats with the possible mechanisms related to inhibiting ethanol absorption and facilitating ethanol metabolism. Moreover, the efficiency was better when MCPs were administered prior to ethanol.

  14. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  15. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats.

    PubMed

    Rosas, Michela; Zaru, Alessandro; Sabariego, Marta; Giugliano, Valentina; Carboni, Ezio; Colombo, Giancarlo; Acquas, Elio

    2014-08-01

    Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol.

  16. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    PubMed Central

    Zhang, Changwen; Ellis, Jillian L.

    2016-01-01

    ABSTRACT Alcoholic liver disease (ALD) results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF) and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the zebrafish model

  17. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat.

    PubMed

    Souli, Abdelaziz; Sebai, Hichem; Chehimi, Latifa; Rtibi, Kaïs; Tounsi, Haifa; Boubaker, Samir; Sakly, Mohsen; El-Benna, Jamel; Amri, Mohamed

    2015-09-01

    The present study was undertaken to determine whether subacute treatment with aqueous extract of carob (Ceratonia siliqua L.) pods (AECPs) protects against ethanol (EtOH)-induced oxidative stress in rat liver. Animals were divided into four groups: control, carob, EtOH and EtOH + carob. Wistar rats were intraperitoneally pretreated with AECP (600 mg/kg body weight (bw)) during 7 days and intoxicated for 6 h by acute oral administration of EtOH (6 g/kg bw) 24 h after the last injection. We found that acute administration of EtOH leads to hepatotoxicity as monitored by the increase in the levels of hepatic marker aspartate aminotransferase and alanine aminotransferase as well as hepatic tissue injury. EtOH also increased the formation of malondialdehyde in the liver, indicating an increase in lipid peroxidation and depletion of antioxidant enzyme activities as superoxide dismutase, catalase and glutathione peroxidase. Subacute carob pretreatment prevented all the alterations induced by EtOH and returned their levels to near normal. Importantly, we showed that acute alcohol increased hepatic and plasmatic hydrogen peroxide and free iron levels. The carob pretreatment reversed EtOH effects to near control levels. These data suggest that carob could have a beneficial effect in inhibiting the oxidative damage induced by acute EtOH administration and that its mode of action may involve an opposite effect on plasma and tissue-free iron accumulation. Indeed, carob can be offered as a food additive to protect against EtOH-induced oxidative damage.

  18. Increased Sensitivity to Heparin Following Acute Myocardial Infarction

    PubMed Central

    Dufault, C.

    1965-01-01

    In vivo increased sensitivity to heparin has been demonstrated in patients following an acute myocardial infarction. An intravenous injection of 10,000 units of heparin was given to each of 18 patients with recent myocardial infarction in order to compare them with 17 patients who were not suffering from any acute illness. The changes in whole blood clotting time, recalcified plasma clotting time and prothrombin time were greater and more prolonged in the patients with recent myocardial infarction. Of the three tests, the one-stage prothrombin time provided the simplest and the most precise measurement of heparin sensitivity. The reason for this was not clear: it is possible that it is related to shock and congestive heart failure which were complications of the clinical course following myocardial infarction. PMID:14216140

  19. Actions of ethanol on voltage-sensitive sodium channels: effects on neurotoxin-stimulated sodium uptake in synaptosomes.

    PubMed

    Mullin, M J; Hunt, W A

    1985-02-01

    Exposure of rat brain synaptosomes to ethanol in vitro reduced the neurotoxin-stimulated uptake of 22Na+. This effect of ethanol was concentration-dependent, occurred with concentrations of ethanol achieved in vivo and was fully reversible. The inhibitory effect of ethanol on neurotoxin-stimulated sodium uptake was due to a decrease in the maximal effect of the neurotoxins. Ethanol reduced the rate of batrachotoxin-stimulated sodium uptake when measured at 3, 5 and 7 but not 10 or 20 sec after the addition of 22Na+. In a series of aliphatic alcohols, there was a good correlation between potency for inhibition of batrachotoxin-stimulated 22Na+ uptake and the membrane/buffer partition coefficient, suggesting that a hydrophobic site in the membrane was involved in the action of the alcohols. Ethanol did not affect the scorpion venom-induced enhancement of batrachotoxin-stimulated sodium uptake. The inhibitory potency of tetrodotoxin was also unaffected by ethanol. These results demonstrate that ethanol has an inhibitory effect on neurotoxin-stimulated sodium influx occurring in voltage-sensitive sodium channels of brain tissue.

  20. Cytokine Changes following Acute Ethanol Intoxication in Healthy Men: A Crossover Study

    PubMed Central

    Skulberg, Andreas; Skulberg, Knut Ragnvald; Aass, Hans Christian D.; Bramness, Jørgen G.

    2016-01-01

    Alcohol is a known modulator of the innate immune system. Owing to the absence of human studies, alcohol's effect on circulating cytokine profile remains unclear. We investigated the effect of acute high dose alcohol consumption on systemic cytokine release. After an overnight fasting, alcohol-experienced healthy male volunteers (N = 20) aged 25–45 years were given oral ethanol in the form of vodka (4.28 mL/kg) which they drank over a period of 30 minutes reaching peak blood alcohol concentration of 0.12% (SD 0.028). Blood samples were obtained prior to alcohol intake as well as 2, 7, and 12 hours thereafter. Serum levels of the inflammatory cytokines IL-1β, IL-1Ra, IL-6, IL-10, IL-17, IFN-γ, MCP-1, and TNF-α were determined by the multibead-based assay. Baseline cytokine levels were not related to BMI, hepatic parameters, electrolytes, glucose, or morning cortisol levels. Within 2 hours of alcohol intake, levels of IL-1Ra were elevated and remained so throughout the assessment period (p for trend = 0.015). In contrast, the levels of the chemokine MCP-1 dropped acutely followed by steadily increasing levels during the observation period (p < 0.001). The impact of sustained elevated levels of MCP-1 even after the clearance of blood alcohol content deserves attention. PMID:28090151

  1. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    PubMed

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  2. Acute ethanol treatment induces a bimodal response of phospholipid acylation rates in rat red blood cells

    SciTech Connect

    Verine, A.; Valette, A.; Richard, D.; Boyer, J. )

    1991-01-01

    A single intraperitoneal injection of ethanol in rats elicited a bimodal response of acylation rates in phosphatidylcholine and phosphatidylethanolamine of intact red blood cells. Within an initial period, ethanol inhibited acylation rates. The inhibition then reversed, leading to increased values which persisted as long as ethanol was present in plasma. Acylation rates were not correlated to ethanol concentrations in plasma. The authors suggest that red cells first desensitize to, then overcompensate for the inhibitory effect of ethanol on acylation reactions. These adaptive changes may be one of the events mediating membrane tolerance to ethanol.

  3. Food proteins and gut mucosal barrier. IV. Effects of acute and chronic ethanol administration on handling and uptake of bovine serum albumin by rat small intestine

    SciTech Connect

    Stern, M.; Carter, E.A.; Walker, W.A.

    1986-11-01

    The effects of ethanol exposure on small intestinal handling and uptake of radiolabeled bovine serum albumin were investigated using everted gut sacs. There was less breakdown of BSA after acute ethanol administration in vitro and after acute and chronic in vivo exposure. Thus, the vascular compartment of the small intestine was confronted with more complete and potentially more antigenic material after ethanol. Changes in BSA binding and uptake after acute exposure were shown to be reversible after 4-6 hr. In all groups, there was more BSA binding when the small intestine was exposed to ethanol. This difference was most pronounced after chronic exposure. In the same group, uptake of BSA was correlated with binding and significantly increased. Combined effects of ethanol on the gut mucosal barrier may account for changes in food antigen handling and uptake.

  4. Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production.

    PubMed

    Xu, Feng; Shi, Yong-Cheng; Wu, Xiaorong; Theerarattananoon, Karnnalin; Staggenborg, Scott; Wang, Donghai

    2011-05-01

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  5. Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods.

    PubMed

    Alimov, Alexander; Wang, Haiping; Liu, Mei; Frank, Jacqueline A; Xu, Mei; Ou, Xiaoming; Luo, Jia

    2013-12-01

    Fetal alcohol spectrum disorders (FASD) results from ethanol exposure to the developing fetus and is the leading cause of mental retardation. FASD is associated with a broad range of neurobehavioral deficits which may be mediated by ethanol-induced neurodegeneration in the developing brain. An immature brain is more susceptible to ethanol neurotoxicity. We hypothesize that the enhanced sensitivity of the immature brain to ethanol is due to a limited capacity to alleviate cellular stress. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that subcutaneous injection of ethanol induced a wide-spread neuroapoptosis in postnatal day 4 (PD4) C57BL/6 mice, but had little effect on the brain of PD12 mice. We analyzed the expression profile of genes regulating apoptosis, and the pathways of ER stress response (also known as unfolded protein response, UPR) and autophagy during these ethanol-sensitive and resistant periods (PD4 versus PD12) using PCR microarray. The expression of pro-apoptotic genes, such as caspase-3, was much higher on PD4 than PD12; in contrast, the expression of genes that regulate UPR and autophagy, such as atf6, atg4, atg9, atg10, beclin1, bnip3, cebpb, ctsb, ctsd, ctss, grp78, ire1α, lamp, lc3 perk, pik3c3, and sqstm1 was significantly higher on PD12 than PD4. These results suggest that the vulnerability of the immature brain to ethanol could result from high expression of pro-apoptotic proteins and a deficiency in the stress responsive system, such as UPR and autophagy.

  6. Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: a time course analysis.

    PubMed

    Pannia, Emanuela; Tran, Steven; Rampersad, Mindy; Gerlai, Robert

    2014-02-01

    The zebrafish has been proposed as a model organism to study genetic effects influencing behaviour and also as a tool with which the mechanisms of the action of alcohol (ethanol or EtOH) in the vertebrate brain may be investigated. In the current study we exposed zebrafish from two genetically distinct strains (WIK and TU) to a computer animated image of a natural predator of this species, the Indian leaf fish. We measured the subjects' behavioural responses in the presence of different acute doses of alcohol (0.00, 0.25, 0.50, and 1.00% vol/vol) using an observation based event-recording method. We found fish of both strains to exhibit an atypical predator inspection response during the presentation of the animated predator image coupled with a classical fear response, increased jumping frequency. We found numerous alcohol induced behavioural changes and more importantly also revealed alcohol induced strain dependent changes as well, including different dose-response trajectories for WIK vs. TU in predator inspection response, general swimming activity, location of swimming (top vs. bottom half of the tank) and freezing. The results suggest that zebrafish of the TU strain may be more tolerant at least to lower doses of alcohol as compared to WIK. The characterization of strain differences in zebrafish will aid the identification of possible molecular mechanisms involved in alcohol's actions in the vertebrate brain.

  7. Markers of gluten sensitivity in acute mania: a longitudinal study.

    PubMed

    Dickerson, Faith; Stallings, Cassie; Origoni, Andrea; Vaughan, Crystal; Khushalani, Sunil; Yolken, Robert

    2012-03-30

    Increased levels of antibodies to gliadin, which is derived from the wheat protein gluten, have been reported in schizophrenia and bipolar disorder in cross-sectional studies. We examined longitudinally the levels of antibody reactivity to gliadin in acute mania. The sample included 60 individuals assessed during a hospital stay for acute mania, 39 at a 6-month follow-up, and a sample of 143 non-psychiatric controls. Antibodies to gliadin were measured by enzyme immunoassay. The relationship of the antibodies to the clinical course of mania was analyzed by the use of regression models. Individuals with mania had significantly increased levels of IgG antibodies to gliadin, but not other markers of celiac disease, at baseline compared with controls in multivariate analyses. However, these levels were not significantly different from those of controls at the six month follow-up. Among the individuals with mania, elevated levels at follow-up were significantly associated with re-hospitalization in the 6-month follow-up period. The monitoring and control of gluten sensitivity may have significant effects on the management of individuals hospitalized with acute mania.

  8. Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light

    PubMed Central

    Rahman, Shadab A.; Flynn-Evans, Erin E.; Aeschbach, Daniel; Brainard, George C.; Czeisler, Charles A.; Lockley, Steven W.

    2014-01-01

    Study Objectives: Previous studies have demonstrated short-wavelength sensitivity for the acute alerting response to nocturnal light exposure. We assessed daytime spectral sensitivity in alertness, performance, and waking electroencephalogram (EEG). Design: Between-subjects (n = 8 per group). Setting: Inpatient intensive physiologic monitoring unit. Participants: Sixteen healthy young adults (mean age ± standard deviation = 23.8 ± 2.7 y). Interventions: Equal photon density exposure (2.8 × 1013 photons/cm2/s) to monochromatic 460 nm (blue) or 555 nm (green) light for 6.5 h centered in the middle of the 16-h episode of wakefulness during the biological day. Results were compared retrospectively to 16 individuals who were administered the same light exposure during the night. Measurements and Results: Daytime and nighttime 460-nm light exposure significantly improved auditory reaction time (P < 0.01 and P < 0.05, respectively) and reduced attentional lapses (P < 0.05), and improved EEG correlates of alertness compared to 555-nm exposure. Whereas subjective sleepiness ratings did not differ between the two spectral conditions during the daytime (P > 0.05), 460-nm light exposure at night significantly reduced subjective sleepiness compared to 555-nm light exposure at night (P < 0.05). Moreover, nighttime 460-nm exposure improved alertness to near-daytime levels. Conclusions: The alerting effects of short-wavelength 460-nm light are mediated by counteracting both the circadian drive for sleepiness and homeostatic sleep pressure at night, but only via reducing the effects of homeostatic sleep pressure during the day. Citation: Rahman SA; Flynn-Evans EE; Aeschbach D; Brainard GC; Czeisler CA; Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. SLEEP 2014;37(2):271-281. PMID:24501435

  9. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    PubMed

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration.

  10. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.

    PubMed

    Guo, Ning; Lin, Jia; Peng, Xiaolan; Chen, Haojun; Zhang, Yinglan; Liu, Xiuyun; Li, Qiang

    2015-11-01

    Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.

  11. Glutathione Depletion and Recovery After Acute Ethanol Administration in the Aging Mouse

    PubMed Central

    Vogt, Barbara L.; Richie, John P.

    2007-01-01

    Glutathione (GSH) plays an important role in the detoxification of ethanol (EtOH) and acute EtOH administration leads to GSH depletion in the liver and other tissues. Aging is also associated with a progressive decline in GSH levels and impairment in GSH biosynthesis in many tissues. Thus, the present study was designed to examine the effects of aging on EtOH-induced depletion and recovery of GSH in different tissues of the C57Bl/6NNIA mouse. EtOH (2-5 g/kg) or saline was administered i.p. to mice of ages 6 mo (young), 12 mo (mature), and 24 mo (old); and GSH and cyst(e)ine concentrations were measured 0-24 hours thereafter. EtOH administration (5g/kg) depleted hepatic GSH levels >50% by 6 hr in all animals. By 24 hr, levels remained low in both young and old mice, but recovered to baseline levels in mature mice. At 6 hr, the decrease in hepatic GSH was dose-dependent up to 3 g/kg EtOH, but not at higher doses. The extent of depletion at the 3 g/kg dose was dependent upon age, with old mice demonstrating significantly lower GSH levels than mature mice (P<0.001). Altogether these results indicate that aging was associated with a greater degree of EtOH and fasting-induced GSH depletion and subsequent impaired recovery in liver. An impaired ability to recover was also observed in young animals. Further studies are required to determine if an inability to recover from GSH depletion by EtOH is associated with enhanced toxicity. PMID:17343832

  12. SOCIAL CONSEQUENCES OF ETHANOL: IMPACT OF AGE, STRESS AND PRIOR HISTORY OF ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena I.; Spear, Linda P.

    2014-01-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  13. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  14. Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production.

    PubMed

    Shinto, Hideaki; Tashiro, Yukihiro; Yamashita, Mayu; Kobayashi, Genta; Sekiguchi, Tatsuya; Hanai, Taizo; Kuriya, Yuki; Okamoto, Masahiro; Sonomoto, Kenji

    2007-08-01

    A kinetic simulation model of metabolic pathways that describes the dynamic behaviors of metabolites in acetone-butanol-ethanol (ABE) production by Clostridium saccharoperbutylacetonicum N1-4 was proposed using a novel simulator WinBEST-KIT. This model was validated by comparing with experimental time-course data of metabolites in batch cultures over a wide range of initial glucose concentrations (36.1-295 mM). By introducing substrate inhibition, product inhibition of butanol, activation of butyrate and considering the cessation of metabolic reactions in the case of insufficiency of energy after glucose exhaustion, the revised model showed 0.901 of squared correlation coefficient (r(2)) between experimental time-course of metabolites and calculated ones. Thus, the final revised model is assumed to be one of the best candidates for kinetic simulation describing dynamic behavior of metabolites in ABE production. Sensitivity analysis revealed that 5% increase in reaction of reverse pathway of butyrate production (R(17)) and 5% decrease in reaction of CoA transferase for butyrate (R(15)) highly contribute to high production of butanol. These system analyses should be effective in the elucidation which pathway is metabolic bottleneck for high production of butanol.

  15. Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine coagonist site

    PubMed Central

    Debrouse, Lauren; Hurd, Benita; Kiselycznyk, Carly; Plitt, Aaron; Todaro, Alyssa; Mishina, Masayoshi; Grant, Seth; Camp, Marguerite; Gunduz-Cinar, Ozge; Holmes, Andrew

    2012-01-01

    BACKGROUND Stimulating the glycineB binding site on the N-methyl-D-aspartate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. METHODS Effects of systemic injection of the glycineB agonist, D-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycineB antagonist, L-701,324, were tested for effects on EtOH-induced ataxia, hypothermia, loss of righting reflex duration (LORR) in C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mice. Effects of the glycineB partial agonist, D-cycloserine, the GlyT-1 inhibitor, NFPS, and the glycineB antagonist, DCKA, on EtOH-induced LORR duration were also tested. Interaction effects on EtOH-induced LORR duration were examined via combined treatment with D-serine and ALX-5407, D-serine and MK-801, D-serine and L-701,324, as well as L-701,324 and ALX-5407, in B6 mice, as D-serine in GluN2A and PSD-95 KO mice. The effect of dietary depletion of Magnesium (Mg), an element which interacts the glycineB site, was also tested. RESULTS Neither D-serine, D-cycloserine, ALX-5407, nor NFPS significantly affected EtOH intoxication on any of the measures or strains studied. L-701,324, but not DCKA, dose-dependently potentiated the ataxia-inducing effects of EtOH and increased EtOH-induced (but not pentobarbital-induced) LORR duration. D-serine did not have interactive effects on EtOH-induced LORR duration when combined with ALX-5407. The EtOH-potentiating effects of L-701,324, but not MK-801, on LORR duration were prevented by D-serine, but not ALX-5407. Mg depletion potentiated LORR duration in B6 mice and was lethal in a large proportion of S1 mice. CONCLUSIONS GlycineB site activation failed to produce the hypothesized reduction in EtOH intoxication across a range of measures and genetic strains, but blockade of the glycineB site potentiated Et

  16. The nicotinic acetylcholine receptor partial agonist varenicline increases the ataxic and sedative-hypnotic effects of acute ethanol administration in C57BL/6J mice

    PubMed Central

    Kamens, Helen M.; Andersen, Jimena; Picciotto, Marina R.

    2010-01-01

    Background The costs associated with alcohol abuse are staggering, therefore much effort has been put into developing new pharmacological strategies to decrease alcohol abuse. Recently, the nicotinic acetylcholine receptor (nAChR) partial agonist varenicline has been shown to decrease ethanol consumption in both humans and animal models. Methods We examined the effects of varenicline on the ataxic and sedative-hypnotic effects of ethanol. First, varenicline was administered prior to placement in a locomotor activity chamber to determine if varenicline influenced baseline locomotor activity. To determine the effect of nicotinic modulation on ethanol-induced motor incoordination, varenicline was administered 30 min prior to an acute ethanol injection and then mice were tested on the balance beam, dowel test or fixed-speed rotarod. To examine ethanol's sedative-hypnotic effects, varenicline was administered 30 min prior to 4 g/kg ethanol and the duration of loss of righting reflex (LORR) was measured. Results Varenicline markedly reduced baseline locomotor activity in C57BL/6J mice. Varenicline increased ethanol-induced ataxia when measured on the balance beam and dowel test, but had no effect when measured on the fixed-speed rotarod. Pretreatment with varenicline increased the duration of LORR. Conclusions These data provide evidence that nAChRs may be involved in the ataxic and sedative effects of ethanol. It is possible that one mechanism which could contribute to the ability of varenicline to decrease ethanol consumption may be through increasing negative behavioral effects of alcohol. PMID:20946306

  17. Enhancement by glutathione depletion of ethanol-induced acute hepatotoxicity in vitro and in vivo.

    PubMed

    Strubelt, O; Younes, M; Pentz, R

    1987-08-01

    Ethanol at initial concentrations between 0.75 and 6 g/l produced a dose-dependent release of the enzymes glutamic-pyruvic-transaminase and sorbitol dehydrogenase (GPT, SDH) from the isolated perfused rat liver. At the concentration of 6 g/l, it also decreased the oxygen consumption and elevated the calcium content of the isolated livers. These toxic effects of ethanol were significantly enhanced in livers, the glutathione content of which had been depleted by pretreatment with phorone. Ethanol-induced toxicity in glutathione-depleted isolated livers could be prevented both by inhibition of alcohol dehydrogenase with 4-methylpyrazole and of xanthine oxidase with allopurinol. In rats, in vivo, 1.6 g/kg ethanol injected intravenously produced a small increase in serum GPT and SDH concentrations 4 h after its administration. This increase in enzyme activities was several-fold higher and longer lasting in rats pretreated with phorone. Glutathione depletion per se did not induce hepatotoxicity in vitro or in vivo. Since glutathione is involved in several lines of defense against oxidative damage, our results of an enhanced susceptibility of glutathione-depleted livers to ethanol toxicity favour the hypothesis that ethanol exerts its hepatotoxic action via an activation of molecular oxygen.

  18. Sex differences in acute ethanol withdrawal severity after adrenalectomy and gonadectomy in Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant mice.

    PubMed

    Strong, Moriah N; Kaufman, Katherine R; Crabbe, John C; Finn, Deborah A

    2009-08-01

    Recent findings suggest that the ability of ethanol (EtOH) to increase the levels of neurosteroids with potent gamma-aminobutyric acid (GABA)ergic properties can influence measures of EtOH sensitivity. Earlier studies determined that removal of the adrenals and gonads diminished the steroidogenic effect of EtOH and significantly increased acute EtOH withdrawal severity in two inbred mouse strains that differed in withdrawal severity, suggesting the contribution of anticonvulsant GABAergic steroids to acute withdrawal in intact animals. Thus, the goal of the present study was to investigate the consequence of steroid removal on acute EtOH withdrawal through excision of the adrenals and gonads, in another genetic animal model of EtOH withdrawal differences, the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) selected lines. Male and female WSP and WSR mice underwent surgical removal of the adrenals and gonads or no organ removal (SHAM). One to 2 weeks later, baseline handling-induced convulsions (HICs) were assessed, mice were given a 4 g/kg dose of EtOH, and HICs were measured hourly for 12 h and then at 24 h. The combination surgery significantly increased EtOH withdrawal in WSP and WSR female mice, as measured by area under the curve (AUC) and peak HIC scores. The AUC was significantly positively correlated with plasma corticosterone levels and significantly negatively correlated with progesterone levels. In contrast, surgical status did not alter withdrawal severity in male WSP and WSR mice. Overall, the increase in acute EtOH withdrawal severity in female WSP and WSR mice after adrenalectomy and gonadectomy corroborate our recent evidence that withdrawal from a high dose of EtOH can be modulated by anticonvulsant steroids produced in the periphery.

  19. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  20. Acute ethanol exposure suppresses the repair of O6-methylguanine DNA lesions in castrated adult male rats.

    PubMed

    Wilson, D M; Tentler, J J; Carney, J P; Wilson, T M; Kelley, M R

    1994-10-01

    Alcohol has clearly been associated with an increase of cancers in numerous tissue, including the respiratory tract, colon, rectum, liver, but especially the esophagus, larynx, pharynx, and mouth. Alcohol alone has not been shown to be a mutagen until it is converted to acetaldehyde and, therefore, alcohol presumably acts as a cocarcinogen. Previous data has shown that alcohol concentrations of 2% or greater inhibits DNA repair, and in light of the widespread consumption of alcoholic beverages with alcohol contents ranging from 4 to 5% (beer and wine coolers) to 50% (whiskey), interest in determining the mechanism(s) responsible for alcohol-induced carcinogenesis has heightened. Although previous studies, in intact rats, have investigated the effects of chronic alcohol exposure on some aspects of DNA repair, we have begun to address the effects of acute or "binge" alcohol exposure on mammalian DNA repair. Toward this end, we report the inhibition of O6-methylguanine-DNA methyltransferase (MGMT) by a single intraperitoneal injection of 30% ethanol in adult male castrated rats. This inhibition lasted for at least 24 hr. We also observed a dose-response effect of ethanol on MGMT activity, again only in the castrated rats. The finding of ethanol's effect on MGMT activity in castrated and not intact rats implies a hormonal component of MGMT DNA repair response, which has only been alluded to in past research.

  1. Baroreflex sensitivity in acute hypoxia and carbohydrate loading.

    PubMed

    Klemenc, Matjaž; Golja, Petra

    2011-10-01

    Hypoxia decreases baroreflex sensitivity (BRS) and can be a sufficient cause for syncope in healthy individuals. Carbohydrate loading enhances efferent sympathetic activity, which affects cardiac contractility, heart rate and vascular resistance, the main determinants of blood pressure. Thus, in both normoxia and hypoxia, carbohydrate loading may be more than simply metabolically beneficial, as it may affect blood pressure regulation. We hypothesised that carbohydrate loading will, in both normoxia and hypoxia, alter the regulation of blood pressure, as reflected in a change in baroreflex sensitivity. Fourteen subjects participated in two experiments, composed of a 15-min normoxic period, after which the subjects ingested water or an equal amount of water with carbohydrates. A 30-min rest period was then followed by a 10-min second normoxic and a 30-min hypoxic period. Blood pressure and heart rate were monitored continuously during the experiment to determine BRS. Despite an increased sympathetic activation, reflected in increased heart rate (P < 0.001) BRS was lower (P < 0.01) after carbohydrate loading, as compared to the water experiment, in both normoxic [23.7 (12.4) versus 28.8 (13.8) ms/mmHg] and hypoxic [16.8 (11.0) versus 24.3 (12.3) ms/mmHg] phases of the present study. As BRS was decreased in acute hypoxic exposure, the results confirm that hypoxia interferes with blood pressure regulation. However, although oral carbohydrate loading induced sympathoexcitation, it did not improve blood pressure regulation in hypoxia, as evident from the BRS data. Baroreflex effects of other forms of carbohydrate loading, not causing postprandial blood shifts to digestive system, should therefore be investigated.

  2. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning.

    PubMed

    Hunt, Pamela S; Barnet, Robert C

    2016-02-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed.

  3. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  4. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats.

    PubMed Central

    Holguin, F; Moss, I; Brown, L A; Guidot, D M

    1998-01-01

    Chronic alcohol abuse increases the incidence and mortality of the acute respiratory distress syndrome (ARDS) in septic patients. To examine a potential mechanism, we hypothesized that ethanol ingestion predisposes to sepsis-mediated acute lung injury by decreasing alveolar type II cell glutathione homeostasis and function. Lungs isolated from rats fed ethanol (20% in water for >/= 3 wk), compared with lungs from control-fed rats, had greater (P < 0. 05) edematous injury (reflected by nonhydrostatic weight gain) after endotoxin (2 mg/kg intraperitoneally) and subsequent perfusion ex vivo with n-formylmethionylleucylphenylalanine (fMLP, 10(-7) M). Ethanol ingestion decreased (P < 0.05) glutathione levels in the plasma, lung tissue, and lung lavage fluid, and increased (P < 0.05) oxidized glutathione levels in the lung lavage fluid. Furthermore, ethanol ingestion decreased type II cell glutathione content by 95% (P < 0.05), decreased (P < 0.05) type II cell surfactant synthesis and secretion, and decreased (P < 0.05) type II cell viability, in vitro. Finally, treatment with the glutathione precursors S-adenosyl-L-methionine and N-acetylcysteine in the final week of ethanol ingestion significantly reduced lung edema during perfusion ex vivo. We conclude that ethanol ingestion in rats alters alveolar type II cell glutathione levels and function, thereby predisposing the lung to acute edematous injury after endotoxemia. We speculate that chronic alcohol abuse in humans predisposes to ARDS through similar mechanisms. PMID:9466970

  5. Further studies on the hepatoprotective effect of Antrodia camphorata in submerged culture on ethanol-induced acute liver injury in rats.

    PubMed

    Lu, Zhen-Ming; Tao, Wen-Yi; Xu, Hong-Yu; Ao, Zong-Hua; Zhang, Xiao-Mei; Xu, Zheng-Hong

    2011-04-01

    To further understand the hepatoprotective activity of Antrodia camphorata in living systems and the possible mechanisms of this protection, the effects of fractions from A. camphorata in submerged culture on the liver and its antioxidative system in acute ethanol intoxicated rats were investigated. The results showed that the ethanolic extract (Fr-I) of A. camphorata was the most effective in the prevention of ethanol-induced acute liver injury and free radical generation in rats. The ethanolic extract administrated prior to ethanol significantly prevented the increase in serum levels of hepatic enzyme markers such as aspartate aminotransferase and alanine aminotransferase. It also normalised the increase of hepatic malondialdehyde concentration and the decrease of glutathione levels in the liver. Moreover, Fr-I improved the ethanol-induced decrease of hepatic glutathione peroxidase and reductase activities. On the basis of these results, the ethanolic extract of A. camphorata may exert its hepatoprotective activity by up-regulating GSH-dependent enzymes and inhibiting free radical formation in the liver.

  6. Formation of a fibrin based gelatinous coat over repairing rat gastric epithelium after acute ethanol damage: interaction with adherent mucus.

    PubMed Central

    Sellers, L A; Allen, A; Bennett, M K

    1987-01-01

    A gelatinous coat, heterogeneous in appearance, was formed over damaged rat gastric mucosa recovering from acute ethanol injury. This coat, in places 1.6 mm thick (median thickness 680 microns), was 10 times thicker than the translucent layer of adherent mucus (median thickness 70 microns) covering the undamaged mucosa. Immunohistochemistry and periodic acid Schiff staining showed this gelatinous coat to be predominantly a fibrin gel with an exterior layer rich in mucus and necrotic cells. The plasma clotting time was significantly decreased in vitro by pig gastric mucus gel and soluble mucus glycoprotein (90% and 13% respectively) suggesting that in vivo the mucus layer remaining after epithelial damage could act as a template for fibrinogen-fibrin conversion. These results show that a fibrin based gelatinous coat, quite distinct from the adherent mucus layer and with considerable protective potential could be formed over the repairing rat gastric mucosa after acute ethanol damage. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:3653751

  7. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment

    PubMed Central

    Ignacio, Cherry; Mooney, Sandra M.; Middleton, Frank A.

    2014-01-01

    Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression. PMID:25309888

  8. Acute ethanol administration affects zebrafish preference for a biologically inspired robot.

    PubMed

    Spinello, Chiara; Macrì, Simone; Porfiri, Maurizio

    2013-08-01

    Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol.

  9. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo.

    PubMed

    Sidahmed, Heyam M A; Hashim, Najihah Mohd; Amir, Junaidah; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Hassandarvish, Pouya; Teh, Xinsheng; Loke, Mun Fai; Vadivelu, Jamuna; Rahmani, Mawardi; Mohan, Syam

    2013-07-15

    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.

  10. Naltrexone Prevents in Males and Attenuates in Females the Expression of Behavioral Sensitization to Ethanol Regardless of Maternal Separation

    PubMed Central

    Kawakami, Suzi E.; Quadros, Isabel M. H.; Suchecki, Deborah

    2016-01-01

    Maternal separation alters the activity of the opioid system, which modulates ethanol-induced stimulation and behavioral sensitization. This study examined the effects of an opioid antagonist, naltrexone (NTX), on the expression of behavioral sensitization to ethanol in adult male and female mice submitted to maternal separation from postnatal days (PNDs) 2 to 14. Whole litters of Swiss mice were either not separated [animal facility rearing (AFR)] or separated from their mothers for 3 h [long maternal separation (LMS)]. Starting on PND 90, male and female AFR and LMS mice received daily i.p. injections of saline (SAL) or ethanol (EtOH, 2.2 g/kg) for 21 days. Locomotor activity was assessed in cages containing photoelectric beams, once a week, to examine the development of behavioral sensitization. Five days after the end of the chronic treatment, animals were submitted to four locomotor activity tests spaced by 48 h, to assess the expression of behavioral sensitization. In all tests, animals received two i.p. injections with a 30-min interval and were then assessed for locomotor response to different treatment challenges, which were: SAL/SAL, SAL/EtOH (2.2 g/kg), NTX 2.0 mg/kg (NTX2)/EtOH, and NTX 4.0 mg/kg (NTX4)/EtOH. Regardless of maternal separation, EtOH-treated male and female mice displayed increased locomotor responses to EtOH during the 21-day treatment, indicating the development of behavioral sensitization. In the SAL/EtOH challenge, EtOH-treated LMS and AFR male and female mice exhibited higher locomotor activity than their SAL-treated counterparts, indicating the expression of sensitization. The coadministration of either dose of NTX blocked the expression of locomotor sensitization in both AFR and LMS male mice with a history of EtOH sensitization. In females, a significant attenuation of EtOH sensitization was promoted by both NTX doses, while still maintaining an augmented stimulant response to EtOH. Importantly, maternal separation

  11. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    SciTech Connect

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. )

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  12. ZnO/rGO nanocomposite layer as a sensitive layer for simplistic ethanol vapor sensor and UV light detector

    NASA Astrophysics Data System (ADS)

    Safa, Saeid; Azimirad, Rouhollah

    2016-01-01

    We investigate on the ethanol vapor sensing and ultraviolet detection of simplistic nanocomposite layers of reduced graphene oxide (rGO) incorporated zinc oxide (ZnO) nanoparticles which produced by hydrothermal technique. The experimental results show that adding rGO to ZnO nanoparticles improves the sensitivity of the samples. A large sensor response and quick recovery time was observed for the nanocomposites samples. The sample containing 3% of rGO shows the optimized state for all-range of ethanol vapor concentration and reached a linear response of 33% at 250 °C. Also the UV photosensitivity of the ZnO-rGO nanocomposite was investigated. The photosensitivity to UV light, response time and signal to noise ratio were improved by adding rGO to ZnO nanoparticles as compared to the pure ZnO.

  13. Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid.

    PubMed

    Fernandes, L; Côrte-Real, M; Loureiro, V; Loureiro-Dias, M C; Leão, C

    1997-10-01

    In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the kinetics of inhibition again being exponential. However, inhibition of fermentation was much less pronounced than in S. cerevisiae. The values estimated with Z. bailii for the minimum inhibitory concentration of acetic acid ranged from 100 to 240 mmol 1(-1) total acetic acid compared with values of near zero reported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were not significantly potentiated by ethanol.

  14. [Pecularities of correction of alcohol affctions of liver in patients with acute ethanol poisoning in the setting of consequence of toxic effect of ethanol].

    PubMed

    Shilov, V V; batotsyrenov, B V; Vasil'ev, S A; Shikalova, I A; Kuznetsov, O A

    2012-06-01

    The aim of this work was to test the usage of infusion of hepatoprotector "remaxol" in intensive therapy of acute ethanol poisoning accompanied with severe alcohol affections of the lever. In the result of the examination and treatment of 130 patients it was established that severe alcohol poisonings registered on alcohol abused patients with toxic hepatopathy, are always accompanied with serious metabolic violations. In the process of a comparative valuation of the using of heptral (ademethionin) and remaxol in the intensive therapy of alcohol poisonings it has been revealed that the using of remaxol led to improvement of the clinic of that poisonings, what had been registered as a decrease of frequency and duration of an alcohol delirium from 33,9% to 10,8%, a decrease of frequency of secondary lung complication from 18,5 to 3,1%, a decrease of a duration of treatment in intensive care unit from 7,3 +/- 0,6 to 5,6 +/- 0,3 and a hospital treatment duration from 11,8 +/- 0,5 to 9,0 +/- 0,3 days. Biochemical investigation has shown that using as heptral, as remaxol led to improvement of lever damages due to alcohol. However remaxol compared with heptral was better in the treatment of metabolic violations.

  15. REPEATED ETHANOL ADMINISTRATION MODIFIES THE TEMPORAL STRUCTURE OF SUCROSE INTAKE PATTERNS IN MICE: EFFECTS ASSOCIATED WITH BEHAVIORAL SENSITIZATION

    PubMed Central

    Pastor, Raúl; Kamens, Helen M.; McKinnon, Carrie S.; Ford, Matthew M.; Phillips, Tamara J.

    2010-01-01

    Neuroadaptations supporting behavioral sensitization to abused drugs are suggested to underlie pathological, excessive motivation toward drugs and drug-associated stimuli. Drug-induced sensitization has also been linked to increased appetitive responses for non-drug, natural reinforcers. The present research investigated whether ethanol (EtOH)-induced neural changes, inferred from psychomotor sensitization, can modify consumption and intake dynamics for the natural reinforcer, sucrose. The effects of EtOH-induced sensitization in mice on the temporal structure of sucrose intake patterns were measured using a lickometer system. Sucrose intake dynamics were measured after sensitization for 1 h daily for 7 days and indicated more rapid initial approach and consumption of sucrose in EtOH-sensitized groups; animals showed a shorter latency to the first intake bout and an increased number of sucrose bottle licks during the initial 15 min of the 1-h sessions. This effect was associated with increased frequency and size of bouts. For the total 1-h session, sucrose intake and bout dynamics were not different between groups, indicating a change in patterns of sucrose intake but not total consumption. When sensitization was prevented by the GABAB receptor agonist baclofen, the increased rate of approach and consumption of sucrose were also prevented. Thus, EtOH-induced sensitization, and not the mere exposure to EtOH, was associated with changes in sucrose intake patterns. These data are consistent with current literature suggesting an enhancing effect of drug-induced sensitization on motivational processes involved in reinforcement. PMID:20624153

  16. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    SciTech Connect

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approx 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  17. Effects of ethanol on cAMP production in murine embryonic palate mesenchymal cells

    SciTech Connect

    Weston, W.M.; Greene, R.M. )

    1991-01-01

    Ethanol affected the ability of murine embryonic palate mesenchymal (MEPM) cells to produce cAMP in response to hormone treatment. Acute exposure to ethanol resulted in an increase in hormone-stimulated cAMP levels, while chronic ethanol treatment led to decreased sensitivity to hormone. Forskolin-stimulated cAMP levels were decreased by both acute and chronic ethanol treatment, while the cells' response to cholera toxin was unchanged by ethanol treatment. The lack of sensitivity of the cholera toxin response to ethanol suggests that,in contrast to what has been observed in other systems, ethanol does not affect the production or activity of G{alpha}s in MEPM cells. These results suggest a possible explanation for the molecular basis for the craniofacial abnormalities observed in the fetal alcohol syndrome.

  18. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic- pituitary-adrenal axis activation

    PubMed Central

    Reynolds, Anna R.; Saunders, Meredith A.; Brewton, Honoree’ W.; Winchester, Sydney R.; Elgumati, Ibrahim S.; Prendergast, Mark A.

    2015-01-01

    Background The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Methods Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 1100 hrs on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60 mg/kg/i.g.) or a placebo and withdrawal was monitored. Results Peak BELs of 225.52 mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g. aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. Conclusions The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. PMID:26143299

  19. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  20. Betulinic acid and betulin ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro.

    PubMed

    Wan, Ying; Jiang, Shuang; Lian, Li-Hua; Bai, Ting; Cui, Peng-He; Sun, Xiao-Ting; Jin, Xue-Jun; Wu, Yan-Ling; Nan, Ji-Xing

    2013-10-01

    Ethanol consumption leads to many kinds of liver injury and suppresses innate immunity, but the molecular mechanisms have not been fully delineated. The present study was conducted to determine whether betulinic acid (BA) or betulin (BT) would ameliorate acute ethanol-induced fatty liver in mice, and to characterize whether Toll like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) were involved in ethanol-stimulated hepatic stellate cells (HSCs). EtOH (5mg/kg) and BA or BT (20 or 50mg/kg) were applied in vivo, while EtOH (50mM) and BA or BT (12.5 or 25μM) were applied in vitro. Administration of BA or BT significantly prevented the increases of serum ALT and AST caused by ethanol, as well as serum TG. Supplement of BA or BT prevented ethanol-induced acidophilic necrosis, increased hepatocyte nuclei and stromal inflammation infiltration as indicated by liver histopathological studies. Administration of BA or BT significantly decreased CYP2E1 activities and expression of SREBP-1caused by ethanol, however, lower dosage of BA or BT showed slight effects on CYP2E1 activity or expression of SREBP-1c. BA or BT administration significantly decreased the expression of TLR4, and increased the phosphorylation of STAT3. In vitro, BA or BT treatment reduced the expressions of α-SMA and collagen-I in ethanol-stimulated HSCs via regulation of TLR4 and STAT3, coincided with in vivo. All of these findings demonstrated that BA or BT might ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro, promising agents for ethanol-induced fatty liver therapies.

  1. Interactions of ethanol on the acute toxicity of cocaine in the rat

    SciTech Connect

    Trouve, R. ); Latour, C ); Nahas, G.G. Columbia Univ., New York, NY )

    1992-02-26

    Administration of 65 mg/kg in the awake rate, restrained and instrumented, is associated with cardiovascular toxicity, convulsions and lethality within 9 feet 44 inches {plus minus} 4 feet 56 inches. Such an outcome is prevented if selected Ca{sup 2+} antagonists are administered intraarterially 5 minutes following cocaine. Four additional groups of Sprague Dawley rats were studied. The first was administered I.P. ethanol 1.5-2.0 gr. Such doses were well tolerated only producing hypertension of 50 minutes duration and all animals survived without apparent ill effects. Second and third groups were first administered the same doses of ethanol and 15 minutes later 65 mg/kg of cocaine. Survival time was 5 feet 49 inches with 1.5 mg/kg ethanol and 5 feet 57 inches {plus minus} 1 foot 26 inches with 2 mg/kg, significantly less than after cocaine administration alone. In a fourth group, animals were treated intraarterially with nicardipine or flunarizine, 2 minutes after cocaine. Survival time was not different from saline control. Ethanol enhances significantly cocaine lethal toxicity in the rate and prevents the protective effects of antidotes to this alkaloid.

  2. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  3. CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE

    PubMed Central

    Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.

    2015-01-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462

  4. Nitrogen Requirements for Ethanol Production from Sweet and Photoperiod Sensitive Sorghums in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum (Sorhum bicolor L.) has high water use efficiency, and is therefore widely cultivated in the Southern High Plains (SHP). Interest in sorghums for biofuel feedstock has increased recently as ethanol demand expands. Unlike grain sorghum, little data are available on N fertilizer requirements f...

  5. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder.

  6. Acute administration of 3-nitropropionic acid, a reactive oxygen species generator, boosts ethanol-induced locomotor stimulation. New support for the role of brain catalase in the behavioural effects of ethanol.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2006-12-01

    The antioxidant enzyme catalase by reacting with H(2)O(2), forms the compound known as compound I (catalase-H(2)O(2)). This compound is able to oxidise ethanol to acetaldehyde in the CNS. It has been demonstrated that 3-nitropropionic acid (3-NPA) induces the activity of the brain catalase-H(2)O(2) system. In this study, we tested the effect of 3-NPA on both the brain catalase-H(2)O(2) system and on the acute locomotor effect of ethanol. To find the optimal interval for the 3-NPA-ethanol interaction mice were treated with 3-NPA 0, 45, 90 and 135min before an ethanol injection (2.4mg/kg). In a second study, 3-NPA (0, 15, 30 or 45mg/kg) was administered SC to animals 90min before saline or several doses of ethanol (1.6 or 2.4g/kg), and the open-field behaviour was registered. The specificity of the effect of 3-NPA (45mg/kg) was evaluated on caffeine (10mg/kg IP) and cocaine (4mg/kg)-induced locomotion. The prevention of 3-NPA effects on both ethanol-induced locomotion and brain catalase activity by L-carnitine, a potent antioxidant, was also studied. Nitropropionic acid boosted ethanol-induced locomotion and brain catalase activity after 90min. The effect of 3-NPA was prevented by l-carnitine administration. These results indicate that 3-NPA enhanced ethanol-induced locomotion by increasing the activity of the brain catalase system.

  7. Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens

    PubMed Central

    Abrahao, Karina Possa; Oliveira Goeldner, Francine; Souza-Formigoni, Maria Lucia Oliveira

    2014-01-01

    In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day) or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as “sensitized” and the 33% with the lowest levels as "non-sensitized”. The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor

  8. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    NASA Astrophysics Data System (ADS)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  9. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses

    PubMed Central

    Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719

  10. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  11. Protective effect of Matricaria chamomilla on ethanol-induced acute gastric mucosal injury in rats.

    PubMed

    Cemek, Mustafa; Yilmaz, Ezgi; Büyükokuroğlu, Mehmet Emin

    2010-07-01

    The antiulcerogenic and antioxidant properties of Matricaria chamomilla L. (Compositae) hydroalcoholic extract (MCE) on ethanol-induced gastric mucosal injury were investigated in rats. After the induction of gastric mucosal injury, all groups were sacrificed; the gastric ulcer index was calculated, and malondialdehyde (MDA) and reduced glutathione (GSH) in whole blood and gastric tissue, and serum ascorbic acid, retinol, and beta-carotene levels were measured in all groups. Pretreatment with MCE at some doses significantly reduced gastric lesions. Again, some doses of MCE significantly reduced the MDA, and significantly increased GSH levels in gastric tissue or whole blood. Serum beta-carotene and retinol levels were significantly higher in the 200 mg/kg MCE-administered group with respect to control. As a result, MCE clearly has a protective effect against ethanol-induced gastric mucosal lesions, and this effect, at least in part, depends upon the reduction in lipid peroxidation and augmentation in antioxidant activity.

  12. Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water-ethanol binary mixture.

    PubMed

    Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman

    2013-12-12

    We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water-ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as ∼600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.

  13. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats

    PubMed Central

    Hassandarvish, Pouya; Gwaram, Nura Suleiman; A. Hadi, A. Hamid; Mohd Ali, Hapipah; Majid, Nazia; Abdulla, Mahmood Ameen

    2012-01-01

    Background Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats. Methodology/Principal Findings Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4–7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2–7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4–7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4–7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound. Conclusions/Significance The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE2 synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein. PMID:23251568

  14. A Standardized Composition from Extracts of Myristica Fragrans, Astragalus Membranaceus, and Poria Cocos Protects Liver from Acute Ethanol Insult.

    PubMed

    Yimam, Mesfin; Jiao, Ping; Hong, Mei; Jia, Qi

    2016-08-01

    Despite the promising advances in therapeutic discovery, there still is a major challenge in the development of a safe, effective, and economical intervention for managing alcohol-related liver disorders. In this study, we describe the potential use of "MAP," a standardized composition comprising three extracts from Myristica fragrans, Astragalus membranaceus, and Poria cocos, in ameliorating alcohol-induced acute liver toxicity. Ethanol-induced acute hepatotoxicity as an animal model of binge drinking was utilized. Mice received oral doses of MAP at 300 mg/kg for four consecutive days. Mice were orally gavaged with 50% ethanol in 12 mL/kg dosing volume following the third dose of MAP every 12 h thereafter for a total of three doses. Hepatic functional tests from serum collected at T12, and hepatic glutathione (GSH), superoxide dismutases (SODs), and triglyceride from liver homogenates were evaluated. Histopathology analysis and alcoholic steatohepatitis (ASH) scoring were also determined. Excessive increases of serum alanine aminotransferase and aspartate aminotransferase were significantly inhibited at 46.3% and 43.6%, respectively, when mice were treated with MAP. MAP replenished the depleted SOD by more than 60%, while causing significant stimulation of GSH productions. MAP showed statistically significant reduction in ballooning degeneration, vascular steatosis, cytoplasmic or nuclear condensation, and shrinkage, as well as inflammations when compared to vehicle-treated alcohol-induced liver toxicity model. Mice treated with MAP showed statistically significant reduction in ASH scoring when compared to vehicle control. Therefore, the composition MAP could be potentially utilized as an effective hepatic-detoxifying agent for the protection of liver damage caused by alcohol consumptions.

  15. Differential patterns of expression of neuropeptide Y throughout abstinence in outbred Swiss mice classified as susceptible or resistant to ethanol-induced locomotor sensitization.

    PubMed

    de Pauli, Ricardo Fontão; Coelhoso, Cássia Canha; Tesone-Coelho, Carolina; Linardi, Alessandra; Mello, Luiz Eugênio; Silveira, Dartiu Xavier; Santos, Jair Guilherme

    2014-02-01

    Several studies have focused on the negative emotional state associated with drug abstinence. The peptide NPY plays an important role given its involvement in drug addiction, anxiety, and mood disorders. Interestingly, it is well established that outbred Swiss mice exhibit a prominent behavioral variability to ethanol-induced locomotor sensitization. Here, we investigated whether mice that were either susceptible or resistant to ethanol sensitization differed in their NPY expression during abstinence. The mice were treated daily with ethanol (2 g/kg, i.p.) or saline for 21 days. According to the locomotor activity after the last injection, the ethanol group was classified as sensitized (EtOH_High) or non-sensitized (EtOH_Low). To evaluate NPY expression, some of the mice were sacrificed at 18 h or 5 days of abstinence, and others were challenged at the 5th day of abstinence with ethanol (1.4 g/kg) and sacrificed after 1.5 h. At 5 days of abstinence, NPY expression increased in the orbital cortex, dorsomedial striatum, and dentate gyrus in the EtOH_High mice. These changes were counteracted by the ethanol challenge. In the EtOH_Low mice, NPY expression increased in the dentate gyrus only after 18 h of abstinence. Lastly, a decreased level of NPY was found in the prelimbic cortex of the EtOH_Low mice at 5 days of abstinence, and this was reversed by ethanol challenge. Therefore, behavioral variability in ethanol sensitization confers differential neurochemical features during the subsequent abstinence, including distinct patterns of NPY expression.

  16. AGE-DEPENDENT EFFECTS OF STRESS ON ETHANOL-INDUCED MOTOR ACTIVITY IN RATS

    PubMed Central

    Acevedo, María Belén; Pautassi, Ricardo Marcos; Spear, Norman E.; Spear, Linda P.

    2013-01-01

    Rationale It is important to study age-related differences that may put adolescents at risk for alcohol-related problems. Adolescents seem less sensitive to the aversive effects of ethanol than adults. Less is known of appetitive effects of ethanol and stress-modulation of these effects. Objectives To describe effects of acute social or restraint stress on ethanol-precipitated locomotor activity (LMA), in adolescent and adult rats. Effects of activation of the kappa system on ethanol-induced LMA were also evaluated. Methods Adolescent or adult rats were restrained for 90 min, exposed to social deprivation stress for 90 or 180 min or administered the kappa agonist U62,066E before being given ethanol and assessed for LMA. Results Adolescents were significantly more sensitive to the stimulating, and less sensitive to the sedative, effects of ethanol than adults. Basal locomotion was significantly increased by social deprivation stress in adult, but not in adolescent, rats. U62,066E significantly reduced basal and ethanol-induced locomotion in the adolescents. Corticosterone and progesterone levels were significantly higher in adolescents than in adults. Conclusions Adolescents exhibit greater sensitivity to ethanol-induced LMA and reduced sensitivity to ethanol-induced motor sedation than adult rats. Ethanol’s effects on motor activity were not affected by acute stress. Unlike adults, adolescents were insensitive to acute restraint and social deprivation stress, but exhibited motor depression after activation of the endogenous kappa opioid receptor system. PMID:23775530

  17. Regional tongue sensitivity for sweetness and pungency of ethanol-aspartame mixtures.

    PubMed

    Calviño, A M

    1998-02-01

    Binary mixtures of aspartame prepared at three levels of concentration and dissolved in four ethanolic dilutions were perceptually evaluated. Sweet-pungent combinations were presented in solution or in disks of filter paper (paper) soaked in the solutions. Variations in sweetness and pungency were examined at two oral loci including the tip and the back plus the front of the tongue in the liquid condition or the tip and the back of the tongue in the paper condition. A similar behavior was observed in liquid and paper conditions; as the concentration of aspartame and ethanol increased so did the intensity for sweet and pungent qualities. Whereas sweetness was not influenced by ethanol addition (2-8% V/V), a suppressive effect of aspartame (1-4 mM) on pungency was noted for liquid but not for the paper condition. Sweetness was enhanced when the back plus the front of the tongue was stimulated by solutions. Finally, there was a complex pattern of regional effects on the perceived pungency of alcoholic-sweet solutions that was not replicated in the paper condition.

  18. Drug withdrawal convulsions and susceptibility to convulsants after short-term selective breeding for acute ethanol withdrawal.

    PubMed

    Metten, P; Belknap, J K; Crabbe, J C

    1998-09-01

    High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) mice were selectively bred from a foundation population of C57BL6/J (B6) x DBA/2J (D2) F2 intercross progeny for display of intense or mild handling-induced withdrawal convulsions, respectively, following a single injection of a hypnotic dose of ethanol (alcohol; 4 g/kg). The HAW line had significantly greater alcohol withdrawal severity scores compared to the LAW line after only a single generation of selection; the magnitude of the line difference was 8-fold by the fourth selected generation. We tested these lines for severity of withdrawal convulsions following the benzodiazepine, diazepam; the gaseous anesthetic, nitrous oxide; the imidazopyridine, zolpidem and the barbiturate, pentobarbital. In all cases, HAW mice had significantly greater withdrawal severity than mice of the LAW line. These results indicate that some genes influencing withdrawal convulsion severity following ethanol also affect withdrawal from other CNS depressants. D2 mice are more sensitive to a variety of convulsants than B6 mice (and have more severe withdrawal convulsions). We, therefore, tested separate groups of mice of both selectively bred lines for threshold sensitivity to pentylenetetrazol (PTZ), N-methyl-D-aspartate (NMDA) and kainic acid (KA). No line differences were detected. These results indicate that genes influencing severity of withdrawal from several depressant drugs are largely different from those affecting susceptibility to GABAergic or glutamatergic convulsants.

  19. Acute Toxicity and Cytotoxicity Effect of Ethanolic Extract of Spondias tuberosa Arruda Bark: Hematological, Biochemical and Histopathological Evaluation.

    PubMed

    Barbosa, Humberto M; Nascimento, Jailson N DO; Araújo, Thiago A S; Duarte, Filipe S; Albuquerque, Ulysses P; Vieira, Jeymesson R C; Santana, Edson R B DE; Yara, Ricardo; Lima, Cláudia S A; Gomes, Dayane A; Lira, Eduardo C

    2016-01-01

    Spondias tuberosa Arruda, popularly named as umbu, is native from savanna-like vegetation and widely used for medicinal purposes, however, the toxicological profile is not available yet. This study evaluated the phytochemical profile and acute toxicity and citoxicity of Ethanolic Extract of Spondias tuberosa Arruda Bark (EEStb) in hematological, biochemical and histopathological parameters. Female Wistar rats were divided into: control (C) and animal treated single doses of 300mg/Kg (EEStb300) or 2.000mg/kg body weight (ESStb2.000) of the EEStb. After 24 hours and 14 days from gavage, the behavior, hematological, biochemical and histopathological parameters were assayed. Cytotoxicity effect was evaluated on HEp-2 cell lines. Neither EEStb300 nor EEStb2.000 produced mortality nor changes in body weight during the 14-days of observation, but EEStb2.000 reduced quietly the food and water intake as well as locomotor activity at first day. There were no changes in macroscopic, histopathological, biochemical and hematological parameters. EEStb in concentrations of 6.25- 50μg ml-1 on HEp-2 cell did not produce cytotoxic effect. These results suggest that EEStb did not cause acute toxicity and cytotoxic, suggesting a good safety rate for Spondias tuberosa Arruda.

  20. Acute and 28-Day Subchronic Oral Toxicity of an Ethanol Extract of Zingiber zerumbet (L.) Smith in Rodents

    PubMed Central

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2012-01-01

    The objective of this study was to evaluate the acute and subacute toxicity (28 days) of the ethanol extract of Z. zerumbet rhizomes (EEZZ) via the oral route in Wistar rats of both sexes. In the acute toxicity study, Wistar rats were administered a single dose of 15 g kg−1 of body weight by gavage, and were monitored for 14 days. EEZZ did not produce any toxic signs or deaths; the 50% lethal dose must be higher than 15 g kg−1. In the subchronic toxicity study, EEZZ was administered by gavage at doses of 1000, 2000 and 3000 mg/kg daily for 4 weeks to Wistar rats. The subacute treatment with EEZZ did not alter either the body weight gain or the food and water consumption. The hematological and biochemical analysis did not show significant differences in any of the parameters examined in female or male groups. Necropsy and histopathological examination, did not reveal any remarkable and treatment related changes. A no-observed adverse-effect level for EEZZ is 3000 mg kg−1 for rats under the conditions of this study. Hence, consumption of EEZZ for various medicinal purposes is safe. PMID:22536288

  1. Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice

    PubMed Central

    Qiu, Ping; Li, Xiang; Kong, De-song; Li, Huan-zhou; Niu, Cong-cong; Pan, Su-hua

    2015-01-01

    Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200 mg/kg/d bw) for 30 d before being exposed to ethanol (4.8 g/kg bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-α (TNF-α), peroxisome proliferators-activated receptor-α (PPAR-α), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-α and increased adiponectin, PPAR-α, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16 g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis. PMID:26101535

  2. Adolescent intermittent ethanol exposure diminishes anhedonia during ethanol withdrawal in adulthood.

    PubMed

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2014-06-01

    Adolescent alcohol use may interfere with neurodevelopment, increasing the likelihood of adult alcohol use disorders (AUDs). We investigated whether adolescent intermittent ethanol (AIE) exposure alters the adult reward response to ethanol. Adolescent rats were administered ethanol once (moderate exposure; Cohort 1) or three times per day (severe exposure; Cohort 2) in a 2 days on/2 days off pattern. In adulthood, subjects responded for electrical stimulation directed at the posterior lateral hypothalamus in a discrete-trial intracranial self-stimulation (ICSS) procedure that provides current-intensity thresholds as a measure of brain reward function. The effects of ethanol administration and withdrawal were assessed. Control rats showed dose-dependent threshold elevations after acute ethanol, indicating reward deficits. A majority of moderately AIE-exposed rats (Cohort 1) showed threshold lowering after ethanol, suggesting ethanol-induced reward enhancement in this sub-set of rats. Rats exposed to severe AIE (Cohort 2) showed no threshold elevation or lowering, suggesting a blunted affective ethanol response. Daily ethanol induced threshold elevations 24h after administration in control rats but not in either group of AIE-exposed rats, suggesting decreased sensitivity to the negative affective state of ethanol withdrawal. Withdrawal from a 4-day ethanol binge produced robust and enduring threshold elevations in all rats, although threshold elevations were diminished in rats exposed to severe AIE. These results indicate that AIE exposure diminished reward deficits associated with ethanol intoxication and withdrawal and may have increased ethanol-induced reward enhancement in a sub-set of rats. In humans, enhanced ethanol reward accompanied by reduced withdrawal severity may contribute to the development of AUDs.

  3. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion.

    PubMed

    Sripanyakorn, Supannee; Jugdaohsingh, Ravin; Mander, Adrian; Davidson, Sarah L; Thompson, Richard Ph; Powell, Jonathan J

    2009-08-01

    The "J shape" curve linking the risk of poor bone health to alcohol intake is now well recognized from epidemiological studies. Ethanol and nonethanol components of alcoholic beverages could influence bone remodeling. However, in the absence of a solid underlying mechanism, the positive association between moderate alcoholic intake and BMD remains questionable because of confounding associated social factors. The objective of this work was to characterize the short-term effects of moderate alcohol consumption on circulating bone markers, especially those involved in bone resorption. Two sequential blood-sampling studies were undertaken in fasted healthy volunteers (age, 20-47 yr) over a 6-h period using beer of different alcohol levels (<0.05-4.6%), solutions of ethanol or orthosilicic acid (two major components of beer), and water +/- calcium chloride (positive and negative controls, respectively). Study 1 (24 subjects) assessed the effects of the different solutions, whereas study 2 (26 subjects) focused on ethanol/beer dose. Using all data in a "mixed effect model," we identified the contributions of the individual components of beer, namely ethanol, energy, low-dose calcium, and high-dose orthosilicic acid, on acute bone resorption. Markers of bone formation were unchanged throughout the study for all solutions investigated. In contrast, the bone resorption marker, serum carboxy terminal telopeptide of type I collagen (CTX), was significantly reduced after ingestion of a 0.6 liters of ethanol solution (>2% ethanol; p ethanol; p < 0.02), or a solution of calcium (180 mg calcium; p < 0.001), but only after calcium ingestion was the reduction in CTX preceded by a significant fall in serum PTH (p < 0.001). Orthosilicic acid had no acute effect. Similar reductions in CTX, from baseline, were measured in urine after ingestion of the test solutions; however, the biological variability in urine CTX was greater

  4. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization

    PubMed Central

    2014-01-01

    Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains

  5. Ethanol Acutely Inhibits Ionotropic Glutamate Receptor-mediated Responses and Long-Term Potentiation in the Developing CA1 Hippocampus

    PubMed Central

    Puglia, Michael P.; Valenzuela, C. Fernando

    2011-01-01

    Background Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third-trimester of human pregnancy (first 12 days of life in rats). Methods Acute coronal brain slices were prepared from 7–9 day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. Results EtOH (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. Conclusions Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder. PMID:20102565

  6. Sensitivity of silica microspheres modified by xerogel layers to acetone and ethanol

    NASA Astrophysics Data System (ADS)

    Matějec, Vlastimil; Todorov, Filip; Jelinek, Michal; Fibrich, Martin; Chomát, Miroslav; Kubeček, Václav; Berková, Daniela

    2011-05-01

    The paper deals with the preparation and characterization of whispering-gallery-mode silica spherical microresonators and with effects of liquid acetone, ethanol, and xerogel layers applied onto these microresonators on their resonance spectra. Microrespheres with diameters ranging from 320 to 360 μm have been prepared by heating a tip of a silica fiber with a hydrogen-oxygen burner. The microspheres were excited by a fiber taper or a bulk prism and their resonance spectra were measured. Values of the Q factor from 104 to 106 have been determined from these spectra. In experiments, it has been found that short contact of microspheres with acetone causes a shift of resonance dips due to surface effects caused by acetone. A decrease of the Q factor has been observed with a microresonator onto which a xerogel silica layer was applied by the sol-gel method. A very high decrease of the Q factor has been observed when the silica microresonator was brought in contact with liquid ethanol.

  7. Phytochemical and acute toxicity of ethanolic extract of Enantia chlorantha (oliv) stem bark in albino rats

    PubMed Central

    Abatan, Mathew O.

    2013-01-01

    It is presumed that drugs sourced from herbs have lesser side effects than allopathic drugs. Enantia chlorantha is widely used in herbal medicine for the treatment of several ailments such as jaundice, malaria, fever, infective hepatitis, etc. However its toxicity profiles are not well documented. The effects of ethanolic extract of E. chlorantha stem bark on body weight changes, biochemical and haematological parameters as well as histology of vital organs (heart, kidneys and liver) were assessed. Also, the phytochemical constituent of the plant was analysed. Albino rats of both sexes were randomly divided into five groups (A–E) of five rats each and the ethanolic extract of E. chlorantha stem bark extract was administered by oral gavage in a single dose. Group A rats were administered 500 mg/kg of the extract, group B; 1000 mg/kg, group C; 2000 mg/kg, group D; 3000 mg/kg and group E rats received distilled water (10 ml/kg) and served as control. The extract caused significant (p<0.05) decreases in the levels of packed cell volume, haemoglobin concentration and red blood cell counts in a dose dependent manner. Further, significant alterations were not observed in the serum biochemical parameters analysed (AST, ALP, ALT, blood urea nitrogen, total protein, albumin, globulin and bilirubin). In addition, the extract at 1000, 2000 and 3000 mg/kg caused congestion in the heart and kidney of experimental rats. These results suggest that oral administration of E. chlorantha may produce severe toxic effects at relatively high doses, thus caution should be exercised in its use. PMID:24678252

  8. [A case of acute ethanol intoxication with remarkable hyperglycemia by "ume-shu", a Japanese apricot liquor made with a large amount of sugar].

    PubMed

    Sugano, Takayuki; Kojima, Naoki; Kaneko, Susumu; Ishida, Junro; Terada, Taizo; Inagawa, Hiroshi; Okada, Yasusei

    2002-07-01

    A 19-year-old woman ingested 2.2 L of "umeshu", a Japanese apricot liquor made with a large amount of sugar. She was unconscious and in shock. The estimated blood ethanol concentration was 607 mg/dl, and the blood glucose level was 576 mg/dl. Because her respiration and circulation was highly suppressed, blood purification was indicated. Continuous hemodiafiltration (CHDF) was performed instead of hemodialysis because her hemodynamics was unstable. After CHDF was instituted, her blood glucose level reduced to normal range, and her consciousness became alert. CHDF was effective in eliminating ethanol and stabilizing her hemodynamics within an early stage. Though acute ethanol intoxication is known to inhibit glucogenesis, leading to hypoglycemia, marked hyperglycemia was seen in this case. Ingestion of a large amount of glucose-rich liquor and being in shock seemed to be the causes of hyperglycemia.

  9. Amphetamine sensitization and cross-sensitization with acute restraint stress: impact of prenatal alcohol exposure in male and female rats

    PubMed Central

    Uban, Kristina A.; Comeau, Wendy L.; Bodnar, Tamara; Yu, Wayne K.; Weinberg, Joanne; Galea, Liisa A. M.

    2014-01-01

    Rationale Individuals with fetal alcohol spectrum disorder (FASD) are at increased risk for substance use disorders (SUD). In typically developing individuals, susceptibility to SUD is associated with alterations in dopamine and hypothalamic-pituitary-adrenal (HPA) systems, and their interactions. Prenatal alcohol exposure (PAE) alters dopamine and HPA systems, yet effects of PAE on dopamine-HPA interactions are unknown. Amphetamine-stress cross-sensitization paradigms were utilized to investigate sensitivity of dopamine and stress (HPA) systems, and their interactions following PAE. Methods Adult Sprague-Dawley offspring from PAE, pair-fed, and ad libitum-fed control groups were assigned to amphetamine-(1–2mg/kg) or saline-treated conditions, with injections every other day for 15 days. 14 days later, all animals received an amphetamine challenge (1mg/kg) and 5 days later, hormones were measured under basal or acute stress conditions. Amphetamine sensitization (augmented locomotion, days 1–29) and cross-sensitization with acute restraint stress (increased stress hormones, day 34) were assessed. Results PAE rats exhibited a lower threshold for amphetamine sensitization compared to controls, suggesting enhanced sensitivity of dopaminergic systems to stimulant-induced changes. Cross-sensitization between amphetamine (dopamine) and stress (HPA hormone) systems was evident in PAE, but not in control rats. PAE males exhibited increased dopamine receptor expression (mPFC) compared to controls. Conclusions PAE alters induction and expression of sensitization/cross-sensitization, as reflected in locomotor, neural, and endocrine changes, in a manner consistent with increased sensitivity of dopamine and stress systems. These results provide insight into possible mechanisms that could underlie increased prevalence of SUD, as well as the impact of widely prescribed stimulant medications among adolescents with FASD. PMID:25420606

  10. Acute and chronic administration of a low-dose combination of topiramate and ondansetron reduces ethanol's reinforcing effects in male alcohol preferring (P) rats.

    PubMed

    Moore, Catherine F; Lycas, Matthew D; Bond, Colin W; Johnson, Bankole A; Lynch, Wendy J

    2014-02-01

    Topiramate (a GABA/glutamate modulator) and ondansetron (a serotonin-3 antagonist) have shown promise as treatments for alcohol use disorders (AUDs), although efficacy is modest/variable for both medications. We recently showed in animal models of consumption and relapse that acute treatment with a combination of these medications was more efficacious than either alone. To determine whether the mechanism for its beneficial effects is through modulation of ethanol's reinforcing effects, we measured the effect of this combination in male alcohol preferring (P) rats (N = 22) responding for ethanol under a progressive-ratio (PR) schedule. Low doses, which either do not affect (ondansetron; 0.001 mg/kg) or only modestly affect (topiramate; 10 mg/kg) alcohol-related behaviors on their own, were selected in an attempt to maximize their combined efficacy while minimizing potential side effects. In addition to acute treatment (1 day), the effects of chronic administration (10 days) were examined in an attempt to model human treatment approaches. The effects of the combination were compared with the low dose of topiramate alone hypothesizing that the combination would be more efficacious than topiramate alone. Although both topiramate and the combination similarly reduced PR responding for ethanol following acute treatment and during the initial phase of chronic treatment (Days 1-5), after repeated administration (Days 6-10), only the combination produced a sustained reduction in ethanol-maintained responding. These results suggest an advantage of the combination over topiramate alone at producing a sustained reduction in ethanol's reinforcing effects following prolonged treatment, and lend further support for its use as a potential treatment for AUDs.

  11. GATA2 Inhibition Sensitizes Acute Myeloid Leukemia Cells to Chemotherapy

    PubMed Central

    Cao, Yanan; Xuan, Binbin; Fan, Yingchao; Sheng, Huiming; Zhuang, Wenfang

    2017-01-01

    Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients’ AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients. PMID:28114350

  12. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    SciTech Connect

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allow a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.

  13. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    DOE PAGES

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allowmore » a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.« less

  14. Salvianolic acid B protects against acute ethanol-induced liver injury through SIRT1-mediated deacetylation of p53 in rats.

    PubMed

    Li, Mingzhu; Lu, Yang; Hu, Yan; Zhai, Xiaohan; Xu, Wei; Jing, Huirong; Tian, Xiaofeng; Lin, Yuan; Gao, Dongyan; Yao, Jihong

    2014-07-15

    Salvianolic acid B (SalB) is isolated from the traditional Chinese medical herb salvia miltiorrhiza. It has many biological and pharmaceutical activities. This study aimed to investigate the effect of SalB on acute ethanol-induced hepatic injury in rats and to explore the role of SIRT1 in this process. The results showed that pretreatment with SalB significantly reduced ethanol-induced elevation in aminotransferase activities, decreased hepatotoxic cytokine levels such as Interleukin-6 (IL-6), and increased the antioxidant enzyme activity. Moreover, SalB pretreatment reversed the increase in NF-κB, cleaved caspase-3 and decrease in B-cell lymphoma-extra large (Bcl-xL) caused by ethanol exposure. Importantly, SalB pretreatment significantly increased the expression of SIRT1, a NAD(+)-dependent deacetylase, whereas the increase in SIRT1 was accompanied by decreased acetyl-p53 expression. In HepG2 cells, SalB pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly increased the acetylation of p53, and blocked SalB-induced acetylation of p53 down-regulation. Collectively, this study indicated that SalB can alleviate acute ethanol-induced hepatocyte apoptosis through SIRT1-mediated deacetylation of p53 pathway.

  15. Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. Aerial parts in mice.

    PubMed

    Hosseinzadeh, Hossein; Khoshdel, Mohammad; Ghorbani, Maryam

    2011-12-01

    Myrtus communis L. aerial parts have been used in traditional medicine for the treatment of inflammatory disease. In this study 350 mice were divided into three main groups: negative (saline), positive (morphine or diclofenac) controls, and test groups. The acute toxicity was assessed for 2 days. Antinociceptive activity was performed using hot plate and writhing tests. The anti-inflammatory effect was investigated using xylene-induced ear edema and a cotton pellet test. According to phytochemical screening, the extracts contained tannins, alkaloids, and flavonoids. The LD50 values of the aqueous and ethanolic extracts were 0.473 and 0.79 g/kg, respectively. In hot plate test, the aqueous and ethanolic extracts showed significant antinociceptive activity that was inhibited by naloxone. The extracts exhibited antinociceptive activity against acetic acid-induced writhing and also showed significant activity against acute inflammation which was dose dependent for aqueous extract. The ethanolic (0.05 g/kg) and aqueous extracts (0.005, 0.015, and 0.03 g/kg) demonstrated anti-inflammatory effects against chronic inflammation. The aqueous and ethanolic extracts of the aerial parts of M communis L. showed antinociceptive effects and these may be mediated by opioid receptors.

  16. Toxicogenomic identification of biomarkers of acute respiratory exposure sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  17. *Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    EPA Science Inventory

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens fol...

  18. Sensitivity of Danio rerio (Teleostei, Cyprinidae) during two stages of development based on acute toxicity tests.

    PubMed

    Freiry, R; Stelzer, J A A; Maltchik, L; Arenzon, A

    2014-10-01

    The sensitivity of Danio rerio to three chemicals was compared at two growth stages [larval (10 ± 2 after hatching) and post-larval (60 ± 4 days after hatching)] based on acute toxicity tests. Thirty-nine 48 h acute toxicity tests were performed with the substances CuSO4, NaCl and KCl. The 48 h LC50 values at the two growth stages were compared by independent samples t-tests. The results showed a clear decrease in sensitivity when post-larval organisms were used. Since acute toxicity test methods for D. rerio that recommend using post-larval stage fish do not represent the most sensitive stage of the test organism, our study suggests a revision of the methods to use larval fish.

  19. Can Artemia Hatching Assay Be a (Sensitive) Alternative Tool to Acute Toxicity Test?

    PubMed

    Rotini, A; Manfra, L; Canepa, S; Tornambè, A; Migliore, L

    2015-12-01

    Artemia sp. is extensively used in ecotoxicity testing, despite criticisms inherent to both acute and long-term tests. Alternative endpoints and procedures should be considered to support the use of this biological model. The hatching process comprises several developmental steps and the cyst hatchability seems acceptable as endpoint criterion. In this study, we assessed the reliability of the hatching assay on A. franciscana by comparing with acute and long-term mortality tests, using two chemicals: Diethylene Glycol (DEG), Sodium Dodecyl Sulphate (SDS). Both DEG and SDS tests demonstrated a dose dependent hatching inhibition. The hatching test resulted more sensitive than acute mortality test and less sensitive than the long-term one. Results demonstrate the reliability and high sensitivity of this hatching assay on a short time lag and support its useful application in first-tier risk assessment procedures.

  20. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  1. Sensitivity to acute cerebral ischemic injury in migraineurs

    PubMed Central

    Mawet, Jerome; Eikermann-Haerter, Katharina; Park, Kwang-Yeol; Helenius, Johanna; Daneshmand, Ali; Pearlman, Lea; Avery, Ross; Negro, Andrea; Velioglu, Murat; Arsava, Ethem Murat

    2015-01-01

    Objective: Migraine, particularly with aura, is a risk factor for ischemic stroke. Recent data in migraine mutant mice suggest that cerebral hyperexcitability associated with migraine accelerates recruitment of ischemic penumbra into the core, resulting in faster infarct growth compared with wild type. We hypothesized that individuals with a history of migraine are more likely to exhibit increased recruitment of ischemic tissue into the infarct in acute stroke. Methods: In this retrospective case-control study, we identified participants with reliably documented migraine history, measured lesion volumes on diffusion-weighted and perfusion-weighted MRI obtained within 72 hours of symptom onset, calculated the proportion of ischemic tissue on perfusion-weighted imaging (PWI) hyperintense on diffusion-weighted imaging (DWI), and compared the proportion of patients with no-mismatch pattern defined as DWI lesion >83% of PWI lesion. Results: Migraineurs (n = 45) were younger, more often female, less likely to have vascular risk factors, and more often had cervical artery dissection, but otherwise did not differ from controls (n = 27). A significantly larger proportion of migraineurs had no-mismatch pattern, indicating that the entire perfusion defect was recruited into the infarct by the time of MRI (22% vs 4% of migraineurs and controls, respectively; p = 0.044). The difference was even more prominent in migraineurs with aura (36% vs 4%, p = 0.019). The association between migraine and no-mismatch pattern persisted after adjustment for time to MRI (p = 0.041). Conclusions: This case-control study supports the hypothesis that a history of migraine, particularly with aura, is associated with a no-mismatch pattern during acute ischemic stroke, consistent with data obtained in migraine mutant mice. PMID:26537055

  2. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity

    PubMed Central

    Lee, Seo Yeon; Ko, Kwang Suk

    2016-01-01

    Background Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. Methods To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Results Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Conclusions Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis. PMID:27722142

  3. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder

    PubMed Central

    Matchynski-Franks, Jessica J.; Susick, Laura L.; Schneider, Brandy L.; Perrine, Shane A.; Conti, Alana C.

    2016-01-01

    Background and Purpose Impaired striatal neuroplasticity may underlie increased alcoholism documented in those with posttraumatic stress disorder (PTSD). Cannabinoid receptor-1 (CB1) is sensitive to the effects of ethanol (EtOH) and traumatic stress, and is a critical regulator of striatal plasticity. To investigate CB1 involvement in the PTSD-alcohol interaction, this study measured the effects of traumatic stress using a model of PTSD, mouse single-prolonged stress (mSPS), on EtOH-induced locomotor sensitization and striatal CB1 levels. Methods Mice were exposed to mSPS, which includes: 2-h restraint, 10-min group forced swim, 15-min exposure to rat bedding odor, and diethyl ether exposure until unconsciousness or control conditions. Seven days following mSPS exposure, the locomotor sensitizing effects of EtOH were assessed. CB1, post-synaptic density-95 (PSD95), and dopamine-2 receptor (D2) protein levels were then quantified in the dorsal striatum using standard immunoblotting techniques. Results Mice exposed to mSPS-EtOH demonstrated impaired EtOH-induced locomotor sensitization compared to Control-EtOH mice, which was accompanied by reduced striatal CB1 levels. EtOH increased striatal PSD95 in control and mSPS-exposed mice. Additionally, mSPS-Saline exposure increased striatal PSD95 and decreased D2 protein expression, with mSPS-EtOH exposure alleviating these changes. Conclusions These data indicate that the mSPS model of PTSD blunts the behavioral sensitizing effects of EtOH, a response that suggests impaired striatal neuroplasticity. Additionally, this study demonstrates that mice exposed to mSPS and repeated EtOH exposure decreases CB1 in the striatum, providing a mechanism of interest for understanding the effects of EtOH following severe, multimodal stress exposure. PMID:27186643

  4. Ethanol Sensitivity of Cu1-xSnxO (x = 0.00, 0.03, and 0.05) Nanoflakes

    NASA Astrophysics Data System (ADS)

    Mariammal, R. N.; Ramachandran, K.

    2011-07-01

    Cu1-xSnxO (x = 0.00, 0.03, and 0.05) nanoflakes were synthesized by a simple wet chemical method and X-Ray diffraction (XRD) result confirms the monoclinic structure of CuO with no secondary phases due to Sn doping. The scanning electron microscopic images indicate the formation of nanoflakes. The fundamental Raman modes were observed at 273, 318, 610, and 1084 cm-1 for undoped CuO sample and theses modes were slightly shifted towards lower frequency side for Sn-doped samples, which indicates the inclusion of Sn in CuO. In addition, XRD and Raman studies infer the decrease of crystallinity in doped samples, which is reflected in the sensitivity towards ethanol. The ethanol sensitivity (resistivity measurement) increases with ethanol gas concentration and decreases with Sn-doping in CuO nanoflakes.

  5. Ethanol Sensitivity of Cu{sub 1-x}Sn{sub x}O(x = 0.00, 0.03, and 0.05) Nanoflakes

    SciTech Connect

    Mariammal, R. N.; Ramachandran, K.

    2011-07-15

    Cu{sub 1-x}Sn{sub x}O(x = 0.00, 0.03, and 0.05) nanoflakes were synthesized by a simple wet chemical method and X-Ray diffraction (XRD) result confirms the monoclinic structure of CuO with no secondary phases due to Sn doping. The scanning electron microscopic images indicate the formation of nanoflakes. The fundamental Raman modes were observed at 273, 318, 610, and 1084 cm{sup -1} for undoped CuO sample and theses modes were slightly shifted towards lower frequency side for Sn-doped samples, which indicates the inclusion of Sn in CuO. In addition, XRD and Raman studies infer the decrease of crystallinity in doped samples, which is reflected in the sensitivity towards ethanol. The ethanol sensitivity (resistivity measurement) increases with ethanol gas concentration and decreases with Sn-doping in CuO nanoflakes.

  6. Chronic intermittent ethanol exposure in adolescent and adult male rats: Effects on tolerance, social behavior and ethanol intake

    PubMed Central

    Broadwater, Margaret; Varlinskaya, Elena I.; Spear, Linda P.

    2010-01-01

    Background Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of the present study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Methods Adolescent and adult male Sprague-Dawley rats were assigned to one of five 10 day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), non-manipulated/acutely challenged with ethanol (4 g/kg on day 10) or non-manipulated. For assessment of tolerance development, loss of righting reflex was tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and non-manipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hrs after the last ethanol exposure, with ethanol-naïve chronic saline and non-manipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and non-manipulated animals using an 8 day 2 bottle choice, limited access ethanol intake procedure. Results Adolescents were less sensitive to the sedative effects of ethanol than adults. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults. Adolescents drank significantly more ethanol than adults on a g/kg basis, with intake uninfluenced by prior ethanol exposure at both ages. Conclusion Adolescents and adults may differ in

  7. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data.

    PubMed

    Weltje, Lennart; Simpson, Peter; Gross, Melanie; Crane, Mark; Wheeler, James R

    2013-04-01

    The relative sensitivity of amphibians to chemicals in the environment, including plant protection product active substances, is the subject of ongoing scientific debate. The objective of this study was to compare systematically the relative sensitivity of amphibians and fish to chemicals. Acute and chronic toxicity data were obtained from the U.S. Environmental Protection Agency (U.S. EPA) ECOTOX database and were supplemented with data from the scientific and regulatory literature. The overall outcome is that fish and amphibian toxicity data are highly correlated and that fish are more sensitive (both acute and chronic) than amphibians. In terms of acute sensitivity, amphibians were between 10- and 100-fold more sensitive than fish for only four of 55 chemicals and more than 100-fold more sensitive for only two chemicals. However, a detailed inspection of these cases showed a similar acute sensitivity of fish and amphibians. Chronic toxicity data for fish were available for 52 chemicals. Amphibians were between 10- and 100-fold more sensitive than fish for only two substances (carbaryl and dexamethasone) and greater than 100-fold more sensitive for only a single chemical (sodium perchlorate). The comparison for carbaryl was subsequently determined to be unreliable and that for sodium perchlorate is a potential artifact of the exposure medium. Only a substance such as dexamethasone, which interferes with a specific aspect of amphibian metamorphosis, might not be detected using fish tests. However, several other compounds known to influence amphibian metamorphosis were included in the analysis, and these did not affect amphibians disproportionately. These analyses suggest that additional amphibian testing is not necessary during chemical risk assessment.

  8. Repeated exposure of the posterior ventral tegmental area to nicotine increases the sensitivity of local dopamine neurons to the stimulating effects of ethanol.

    PubMed

    Ding, Zheng-Ming; Katner, Simon N; Rodd, Zachary A; Truitt, William; Hauser, Sheketha R; Deehan, Gerald A; Engleman, Eric A; McBride, William J

    2012-05-01

    Clinical evidence indicates a frequent co-morbidity of nicotine and alcohol abuse and dependence. The posterior ventral tegmental area (pVTA) appears to support the reinforcing and dopamine-stimulating effects of both drugs. The current study tested the hypothesis that repeated exposure of the pVTA to one drug would increase the sensitivity of local dopamine neurons to the stimulating effects of the other drug. Female Wistar rats received repeated daily microinjections of either 100 μM nicotine or vehicle directly into the pVTA for 7 days. On the 8th day, rats received microinjections of either vehicle or ethanol (100 or 200 mg%) into the pVTA while extracellular dopamine samples were collected from the ipsilateral nucleus accumbens shell (NACsh) with microdialysis. Another experiment tested the effects of challenge microinjections of 200 μM nicotine in the pVTA on extracellular dopamine levels in the NACsh following 7 daily pretreatments with 200 mg% ethanol in the pVTA. Nicotine pretreatments increased the dopamine-stimulating effects of ethanol in the pVTA (100 mg% ethanol: 115% vs 160% of baseline in the vehicle and nicotine groups, respectively, p < 0.05; 200 mg% ethanol: 145% vs 190% of baseline in the vehicle and nicotine groups, respectively, p < 0.05). In contrast, ethanol pretreatments did not alter the stimulating effects of nicotine in the pVTA. The results suggest that repeated exposure of the pVTA to nicotine increased the response of local dopamine neurons to the stimulating effects of ethanol, whereas repeated exposure of the pVTA to ethanol did not alter the responses of pVTA dopamine neurons to nicotine.

  9. Minimal cross-sensitivity to humidity during ethanol detection by SnO2-TiO2 solid solutions.

    PubMed

    Tricoli, Antonio; Righettoni, Marco; Pratsinis, Sotiris E

    2009-08-05

    A nanocomposite material is presented that optimally combines the excellent gas sensitivity of SnO2 and the selectivity of TiO2. Nanostructured, rutile titanium-tin oxide solid solutions up to 81.5% Ti, as determined by x-ray diffraction, are made by scalable spray combustion (flame spray pyrolysis) of organometallic precursor solutions, directly deposited and in situ annealed onto sensing electrodes in one step. Above that content, segregation of anatase TiO2 takes place. It was discovered that at low titanium contents (less than 5 Ti%), these materials exhibit higher sensitivity to ethanol vapor than pure SnO2 and, in particular, limited cross-sensitivity to relative humidity, a long standing challenge for metal oxide gas sensors. These solid solutions are aggregated nanoparticles with an enhanced presence of Ti on their surface as indicated by Raman and IR-spectroscopy. The presence of such low Ti-content in the SnO2 lattice drastically reduces the band gap of these solid solutions, as determined by UV-vis absorption, almost to that of pure TiO2. Furthermore, titania reduces the number of rooted and terminal OH species (that are correlated to the cross-sensitivity of tin oxide to water) on the particle surface as determined by IR-spectroscopy. The present material represents a new class of sensors where detection of gases and organic vapors can be accomplished without pre-treatment of the gas mixture, avoiding other semiconducting components that require more heating power and that add bulkiness to a sensing device. This is attractive in developing miniaturized sensors especially for microelectronics and medical diagnostics.

  10. Ethanol effects on dopaminergic ventral tegmental area neurons during block of Ih: involvement of barium-sensitive potassium currents.

    PubMed

    McDaid, John; McElvain, Maureen A; Brodie, Mark S

    2008-09-01

    The dopaminergic neurons of the ventral tegmental area (DA VTA neurons) are important for the rewarding and reinforcing properties of drugs of abuse, including ethanol. Ethanol increases the firing frequency of DA VTA neurons from rats and mice. Because of a recent report on block of ethanol excitation in mouse DA VTA neurons with ZD7288, a selective blocker of the hyperpolarization-activated cationic current Ih, we examined the effect of ZD7288 on ethanol excitation in DA VTA neurons from C57Bl/6J and DBA/2J mice and Fisher 344 rats. Ethanol (80 mM) caused only increases in firing rate in mouse DA VTA neurons in the absence of ZD7288, but in the presence of ZD7288 (30 microM), ethanol produced a more transient excitation followed by a decrease of firing. This same biphasic phenomenon was observed in DA VTA neurons from rats in the presence of ZD7288 only at very high ethanol concentrations (160-240 mM) but not at lower pharmacologically relevant concentrations. The longer latency ethanol-induced inhibition was not observed in DA VTA neurons from mice or rats in the presence of barium (100 microM), which blocks G protein-linked potassium channels (GIRKs) and other inwardly rectifying potassium channels. Ethanol may have a direct effect to increase an inhibitory potassium conductance, but this effect of ethanol can only decrease the firing rate if Ih is blocked.

  11. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  12. Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum.

    PubMed

    Firozan, Bita; Goudarzi, Iran; Elahdadi Salmani, Mahmoud; Lashkarbolouki, Taghi; Rezaei, Arezou; Abrari, Kataneh

    2014-06-05

    Recently it has been shown that estradiol prevents the toxicity of ethanol in developing cerebellum. The neuroprotective effect of estradiol is not due to a single phenomenon but rather encompasses a spectrum of independent proccesses. According to the specific timing of Purkinje cell vulnerability to ethanol and several protective mechanisms of estradiol, we considered the neurotrophin system, as a regulator of differentiation, maturation and survival of neurons during CNS development. Interactions between estrogen and Brain derived neurotrophic factor (BDNF, an essential factor in neuronal survival) lead us to investigate involvement of BDNF pathway in neuroprotective effects of estrogen against ethanol toxicity. In this study, 17β-estradiol (300-900μg/kg) was injected subcutaneously in postnatal day (PD) 4, 30min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Eight hours after injection of ethanol, BDNF mRNA and protein levels were assayed. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral tests in PD 23. Our results indicated that estradiol increased BDNF mRNA and protein levels in the presence of ethanol. We also observed that pretreatment with estradiol significantly attenuated ethanol-induced motoric impairment. Histological analysis also demonstrated that estradiol prevented Purkinje cell loss following ethanol treatment. These results provide evidence on the possible mechanisms of estradiol neuroprotection against ethanol toxicity.

  13. Acute effects of ethanol on action potential and intracellular Ca(2+) transient in cardiac ventricular cells: a simulation study.

    PubMed

    Pásek, Michal; Bébarová, Markéta; Christé, Georges; Šimurdová, Milena; Šimurda, Jiří

    2016-05-01

    Alcohol consumption may result in electrocardiographic changes and arrhythmias, at least partly due to effects of ethanol on cardiac ionic currents. Contractility and intracellular Ca(2+) dynamics seem to be altered as well. In this study, we integrated the available (mostly animal) experimental data into previously published models of the rat and human ventricular myocytes to assess the share of ionic current components in ethanol-induced changes in AP configuration and cytosolic Ca(2+) transient in ventricular cardiomyocytes. The rat model reproduced well the experimentally observed changes in AP duration (APD) under ethanol (slight prolongation at 0.8 mM and shortening at ≥8 mM). These changes were almost exclusively caused by the ethanol-induced alterations of I K1. The cytosolic Ca(2+) transient decreased gradually with the increasing ethanol concentration as a result of the ethanol-induced inhibition of I Ca. In the human model, ethanol produced a dose-dependent APD lengthening, dominated by ethanol effect on I Kr, the key repolarising current in human ventricles. This effect might contribute to the clinically observed proarrhythmic effects of ethanol in predisposed individuals.

  14. Cytoplasmic Phospholipase A2 Modulation of Adolescent Rat Ethanol-Induced Protein Kinase C Translocation and Behavior

    PubMed Central

    Santerre, J. L.; Kolitz, E. B.; Pal, R.; Rogow, J. A.; Werner, D. F.

    2015-01-01

    Ethanol consumption typically begins during adolescence, a developmental period which exhibits many age-dependent differences in ethanol behavioral sensitivity. Protein kinase C (PKC) activity is largely implicated in ethanol-behaviors, and our previous work indicates that regulation of novel PKC isoforms likely contributes to decreased high-dose ethanol sensitivity during adolescence. The cytoplasmic Phospholipase A2 (cPLA2) signaling cascade selectivity modulates novel and atypical PKC isoform activity, as well as adolescent ethanol hypnotic sensitivity. Therefore, the current study was designed to ascertain adolescent cPLA2 activity both basally and in response to ethanol, as well as it's involvement in ethanol-induced PKC isoform translocation patterns. cPLA2 expression was elevated during adolescence, and activity was increased only in adolescents following high-dose ethanol administration. Novel, but not atypical PKC isoforms translocate to cytosolic regions following high-dose ethanol administration. Inhibiting cPLA2 with AACOCF3 blocked ethanol-induced PKC cytosolic translocation. Finally, inhibition of novel, but not atypical, PKC isoforms when cPLA2 activity was elevated, modulated adolescent high-dose ethanol-sensitivity. These data suggest that the cPLA2/PKC pathway contributes to the acute behavioral effects of ethanol during adolescence. PMID:25791059

  15. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol.

    PubMed

    Yang, Ying; Zhou, Cong-Hua; Xu, Sheng; Zhang, Jing; Wu, Su-Juan; Hu, Hao; Chen, Bo-Lei; Tai, Qi-Dong; Sun, Zheng-Hua; Liu, Wei; Zhao, Xing-Zhong

    2009-03-11

    A quasi-solid-state dye-sensitized solar cell employing a poly(ethylene oxide)-poly(vinylidene fluoride) (PEO-PVDF)/TiO2 gel electrolyte modified by various concentrations of water and ethanol is described. It is shown that the introduction of water and ethanol prevents the crystallization of the polymer matrix, and enhances the free I(-)/I(3)(-) concentration and the networks for ion transportation in the electrolyte, thus leading to an improvement in conductivity. A high energy conversion efficiency of about 5.8% is achieved by controlling the additive concentration in the electrolyte. Optimization of the additive-modified electrolyte performance has been obtained by studying the cross-linking behavior of water and ethanol with Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and viscosity measurements, and the electrical conduction behavior of the electrolyte with impedance spectra measurements.

  16. Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio).

    PubMed

    Tran, Steven; Gerlai, Robert

    2013-09-01

    The zebrafish has been proposed for the study of the effects of ethanol on the vertebrate brain. Behavioural tests have been successfully employed in the phenotypical characterization of these effects. However, the short scale (minute to minute) time course of ethanol induced changes of zebrafish behaviour has not been analyzed. The current study alleviates this need using a 2×3 chronic×acute ethanol exposure experimental design. We first expose zebrafish to ethanol chronically using a dose escalation procedure in which fish are kept in a final concentration of 0.5% vol/vol ethanol for 10 days while control fish receive identical dosing procedures but no ethanol. Subsequently, we expose zebrafish for 1h to an acute dose of ethanol (0.00, 0.50, or 1.00% vol/vol) and monitor their behaviour throughout this period. We quantify the mean and within-individual temporal variance of distance travelled, distance from bottom and angular velocity using video-tracking, and establish temporal trajectories of ethanol induced behavioural changes in zebrafish. For example, we find fish of the highest acute dose group previously not exposed to chronic ethanol to exhibit an inverted U shaped temporal trajectory in distance travelled (biphasic alcohol effect). We find this response to be blunted after chronic ethanol exposure (development of tolerance). We also describe an acute ethanol withdrawal induced increase in angular velocity. We conclude that temporal analysis of zebrafish behaviour is a sensitive method for the study of chronic and acute ethanol exposure induced functional changes in the vertebrate brain.

  17. A Rapid In-Clinic Test Detects Acute Leptospirosis in Dogs with High Sensitivity and Specificity

    PubMed Central

    Kodjo, Angeli; Calleja, Christophe; Loenser, Michael; Lin, Dan; Lizer, Joshua

    2016-01-01

    A rapid IgM-detection immunochromatographic test (WITNESS® Lepto, Zoetis) has recently become available to identify acute canine leptospirosis at the point of care. Diagnostic sensitivity and specificity of the test were evaluated by comparison with the microscopic agglutination assay (MAT), using a positive cut-off titer of ≥800. Banked serum samples from dogs exhibiting clinical signs and suspected leptospirosis were selected to form three groups based on MAT titer: (1) positive (n = 50); (2) borderline (n = 35); and (3) negative (n = 50). Using an analysis to weight group sizes to reflect French prevalence, the sensitivity and specificity were 98% and 93.5% (88.2% unweighted), respectively. This test rapidly identifies cases of acute canine leptospirosis with high levels of sensitivity and specificity with no interference from previous vaccination. PMID:27110562

  18. A Rapid In-Clinic Test Detects Acute Leptospirosis in Dogs with High Sensitivity and Specificity.

    PubMed

    Kodjo, Angeli; Calleja, Christophe; Loenser, Michael; Lin, Dan; Lizer, Joshua

    2016-01-01

    A rapid IgM-detection immunochromatographic test (WITNESS® Lepto, Zoetis) has recently become available to identify acute canine leptospirosis at the point of care. Diagnostic sensitivity and specificity of the test were evaluated by comparison with the microscopic agglutination assay (MAT), using a positive cut-off titer of ≥800. Banked serum samples from dogs exhibiting clinical signs and suspected leptospirosis were selected to form three groups based on MAT titer: (1) positive (n = 50); (2) borderline (n = 35); and (3) negative (n = 50). Using an analysis to weight group sizes to reflect French prevalence, the sensitivity and specificity were 98% and 93.5% (88.2% unweighted), respectively. This test rapidly identifies cases of acute canine leptospirosis with high levels of sensitivity and specificity with no interference from previous vaccination.

  19. Porous Eu2O3-In2O3 nanotube-based ethanol gas sensor with high sensitivity and excellent selectivity

    NASA Astrophysics Data System (ADS)

    Lian, Hongwei; Feng, Yi; Wang, Zhijun; Liu, Li; Guo, Xuexin; Wang, Xuesong

    2017-03-01

    In this work, we employed electrospinning and calcination method to fabricate porous Eu2O3-In2O3 nanotubes and observed the morphology and characteristic of products through X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDX), and scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The SEM and TEM images exhibit that the surface of nanotubes is distributed with numerous pores. Gas-sensing investigations revealed that the 3 wt% porous Eu2O3-In2O3 nanotube sensors possess high sensitivity and excellent selectivity to ethanol. Its response to 50 ppm ethanol was up to 44 at optimum temperature of 260 °C, which is 6.2 times larger than the pure nanotube. The response to ethanol is four times larger than that of acetone. The response and recovery time to 50 ppm ethanol was 3 and 21 s, respectively. Besides, the sensor could detect 0.2 ppm ethanol with response of 1.8. Those indicate that the sensing properties of In2O3 nanotube sensor are improved by doping Eu. In brief, the porous Eu2O3-In2O3 nanotube sensor has hopes for practice.

  20. Role of endogenous gastric mucosal prostaglandins in the formation of acute gastric mucosal lesions induced by aspirin, ethanol, HCl and CH3COOH.

    PubMed

    Amioka, I; Arima, T; Nagashima, H

    1987-06-01

    The role of endogenous mucosal prostaglandins (PGs) in the production of acute gastric mucosal lesions (AGML) was examined in rats. Aspirin, ethanol or 0.6 N-HCl was given intragastrically and 20% acetic acid was injected into the gastric wall. Endogenous gastric mucosal PG (A + B), PGE and PGF were determined by radioimmunoassay. Their gastric contents were markedly reduced by aspirin administration (p less than 0.001). The level of gastric mucosal PGs still remained low (p less than 0.001) after the aspirin-induced AGML began to heal. Furthermore, rats with AGML induced by ethanol, HCl or acetic acid, showed no decrease in endogenous gastric mucosal PGs compared with the controls. These findings indicated that endogenous PGs are not necessary for either the induction or healing of experimental AGML.

  1. Serotoninergic neuronal systems and ethanol sensitivity in long-sleep (LS) and short-sleep (SS) mice

    SciTech Connect

    French, T.A.; Weiner, N.

    1986-03-01

    LS and SS mice selectively bred for differences in CNS sensitivity to ethanol (EtOH) exhibit markedly different sleep times (LS = 120 min; SS = 13 min) and differ considerably in hypothermic response following EtOH< 4 g/kg i.p. Basal levels of serotonin (5HT), 5-hydroxyindole acetic acid and 5HT turnover (defined as 5-hydroxy-tryptophan accumulation after inhibition of aromatic L-amino acid decarboxylase) in 6 brain regions (hypthalamus (HYP), dorsal raphe (DR), pontine-medullary raphe (PMR), striatum (STR), hippocampus (HIP) and cortex (CTX)) differ minimally between the two lines. 5 HT turnover in STR, HIP, CTX and PMR of either LS or SS mice or in HYP or DR of SS mice was not altered at either 20 or 120 min after EtOH, 4 g/kg. However, in LS mice, 5HT turnover was decreased 23% in HYP at 20 min and 30-34% in HYP and DR at 120 min. LS mice become 1.2 and 2.2/sup 0/ more hypothermic than SS mice at 20 and 120 min after EtOH, 4 g/kg. When approximately equi-effective hypothermic doses of EtOH were administered to LS (3.5 g/kg) and SS (5.0 g/kg) mice, differences in 5HT turnover were still apparent. Pentobarbital administration (65 mg/kg) both decreased brain 5HT turnover 30-60% and produced comparable degrees of hypothermia in LS and SS mice. These data suggest that the apparent increase in sensitivity to inhibition by EtOH of 5HT neurons of HYP and DR of LS mice may contribute to the greater degree of hypothermia induced in this line.

  2. Ethanol Is Self-Administered Into the Nucleus Accumbens Shell, But Not the Core: Evidence of Genetic Sensitivity

    PubMed Central

    Engleman, Eric A.; Ding, Zheng-Ming; Oster, Scott M.; Toalston, Jamie E.; Bell, Richard L.; Murphy, James M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Background A previous study indicated that selectively bred alcohol-preferring (P) rats self-administered ethanol (EtOH) directly into the posterior ventral tegmental area at lower concentrations than Wistar rats. The present study was undertaken to determine involvement of the nucleus accumbens (Acb) with EtOH reinforcement, and a relationship between genetic selection for high alcohol preference and sensitivity of the Acb to the reinforcing effects of EtOH. Methods Adult P and Wistar rats were assigned to groups that self-infused 0 to 300 mg% EtOH into the Acb shell (AcbSh) or Acb Core (AcbC). Rats were placed into 2-lever (active and inactive) operant chambers and given EtOH for the first 4 sessions (acquisition), artificial cerebro-spinal fluid (aCSF) for sessions 5 and 6 (extinction), and EtOH again in session 7 (reinstatement). Responding on the active lever produced a 100-nl injection of the infusate. Results Alcohol-preferring rats self-infused 75 to 300 mg% EtOH, whereas Wistar rats reliably self-infused 100 and 300 mg% EtOH into the AcbSh. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for EtOH, and reinstated responding in session 7 when EtOH was restored. EtOH was not self-infused into the AcbC by P or Wistar rats. Conclusions The present results indicate that the AcbSh, but not AcbC, is a neuroanatomical structure that mediates the reinforcing actions of EtOH. The data also suggest that, compared to Wistar rats, the AcbSh of P rats is more sensitive to the reinforcing effects of EtOH. PMID:19764930

  3. Genetic differences in ethanol-induced hyperglycemia and conditioned taste aversion

    SciTech Connect

    Risinger, F.O.; Cunningham, C.L. )

    1992-01-01

    Genetic differences in the hyperglycemic response to acute ethanol exposure and ethanol-induced conditioned taste aversion were examined using inbred mice. Adult male C57BL/6J and DBA/2J mice were injected with ethanol and blood glucose levels determined over 4 h. C57 mice demonstrated greater dose-dependent elevations in blood glucose compared to DBA mice. In a conditioned taste aversion procedure, water deprived mice received ethanol injections immediately after access to a NaCl flavored solution. DBA mice developed aversion to the ethanol-paired flavor at a lower dose than C57 mice. These results provide further support for a possible inverse genetic relationship between sensitivity to ethanol-induced hyperglycemia and sensitivity to conditioned taste aversion.

  4. Ethanol Extract of Perilla frutescens Suppresses Allergen-Specific Th2 Responses and Alleviates Airway Inflammation and Hyperreactivity in Ovalbumin-Sensitized Murine Model of Asthma

    PubMed Central

    Hung, Li-Shiuan; Lin, Bi-Fong

    2015-01-01

    This study was to investigate the effects of different fractions of Perilla frutescens (Pf) leaves extracted by water or ethanol on asthma. BALB/c mice sensitized intraperitoneally and challenged with ovalbumin (OVA) were divided into six groups. Each group of mice was tube-feeding with 0 (control), 80 μg (PfWL), or 320 μg (PfWH) water extracts or 80 μg (PfEL) or 320 μg (PfEH) ethanol extracts of perilla leaves daily for 3 weeks. A negative control group (PBS) was neither sensitized nor treated with Pf. The effects of perilla leave extracts on allergic immune response were evaluated. The results showed that OVA-specific IL-5 and IL-13 secretions from OVA-stimulated splenocytes were significantly suppressed in the ethanol extract groups PfEL and PfEH. Serum level of anti-OVA IgE tended to be lower in the PfEH group. The inflammatory mediators, such as eotaxin and histamine, and total cells, particularly eosinophils in bronchoalveolar lavage fluid (BALF), were also decreased in the PfEL and the PfEH groups. Therefore, the PfEL and the PfEH groups had significantly lower methacholine-induced hyperresponsiveness (AHR). In conclusion, ethanol extracts, rather than water extract, of perilla leaves could significantly suppress Th2 responses and airway inflammation in allergic murine model of asthma. PMID:26064160

  5. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    PubMed

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity.

  6. Detrimental effects of nicotine on the acute gastric mucosal injury induced by ethanol: role of asymmetric dimethylarginine.

    PubMed

    Zhang, Zhe; Zhou, Yuan; Zou, Yi-You; Wang, Li; Yang, Zhi-Chun; Guo, Ren; Li, Dai; Peng, Jun; Li, Yuan-Jian

    2008-12-01

    The aim of this study was to determine whether asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is responsible for the detrimental effects of nicotine on ethanol-induced gastric mucosal injury and its underlying mechanisms. Gastric mucosal injury was induced by an injection of ethanol in the stomach in rats. Animals were pretreated with nicotine for 28 days before ethanol injection. The gastric mucosal ulcer index (UI) and the levels of ADMA and NO in gastric juice were determined. In vitro, the cultured mucosal epithelial cells were treated with nicotine in the presence or absence of ethanol. The concentration of ADMA in the culture medium and the ratio of cell apoptosis were measured, and the effect of nicotine or ADMA alone on cell apoptosis was also examined. In rats treated with ethanol, the UI and ADMA levels were increased and the NO level was decreased, and these effects of ethanol were augmented by pretreatment with nicotine. Administration of nicotine alone did not show significant impact on UI, ADMA level, or NO level. In vitro, incubation of human epithelial cells with ethanol induced cell injury accompanied by increased ADMA levels in the culture medium, an effect which was amplified in the presence of nicotine. Similarly, ethanol was able to induce epithelial cell apoptosis that was exacerbated by nicotine. Incubation of epithelial cells with nicotine alone did not induce cell apoptosis, but administration of ADMA alone did induce cell apoptosis. The results suggest that the gastric mucosal injury induced by ethanol is augmented by nicotine, which is related to the increased ADMA level.

  7. Comparison of ethanol toxicity to Daphnia magna and Ceriodaphnia dubia tested at two different temperatures: static acute toxicity test results

    SciTech Connect

    Takahashi, I.T.; Cowgill, U.M.; Murphy, P.G.

    1987-08-01

    Ethanol is a commonly used solvent in toxicity testing, yet there are few studies in the literature devoted to its toxicity to zooplankton. The purpose of this study was to compare the response of Daphnia magna Straus 1820 and Ceriodaphnia dubia J. Richard 1894 to ethanol. Two temperatures were selected because most toxicity data involving D. magna has been carried out at 20/sup 0/C while all discussions concerning C. dubia appear to relate to temperatures oscillating around 25/sup 0/C. Thus, the response of these two organisms to ethanol was examined at 20/sup 0/C and at 24/sup 0/C.r

  8. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain

    PubMed Central

    Contet, Candice

    2013-01-01

    Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics. PMID:24078902

  9. Effects of ethanol on hippocampal function during adolescence: a look at the past and thoughts on the future.

    PubMed

    Chin, Vivien S; Van Skike, Candice E; Matthews, Douglas B

    2010-02-01

    It has been demonstrated by several laboratories that ethanol, both acute and chronic, produces effects that are age dependent. Specifically, adolescent rats are less sensitive to the hypnotic and motor-impairing effects of ethanol but are more sensitive to the hypothermic effects of the drug. However, the results on hippocampal function are not as clear. For example, there have been mixed findings regarding adolescent sensitivity of hippocampal-dependent (spatial) memory in response to ethanol. The current review explores the present state of the field as it relates to ethanol's effects in the hippocampus, particularly as it relates to spatial memory. In addition, we review potential neurobiological mechanisms that might underlie the age-dependent effects of ethanol in the hippocampus. Finally, future directions are proposed that will advance the state of the field as it relates to ethanol's effect during this developmental period.

  10. Alcohol acutely increases vascular reactivity together with insulin sensitivity in type 2 diabetic men.

    PubMed

    Schaller, G; Kretschmer, S; Gouya, G; Haider, D G; Mittermayer, F; Riedl, M; Wagner, O; Pacini, G; Wolzt, M; Ludvik, B

    2010-01-01

    Moderate alcohol consumption is associated with increased insulin sensitivity and reduced cardiovascular risk. We hypothesized that this relates to a direct effect of alcohol and therefore investigated whether acute alcohol intake altered insulin sensitivity or endothelial function in patients with type 2 diabetes. In an open-label two period design, the effect of a single oral dose of 40 g of alcohol (168 ml 40% vodka) on an insulin-modified frequently sampled intravenous glucose tolerance test (FSIGT) and on endothelium-dependent (flow mediated, FMD) or endothelium-independent (glyceroltrinitrate (GTN)-induced) vasodilation of the brachial artery measured by ultrasound was studied. Experiments were carried out in twelve male patients with type 2 diabetes mellitus (64+/-6 years, body mass index 28.4+/-5.7 kg/m (2)). Baseline insulin sensitivity index (S (I)) was 1.10+/-0.34 min (-1).microU (-1).ml, baseline FMD was +4.1+/-3.0%, and GTN-induced vasodilation +7.4+/-2.3% from resting brachial artery diameter. Acute alcohol intake increased alcohol plasma levels to 0.33+/-0.04 per thousand, S (I) to 1.86+/-0.45 min (-1).microU (-1).ml (p<0.05), and FMD to +8.2+/-2.8% (p<0.05), while GTN-induced dilation remained unchanged. No relationship was detectable between the observed changes. We conclude that alcohol intake acutely increases endothelium-dependent brachial artery vasodilation in patients with type 2 diabetes together with insulin sensitivity. This acute effect might explain some beneficial effects of low alcohol consumption in epidemiological observations.

  11. Sensitivity of modified Biel-maze task, compared with Y-maze task, to measure spatial learning and memory deficits of ethanol teratogenicity in the guinea pig.

    PubMed

    Dobson, Christine C; Mongillo, Daniel L; Poklewska-Koziell, Margo; Winterborn, Andrew; Brien, James F; Reynolds, James N

    2012-07-15

    Ethanol consumption during pregnancy can produce a variety of teratogenic effects in offspring, termed Fetal Alcohol Spectrum Disorders (FASD). The most debilitating and permanent consequence of chronic prenatal ethanol exposure (CPEE) is neurobehavioral teratogenicity, which often manifests as cognitive and behavioral impairments, including deficits in spatial learning and memory. This study tested the hypothesis that a modified dry-land version of the multi-choice Biel-maze task is more sensitive than the rewarded-alternation Y-maze task for the determination of spatial learning and memory deficits of ethanol teratogenicity. Pregnant guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (control) for 5days/week throughout gestation. CPEE resulted in ethanol neurobehavioral teratogenicity in offspring, as demonstrated by increased spontaneous locomotor activity at postnatal day (PD) 10 and decreased brain weight at euthanasia (PD 150-200). On PD 21, offspring were randomly assigned to one of two tasks to assess spatial learning and memory performance: a dry-land version of the Biel maze or a rewarded-alternation Y-maze. Animals were habituated to the environment of their assigned task and performance of each CPEE or control offspring was measured. In the modified Biel maze, CPEE and control offspring were not different for percent completed trials or time to complete a trial. However, CPEE offspring made more errors (reversals and entering dead ends) in the Biel maze, demonstrating impaired spatial learning and memory. In contrast, CPEE offspring did not have impaired performance of the rewarded-alternation Y-maze task. Therefore, the modified dry-land version of the Biel-maze task, which measures cognitive performance using a complex multi-choice design, is more sensitive in demonstrating CPEE-induced spatial learning and memory deficits compared with a simple, rewarded-alternation Y-maze task.

  12. Factors associated with acute salt-sensitivity in borderline hypertensive patients.

    PubMed

    Borghi, C; Boschi, S; Costa, F V; Ambrosioni, E

    1992-01-01

    The acute sensitivity to sodium loading has been investigated in 26 borderline hypertensive patients (BHT) undergoing acute i.v. NaCl infusion. Measurements included blood pressure (BP), forearm vascular resistance (FVR) and venous distensibility (VV30), plasma renin activity (PRA), plasma aldosterone, plasma atrial natriuretic factor (ANF), and plasma levels of endogenous Na+/K+ATPase inhibitor. Sodium loading was associated with a greater than 8% increase in mean BP in 12 patients defined as salt-sensitive (NaCl-SENS) in comparison to salt-insensitive (NaCl-INSENS) subset. NaCl-SENS patients in comparison to NaCl-INSENS exhibited 1) a greater baseline VV30 (2.1 vs 1.4 ml/100 ml; p less than .005), and a response to saline characterized by 2) increased FVR (21.4 vs -6.5%; p less than .005), 3) blunted PRA suppression (-42 vs -67%; p less than .05), 4) delayed ANF response and 5) release of a Na+/K+ATPase inhibitor. Post-loading cumulative urinary sodium excretion was reduced in NaCl-SENS borderline hypertensives compared to NaCl-INSENS (2.6 vs 3.8 mumol/min/Kg; p less than .05). We conclude that acute salt-sensitivity in BHT is characterized by a blunted hormonal response to sodium loading which could be responsible of the activation of hemodynamic as well as humoral mechanisms leading to progressive blood pressure increase.

  13. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals

    USGS Publications Warehouse

    Dwyer, F.J.; Mayer, F.L.; Sappington, L.C.; Buckler, D.R.; Bridges, C.M.; Greer, I.E.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Kunz, J.L.; Whites, D.W.; Augspurger, T.; Mount, D.R.; Hattala, K.; Neuderfer, G.N.

    2005-01-01

    Assessment of contaminant impacts to federally identified endangered, threatened and candidate, and state-identified endangered species (collectively referred to as "listed" species) requires understanding of a species' sensitivities to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation. An indirect approach for aquatic species would be application of toxicity data obtained from standard test procedures and species commonly used in laboratory toxicity tests. Common test species (fathead minnow, Pimephales promelas; sheepshead minnow, Cyprinodon variegatus; and rainbow trout, Oncorhynchus mykiss) and 17 listed or closely related species were tested in acute 96-hour water exposures with five chemicals (carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin) representing a broad range of toxic modes of action. No single species was the most sensitive to all chemicals. For the three standard test species evaluated, the rainbow trout was more sensitive than either the fathead minnow or sheepshead minnow and was equal to or more sensitive than listed and related species 81% of the time. To estimate an LC50 for a listed species, a factor of 0.63 can be applied to the geometric mean LC50 of rainbow trout toxicity data, and more conservative factors can be determined using variance estimates (0.46 based on 1 SD of the mean and 0.33 based on 2 SD of the mean). Additionally, a low- or no-acute effect concentration can be estimated by multiplying the respective LC50 by a factor of approximately 0.56, which supports the United States Environmental Protection Agency approach of multiplying the final acute value by 0.5 (division by 2). When captive or locally abundant populations of listed fish are available, consideration should be given to direct testing. When direct toxicity testing cannot be performed, approaches for developing protective measures using common test

  14. Assessing contaminant sensitivity of endangered and threatened aquatic species: part I. Acute toxicity of five chemicals.

    PubMed

    Dwyer, F J; Mayer, F L; Sappington, L C; Buckler, D R; Bridges, C M; Greer, I E; Hardesty, D K; Henke, C E; Ingersoll, C G; Kunz, J L; Whites, D W; Augspurger, T; Mount, D R; Hattala, K; Neuderfer, G N

    2005-02-01

    Assessment of contaminant impacts to federally identified endangered, threatened and candidate, and state-identified endangered species (collectively referred to as "listed" species) requires understanding of a species' sensitivities to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation. An indirect approach for aquatic species would be application of toxicity data obtained from standard test procedures and species commonly used in laboratory toxicity tests. Common test species (fathead minnow, Pimephales promelas; sheepshead minnow, Cyprinodon variegatus; and rainbow trout, Oncorhynchus mykiss) and 17 listed or closely related species were tested in acute 96-hour water exposures with five chemicals (carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin) representing a broad range of toxic modes of action. No single species was the most sensitive to all chemicals. For the three standard test species evaluated, the rainbow trout was more sensitive than either the fathead minnow or sheepshead minnow and was equal to or more sensitive than listed and related species 81% of the time. To estimate an LC50 for a listed species, a factor of 0.63 can be applied to the geometric mean LC50 of rainbow trout toxicity data, and more conservative factors can be determined using variance estimates (0.46 based on 1 SD of the mean and 0.33 based on 2 SD of the mean). Additionally, a low- or no-acute effect concentration can be estimated by multiplying the respective LC50 by a factor of approximately 0.56, which supports the United States Environmental Protection Agency approach of multiplying the final acute value by 0.5 (division by 2). When captive or locally abundant populations of listed fish are available, consideration should be given to direct testing. When direct toxicity testing cannot be performed, approaches for developing protective measures using common test

  15. Flow cytometry crossmatching as a predictor of acute rejection in sensitized recipients of cadaveric renal transplants.

    PubMed

    O'Rourke, R W; Osorio, R W; Freise, C E; Lou, C D; Garovoy, M R; Bacchetti, P; Ascher, N L; Melzer, J S; Roberts, J P; Stock, P G

    2000-04-01

    Flow cytometry crossmatching (FCXM) was developed as a more sensitive assay than the standard complement-dependent cytotoxicity crossmatch (CDCXM) for the detection of anti-donor antibodies, that mediate hyperacute rejection and graft loss in the early post-transplant period in renal transplant recipients. The role of FCXM in predicting long-term clinical outcome in renal allograft recipients is unclear. This study examines the role of FCXM in predicting long-term clinical outcome in highly sensitized recipients of cadaveric renal transplants. All patients (n = 100) with peak panel reactive antibody (PRA) levels > 30%, who received cadaveric renal transplants between 1/1/'90 and 12/31/'95 at our institution, were divided into FCXM + and FCXM - groups. The incidence of acute rejection was determined for each group during the first yr after transplant. Graft survival rates at 1, 2, and 3 yr, and creatinine levels were also compared between groups. FCXM + patients experienced a higher incidence of acute rejection during the first yr after transplant (69 vs. 45%), and a higher percentage of FCXM + patients had more than one episode of acute rejection during the first yr after transplant (34 vs. 8%) when compared to FCXM - patients. There was no statistically significant difference in 1-, 2-, or 3-yr graft survival between FCXM + and FCXM - patients (76 vs. 83, 62 vs. 80, 62 vs. 72%, respectively). These results suggest that sensitized FCXM + cadaveric renal transplant recipients have a higher incidence of acute rejection episodes in the first yr after transplant. Given the association of multiple rejection episodes with poor long-term allograft survival, FCXM may be a useful predictor of long-term clinical outcome in this sub-group of renal transplant recipients.

  16. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    PubMed

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-10-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications.

  17. Acute Toxicity and Gastroprotective Role of M. pruriens in Ethanol-Induced Gastric Mucosal Injuries in Rats

    PubMed Central

    Hassandarvish, Pouya; Abdul Majid, Nazia; Hadi, A. Hamid A.; Nordin, Noraziah; Abdulla, Mahmood A.

    2013-01-01

    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions. PMID:23781513

  18. Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats.

    PubMed

    Botelho-Ono, Mayumi S; Pina, Hermano V; Sousa, Karla H F; Nunes, Fabiola C; Medeiros, Isac A; Braga, Valdir A

    2011-01-20

    In some pathological conditions such as hypertension, there is an impairment in the autonomic control of blood pressure resulting in changes in baroreflex sensitivity. In the present study we tested the hypothesis that acute superoxide scavenging would restore the reduced baroreflex sensitivity in renovascular hypertension. Male Wistar rats underwent 2-Kidney-1-Clip (2K1C) or sham surgery and were maintained untouched for six weeks to develop hypertension. After six weeks, animals from the 2K1C group were hypertensive when compared to the sham group (165±9 vs. 108±7mm Hg, P<0.05). As a proof of principle for the hypertension model adopted, animals from the 2K1C group presented increased non-clipped kidney and cardiac mass index and reduced clipped kidney mass index. Regarding baroreflex, 2K1C rats presented diminished baroreflex sensitivity when compared to the sham group (2K1C+saline: -1.61±0.15 vs. sham+saline: -2.79±0.24bpm mm Hg(-1), p<0.05). Moreover, acute administration of Vitamin C (150mg/Kg, i.v.) restored baroreflex sensitivity in 2K1C rats (2K1C+Vit C: -3.08±0.37 vs. 2K1C+saline: -1.61±0.15bpm mm Hg(-1), p<0.05). Furthermore, administration of apocynin (30μg/Kg, i.v.), a NADPH oxidase inhibitor, also improved baroreflex sensitivity in the 2K1C group (2K1C+apocynin: -2.81±0.24 vs. 2K1C+saline: -1.61±0.15bpm mm Hg(-1), p<0.05). In addition, autonomic blockade with either methylatropine or propranolol reduced the changes in heart rate to the same extent in all groups suggesting that improved baroreflex sensitivity by antioxidants were mediated by improvement in autonomic function. Taken together, these data suggest that NADPH oxidase-derived reactive oxygen species are involved in the blunted baroreflex sensitivity in renovascular hypertension and that acute scavenging of superoxide restores baroreflex sensitivity.

  19. Baroreflex sensitivity is higher during acute psychological stress in healthy subjects under β-adrenergic blockade

    PubMed Central

    Truijen, Jasper; Davis, Shyrin C.A.T.; Stok, Wim J.; Kim, Yu-Sok; van Westerloo, David J.; Levi, Marcel; van der Poll, Tom; Westerhof, Berend E.; Karemaker, John M.; van Lieshout, Johannes J.

    2010-01-01

    Acute psychological stress challenges the cardiovascular system with an increase in BP (blood pressure), HR (heart rate) and reduced BRS (baroreflex sensitivity). β-adrenergic blockade enhances BRS during rest, but its effect on BRS during acute psychological stress is unknown. This study tested the hypothesis that BRS is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Twenty healthy novice male bungee jumpers were randomized and studied with (PROP, n=10) or without (CTRL, n=10) propranolol. BP and HR responses and BRS [cross-correlation time-domain (BRSTD) and cross-spectral frequency-domain (BRSFD) analysis] were evaluated from 30 min prior up to 2 h after the jump. HR, cardiac output and pulse pressure were lower in the PROP group throughout the study. Prior to the bungee jump, BRS was higher in the PROP group compared with the CTRL group [BRSTD: 28 (24–42) compared with 17 (16–28) ms·mmHg−1, P<0.05; BRSFD: 27 (20–34) compared with 14 (9–19) ms·mmHg−1, P<0.05; values are medians (interquartile range)]. BP declined after the jump in both groups, and post-jump BRS did not differ between the groups. In conclusion, during acute psychological stress, BRS is higher in healthy subjects treated with non-selective β-adrenergic blockade with significantly lower HR but comparable BP. PMID:20828371

  20. Acute ethanol effects on sensory responses of single units in the somatosensory cortex of rats during different behavioral states.

    PubMed

    Chapin, J K; Sorensen, S M; Woodward, D J

    1986-09-01

    We have investigated the dose-dependence and time-course of ethanol effects on the activity of single neurons in the somatosensory (SI) cortex of behaving, unanesthetized rats. Sensory responses of neurons recorded in the forepaw area of the SI cortex were quantitatively measured by constructing post-stimulus histograms to repetitive stimulation through electrodes chronically implanted in the forepaw. Single units were isolated and held throughout a protocol involving: (1) a control period, (2) intoxication produced by a single dose of ethanol administered IP or IV and (3) recovery for 60 minutes or more. Post-stimulus histograms were generated during three standard behaviors: (1) REST, (2) IMMOBILE AROUSAL (produced by holding the animal), and (3) MOVEMENT (running on a treadmill). In pre-ethanol controls, the immobile arousal condition slightly increased both excitatory and inhibitory components of the sensory response, while the movement condition strongly inhibited them. Ethanol reduced both of these types of behavioral modulation of sensory responses by abolishing the facilitation normally seen during immobile arousal, as well as the inhibitory gating normally seen during movement. Different latency response epochs of post-stimulus histograms were also used to compare the effect of ethanol on fast vs. slow conducting pathways to the SI cortex. Ethanol at low doses (0.3 g/kg bw, IP) was found to selectively reduce the longer latency excitatory response peaks, while sparing the shortest latency response peak. At moderate doses (1.0 g/kg), however, the shortest latency response peak was also reduced. This contrasted with the effects of halothane which, at anesthetic doses, exerted a much more selective reduction of the longer latency responses.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Acute ethanol administration affects memory reactivation: a look at the neuronal density and apoptosis in the rat hippocampus.

    PubMed

    Alijan-pour, J; Abrari, K; Bluki, T Lashkar; Ghorbanian, M T; Goudarzi, I; Salmani, M Elahdadi; Mirshekar, M

    2012-08-01

    This study is an attempt to examine whether administration of ethanol after memory reactivation will modulate expression of memory in rats or not. We further examined whether this administration alters the number of tunnel positive cells in hippocampus. Adult male Wistar rats were trained in a fear conditioning system using two 1s , 0.6 mA shock with an interval of 180 s. 24 h later the rats were returned to the chamber for reactivation, and then they were injected with ethanol (0.5, 1, 1.5 mg/kg) or saline, ip. Again, one, seven and fourteen days after reactivation, the rats were returned to the context for 5 min. The freezing time (absence of all movements except respiration) was scored in seconds. In the second experiment, after test 1, the animals were anesthetized and a transcardial perfuse with phosphate buffer and paraformaldehyde 4% was conducted. After post-fixation of brains 5-μm sections were stained with cresyl violet. Finally, paraffin-embedded sections of 10 μm were cut out throughout the tissue and each sample was processed with TUNEL. The number of apoptotic cells in a 130 μm-long segment of the hippocampal CA1 and CA3 fields and dentate gyrus was counted. The data demonstrate that ethanol exposure impairs post retrieval processes. Rats receiving ethanol (1.5 mg/kg) showed lower freezing levels during the first test. Moreover, ethanol decreases the density of CA1, CA3 and DG cells and increases the density of apoptotic cells in all regions of hippocampus. Therefore, ethanol exposure impairs reconsolidation of contextual fear conditioning probably via decreasing the density of CA1, CA3 and DG cells.

  2. Detecting impairment: sensitive cognitive measures of dose-related acute alcohol intoxication.

    PubMed

    Cash, Catherine; Peacock, Amy; Barrington, Helen; Sinnett, Nicholas; Bruno, Raimondo

    2015-04-01

    The cognitive impairment that results from acute alcohol intoxication is associated with considerable safety risks. Other psychoactive substances, such as medications, pose a similar risk to road and workplace safety. However, there is currently no legal limit for operating vehicles or working while experiencing drug-related impairment. The current study sought to identify a brief cognitive task sensitive to a meaningful degree of impairment from acute alcohol intoxication to potentially stand as a reference from which to quantify impairment from other similar substances. A placebo-controlled single-blind crossover design was employed to determine the relative sensitivity of four commonly-administered cognitive tasks (Compensatory Tracking Task, Digit Symbol Substitution Test, Brief Stop Signal Task and Inspection Time Task) to alcohol-related impairment in male social drinkers at ~0.05% ascending breath alcohol concentration (BrAC), ~0.08% peak BrAC and 0.05% descending BrAC. The Inspection Time Task was identified as the most sensitive task, detecting a medium to large magnitude increase in impairment (g ≈ 0.60) at 0.05% ascending and descending BrAC, and a large magnitude effect size (g = 0.80) at 0.08% peak BrAC. The remaining tasks failed to demonstrate sensitivity to dose-dependent and limb-dependent changes in alcohol-induced impairment. The Inspection Time Task was deemed the most sensitive task for screening alcohol-related impairment based on the present results. Confirmation of equivalence with other drug-related impairment and sensitivity to alcohol-induced impairment in real-world settings should be established in future research.

  3. Relative sensitivity of bull trout (Salvelinus confluentus) and rainbow trout (Oncorhynchus mykiss) to acute copper toxicity.

    PubMed

    Hansen, James A; Lipton, Josh; Welsh, Paul G

    2002-03-01

    Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Past and present habitat for this species includes waterways contaminated with heavy metals released from mining activities. Because the sensitivity of this species to copper was previously unknown, we conducted acute copper toxicity tests with bull and rainbow trout (Oncorhynchus mykiss) in side-by-side comparison tests. Bioassays were conducted using water at two temperatures (8 degrees C and 16 degrees C) and two hardness levels (100 and 220 mg/L as CaCO3). At a water hardness of 100 mg/L, both species were less sensitive to copper when tested at 16 degrees C compared to 8 degrees C. The two species had similar sensitivity to copper in 100-mg/ L hardness water, but bull trout were 2.5 to 4 times less sensitive than rainbow trout in 220-mg/L hardness water. However, when our results were viewed in the context of the broader literature on rainbow trout sensitivity to copper, the sensitivities of the two species appeared similar. This suggests that adoption of toxicity thresholds that are protective of rainbow trout would be protective of bull trout; however, an additional safety factor may be warranted because of the additional level of protection necessary for this federally threatened species.

  4. Ethanol-induced GABAA receptor alpha4 subunit plasticity involves phosphorylation and neuroactive steroids.

    PubMed

    Werner, David F; Porcu, Patrizia; Boyd, Kevin N; O'Buckley, Todd K; Carter, Jenna M; Kumar, Sandeep; Morrow, A Leslie

    2016-04-01

    GABAA receptors containing α4 subunits are widely implicated in acute ethanol sensitivity, and their spatial and temporal regulation prominently contributes to ethanol-induced neuroplasticity in hippocampus and cortex. However, it is unknown if α4-containing GABAA receptors in the thalamus, an area of high α4 expression, display similar regulatory patterns following ethanol administration, and if so, by which molecular mechanisms. In the current study, thalamic GABAA receptor α4 subunit levels were increased following a 6-week-, but not a 2-week chronic ethanol diet. Following acute high-dose ethanol administration, thalamic GABAA receptor α4 subunit levels were regulated in a temporal fashion, as a decrease was observed at 2h followed by a delayed transient increase. PKCγ and PKCδ levels paralleled α4 temporal expression patterns following ethanol exposure. Initial decreases in α4 subunit expression were associated with reduced serine phosphorylation. Delayed increases in expression were not associated with a change in phosphorylation state, but were prevented by inhibiting neuroactive steroid production with the 5α-reductase inhibitor finasteride. Overall, these studies indicate that thalamic GABAA receptor α4 subunit expression following acute and chronic ethanol administration exhibits similar regulatory patterns as other regions and that transient expression patterns following acute exposure in vivo are likely dependent on both subunit phosphorylation state and neuroactive steroids.

  5. Enhancement of acute ethanol hepatotoxicity under conditions of low oxygen supply and ischemia/reperfusion. The role of oxygen radicals.

    PubMed

    Younes, M; Wagner, H; Strubelt, O

    1989-10-15

    Using isolated hemoglobin-free perfused rat livers we studied the effect of low oxygen supply on ethanol hepatotoxicity in two models. In the first model resembling low blood supply, perfusion rate was lowered from 60 to 10 ml/min after a 30 min-equilibration phase and kept low for 60 min. As a consequence, oxygen consumption fell from 1.76 +/- 0.15 mumol/min/g to 0.51 +/- 0.02 mumol/min/g. In the second model, total ischemia was accomplished by interruption of the perfusion for 30 min and was followed by reperfusion at a perfusion rate of 60 ml/min for a further 30 min. In this model, oxygen consumption returned immediately to normal values upon reperfusion. In both models, low oxygen supply had no toxic effects of its own on livers from fed rats. While ethanol (3 g/l) given under normoxic conditions led to a moderate hepatotoxicity, its application in both models of partial as well as total ischemia and reperfusion resulted in a marked liver damage as evidenced by a strong release of sorbitol dehydrogenase, glutamate-pyruvate-transaminase, lactate dehydrogenase and glutathione, as well as by an increase in hepatic calcium content. Inhibition of ethanol metabolism by 4-methylpyrazol prevented liver damage in both models indicating that metabolism of ethanol is a prerequisite for its toxicity to occur. Also, hepatotoxicity was inhibited partially by catalase and superoxide dismutase and nearly totally by deferrioxamine and allopurinol. Thus, reactive oxygen species which are produced during ethanol metabolism as well as under conditions of low oxygen supply are mediators of hepatic damage in both models employed.

  6. Acute acalculous cholecystitis: sensitivity in detection using technetium-99m iminodiacetic acid cholescintigraphy

    SciTech Connect

    Swayne, L.C.

    1986-07-01

    Forty-one proved cases of acute acalculous cholecystitis imaged with technetium-99m iminodiacetic acid (IDA) cholescintigraphy were retrospectively analyzed. After the exclusion of one indeterminate scan (showing poor initial hepatic uptake and excretion), the study yielded a 92.5% (37 of 40) sensitivity for the detection of cystic or common bile duct obstruction. Each of the three patients with false-negative scintigrams had other abnormal scintigraphic findings suggestive of biliary tract disease. Of the 20 patients (48.8%) with focal or diffuse gangrenous cholecystitis or perforation, seven (35%) exhibited either free peritoneal spill or increased pericholecystic activity to indicate the presence of advanced disease.

  7. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons.

    PubMed

    McCool, B A; Botting, S K

    2000-03-24

    Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine sensitive receptors. Furthermore, these strychnine-sensitive receptors are shown to be pharmacologically and biophysically similar to 'classic' strychnine-sensitive, chloride-conducting glycine receptors expressed in brainstem and spinal cord. While amygdala glycine receptors can be distinguished from GABA(A) receptors expressed by the same neurons, these two chloride channels are functionally expressed at comparable levels. Given that a number of clinically relevant compounds are associated with the regulation of GABA(A) receptors in this brain region, the presence of both strychnine-sensitive glycine receptors and their agonist, taurine, in the basolateral amygdala may suggest an important role for these receptors in the limbic forebrain of adult rats.

  8. Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions

    PubMed Central

    Cavalcanti-Galdino, M.K.; da Silva, J.A.; Mendes, L.C.; dos Santos, N.A.; Simas, M.L.B.

    2014-01-01

    The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions. PMID:24676473

  9. Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions.

    PubMed

    Cavalcanti-Galdino, M K; Silva, J A da; Mendes, L C; Santos, N A da; Simas, M L B

    2014-04-01

    The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions.

  10. Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats.

    PubMed

    Kulkarny, V V; Wiest, N E; Marquez, C P; Nixon, S C; Valenzuela, C F; Perrone-Bizzozero, N I

    2011-08-01

    The adolescent brain is particularly vulnerable to the effects of alcohol, with intoxications at this developmental age often producing long-lasting effects. The present study addresses the effects of a single acute ethanol exposure on growth-associated protein-43 (GAP-43) and brain-derived neurotrophic factor (BDNF) gene expression in neurons in the cerebellum and hippocampus of adolescent rats. Male postnatal day 23 (P23) Sprague-Dawley rats were exposed to ethanol vapors for 2h and after a recovery period of 2h, the cerebellum and hippocampus were harvested and samples were taken for blood alcohol concentration (BAC) determinations. We found that this exposure resulted in a mean BAC of 174 mg/dL, which resembles levels in human adolescents after binge drinking. Analyses of total RNA and protein by quantitative reverse transcription PCR and western blotting, respectively, revealed that this single ethanol exposure significantly decreased the levels of GAP-43 mRNA and protein in the cerebellum but increased the levels of mRNA and protein in the hippocampus. BDNF mRNA and protein levels were also increased in the hippocampus but not in the cerebellum of these animals. In situ hybridizations revealed that GAP-43 and BDNF mRNA levels were primarily increased by alcohol exposure in hippocampal dentate granule cells and CA3 neurons. Overall, the reported alterations in the expression of the plasticity-associated genes GAP-43 and BDNF in juvenile rats are consistent with the known deleterious effects of binge drinking on motor coordination and cognitive function.

  11. Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice

    SciTech Connect

    Pohjanvirta, Raimo; Miettinen, Hanna; Sankari, Satu; Hegde, Nagabhooshan; Lindén, Jere

    2012-07-15

    The acute toxicity of the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) varies widely among species and strains. Previous studies in rats have established that females are approximately 2-fold more sensitive to TCDD lethality than males. However, there is a surprising gap in the literature regarding possible gender-related sensitivity differences in mice. In the present study, by using three substrains of TCDD-sensitive C57BL/6 mice and transgenic mice on this background, we demonstrated that: 1) in contrast to the situation in rats, female mice are the more resistant gender; 2) the magnitude of the divergence between male and female mice depends on the substrain, but can amount to over 10-fold; 3) AH receptor protein expression levels or mutations in the primary structure of this receptor are not involved in the resistance of female mice of a C57BL/6 substrain, despite their acute LD{sub 50} for TCDD being over 5000 μg/kg; 4) transgenic mice that globally express the rat wildtype AH receptor follow the mouse type of gender difference; 5) in gonadectomized mice, ovarian estrogens appear to enhance TCDD resistance, whereas testicular androgens seem to augment TCDD susceptibility; and 6) the gender difference correlates best with the severity of liver damage, which is also reflected in hepatic histopathology and the expression of pro-inflammatory cytokines, especially IL-6. Hence, the two closely related rodent species most often employed in toxicological risk characterization studies, rat and mouse, represent opposite examples of the influence of gender on dioxin sensitivity, further complicating the risk assessment of halogenated aromatic hydrocarbons. -- Highlights: ► In contrast to rats, male mice are more sensitive to TCDD toxicity than female mice. ► The resistance of female C57BL/6Kuo mice matches or exceeds that of male DBA/2 mice. ► The resistance of female C57BL/6Kuo mice is not based on AHR structure or abundance.

  12. Persistent behavioral and neurochemical sensitization to an acute injection of methamphetamine following unpredictable stress.

    PubMed

    Matuszewich, Leslie; Carter, Samantha; Anderson, Eden M; Friedman, Ross D; McFadden, Lisa M

    2014-10-01

    Prior research in humans and animals suggest that exposure to chronic stress alters the response to drugs of abuse, increasing vulnerability to drug addiction. Chronic unpredictable stress (CUS) has been shown to augment the increase of dopamine in the striatum when challenged with high doses of methamphetamine immediately following stress exposure, however it is not known whether this neurochemical stress-sensitization continues after the cessation of the stressors or if behavioral sensitization is also present. Therefore, the current study examined the immediate and delayed effects of CUS on methamphetamine-induced behaviors and striatal dopamine levels. Male rats were exposed to 10 days of CUS and then tested in either an open field box to assess locomotion or underwent in vivo microdialysis to measure striatal dopamine levels immediately following CUS or after a 1-2 week delay. All rats exposed to CUS showed a potentiated locomotor response immediately following an acute injection of 7.5mg/kg methamphetamine compared to non-stressed control rats. Both groups of CUS rats also showed augmented dopamine release and rectal temperatures following methamphetamine with prolonged increases in the CUS rats tested after a delay. These results suggest that CUS increases the sensitivity of a rat to a single injection of methamphetamine and that the increased sensitivity persists for up to 2 weeks following the last stressor.

  13. Stronger cortisol response to acute psychosocial stress is correlated with larger decrease in temporal sensitivity

    PubMed Central

    Yao, Zhuxi; Jiang, Caihong; Zhang, Kan; Wu, Jianhui

    2016-01-01

    As a fundamental dimension of cognition and behavior, time perception has been found to be sensitive to stress. However, how one’s time perception changes with responses to stress is still unclear. The present study aimed to investigate the relationship between stress-induced cortisol response and time perception. A group of 40 healthy young male adults performed a temporal bisection task before and after the Trier Social Stress Test for a stress condition. A control group of 27 male participants completed the same time perception task without stress induction. In the temporal bisection task, participants were first presented with short (400 ms) and long (1,600 ms) visual signals serving as anchor durations and then required to judge whether the intermediate probe durations were more similar to the short or the long anchor. The bisection point and Weber ratio were calculated and indicated the subjective duration and the temporal sensitivity, respectively. Data showed that participants in the stress group had significantly increased salivary cortisol levels, heart rates, and negative affects compared with those in the control group. The results did not show significant group differences for the subjective duration or the temporal sensitivity. However, the results showed a significant positive correlation between stress-induced cortisol responses and decreases in temporal sensitivity indexed by increases in the Weber ratio. This correlation was not observed for the control group. Changes in subjective duration indexed by temporal bisection points were not correlated with cortisol reactivity in both the groups. In conclusion, the present study found that although no significant change was observed in time perception after an acute stressor on the group-level comparison (i.e., stress vs. nonstress group), individuals with stronger cortisol responses to stress showed a larger decrease in temporal sensitivity. This finding may provide insight into the understanding of

  14. ETHANOL ALTERS CALCIUM SIGNALING IN AXONAL GROWTH CONES

    PubMed Central

    Mah, Stephanie J.; Fleck, Mark W.

    2011-01-01

    Calcium (Ca2+) channels are sensitive to ethanol and Ca2+ signaling is a critical regulator of axonal growth and guidance. Effects of acute and chronic exposure to ethanol (22, 43, or 87 mM) on voltage-gated Ca2+ channels (VGCCs) in whole cells, and KCl-induced Ca2+ transients in axonal growth cones, were examined using dissociated hippocampal cultures. Whole-cell patch-clamp analysis in neurons with newly-formed axons (Stage 3) revealed that rapidly inactivating, low-voltage activated (LVA) and non-inactivating, high-voltage activated (HVA) currents were both inhibited in a dose-dependent manner by acute ethanol, with relatively greater inhibition of HVA currents. When assessed by Fluo-4-AM imaging, baseline fluorescence and Ca2+ response to ethanol in Stage 3 neurons was similar compared to neurons without axons, but peak Ca2+ transient amplitudes in response to bath-applied KCl were greater in Stage 3 neurons and were decreased by acute ethanol. The amplitude of Ca2+ transients elicited specifically in axonal growth cones by focal application of KCl was also inhibited by acute exposure to moderate-to-high concentrations of ethanol (43 or 87 mM), whereas a lower concentration (22 mM) had no effect. When 43 or 87 mM ethanol was present continuously in the medium, KCl-evoked Ca2+ transient amplitudes were also reduced in growth cones. In contrast, Ca2+ transients were increased by continuous exposure to 22 mM ethanol. Visualization using a fluorescent dihydropyridine analog revealed that neurons continuously exposed to ethanol expressed increased amounts of L-type Ca2+ channels, with greater increases in axonal growth cones than cell bodies. Thus, acute ethanol reduces Ca2+ current and KCl-induced Ca2+ responses in whole cells and axonal growth cones, respectively, and chronic exposure is also generally inhibitory despite apparent up-regulation of L-type channel expression. These results are consistent with a role for altered growth cone Ca2+ signaling in abnormal

  15. Repetitive hyperbaric oxygen treatment increases insulin sensitivity in diabetes patients with acute intracerebral hemorrhage

    PubMed Central

    Xu, Qian; Wei, Yi-ting; Fan, Shuang-bo; Wang, Liang; Zhou, Xiao-ping

    2017-01-01

    Aim The role of hyperbaric oxygen therapy (HBOT) in the treatment of acute ischemic stroke is controversial. This study aims to investigate whether the peripheral insulin sensitivity of type 2 diabetes patients suffering from intracerebral hemorrhage can be increased after HBOT. Methods Fifty-two type 2 diabetes participants were recruited after being diagnosed with intracerebral hemorrhage in our hospital. Insulin sensitivity was measured by the glucose infusion rate during a hyperinsulinemic euglycemic clamp (80 mU m−2 min−1) at baseline and 10 and 30 days after HBOT sessions. Serum insulin, fasting glucose, and hemoglobin A1C were measured in fasting serum at baseline and after HBOT sessions. In addition, early (∼10 days after onset) and late (1 month after onset) outcomes (National Institutes of Health Stroke Scale, NIHSS scores) and efficacy (changes of NIHSS scores) of HBOT were evaluated. Results In response to HBOT, the glucose infusion rate was increased by 37.8%±5.76% at 1 month after onset compared with baseline. Reduced serum insulin, fasting glucose, and hemoglobin A1C were observed after HBOT. Both early and late outcomes of the HBOT group were improved compared with baseline (P<0.001). In the control group, there was significant difference only in the late outcome (P<0.05). In the assessment of efficacy, there were statistically significant differences between the groups when comparing changes in NIHSS scores at 10 days and 1 month after onset (P<0.05). Conclusion Peripheral insulin sensitivity was increased following HBOT in type 2 diabetes patients with intracerebral hemorrhage. The HBOT used in this study may be effective for diabetes patients with acute stroke and is a safe and harmless adjunctive treatment. PMID:28228657

  16. Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrodeposited on single walled carbon nanotubes-modified pencil graphite electrode.

    PubMed

    Zhu, Jun; Wu, Xiao-Yan; Shan, Dan; Yuan, Pei-Xin; Zhang, Xue-Ji

    2014-12-01

    In this work, the electrodeposition of pyrocatechol violet (PCV) was initially investigated by the electrochemical surface plasmon resonance (ESPR) technique. Subsequently, PCV was used as redox-mediator and was electrodeposited on the surface of pencil graphite electrode (PGE) modified with single-wall carbon nanotubes (SWCNTs). Owing to the remarkable synergistic effect of SWCNTs and PCV, PGE/SWCNTs/PCV exhibited excellent electrocatalytic activity towards dihydronicotinamide adenine dinucleotide (NADH) oxidation at low potential (0.2V vs. SCE) with fast amperometric response (<10s), broad linear range (1.3-280 μM), good sensitivity (146.2 μA mM(-1)cm(-2)) and low detection limit (1.3 μM) at signal-to-noise ratio of 3. Thus, this PGE/SWCNTs/PCV could be further used to fabricate a sensitive and economic ethanol biosensor using alcohol dehydrogenase (ADH) via a glutaraldehyde/BSA cross-linking procedure.

  17. Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice

    PubMed Central

    Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.

    2011-01-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  18. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  19. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  20. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction.

  1. Modification of the development of acute opiate tolerance by increased dopamine receptor sensitivity.

    PubMed

    Martin, J R; Takemori, A E

    1987-04-01

    Earlier studies have suggested that the acute administration of an opiate can result in the development of supersensitive dopamine receptors. The present study was undertaken to determine whether the supersensitive dopamine receptors can modify the development of opiate tolerance and dependence. Administration of morphine (100 mg/kg s.c.) 6 or 24 hr before apomorphine (i.p.) potentiated apomorphine-induced climbing behavior in mice. Administration of levorphanol (12 mg/kg s.c.) 3 or 6 hr, but not 24 hr, before apomorphine also potentiated apomorphine-induced climbing behavior. Coadministration of 5 mEq/kg of LiCl with morphine or levorphanol attenuated the increased sensitivity developed to apomorphine after either opiate. Acute tolerance and dependence was induced by administration of 100 mg/kg of morphine or 12 mg/kg of levorphanol. Lithium enhanced the development of acute tolerance when coadministered with morphine 3, 6 or 24 hr before test doses of morphine, or with levorphanol 3 hr before test doses of levorphanol. Administration of apomorphine 5 min before naloxone significantly decreased the naloxone ED50 for inducing withdrawal jumping in mice that had been pretreated with morphine or levorphanol. Although coadministration of lithium with morphine or levorphanol had no significant effect on naloxone-induced withdrawal jumping, it attenuated the ability of apomorphine to decrease naloxone ED50. Morphine (100 mg/kg s.c.) increased the number of whole brain [3H]spiroperidol binding sites 3 and 6 hr after administration of morphine. This increase was no longer present 24 hr after morphine administration. Levorphanol (12 mg/kg s.c.) also increased the number of binding sites 3 hr after administration. Coadministration of lithium with morphine attenuated the increase in [3H]spiroperidol binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells.

  3. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    PubMed

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking.

  4. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response

    PubMed Central

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B.; De Giovanni, Laura N.; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E.; Spear, Linda P.; Pautassi, Ricardo Marcos

    2016-01-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. PMID:26830848

  5. Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography

    PubMed Central

    Fialová, Stanislava; Augustin, Marco; Fischak, Corinna; Schmetterer, Leopold; Handschuh, Stephan; Glösmann, Martin; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard

    2016-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber. Three dimensional PS-OCT data sets were acquired at IOP levels between 14 mmHg and 105 mmHg. Maps of scleral birefringence, retinal nerve fiber layer (RNFL) retardation and relative RNFL/retina reflectivity were generated in the peripapillary area and quantitatively analyzed. All investigated parameters showed a substantial correlation with IOP. In the low IOP range of 14-45 mmHg only scleral birefringence showed statistically significant correlation. The polarization changes observed in the PS-OCT imaging study presented in this work suggest that birefringence of the sclera may be a promising IOP-related parameter to investigate. PMID:28101419

  6. Sex Differences in Ethanol's Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice with a Null Mutation of the 5α-Reductase Type 1 Gene.

    PubMed

    Tanchuck-Nipper, Michelle A; Ford, Matthew M; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K; Finn, Deborah A

    2015-05-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol's effect on total entries versus wildtype (WT) mice and significantly decreased ethanol's anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids.

  7. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  8. Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats.

    PubMed

    Arumugam, P; Priya, N Gayatri; Subathra, M; Ramesh, A

    2008-07-01

    Anti-inflammatory effects of four solvent fractions of ethanol extract of Mentha spicata were evaluated in acute and chronic inflammation induced in Wistar albino rats. Lipid peroxidation (LPO) and some antioxidants produced during chronic inflammation were quantitated. Hexane (320mg/kg of body weight in 25% DMSO), chloroform (320mg/kg body weight in 25% DMSO), ethyl acetate (160mg/kg body weight in 25% DMSO), aqueous (320mg/kg of body weight in ddH(2)O) fractions, two negative control groups (25% DMSO and ddH(2)O) and two anti-inflammatory drugs (Diclofenac: 25mg/kg of body weight; Indomethacin: 10mg/kg of body weight both in ddH(2)O) were administered by oral intubations to the eight groups of rats consisting six animals, each. In acute study, 1% carrageenan was injected subcutaneously in the sub-plantar region of the right hind paw after 1h of administration of test doses. The increased paw edema was measured at 0.5, 1, 2, 4, 8, 16 and 24h intervals. In the chronic study, the oral administration was carried out for seven consecutive days. On eighth day, four sterile cotton pellets (50mg each) were implanted subcutaneously in the dorsal region of the rats. On the sixteenth day, the rats were sacrificed and the cotton pellets with granulomatous tissue were dissected out and weighed (fresh and dry). Both in chronic and acute inflammation, ethyl acetate (EAF) and aqueous fraction (AF) were effective. EAF is comparable with the positive standards in chronic inflammation. The results indicate that EAF's anti-inflammatory activity is largely due to its ability to modulate in vivo antioxidants.

  9. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    PubMed

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism.

  10. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    SciTech Connect

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  11. Acute mild footshock alters ethanol drinking and plasma corticosterone levels in C57BL/6J male mice, but not DBA/2J or A/J male mice

    PubMed Central

    Matthews, Douglas B.; Morrow, A. Leslie; Todd, O’Buckley; Flanigan, Timothy J.; Berry, Raymond B.; Cook, Melloni N.; Mittleman, Guy; Goldowitz, Dan; Tokunaga, Sayaka; Silvers, Janelle M.

    2008-01-01

    Stress is an often-reported cause for alcohol consumption in humans. Acute intermittent footshock is a frequently used paradigm to produce stress in laboratory animals including mice. The effect produced by intermittent footshock stress on ethanol self-administration has been inconsistent: both increases and decreases in ethanol consumption have been reported. The current set of studies further investigates, in three commonly studied mouse strains, the effect of footshock stress on ethanol self-administration. Furthermore, the effect of footshock on plasma corticosterone levels was determined to investigate potential biochemical correlates. Adult male C57BL/6J, DBA/2J, and A/J mice were allowed to self-administer 10% (wt/vol) ethanol for 12 days in a standard 23-h two-bottle paradigm before receiving either 15 min of mild inescapable footshock or no footshock. Shock intensity was equal to the mean intensity at which each strain vocalized as previously determined. Following footshock, animals had the opportunity to self-administer ethanol for an additional 23 h. Separate animals were subjected to either footshock or no shock prior to collection of plasma for corticosterone. Mild footshock stress altered ethanol self-administration and increased plasma corticosterone levels in C57BL/6J mice. Footshock stress did not alter ethanol self-administration or plasma corticosterone levels in DBA/2J or A/J mice. These data demonstrate that mild footshock stress is a suboptimal method of modeling the stress-induced increases in ethanol consumption often reported by humans. PMID:18599253

  12. An evaluation of the sensitivity of acute flaccid paralysis surveillance for poliovirus infection in Australia

    PubMed Central

    2009-01-01

    Background World Health Organization (WHO) targets for acute flaccid paralysis (AFP) surveillance, including the notification of a minimum rate of AFP among children, are used to assess the adequacy of AFP surveillance for the detection of poliovirus infection. Sensitive surveillance for poliovirus infection in both developed and developing countries is essential to support global disease eradication efforts. We applied recently developed methods for the quantitative evaluation of disease surveillance systems to evaluate the sensitivity of AFP surveillance for poliovirus infection in Australia. Methods A scenario tree model which accounted for administrative region, age, population immunity, the likelihood of AFP, and the probability of notification and stool sampling was used to assess the sensitivity of AFP surveillance for wild poliovirus infection among children aged less than 15 years in Australia. The analysis was based on historical surveillance data collected between 2000 and 2005. We used a surveillance time period of one month, and evaluated the ability of the surveillance system to detect poliovirus infection at a prevalence of 1 case per 100 000 persons and 1 case per million persons. Results There was considerable variation in the sensitivity of AFP surveillance for poliovirus infection among Australian States and Territories. The estimated median sensitivity of AFP surveillance in Australia among children aged less than 15 years was 8.2% per month at a prevalence of 1 case per 100,000 population, and 0.9% per month at a prevalence of 1 case per million population. The probability that Australia is free from poliovirus infection given negative surveillance findings following 5 years of continuous surveillance was 96.9% at a prevalence of 1 case per 100,000 persons and 56.5% at a prevalence of 1 case per million persons. Conclusion Given the ongoing risk of poliovirus importation prior to global eradication, long term surveillance is required to provide

  13. Acute effect of ethanol on the pattern of behavioural specialization of neurons in the limbic cortex of the freely moving rabbit.

    PubMed

    Alexandrov YuI; Grinchenko YuV; Laukka, S; Järvilehto, T; Maz, V N; Svetlajev, I A

    1990-10-01

    Single-unit activity was studied in the limbic cortex of eight freely moving rabbits in order to find out what kind of changes in the organization of unit activity correlate with behavioural disturbances following an acute administration of ethanol (1 g kg-1). The rabbits were taught to acquire food by pressing pedals in the experimental cage. Unit activity was recorded during this behaviour in a control experiment and the alcohol experiment took place the next day. The number of behavioural mistakes significantly increased in the alcohol experiments. The pattern of behavioural specialization of the units also differed between the control and alcohol experiments. In the control experiments 55% of units did not show any constant activations in relation to the behavioural phases (non-involved units), 28% of the units were constantly activated in relation to one or more behavioural phases learned in the cage (e.g. use of pedals; L units) and 17% of units showed activations in relation to the behaviour learned before the teaching of food acquisition (e.g. movements in general; M units). In the alcohol experiments the number of active units decreased by one-third compared with that found in the control experiments. The relative number of non-involved units did not change, whereas the relation between L and M units was reversed (11% L units and 34% M units). This was the result of a decrease in the number of active L units, mainly in the upper layers of the cortex. The results indicate that ethanol has a selective depressing effect on cortical neurons with different behavioural specialization, which could explain the behavioural disturbances observed in the alcohol experiments.

  14. Paradoxical glucose-sensitizing yet proinflammatory effects of acute ASP administration in mice.

    PubMed

    Fisette, Alexandre; Poursharifi, Pegah; Oikonomopoulou, Katerina; Munkonda, Mercedes N; Lapointe, Marc; Cianflone, Katherine

    2013-01-01

    Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which stimulates fat storage and is typically increased in obesity, type 2 diabetes, and cardiovascular disease. Using a diet-induced obesity (DIO) mouse model, the acute effects of ASP on energy metabolism and inflammatory processes in vivo were evaluated. We hypothesized that ASP would specifically exert proinflammatory effects. C57Bl/6 wild-type mice were put on a high-fat-high-sucrose diet for 12 weeks. Mice were then subjected to both glucose and insulin tolerance tests, each manipulation being preceded by recombinant ASP or vehicle (control) bolus injection. ASP supplementation increased whole-body glucose excursion, and this was accomplished with reduced concomitant insulin levels. However, ASP did not directly alter insulin sensitivity. ASP supplementation induced a proinflammatory phenotype, with higher levels of cytokines including IL-6 and TNF-α in plasma and in adipose tissue, liver, and skeletal muscle mRNA. Additionally, ASP increased M1 macrophage content of these tissues. ASP exerted a direct concentration-dependent role in the migration and M1 activation of cultured macrophages. Altogether, the in vivo and in vitro experiments demonstrate that ASP plays a role in both energy metabolism and inflammation, with paradoxical whole-body glucose-sensitizing yet proinflammatory effects.

  15. Highly sensitive sensing platform based on ZnSnO3 hollow cubes for detection of ethanol

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Zhang, Tong; Zhang, Rui; Deng, Jianan; Lou, Zheng; Lu, Geyu; Wang, Lili

    2017-04-01

    Cube-shaped ZnSnO3 with hollow structure were prepared by a co-precipitation method followed by subsequent alkali etching and annealing in inert condition (nitrogen gas environment). As-synthesized ZnSnO3 hollow cubes (ZHC) have an average width of about 700 nm and wall thickness of about 110 nm. The sensor based on ZHC exhibited high response to 100 ppm ethanol at the optimal operating temperature of 260 °C, which was approximately 1.77-times higher than that of ZnSnO3 solid cubes (ZSC). Additionally, ZHC based sensor also displayed great selectivity, reproducibility and long-term stability. The excellent gas sensing performance of ZHC could be attributed to the porous surface and the hollow interior structure, which provided large surface area and good permeation. The results indicate that ZHC are highly promising materials for potential application in the field of gas sensing.

  16. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-11-14

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  17. Acute Sodium Arsenite-Induced Hematological and Biochemical Changes in Wistar Rats: Protective Effects of Ethanol Extract of Ageratum conyzoides

    PubMed Central

    Ola-Davies, Olufunke Eunice; Akinrinde, Akinleye Stephen

    2016-01-01

    Background: Ageratum conyzoides L. (Asteraceae) is an annual herbaceous plant used in folklore medicine for the treatment of a wide range of diseases. Objective: To investigate the protective effect of the ethanol leaf extract of A. conyzoides (EEAC) against hematological, serum biochemical and histological alterations induced by Sodium arsenite administration to Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly assigned into four groups of five rats each. Group I received propylene glycol and Group II rats were given the (EEAC, 100 mg/kg b.w.) orally for 7 days. Group III were given a single oral dose of sodium arsenite (NaAsO2, 2.5 mg/kg b.w.). Animals in Group IV were pretreated with 100 mg/kg EEAC for 7 days followed by a single oral dose of sodium arsenite. Results: Arsenic exposure resulted in significant reductions (P < 0.05) in values of packed cell volume (PCV), hemoglobin concentration (Hb) and red blood cell (RBC) count, and elevation in total white blood cell (WBC) count with insignificant reductions in serum total protein, albumin, and globulin levels. Alterations in aspartate aminotransferase, alanine transferase, alkaline phosphatase, and gamma glutamyl transferase activities, as well as in serum levels of urea, creatinine, glucose, cholesterol, and triglyceride levels, were not statistically significant. EEAC significantly restored (P < 0.05) the PCV, Hb, RBC, and WBC as well as serum albumin, globulin, and total protein to normal values. Conclusion: The results of this study indicate that EEAC possess strong potentials to protect against toxicities induced by sodium arsenite. SUMMARY Ageratum conyzoides produced significant reversal of the reduction in the erythrocytic indices (packed cell volume, red blood cell, and Hb) caused by sodium arseniteSodium arsenite-induced slight elevations in serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), correlating with the

  18. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur.

  19. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates.

    PubMed

    Soucek, David J; Linton, Tyler K; Tarr, Christopher D; Dickinson, Amy; Wickramanayake, Nilesh; Delos, Charles G; Cruz, Luis A

    2011-04-01

    Total dissolved solids (TDS) represent the sum of all common ions (e.g., Na, K, Ca, Mg, chloride, sulfate, and bicarbonate) in freshwater. Currently, no federal water quality criteria exist for the protection of aquatic life for TDS, but because the constituents that constitute TDS are variable, the development of aquatic life criteria for specific ions is more practical than development of aquatic life criteria for TDS. Chloride is one such ion for which aquatic life criteria exist; however, the current aquatic life criteria dataset for chloride is more than 20 years old. Therefore, additional toxicity tests were conducted in the current study to confirm the acute toxicity of chloride to several potentially sensitive invertebrates: water flea (Ceriodaphnia dubia), fingernail clams (Sphaerium simile and Musculium transversum), snail (Gyraulus parvus), and worm (Tubifex tubifex), and determine the extent to which hardness and sulfate modify chloride toxicity. The results indicated a significant ameliorating effect of water hardness (calcium and magnesium) on chloride toxicity for all species tested except the snail; for example, the 48-h chloride median lethal concentration (LC50) for C. dubia at 50 mg/L hardness (977 mg Cl(-) /L) was half that at 800 mg/L hardness (1,836 mg Cl(-) /L). Conversely, sulfate over the range of 25 to 600 mg/L exerted a negligible effect on chloride toxicity to C. dubia. Rank order of LC50 values for chloride at a given water hardness was in the order (lowest to highest): S. simile < C. dubia < M. transversum < G. parvus < T. tubifex. Results of the current study support the contention that the specific conductivity or TDS concentration of a water body alone is not a sufficient predictor of acute toxicity and that knowledge of the specific ion composition is critical.

  20. The prognostic value of high sensitivity troponin T 7 weeks after an acute coronary syndrome

    PubMed Central

    Kao, Michelle P C; Dow, Ellie; Lang, Chim; Struthers, Allan

    2012-01-01

    Objective The role of high sensitivity troponin T (hs-TnT) in the convalescence phase after an acute coronary syndrome (ACS) is unknown. The authors aim to assess the prognostic utility of a single hs-TnT level at 7-week post-ACS. Second, the authors evaluated whether any serial changes in hs-TnT between the index admission and 7 weeks post-ACS had any link with the prognosis. Third, the authors assessed whether the prognostic utility of hs-TnT is independent of various echocardiographic abnormalities. Methods The authors measured hs-TnT levels in 326 consecutive patients at 7 weeks after an ACS event. The composite end point of death from any cause or acute myocardial infarction was evaluated over a median duration of 30 months. Results A high 7-week hs-TnT (>14 ng/l) predicted adverse clinical outcomes independent of conventional risk factors, left ventricular dysfunction and left ventricular hypertrophy on echocardiography (adjusted RR: 2.69 (95% CI 1.45 to 5.00)). Patients with persistent hs-TnT elevation at 7 weeks were also at an increased risk of cardiovascular events compared with those with an initial high hs-TnT which then normalised (unadjusted RR 3.39 (95% CI 2.02 to 5.68)). Conclusion The authors have demonstrated the prognostic utility of a single 7-week hs-TnT measurement in routine ACS patients and that it could be used to assist medium term risk stratification in this patient cohort. In addition, the authors also showed that hs-TnT predicted long-term adverse prognosis independent of various echo parameters. Future studies should evaluate whether tailoring specific treatment interventions to higher risk individuals as identified by an elevated hs-TnT during the convalescence phase of ACS would improve clinical outcomes. PMID:22689713

  1. Clinical Evaluation Versus Undetectable High-Sensitivity Troponin for Assessment of Patients With Acute Chest Pain.

    PubMed

    Sanchis, Juan; García-Blas, Sergio; Carratalá, Arturo; Valero, Ernesto; Mollar, Anna; Miñana, Gema; Ruiz, Vicente; Balaguer, Jose Vicente; Roqué, Mercé; Bosch, Xavier; Núñez, Julio

    2016-12-01

    Decision-making in acute chest pain remains challenging despite normal (below ninety-ninth percentile) high-sensitivity troponin (hs-cTn). Some studies suggest that undetectable hs-cTn, far below the ninety-ninth percentile, might rule out acute coronary syndrome. We investigated clinical data in comparison to undetectable hs-cTnT. The study comprised 682 patients (November 2010 to September 2011) presenting at the emergency department with chest pain and normal hs-cTnT (<14 ng/l). The main end point was major adverse cardiac events (MACE: death, myocardial infarction, readmission for unstable angina, or revascularization) at a 4-year median follow-up; secondary end point was 30-day MACE. A clinical score was built by assigning points according to hazard ratios of the independent predictive variables: 1 point (male and effort-related pain) and 2 points (recurrent pain and prior ischemic heart disease). The negative predictive values of the clinical score and undetectable hs-cTnT (<5 ng/l), were tested. A total of 72 (10.6%) patients suffered long-term MACE. The C-statistics of the clinical score for long-term (0.75) and 30-day (0.88) MACE were higher than with the TIMI(Thrombolysis In Myocardial Infarction) risk (0.68, 0.77) or GRACE(Global Registry of Acute Coronary Events) (0.50, 0.47) scores. Likewise, the negative predictive values of score = 0 (97.5%, 100%) and ≤1 point (95.9%, 100%) were higher than using undetectable hs-cTnT (91.9%, 98.1%). Both clinical scores of 0 and ≤1 better classified patients at risk of MACE (p = 0.0001, log-rank test) than hs-cTnT <5 ng/l (p = 0.06). In conclusion, clinical data can guide decision-making and perform at least equally well as undetectable hs-cTnT, in patients presenting at the emergency department with chest pain and normal hs-cTnT.

  2. The influence of reduced insulin sensitivity via short-term reductions in physical activity on cardiac baroreflex sensitivity during acute hyperglycemia.

    PubMed

    Holwerda, S W; Reynolds, L J; Restaino, R M; Credeur, D P; Leidy, H J; Thyfault, J P; Fadel, P J

    2015-12-15

    Reduced insulin sensitivity and impaired glycemic control are among the consequences of physical inactivity and have been associated with reduced cardiac baroreflex sensitivity (BRS). However, the effect of reduced insulin sensitivity and acute hyperglycemia following glucose consumption on cardiac BRS in young, healthy subjects has not been well characterized. We hypothesized that a reduction in insulin sensitivity via reductions in physical activity would reduce cardiac BRS at rest and following an oral glucose tolerance test (OGTT). Nine recreationally active men (23 ± 1 yr; >10,000 steps/day) underwent 5 days of reduced daily physical activity (RA5) by refraining from planned exercise and reducing daily steps (<5,000 steps/day). Spontaneous cardiac BRS (sequence technique) was compared at rest and for 120 min following an OGTT at baseline and after RA5. A substudy (n = 8) was also performed to independently investigate the influence of elevated insulin alone on cardiac BRS using a 120-min hyperinsulinemic-euglycemic clamp. Insulin sensitivity (Matsuda index) was significantly reduced following RA5 (BL 9.2 ± 1.3 vs. RA5 6.4 ± 1.1, P < 0.001). Resting cardiac BRS was unaffected by RA5 and significantly reduced during the OGTT similarly at baseline and RA5 (baseline 0 min, 28 ± 4 vs. 120 min, 18 ± 4; RA5 0 min, 28 ± 4 vs. 120 min, 21 ± 3 ms/mmHg). Spontaneous cardiac BRS was also reduced during the hyperinsulinemic-euglycemic clamp (P < 0.05). Collectively, these data demonstrate that acute elevations in plasma glucose and insulin can impair spontaneous cardiac BRS in young, healthy subjects, and that reductions in cardiac BRS following acute hyperglycemia are unaffected by reduced insulin sensitivity via short-term reductions in physical activity.

  3. Antioxidant Properties and Gastroprotective Effects of 2-(Ethylthio)Benzohydrazones on Ethanol-Induced Acute Gastric Mucosal Lesions in Rats

    PubMed Central

    Ariffin, Azhar; Abdulla, Mahmood A.; Abdullah, Zanariah

    2016-01-01

    A series of new 2-(ethylthio)benzohydrazone derivatives (1–6) were prepared and characterised by IR, 1H NMR, and 13C NMR spectroscopy and mass spectrometry. The newly prepared compounds were screened for their in vitro antioxidant activities using free radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Among them, most powerful antioxidant, compound 1 has been selected in order to illustrate anti-ulcer effect on ethanol-induced gastric mucosal lesions in rats. Four groups of Sprague Dawley rats were respectively treated with 10% Tween 20 as ulcer control group, 20 mg/kg omeprazole as reference group, 50 mg/kg and 100 mg/kg compound 1 as experimental animals. Macroscopically, ulcer control group showed extensive hemorrhagic lesions of gastric mucosa compared with omeprazole or compound 1. Rats pre-treated with compound 1 showed increased in gastric pH and gastric mucus. Histologically, ulcer control group showed severe damage to gastric mucosa with edema and leucocytes infiltration of submucosal layer. In immunohistochemical analysis, rats which were pre-treated with compound 1 showed up-regulation of HSP70 and down-regulation of Bax proteins. In conclusion, the gastroprotective effect of compound 1 may be due to its antioxidant activity, and/or due to up-regulation of HSP70 and down-regulation of Bax protein in stained tissue section. PMID:27272221

  4. Sensitivity to ethanol and other hedonic stimuli in an animal model of adolescence: implications for prevention science?

    PubMed

    Spear, Linda Patia; Varlinskaya, Elena I

    2010-04-01

    Age-related patterns of sensitivity to appetitive and aversive stimuli seemingly have deep evolutionary roots, with marked developmental transformations seen during adolescence in a number of relatively ancient brain systems critical for motivating and directing reward-related behaviors. Using a simple animal model of adolescence in the rat, adolescents have been shown to be more sensitive than their adult counterparts to positive rewarding effects of alcohol, other drugs, and certain natural stimuli, while being less sensitive to the aversive properties of such stimuli. Adolescent-typical alcohol sensitivities may be exacerbated further by a history of prior stress or alcohol exposure as well as by genetic vulnerabilities, permitting relatively high levels of adolescent alcohol use and perhaps an increased probability for the emergence of abuse disorders. A number of potential (albeit tentative) implications of these basic research findings for prevention science are considered.

  5. Actions of Ethanol on Voltage-Sensitive Sodium Channels. Effects on Neurotoxin-Stimulated Sodium Uptake in Synaptosomes

    DTIC Science & Technology

    1985-01-01

    concentration in the nonaqueuus (membrane) phase (Lyon et aL, 1981). Concentration- effect summarized in table 1 . When sodium channels were activated curves were...Voltage-Sensitive Sodium Channels : Effects on Neurotoxin-Stimulated Sodium Uptake in DT (7 Synaptosomes E L C MICHAEL J. MULLIN’ and WALTER A. HUNT...1984). At the present time, the 8 1 structural and functional properties of the voltage-sensitive sodium channels are understood most completely

  6. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  7. Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

    PubMed Central

    Jiang, Yunyao

    2014-01-01

    Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-α, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-α in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-κB (NF-κB), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders. PMID:24611100

  8. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  9. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia

    PubMed Central

    Theunissen, Prisca; Mejstrikova, Ester; Sedek, Lukasz; van der Sluijs-Gelling, Alita J.; Gaipa, Giuseppe; Bartels, Marius; Sobral da Costa, Elaine; Kotrová, Michaela; Novakova, Michaela; Sonneveld, Edwin; Buracchi, Chiara; Bonaccorso, Paola; Oliveira, Elen; te Marvelde, Jeroen G.; Szczepanski, Tomasz; Lhermitte, Ludovic; Hrusak, Ondrej; Lecrevisse, Quentin; Grigore, Georgiana Emilia; Froňková, Eva; Trka, Jan; Brüggemann, Monika; Orfao, Alberto; van der Velden, Vincent H. J.

    2017-01-01

    A fully-standardized EuroFlow 8–color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10−5, comparable to real-time quantitative polymerase chain reaction (RQ-PCR)–based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR–based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10−5), if sufficient cells (>4 × 106, preferably more) are evaluated. PMID:27903527

  10. Hsp72 is an early and sensitive biomarker to detect acute kidney injury.

    PubMed

    Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Cortés-González, Cesar; Ojeda-Cervantes, Marcos; Gamba, Gerardo; Morales-Buenrostro, Luis E; Bobadilla, Norma A

    2011-01-01

    This study was designed to assess whether heat shock protein Hsp72 is an early and sensitive biomarker of acute kidney injury (AKI) as well as to monitor a renoprotective strategy. Seventy-two Wistar rats were divided into six groups: sham-operated and rats subjected to 10, 20, 30, 45 and 60 min of bilateral ischemia (I) and 24 h of reperfusion (R). Different times of reperfusion (3, 6, 9, 12, 18, 24, 48, 72, 96 and 120 h) were also evaluated in 30 other rats subjected to 30 min of ischemia. Hsp72 messenger RNA (mRNA) and protein levels were determined in both kidney and urine. Hsp72-specificity as a biomarker to assess the success of a renoprotective intervention was evaluated in rats treated with different doses of spironolactone before I/R. Renal Hsp72 mRNA and protein, as well as urinary Hsp72 levels, gradually increased relative to the extent of renal injury induced by different periods of ischemia quantified by histomorphometry as a benchmark of kidney damage. Urinary Hsp72 increased significantly after 3 h and continued rising until 18 h, followed by restoration after 120 h of reperfusion in accord with histopathological findings. Spironolactone renoprotection was associated with normalization of urinary Hsp72 levels. Accordingly, urinary Hsp72 was significantly increased in patients with clinical AKI before serum creatinine elevation. Our results show that urinary Hsp72 is a useful biomarker for early detection and stratification of AKI. In addition, urinary Hsp72 levels are sensitive enough to monitor therapeutic interventions and the degree of tubular recovery following an I/R insult.

  11. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia.

    PubMed

    Theunissen, Prisca; Mejstrikova, Ester; Sedek, Lukasz; van der Sluijs-Gelling, Alita J; Gaipa, Giuseppe; Bartels, Marius; Sobral da Costa, Elaine; Kotrová, Michaela; Novakova, Michaela; Sonneveld, Edwin; Buracchi, Chiara; Bonaccorso, Paola; Oliveira, Elen; Te Marvelde, Jeroen G; Szczepanski, Tomasz; Lhermitte, Ludovic; Hrusak, Ondrej; Lecrevisse, Quentin; Grigore, Georgiana Emilia; Froňková, Eva; Trka, Jan; Brüggemann, Monika; Orfao, Alberto; van Dongen, Jacques J M; van der Velden, Vincent H J

    2017-01-19

    A fully-standardized EuroFlow 8-color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10(-5), comparable to real-time quantitative polymerase chain reaction (RQ-PCR)-based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR-based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10(-5)), if sufficient cells (>4 × 10(6), preferably more) are evaluated.

  12. Circulating E3 ligases are novel and sensitive biomarkers for diagnosis of acute myocardial infarction.

    PubMed

    Han, Qiu-Yue; Wang, Hong-Xia; Liu, Xiao-Hong; Guo, Cai-Xia; Hua, Qi; Yu, Xiao-Hong; Li, Nan; Yang, Yan-Zong; Du, Jie; Xia, Yun-Long; Li, Hui-Hua

    2015-06-01

    Ubiquitin ligase (E3) is a decisive element of the ubiquitin-proteasome system (UPS), which is the main pathway for intracellular protein turnover. Recently, circulating E3 ligases have been increasingly considered as cancer biomarkers. In the present study, we aimed to determine if cardiac-specific E3 ligases in circulation can serve as novel predictors for early diagnosis of acute myocardial infarction (AMI). By screening and verifying their tissue expression patterns with microarray and real-time PCR analysis, six of 261 E3 ligases, including cardiac-specific Rnf207 and cardiac- and muscle-enriched Fbxo32/atrogin-1, Trim54/MuRF3, Trim63/MuRF1, Kbtbd10/KLHL41, Asb11 and Asb2 in mouse heart, were selected for the present study. In the AMI rats, the levels of five E3 ligases including Rnf207, Fbxo32, Trim54, Trim63 and Kbtbd10 in the plasma were significantly increased compared with control animals. Especially, the plasma levels of Rnf207 was markedly increased at 1 h, peaked at 3 h and decreased at 6-24 h after ligation. Further evaluation of E3 ligases in AMI patients confirmed that plasma Rnf207 level increased significantly compared with that in healthy people and patients without AMI, and showed a similar time course to that in AMI rats. Simultaneously, plasma level of cardiac troponin I (cTnI) was measured by ELISA assays. Finally, receiver operating characteristic (ROC) curve analysis indicated that Rnf207 showed a similar sensitivity and specificity to the classic biomarker troponin I for diagnosis of AMI. Increased cardiac-specific E3 ligase Rnf207 in plasma may be a novel and sensitive biomarkers for AMI in humans.

  13. Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia

    PubMed Central

    Eldfors, S; Kuusanmäki, H; Kontro, M; Majumder, M M; Parsons, A; Edgren, H; Pemovska, T; Kallioniemi, O; Wennerberg, K; Gökbuget, N; Burmeister, T; Porkka, K; Heckman, C A

    2017-01-01

    TCF3-PBX1 (E2A-PBX1) is a recurrent gene fusion in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), which is caused by the translocation t(1;19)(q23;p13). TCF3-PBX1 BCP-ALL patients typically benefit from chemotherapy; however, many relapse and subsequently develop resistant disease with few effective treatment options. Mechanisms driving disease progression and therapy resistance have not been studied in TCF3-PBX1 BCP-ALL. Here, we aimed to identify novel treatment options for TCF3-PBX1 BCP-ALL by profiling leukemia cells from a relapsed patient, and determine molecular mechanisms underlying disease pathogenesis and progression. By drug-sensitivity testing of leukemic blasts from the index patient, control samples and TCF3-PBX1 positive and negative BCP-ALL cell lines, we identified the phosphatidylinositide 3-kinase delta (p110δ) inhibitor idelalisib as an effective treatment for TCF3-PBX1 BCP-ALL. This was further supported by evidence showing TCF3-PBX1 directly regulates expression of PIK3CD, the gene encoding p110δ. Other somatic mutations to TP53 and MTOR, as well as aberrant expression of CXCR4, may influence additional drug sensitivities specific to the index patient and accompanied progression of the disease. Our results suggest that idelalisib is a promising treatment option for patients with TCF3-PBX1 BCP-ALL, whereas other drugs could be useful depending on the genetic context of individual patients. PMID:27461063

  14. Effect of acute treatment with cadmium on ethanol anesthesia, body termperature, and synaptosomal Na/sup +/-K/sup +/-ATPase of rat brain

    SciTech Connect

    Magour, S.; Kristof, V.; Baumann, M.; Assmann, G.

    1981-12-01

    The effect of a single intraperitoneal dose of 0.56, 1.12, and 1.68 mg cadmium/kg on the duration of ethanol-induced sleep was investigated in male rats. Cadmium potentiated ethanol sleeping time in a dose dependent manner up to 300% over controls. No significant difference in the elimination rate of ethanol from blood and brain and observed between control and cadmium-pretreated rats. Cadmium slightly inhibited the hepatic alcohol dehydrogenase in vivo and also potentiated ethanol hypothermia but these changes did not play a significant role in the observed prolongation of ethanol sleeping time. However, cadmium and ethanol additively inhibited brain synaptosomal Na/sup +/-K/sup +/-ATPase in a noncompetitive manner. The results so far indicate that cadmium may increase brain responsiveness toward ethanol partly through inhibition of snaptosomal Na/sup +/-K/sup +/-ATPase.

  15. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice.

    PubMed

    Saito, Luis P; Fukushiro, Daniela F; Hollais, André W; Mári-Kawamoto, Elisa; Costa, Jacqueline M; Berro, Laís F; Aramini, Tatiana C F; Wuo-Silva, Raphael; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2014-02-01

    It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP.

  16. PI-103 sensitizes acute myeloid leukemia stem cells to daunorubicin-induced cytotoxicity.

    PubMed

    Ding, Qian; Gu, Ran; Liang, Jiayi; Zhang, Xiangzhong; Chen, Yunxian

    2013-03-01

    To date, acute myeloid leukemia (AML) shows very poor outcome for conventional chemotherapy. Leukemia stem cells (LSCs) are insensitive to conventional chemotherapeutic drugs and play a central role in the pathogenesis of AML. Failure to effectively ablate these cells may lead to AML relapse following chemotherapy. Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is constructively activated in LSCs. This pathway can be inhibited by PI-103, a novel synthesized molecule of the pyridofuropyrimidine class, resulting in the apoptosis of LSCs. Therefore, we investigate the influences of PI-103 in combination with daunorubicin (DNR) on the LSCs. Our data indicate that PI-103 synergistically sensitizes LSCs to DNR-induced cytotoxicity. In addition, the PI-103/DNR co-treatment can induce significant apoptosis in LSCs, but sparing hematopoietic stem cells. The synergistic effect and the LSCs-specific apoptosis mechanism may be associated with the inhibition of PI3K/Akt/mTOR signaling pathway. Our results suggest that PI-103 in combination with DNR may be a potent and less toxic therapy for targeting LSCs and deserve further preclinical and clinical studies in the treatment of AML.

  17. Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure.

    PubMed Central

    Robinette, J B; Conger, J D

    1990-01-01

    The roles of intrarenal angiotensin (A) and thromboxane (TX) in the vascular hypersensitivity to renal nerve stimulation (RNS) and paradoxical vasoconstriction to renal perfusion pressure (RPP) reduction in the autoregulatory range in 1 wk norepinephrine (NE)-induced acute renal failure (ARF) in rats were investigated. Renal blood flow (RBF) responses were determined before and during intrarenal infusion of an AII and TXA2 antagonist. Saralasin or SQ29548 alone partially corrected the slopes of RBF to RNS and RPP reduction in NE-ARF rats (P less than 0.02). Saralasin + SQ29548 normalized the RBF response to RNS. While combined saralasin + SQ29548 eliminated the vasoconstriction to RPP reduction, similar to the effect of renal denervation, appropriate vasodilatation was not restored. Renal vein norepinephrine efflux during RNS was disproportionately increased in NE-ARF (P less than 0.001) and was suppressed by saralasin + SQ29548 infusion (P less than 0.005). It is concluded that the enhanced sensitivity to RNS and paradoxical vasoconstriction to RPP reduction in 1 wk NE-ARF kidneys are the result of intrarenal TX and AII acceleration of neurotransmitter release to adrenergic nerve activity. PMID:2243129

  18. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies.

    PubMed

    van Dongen, Jacques J M; van der Velden, Vincent H J; Brüggemann, Monika; Orfao, Alberto

    2015-06-25

    Monitoring of minimal residual disease (MRD) has become routine clinical practice in frontline treatment of virtually all childhood acute lymphoblastic leukemia (ALL) and in many adult ALL patients. MRD diagnostics has proven to be the strongest prognostic factor, allowing for risk group assignment into different treatment arms, ranging from significant treatment reduction to mild or strong intensification. Also in relapsed ALL patients and patients undergoing stem cell transplantation, MRD diagnostics is guiding treatment decisions. This is also why the efficacy of innovative drugs, such as antibodies and small molecules, are currently being evaluated with MRD diagnostics within clinical trials. In fact, MRD measurements might well be used as a surrogate end point, thereby significantly shortening the follow-up. The MRD techniques need to be sensitive (≤10(-4)), broadly applicable, accurate, reliable, fast, and affordable. Thus far, flow cytometry and polymerase chain reaction (PCR) analysis of rearranged immunoglobulin and T-cell receptor genes (allele-specific oligonucleotide [ASO]-PCR) are claimed to meet these criteria, but classical flow cytometry does not reach a solid 10(-4), whereas classical ASO-PCR is time-consuming and labor intensive. Therefore, 2 high-throughput technologies are being explored, ie, high-throughput sequencing and next-generation (multidimensional) flow cytometry, both evaluating millions of sequences or cells, respectively. Each of them has specific advantages and disadvantages.

  19. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.

  20. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies

    PubMed Central

    van der Velden, Vincent H. J.; Brüggemann, Monika; Orfao, Alberto

    2015-01-01

    Monitoring of minimal residual disease (MRD) has become routine clinical practice in frontline treatment of virtually all childhood acute lymphoblastic leukemia (ALL) and in many adult ALL patients. MRD diagnostics has proven to be the strongest prognostic factor, allowing for risk group assignment into different treatment arms, ranging from significant treatment reduction to mild or strong intensification. Also in relapsed ALL patients and patients undergoing stem cell transplantation, MRD diagnostics is guiding treatment decisions. This is also why the efficacy of innovative drugs, such as antibodies and small molecules, are currently being evaluated with MRD diagnostics within clinical trials. In fact, MRD measurements might well be used as a surrogate end point, thereby significantly shortening the follow-up. The MRD techniques need to be sensitive (≤10−4), broadly applicable, accurate, reliable, fast, and affordable. Thus far, flow cytometry and polymerase chain reaction (PCR) analysis of rearranged immunoglobulin and T-cell receptor genes (allele-specific oligonucleotide [ASO]-PCR) are claimed to meet these criteria, but classical flow cytometry does not reach a solid 10−4, whereas classical ASO-PCR is time-consuming and labor intensive. Therefore, 2 high-throughput technologies are being explored, ie, high-throughput sequencing and next-generation (multidimensional) flow cytometry, both evaluating millions of sequences or cells, respectively. Each of them has specific advantages and disadvantages. PMID:25999452

  1. GM1 ganglioside reduces the motor incoordination and loss of righting reflex caused by acute ethanol in C57BL/6J mice

    SciTech Connect

    Wallis, C.; Rezazadeh, S.M.; Forster, M.J.; Lal, H. )

    1992-02-26

    Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination. Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.

  2. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output

    PubMed Central

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  3. The effect of acute and prolonged ethanol treatment on the concentrations of coenzyme A, carnitine and their derivatives in rat liver

    PubMed Central

    Kondrup, Jens; Grunnet, Niels

    1973-01-01

    1. CoA, acetyl-CoA, long-chain acyl-CoA, carnitine, acetylcarnitine and long-chain acylcarnitine were measured in rat liver under various conditions. 2. Starvation caused an increase in the contents of these intermediates, except that of carnitine. 3. A single dose of ethanol had no effect on CoA content, whereas those of acetyl-CoA, acetylcarnitine and carnitine were increased and those of long-chain acyl-CoA and acylcarnitine were decreased. 4. Four weeks' adaptation to ethanol consumption did not change the effect of ethanol administration on these metabolites. 5. It is suggested that ethanol directly increases hepatic fatty acid synthesis and esterification. It is also suggested that this change is reversible and limited to the period of ethanol oxidation. 6. It is demonstrated that ethanol-induced triglyceride accumulation is not related to carnitine deficiency. PMID:4737499

  4. Early diagnosis of acute myocardial infarction using high-sensitivity troponin I

    PubMed Central

    Ojeda, Francisco; Renné, Thomas; Schnabel, Renate B.; Zeller, Tanja; Karakas, Mahir; Blankenberg, Stefan; Westermann, Dirk

    2017-01-01

    Objective There is a clinical need for early and accurate diagnosis of acute myocardial infarction (AMI). Current European Society of Cardiology (ESC) guidelines recommend diagnosis of non-ST-elevation AMI based on serial troponin measurements. We aimed to challenge the ESC guidelines using 1) a high-sensitivity troponin I (hs-TnI) baseline cutoff, 2) an absolute hs-TnI change after 1 hour and 3) additional application of an ischemic ECG. Methods 1,516 patients with suspected AMI presenting to the emergency department were included. Hs-TnI was measured directly at admission, after 1 and 3 hours. We investigated baseline concentrations, absolute changes of hs-TnI and additional application of an ischemic ECG to diagnose AMI. A positive predictive value (PPV) of more than 85% was targeted. Results The median age of the study population was 65 years; 291 patients were diagnosed with AMI. The PPV of the 3-hours ESC algorithm was 85.5% (CI 79.7, 90.1) and 65.8% (CI 60.5,70.8) for the 1-hour algorithm. Using a high baseline hs-TnI concentration of 150 ng/L resulted in a PPV of 87.8% (CI 80.9,92.9). Alternatively, a hs-TnI change of 20 ng/L after 1 hour, resulted in a PPV of 86.5% (80.9,91.0), respectively for the diagnosis of AMI. Additional use of an ischemic ECG increased the PPV to 90.5% (CI 83.2,95.3), while reducing the efficacy. Conclusion The diagnosis of AMI based on hs-TnI is challenging. The application of absolute hs-TnI changes after 1 hour may facilitate rapid rule-in of patients. Trial registration www.clinicaltrials.gov (NCT02355457). PMID:28333976

  5. Differential sensitivity of the nicotinic receptor of long (LS) and short (SS) sleep mice to ethanol (E) and forane (F)

    SciTech Connect

    McArdle, J.J.; Choi, J.J. )

    1989-02-09

    Studies of inbred mice indicate that heredity determines the behavioral response to CNS depressants. For example, LS mice lose their righting reflex at blood levels of E having no effect on this reflex of SS mice. In order to determine if such differential sensitivity extends to the effects of depressants known to alter the mean open time (tau) of the ion channel activated by the nicotinic acetylcholine receptor (AR), we used an extracellular electrode to record miniature end-plate currents (23 C) from the triangularis sterni muscle of adult male LS and SS mice. The average decay time constant (tau) of 70 currents was calculated before, during and after drug exposure. Tau was the same for LS and SS mice (1.41 {plus minus} 0.03 mS and 1.47 {plus minus} 0.02 mS, respectively) prior to treatment and was reversible prolonged by E and shortened by F as expected. However, tau of SS mice was more responsive. For example, 25 mM of E increased tau by 12.9% and 3.8% in SS and LS mice, respectively. Likewise, the decrease of tau in response to 3 mM F was 18.5% and 9.2%. The net result was that the curve relating tau for LS mice to drug concentration was to the right of the for SS mice. These data suggest that the sensitivity of the peripheral AR to CNS depressants can be genetically controlled.

  6. Child anxiety symptoms related to longitudinal cortisol trajectories and acute stress responses: evidence of developmental stress sensitization.

    PubMed

    Laurent, Heidemarie K; Gilliam, Kathryn S; Wright, Dorianne B; Fisher, Philip A

    2015-02-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children's (n = 107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9-10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress-reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure-may distinguish children at risk for internalizing disorders.

  7. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  8. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    NASA Astrophysics Data System (ADS)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  9. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  10. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  11. Differences in sensitivity to ethanol-induced conditioned taste aversions emerge after pre- or post-pubertal gonadectomy in male and female rats.

    PubMed

    Morales, Melissa; Spear, Linda P

    2013-03-01

    We have previously demonstrated that gonadectomy either prior to (early) or after (late) puberty elevated ethanol consumption in males to levels similar to intact adult females-effects that were attenuated by testosterone replacement. To assess whether alterations in the aversive effects of ethanol might contribute to gonadectomy-associated increases in ethanol intake in males, the present study examined the impact of gonadectomy on conditioned taste aversions (CTA) to ethanol in male and female Sprague-Dawley rats. Animals were gonadectomized, received sham surgery (SH) or non-manipulated (NM) on postnatal (P) day 23 (early) or 67 (late) and tested for CTA to ethanol in adulthood. Water-deprived rats were given 1 hr access every-other-day to 10% sucrose followed by an injection of ethanol (0, 1g/kg) for 5 test sessions. Test data were analyzed to determine the first day significant aversions emerged in each ethanol group (i.e., sucrose intakes significantly less than their saline-injected counterparts). Early gonadectomized males acquired the CTA more rapidly than did early SH and NM males (day 1 vs 3 and 4 respectively), whereas a gonadectomy-associated enhancement in ethanol CTA was not evident in late males. Among females, gonadectomy had little impact on ethanol-induced CTA, with females in all groups showing an aversion by the first or second day, regardless of surgery age. These data suggest that previously observed elevations in ethanol intake induced by either pre- or post-pubertal gonadectomy in males are not related simply to gonadectomy-induced alterations in the aversive effects of ethanol indexed via CTA.

  12. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    PubMed

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  13. The application of global sensitivity analysis in the development of a physiologically based pharmacokinetic model for m-xylene and ethanol co-exposure in humans

    PubMed Central

    Loizou, George D.; McNally, Kevin; Jones, Kate; Cocker, John

    2015-01-01

    Global sensitivity analysis (SA) was used during the development phase of a binary chemical physiologically based pharmacokinetic (PBPK) model used for the analysis of m-xylene and ethanol co-exposure in humans. SA was used to identify those parameters which had the most significant impact on variability of venous blood and exhaled m-xylene and urinary excretion of the major metabolite of m-xylene metabolism, 3-methyl hippuric acid. This analysis informed the selection of parameters for estimation/calibration by fitting to measured biological monitoring (BM) data in a Bayesian framework using Markov chain Monte Carlo (MCMC) simulation. Data generated in controlled human studies were shown to be useful for investigating the structure and quantitative outputs of PBPK models as well as the biological plausibility and variability of parameters for which measured values were not available. This approach ensured that a priori knowledge in the form of prior distributions was ascribed only to those parameters that were identified as having the greatest impact on variability. This is an efficient approach which helps reduce computational cost. PMID:26175688

  14. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion

    PubMed Central

    2017-01-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. PMID:28244296

  15. The mechanism of development of acute lung injury in lethal endotoxic shock using α-galactosylceramide sensitization

    PubMed Central

    Tumurkhuu, G; Koide, N; Dagvadorj, J; Morikawa, A; Hassan, F; Islam, S; Naiki, Y; Mori, I; Yoshida, T; Yokochi, T

    2008-01-01

    The mechanism underlying acute lung injury in lethal endotoxic shock induced by administration of lipopolysaccharide (LPS) into α-galactosylceramide (α-GalCer)-sensitized mice was studied. Sensitization with α-GalCer resulted in the increase of natural killer T (NK T) cells and the production of interferon (IFN)-γ in the lung. The IFN-γ that was produced induced expression of adhesion molecules, especially vascular cell adhesion molecule-1 (VCAM-1), on vascular endothelial cells in the lung. Anti-IFN-γ antibody inhibited significantly the VCAM-1 expression in α-GalCer-sensitized mice. Very late activating antigen-4-positive cells, as the counterpart of VCAM-1, accumulated in the lung. Anti-VCAM-1 antibody prevented LPS-mediated lethal shock in α-GalCer-sensitized mice. The administration of LPS into α-GalCer-sensitized mice caused local production of excessive proinflammatory mediators, such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and nitric oxide. LPS caused microvascular leakage of proteins and cells into bronchoalveolar lavage fluid. Taken together, sensitization with α-GalCer was suggested to induce the expression of VCAM-1 via IFN-γ produced by NK T cells and recruit a number of inflammatory cells into the lung. Further, LPS was suggested to lead to the production of excessive proinflammatory mediators, the elevation of pulmonary permeability and cell death. The putative mechanism of acute lung injury in LPS-mediated lethal shock using α-GalCer sensitization is discussed. PMID:18307519

  16. Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals

    EPA Science Inventory

    This paper reports on the results of acute toxicity tests conducted with common surrogate species, and several species of threatened and endangered species for which there were excess artificially propagated stock to allow direct testing.

  17. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    PubMed Central

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2011-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor activation on postnatal day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal day 28. Females that were more sensitive to ethanol’s locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  18. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  19. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action.

    PubMed

    Wang, Ning; Ivey, Christopher D; Ingersoll, Christopher G; Brumbaugh, William G; Alvarez, David; Hammer, Edward J; Bauer, Candice R; Augspurger, Tom; Raimondo, Sandy; Barnhart, M Christopher

    2017-03-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r(2)  = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  20. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action

    USGS Publications Warehouse

    Wang, Ning; Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Alvarez, David; Hammer, Edward J.; Bauer, Candice R.; Augspurger, Tom; Raimondo, Sandy; Barnhart, M.Christopher

    2017-01-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  1. Sustained antagonism of acute ethanol-induced ataxia following microinfusion of cyclic AMP and cpt-cAMP in the mouse cerebellum.

    PubMed

    Dar, M Saeed

    2011-05-01

    Ataxia is a conspicuous physical manifestation of alcohol consumption in humans and laboratory animals. Previously we reported possible involvement of cAMP in ethanol-induced ataxia. We now report a sustained antagonism of ataxia due to multiple ethanol injections following intracerebellar (ICB) cAMP or cpt-cAMP microinfusion. Adenylyl cyclase drugs cAMP, cpt-cAMP, Sp-cAMP, Rp-cAMP, adenosine A₁ agonist, N⁶-cyclohexyladenosine (CHA) and GABA(A) agonist muscimol were directly microinfused into the cerebellum of CD-1 male mice to evaluate their effect on ethanol (2 g/kg; i.p.) ataxia. Drug microinfusions were made via stereotaxically implanted stainless steel guide cannulas. Rotorod was used to evaluate the ethanol's ataxic response. Intracerebellar cAMP (0.1, 1, 10 fmol) or cpt-cAMP (0.5, 1, 2 fmol) 60 min before ethanol treatment, dose-dependently attenuated ethanol-induced ataxia in general agreement with previous observations. Intracerebellar microinfusion of cAMP (100 fmol) or cpt-cAMP (2 fmol) produced a sustained attenuation of ataxia following ethanol administration at 1, 4, 7 and 25 h or 31 h post-cAMP/cpt-cAMP microinfusion. At 31 h post-cAMP, the ataxic response of ethanol reappeared. Additionally, marked antagonism to the accentuation of ethanol-induced ataxia by adenosine A₁ and GABA(A) agonists, CHA (34 pmol) and muscimol (88 pmol), respectively, was noted 24h after cAMP and cpt-cAMP treatment. This indicated possible participation of AC/cAMP/PKA signaling in the co-modulation of ethanol-induced ataxia by A₁ adenosinergic and GABAergic systems. No change in normal motor coordination was noted when cAMP or cpt-cAMP microinfusion was followed by saline. Finally, Rp-cAMP (PKA inhibitor, 22 pmol) accentuated ethanol-induced ataxia and antagonized its attenuation by cAMP whereas Sp-cAMP (PKA activator, 22 pmol) produced just the opposite effects, further indicating participation of cAMP-dependent PKA downstream. Overall, the results support a role of

  2. ASSESSING CONTAMINANT SENSITIVITY OF ENDANGERED AND THREATENED AQUATIC SPECIES WITH ACUTE TOXICITY TESTS

    EPA Science Inventory

    Assessment of contaminant impacts to endangered and threatened (listed) species requires understanding of a species' sensitivity to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation...

  3. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence.

  4. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    PubMed

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.

  5. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  6. Behavioural tasks sensitive to acute abstinence and predictive of smoking cessation success: a systematic review and meta‐analysis

    PubMed Central

    Curran, H. Valerie; Nutt, David J.; Husbands, Stephen M.; Freeman, Tom P.; Fluharty, Meg; Munafò, Marcus R.

    2016-01-01

    Abstract Background and aims Performance on cognitive tasks may be sensitive to acute smoking abstinence and may also predict whether quit attempts fail. Our aim was to conduct a systematic review and meta‐analysis to identify cognitive tasks sensitive to acute abstinence and predictive of smoking cessation success. Methods Embase, Medline, PsycInfo and Web of Science were searched up to March 2016. Studies were included if they enrolled adults and assessed smoking using a quantitative measure. Studies were combined in a random effects meta‐analysis. Results We included 42 acute abstinence studies and 13 cessation studies. There was evidence for an effect of abstinence on delay discounting [d = 0.26, 95% confidence interval (CI) = 0.07–0.45, P = 0.005], response inhibition (d = 0.48, 95% CI = 0.26–0.70, P < 0.001), mental arithmetic (d = 0.38, 95% CI = 0.06–0.70, P = 0.018), and recognition memory (d = 0.46, 95% CI = 0.23–0.70, P < 0.001). In contrast, performance on the Stroop (d = 0 .17, 95% CI = −0.17–0.51, P = 0.333) and smoking Stroop (d = 0.03, 95% CI = −0.11–0.17, P = 0.675) task was not influenced by abstinence. We found only weak evidence for an effect of acute abstinence on dot probe task performance (d = 0.15, 95% CI = −0.01–0.32, P = 0.072). The design of the cessation studies was too heterogeneous to permit meta‐analysis. Conclusions Compared with satiated smokers, acutely abstinent smokers display higher delay discounting, lower response inhibition, impaired arithmetic and recognition memory performance. However, reaction‐time measures of cognitive bias appear to be unaffected by acute tobacco abstinence. Conclusions about cognitive tasks that predict smoking cessation success were limited by methodological inconsistencies. PMID:27338804

  7. Withdrawal severity after chronic intermittent ethanol in inbred mouse strains

    PubMed Central

    Metten, Pamela; Sorensen, Michelle L.; Cameron, Andy Jade; Yu, Chia-Hua; Crabbe, John C.

    2010-01-01

    Background To study withdrawal, ethanol is usually administered chronically without interruption. However, interest has recurred in models of episodic exposure. Increasing evidence suggests that chronic intermittent exposure to ethanol leads to a sensitization effect in both withdrawal severity and in ethanol consumption. The goal of the present study was to examine mouse inbred strain differences in withdrawal severity following chronic intermittent exposure using the handling induced convulsion as the behavioral endpoint. We also sought to compare the withdrawal responses of inbred strains across acute, chronic continuous, and chronic intermittent exposure regimens. Methods Male mice from 15 standard inbred strains were exposed to ethanol vapor for 16 hours each day for 3 days and removed to an air chamber during the intervening 8 hours. Mice in the control groups were handled the same, except that they were exposed only to air. Daily blood ethanol concentrations were averaged for each mouse to estimate total dose of ethanol experienced. Results Across strains, mice had an average daily blood ethanol concentration (BEC) of 1.45 ± 0.02 mg/ml and we restricted the range of this value to 1.00 to 2.00 mg/ml. To evaluate strain differences, we divided data into two dose groups based on BEC, Low Dose (1.29 ± 0.1 mg/ml) and High Dose (1.71 ± 0.02 mg/ml). After the third inhalation exposure, ethanol- and air-exposed groups were tested hourly for handling-induced convulsions for 10 hr and at hr 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of air control values) in both dose groups. Conclusion The chronic intermittent exposure paradigm is sufficient to elicit differential withdrawal responses across nearly all strains. Data from the High Dose groups correlated well with withdrawal data derived from prior acute (single high dose) and chronic continuous (for 72 hrs) ethanol withdrawal studies, supporting the influence of common

  8. The expression of amphetamine sensitization is dissociable from anxiety and aversive memory: Effect of an acute injection of amphetamine.

    PubMed

    Gatica, Rafael Ignacio; Pérez-Valenzuela, Enzo; Sierra-Mercado, Demetrio; Fuentealba, José Antonio

    2017-01-18

    The repeated administration of amphetamine can lead to locomotor sensitization. Although the repeated administration of amphetamine has been associated with anxiety and impaired working memory, it is uncertain if expression of amphetamine sensitization is associated with modifications of emotional memories. To address this issue, rats were injected once daily with amphetamine for five consecutive days (1.5mg/kg). After four days of withdrawal, rats were delivered an acute amphetamine injection to assess the expression of sensitization. A single exposure to an elevated plus maze (EPM), 24h after the last injection of amphetamine, showed that amphetamine sensitization is not accompanied by anxiety. Next, aversive memory was assessed using an 11day inter-trial interval between the EPM Trial 1 and EPM Trial 2. Rats administered with saline showed a percentage of open arms time (% OAT) in Trial 2 that was comparable to Trial 1, demonstrating a reduction in the retrieval of aversive memory. However, rats sensitized after the EPM Trial 1 showed a significant decrease in the % OAT in Trial 2. Importantly, a decrease in the % OAT in Trial 2 compared to Trial 1 was also observed after a single injection of amphetamine 24h before Trial 2. These results show a facilitation in the retrieval of aversive memory, and suggest that a previous amphetamine injection is enough to produce a protracted activation of neural circuits necessary for the retrieval of aversive memory.

  9. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  10. Wernicke encephalopathy and ethanol-related syndromes.

    PubMed

    Kim, Tae Eun; Lee, Eun Ja; Young, Jeong Bo; Shin, Dong Jae; Kim, Ji Hoon

    2014-04-01

    Ethanol causes diverse neurologic conditions caused by acute and chronic brain damage. This review provides an overview of Wernicke encephalopathy and other ethanol-related brain changes, such as chronic brain atrophy, Marchiafava-Bignami disease, osmotic demyelination syndrome, chronic hepatic encephalopathy, and acute alcohol withdrawal. As clinical symptoms of this spectrum of diseases have nonspecific neurologic alterations, radiologists should have current radiologic information and understand the imaging findings pertaining to the pathophysiology to support diagnosis.

  11. Acute Stress Dysregulates the LPP ERP Response to Emotional Pictures and Impairs Sustained Attention: Time-Sensitive Effects

    PubMed Central

    Alomari, Rima A.; Fernandez, Mercedes; Banks, Jonathan B.; Acosta, Juliana; Tartar, Jaime L.

    2015-01-01

    Stress can increase emotional vigilance at the cost of a decrease in attention towards non-emotional stimuli. However, the time-dependent effects of acute stress on emotion processing are uncertain. We tested the effects of acute stress on subsequent emotion processing up to 40 min following an acute stressor. Our measure of emotion processing was the late positive potential (LPP) component of the visual event-related potential (ERP), and our measure of non-emotional attention was the sustained attention to response task (SART). We also measured cortisol levels before and after the socially evaluated cold pressor test (SECPT) induction. We found that the effects of stress on the LPP ERP emotion measure were time sensitive. Specifically, the LPP ERP was only altered in the late time-point (30–40 min post-stress) when cortisol was at its highest level. Here, the LPP no longer discriminated between the emotional and non-emotional picture categories, most likely because neutral pictures were perceived as emotional. Moreover, compared to the non-stress condition, the stress-condition showed impaired performance on the SART. Our results support the idea that a limit in attention resources after an emotional stressor is associated with the brain incorrectly processing non-emotional stimuli as emotional and interferes with sustained attention. PMID:26010485

  12. Bacterobilia in acute cholecystitis: Bile cultures' isolates, antibiotic sensitivities and antibiotic usage. A study on a Pakistani population.

    PubMed

    Hadi, Yousaf Bashir; Waqas, Muhammad; Umer, Hafiz Muhammad; Alam, Ammar; Alvi, Abdul Rehman; Khan, Muhammad Rizwan

    2016-10-01

    Acute cholecystitis is one of the most common acute surgical conditions. Laparoscopic cholecystectomy remains the mainstay of treatment. In patients managed non-operatively, antibiotics play an important role in the treatment of cholecystitis. The current retrospective observational study was conducted at a tertiary care hospital in Karachi, and comprised medical records of patients admitted between 2008 and 2014with acute cholecystitis and in whom bile cultures were obtained. Of the 509 patients with a mean age of 51.15 ± 13.4years, early laparoscopic cholecystectomy (within 72hours) was performed on 473(92.9%) cases, while the rest underwent percutaneous cholecystostomy. Bile cultureswere positive in 171(33.6%) patients. Predominantly gram-negative organisms were isolated among a total of 137(27%), with E.coli 63(46%) being the most commonly isolated organism. Of the gram-positive organism, enterococcus 11(8%) was the most common. Antibiotic sensitivities were determined.Based on our findings gram-negative coverage alone should be sufficient in our segment of the population.

  13. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging.

    PubMed

    Francisco, Amanda Fortes; Lewis, Michael D; Jayawardhana, Shiromani; Taylor, Martin C; Chatelain, Eric; Kelly, John M

    2015-08-01

    The antifungal drug posaconazole has shown significant activity against Trypanosoma cruzi in vitro and in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescent T. cruzi were assessed by in vivo and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic T. cruzi infections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.

  14. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity.

    PubMed

    Kane, Maureen A; Folias, Alexandra E; Wang, Chao; Napoli, Joseph L

    2010-03-01

    All-trans-retinoic acid (atRA) supports embryonic development, central nervous system function, and the immune response. atRA initiates neurogenesis and dendritic growth in the hippocampus and is required for spatial memory; superphysiological atRA inhibits neurogenesis, causes teratology and/or embryo toxicity, and alters cognitive function and behavior. Because abnormal atRA shares pathological conditions with alcoholism, inhibition of retinol (vitamin A) activation into atRA has been credited widely as a mechanism of ethanol toxicity. Here, we analyze the effects of ethanol on retinoid concentrations in vivo during normal vitamin A nutriture, using sensitive and analytically robust assays. Ethanol either increased or had no effect on atRA, regardless of changes in retinol and retinyl esters. Acute ethanol (3.5 g/kg) increased atRA in adult hippocampus (1.6-fold), liver (2.4-fold), and testis (1.5-fold). Feeding dams a liquid diet with 6.5% ethanol from embryonic day 13 (e13) to e19 increased atRA in fetal hippocampus (up to 20-fold) and cortex (up to 50-fold), depending on blood alcohol content. One-month feeding of the 6.5% ethanol diet increased atRA in adult hippocampus (20-fold), cortex (2-fold), testis (2-fold), and serum (10-fold). Tissue-specific increases in retinoid dehydrogenase mRNAs and activities, extrahepatic retinol concentrations, and atRA catabolism combined to produce site-specific effects. Because a sustained increase in atRA has deleterious effects on the central nervous system and embryo development, these data suggest that superphysiological atRA contributes to ethanol pathological conditions, including cognitive dysfunction and fetal alcohol syndrome.-Kane, M. A., Folias, A. E., Wang, C., Napoli, J. L. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity.

  15. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity

    PubMed Central

    Kane, Maureen A.; Folias, Alexandra E.; Wang, Chao; Napoli, Joseph L.

    2010-01-01

    All-trans-retinoic acid (atRA) supports embryonic development, central nervous system function, and the immune response. atRA initiates neurogenesis and dendritic growth in the hippocampus and is required for spatial memory; superphysiological atRA inhibits neurogenesis, causes teratology and/or embryo toxicity, and alters cognitive function and behavior. Because abnormal atRA shares pathological conditions with alcoholism, inhibition of retinol (vitamin A) activation into atRA has been credited widely as a mechanism of ethanol toxicity. Here, we analyze the effects of ethanol on retinoid concentrations in vivo during normal vitamin A nutriture, using sensitive and analytically robust assays. Ethanol either increased or had no effect on atRA, regardless of changes in retinol and retinyl esters. Acute ethanol (3.5 g/kg) increased atRA in adult hippocampus (1.6-fold), liver (2.4-fold), and testis (1.5-fold). Feeding dams a liquid diet with 6.5% ethanol from embryonic day 13 (e13) to e19 increased atRA in fetal hippocampus (up to 20-fold) and cortex (up to 50-fold), depending on blood alcohol content. One-month feeding of the 6.5% ethanol diet increased atRA in adult hippocampus (20-fold), cortex (2-fold), testis (2-fold), and serum (10-fold). Tissue-specific increases in retinoid dehydrogenase mRNAs and activities, extrahepatic retinol concentrations, and atRA catabolism combined to produce site-specific effects. Because a sustained increase in atRA has deleterious effects on the central nervous system and embryo development, these data suggest that superphysiological atRA contributes to ethanol pathological conditions, including cognitive dysfunction and fetal alcohol syndrome.—Kane, M. A., Folias, A. E., Wang, C., Napoli, J. L. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. PMID:19890016

  16. Relative sensitivity of bull trout (Salvelinus confluentus) and rainbow trout (Oncorhynchus mykiss) to acute exposures of cadmium and zinc.

    PubMed

    Hansen, James A; Welsh, Paul G; Lipton, Josh; Cacela, Dave; Dailey, Anne D

    2002-01-01

    Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Present and historical habitat of this species includes waterways that have been impacted by metals released from mining and mineral processing activities. We conducted paired bioassays with bull trout and rainbow trout (Oncorhynchus mykiss) to examine the relative sensitivity of each species to Cd and Zn independently and as a mixture. A total of 15 pairs of acute toxicity bioassays were completed to evaluate the effects of different water hardness (30 or 90 mg/L as CaCO3), pH (6.5 or 7.5), and temperature (8 or 12 degrees C) on Cd and Zn toxicity. For both species, the acute toxicity of both Cd and Zn was greater than previously observed in laboratory studies. Bull trout were about twice as tolerant of Cd and about 50% more tolerant of Zn than were rainbow trout. Higher hardness and lower pH water produced lower toxicity and slower rates of toxicity in both species. Elevated temperature significantly increased the sensitivity of bull trout to Zn but decreased the sensitivity (not significantly) of rainbow trout to Zn. At a hardness of 30 mg/L, the toxicity values (i.e., median lethal concentration; 120-h LC50) for both species were lower than the current U.S. national water quality criteria for protection of aquatic life, indicating that current national criteria may not be protective of sensitive salmonids--including the threatened bull trout--in low calcium waters.

  17. Meal-induced insulin sensitization is preserved after acute olanzapine administration in female Sprague-Dawley rats.

    PubMed

    Kovács, Diána; Hegedűs, Csaba; Kiss, Rita; Sári, Réka; Németh, József; Szilvássy, Zoltán; Peitl, Barna

    2015-05-01

    Olanzapine, an atypical antipsychotic, can acutely induce fasting insulin resistance, but we do not know whether it is able to modulate the meal-induced insulin sensitization (MIS). Two main experimental groups (control and olanzapine-treated) were created with two subgroups (fasted and re-fed) within each. After oral vehicle/olanzapine administration, the first meal size and duration and the total amount of consumed food was recorded in conscious rats. Then, under anaesthesia, the carotid artery and jugular vein was prepared and cannulated to obtain samples for blood glucose and hormone determination as well as for insulin/glucose infusion, respectively. Basal insulin sensitivity and MIS was determined by homeostasis model assessment (HOMA) calculation and by rapid insulin sensitivity test, respectively. In fasted animals, olanzapine increased blood glucose and plasma insulin and reduced basal insulin sensitivity, but it failed to modify other hormone levels. Postprandial leptin and glucose-dependent insulinotropic polypeptide (GIP) levels increased, and ghrelin level decreased significantly (p < 0.05) both in vehicle- and olanzapine-treated groups, but plasma insulin increased only in vehicle-treated animals. Furthermore, decrement in ghrelin level was attenuated in olanzapine-treated animals compared to controls. There was no significant change in the first meal size and duration or in the total amount of food consumed. Olanzapine had no effect on the MIS. We demonstrated that olanzapine can induce insulin resistance without weight gain in healthy rats. Furthermore, the MIS was preserved after acute olanzapine treatment. The blunted postprandial ghrelin and insulin response could contribute to the effect of olanzapine on feeding behaviour. Pharmacological induction of MIS may improve the olanzapine-induced insulin resistance.

  18. Nicotinic acetylcholine receptors containing the α4 subunit are critical for the nicotine-induced reduction of acute voluntary ethanol consumption.

    PubMed

    Hendrickson, Linzy M; Gardner, Paul; Tapper, Andrew R

    2011-01-01

    Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.

  19. Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward

    PubMed Central

    Engel, Gregory L.; Marella, Sunanda; Kaun, Karla R.; Wu, Julia; Adhikari, Pratik; Kong, Eric C.

    2016-01-01

    Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also

  20. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  1. Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species.

    PubMed

    Paoli, Luca; Maslaňáková, Ivana; Grassi, Alice; Bačkor, Martin; Loppi, Stefano

    2015-12-01

    Lichens are sensitive to the presence of ammonia (NH3) in the environment. However, in order to use them as reliable indicators in biomonitoring studies, it is necessary to establish unequivocally the occurrence of certain symptoms following the exposure to NH3 in the environment. In this paper, we simulated an episode of acute air pollution due to the release of NH3. The biological effects of acute air pollution by atmospheric NH3 have been investigated using N-sensitive (Flavoparmelia caperata) and N-tolerant (Xanthoria parietina) species. Lichen samples were exposed to ecologically relevant NH3 concentrations for 8 weeks, simulating three areas of impact: a control area (2 μg/m(3)), an area of intermediate impact (2-35 μg/m(3)) and an area of high impact (10-315 μg/m(3)), with a peak of pollution reached between the fourth and fifth week. Ammonia affected both the photobiont and the mycobiont in F. caperata, while in X. parietina only the photosynthetic performance of the photobiont was altered after exposure to the highest concentration. In the photobiont of F. caperata we recorded chlorophyll degradation as indicated by OD435/415 ratio, decrease of the photosynthetic performance (as reflected by the maximum quantum yield of primary photochemistry FV/FM and the performance index PIABS); in the mycobiont, ergosterol reduction, membrane lipid peroxidation (as reflected by the increase of thiobarbituric acid reactive substances), alteration (decrease) of the secondary metabolite usnic acid. No effects were detected on caperatic acid and dehydrogenase activity. In X. parietina, the only signal determined by NH3 was the alteration of FV/FM and the performance index PIABS. The results suggest that physiological parameters in N-sensitive lichens well reflect the effects of NH3 exposure and can be applied as early indicators in monitoring studies.

  2. The mu opioid receptor A118G gene polymorphism moderates effects of trait anger-out on acute pain sensitivity.

    PubMed

    Bruehl, Stephen; Chung, Ok Y; Burns, John W

    2008-10-15

    Both trait anger-in (managing anger through suppression) and anger-out (managing anger through direct expression) are related to pain responsiveness, but only anger-out effects involve opioid mechanisms. Preliminary work suggested that the effects of anger-out on postoperative analgesic requirements were moderated by the A118G single nucleotide polymorphism of the mu opioid receptor gene. This study further explored these potential genotypexphenotype interactions as they impact acute pain sensitivity. Genetic samples and measures of anger-in and anger-out were obtained in 87 subjects (from three studies) who participated in controlled laboratory acute pain tasks (ischemic, finger pressure, thermal). McGill Pain Questionnaire (MPQ) Sensory and Affective ratings for each pain task were standardized within studies, aggregated across pain tasks, and combined for analyses. Significant anger-outxA118G interactions were observed (p's<.05). Simple effects tests for both pain measures revealed that whereas anger-out was nonsignificantly hyperalgesic in subjects homozygous for the wild-type allele, anger-out was significantly hypoalgesic in those with the variant G allele (p's<.05). For the MPQ-Affective measure, this interaction arose both from low pain sensitivity in high anger-out subjects with the G allele and heightened pain sensitivity in low anger-out subjects with the G allele relative to responses in homozygous wild-type subjects. No genetic moderation was observed for anger-in, although significant main effects on MPQ-Affective ratings were noted (p<.005). Anger-in main effects were due to overlap with negative affect, but anger-outxA118G interactions were not, suggesting unique effects of expressive anger regulation. Results support opioid-related genotypexphenotype interactions involving trait anger-out.

  3. Adaptation of yeast cell membranes to ethanol

    SciTech Connect

    Jimenez, J.; Benitez, T.

    1987-05-01

    A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.

  4. Ethanol-induced anxiolysis and neuronal activation in the amygdala and bed nucleus of the stria terminalis.

    PubMed

    Sharko, Amanda C; Kaigler, Kris F; Fadel, Jim R; Wilson, Marlene A

    2016-02-01

    High rates of comorbidity for anxiety and alcohol-use disorders suggest a causal relationship between these conditions. Previous work demonstrates basal anxiety levels in outbred Long-Evans rats correlate with differences in voluntary ethanol consumption and that amygdalar Neuropeptide Y (NPY) systems may play a role in this relationship. The present work explores the possibility that differences in sensitivity to ethanol's anxiolytic effects contribute to differential ethanol self-administration in these animals and examines the potential role of central and peripheral NPY in mediating this relationship. Animals were first exposed to the elevated plus maze (EPM) to assess individual differences in anxiety-like behaviors and levels of circulating NPY and corticosterone (CORT). Rats were then tested for anxiety-like behavior in the light-dark box (LD box) following acute ethanol treatment (1 g/kg; intraperitoneally [i.p.]), and neuronal activation in the amygdala and bed nucleus of the stria terminalis (BNST) was assessed using Fos immunohistochemistry. EPM exposure increased plasma CORT levels without altering plasma NPY levels. Acute ethanol treatment significantly increased light-dark transitions and latency to re-enter the light arena, but no differences were seen between high- and low-anxiety groups and no correlations were found between anxiety-like behaviors in the EPM and LD box. Acute ethanol treatment significantly increased Fos immunoreactivity in the BNST and the central amygdala. Although NPY neurons were not significantly activated following ethanol exposure, in saline-treated animals lower levels of anxiety-like behavior in the LD box (more time in the light arena and more transitions) were correlated with higher NPY-positive cell density in the central amygdala. Our results suggest that activation of the CeA and BNST are involved in the behavioral expression of ethanol-induced anxiolysis, and that differences in basal anxiety state may be correlated

  5. Genetic predictors for acute experimental cold and heat pain sensitivity in humans

    PubMed Central

    Kim, H; Mittal, D P; Iadarola, M J; Dionne, R A

    2006-01-01

    Background The genetic contribution to pain sensitivity underlies a complex composite of parallel pain pathways, multiple mechanisms, and diverse inter‐individual pain experiences and expectations. Methods Variations for genes encoding receptors related to cold and heat sensation, such as transient receptor potential A subtype 1 (TRPA1), M subtype 8 (TRPM8), V subtype 1 (TRPV1), δ opioid receptor subtype 1 (OPRD1), catechol O‐methyltransferase (COMT), and fatty acid amide hydrolyase (FAAH), were investigated in four major ethnic populations. Results We defined 13 haplotype blocks in European Americans, seven blocks in African Americans, seven blocks in Hispanic subjects, and 11 blocks in Asian Americans. Further study in European American subjects found significant associations between short duration cold pain sensitivity and variations in TRPA1, COMT, and FAAH in a gender dependent manner. Our observations demonstrate that genetic variations in TRPA1, COMT, and FAAH contribute gender specifically to individual variations in short duration cold pain sensitivity in a European American cohort. Conclusions The effects of TRPA1 variations on experimental short duration heat pain sensitivity may contribute to inter‐individual variation in pain sensitivity in humans. PMID:16882734

  6. Sensitivity and specificity of cerebrospinal fluid flow cytometry for the diagnosis of leukemic meningitis in acute lymphoblastic leukemia/lymphoma.

    PubMed

    Mitri, Zahi; Siddiqui, Momin T; El Rassi, Fuad; Holden, Jeannine T; Heffner, Leonard T; Langston, Amelia; Waller, Edmund K; Winton, Elliott; McLemore, Morgan; Bernal-Mizrachi, Leon; Jaye, David; Arellano, Martha; Khoury, Hanna Jean

    2014-07-01

    The presence of leukemic blasts detected by light microscopy in cerebrospinal fluid (CSF) establishes the diagnosis of leukemic meningitis in acute lymphoblastic leukemia/lymphoma (ALL). Flow cytometry immunophenotyping (FCI) is a very sensitive method that detects a minute number of aberrant cells, and is increasingly performed on CSF samples. We sought to determine the sensitivity and specificity of CSF FCI for the diagnosis of leukemic meningitis in ALL. Between November 2007 and August 2011, 800 CSF samples from 80 patients with ALL were available from diagnostic lumbar punctures (LPs; n = 80), follow-up LPs (n = 687) and at the time of relapse (n = 33). FCI was performed on 267 samples, and only identified aberrant cells in cytologically confirmed cases of leukemic meningitis. A blinded review of all cases with detectable CSF nucleated cells confirmed these findings. We conclude that CSF FCI has a 100% sensitivity and specificity for the detection of lymphoblasts. However, additional studies are needed to define the role this procedure plays in the diagnosis of leukemic meningitis.

  7. 2,4-dinitrophenol acutely inhibits rabbit atrial Ca2+ -sensitive Cl- current (I(TO2)).

    PubMed

    Ravesloot, J H; Rombouts, E

    2000-10-01

    We investigated the effects of 2,4-dinitrophenol (DNP), the uncoupler of mitochondrial oxidative phosphorylation, on the Ca2+ -sensitive Cl- current component of the transient outward current (I(TO2)). Amphotericin B perforated-patch, whole-cell patch-clamp technique was employed (35 degrees C) using enzymatically isolated single rabbit atrial myocytes. We defined I(TO2) as the amplitude of the 2 mM 4-aminopyridine resistant transient outward current sensitive to anthracene-9-carboxylic acid (A9C). Between +5 and +45 mV, 0.2 mM A9C inhibited I(TO2) by approximately 70% (n = 13). Within 30 s after application of 0.2 mM DNP, both normal I(TO2) transients (n = 8) and the I(TO2) transients that remained after A9C treatment (n = 8) were inhibited completely. In cells expressing I(TO2) (70% of total), DNP also suppressed an A9C-insensitive slow outward current by approximately 40%, but the holding current at -80 mV was unaffected. There was a approximately 2 min latency between inhibitory effects of DNP and subsequent membrane current increase, presumably caused by activation of the ATP-sensitive K+ channels (n = 16). We conclude that DNP acutely inhibits I(TO2) via a mechanism presumably separate from metabolic inhibition.

  8. Toxicogenomic identification of biomarkers of acute respiratory expsoure to sensitizing agents

    EPA Science Inventory

    Allergy induction requires multiple exposures to an agent. Therefore the development of high-throughput or in vitro assays for effective screening of potential sensitizers will require the identification of biomarkers. The goal of this preliminary study was to identify potential ...

  9. Memantine enhances the inhibitory effects of naltrexone on ethanol consumption.

    PubMed

    Kuzmin, Alexander; Stenback, Tove; Liljequist, Sture

    2008-04-28

    Effects of the opioid receptor antagonist naltrexone (0.1; 0.3; 1.0 mg/kg i.p.) on operant ethanol self-administration alone and in combination with the non-competitive NMDA antagonist memantine (0.5 and 1 mg/kg, i.p.) were studied in rats. Acute administration of naltrexone (0.1; 0.3; 1.0 mg/kg i.p.) inhibited ethanol self-administration in a dose-dependent manner. Memantine (1.0 mg/kg) significantly enhanced the effects of naltrexone at 0.1 mg/kg, failing per se to inhibit ethanol consumption. Thus, low, sub-effective dose of memantine in combination with low doses of naltrexone blocked the reinforcing properties of ethanol in rats. It is suggested that the combination of sub-effective doses of memantine and naltrexone may have therapeutic value in the treatment of alcoholism particularly in a subgroup of alcoholic patients who have high sensitivity to the adverse side effects of naltrexone.

  10. Serum high-sensitivity C-reactive protein: A delicate sentinel elevated in drug-free acutely agitated patients with schizophrenia.

    PubMed

    Pan, Shujuan; Tan, Yunlong; Yao, Shangwu; Zhao, Xiaoyan; Xiong, Jing

    2016-12-30

    Increased levels of high-sensitivity C reactive protein (hsCRP) have been reported in schizophrenia, but to date, no study is designed to examine serum hsCRP in acutely agitated patients with schizophrenia, an extreme state that requires immediate diagnosis and medical treatment. Serum hsCRP levels were assessed in 32 clinically acutely agitated patients and 42 healthy control subjects matched for demographic properties. Further, serum hsCRP levels in acutely agitated patients were compared with control subjects and with the levels after the patients were treated with anti-psychiatric medications. Meanwhile, the influence of clinical subtypes, family history, and gender, as well as the levels of white blood cell (WBC) counts were also considered. In results, serum hsCRP levels were significantly higher in acutely agitated patients with schizophrenia than in healthy subjects. The elevation of serum hsCRP in patients was not affected by gender, family history (P>0.05), and clinical classification of schizophrenia (P>0.05). However, the elevation of hsCRP was suppressed by the medical treatment for schizophrenia with acute agitation (P<0.05). In addition, WBC counts, another inflammation-related indicator, were also increased significantly in acutely agitated patients compared with healthy subjects, consistent with the elevation of serum hsCRP. In conclusion, hsCRP is an important indicator of immune alterations in the pathogenesis of schizophrenia and has potential to be developed into a sensitive marker for the acute agitation in schizophrenia.

  11. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence

    PubMed Central

    Ponce, Luciano Federico; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan Carlos

    2008-01-01

    Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug’s reinforcing effects (Spear & Molina, 2005). A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5–6 was also examined. In Experiment 1, pups (postnatal days 14–17 were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25–48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns. PMID:18571224

  12. Clinical and angiographic correlation of high-sensitivity C-reactive protein with acute ST elevation myocardial infarction

    PubMed Central

    Tanveer, Syed; Banu, Shaheena; Jabir, Nasimudeen Rehumathbeevi; Khan, Mohd Shahnawaz; Ashraf, Ghulam Md; Manjunath, Nanjappa Cholenahally; Tabrez, Shams

    2016-01-01

    Vascular inflammation and associated ongoing inflammatory responses are considered as the critical culprits in the pathogenesis of acute atherothrombotic events such as acute coronary syndrome (ACS) and myocardial infarction (MI). ST segment elevation myocardial infarction (STEMI) is considered as one of the prominent clinical forms of ACS. Moreover, C-reactive protein (CRP) is an important acute phase prsotein, which may be estimated using high-sensitivity methods (hs-CRP), and its elevated level in body fluids reflects chronic inflammatory status. The circulating hs-CRP level has been proposed as a promising inflammatory marker of coronary artery disease (CAD). The present study investigated the correlation of hs-CRP level with clinical and angiographic features of STEMI, various other traditional risk factors, complications of myocardial infarction and angiographically significant CAD. Out of 190 patients with STEMI that were analyzed, the interval between symptom onset and reperfusion therapy (window period) varied from 0.5 to 24 h. The hs-CRP value was found to be higher in non-diabetic patients (0.61 mg/dl) compared with diabetic patients (0.87 mg/dl). Moreover, a significant correlation between hs-CRP and hs-troponin T was also recorded (P<0.001). However, there was no significant difference in the mean hs-CRP values in patients with or without mortality. It is considered that the present study will increase the understanding of atherosclerosis in general and may also have clinical applications in the targeting of therapy for this harmful disease. PMID:28105138

  13. Diffusion-Weighted Imaging with Dual-Echo Echo-Planar Imaging for Better Sensitivity to Acute Stroke

    PubMed Central

    Holdsworth, S.J.; Yeom, K.W.; Antonucci, M.U.; Andre, J.B.; Rosenberg, J.; Aksoy, M.; Straka, M.; Fischbein, N.J.; Bammer, R.; Moseley, M.E.; Zaharchuk, G.; Skare, S.

    2015-01-01

    BACKGROUND AND PURPOSE Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging–enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging. MATERIALS AND METHODS Parallel imaging–enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information. RESULTS Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts. CONCLUSIONS Parallel imaging–enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization. PMID:24763417

  14. Phase sensitive detection of light reflected from a Fabry{endash}P{acute e}rot interferometer

    SciTech Connect

    Bava, E.; Massari, F.

    1996-05-01

    We present an analysis of the Fabry{endash}P{acute e}rot response to a phase-modulated light in the reflection mode, by considering the general problem of the lock-in detection at the {ital p}th harmonics of the rf modulating frequency. Suitable frequency modulation conditions for servo-locking purposes are obtained and the values of modulation index which maximize the sensitivity for the first, third, and fifth harmonics are found. Moreover, we investigate the effects of the residual amplitude modulation introduced by the electro-optic frequency modulator, the presence of laser amplitude and frequency noise, and the dependence of the achievable closed-loop frequency fluctuation spectrum on the modulation index and detection noise. {copyright} {ital 1996 American Institute of Physics.}

  15. Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission.

    PubMed

    Wilcox, Mark V; Cuzon Carlson, Verginia C; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-02-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the 'drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a 'front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum.

  16. Relative sensitivity of one freshwater and two marine acute toxicity tests as determined by testing 30 offshore E & P chemicals.

    PubMed

    Sverdrup, Line E; Fürst, Charlotte S; Weideborg, Mona; Vik, Eilen A; Stenersen, Jørgen

    2002-01-01

    Acute toxicity of 30 offshore E & P (Exploration and Production) chemicals was measured using the three standard test organisms Daphnia magna (freshwater cladoceran), Acartia tonsa (marine copepod) and Skeletonema costatum (marine diatom alga). Test chemicals included 20 water-soluble and 10 (partially) non-soluble products. For 22 out of the 30 chemicals, the difference in sensitivity between the three tests varied within one order of magnitude. A very good correlation was found between the two marine tests (r = 0.96, P < 0.01, n = 30), and a correlation coefficient of r = 0.78 (P < 0.01, n = 30) was found between D. magna and both A. tonsa and S. costatum, individually. When the comparison of D. magna and A. tonsa sensitivity was based only on the water-soluble chemicals, a significantly higher correlation was obtained (r = 0.84, n = 20), indicating that the sample preparation method used for the (partially) non-soluble chemicals (the water accommodated fraction (WAF) method) induces additional variation between tests performed with different test media. (Partially) non-soluble chemicals are characterised by phase separation or precipitation at the concentrations used for testing. In a WAF-based test, each test concentration/exposure level is prepared separately, and following mixing and separation, only the water phase is used for testing. Toxicity is related to the amount of substance originally added to the mixing vessels. For 25 of the 30 chemicals, D. magna was found to be less sensitive than the marine copepod by a factor >2. The generally higher sensitivity of the marine toxicity tests compared to the Daphnia test emphasise the importance of using marine data for environmental hazard classification as well as for environmental risk assessment purposes.

  17. Adolescent mice are less sensitive to the effects of acute nicotine on context pre-exposure than adults.

    PubMed

    Kutlu, Munir Gunes; Braak, David C; Tumolo, Jessica M; Gould, Thomas J

    2016-07-01

    Adolescence is a critical developmental period associated with both increased vulnerability to substance abuse and maturation of certain brain regions important for learning and memory such as the hippocampus. In this study, we employed a hippocampus-dependent learning context pre-exposure facilitation effect (CPFE) paradigm in order to test the effects of acute nicotine on contextual processing during adolescence (post-natal day (PND) 38) and adulthood (PND 53). In Experiment 1, adolescent or adult C57BL6/J mice received either saline or one of three nicotine doses (0.09, 0.18, and 0.36mg/kg) prior to contextual pre-exposure and testing. Our results demonstrated that both adolescent and adult mice showed CPFE in the saline groups. However, adolescent mice only showed acute nicotine enhancement of CPFE with the highest nicotine dose whereas adult mice showed the enhancing effects of acute nicotine with all three doses. In Experiment 2, to determine if the lack of nicotine's effects on CPFE shown by adolescent mice is specific to the age when they are tested, mice were either given contextual pre-exposure during adolescence or adulthood and received immediate shock and testing during adulthood after a 15day delay. We found that both adolescent and adult mice showed CPFE in the saline groups when tested during adulthood. However, like Experiment 1, mice that received contextual pre-exposure during adolescence did not show acute nicotine enhancement except at the highest dose (0.36mg/kg) whereas both low (0.09mg/kg) and high (0.36mg/kg) doses enhanced CPFE in adult mice. Finally, we showed that the enhanced freezing response found with 0.36mg/kg nicotine in the 15-day experiment may be a result of decreased locomotor activity as mice that received this dose of nicotine traveled shorter distances in an open field paradigm. Overall, our results indicate that while adolescent mice showed normal contextual processing when tested both during adolescence and adulthood, they

  18. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus

  19. Protective effects of alginate-chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats.

    PubMed

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in "Danxi's experiential therapy" for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus, these

  20. Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains.

    PubMed

    Molet, Jenny; Bouaziz, Elodie; Hamon, Michel; Lanfumey, Laurence

    2012-08-01

    Although the acute effects of ethanol exposure on brain development have been extensively studied, the long term consequences of juvenile ethanol intake on behavior at adult age, regarding especially ethanol consumption, are still poorly known. The aim of this study was to analyze the consequences of ethanol ingestion in juvenile C57BL/6J and DBA/2J mice on ethanol intake and neurobiological regulations at adulthood. Mice were given intragastric ethanol at 4 weeks of age under different protocols and their spontaneous ethanol consumption was assessed in a free choice paradigm at adulthood. Both serotonin 5-HT(1A) and cannabinoid CB1 receptors were investigated using [(35)S]GTP-γ-S binding assay for the juvenile ethanol regimens which modified adult ethanol consumption. In DBA/2J mice, juvenile ethanol ingestion dose-dependently promoted adult spontaneous ethanol consumption. This early ethanol exposure enhanced 5-HT(1A) autoreceptor-mediated [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and reduced CB1 receptor-mediated G protein coupling in both the striatum and the globus pallidus at adult age. In contrast, early ethanol ingestion by C57BL/6J mice transiently lowered spontaneous ethanol consumption and increased G protein coupling of postsynaptic 5-HT(1A) receptors in the hippocampus but had no effect on CB1 receptors at adulthood. These results show that a brief and early exposure to ethanol can induce strain-dependent long-lasting changes in both behavior toward ethanol and key receptors of central 5-HT and CB systems in mice.

  1. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Manganese (II) Complex against HCl/Ethanol-Induced Gastric Ulcerations in Rats

    PubMed Central

    Ibrahim, Mohamed Yousif; Hashim, Najihah Mohd; Dhiyaaldeen, Summaya M.; Al-Obaidi, Mazen M.Jamil; El-Ferjani, Rashd M.; Adam, Hoyam; Alkotaini, Bassam; Batran, Rami Al; Ali, Hapipah Mohd

    2016-01-01

    Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2–5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3–5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3–5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex. PMID:27229938

  2. Excitation of Rat Cerebellar Golgi Cells by Ethanol: Further Characterization of the Mechanism

    PubMed Central

    Botta, Paolo; de Souza, Fabio M. Simões; Sangrey, Thomas; De Schutter, Erik; Valenzuela, C. Fernando

    2012-01-01

    Background Studies with rodents suggest that acute ethanol exposure impairs information flow through the cerebellar cortex, in part, by increasing GABAergic input to granule cells. Experiments suggest that an increase in the excitability of specialized GABAergic interneurons that regulate granule cell activity (i.e. Golgi cells, GoCs) contributes to this effect. In GoCs, ethanol increases spontaneous action potential firing frequency, decreased the afterhyperpolarization amplitude, and depolarized the membrane potential. Studies suggest that these effects could be mediated by inhibition of the Na+/K+ ATPase. The purpose of this study was to characterize the potential role of other GoC conductances in the mechanism of action of ethanol. Methods Computer modeling techniques and patch-clamp electrophysiological recordings with acute slices from rat cerebella were used for these studies. Results Computer modeling suggested that modulation of subthreshold Na+ channels, hyperpolarization activated currents and several K+ conductances could explain some but not all actions of ethanol on GoCs. Electrophysiological studies did not find evidence consistent with a contribution of these conductances. Quinidine, a non-selective blocker of several types of channels (including several K+ channels) that also antagonizes the Na+/K+ ATPase, reduced the effect of ethanol on GoC firing. Conclusions These findings lend further support to the conclusion that ethanol increases GoC excitability via modulation of the Na+/K+ ATPase, and suggest that a quinidine-sensitive K+ channel may also play a role in the mechanism of action of ethanol. PMID:22004123

  3. Acute sensitivity of the vernal pool fairy shrimp, Branchinecta lynchi (Anostraca; Branchinectidae), and surrogate species to 10 chemicals.

    PubMed

    Ivey, Chris D; Besser, John M; Ingersoll, Chris G; Wang, Ning; Rogers, D Christopher; Raimondo, Sandy; Bauer, Candice R; Hammer, Edward J

    2017-03-01

    Vernal pool fairy shrimp, Branchinecta lynchi, (Branchiopoda; Anostraca) and other fairy shrimp species have been listed as threatened or endangered under the US Endangered Species Act. Because few data exist about the sensitivity of Branchinecta spp. to toxic effects of contaminants, it is difficult to determine whether they are adequately protected by water quality criteria. A series of acute (24-h) lethality/immobilization tests was conducted with 3 species of fairy shrimp (B. lynchi, Branchinecta lindahli, and Thamnocephalus platyurus) and 10 chemicals with varying modes of toxic action: ammonia, potassium, chloride, sulfate, chromium(VI), copper, nickel, zinc, alachlor, and metolachlor. The same chemicals were tested in 48-h tests with other branchiopods (the cladocerans Daphnia magna and Ceriodaphnia dubia) and an amphipod (Hyalella azteca), and in 96-h tests with snails (Physa gyrina and Lymnaea stagnalis). Median effect concentrations (EC50s) for B. lynchi were strongly correlated (r(2 ) = 0.975) with EC50s for the commercially available fairy shrimp species T. platyurus for most chemicals tested. Comparison of EC50s for fairy shrimp and EC50s for invertebrate taxa tested concurrently and with other published toxicity data indicated that fairy shrimp were relatively sensitive to potassium and several trace metals compared with other invertebrate taxa, although cladocerans, amphipods, and mussels had similar broad toxicant sensitivity. Interspecies correlation estimation models for predicting toxicity to fairy shrimp from surrogate species indicated that models with cladocerans and freshwater mussels as surrogates produced the best predictions of the sensitivity of fairy shrimp to contaminants. The results of these studies indicate that fairy shrimp are relatively sensitive to a range of toxicants, but Endangered Species Act-listed fairy shrimp of the genus Branchinecta were not consistently more sensitive than other fairy shrimp taxa. Environ Toxicol

  4. Acute sensitivity of the vernal pool fairy shrimp, Branchinecta lynchi (Anostraca; Branchinectidae), and surrogate species to 10 chemicals

    USGS Publications Warehouse

    Ivey, Chris D.; Besser, John M.; Ingersoll, Christopher G.; Wang, Ning; Rogers, Christopher; Raimondo, Sandy; Bauer, Candice R.; Hammer, Edward J.

    2017-01-01

    Vernal pool fairy shrimp, Branchinecta lynchi, (Branchiopoda; Anostraca) and other fairy shrimp species have been listed as threatened or endangered under the US Endangered Species Act. Because few data exist about the sensitivity of Branchinecta spp. to toxic effects of contaminants, it is difficult to determine whether they are adequately protected by water quality criteria. A series of acute (24-h) lethality/immobilization tests was conducted with 3 species of fairy shrimp (B. lynchi, Branchinecta lindahli, and Thamnocephalus platyurus) and 10 chemicals with varying modes of toxic action: ammonia, potassium, chloride, sulfate, chromium(VI), copper, nickel, zinc, alachlor, and metolachlor. The same chemicals were tested in 48-h tests with other branchiopods (the cladocerans Daphnia magna and Ceriodaphnia dubia) and an amphipod (Hyalella azteca), and in 96-h tests with snails (Physa gyrina and Lymnaea stagnalis). Median effect concentrations (EC50s) for B. lynchi were strongly correlated (r2 = 0.975) with EC50s for the commercially available fairy shrimp species T. platyurus for most chemicals tested. Comparison of EC50s for fairy shrimp and EC50s for invertebrate taxa tested concurrently and with other published toxicity data indicated that fairy shrimp were relatively sensitive to potassium and several trace metals compared with other invertebrate taxa, although cladocerans, amphipods, and mussels had similar broad toxicant sensitivity. Interspecies correlation estimation models for predicting toxicity to fairy shrimp from surrogate species indicated that models with cladocerans and freshwater mussels as surrogates produced the best predictions of the sensitivity of fairy shrimp to contaminants. The results of these studies indicate that fairy shrimp are relatively sensitive to a range of toxicants, but Endangered Species Act-listed fairy shrimp of the genus Branchinecta were not consistently more sensitive than other fairy shrimp taxa. Environ Toxicol Chem

  5. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  6. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1.

    PubMed

    Lu, Fei; Zhang, Jingru; Ji, Min; Li, Peng; Du, Yahui; Wang, Hongchun; Zang, Shaolei; Ma, Daoxin; Sun, Xiulian; Ji, Chunyan

    2014-07-01

    Multidrug resistance (MDR) remains the major cause of disease relapse and poor prognosis in adults with acute myeloid leukemia (AML). Emerging evidence shows that drug resistance not only exists against conventional chemotherapeutic drugs, but also limits the efficacy of new biological agents. Therefore, it is important to elucidate the mechanisms through which AML patients develop drug resistance. MicroRNAs have been shown to play an important role in regulating the chemotherapy resistance in AML. A detailed understanding of the mechanisms of microRNA that are clinically relevant in AML may enhance our ability to predict and overcome drug resistance. Here, we demonstrated, for the first time, that miR-181b was decreased significantly in human multidrug-resistant leukemia cells and relapsed/refractory AML patient samples. Overexpression of miR-181b increased the sensitivity of leukemia cells to cytotoxic chemotherapeutic agents and promoted drug-induced apoptosis. Moreover, miR-181b inhibited HMGB1 and Mcl-1 expression by direct binding to their 3'-untranslated regions. In addition, HMGB1 was expressed at high levels in relapsed/refractory AML patients and suppression of HMGB1 via RNA interference sensitized multidrug-resistant leukemia cells to chemotherapy and induced apoptosis. In conclusion, these results provide a strong rationale for the development of miR-181b-based therapeutic strategies for the enhancement of efficacy in AML treatment.

  7. PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity.

    PubMed

    Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L

    2015-02-01

    Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ.

  8. A simultaneous multiple species acute toxicity test comparing relative sensitivities of six aquatic organisms to HgCl{sub 2}

    SciTech Connect

    McCrary, J.E.; Heagler, M.G.

    1995-12-31

    In the last few years there has been concern in the scientific community about observed declines in some amphibian species. These population declines could be reflecting a global phenomenon due to a general class sensitivity or may be part of a natural cycle. The suggestion of an overall greater sensitivity of amphibians is not supported. Studies show that amphibians, as a class, are neither more or less susceptible than fish to environmental conditions. Mercury has been found to be one of the most toxic of the heavy metals introduced into amphibian breeding waters. Six aquatic species were simultaneously exposed in a comparative acute toxicity test with mercury chloride: three amphibians, Rana catesbeiana (bullfrog), R. clamitans (green frog), and R. sphenocephala (southern leopard frog, formally classified as R. utricularia); two fish, Gambusia affinis (mosquitofish) and Notemigonus crysoleucas (golden shiner); one aquatic aligochaete, Lumbriculus variegatus (aquatic earthworm). The five test concentrations used were 1.4, 3.9, 12.0, 110.0, and 487.0 {micro}g Hg/L respectively. Ten organisms per species were randomly placed into the six test tanks (control and five concentrations), each species in a separate chamber. The resultant LC50-96hr values produced the following rank order: R. sphenocephala, 6.59 {micro}g Hg/L; R. clamitans, 14.7 {micro}g Hg/L; N. crysoleucas, 16.75 {micro}g Hg/L; L. variegatus, 43.72,ug Hg/L; G. affinis, 52.62 {micro}g Hg/L; R. catesbeiana, 63.36 {micro}g Hg/L. No general organism class sensitivity trend, for amphibians, was developed from this data, contrary to the implicit suggestions of some researchers.

  9. Ethanol-induced anxiolysis and neuronal activation in the amygdala and bed nucleus of the stria terminalis

    PubMed Central

    Sharko, Amanda C.; Kaigler, Kris F.; Fadel, Jim R.; Wilson, Marlene A.

    2016-01-01

    High rates of comorbidity for anxiety and alcohol-use disorders suggest a causal relationship between these conditions. Previous work demonstrates basal anxiety levels in outbred Long-Evans rats correlate with differences in voluntary ethanol consumption and that amygdalar Neuropeptide Y (NPY) systems may play a role in this relationship. The present work explores the possibility that differences in sensitivity to ethanol’s anxiolytic effects contribute to differential ethanol self-administration in these animals and examines the potential role of central and peripheral NPY in mediating this relationship. Animals were first exposed to the elevated plus maze (EPM) to assess individual differences in anxiety-like behaviors and levels of circulating NPY and corticosterone (CORT). Rats were then tested for anxiety-like behavior in the light-dark box (LD box) following acute ethanol treatment (1 g/kg; intraperitoneally [i.p.]), and neuronal activation in the amygdala and bed nucleus of the stria terminalis (BNST) was assessed using Fos immunohistochemistry. EPM exposure increased plasma CORT levels without altering plasma NPY levels. Acute ethanol treatment significantly increased light-dark transitions and latency to re-enter the light arena, but no differences were seen between high- and low-anxiety groups and no correlations were found between anxiety-like behaviors in the EPM and LD box. Acute ethanol treatment significantly increased Fos immunoreactivity in the BNST and the central amygdala. Although NPY neurons were not significantly activated following ethanol exposure, in saline-treated animals lower levels of anxiety-like behavior in the LD box (more time in the light arena and more transitions) were correlated with higher NPY-positive cell density in the central amygdala. Our results suggest that activation of the CeA and BNST are involved in the behavioral expression of ethanol-induced anxiolysis, and that differences in basal anxiety state may be

  10. GM1 ganglioside reduces ethanol intoxication and the development of ethanol dependence.

    PubMed

    Wallis, C J; Rezazadeh, S M; Lal, H

    1995-01-01

    The monosialoganglioside, GM1, protects the nervous system against a variety of insults. In this study, we evaluated the protective properties of GM1 on ethanol intoxication and development of dependence. GM1 (20-40 mg/kg, IP) reduced the extent and duration of ataxia produced by ethanol (2 g/kg, IP, 15-95 min), and delayed the onset of loss and reduced the duration of the righting reflex (LORR) produced by ethanol (4.2 g/kg, IP). GM1 did not alter ethanol-induced hypothermia or the rate of ethanol clearance. Rather, GM1 increased the waking blood ethanol concentration. In animals fed a complete liquid diet containing 4.5% ethanol, concurrent administration of GM1 (40 mg/kg/day) blocked the tremors, hypolocomotion, and anxiety-like behavior associated with ethanol withdrawal. These findings demonstrate that GM1 reduces both ethanol's acute intoxication and the signs and symptoms of ethanol withdrawal by a mechanism not related to ethanol pharmacokinetics.

  11. Allopurinol ameliorates thioacetamide-induced acute liver failure by regulating cellular redox-sensitive transcription factors in rats.

    PubMed

    Demirel, Ulvi; Yalniz, Mehmet; Aygün, Cem; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Kazim; Ozercan, Ibrahim Hanifi; Bahçecioğlu, Ibrahim Halil

    2012-08-01

    Oxidative stress plays important role in the development of acute liver failure. In this study, we investigated effects of allopurinol (AP) upon thioacetamide (TAA)-induced liver injury and the potential mechanisms leading to amelioration in inflammation with AP treatment. Acute liver failure was induced by intraperitoneal administration of TAA (300 mg/kg/day for 2 days). Thirty-five rats were divided into five groups as control (group 1), TAA (group 2), TAA + 25AP (group 3), TAA + 50 AP (group 4), and TAA + 100AP (group 5). The number of animals in each group was seven. At the end of the study, histopathological, biochemical, and western blot analysis were done. TAA treatment significantly increased serum levels of aminotransferases, liver malondialdehyde (MDA), nuclear factor-kappa B (NF-қB ), activator protein-1 (AP-1), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) levels, and the necro-inflammation scores. Nevertheless, nuclear factor E2-related factor-2 and heme oxygenase-1 (HO-1) expressions in the liver were decreased by TAA. AP treatment significantly lowered the serum levels of aminotransferases (P < 0.01) and liver MDA, NF-κB, AP-1, TNF-α, COX-2, and IL-6 expressions (P < 0.05). Moreover, AP restored the liver Nrf2 and HO-1 expressions and improved the necro-inflammation scores significantly. AP improves oxidative stress-induced liver damage by regulating cellular redox-sensitive transcriptor factors and expression of pro-inflammatory and antioxidant defense mechanisms. AP probably exerts these beneficiary features by its free radical scavenging ability in a dose-dependent manner.

  12. Anti-Ulcerogenic Effect of Methanolic Extracts from Enicosanthellum pulchrum (King) Heusden against Ethanol-Induced Acute Gastric Lesion in Animal Models

    PubMed Central

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712

  13. THE ONTOGENY OF ETHANOL AVERSION

    PubMed Central

    Saalfield, Jessica; Spear, Linda

    2016-01-01

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. PMID:26774181

  14. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  15. Anxiety sensitivity and panic reactivity to bodily sensations: relation to quit-day (acute) nicotine withdrawal symptom severity among daily smokers making a self-guided quit attempt.

    PubMed

    Marshall, Erin C; Johnson, Kirsten; Bergman, Jenna; Gibson, Laura E; Zvolensky, Michael J

    2009-10-01

    The current investigation explored the main and interactive effects of panic attacks in response to laboratory-induced bodily sensations and anxiety sensitivity in predicting acute nicotine withdrawal symptoms among daily smokers making a self-guided quit attempt. Participants were 99 daily smokers (58% women; M(age) = 28.4 years, SD = 11.7) who completed a battery of questionnaires, a voluntary hyperventilation challenge, and a measure of nicotine withdrawal symptoms 12 hr after making a self-guided quit attempt. Results indicated that the interaction of anxiety sensitivity and panic responsivity to the challenge predicted quit-day nicotine withdrawal symptom severity above and beyond the main effects (p < .05). The form of the interaction indicated that the relationship between postchallenge panic attack status and acute nicotine withdrawal was more robust among individuals who were low in anxiety sensitivity. Individuals who did not experience a panic attack posthyperventilation who were also low in anxiety sensitivity reported the lowest levels of nicotine withdrawal. Results suggest that anxiety sensitivity may be less relevant with regard to acute nicotine withdrawal severity among individuals with panic-related problems.

  16. Ethanol-induced alterations of c-Fos immunoreactivity in specific limbic brain regions following ethanol discrimination training.

    PubMed

    Besheer, Joyce; Schroeder, Jason P; Stevenson, Rebekah A; Hodge, Clyde W

    2008-09-26

    The discriminative stimulus properties of ethanol are functionally regulated by ionotropic GABA(A) and NMDA receptors in specific limbic brain regions including the nucleus accumbens, amygdala, and hippocampus, as determined by microinjection studies. The purpose of the present work was to further investigate potential neural substrates of ethanol's discriminative stimulus effects by examining if ethanol discrimination learning produces changes in brain regional response to ethanol. To accomplish this goal, immunohistochemistry was used to assess the effects of ethanol (2 g/kg) on c-Fos immunoreactivity (Fos-IR). Comparisons in ethanol-induced Fos-IR were made between a group of rats that was trained to discriminate the stimulus properties of ethanol (2 g/kg, IG) from water (IG) and a drug/behavior-matched control group that did not receive differential reinforcement for lever selection, which precluded acquisition of discriminative stimulus control by ethanol. In some brain regions discrimination training had no effect on ethanol-induced Fos-IR changes (caudate putamen, bed nucleus of the stria terminalis, and CA1 region of the hippocampus). In contrast, discrimination training altered the pattern of ethanol-induced Fos-IR in the nucleus accumbens (core), medial septum, and the hippocampus (dentate and CA3). These results indicate that having behavior under the stimulus control of ethanol can change ethanol-induced Fos-IR in some brain regions. This suggests that learning about the subjective properties of ethanol produces adaptive changes in how the brain responds to acute ethanol exposure.

  17. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations.

  18. Sex-dependent consequences of pre-pubertal gonadectomy: Social behavior, stress and ethanol responsivity.

    PubMed

    Kim, Esther U; Spear, Linda P

    2016-01-01

    Alcohol consumption can be enhanced or moderated by sensitivity to its aversive and appetitive properties, including positive social outcomes. These differences emerge post-pubertally, suggesting a potential role of gonadal hormones. To determine the role of gonadal hormones in sensitivity to the social impairing and social context-related attenuations in the aversive effects of ethanol, prepubertal male and female rats were gonadectomized (GX) or sham (SH) operated on postnatal day (P) 25, or left non-manipulated (NM). In adulthood (P70), rats were restrained for 90 min prior to challenge with 0.0 or 1.0 g/kg ethanol and social interaction (SI) testing. At P77, groups of 4 same-sex littermates from the same surgical condition were given access to a supersaccharin (SS) solution (3% sucrose, 0.125% saccharin), followed by an intraperitoneal injection of ethanol (0.0, 0.50, 1.0, 1.5 g/kg). Intakes of SS were examined 24h later for expression of conditioned taste aversions. Acute stress prior to SI testing increased frequency of play fighting in both sexes, whereas there were no GX effects on this measure, social investigation nor contact. GX, however, decreased baseline social preference (a social anxiety-like effect) in males, while inducing anxiolytic-like increases in baseline social preference in females. The social drinking test revealed that females developed ethanol conditioned taste aversions at a lower dose relative to males, regardless of surgical condition. These findings suggest a potential role for gonadal hormones in moderating social-anxiety like behaviors but not sensitivity to the social impairing effects of ethanol or ethanol's aversive consequences in a social context.

  19. Anger regulation style, anger arousal and acute pain sensitivity: evidence for an endogenous opioid “triggering” model

    PubMed Central

    Burns, John W.; Bruehl, Stephen; Chont, Melissa

    2014-01-01

    Findings suggest that greater tendency to express anger is associated with greater sensitivity to acute pain via endogenous opioid system dysfunction, but past studies have not addressed the role of anger arousal. We used a 2 × 2 factorial design with Drug Condition (placebo or opioid blockade with naltrexone) crossed with Task Order (anger-induction/pain-induction or pain-induction/anger-induction), and with continuous Anger-out Subscale scores. Drug × Task Order × Anger-out Subscale interactions were tested for pain intensity during a 4-min ischemic pain task performed by 146 healthy people. A significant Drug × Task Order × Anger-out Subscale interaction was dissected to reveal different patterns of pain intensity changes during the pain task for high anger-out participants who underwent pain-induction prior to anger-induction compared to those high in anger-out in the opposite order. Namely, when angered prior to pain, high anger-out participants appeared to exhibit low pain intensity under placebo that was not shown by high anger-out participants who received naltrexone. Results hint that people with a pronounced tendency to express anger may suffer from inadequate opioid function under simple pain-induction, but may experience analgesic benefit to some extent from the opioid triggering properties of strong anger arousal. PMID:23624641

  20. Pubertal Changes of Insulin Sensitivity, Acute Insulin Response and β-Cell function in Overweight Latino Youth

    PubMed Central

    Kelly, Louise A.; Lane, Christianne J.; Weigensberg, Marc J.; Toledo-Corral, Claudia M; Goran, Michael I.

    2010-01-01

    Objective To examine changes in insulin sensitivity (SI), compensatory acute insulin response (AIR) and β-cell function/disposition index (DI) across puberty in overweight Latino boys and girls. Study design 253 Latino children followed annually for up to 5 years. Longitudinal modeling was used to examine changes in SI, AIR, DI and fasting and 2-hr glucose and insulin across Tanner stage. Results In boys, SI decreased in early puberty with a recovery by late puberty. The compensatory increase in AIR was appropriate in early maturation, but after Tanner 3, AIR declined by more than that predicted from the recovery in SI. For girls, SI decreased in early puberty and across all stages of maturation. In early maturation, there was an appropriate compensatory increase in AIR, but after Tanner 3 AIR decreased. Thus, DI deteriorated across puberty in boys and girls. Conclusions In overweight Hispanic youth, compensatory changes in insulin secretion fails after Tanner 3 in both sexes, indicating β-cell deterioration during this critical period of development, thus increasing risk for Type 2 diabetes. PMID:20888012

  1. High sensitivity of flow cytometry improves detection of occult leptomeningeal disease in acute lymphoblastic leukemia and lymphoblastic lymphoma.

    PubMed

    Del Principe, Maria Ilaria; Buccisano, Francesco; Cefalo, Mariagiovanna; Maurillo, Luca; Di Caprio, Luigi; Di Piazza, Fabio; Sarlo, Chiara; De Angelis, Gottardo; Irno Consalvo, Maria; Fraboni, Daniela; De Santis, Giovanna; Ditto, Concetta; Postorino, Massimiliano; Sconocchia, Giuseppe; Del Poeta, Giovanni; Amadori, Sergio; Venditti, Adriano

    2014-09-01

    Conventional cytology (CC) of cerebrospinal fluid (CSF) fails to demonstrate malignant cells in up to 45 % of patients with acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LL) in whom occult leptomeningeal disease is present. Flow cytometry (FCM) is considered more sensitive than CC, but clinical implications of CC negativity/CC positivity are not yet established. CSF samples from 38 adult patients with newly diagnosed ALL/LL were examined. Five (13 %) and nine (24 %) specimens were CC positive-FC positive (FCM(pos)/CC(pos)) and CC negative-FC positive (CC(neg)/FCM(pos)), respectively. The remaining 24 (63 %) samples were double negative (CC(neg)/FCM(neg)) (p = 0.001). CC(neg)/FCM(pos) patients showed a significantly shorter overall survival (OS) compared to CC(neg)/FCM(neg) ones. In multivariate analysis, the status of single FCM positivity was demonstrated to affect independently duration of OS (p = 0.005). In conclusion, FCM significantly improves detection of leptomeningeal occult localization in ALL/LL and appears to anticipate an adverse outcome. Further prospective studies on larger series are needed to confirm this preliminary observation.

  2. Prospective evaluation of the effects of anxiety sensitivity and state anxiety in predicting acute nicotine withdrawal symptoms during smoking cessation.

    PubMed

    Johnson, Kirsten A; Stewart, Sherry; Rosenfield, David; Steeves, Dan; Zvolensky, Michael J

    2012-06-01

    The current investigation explored the main and interactive effects of anxiety sensitivity (AS) and state anxiety in predicting acute nicotine withdrawal symptoms experienced during the initial 14 days of smoking cessation. Participants included 123 adult daily smokers (84 women; Mage = 45.93 years, SD = 10.34) undergoing psychosocial-pharmacological cessation treatment. Results indicated that after controlling for the effects of participant sex and nicotine dependence, state anxiety but not AS significantly predicted initial levels of nicotine withdrawal symptoms. Results also demonstrated that both state anxiety and AS were significantly related to the change in nicotine withdrawal symptoms over time. Finally, our results revealed a significant interaction between AS and state anxiety. Specifically, higher levels of AS were associated with a stronger relation between state anxiety and nicotine withdrawal symptoms experienced during the cessation attempt. Results suggest that among high AS persons, state anxiety may be more relevant, compared to those low in AS, in regard to experiencing withdrawal symptoms as more intense during the early phases of quitting.

  3. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells From Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo.

    PubMed

    Knorr, Katherine L B; Finn, Laura E; Smith, B Douglas; Hess, Allan D; Foran, James M; Karp, Judith E; Kaufmann, Scott H

    2016-11-07

    : Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8-activating enzyme inhibitor MLN4924 and standard-of-care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte-monocyte progenitors, and megakaryocyte-erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting.

  4. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells from Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo.

    PubMed

    Knorr, Katherine L B; Finn, Laura E; Smith, B Douglas; Hess, Allan D; Foran, James M; Karp, Judith E; Kaufmann, Scott H

    2017-03-01

    Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8-activating enzyme inhibitor MLN4924 and standard-of-care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte-monocyte progenitors, and megakaryocyte-erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting. Stem Cells Translational Medicine 2017;6:840-850.

  5. Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure.

    PubMed

    Wang, Jie; Du, Hongying; Jiang, Lihong; Ma, Xiaoxian; de Graaf, Robin A; Behar, Kevin L; Mason, Graeme F

    2013-08-27

    It has been reported that chronic and acute alcohol exposure decreases cerebral glucose metabolism and increases acetate oxidation. However, it remains unknown how much ethanol the living brain can oxidize directly and whether such a process would be affected by alcohol exposure. The questions have implications for reward, oxidative damage, and long-term adaptation to drinking. One group of adult male Sprague-Dawley rats was treated with ethanol vapor and the other given room air. After 3 wk the rats received i.v. [2-(13)C]ethanol and [1, 2-(13)C2]acetate for 2 h, and then the brain was fixed, removed, and divided into neocortex and subcortical tissues for measurement of (13)C isotopic labeling of glutamate and glutamine by magnetic resonance spectroscopy. Ethanol oxidation was seen to occur both in the cortex and the subcortex. In ethanol-naïve rats, cortical oxidation of ethanol occurred at rates of 0.017 ± 0.002 µmol/min/g in astroglia and 0.014 ± 0.003 µmol/min/g in neurons, and chronic alcohol exposure increased the astroglial ethanol oxidation to 0.028 ± 0.002 µmol/min/g (P = 0.001) with an insignificant effect on neuronal ethanol oxidation. Compared with published rates of overall oxidative metabolism in astroglia and neurons, ethanol provided 12.3 ± 1.4% of cortical astroglial oxidation in ethanol-naïve rats and 20.2 ± 1.5% in ethanol-treated rats. For cortical astroglia and neurons combined, the ethanol oxidation for naïve and treated rats was 3.2 ± 0.3% and 3.8 ± 0.2% of total oxidation, respectively. (13)C labeling from subcortical oxidation of ethanol was similar to that seen in cortex but was not affected by chronic ethanol exposure.

  6. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  7. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings

  8. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    PubMed Central

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  9. Modulation of GABAergic and glutamatergic transmission by ethanol in the developing neocortex: an in vitro test of the excessive inhibition hypothesis of Fetal Alcohol Spectrum Disorder

    PubMed Central

    Sanderson, Jennifer L.; Partridge, L. Donald; Valenzuela, C. Fernando

    2010-01-01

    Summary Exposure to ethanol during development triggers neuronal cell death and this is thought to play a central role in the pathophysiology of fetal alcohol spectrum disorder (FASD). Studies suggest that ethanol-induced neurodegeneration during the period of synaptogenesis results from widespread potentiation of GABAA receptors and inhibition of NMDA receptors throughout the brain, with neocortical layer II being particularly sensitive. Here, we tested whether ethanol modulates the function of these receptors during this developmental period using patch-clamp electrophysiological and Ca2+ imaging techniques in acute slices from postnatal day 7–9 rats. We focused on pyramidal neurons in layer II of the parietal cortex (with layer III as a control). Ethanol (70 mM) increased spontaneous action potential-dependent GABA release in layer II (but not layer III) neurons without affecting postsynaptic GABAA receptors. Protein and mRNA expression for both the Cl− importer, NKCC1, and the Cl− exporter KCC2, were detected in layer II/III neurons. Perforated-patch experiments demonstrated that ECl− is shifted to the right of Em; activation of GABAA receptors with muscimol depolarized Em, decreased action potential firing, and minimally increased [Ca2+]i. However, the ethanol-induced increase of GABAergic transmission did not affect neuronal excitability. Ethanol had no effect on currents exogenously evoked by NMDA or AMPA receptor-mediated spontaneous excitatory postsynaptic currents. Acute application of ethanol in the absence of receptor antagonists minimally increased [Ca2+]i. These findings are inconsistent with the excessive inhibition model of ethanol-induced neurodegeneration, supporting the view that ethanol damages developing neurons via more complex mechanisms that vary among specific neuronal populations. PMID:19027758

  10. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  11. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    PubMed Central

    Morais-Silva, G.; Fernandes-Santos, J.; Moreira-Silva, D.; Marin, M.T.

    2015-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  12. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    PubMed

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol.

  13. Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure

    PubMed Central

    Swartzwelder, H. Scott; Risher, Mary-Louise; Miller, Kelsey M.; Colbran, Roger J.; Winder, Danny G.; Wills, Tiffany A.

    2016-01-01

    Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in

  14. Antidepressant Effect of Aminophylline After Ethanol Exposure

    PubMed Central

    Escudeiro, Sarah Souza; Soares, Paula Matias; Almeida, Anália Barbosa; de Freitas Guimarães Lobato, Rodrigo; de Araujo, Dayane Pessoa; Macedo, Danielle Silveira; Sousa, Francisca Cléa Florenço; Patrocínio, Manoel Cláudio Azevedo; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This work investigated the association of acute ethanol and aminophylline administration on behavioral models of depression and prefrontal monoamine levels (i.e. norepinephrine and dopamine) in mice. The animals received a single dose of ethanol (2 g/kg) or aminophylline (5 or 10 mg/kg) alone or in association. Thirty minutes after the last drug administration, the animals were assessed in behavioral models by the forced swimming and tail suspension tests. After these tests, the animals were sacrificed and the prefrontal cortices dissected to measure monoamine content. Results showed that ethanol presented depression-like activity in the forced swimming and tail suspension tests. These effects were reversed by the association with aminophylline in all tests. Norepinephrine and dopamine levels decreased, while an increase in the dopamine metabolite, (4-hydroxy-3-methoxyphenyl)acetic acid (DOPAC), after ethanol administration was observed. On the contrary, the association of ethanol and aminophylline increased the norepinephrine and dopamine content, while it decreased DOPAC when compared to the ethanol group, confirming the alterations observed in the behavioral tests. These data reinforce the involvement of the adenosinergic system on ethanol effects, highlighting the importance of the norepinephrine and dopamine pathways in the prefrontal cortex to the effects of ethanol. PMID:23641339

  15. Sex differences in the contribution of ATP-sensitive K+ channels in trigeminal ganglia under an acute muscle pain condition

    PubMed Central

    Niu, Katelyn; Saloman, Jami L.; Zhang, Youping; Ro, Jin Y.

    2011-01-01

    In this study, we examined whether functional subunits of the ATP-dependent K+ channel (KATP) are expressed in trigeminal ganglia (TG), which contains sensory neurons that innervate oral and facial structures. We also investigated whether direct activation of the KATP effectively attenuates mechanical hypersensitivity in the context of an acute orofacial muscle pain condition. The KATP expression in TG and behavioral studies were conducted in age matched male and female Sprague Dawley rats. RT-PCR experiments showed that the mRNAs for the inwardly rectifying pore-forming subunits, Kir6.1 and Kir6.2, as well as the regulatory sulphonylurea subunits, SUR1 and SUR2, were reliably detected in TG. Subsequent western blot analysis confirmed that proteins for all 4 subunits are expressed in TG, and showed that Kir6.2 is expressed at a significantly higher level in male TG compared to that of female rats. This observation was confirmed by the immunohistochemical demonstration of higher percentages of Kir6 positive masseter afferents in female rats. Masseteric injection of capsaicin evokes a time dependent increase in masseter sensitivity to noxious mechanical stimulation. A specific KATP agonist, pinacidil, dose-dependently attenuated the capsaicin-induced mechanical hypersensitivity in male rats. The dose of pinacidil (20µg) that completely blocked the capsaicin responses in male rats was ineffective in female rats regardless of their estrus phases. Only at the highest dose (300µg) we used, pinacidil was partially effective in female rats. Similarly, another KATP agonist, diazoxide which targets different KATP subunits also showed sex specific responses in attenuating capsaicin-induced masseter hypersensitivity. These data suggested that sex differences in functional KATP expression in TG may underlie sex specific responses to KATP agonists. The present study provided novel information on sex differences in KATP expression in TG and its contribution under an orofacial