ERIC Educational Resources Information Center
Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis
2013-01-01
Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…
Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G
2017-12-15
The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.
Dimitrova, Julia; Hogan, Michael; Khader, Patrick; O'Hora, Denis; Kilmartin, Liam; Walsh, Jane C; Roche, Richard; Anderson-Hanley, Cay
2017-10-01
Physical exercise has been shown to improve cognitive and neural functioning in older adults. The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., "exergaming") on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise.
Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.
Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu
2018-03-22
The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.
Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output.
Smith, Mark A; Fronk, Gaylen E; Zhang, Huailin; Magee, Charlotte P; Robinson, Andrea M
Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.
An Acute Bout of Exercise Improves the Cognitive Performance of Older Adults.
Johnson, Liam; Addamo, Patricia K; Selva Raj, Isaac; Borkoles, Erika; Wyckelsma, Victoria; Cyarto, Elizabeth; Polman, Remco C
2016-10-01
There is evidence that an acute bout of exercise confers cognitive benefits, but it is largely unknown what the optimal mode and duration of exercise is and how cognitive performance changes over time after exercise. We compared the cognitive performance of 31 older adults using the Stroop test before, immediately after, and at 30 and 60 min after a 10 and 30 min aerobic or resistance exercise session. Heart rate and feelings of arousal were also measured before, during, and after exercise. We found that, independent of mode or duration of exercise, the participants improved in the Stroop Inhibition task immediately postexercise. We did not find that exercise influenced the performance of the Stroop Color or Stroop Word Interference tasks. Our findings suggest that an acute bout of exercise can improve cognitive performance and, in particular, the more complex executive functioning of older adults.
Irisin in response to acute and chronic whole-body vibration exercise in humans.
Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S
2014-07-01
Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
The effect of exercise on affective and self-efficacy responses in older and younger women.
Barnett, Fiona
2013-01-01
This study examined the self-efficacy and affective responses to an acute exercise bout in sedentary older and younger women to determine whether aging has an effect on affective states. Twenty-five sedentary younger (mean age = 19.9 yrs) and 25 older (mean age = 55.7 yrs) women completed an acute bout of exercise. Affective responses were measured before, during, and immediately following exercise. Self-efficacy responses were measured before and immediately following exercise. Positive engagement, revitalization, tranquility, Felt Arousal and Feeling Scale responses, and self-efficacy were all higher immediately following compared with before or during exercise for both groups of women. In addition, older women experienced higher overall positive engagement and lower physical exhaustion compared with younger women as well as higher tranquility and Feeling Scale responses immediately following exercise. This investigation found that an acute bout of moderate-intensity exercise produced more positive and fewer negative affective states in both younger and older women.
An acute bout of localized resistance exercise can rapidly improve inhibitory control
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao
2017-01-01
The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232
Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias
2013-01-01
To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.
Brain reactivity to visual food stimuli after moderate-intensity exercise in children.
Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; Larson, Michael J; Keller, Kathleen L; Fearnbach, S Nicole; Evans, Alyssa; LeCheminant, James D
2017-09-19
Exercise may play a role in moderating eating behaviors. The purpose of this study was to examine the effect of an acute bout of exercise on neural responses to visual food stimuli in children ages 8-11 years. We hypothesized that acute exercise would result in reduced activity in reward areas of the brain. Using a randomized cross-over design, 26 healthy weight children completed two separate laboratory conditions (exercise; sedentary). During the exercise condition, each participant completed a 30-min bout of exercise at moderate-intensity (~ 67% HR maximum) on a motor-driven treadmill. During the sedentary session, participants sat continuously for 30 min. Neural responses to high- and low-calorie pictures of food were determined immediately following each condition using functional magnetic resonance imaging. There was a significant exercise condition*stimulus-type (high- vs. low-calorie pictures) interaction in the left hippocampus and right medial temporal lobe (p < 0.05). Main effects of exercise condition were observed in the left posterior central gyrus (reduced activation after exercise) (p < 0.05) and the right anterior insula (greater activation after exercise) (p < 0.05). The left hippocampus, right medial temporal lobe, left posterior central gyrus, and right anterior insula appear to be activated by visual food stimuli differently following an acute bout of exercise compared to a non-exercise sedentary session in 8-11 year-old children. Specifically, an acute bout of exercise results in greater activation to high-calorie and reduced activation to low-calorie pictures of food in both the left hippocampus and right medial temporal lobe. This study shows that response to external food cues can be altered by exercise and understanding this mechanism will inform the development of future interventions aimed at altering energy intake in children.
Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix; Frenn, Mira; Lundbye-Jensen, Jesper; Roig, Marc
2016-12-01
A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Basso, Julia C.; Suzuki, Wendy A.
2017-01-01
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853
Acute effects of aerobic exercise on cognitive function in individuals with Parkinson's disease.
Silveira, Carolina R A; Roy, Eric A; Almeida, Quincy J
2018-04-03
Deficits in executive functions are highly prevalent in Parkinson's disease (PD). Although chronic physical exercise has been shown to improve executive functions in PD, evidence of acute exercise effects is limited. This study aimed to evaluate the effects of an acute bout of exercise on cognitive processes underlying executive functions in PD. Twenty individuals with PD were assessed in both a Control and an Exercise conditions. In each condition, individuals started performing a simple and a choice reaction time (RT) task. Subsequently, participants were asked to sit on a cycle ergometer (Control) or cycle (Exercise) for 20 min in counterbalanced order. Participants were asked to repeat both reaction time tasks after 15-min rest period in both conditions. While no differences were found in simple RT, participants showed faster choice RT post Exercise as well as Control conditions (p = .012). Participants had slower choice RT for target stimulus compared to non-target stimuli irrespective of time or experimental condition (p < .001). There was no change in accuracy following experimental conditions. Results suggest that individuals with PD may not respond behaviourally to a single bout of exercise. The lack of selective effects of exercise on cognition suggests that practice effects may have influenced previous research. Future studies should assess whether neurophysiological changes might occur after an acute bout of exercise in PD. Copyright © 2018 Elsevier B.V. All rights reserved.
The protective effects of acute cardiovascular exercise on the interference of procedural memory.
Jo, J S; Chen, J; Riechman, S; Roig, M; Wright, D L
2018-04-10
Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.
An Update on Accumulating Exercise and Postprandial Lipaemia: Translating Theory Into Practice
Burns, Stephen F; Stensel, David J
2013-01-01
Over the last two decades, significant research attention has been given to the acute effect of a single bout of exercise on postprandial lipaemia. A large body of evidence supports the notion that an acute bout of aerobic exercise can reduce postprandial triacylglycerol (TAG) concentrations. However, this effect is short-lived emphasising the important role of regular physical activity for lowering TAG concentrations through an active lifestyle. In 1995, the concept of accumulating physical activity was introduced in expert recommendations with the advice that activity can be performed in several short bouts throughout the day with a minimum duration of 10 minutes per activity bout. Although the concept of accumulation has been widely publicised, there is still limited scientific evidence to support it but several studies have investigated the effects of accumulated activity on health-related outcomes to support the recommendations in physical activity guidelines. One area, which is the focus of this review, is the effect of accumulating exercise on postprandial lipaemia. We propose that accumulating exercise will provide additional physical activity options for lowering postprandial TAG concentrations relevant to individuals with limited time or exercise capacity to engage in more structured forms of exercise, or longer bouts of physical activity. The benefits of accumulated physical activity might translate to a reduced risk of cardiovascular disease in the long-term. PMID:23412842
Elbin, R J; Beatty, Amanda; Covassin, Tracey; Schatz, Philip; Hydeman, Ana; Kontos, Anthony P
2015-01-01
This study compared changes in neurocognitive performance and symptom reports following an acute bout of soccer heading among athletes with and without protective soccer headgear. A total of 25 participants headed a soccer ball 15 times over a 15-minute period, using a proper linear heading technique. Participants in the experimental group completed the heading exercise while wearing a protective soccer headband and controls performed the heading exercise without wearing the soccer headband. Neurocognitive performance and symptom reports were assessed before and after the acute bout of heading. Participants wearing the headband showed significant decreases on verbal memory (p = 0.02) compared with the no headband group, while the no headband group demonstrated significantly faster reaction time (p = 0.03) than the headband group following the heading exercise. These findings suggest that protective soccer headgear likely does not mitigate the subtle neurocognitive effects of acute soccer heading.
Vascular Nitric Oxide-Superoxide Balance and Thrombus Formation after Acute Exercise.
Przyborowski, Kamil; Proniewski, Bartosz; Czarny, Joanna; Smeda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Zoladz, Jerzy A; Chlopicki, Stefan
2018-02-21
An acute bout of strenuous exercise in humans results in transient impairment of NO-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of post-exercise thrombotic events. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular nitric oxide (NO)/reactive oxygen species (ROS) production, and on thrombogenicity. At different time-points (0h, 2h and 4h) after exercise and in sedentary C57BL/6 mice the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance (EPR) spin trapping and by dihydroethidium (DHE)/HPLC-based method, respectively, while collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (T-TAS). We also measured pre- and post-exercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2h after completion of exercise when compared to sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation (T10) and capillary occlusion (OT), and total thrombogenicity (AUC) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2h after exercise. Surprisingly, the reduced NO and increased O2 production did not result in increased post-exercise platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability, caused by exercise-induced oxidative stress, does not modify post-exercise thromboresistance in healthy mice.
Stawski, Robert; Walczak, Konrad; Kosielski, Piotr; Meissner, Pawel; Budlewski, Tomasz; Padula, Gianluca; Nowak, Dariusz
2017-01-01
Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body. PMID:28542490
Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki
2014-09-01
Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo
2017-01-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. PMID:27979988
Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo
2017-02-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. Copyright © 2017 the American Physiological Society.
Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M
2014-03-01
In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications. © The Author(s) 2014.
ERIC Educational Resources Information Center
Cox, Richard H.; Thomas, Tom R.; Hinton, Pam S.; Donahue, Owen M.
2004-01-01
The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n=12) and 35-45 years (n=12). In addition to a nonexercise control condition, participants completed one…
Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier
2017-07-01
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P
2017-10-01
Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.
Exercise training - Blood pressure responses in subjects adapted to microgravity
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1991-01-01
Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.
Yan, Huimin; Ranadive, Sushant M; Heffernan, Kevin S; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, Bo
2014-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms.
Ranadive, Sushant M.; Heffernan, Kevin S.; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S.; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2013-01-01
African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms. PMID:24186094
Experimental effects of acute exercise duration and exercise recovery on mood state.
Crush, Elizabeth A; Frith, Emily; Loprinzi, Paul D
2018-03-15
Accumulating evidence suggests that, in addition to various psychosocial parameters, affective responses to exercise play an important role in subserving future exercise behavior. This study comprehensively evaluated whether acute exercise duration and recovery period influenced the relationship between moderate-intensity walking exercise and mood profile. We employed a randomized controlled cross-over trial. Participants completed two laboratory visits, separated by one-week. One of the visits involved a mood profile assessment with no exercise, while the other visit involved a mood profile assessment after an acute bout of exercise. Participants (N = 352; 22 per group; young [M age = 21 yrs] healthy adults) were randomized into one of 16 experimental groups: 10, 20, 30, 45 or 60min bout of exercise coupled with either a 5, 15 or 30min recovery period. The exercise bout was of moderate-intensity (40-59% of HRR). Mood profile was assessed from the POMS survey, considering subscales of depression, anger and hostility. For all three mood profile parameters, there was no evidence of a group x time interaction effect. However, the main effect for time was statistically significant for each mood parameter. These significant results demonstrate that, generally, exercise had a favorable effect on each of the mood profile, regardless of exercise duration and recovery period. In addition to the significant main effects for time, we also observed a significant main effect for group for the mood parameter hostility. With the exception of the group 13 (60min of exercise with 5min recovery) and the 3 groups that employed a 10-min bout of exercise (groups 1-3), all other experimental groups had a lower (better) hostility score after the exercise visit. Generally, exercise had a favorable effect on various mood profiles, regardless of exercise duration (between 10 and 60min) and recovery period (between 5 and 30min). Copyright © 2018 Elsevier B.V. All rights reserved.
Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample
ERIC Educational Resources Information Center
Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo
2016-01-01
Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…
Effects of an acute bout of exercise on memory in 6th grade children.
Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A
2014-08-01
Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures.
Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients.
Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallarés, Jesús G; Mora-Rodriguez, Ricardo
2017-07-01
The purpose of this study was to compare the magnitude of post-exercise hypotension (PEH) after a bout of cycling exercise using high-intensity interval training (HIIT) in comparison to a bout of traditional moderate-intensity continuous exercise (CE). After supine rest 14 obese (31±1 kg·m -2 ) middle-age (57±2 y) metabolic syndrome patients (50% hypertensive) underwent a bout of HIIT or a bout of CE in a random order and then returned to supine recovery for another 45 min. Exercise trials were isocaloric and compared to a no-exercise trial (CONT) of supine rest for a total of 160 min. Before and after exercise we assessed blood pressure (BP), heart rate (HR), cardiac output (Q), systemic vascular resistance (SVR), intestinal temperature (T INT ), forearm skin blood flow (S K BF) and percent dehydration. HIIT produced a larger post-exercise reduction in systolic blood pressure than CE in the hypertensive group (-20±6 vs. -5±3 mmHg) and in the normotensive group (-8±3 vs. -3±2 mmHg) while HIIT reduced SVR below CE (P<0.05). Percent dehydration was larger after HIIT, and post-exercise T INT and S K BF increased only after HIIT (all P<0.05). Our findings suggest that HIIT is a superior exercise method to CE to acutely reduce blood pressure in MSyn subjects. © Georg Thieme Verlag KG Stuttgart · New York.
Ensari, Ipek; Greenlee, Tina A; Motl, Robert W; Petruzzello, Steven J
2015-08-01
One prominent and well-cited meta-analysis published nearly 25 years ago reported that an acute or single bout of exercise reduced state anxiety by approximately ¼ standard deviation. We conducted a meta-analysis of randomized controlled trials (RCTs) published after that meta-analysis for updating our understanding of the acute effects of exercise on state anxiety. We searched PubMed, EBSCOHost, Medline, PsycINFO, ERIC, and ScienceDirect for RCTs of acute exercise and state anxiety as an outcome. There were 36 RCTs that met inclusion criteria and yielded data for effect size (ES) generation (Cohen's d). An overall ES was calculated using a random effects model and expressed as Hedge's g. The weighted mean ES was small (Hedge's g = 0.16, standard error (SE) = 0.06), but statistically significant (P < 0.05), and indicated that a single bout of exercise resulted in an improvement in state anxiety compared with control. The overall ES was heterogeneous and post hoc, exploratory analyses using both random- and fixed-effects models identified several variables as moderators including sample age, sex and health status, baseline activity levels, exercise intensity, modality and control condition, randomization, overall study quality, and the anxiety measure (P < 0.05). The cumulative evidence from high quality studies indicates that acute bouts of exercise can yield a small reduction in state anxiety. The research is still plagued by floor effects associated with recruiting persons with normal or lower levels of state anxiety, and this should be overcome in subsequent trials. © 2015 Wiley Periodicals, Inc.
Effect of an acute bout of aerobic exercise on chemerin levels in obese adults
Lloyd, Jesse W.; Evans, Kristin A.; Zerfass, Kristy M.; Holmstrup, Michael E.; Kanaley, Jill A.; Keslacy, Stefan
2015-01-01
AIMS Serum chemerin concentrations are elevated in obese individuals and may play a role in type 2 diabetes. Exercise improves insulin sensitivity, which may be related to changes in chemerin. This study explored how an acute bout of aerobic exercise affected chemerin levels in non-diabetic obese adults. METHODS Blood samples from 11 obese adults were obtained during two separate conditions: sedentary (SED) and exercise (EX; 60-65% VO2peak). Samples were drawn at baseline, immediately following exercise and hourly for an additional 2 hours. ANOVA was used to test for differences in chemerin between conditions. RESULTS Unadjusted analysis showed no difference in overall change (baseline to 2 hrs post) in chemerin between conditions. During the 2-hr post-exercise period, chemerin decreased to 12% below baseline, compared to a 2.5% increase above baseline during that time period on the sedentary day (p=0.06, difference in post-to-2hr change between conditions). Controlling for homeostatic model assessment of insulin resistance (HOMA-IR), a significant difference existed between EX and SED in the change in chemerin from baseline to 2-hr post (p=0.02). Stratified analyses showed a consistent exercise-induced decrease in chemerin among non-insulin resistant subjects, while chemerin increased during exercise among insulin resistant subjects, and then decreased post-exercise. CONCLUSION An acute bout of exercise in obese individuals may elicit a drop in chemerin levels during the post-exercise period, and this response may vary based on insulin resistance. PMID:26008676
Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J
2013-05-01
The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.
Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout
Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle
2015-01-01
CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192
Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.
Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle
2015-09-29
CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.
Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children
ERIC Educational Resources Information Center
Tine, Michele T.; Butler, Allison G.
2012-01-01
Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…
Effect of exercise on cigarette cravings and ad libitum smoking following concurrent stressors.
Fong, Angela J; De Jesus, Stefanie; Bray, Steven R; Prapavessis, Harry
2014-10-01
The health consequences of smoking are well documented, yet quit rates are modest. While exercise has supported decreased cravings and withdrawal symptoms in temporarily abstinent smokers, it has yet to be applied when smokers are experiencing concurrent stressors. This study examined the effect of an acute bout of moderate intensity exercise on cravings (primary outcome) and ad libitum smoking (secondary outcome) following concurrent stressors (i.e., temporary abstinence and environmental manipulation-Stroop cognitive task+cue-elicited smoking stimuli). Twenty-five smokers (>10cig/day; Mean age=37.4years) were randomized into either exercise (n=12) or passive sitting conditions. A repeated measure (RM) ANOVA showed that psychological withdrawal symptoms (a measure of distress) were significantly exacerbated after temporary abstinence and then again after the environmental manipulation for all participants (p<.0001, η(2)=.50). Furthermore, a treatment by time RM ANOVA revealed decreases in psychological withdrawal symptoms for only the exercise condition (p<.001, η(2)=.42). A treatment by time RM ANOVA also revealed craving reductions for only the exercise condition (p<.0001, η(2)=.82). Exercise had no effect on ad libitum smoking. This is the first study to use a lab-based scenario with high ecological validity to show that an acute bout of exercise can reduce cravings following concurrent stressors. Future work is now needed where momentary assessment is used in people's natural environment to examine changes in cigarette cravings following acute bouts of exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise
Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.
2015-01-01
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778
2009-10-01
four days post-exercise and is unaffected by training status. In physically - active men, who have consumed an appropriate diet, two bouts of... physically - active men, who have consumed an appropriate diet, two bouts of moderate exercise separated by either 23 h or 3 h has no effect on bone...relative intensity would decrease with increased physical fitness. Given the results of Study IV, where β-CTX concentrations were higher, albeit
Porter, David A; Barnes, Adam F; Rund, Angela M; Kaz, Ari J; Tyndall, James A; Millis, Andrew A
2014-02-01
This is the first study to evaluate the effect of an acute bout of exercise on strength evaluation after Achilles tendon (AT) rupture and repair. Forty patients sustained an acute AT injury and met inclusion criteria for this study. At a minimum of 12 months after operative repair, patients were measured for (1) calf circumference, (2) bilateral isokinetic strength on a Cybex dynamometer before and after 30 minutes of walking at 70% maximal exertion, and (3) subjective evaluation by AAOS lower limb core and foot and ankle modules. Follow-up occurred at a mean of 32.4 ± 20.7 (range, 12-80) months after surgery, and patients were on average 44.4 ± 8.6 (range, 20-62) years old. One-tailed Student's paired t tests analyzed significance for strength and fatigue between the involved and uninvolved ankle (P < .05). The calf circumference of the involved ankle was significantly smaller than the uninvolved ankle by 1.9 cm, or 4.7%. Plantarflexion deficits of the involved ankle ranged from 12% to 18% for peak torque (P < .0001) and from 17% to 25% for work per repetition (P < .0001), but both ankles fatigued at equal proportions as measured after exercise. Dorsiflexion strength of the involved ankle increased 6% to 11% for peak torque (P = .070) and 1% to 25% for peak work (P = .386). Reported AAOS lower limb core and foot and ankle scores averaged 99.8 and 96.0, respectively. After an AT rupture with repair, patients had less plantarflexion strength, and equal dorsiflexion strength in the operative leg compared to the uninvolved, normal leg. However, subjective results indicated near normal pain and function despite mild plantarflexion strength deficits. Dorsiflexion strength was normal after repair and remained normal even after an acute bout of exercise. Plantarflexion strength ratios postexercise remained similar to pre-exercise after acute exercise bouts. Athletes reported a "flat tire" feeling while running, which suggests a probable gait adjustment as cause for long-term plantarflexion strength deficits. Level III, cohort study.
The effect of exercise intensity on postresistance exercise hypotension in trained men.
Duncan, Michael J; Birch, Samantha L; Oxford, Samuel W
2014-06-01
The occurrence of postresistance exercise hypotension (PEH) after resistance exercise remains unknown. This study examined blood pressure and heart rate (HR) responses to an acute bout of low- and high-intensity resistance exercise, matched for total work, in trained males. Sixteen resistance-trained males (23.1 ± 5.9 years) performed an acute bout of low- (40% of 1 repetition maximum [1RM]) and high-intensity resistance exercise (80% 1RM), matched for total work, separated by 7 days and performed in a counterbalanced order. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and HR were assessed before exercise, after completion of each exercise resistance exercise (3 sets of back squat, bench press, and deadlift) and every 10 minutes after resistance exercise for a period of 60 minutes. Results indicated a significant intensity × time interaction for SBP (p = 0.034, partial η(2) = 0.122) and MAP (p = 0.047, partial η(2) = 0.116) whereby SBP and MAP at 50-minute recovery and 60-minute recovery were significantly lower after high-intensity exercise (p = 0.01 for SBP and p = 0.05 for MAP in both cases) compared with low-intensity exercise. There were no significant main effects or interactions in regard to DBP (all p > 0.05). Heart rate data indicated a significant main effect for time (F(9, 135) = 2.479, p = 0.0001, partial η(2) = 0.344). Post hoc multiple comparisons indicated that HR was significantly higher after squat, bench press, and deadlift exercise compared with resting HR and HR at 40-, 50-, and 60-minute recovery (all p = 0.03). The present findings suggest that an acute bout of high intensity, but not low intensity, resistance exercise using compound movements can promote PEH in trained men.
Preferential type II muscle fiber damage from plyometric exercise.
Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H
2012-01-01
Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.
Acute effect of walking on energy intake in overweight/obese women
Unick, Jessica L.; Otto, Amy D.; Goodpaster, Bret H.; Helsel, Diane L.; Pellegrini, Christine A.; Jakicic, John M.
2013-01-01
This study examined the acute effect of a bout of walking on hunger, energy intake, and appetite-regulating hormones [acylated ghrelin and glucagon-like peptide-1 (GLP-1)] in 19 overweight/obese women (BMI:32.5±4.3kg/m2). Subjects underwent two experimental testing sessions in a counterbalanced order: exercise and rest. Subjects walked at a moderate-intensity for approximately 40 minutes or rested for a similar duration. Subjective feelings of hunger were assessed and blood was drawn at 5 time points (pre-, post-, 30-minutes, 60-minutes, 120-minutes post-testing). Ad-libitum energy intake consumed 1–2 hours post-exercise/rest was assessed and similar between conditions (mean ± standard deviation; exercise: 551.5±245.1 kcals [2.31±1.0MJ] vs. rest: 548.7±286.9 kcals [2.29±1.2MJ]). However, when considering the energy cost of exercise, relative energy intake was significantly lower following exercise (197.8±256.5 kcals [0.83±1.1MJ]) compared to rest (504.3±290.1 kcals [2.11±1.2MJ]). GLP-1 was lower in the exercise vs. resting condition while acylated ghrelin and hunger were unaltered by exercise. None of these variables were associated with energy intake. In conclusion, hunger and energy intake were unaltered by a bout of walking suggesting that overweight/obese individuals do not acutely compensate for the energy cost of the exercise bout through increased caloric consumption. This allows for an energy deficit to persist post-exercise, having potentially favorable implications for weight control. PMID:20674640
Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.
2016-01-01
Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.
Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise
Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109
Acute effects of high- and low-intensity exercise bouts on leukocyte counts.
Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz
2015-06-01
It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p < 0.01) and low-intensity exercise ( p < 0.01). This effect was still present 2 hours after passive recovery ( p < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).
Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.
Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A
2015-01-01
The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.
Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A
2016-03-01
A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.
Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.
Harrop, Bradley J; Woodruff, Sarah J
2015-06-01
The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women.
The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.
Custer, Lisa; Peer, Kimberly S; Miller, Lauren
2017-05-01
Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.
Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.
Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J
2014-09-01
Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.
Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus
2018-01-01
Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time.
Brand, Serge; Colledge, Flora; Ludyga, Sebastian; Emmenegger, Raphael; Kalak, Nadeem; Sadeghi Bahmani, Dena; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus
2018-01-01
Background: Studies at the macro level (such as longer-term interventions) showed that physical activity impacts positively on cognitive-emotional processes of patients with mental disorders. However, research focusing on the immediate impact of acute bouts of exercise (micro level) are missing. The aim of the present study was therefore to investigate whether and to what extent single bouts of moderately intense exercise can influence dimensions of psychological functioning in inpatients with mental disorders. Method: 129 inpatients (mean age: 38.16 years; 50.4% females) took part and completed a questionnaire both immediately before and immediately after exercising. Thirty inpatients completed the questionnaires a second time in the same week. The questionnaire covered socio-demographic and illness-related information. Further, the questionnaire asked about current psychological states such as mood, rumination, social interactions, and attention, tiredness, and physical strengths as a proxy of physiological states. Results: Psychological states improved from pre- to post-session. Improvements were observed for mood, social interactions, attention, and physical strengths. Likewise, rumination and tiredness decreased. Mood, rumination, and tiredness further improved, when patients completed the questionnaires the second time in the same week. Conclusion: At micro level, single bouts of exercise impacted positively on cognitive-emotional processes such as mood, rumination, attention and social interactions, and physiological states of tiredness and physical strengths among inpatients with mental disorders. In addition, further improvements were observed, if patients participated in physical activities a second time. PMID:29593592
A single bout of resistance exercise can enhance episodic memory performance.
Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey
2014-11-01
Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. Copyright © 2014 Elsevier B.V. All rights reserved.
Dantas, Wagner Silva; Marcondes, José Antonio Miguel; Shinjo, Samuel Katsuyuki; Perandini, Luiz Augusto; Zambelli, Vanessa Olzon; Neves, Willian Das; Barcellos, Cristiano Roberto Grimaldi; Rocha, Michele Patrocínio; Yance, Viviane Dos Reis Vieira; Pereira, Renato Tavares Dos Santos; Murai, Igor Hisashi; Pinto, Ana Lucia De Sá; Roschel, Hamilton; Gualano, Bruno
2015-11-01
The aim of this study was to examine the effects of acute exercise on insulin signaling in skeletal muscle of women with polycystic ovary syndrome (PCOS) and controls (CTRL). Fifteen women with obesity and PCOS and 12 body mass index-matched CTRL participated in this study. Subjects performed a 40-min single bout of exercise. Muscle biopsies were performed before and 60 min after exercise. Selected proteins were assessed by Western blotting. CTRL, but not PCOS, showed a significant increase in PI3-k p85 and AS160 Thr 642 after a single bout of exercise (P = 0.018 and P = 0.018, respectively). Only PCOS showed an increase in Akt Thr 308 and AMPK phosphorylation after exercise (P = 0.018 and P = 0.018, respectively). Total GLUT4 expression was comparable between groups (P > 0.05). GLUT4 translocation tended to be significantly higher in both groups after exercise (PCOS: P = 0.093; CTRL: P = 0.091), with no significant difference between them (P > 0.05). A single bout of exercise elicited similar GLUT4 translocation in skeletal muscle of PCOS and CTRL, despite a slightly differential pattern of protein phosphorylation. The absence of impairment in GLUT4 translocation suggests that PCOS patients with obesity and insulin resistance may benefit from exercise training. © 2015 The Obesity Society.
The effect of preseason training on mucosal immunity in male basketball players.
Azarbayjani, M; Nikbakht, H; Rasaee, M J
2011-12-01
This study examined the effects of pre season training on restring level and acute response of mucosal immunity in male basketball players. Twenty male basketball players performed 8 weeks progressive exercise training, consisting of interval and continuous parts. Five mL un-stimulated saliva was collected from each subject before, immediately and one hour after the end of one bout of exercise to exhaustion on treadmill at the beginning of the first week and end of 8 weeks to determine the acute responses. At the beginning of each 2 weeks (resting state) induced changes in basal mucosal immunity was evaluated. The concentration of sIgA and total protein was measured by the ELISA and Bradford methods respectively. One bout exercise training at beginning of first week decreased significantly sIgA level but not at the end of 8th week. Total protein did not change significantly at 1st week after exercise, but at eight week significantly increased and remained at high level until one hour after exercise. sIgA to total protein ratio at first week significantly decreased and remained constant one hour after exercise. At the eight week sIgA decreased significantly immediately after exercise and remained low until one hour after exercise. The comparison of sIgA and total protein levels indicates significant decrease after eight weeks training. These results suggest that repetition of single bout of exercise training have a cumulative effect on the mucosal immune system.
Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle
ERIC Educational Resources Information Center
Stanford, Kristin I.; Goodyear, Laurie J.
2014-01-01
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…
Preferential Type II Muscle Fiber Damage From Plyometric Exercise
Macaluso, Filippo; Isaacs, Ashwin W.; Myburgh, Kathryn H.
2012-01-01
Context Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. Objective To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Intervention(s) Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Main Outcome Measure(s) Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Results Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). Conclusions We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers. PMID:22889657
Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J
2011-06-01
Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.
cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise
NASA Technical Reports Server (NTRS)
Sheldon, A.; Booth, F. W.; Kirby, C. R.
1993-01-01
The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.
Rogers, Robert S; Dawson, Andrew W; Wang, Ze; Thyfault, John P; Hinton, Pamela S
2011-11-01
The time course of changes in plasma bone turnover markers following an acute bout of resistance training (RT) or plyometrics (PLY) has not been well characterized. This study is the first to compare the acute response of bone formation and resorption markers to a single bout of RT or PLY. Using a partially randomized, cross-over study design, 12 recreationally active men, aged 43 ± 5 yr, each completed four exercise trials: RT (Fed/Fasted) and PLY (Fed/Fasted). In addition to the RT and PLY trials, 5 of the original 12 participants also completed a fasted, no-exercise control trial to examine time-of-day variation. For each trial, blood was drawn immediately before exercise (PRE), immediately following exercise, and 15 min, 30 min, 1 h, 2 h, and 24 h following PRE for determination of plasma bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRAP5b), COOH-terminal telopeptide of type I collagen (CTX), testosterone, parathyroid hormone, and cortisol. A one-factor repeated-measures ANOVA was performed for each trial to detect changes in bone markers during the 2 h following RT or PLY. TRAP5b transiently decreased during the 2 h following all exercise trials (main effect for time, P < 0.05), but returned to PRE concentrations 2 h postexercise. BAP, CTX, and OC remained unchanged, except for reductions in BAP and CTX following PLY-Fasted and PLY-Fed, respectively. During the control trial, BAP decreased, while TRAP5b, CTX, and OC remained unchanged. In general, plasma hormone concentrations decreased during the 2 h following PLY or RT, and cumulative decreases in TRAP5b during the 2 h following exercise were positively correlated with cumulative decreases in parathyroid hormone. The results of the present study suggest that the timing of the measurement of bone turnover markers relative to the last exercise bout is important for detection of exercise-associated changes in bone turnover markers, as the markers returned to preexercise values within 2 h of RT or PLY.
Buker, Daniel Bueno; Oyarce, Cristóbal Castillo; Plaza, Raúl Smith
2018-01-01
Background: Spinal cord injury (SCI) above T6 is followed by a loss of sympathetic supraspinal control of the heart, disturbing the autonomic balance and increasing cardiovascular risk. Heart rate variability (HRV) is a widely used tool for assessing the cardiac autonomic nervous system and positive adaptations after regular exercise in able-bodied subjects. However, adaptations in SCI subjects are not well known. Objectives: To compare HRV between able-bodied and SCI subjects and analyze the effects of chronic and acute exercise on HRV in the SCI group. Methods: We searched MEDLINE, Embase, Web of Science, SciELO, and Google Scholar databases to July 2016. We selected English and Spanish observational or experimental studies reporting HRV after training or acute exercise in SCI patients. We also included studies comparing HRV in SCI individuals with able-bodied subjects. Animal studies and nontraumatic SCI studies were excluded. We screened 279 articles by title and abstract; of these, we fully reviewed 29 articles. Eighteen articles fulfilled criteria for inclusion in this study. Results: SCI individuals showed lower HRV values in the low frequency band compared to able-bodied subjects. Regular exercise improved HRV in SCI subjects, however time and intensity data were lacking. HRV decreases after an acute bout of exercise on SCI subjects, but recovery kinetics are unknown. Conclusion: HRV is affected following SCI. Able-bodied subjects and SCI individuals have different values of HRV. Acute bouts of exercise change HRV temporarily, and chronic exercise might improve autonomic balance in SCI.
Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.
Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A
1987-07-01
Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Taro, E-mail: tamuraka@sgk.ac.jp; Yoshinaga, Mariko
Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after themore » exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.« less
Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A
2016-12-02
The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.
Effects of acute exercise on attenuated vagal baroreflex function during bed rest
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.
1992-01-01
We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.
Experimental Effects of Acute Exercise and Meditation on Parameters of Cognitive Function.
Edwards, Meghan K; Loprinzi, Paul D
2018-05-29
Single bouts of aerobic exercise and meditation have been shown to improve cognitive function. Yet to be examined in the literature, we sought to examine the effects of a combination of acute bouts of aerobic exercise and meditation on cognitive function among young adults. Participants ( n = 66, mean (SD) age = 21 (2)) were randomly assigned to walk then meditate, meditate then walk, or to sit (inactive control). All walking and meditation bouts were 10 min in duration. Participants' cognition was monitored before and after the intervention using Identification, Set Shifting, Stroop, and Trail Making tasks. Additionally, a subjective assessment of cognitive function was implemented before and after the intervention. Significant group by time interaction effects were observed when examining the Stroop congruent trials ( P = 0.05). Post hoc paired t -tests revealed that reaction time significantly decreased from baseline to post-intervention in both combination groups ( P < 0.001 for both), but not in the control group ( P = 0.09). Regarding all other cognitive assessments, there were no significant group by time interaction effects ( P > 0.05). Cognitive function was not substantially affected by a combination of brief meditation and exercise, though there is evidence to suggest that this combination may have beneficial effects on certain aspects of cognition. Future work should be conducted to evaluate the influences of different doses of exercise and meditation on cognitive functioning.
Time course of the acute effects of core stabilisation exercise on seated postural control.
Lee, Jordan B; Brown, Stephen H M
2017-09-20
Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.
Changes in executive function after acute bouts of passive cycling in Parkinson's disease.
Ridgel, Angela L; Kim, Chul-Ho; Fickes, Emily J; Muller, Matthew D; Alberts, Jay L
2011-04-01
Individuals with Parkinson's disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.
Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang
2015-01-01
The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634
Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M
2010-09-01
Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.
Pervaiz, Nabeel; Hoffman-Goetz, Laurie
2012-01-01
Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.
Freese, Eric C; Gist, Nicholas H; Acitelli, Rachelle M; McConnell, Whitni J; Beck, Catherine D; Hausman, Dorothy B; Murrow, Jonathan R; Cureton, Kirk J; Evans, Ellen M
2015-04-01
Individuals diagnosed with the metabolic syndrome (MetS) exhibit elevated postprandial lipemia (PPL). The aims of this investigation were to determine 1) if an acute bout of sprint interval training (SIT) attenuates PPL; and 2) if the attenuation of PPL following 6 wk of SIT is magnified compared with a single session of SIT prior to training in women at-risk for MetS (n = 45; 30-65 yr). Women were randomized to SIT (n = 22) or a nonexercise control (n = 23; CON) for 6 wk. Postprandial responses to a high-fat meal challenge (HFMC) were assessed in the CON group before (B-HFMC) and after (Post-HFMC) without prior exercise and in the SIT group at baseline (B-HFMC) without prior exercise, after an acute bout of SIT (four 30-s all-out sprints with 4-min recovery) prior to (Pre-HFMC), and after the 6-wk intervention (Post-HFMC). Responses to the HFMC were assessed by collecting venous blood samples in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. Compared with baseline, an acute bout of SIT before (Pre-HFMC) and after the 6-wk intervention (Post-HFMC) significantly attenuated fasted TG (P < 0.05; 16.6% and 12.3%, respectively) and postprandial area under the curve (13.1% and 9.7%, respectively; tAUC) TG responses. There was no difference in fasted or tAUC TG responses between Pre-HFMC and Post-HFMC. SIT is an effective mode of exercise to reduce fasted and postprandial TG concentrations in women at-risk for MetS. Six weeks of SIT does not magnify the attenuation of PPL in response to a single session of SIT. Copyright © 2015 the American Physiological Society.
An Acute Bout of Barefoot Running Alters Lower-limb Muscle Activation for Minimalist Shoe Users.
Snow, N J; Basset, F A; Byrne, J
2016-05-01
Despite the abundance of barefoot running-related research, there have been no electromyography studies evaluating the effects of this mode of exercise on habitual users of minimalist footwear. The present study investigated differences in muscle activation during acute bouts of barefoot and shod running, in minimalist shoe users. 8 male participants ran on a motorized treadmill for 10 min under both conditions, at 70% maximal aerobic speed. Electromyographic data were sampled from the biceps femoris, gluteus maximus, gastrocnemius medialis, tibialis anterior, and vastus lateralis during both swing and stance. Root-mean-square analysis of electromyographic data was conducted to compare muscle activation between conditions. During stance, barefoot running resulted in greater muscle activity in gastrocnemius medialis and gluteus maximus, and lower muscle activity in tibialis anterior. During swing, barefoot running resulted in increased muscle activity in vastus lateralis and gastrocnemius medialus. These results indicate that, for minimalist shoe users, an acute bout of barefoot running results in significantly different lower-limb muscle activity. Increased activation in the above muscles presents a possible mechanism for injury, which should be considered during exercise prescription. © Georg Thieme Verlag KG Stuttgart · New York.
Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.
DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W
2014-10-01
The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.
Rossow, Lindy; Yan, Huimin; Fahs, Christopher A; Ranadive, Sushant M; Agiovlasitis, Stamatis; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo
2010-04-01
The acute effect of high-intensity interval exercise (HI) on blood pressure (BP) is unknown although this type of exercise has similar or greater cardiovascular benefits compared to steady-state aerobic exercise (SS). This study examined postexercise hypotension (PEH) and potential mechanisms of this response in endurance-trained subjects following acute SS and HI. Sex differences were also evaluated. A total of 25 endurance-trained men (n = 15) and women (n = 10) performed a bout of HI and a bout of SS cycling in randomized order on separate days. Before exercise, 30 min postexercise, and 60 min postexercise, we measured brachial and aortic BP. Cardiac output (CO), stroke volume (SV), end diastolic volume (EDV), end systolic volume (ESV), and left ventricular wall-velocities were measured using ultrasonography with tissue Doppler capabilities. Ejection fraction and fractional shortening (FS), total peripheral resistance (TPR), and calf vascular resistance were calculated from the above variables and measures of leg blood flow. BP, ejection fraction, and FS decreased by a similar magnitude following both bouts but changes in CO, heart rate (HR), TPR, and calf vascular resistance were greater in magnitude following HI than following SS. Men and women responded similarly to HI. Although men and women exhibited a similar PEH following SS, they showed differential changes in SV, EDV, and TPR. HI acutely reduces BP similarly to SS. The mechanistic response to HI appears to differ from that of SS, and endurance-trained men and women may exhibit differential mechanisms for PEH following SS but not HI.
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
The effect of exercise mode on the acute response of satellite cells in old men.
Nederveen, J P; Joanisse, S; Séguin, C M L; Bell, K E; Baker, S K; Phillips, S M; Parise, G
2015-12-01
A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults. Sedentary older men (n = 22; 67 ± 4 years; 27 ± 2.6 kg*m(-2) ) were randomly assigned to complete an acute bout of either resistance exercise, high-intensity interval exercise on a cycle ergometer or moderate-intensity aerobic exercise. Muscle biopsies were obtained before, 24 and 48 h following each exercise bout. The satellite cell response was analysed using immunofluorescent microscopy of muscle cross sections. Satellite cell expansion associated with type I fibres was observed 24 and 48 h following resistance exercise only (P ˂ 0.05), while no expansion of type II-associated satellite cells was observed in any group. There was a greater number of activated satellite cells 24 h following resistance exercise (pre: 1.3 ± 0.1, 24 h: 4.8 ± 0.5 Pax7 + /MyoD+cells/100 fibres) and high-intensity interval exercise (pre: 0.7 ± 0.3, 24 h: 3.1 ± 0.3 Pax7 + /MyoD+cells/100 fibres) (P ˂ 0.05). The percentage of type I-associated SC co-expressing MSTN was reduced only in the RE group 24 h following exercise (pre: 87 ± 4, 24 h: 57 ± 5%MSTN+ type I SC) (P < 0.001). Although resistance exercise is the most potent exercise type to induce satellite cell pool expansion, high-intensity interval exercise was also more potent than moderate-intensity aerobic exercise in inducing satellite cell activity. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
The effect of an acute bout of exercise on executive function among individuals with schizophrenia.
Subramaniapillai, Mehala; Tremblay, Luc; Grassmann, Viviane; Remington, Gary; Faulkner, Guy
2016-12-30
Cognitive impairment represents a significant source of disability among individuals with schizophrenia. Therefore, the aim of this study was to investigate, at a proof-of-concept level, whether one single bout of exercise can improve executive function among these individuals. In this within-participant, counterbalanced experiment, participants with schizophrenia (n=36) completed two sessions (cycling at moderate-intensity and passively sitting) for 20min, with a one-week washout period between the two sessions. Participants completed the Wisconsin Card Sorting Test (WCST) before and after each session to measure changes in executive function. The inclusion of both sessions completed by each participant in the analyses revealed a significant carryover effect. Consequently, only the WCST scores from the first session completed by each participant was analyzed. There was a significant time by session interaction effect for non-perseverative errors. Post-hoc Tukey's HSD contrasts revealed a significant reduction in non-perseverative errors in the exercise group that was of moderate-to-large effect. Furthermore, there was also a moderate between-group difference at post-testing. Therefore, an acute bout of exercise can improve performance on an executive function task in individuals with schizophrenia. Specifically, the reduction in non-perseverative errors on the WCST may reflect improved attention, inhibition and overall working memory. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Acute moderate exercise improves mnemonic discrimination in young adults.
Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A; Soya, Hideaki
2017-03-01
Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O 2peak ) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Acute Moderate Exercise Improves Mnemonic Discrimination in Young Adults
Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A.; Soya, Hideaki
2018-01-01
Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O2peak) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. PMID:27997992
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Ensari, Ipek; Sandroff, Brian M.
2016-01-01
Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992
Psychophysiological effects of music on acute recovery from high-intensity interval training.
Jones, Leighton; Tiller, Nicholas B; Karageorghis, Costas I
2017-03-01
Numerous studies have examined the multifarious effects of music applied during exercise but few have assessed the efficacy of music as an aid to recovery. Music might facilitate physiological recovery via the entrainment of respiratory rhythms with music tempo. High-intensity exercise training is not typically associated with positive affective responses, and thus ways of assuaging negative affect warrant further exploration. This study assessed the psychophysiological effects of music on acute recovery and prevalence of entrainment in between bouts of high-intensity exercise. Thirteen male runners (M age =20.2±1.9years; BMI=21.7±1.7; V̇O 2 max=61.6±6.1mL·kg·min -1 ) completed three exercise sessions comprising 5×5-min bouts of high-intensity intervals interspersed with 3-min periods of passive recovery. During recovery, participants were administered positively-valenced music of a slow-tempo (55-65bpm), fast-tempo (125-135bpm), or a no-music control. A range of measures including affective responses, RPE, cardiorespiratory indices (gas exchange and pulmonary ventilation), and music tempo-respiratory entrainment were recorded during exercise and recovery. Fast-tempo, positively-valenced music resulted in higher Feeling Scale scores throughout recovery periods (p<0.01, η p 2 =0.38). There were significant differences in HR during initial recovery periods (p<0.05, η p 2 =0.16), but no other music-moderated differences in cardiorespiratory responses. In conclusion, fast-tempo, positively-valenced music applied during recovery periods engenders a more pleasant experience. However, there is limited evidence that music expedites cardiorespiratory recovery in between bouts of high-intensity exercise. These findings have implications for athletic training strategies and individuals seeking to make high-intensity exercise sessions more pleasant. Copyright © 2016 Elsevier Inc. All rights reserved.
Exercise-induced muscle damage and running economy in humans.
Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio
2013-01-01
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO₂max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO₂max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.
Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G
2016-08-01
Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.
Firefighter Work Duration Influences the Extent of Acute Kidney Injury.
Schlader, Zachary J; Chapman, Christopher L; Sarker, Suman; Russo, Lindsey; Rideout, Todd C; Parker, Mark D; Johnson, Blair D; Hostler, David
2017-08-01
We tested the hypothesis that elevations in biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and dehydration elicited by two common firefighter work durations. Twenty-nine healthy adults (10 females) wearing firefighter protective clothing completed two randomized trials where they walked at 4.8 km·h, 5% grade in a 38°C, 50% RH environment. In the short trial, subjects completed two 20-min exercise bouts. In the long trial (LONG), subjects completed three 20-min exercise bouts. Each exercise bout was separated by 10 min of standing rest in an ~20°C environment. Venous blood samples were obtained before and immediately after exercise, and after 1 h recovery. Dependent variables included changes in core temperature, body weight, plasma volume, serum creatinine, and plasma neutrophil gelatinase-associated lipocalin, a marker of renal tubule injury. Changes in core temperature (+2.0°C ± 0.7°C vs +1.1°C ± 0.4°C, P < 0.01), body weight (-0.9% ± 0.6% vs -0.5% ± 0.5%, P < 0.01), and plasma volume (-11% ± 5% vs -8% ± 6%, P < 0.01) during exercise were greater in LONG. Increases in creatinine were higher in LONG postexercise (0.18 ± 0.15 vs 0.08 ± 0.07 mg·dL, P < 0.01) and after recovery (0.21 ± 0.16 vs 0.14 ± 0.10 mg·dL, P < 0.01). Increases in neutrophil gelatinase-associated lipocalin were greater in LONG postexercise (27.0 ± 20.5 vs 12.7 ± 18.0 ng·mL, P = 0.01) and after recovery (16.9 ± 15.6 vs 1.5 ± 15.1 ng·mL, P = 0.02). Biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and hypovolemia elicited by exercise in the heat.
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.
Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene
2016-01-01
This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Cohort study with repeated-measures design. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.
Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L
2016-08-01
Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.
Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration.
Holliday, Adrian; Blannin, Andrew
2017-12-01
The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m 2 ; VO 2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO 2max Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake - expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period. © 2017 Society for Endocrinology.
BARNES, ROBERT T.; COOMBES, STEPHEN A.; ARMSTRONG, NICOLE B.; HIGGINS, TORRANCE J.; JANELLE, CHRISTOPHER M.
2011-01-01
A large body of literature advocates exercise as a successful intervention for increasing positive affect while also reducing negative affect and anxiety. Questions concerning the mechanisms driving these effects remain unanswered, particularly considering theorized attentional adaptations that may be elicited by acute exercise bouts. We investigated pre- and post-exercise attentional bias to examine possible attentional explanations that may account for these reported changes in affect. On separate visits to the laboratory, 30 high trait anxious participants completed 30 min of exercise on a cycle ergometer at 70% of their heart rate reserve, or completed a 30-min quiet rest protocol. During each intervention, pre-test and post-test modified dot-probe assessments of attentional bias were completed, as were a series of self-report anxiety and affect questionnaires. Attentional bias scores and reaction times were calculated. Post-exercise dot probe performance did not vary significantly as a function of the affective valence of presented stimuli. As hypothesized, however, positive affect and reaction time improved significantly following exercise compared with the pre- and post-rest conditions and the pre-exercise condition, suggesting that exercise facilitates a broadening of attentional scope. Implications of these findings and future directions are discussed within the context of traditional and contemporary theories of dispositional affect and state-specific emotional responses. PMID:20686994
The effect of acute exercise on cigarette cravings while using a nicotine lozenge.
Tritter, Amelia; Fitzgeorge, Lyndsay; Prapavessis, Harry
2015-07-01
It is imperative that smoking cessation aids effectively alleviate cigarette craving and withdrawal symptoms because their intensity has shown to predict relapse. The nicotine lozenge and a single session of exercise have both been shown to provide relief from craving for smokers who have stopped smoking. These two efficacious monotherapies have distinct mechanic pathways, and applying them concurrently may provide additive-craving relief benefit. This study aimed to examine whether an acute bout of moderate-intensity exercise provides additional craving relief to the nicotine replacement lozenge in recently quit smokers. Thirty smokers who had abstained from smoking for 15 h were randomized to either the experimental (exercise and lozenge, n = 15) or control (lozenge alone, n = 15) condition. Craving was assessed before (baseline), during (10 and 20 min), and after (10, 20, 30, and 40 min) treatment. A significant condition by time interaction effect was found for craving (F(6, 23) = 2.70, p = 0.039, Wilks' Λ = 0.59, η ρ (2) = 0.41). While both conditions demonstrated reductions in craving, the reduction was significantly greater for the experimental group. These findings demonstrate that an acute bout of exercise provides additional craving relief to the nicotine lozenge in recently quit smokers. We recommend smokers who attempt to quit employ both cessation aids simultaneously to maximize reductions in cravings.
Knudsen, Jakob G; Gudiksen, Anders; Bertholdt, Lærke; Overby, Peter; Villesen, Ida; Schwartz, Camilla L; Pilegaard, Henriette
2017-01-01
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E
2015-06-15
Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity
Ludlow, Andrew T; Gratidão, Laila; Ludlow, Lindsay W; Spangenburg, Espen E; Roth, Stephen M
2017-04-01
What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Immediate effect of exercise on achilles tendon properties: systematic review.
Obst, Steven J; Barrett, Rod S; Newsham-West, Richard
2013-08-01
Understanding the mechanical and morphological adaptation of the Achilles tendon (AT) in response to acute exercise could have important implications for athletic performance, injury prevention, and rehabilitation. The purpose of this study was to conduct a systematic review and critical evaluation of the literature to determine the immediate effect of a single bout of exercise on the mechanical and morphological properties of the AT in vivo. Five electronic research databases were systematically searched for intervention-based studies reporting mechanical and morphological properties of the AT after a single bout of exercise. Searches revealed 3292 possible articles; 21 met the inclusion criteria. There is evidence that maximal isometric contractions and prolonged static stretching (>5 min) of the triceps surae complex cause an immediate decrease in AT stiffness, whereas prolonged running and hopping have minimal effect. Limited but consistent evidence exists, indicating that AT hysteresis is reduced after prolonged static stretching. Consistent evidence supports a reduction in free AT diameter (anterior-posterior) after dynamic ankle exercise, and this change appears most pronounced in the healthy tendon and after eccentric exercise. The mechanical and morphological properties of the AT in vivo are affected by acute exercise in a mode- and dose-dependent manner. Transient changes in AT stiffness, hysteresis, and diameter after unaccustomed exercise modes and doses may expose the tendon to increased risk of strain injury and impact on the mechanical function of the triceps surae muscle-tendon unit.
Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa
2018-02-01
We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.
Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis
2016-12-01
Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.
Short, Kevin R; Pratt, Lauren V; Teague, April M; Man, Chiara Dalla; Cobelli, Claudio
2013-03-01
The purpose of this study was to determine the acute and residual impact of a single exercise bout on meal glucose control in adolescents with habitually low physical activity. Twelve adolescents (seven females/five males, 14 ± 2 yr) completed three trials. One trial [No Exercise (No Ex)] was completed after refraining from vigorous activity for ≥ 3 d. On the other two trials, a 45-min aerobic exercise bout at 75% peak heart rate was performed either 17-h Prior Day Exercise (Prior Day Ex) trial or 1-h Same Day Exercise (Same Day Ex) trial before consuming the test meal (2803 kJ, 45/40/15% energy as carbohydrate/fat/protein, respectively). Compared to No Ex, insulin sensitivity (SI) (minimal model analysis) was increased by 45% (p < 0.03) and 78% (p < 0.01) on the Prior Day Ex and Same Day Ex trials, respectively. This improvement in glucose control was supported by corresponding reductions in the net area under the curve for glucose, insulin, and c-peptide, although there was no change in postprandial suppression of fatty acids. These results show that SI is improved with a single bout of moderate intensity exercise in adolescents with habitually low physical activity and that the residual beneficial effect of exercise lasts at least 17 h. This finding highlights the plasticity of exercise responses in youth and the importance of daily exercise for metabolic health. © 2012 John Wiley & Sons A/S.
Paddon-Jones, D; Muthalib, M; Jenkins, D
2000-03-01
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.
Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect
Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.
2012-01-01
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780
Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle
Goodyear, Laurie J.
2014-01-01
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013
Lack of effect of exercise time of day on acute energy intake in healthy men.
O'Donoghue K, J M; Fournier, Paul A; Guelfi, Kym J
2010-08-01
Although the manipulation of exercise and dietary intake to achieve successful weight loss has been extensively studied, it is unclear how the time of day that exercise is performed may affect subsequent energy intake. The purpose of the current study was to investigate the effect of an acute bout of exercise performed in the morning compared with an equivalent bout of exercise performed in the afternoon on short-term energy intake. Nine healthy male participants completed 3 trials: morning exercise (AM), afternoon exercise (PM), or control (no exercise; CON) in a randomized counterbalanced design. Exercise consisted of 45 min of treadmill running at 75% VO(2peak). Energy intake was assessed over a 26-hr period with the participants eating ad libitum from a standard assortment of food items of known quantity and composition. There was no significant difference in overall energy intake (M ± SD; CON 23,505 ± 6,938 kJ, AM 24,957 ± 5,607 kJ, PM 24,560 ± 5,988 kJ; p = .590) or macronutrient preferences during the 26-hr period examined between trials. Likewise, no differences in energy intake or macronutrient preferences were observed at any of the specific individual meal periods examined (i.e., breakfast, lunch, dinner) between trials. These results suggest that the time of day that exercise is performed does not significantly affect short-term energy intake in healthy men.
The Acute Effect of Aerobic Exercise on Measures of Stress.
ERIC Educational Resources Information Center
Fort, Inza L.; And Others
The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…
Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Pühse, Uwe; Colledge, Flora
2018-06-01
Acute benefits of aerobic exercise on executive functioning have been reported frequently under laboratory conditions. However, to date, a beneficial effect on long-term memory has been less well supported and no data are available regarding nonlaboratory conditions in young adults. The aim of the current study was to investigate acute effects of aerobic exercise on cognitive functioning in a university classroom setting. Using a cross-over design, 51 participants performed a bout of moderately intense running (RUN) and read an article while seated (CON). Afterwards, they completed free-recall tests, followed by a Flanker task and an n-back task. Participants in the RUN condition compared with those in the CON condition showed shorter reaction time on the inhibition task, F(1, 50) = 5.59, p = .022, η 2 = .101, and recalled more words in the immediate- and delayed-recall tests, F(1, 50) = 8.40, p = .006, η 2 = .144. The present findings suggest that a moderately intense bout of aerobic exercise benefits verbal short-term and long-term memory as well as inhibitory control among students in a classroom setting.
IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.
Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni
2014-04-01
Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.
Muscle damage and repeated bout effect following blood flow restricted exercise.
Sieljacks, Peter; Matzon, Andreas; Wernbom, Mathias; Ringgaard, Steffen; Vissing, Kristian; Overgaard, Kristian
2016-03-01
Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample.
Harveson, Andrew T; Hannon, James C; Brusseau, Timothy A; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H; Hall, Morgan S; Kang, Kyoung-Doo
2016-06-01
The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized crossover design. After each exercise intervention, participants were assessed using 2 cognitive tests. The Dot, Word, and Color elements of the Stroop Test (Victoria version) and Parts A and B of the Trail-Making Test were used to measure cognition. Acute resistance and aerobic exercise resulted in similar improvements over nonexercise in all forms of the Stroop Test. Acute aerobic exercise led to improved performance over nonexercise and resistance exercise in Part B of the Trail-Making Test. Neither exercise intervention showed significant changes in time to complete Part A of the Trail-Making Test. Boys outperformed girls on the Stroop Dot and Color Test following acute aerobic exercise, in the Stroop Dot, Word, and Color Test following acute resistance exercise, and in the Stroop Color Test and Trail-Making Test Part B following nonexercise. Both acute resistance and aerobic exercise increased measures of cognition over a nonexercise control in untrained high school youth. These findings suggest the merits of acute resistance exercise as an alternative or complement to aerobic activity for educators aiming to increase youth physical activity and cognitive function concurrently.
Kwan, Bethany M.; Bryan, Angela D.
2009-01-01
Problem: A positive affective response is associated with increased participation in voluntary exercise, but the mechanisms by which this occurs are not well known. Consistent with a Theory of Planned Behaviour perspective, we tested whether affective response to exercise leads to greater motivation in terms of attitudes, subjective norms, self-efficacy and intentions to exercise. We were also specifically interested in whether a positive affective response leads to more temporally stable intentions. Method: Participants (N = 127) self-reported Theory of Planned Behaviour constructs and exercise behavior at baseline and three months later, and provided reports of exercise-related affect during a 30-minute bout of moderate intensity treadmill exercise at baseline. Results: We show that participants who experience greater improvements in positive affect, negative affect and fatigue during exercise tended to report more positive attitudes, exercise self-efficacy and intentions to exercise three months later. Affective response was not predictive of subjective norms. As hypothesized, positive affective response was associated with more stable intentions over time. Conclusions: We conclude that a positive affective response to acute bouts of exercise can aid in building and sustaining exercise motivation over time. PMID:20161385
Baumeister, P.; Peppler, W. T.; Wright, D. C.; Little, J. P.
2015-01-01
Obesity and type 2 diabetes are significant risk factors in the development of neurodegenerative diseases, such as Alzheimer's disease. A variety of cellular mechanisms, such as altered Akt and AMPK and increased inflammatory signaling, contribute to neurodegeneration. Exercise training can improve markers of neurodegeneration, but the underlying mechanisms remain unknown. The purpose of this study was to determine the effects of a single bout of exercise on markers of neurodegeneration and inflammation in brains from mice fed a high-fat diet. Male C57BL/6 mice were fed a low (LFD; 10% kcal from lard)- or a high-fat diet (HFD; 60% kcal from lard) for 7 wk. HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h. The HFD increased body mass and glucose intolerance (both P < 0.05). This was accompanied by an approximately twofold increase in the phosphorylation of Akt, ERK, and GSK in the cortex (P < 0.05). Following exercise, there was a decrease in beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; P < 0.05) and activity (P < 0.001). This was accompanied by a reduction in AMPK phosphorylation, indicative of a decline in cellular stress (P < 0.05). Akt and ERK phosphorylation were decreased following exercise in HFD mice to a level similar to that of the LFD mice (P < 0.05). This study demonstrates that a single bout of exercise can reduce BACE1 content and activity independent of changes in adiposity. This effect is associated with reductions in Akt, ERK, and AMPK signaling in the cortex. PMID:26404616
12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake.
Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu; Baer, Lisa A; Arts, Peter J; May, Francis J; Lehnig, Adam C; Middelbeek, Roeland J W; Richard, Jeffrey J; So, Kawai; Chen, Emily Y; Gao, Fei; Narain, Niven R; Distefano, Giovanna; Shettigar, Vikram K; Hirshman, Michael F; Ziolo, Mark T; Kiebish, Michael A; Tseng, Yu-Hua; Coen, Paul M; Goodyear, Laurie J
2018-05-01
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Copyright © 2018 Elsevier Inc. All rights reserved.
The effect of acute aerobic and resistance exercise on working memory.
Pontifex, Matthew B; Hillman, Charles H; Fernhall, Bo; Thompson, Kelli M; Valentini, Teresa A
2009-04-01
The goal of this investigation was to assess the influence of acute bouts of aerobic versus resistance exercise on the executive control of working memory. Twenty-one young adult participants completed a cardiorespiratory fitness test and maximal strength tests. On subsequent days, task performance measures of reaction time (RT) and accuracy were collected while participants completed a modified Sternberg working memory task before the start of, immediately after, and 30 min after an intervention consisting of 30 min of either resistance or aerobic exercise and a seated rest control. Findings indicated shorter RT immediately and 30 min after acute aerobic exercise relative to the preexercise baseline with no such effects observed after resistance exercise or seated rest. Further, in the aerobic condition, a larger reduction in RT from the baseline occurred during task conditions requiring increased working memory capacity. Again, no effect was observed in the resistance exercise or the seated rest conditions. These data extend the current knowledge base by indicating that acute exercise-induced changes in cognition are disproportionately related to executive control and may be specific to the aerobic exercise domain.
Autism and exergaming: effects on repetitive behaviors and cognition.
Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L
2011-01-01
Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum.
Autism and exergaming: effects on repetitive behaviors and cognition
Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L
2011-01-01
Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum. PMID:22114543
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study
Kaspar, Felix; Jelinek, Herbert F.; Perkins, Steven; Al-Aubaidy, Hayder A.; deJong, Bev; Butkowski, Eugene
2016-01-01
Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809
Short, Kevin R.; Pratt, Lauren V.; Teague, April M.
2012-01-01
The study goals were to (1) establish the variability in postprandial glucose control in healthy young people consuming a mixed meal and, then (2) determine the acute and residual impact of a single exercise bout on postprandial glucose control. In study 1, 18 people completed two similar mixed meal trials and an intravenous glucose tolerance test (IVGTT). There were strong test-retest correlations for the post-meal area under the curve (AUC) for glucose, insulin, and Cpeptide (r = 0.73–0.83) and the Matsuda insulin sensitivity index (ISI, r = 0.76), and between meal and IVGTT-derived ISI (r = 0.83). In study 2, 11 untrained young adults completed 3 trials. One trial (No Ex) was completed after refraining from vigorous activity for ≥3 days. On the other 2 trials, a 45-min aerobic exercise bout was performed either 17-hours (Prior Day Ex) or 1-hour (Same Day Ex) before consuming the test meal. Compared to No Ex and Prior Day Ex, which did not differ from one another, there were lower AUCs on the Same Day Ex trial for glucose (6%), insulin (20%) and C-peptide (14%). Thus, a single moderate intensity exercise session can acutely improve glycemic control but the effect is modest and short-lived. PMID:22666560
Alves, Christiano R R; Tessaro, Victor H; Teixeira, Luis A C; Murakava, Karina; Roschel, Hamilton; Gualano, Bruno; Takito, Monica Y
2014-02-01
Acute moderate intensity continuous aerobic exercise can improve specific cognitive functions, such as short-term memory and selective attention. Moreover, high-intensity interval training (HIT) has been recently proposed as a time-efficient alternative to traditional cardiorespiratory exercise. However, considering previous speculations that the exercise intensity affects cognition in a U-shaped fashion, it was hypothesized that a HIT session may impair cognitive performance. Therefore, this study assessed the effects of an acute HIT session on selective attention and short-term memory tasks. 22 healthy middle-aged individuals (M age = 53.7 yr.) engaged in both (1) a HIT session, 10 1 min. cycling bouts at the intensity corresponding to 80% of the reserve heart rate interspersed by 1 min. active pauses cycling at 60% of the reserve heart rate and (2) a control session, consisting of an active condition with low-intensity active stretching exercise. Before and after each experimental session, cognitive performance was assessed by the Victoria Version of the Stroop test (a selective attention test) and the Digit Span test (a short-term memory test). Following the HIT session, the time to complete the Stroop "Color word" test was significantly lower when compared with that of the control session. The performances in the other subtasks of the Stroop test as well as in the Digit Span test were not significantly different. A HIT session can improve cognitive function.
Experimental Effects of Acute Exercise on Prospective Memory and False Memory.
Green, David; Loprinzi, Paul D
2018-01-01
Research demonstrates that acute exercise can enhance retrospective episodic memory performance. However, limited research has examined the effects of acute exercise on prospective memory, and no studies have examined the effects of exercise on false memory performance. This study examined the potential effects of acute exercise on prospective memory and false memory performance. A between-group randomized controlled trial was employed, with participants (college students; M age = 20 years) randomized into an exercise group (15-minute acute bout of treadmill walking; N = 25) or a control group (15 minutes of sitting; N = 26). Prospective memory was assessed from two laboratory and two naturalistic assessments outside the lab. False memory was assessed using a word-list trial. There were no statistically significant differences in prospective memory based on group allocation (F Group×Time = 1.17; P = 0.32; η 2 = 0.06). However, the control group recalled more false words and had a higher rate of false memory recognition (F Group×Time = 3.15; P = 0.01; η 2 = 0.26). These findings indicate that acute moderate-intensity aerobic exercise is not associated with prospective memory performance but provides some suggestive evidence that acute exercise may reduce the rate of false memories.
The effects of low-intensity cycling on cognitive performance following sleep deprivation.
Slutsky, Alexis B; Diekfuss, Jed A; Janssen, James A; Berry, Nate T; Shih, Chia-Hao; Raisbeck, Louisa D; Wideman, Laurie; Etnier, Jennifer L
2017-10-15
This study examined the effect of 24h of sleep deprivation on cognitive performance and assessed the effect of acute exercise on cognitive performance following sleep deprivation. Young, active, healthy adults (n=24, 14 males) were randomized to control (age=24.7±3.7years, BMI=27.2±7.0) or exercise (age=25.3±3.3years, BMI=25.6±5.1) groups. Cognitive testing included a 5-min psychomotor vigilance task (PVT), three memory tasks with increasing cognitive load, and performance of the PVT a second time. On morning one, cognitive testing followed a typical night's sleep. Following 24-h of sustained wakefulness, cognitive testing was conducted again prior to and after the acute intervention. Participants in the exercise condition performed low-intensity cycling (∼40%HRR) for 15-min and those in the control condition sat quietly on the bike for 15-min. t-Tests revealed sleep deprivation negatively affected performance on the PVT, but did not affect memory performance. Following the acute intervention, there were no cognitive performance differences between the exercise and rested conditions. We provide support for previous literature suggesting that during simple tasks, sleep deprivation has negative effects on cognitive performance. Importantly, in contrast to previous literature which has shown multiple bouts of exercise adding to cognitive detriment when combined with sleep deprivation, our results did not reveal any further detriments to cognitive performance from a single-bout of exercise following sleep deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.
Normobaric Hypoxia and Submaximal Exercise Effects on Running Memory and Mood State in Women.
Seo, Yongsuk; Gerhart, Hayden D; Stavres, Jon; Fennell, Curtis; Draper, Shane; Glickman, Ellen L
2017-07-01
An acute bout of exercise can improve cognitive function in normoxic and hypoxic conditions. However, limited research supports the improvement of cognitive function and mood state in women. The purpose of this study was to examine the effects of hypoxia and exercise on working memory and mood state in women. There were 15 healthy women (age = 22 ± 2 yr) who completed the Automated Neuropsychological Assessment Metrics-4th Edition (ANAM), including the Running Memory Continuous Performance Task (RMCPT) and Total Mood Disturbance (TMD) in normoxia (21% O2), at rest in normoxia and hypoxia (12.5% O2), and during cycling exercise at 60% and 40% Vo2max in hypoxia. RMCPT was not significantly impaired at 30 (100.3 ± 17.2) and 60 (96.6 ± 17.3) min rest in hypoxia compared to baseline in normoxia (97.0 ± 17.0). However, RMCPT was significantly improved during exercise (106.7 ± 20.8) at 60% Vo2max compared to 60 min rest in hypoxia. Following 30 (-89.4 ± 48.3) and 60 min of exposure to hypoxia (-79.8 ± 55.9) at rest, TMD was impaired compared with baseline (-107.1 ± 46.2). TMD was significantly improved during exercise (-108.5 ± 42.7) at 40% Vo2max compared with 30 min rest in hypoxia. Also, RMCPT was significantly improved during exercise (104.0 ± 19.1) at 60% Vo2max compared to 60 min rest in hypoxia (96.6 ± 17.3). Hypoxia and an acute bout of exercise partially influence RMCPT and TMD. Furthermore, a moderate-intensity bout of exercise (60%) may be a more potent stimulant for improving cognitive function than low-intensity (40%) exercise. The present data should be considered by aeromedical personnel performing cognitive tasks in hypoxia.Seo Y, Gerhart HD, Stavres J, Fennell C, Draper S, Glickman EL. Normobaric hypoxia and submaximal exercise effects on running memory and mood state in women. Aerosp Med Hum Perform. 2017; 88(7):627-632.
Stenson, Mary C; Stenson, Matthew R; Matthews, Tracey D; Paolone, Vincent J
2017-06-01
Cold water immersion (CWI) is used by endurance athletes to speed recovery between exercise bouts, but little evidence is available on the effects of CWI on subsequent endurance performance. The purpose of this study was to investigate the effects of CWI following an acute bout of interval training on 5000 m run performance 24 hrs after interval training, perceived muscle soreness (PMS), range of motion (ROM), thigh circumference (TC), and perceived exertion (RPE). Nine endurance-trained males completed 2 trials, each consisting of an interval training session of 8 repetitions of 1200 m at a running pace equal to 75% of VO 2 peak, either a control or CWI treatment, and a timed 5000 m run 24 hrs post interval training session. CWI was performed for 12 min at 12 degrees Celsius on the legs. Recovery treatments were performed in a counterbalanced design. Run time for 5000 m was not different between the CWI and control trials (CWI = 1317.33 ± 128.33 sec, control = 1303.44 ± 105.53 sec; p = 0.48). PMS increased significantly from baseline to immediately post exercise (BL = 1.17 ± 0.22, POST = 2.81 ± 0.52; p = 0.02) and remained elevated from baseline to 24 hrs post exercise (POST24 = 2.19 ± 0.32; p = 0.02), but no difference was observed between the treatments. No differences were observed for the interaction between time and treatment for TC (λ = 0.73, p = 0.15) and ROM (λ = 0.49; p = 0.10). CWI performed immediately following an interval training exercise bout did not enhance subsequent 5000 m run performance or reduce PMS. CWI may not provide a recovery or performance advantage when athletes are accustomed to the demands of the prior exercise bout.
A single-bout of one-hour spinning exercise increases troponin T in healthy subjects.
Duttaroy, Smita; Thorell, Daniel; Karlsson, Lena; Börjesson, Mats
2012-02-01
While long-term endurance exercise is known to increase cardiac biomarkers, only a few studies on short-term exercise and these markers have been reported. The aim of this study was to investigate the acute effects of a one-hour bicycle spinning on cardiac biomarkers in healthy individuals. Serum levels of high-sensitive troponin T (TnT), creatinine kinase MB fraction (CK-MB), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatinine kinase (CK) and myoglobin were measured at baseline, 1 and 24 hour after one hour of spinning exercise in ten healthy and fit (age 31.0 ± 6.6 years) individuals. TnT doubled one hour post-exercise (All values ≤ 5 - 9.7 ± 6.0 ng/L, p < 0.001). Two individuals had TnT levels above upper reference limit, URL (20.7 and 20.2 ng/L, URL = 12 ng/L). Myoglobin levels increased 72% one hour post-exercise (38 ± 20 - 66 ± 41 mg/L, p < 0.02). TnT and myoglobin levels returned to baseline 24 hour post-exercise. Serum levels of CK-MB, NT-proBNP and CK were not significantly changed. A single-bout of one-hour bicycle spinning transiently increases TnT and myoglobin in healthy subjects. Some subjects even have TnT release above URL. Thus, recently performed exercise also of short duration should be taken into consideration in the evaluation of acute chest pain with release of cardiac TnT.
Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer.
Starbuck, Chelsea; Eston, Roger G
2012-03-01
We examined whether a prior bout of eccentric exercise in the elbow flexors provided protection against exercise-induced muscle damage in the contralateral arm. Fifteen males (age 22.7 ± 2.1 years; height 178.6 ± 6.8 cm, mass 75.8 ± 9.3 kg) were randomly assigned to two groups who performed two bouts of 60 eccentric contractions (30°/s) separated by 2 weeks: ipsilateral (n = 7, both bouts performed in the same arm), contralateral (n = 8, one bout performed in each arm). Strength, muscle soreness and resting arm angle (RAA) were measured at baseline and at 1, 24 and 48 h post exercise. Surface electromyography was recorded during both bouts of exercise. The degree of strength loss was attenuated (p < 0.05) in the ipsilateral group after the second bout of eccentric exercise (-22 cf. -3% for bout 1 and 2 at 24 h, respectively). Strength loss following eccentric exercise was also attenuated (p < 0.05) at 24 h in the contralateral group (-30 cf. 13% for bout 1 and 2, respectively). Muscle soreness (≈34 cf 19 mm) and change in RAA (≈5 cf. 3%) were also lower following the second bout of eccentric exercise (p < 0.05), although there was no difference in the overall change in these values between groups. Median frequency (MF) was decreased by 31% between bouts, with no difference between groups. Data support observations that the repeated bout effect transfers to the opposite (untrained) limb. The similar reduction in MF between bouts for the two groups provides evidence for a centrally mediated, neural adaptation.
Electromyographic analysis of repeated bouts of eccentric exercise.
McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W
2001-03-01
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.
Differential effects of acute and regular physical exercise on cognition and affect.
Hopkins, M E; Davis, F C; Vantieghem, M R; Whalen, P J; Bucci, D J
2012-07-26
The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise.
Church, David D; Hoffman, Jay R; Mangine, Gerald T; Jajtner, Adam R; Townsend, Jeremy R; Beyer, Kyle S; Wang, Ran; La Monica, Michael B; Fukuda, David H; Stout, Jeffrey R
2016-07-01
This study compared the acute and chronic response of circulating plasma brain-derived neurotrophic factor (BDNF) to high-intensity low-volume (HI) and low-intensity high volume (HV) resistance training. Twenty experienced resistance-trained men (23.5 ± 2.6 y, 1.79 ± 0.05 m, 75.7 ± 13.8 kg) volunteered for this study. Before the resistance training program (PRE), participants performed an acute bout of exercise using either the HI [3-5 reps; 90% of one repetition maximum (1RM)] or HV (10-12 reps; 70% 1RM) training paradigm. The acute exercise protocol was repeated after 7 wk of training (POST). Blood samples were obtained at rest (BL), immediately (IP), 30 min (30P), and 60 min (60P) post exercise at PRE and POST. A three-way repeated measure ANOVA was used to analyze acute changes in BDNF concentrations during HI and HV resistance exercise and the effect of 7 wk of training. No training × time × group interaction in BDNF was noted (P = 0.994). Significant main effects for training (P = 0.050) and time (P < 0.001) in BDNF were observed. Significant elevations in BDNF concentrations were seen from BL at IP (P = 0.001), 30P (P < 0.001), and 60P (P < 0.001) in both HI and HV combined during PRE and POST. BDNF concentrations were also observed to increase from PRE to POST when collapsed across groups and time. No significant group × training interaction (P = 0.342), training (P = 0.105), or group (P = 0.238) effect were noted in the BDNF area under the curve response. Results indicate that BDNF concentrations are increased after an acute bout of resistance exercise, regardless of training paradigm, and are further increased during a 7-wk training program in experienced lifters. Copyright © 2016 the American Physiological Society.
Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.
2015-01-01
Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
Frith, Emily; Loprinzi, Paul D.
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed. PMID:29744306
Frith, Emily; Loprinzi, Paul D
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed.
Rivera-Brown, Anita M; Frontera, Walter R
2012-11-01
Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente
2016-01-01
Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (P<0.01) lipidation of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) (∼50%) and the LC3‐II/LC3‐I ratio (∼60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3‐II/LC3‐I ratio (∼80%) in muscle of the exercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3‐I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. PMID:26614120
Aziz, Abdul Rashid; Chia, Michael Yong Hwa; Low, Chee Yong; Slater, Gary John; Png, Weileen; Teh, Kong Chuan
2012-10-01
This study examines the effects of Ramadan fasting on performance during an intense exercise session performed at three different times of the day, i.e., 08:00, 18:00, and 21:00 h. The purpose was to determine the optimal time of the day to perform an acute high-intensity interval exercise during the Ramadan fasting month. After familiarization, nine trained athletes performed six 30-s Wingate anaerobic test (WAnT) cycle bouts followed by a time-to-exhaustion (T(exh)) cycle on six separate randomized and counterbalanced occasions. The three time-of-day nonfasting (control, CON) exercise sessions were performed before the Ramadan month, and the three corresponding time-of-day Ramadan fasting (RAM) exercise sessions were performed during the Ramadan month. Note that the 21:00 h session during Ramadan month was conducted in the nonfasted state after the breaking of the day's fast. Total work (TW) completed during the six WAnT bouts was significantly lower during RAM compared to CON for the 08:00 and 18:00 h (p < .017; effect size [d] = .55 [small] and .39 [small], respectively) sessions, but not for the 21:00 h (p = .03, d = .18 [trivial]) session. The T(exh) cycle duration was significantly shorter during RAM than CON in the 18:00 (p < .017, d = .93 [moderate]) session, but not in the 08:00 (p = .03, d = .57 [small]) and 21:00 h (p = .96, d = .02 [trivial]) sessions. In conclusion, Ramadan fasting had a small to moderate, negative impact on quality of performance during an acute high-intensity exercise session, particularly during the period of the daytime fast. The optimal time to conduct an acute high-intensity exercise session during the Ramadan fasting month is in the evening, after the breaking of the day's fast.
Russell, A P; Wallace, M A; Kalanon, M; Zacharewicz, E; Della Gatta, P A; Garnham, A; Lamon, S
2017-06-01
The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS. © 2016 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V
2016-02-01
The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander
2012-01-01
Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.
Muscle damage and adaptation after the second bout of eccentric exercise of the knee extensors.
Hassan, E S
2014-10-01
This study examined the muscles ability to adapt to eccentric exercise by the changes in serum myoglobin (Mb), creatine kinase (CK) activity and muscle soreness. The study involved 54 healthy young men from the 23± 2yr age group. These were distributed as subjects for three types of experiments with 18 men in each. Subjects performed 300 maximal eccentric exercises. In experiment I, after performing the first bout of exercise, they were split into three subgroups to perform the second bout after a period of 4, 6, and 8 weeks (WK), respectively. In experiment II, performed the second exercise after a period of 2, 3, and 5 wk, respectively. In experiment III, they performed four exercise bouts spaced 1 wk apart. in experiment II a significant (P<0.05) decrease in muscle soreness, serum Mb and CK was found on exercise bout 2. In experiment III, serum CK, Mb and muscle soreness responses were highest following bout 1. It was concluded that performance of a single exercise bout had a prophylactic effect on muscle soreness and serum protein responses that lasts approximately 2 wk, with the greatest adaptation occurring after one bout.
The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.
Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre
2015-05-01
The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Smith, Ashleigh E; Goldsworthy, Mitchell R; Wood, Fiona M; Olds, Timothy S; Garside, Tessa; Ridding, Michael C
2018-03-01
Acute exercise studies using transcranial magnetic stimulation (TMS) can provide important insights into the mechanisms underpinning the positive relationship between regular engagement in physical activity and cortical neuroplasticity. Emerging evidence indicates that a single session of aerobic exercise can promote the response to an experimentally induced suppressive neuroplasticity paradigm; however, little is known about the neuroplasticity response to facilitatory paradigms, including intermittent theta burst stimulation (iTBS). To more fully characterize the effects of exercise on brain plasticity we investigated if a single 30 min bout of high-intensity cycling (80% predicted heart rate reserve) modulated the response to an iTBS paradigm compared to rest. In 18 participants (9 females; 25.5 ± 5.0 years, range: 18-35 years) iTBS was applied using standard repetitive transcranial magnetic stimulation techniques immediately following exercise or 30 min of rest. Motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle at baseline, after the exercise/rest period but before iTBS, and at 5 time points following iTBS (0, 5, 10, 20 and 30 min). Contrary to our hypothesis, MEPs were suppressed following iTBS after a single 30 min bout of lower limb aerobic exercise compared to rest. These results indicate that acute aerobic exercise may not always enhance the response to an experimentally induced neuroplasticity paradigm. Further investigation of the factors that influence the relationship between exercise and neuroplasticity is warranted. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Mills, Chris; Knight, James; Milligan, Gemma
2015-01-01
Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805
Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species
Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino
2012-01-01
This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757
Lofrano-Prado, Mara Cristina; Hill, James O; Silva, Humberto José Gomes; Freitas, Camila Rodrigues Menezes; Lopes-de-Souza, Sandra; Lins, Tatiana Acioli; do Prado, Wagner Luiz
2012-04-03
The aim of this study was to determine the acute effects of exercise intensity on anxiety, mood states and hunger in obese adolescents. Subjects were eight male obese adolescents (age 15.44 ± 2.06 y; BMI 33.06 ± 4.78 kg/m2). Each subject underwent three experimental trials: (1) Control, seated for 30 min; (2) Low intensity exercise (LIE)--exercise at 10% below ventilatory threshold (VT); (3) High intensity exercise (HIE)--exercise at 10% above VT. Anxiety (STAI Trait/State), mood (POMS) and hunger (VAS) were assessed before and immediately after the experimental sessions. Comparisons between trials and times were assessed using Kruskal-Wallis and Wilcoxon tests, respectively. Associations between variables were described using a Spearman test. The largest increase in hunger was observed after LEI (914.22%). Both exercise sessions increased anxiety, fatigue and decreased vigor (p < 0.05). Acute exercise bouts are associated with negative changes in anxiety and mood, and with increases in hunger in obese adolescents.
2015-01-01
Objective To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls. Methods Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group. Results In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention. Conclusion Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification. PMID:25602805
Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M
2014-06-01
We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise (P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 (P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.
Postexercise heart rate variability following treadmill and cycle exercise: a comparison study.
Esco, Michael R; Flatt, Andrew A; Williford, Henry N
2017-05-01
The purpose of this study was to compare postexercise heart rate variability (HRV) immediately following acute bouts of treadmill (T) and cycle (C) exercise at 65% of mode-specific maximal oxygen consumption reserve (65% VO 2 R). Fourteen apparently healthy men participated in this study. On two separate and randomized days, each participant performed 30 min of exercise at 65% VO 2 R on T and C. Supine HRV was evaluated as normalized and log-transformed (ln) high-frequency (HF) and low-frequency (LF) spectral power, as well as the LF:HF ratio in 5-min segments immediately before (PRE) and at 10-15 min (POST1) and 25-30 min (POST2) following each exercise bout. There were no significant differences in the HRV values at PRE between the modalities. Following each exercise bout, lnHF was significantly lower at POST2 following C compared to T. In addition, lnLF and LF:HF were significantly higher at POST1 and POST2 following C compared to T. All HRV metrics returned towards baseline 30 min following T but remained significantly different than PRE values after C. These results suggest that following exercise at 65% of mode-specific VO 2 R, C is associated with a greater delay of postexercise HRV recovery than T in apparently healthy men. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Effect of Acute Exercise on Fatigue in People with ME/CFS/SEID: A Meta-analysis.
Loy, Bryan D; O'Connor, Patrick J; Dishman, Rodney K
2016-10-01
A prominent symptom of myalgic encephalomyelitis, chronic fatigue syndrome, or systemic exertion intolerance disease (ME/CFS/SEID) is persistent fatigue that is worsened by physical exertion. Here the population effect of a single bout of exercise on fatigue symptoms in people with ME/CFS/SEID was estimated and effect moderators were identified. Google Scholar was systematically searched for peer-reviewed articles published between February 1991 and May 2015. Studies were included where people diagnosed with ME/CFS/SEID and matched control participants completed a single bout of exercise and fatigue self-reports were obtained before and after exercise. Fatigue means, standard deviations, and sample sizes were extracted to calculate effect sizes and the 95% confidence interval. Effects were pooled using a random-effects model and corrected for small sample bias to generate mean Δ. Multilevel regression modeling adjusted for nesting of effects within studies. Moderators identified a priori were diagnostic criteria, fibromyalgia comorbidity, exercise factors (intensity, duration, and type), and measurement factors. Seven studies examining 159 people with ME/CFS/SEID met inclusion criteria, and 47 fatigue effects were derived. The mean fatigue effect was Δ = 0.73 (95% confidence interval = 0.24-1.23). Fatigue increases were larger for people with ME/CFS/SEID when fatigue was measured 4 h or more after exercise ended rather than during or immediately after exercise ceased. This preliminary evidence indicates that acute exercise increases fatigue in people with ME/CFS/SEID more than that in control groups, but effects were heterogeneous between studies. Future studies with no-exercise control groups of people with ME/CFS/SEID are needed to obtain a more precise estimate of the effect of exercise on fatigue in this population.
Body temperature modulates the antioxidant and acute immune responses to exercise.
Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni
2012-06-01
The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.
Inflammatory gene changes associated with the repeated-bout effect.
Hubal, Monica J; Chen, Trevor C; Thompson, Paul D; Clarkson, Priscilla M
2008-05-01
This study proposed that attenuated expression of inflammatory factors is an underlying mechanism driving the repeated-bout effect (rapid adaptation to eccentric exercise). We investigated changes in mRNA levels and protein localization of inflammatory genes after two bouts of muscle-lengthening exercise. Seven male subjects performed two bouts of lower body exercise (separated by 4 wk) in which one leg performed 300 eccentric-concentric actions, and the contralateral leg performed 300 concentric actions only. Vastus lateralis biopsies were collected at 6 h, and strength was assessed at baseline and at 0, 3, and 5 days after exercise. mRNA levels were measured via semiquantitative RT-PCR for the following genes: CYR61, HSP40, HSP70, IL1R1, TCF8, ZFP36, CEBPD, and MCP1. Muscle functional adaptation was demonstrated via attenuated strength loss (16% less, P = 0.04) at 5 days after bout 2 compared with bout 1 in the eccentrically exercised leg. mRNA expression of three of the eight genes tested was significantly elevated in the eccentrically exercised leg from bout 1 to bout 2 (+3.9-fold for ZFP36, +2.3-fold for CEBPD, and +2.6-fold for MCP1), while all eight mRNA levels were unaffected by bout in the concentrically exercised leg. Immunohistochemistry further localized the protein of one of the elevated factors [monocyte chemoattractant protein-1 (MCP1)] within the tissue. MCP1 colocalized with resident macrophage and satellite cell populations, suggesting that alterations in cytokine signaling between these cell populations may play a role in muscle adaptation to exercise. Contrary to our hypothesis, several inflammatory genes were transcriptionally upregulated (rather than attenuated) after a repeated exercise bout, potentially indicating a role for these genes in the adaptation process.
Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou
2015-06-01
The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P < 0.05). A similar trend was observed after the third hour of ATW (P = 0.06). However, ATW demonstrated a 3% overall decline in DBP after exercise compared to a 1% DBP increase of the control day (P < 0.05). Additionally, ATW showed a 6% reduction in mean systolic BP at the ninth hour post-exercise (P < 0.05) compared to baseline. Our results indicate people post-stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.
D'Souza, Randall F; Markworth, James F; Aasen, Kirsten M M; Zeng, Nina; Cameron-Smith, David; Mitchell, Cameron J
2017-01-01
A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.
Catoire, Milène; Mensink, Marco; Boekschoten, Mark V.; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander
2012-01-01
Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44–56 performed one hour of one-legged cycling at 50% Wmax. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle. PMID:23226462
Dose-Response Effects of Exercise Duration and Recovery on Cognitive Functioning.
Crush, Elizabeth A; Loprinzi, Paul D
2017-12-01
We examined the effects of different acute exercise durations and recovery periods on cognitive function in a counterbalanced, cross-over randomized controlled experiment. We placed 352 participants, aged 18 to 35 years into one of 16 experimental groups. Each participant visited the laboratory twice, separated by a 1-week washout period. Either Visit 1 or 2 consisted of an acute bout of moderate-intensity treadmill exercise (10, 20, 30, 45, or 60 minutes) followed by a period of rest (5, 15, or 30 minutes) before taking a set of five cognitive tests; the other visit consisted only of completing the cognitive tests (no exercise). Cognitive tests sampled multiple cognitive parameters, including reasoning, concentration, memory, attention, and planning. We found that a short recovery period (i.e., 5 minutes) may have a less favorable effect on planning ability but may be beneficial for memory. In addition, for various exercise durations and recovery periods, a Group × Time × Resting (nonexercise) A cognitive interaction effect was observed such that for both memory and inhibitory cognitive ability, acute exercise (vs. no exercise) had an enhancement effect for those with lower resting cognitive functioning. The length of the acute exercise recovery period and resting cognitive ability most influenced the association between exercise and cognitive function.
Hostler, David; Bednez, James C; Kerin, Sarah; Reis, Steven E; Kong, Pui Wah; Morley, Julia; Gallagher, Michael; Suyama, Joe
2010-01-01
Performing fire suppression activities results in cardiovascular stress, hyperthermia, and hypohydration. Fireground rehabilitation (rehab) is recommended to blunt the deleterious effects of these conditions. We tested the hypothesis that three rehydration fluids provided after exercise while wearing thermal protective clothing (TPC) would produce different heart rate or core temperature responses during a second bout of exercise in TPC. On three occasions, 18 euhydrated firefighters (16 men, two women) wearing TPC completed a standardized, 50-minute bout of upper and lower body exercise in a hot room that mimicked the National Fire Protection Association (NFPA) rehabilitation guidelines of "two cylinders before rehab" (20 minutes of work, 10 minutes of recovery, 20 minutes of work). After an initial bout of exercise (bout 1), subjects were randomly assigned water, sport drink, or an intravenous (IV) infusion of normal saline equal to the amount of body mass lost during exercise. After rehydration, the subject performed a second bout of exercise (bout 2). Heart rates, core and skin temperatures, and exercise durations were compared with a two-way analysis of variance (ANOVA). Subjects were firefighters with a mean (+/- standard deviation [SD]) age of 28.2 +/- 11.3 years and a mean peak oxygen consumption (VO(2peak)) of 37.4 +/- 3.4 mL/kg/min. The mean amount of fluid provided during the rehabilitation period was 527 +/- 302 mL. No subject could complete either the pre- or postrehydration 50-minute bout of exercise. The mean (+/-SD) times to exhaustion were longer (p < 0.001) in bout 1 (25.9 +/- 12.9 min, water; 28.0 +/- 14.1 min, sport drink; 27.4 +/- 13.8 min, IV) compared with bout 2 (15.6 +/- 9.6 min, water; 14.7 +/- 8.6 min, sport drink; 15.7 +/- 8.0 min, IV) for all groups but did not differ by intervention. All subjects approached their age-predicted maximum heart rate at the end of bout 1 (180 +/- 11 bpm) and bout 2 (176 +/- 13 bpm). Core temperature rose 1.1 degrees C +/- 0.7 degrees C during bout 1 and 0.5 degrees C +/- 0.4 degrees C during bout 2. Core temperatures, heart rates, and exercise times during bout 2 did not differ between the rehydration fluids. Performances during a second bout of exercise in TPC did not differ when firefighters were rehydrated with water, sport drink, or IV normal saline when full rehydration was provided. Of concern was the inability of all subjects to complete two consecutive periods of heavy exercise in TPC, suggesting that the NFPA's "two cylinders before rehab" guideline may not be appropriate in continuous heavy work scenarios.
Lee, SoJung; Burns, Stephen F.; White, David; Kuk, Jennifer L.; Arslanian, Silva
2014-01-01
Objective We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high fat meal in overweight black vs. white adolescents. Design and Subjects Twenty-one black and 17 white adolescents (12-18 yrs, BMI >85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60 min exercise (50% VO2peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 hrs postprandially. Results There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG-area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs. control trial. Including Tanner stage, gender, total fat (kg) and VAT as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC explaining 56% and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC independent of trial. Conclusion A single bout of aerobic exercise preceding a high fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity. PMID:23507997
Lee, S; Burns, S F; White, D; Kuk, J L; Arslanian, S
2013-07-01
We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high-fat meal in overweight black vs white adolescents. Twenty-one black and 17 white adolescents (12-18 yrs, body mass index 85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60-min exercise (50% VO2 peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 h postprandially. There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs control trial. Including Tanner stage, gender, total fat (kg) and visceral adipose tissue (VAT) as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC, explaining 56 and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC, independent of trial. A single bout of aerobic exercise preceding a high-fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity.
Exercise following Mental Work Prevented Overeating.
Neumeier, William H; Goodner, Emily; Biasini, Fred; Dhurandhar, Emily J; Menear, Kristi S; Turan, Bulent; Hunter, Gary R
2016-09-01
Mental work may promote caloric intake, whereas exercise may offset positive energy balance by decreasing energy intake and increasing energy expenditure. This study aimed to replicate previous findings that mental work increases caloric intake compared with a rest condition and assess whether exercise after mental work can offset this effect. Thirty-eight male and female university students were randomly assigned to mental work + rest (MW + R) or mental work + exercise (MW + E). Participants also completed a baseline rest (BR) visit consisting of no mental work or exercise. Visit order was counterbalanced. During the MW + R or MW + E visit, participants completed a 20-min mental task and either a 15-min rest (MW + R) or a 15-min interval exercise (MW + E). Each visit ended with an ad libitum pizza lunch. A two-way repeated-measures ANOVA was used to compare eating behavior between groups. Participants in the MW + R condition consumed an average of 100 more kilocalories compared with BR (633.3 ± 72.9 and 533.9 ± 67.7, respectively, P = 0.02), and participants in MW + E consumed an average of 25 kcal less compared with BR (432.3 ± 69.2 and 456.5 ± 64.2, respectively, P > 0.05). When including the estimated energy expenditure of exercise in the MW + E conditions, participants were in negative energy balance by an average of 98.5 ± 41.5 kcal, resulting in a significant difference in energy balance between the two groups (P = 0.001). An acute bout of interval exercise after mental work resulted in significantly decreased food consumption compared with a nonexercise condition. These results suggest that an acute bout of exercise may be used to offset positive energy balance induced by mental tasks.
Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S
2015-06-01
The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.
Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.
Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G
2017-08-01
An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Acute effects of aerobic exercise promote learning
Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo
2016-01-01
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330
Smiles, William J; Conceição, Miguel S; Telles, Guilherme D; Chacon-Mikahil, Mara P T; Cavaglieri, Cláudia R; Vechin, Felipe C; Libardi, Cleiton A; Hawley, John A; Camera, Donny M
2017-02-01
Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO 2peak ), or low-intensity cycling with BFR (15 min, 40% VO 2peak ). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. END increased ULK1 Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPK Thr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). A single bout of low-intensity cycling with BFR is insufficient to induce intracellular "stress" responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise
ERIC Educational Resources Information Center
Stevens, David J.; Arciuli, Joanne; Anderson, David I.
2016-01-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions--a control group, a group that exercised for…
Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.
Chan, Huan Hao; Burns, Stephen Francis
2013-02-01
This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.
Russell, Aaron P; Lamon, Severine; Boon, Hanneke; Wada, Shogo; Güller, Isabelle; Brown, Erin L; Chibalin, Alexander V; Zierath, Juleen R; Snow, Rod J; Stepto, Nigel; Wadley, Glenn D; Akimoto, Takayuki
2013-01-01
The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=−0.71; P= 0.04), miR-31 and HDAC4 protein (r =−0.87; P= 0.026) and miR-31 and NRF1 protein (r =−0.77; P= 0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3′ untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health. PMID:23798494
Hostler, David; Bednez, James C; Kerin, Sarah; Reis, Steven E; Kong, Pui Wah; Morley, Julia; Gallagher, Michael; Suyama, Joe
2010-01-01
Background: Fire suppression activities results in cardiovascular stress, hyperthermia, and hypohydration. Fireground rehabilitation (rehab) is recommended to blunt the deleterious effects of these conditions. Objective: We tested the hypothesis that three rehydration fluids provided after exercise in thermal protective clothing (TPC) would produce different heart rate or core temperature responses during a second bout of exercise in TPC. Methods: On three occasions, 18 euhydrated firefighters (16 males, 2 females) wearing TPC completed a standardized, 50-minute bout of upper and lower body exercise in a hot room that mimicked the National Fire Protection Association (NFPA) rehabilitation guidelines of “two cylinders before rehab” (20 min work, 10 min recovery, 20 min work). After an initial bout of exercise, subjects were randomly assigned water, sport drink, or an intravenous (IV) infusion of normal saline equal to the amount of body mass lost during exercise. After rehydration, the subject performed a second bout of exercise. Heart rate, core and skin temperature, and exercise duration were compared with a two-way ANOVA. Results: Subjects were firefighters aged 28.2±11.3 years with a VO2peak of 37.4±3.4 ml/kg/min. 527±302 mL of fluid were provided during the rehabilitation period. No subject could complete either the pre- or post-rehydration 50-minute bout of exercise. Mean (SD) time to exhaustion (min) was longer (p<0.001) in bout 1 (25.9±12.9 min. water, 28.0±14.1 min. sport drink, 27.4±13.8 min. IV) compared to bout 2 (15.6±9.6 min. water, 14.7±8.6 min. sport drink, 15.7±8.0 min. IV) for all groups but did not differ by intervention. All subjects approached age predicted maximum heart rate at the end of bout 1 (180±11 bpm) and bout 2 (176±13 bpm). Core temperature rose 1.1±0.7°C during bout 1 and 0.5±0.4°C during bout 2. Core temperature, heart rate, and exercise time during bout 2 did not differ between rehydration fluids. Conclusions: Performance during a second bout of exercise in TPC did not differ when firefighters were rehydrated with water, sport drink, or IV normal saline when full rehydration is provided. Of concern was the inability of all subjects to complete two consecutive periods of heavy exercise in TPC suggesting the NFPA “two cylinders before rehab” guideline may not be appropriate in continuous heavy work scenarios. PMID:20095824
Dent, Jessica R; Edge, Johann A; Hawke, Emma; McMahon, Christopher; Mündel, Toby
2015-11-01
The physiological requirements underlying soccer-specific exercise are incomplete and sex-based comparisons are sparse. The aim of this study was to determine the effects of a repeated-sprint protocol on the translational repressor 4E-BP1 and sprint performance in male and female soccer players. Cross-over design involving eight female and seven male university soccer players. Participants performed four bouts of 6 × 30-m maximal sprints spread equally over 40 min. Heart rate, sprint time and sprint decrement were measured for each sprint and during the course of each bout. Venous blood samples and muscle biopsies from the vastus lateralis were taken at rest, at 15 min and 2h post-exercise. While males maintained a faster mean sprint time for each bout (P < 0.05) females exhibited a greater decrement in sprint performance for each bout (P < 0.05), indicating a superior maintenance of sprint performance in males, with no sex differences for heart rate or lactate. Muscle analyses revealed sex differences in resting total (P < 0.05) and phosphorylated (P < 0.05) 4E-BP1 Thr37/46, and 15 min post-exercise the 4E-BP1 Thr37/46 ratio decreased below resting levels in males only (P < 0.05), indicative of a decreased translation initiation following repeated sprints. We show that females have a larger sprint decrement indicating that males have a superior ability to recover sprint performance. Sex differences in resting 4E-BP1 Thr37/46 suggest diversity in the training-induced phenotype of the muscle of males and females competing in equivalent levels of team-sport competition. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David
2009-06-01
The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P < 0.05) in the early part of the subsequent exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P < 0.01). These changes were associated with an increased oxidative ATP cost after approximately 50 s (P < 0.05) and a slight reduction in the overall anaerobic rate of ATP production (0.11 +/- 0.04 mM min(-1) W(-1) for bout 1 and 0.06 +/- 0.11 mM min(-1) W(-1) for bout 2; P < 0.05). We showed that a priming bout of heavy exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.
West, Amy D; Cooke, Matthew B; LaBounty, Paul M; Byars, Allyn G; Greenwood, Mike
2014-12-01
The purpose of this study was to compare the effectiveness of 3 treatment modes (Anti-Gravity Treadmill [G-trainer], stationary cycling [CompuTrainer], and static stretching) on the physiological and psychological recovery after an acute bout of exhaustive exercise. In a crossover design, 12 aerobically trained men (21.3 ± 2.3 years, 72.1 ± 8.1 kg, 178.4 ± 6.3 cm, (Equation is included in full-text article.): 53.7 ± 6.3 ml·kg·min) completed a 29-km stationary cycling time trial. Immediately after the time trial, subjects completed 30 minutes of G-trainer or CompuTrainer (40% (Equation is included in full-text article.)) or static stretching exercises. A significant time effect was detected for plasma lactate (p = 0.010) and serum cortisol (p = 0.039) after exercise. No treatment or treatment by time interaction was identified for lactate or cortisol, respectively. No main effects for time, treatment, or treatment by time interaction were identified for interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). No differences were observed among treatments in skeletal muscle peak power output, mean power output, time to peak power, and rate to fatigue at 24 hours postexercise bout. Finally, no significant changes in mood status were observed after exercise and between treatment groups. When compared with stationary cycling and static stretching, exercise recovery performed on the G-trainer was unable to reduce systemic markers of stress and inflammation, blood lactate, or improve anaerobic performance and psychological mood states after an exhaustive bout of endurance exercise. Further research is warranted that includes individualized recovery modalities to create balances between the stresses of training and competition.
Cellular adaptation to repeated eccentric exercise-induced muscle damage.
Stupka, N; Tarnopolsky, M A; Yardley, N J; Phillips, S M
2001-10-01
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.
Acute response of high-intensity and traditional resistance exercise on anaerobic power.
Austad, Mark A; Gay, Chip R; Murray, Steven R; Pettitt, Robert W
2013-09-01
Quantifying the maximal work capacity (W') above the aerobic critical power (CP) has emerged as a method for estimating anaerobic work capacity. Slower cadence, lower-load resistance training (RT), colloquially referred to as high-intensity training (HIT), is purported to be a better metabolic stressor than faster cadence higher-load RT, but to date, this belief has not been supported by research. We compared the acute effects of HIT and traditional RT bouts on average power within a 150-second time period (P(150 s)), CP, and W', as measured from a 3-minute all-out exercise test using cycling ergometry (3 MT). Eight recreationally active male subjects (mean ± SD: age 22 ± 2 years, body mass 85 ± 14 kg, and height 18 ± 9 cm) completed a baseline 3 MT 10 repetition maximum testing on leg press and leg extension machines, and post-bout 3 MTs after an HIT (4:2 second cadence) or a traditional RT bout (1:1 second cadence). Measurements of CP from the 3 MTs were similar between the baseline, post-HIT (α = 0.96), and post-traditional RT bouts (α = 0.98). Neither HIT (269.2 ± 51.3 W) nor traditional RT (275.1 ± 51.3 W) evoked depreciations (p > 0.05) in P(150 s) from the baseline (275.1 ± 45.4 W). Moreover, estimates of W' at the baseline (8.3 ± 3.2 kJ) were unaffected (p > 0.05) either by the HIT (7.6 ± 2.3 kJ) or by the traditional RT (8.3 ± 1.3 kJ) bouts. These data indicate that the 4:2 cadence is insufficient to exhaust a person's capacity for high-intensity work. Longer RT durations, either by slower cadences or by multiple sets, are necessary to evoke substantive declines on W' and should be investigated.
Wormgoor, Shohn G; Dalleck, Lance C; Zinn, Caryn; Harris, Nigel K
2018-01-01
Optimizing exercise-induced physiological responses without increasing the risk of negative exaggerated responses is an important aspect of exercise prescription for people with type 2 diabetes mellitus (T2DM). However, knowledge of acute responses, including exaggerated responses, of different training modalities is limited. The aim of the study was to compare acute physiological responses of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) in T2DM. Baseline data were used to randomly assign male participants into supervised training groups for a 12-week intervention. During week 7, participants trialed either a fully progressed MICT (N.=11) or HIIT (N.=11) (combined with resistance training) session. The MICT included 26 minutes at 55% estimated maximum workload (eWLmax) while the HIIT included twelve 1-minute bouts at 95% eWLmax interspersed with 1-minute bouts at 40% eWLmax. While energy expenditure and peak systolic and diastolic blood pressure responses were similar between groups (P=0.47, P=0.71, P=0.56, respectively), peak heart rate, workload and perceived exertion were higher in the HIIT group (P=0.04, P<0.001, and P<0.001, respectively). Acute exaggerated responses were similar (P=0.39) for MICT (64%) and HIIT (36%) participants. While structured MICT and HIIT sessions resulted in comparable acute physiological responses, the individual variations and exaggerated responses, even after preparatory training, necessitated precautionary respite in T2DM men.
Cobley, James N; Moult, Peter R; Burniston, Jatin G; Morton, James P; Close, Graeme L
2015-04-01
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Wohlwend, Martin; Olsen, Alexander; Håberg, Asta K.; Palmer, Helen S.
2017-01-01
The idea that physical activity differentially impacts upon performance of various cognitive tasks has recently gained increased interest. However, our current knowledge about how cognition is altered by acute physical activity is incomplete. To measure how different intensity levels of physical activity affect cognition during and after 1 bout of physical activity, 30 healthy, young participants were randomized to perform a not-X continuous performance test (CPT) during low (LI)- and moderate intensity (MI) running. The same participants were subsequently randomized to perform the not-X CPT post LI, MI, and high intensity (HI) running. In addition, exercise related mood changes were assessed through a self-report measure pre and post running at LI, MI, and HI. Results showed worsening of performance accuracy on the not-X CPT during one bout of moderate compared to low intensity running. Post running, there was a linear decrease in reaction time with increasing running intensity and no change in accuracy or mood. The decreased reaction times post HI running recovered back to baseline within 20 min. We conclude that accuracy is acutely deteriorated during the most straining physical activity while a transient intensity-dependent enhancement of cognitive control function is present following physical activity. PMID:28377735
Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms.
Fritz, Kathryn M; O'Connor, Patrick J
2016-06-01
Little is known about whether acute exercise affects signs or symptoms of attention deficit/hyperactivity disorder (ADHD) in adults. This experiment sought to determine the effects of a single bout of moderate-intensity leg cycling exercise on measures of attention, hyperactivity, mood, and motivation to complete mental work in adult men reporting elevated ADHD symptoms. A repeated-measures crossover experiment was conducted with 32 adult men (18-33 yr) with symptoms consistent with adult ADHD assessed by the Adult Self-Report Scale V1.1. Measures of attention (continuous performance task and Bakan vigilance task), motivation to perform the mental work (visual analog scale), lower leg physical activity (accelerometry), and mood (Profile of Mood States and Addiction Research Center Inventory amphetamine scale) were measured before and twice after a 20-min seated rest control or exercise condition involving cycling at 65% V˙O2peak. Condition (exercise vs rest) × time (baseline, post 1, and post 2) ANOVA was used to test the hypothesized exercise-induced improvements in all outcomes. Statistically significant condition-time interactions were observed for vigor (P < 0.001), amphetamine (P < 0.001), motivation (P = 0.027), and Profile of Mood States depression (P = 0.027), fatigue (P = 0.030), and confusion (P = 0.046) scales. No significant interaction effects were observed for leg hyperactivity, simple reaction time, or vigilance task performance (accuracy, errors, or reaction time). In young men reporting elevated symptoms of ADHD, a 20-min bout of moderate-intensity cycle exercise transiently enhances motivation for cognitive tasks, increases feelings of energy, and reduces feelings of confusion, fatigue, and depression, but this has no effect on the behavioral measures of attention or hyperactivity used.
Gordon, Bradley S; Steiner, Jennifer L; Rossetti, Michael L; Qiao, Shuxi; Ellisen, Leif W; Govindarajan, Subramaniam S; Eroshkin, Alexey M; Williamson, David L; Coen, Paul M
2017-12-01
The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle. Copyright © 2017 the American Physiological Society.
Ramirez-Jimenez, M; Morales-Palomo, F; Ortega, J F; Mora-Rodriguez, R
2018-05-17
We studied the blood pressure lowering effects of a bout of exercise and/or antihypertensive medicine with the goal of studying if exercise could substitute or enhance pharmacologic hypertension treatment. Twenty-three hypertensive metabolic syndrome patients chronically medicated with angiotensin II receptor 1 blockade antihypertensive medicine underwent 24-hr monitoring in four separated days in a randomized order; a) after taking their habitual dose of antihypertensive medicine (AHM trial), b) substituting their medicine by placebo medicine (PLAC trial), c) placebo medicine with a morning bout of intense aerobic exercise (PLAC+EXER trial) and d) combining the exercise and antihypertensive medicine (AHM+EXER trial). We found that in trials with AHM subjects had lower plasma aldosterone/renin activity ratio evidencing treatment compliance. Before exercise, the trials with AHM displayed lower systolic (130±16 vs 133±15 mmHg; P=0.018) and mean blood pressures (94±11 vs 96±10 mmHg; P=0.036) than trials with placebo medication. Acutely (i.e., 30 min after treatments) combining AHM+EXER lowered systolic blood pressure (SBP) below the effects of PLAC+EXER (-8.1±1.6 vs -4.9±1.5 mmHg; P=0.015). Twenty-four hour monitoring revealed no differences among trials in body motion. However, PLAC+EXER and AHM lowered SBP below PLAC during the first 10 hours, time at which PLAC+EXER effects faded out (i.e., at 19 PM). Adding exercise to medication (i.e., AHM+EXER) resulted in longer reductions in SBP than with exercise alone (PLAC+EXER). In summary, one bout of intense aerobic exercise in the morning cannot substitute the long-lasting effects of antihypertensive medicine in lowering blood pressure, but their combination is superior to exercise alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Physiological responses to an acute bout of sprint interval cycling.
Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J
2013-10-01
Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.
Mental Fatigue and Physical and Cognitive Performance During a 2-Bout Exercise Test.
Vrijkotte, Susan; Meeusen, Romain; Vandervaeren, Cloe; Buyse, Luk; Cutsem, Jeroen van; Pattyn, Nathalie; Roelands, Bart
2018-04-01
The 2-bout exercise protocol has been developed to diagnose nonfunctional overreaching and the "overtraining syndrome." It consists of 2 maximal exercise bouts separated by 4 hours. Mental fatigue negatively influences performance, but the effects of its occurrence during the 2-bout exercise protocol have never been investigated. The aim of this study was to examine whether mental fatigue (induced during the rest period) influences physical and cognitive performance during/after the second exercise bout of the 2-bout exercise protocol. Nine healthy, well-trained male cyclists participated in a single-blind, randomized, placebo-controlled crossover study. The intervention consisted of either 1.5-hour rest (control) or performing a computer-based Stroop task to induce mental fatigue. Cognitive (Eriksen Flanker task), physiological (lactate, maximum heart rate, and maximum wattage), and subjective data (mental fatigue-visual analog scale, Profile of Mood States, and rating of perceived exertion) were gathered. Ratings of fatigue, tension, and mental fatigue were affected in the mental fatigue condition (P < .05). Neither physiological nor cognitive differences were found between conditions. Ratings of mental fatigue were already affected after the first maximum exercise test (P < .05). Neither physical nor cognitive performance was affected by mental fatigue, but subjective ratings did reveal significant differences. It is recommended to exclude mentally challenging tasks during the 2-bout exercise protocol rest period to ascertain unaffected subjective test results. This study should be repeated in athletes diagnosed with nonfunctional overreaching/overtraining syndrome.
Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.
Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I
2017-10-01
To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.
Campbell, John P; Turner, James E
2018-01-01
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun
2016-06-30
Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.
Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme
2013-01-01
Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192
Perspectives on high-intensity interval exercise for health promotion in children and adolescents
Bond, Bert; Weston, Kathryn L; Williams, Craig A; Barker, Alan R
2017-01-01
Physical activity lowers future cardiovascular disease (CVD) risk; however, few children and adolescents achieve the recommended minimum amount of daily activity. Accordingly, there is virtue in identifying the efficacy of small volumes of high-intensity exercise for health benefits in children and adolescents for the primary prevention of CVD risk. The purpose of this narrative review is to provide a novel overview of the available literature concerning high-intensity interval-exercise (HIIE) interventions in children and adolescents. Specifically, the following areas are addressed: 1) outlining the health benefits observed following a single bout of HIIE, 2) reviewing the role of HIIE training in the management of pediatric obesity, and 3) discussing the effectiveness of school-based HIIE training. In total, 39 HIIE intervention studies were included in this review. Based upon the available data, a single bout of high-intensity exercise provides a potent stimulus for favorable, acute changes across a range of cardiometabolic outcomes that are often superior to a comparative bout of moderate-intensity exercise (14 studies reviewed). HIIE also promotes improvements in cardiorespiratory fitness and cardiometabolic health status in overweight and obese children and adolescents (10 studies reviewed) and when delivered in the school setting (15 studies reviewed). We thus conclude that high-intensity exercise is a feasible and potent method of improving a range of cardiometabolic outcomes in children and adolescents. However, further work is needed to optimize the delivery of HIIE interventions in terms of participant enjoyment and acceptability, to include a wider range of health outcomes, and to control for important confounding variables (eg, changes in diet and habitual physical activity). Finally, research into the application of HIIE training interventions to children and adolescents of different ages, sexes, pubertal status, and sociocultural backgrounds is required. PMID:29225481
Effects of resistance training on the inflammatory response
Calle, Mariana C
2010-01-01
Resistance training (RT) is associated with reduced risk of low grade inflammation related diseases, such as cardiovascular disease and type 2 diabetes. The majority of the data studying cytokines and exercise comes from endurance exercise. In contrast, evidence establishing a relationship between RT and inflammation is more limited. This review focuses on the cytokine responses both following an acute bout, and after chronic RT. In addition, the effect of RT on low grade systemic inflammation such as individuals at risk for type 2 diabetes is reviewed. Cytokines are secreted proteins that influence the survival, proliferation, and differentiation of immune cells and other organ systems. Cytokines function as intracellular signals and almost all cells in the body either secrete them or have cytokine receptors. Thus, understanding cytokine role in a specific physiological situation such as a bout of RT can be exceedingly complex. The overall effect of long term RT appears to ameliorate inflammation, but the specific effects on the inflammatory cytokine, tumor necrosis factor alpha are not clear, requiring further research. Furthermore, it is critical to differentiate between chronically and acute Interleukin-6 levels and its sources. The intensity of the RT and the characteristics of the training protocol may exert singular cytokine responses and as a result different adaptations to exercise. More research is needed in the area of RT in healthy populations, specifically sorting out gender and age RT acute responses. More importantly, studies are needed in obese individuals who are at high risk of developing low grade systemic inflammatory related diseases. Assuring adherence to the RT program is essential to get the benefits after overcoming the first acute RT responses. Hence RT could be an effective way to prevent, and delay low grade systemic inflammatory related diseases. PMID:20827340
Effect of acute moderate exercise on induced inflammation and arterial function in older adults.
Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo
2014-04-01
Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.
Willoughby, Darryn S.; Taylor, Lemuel
2004-01-01
The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key Points Eccentric muscle actions do not preferentially increase serum myostatin. Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG. Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol. PMID:24624007
Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise.
Raimundo, Rodrigo Daminello; de Abreu, Luiz Carlos; Adami, Fernando; Vanderlei, Franciele Marques; de Carvalho, Tatiana Dias; Moreno, Isadora Lessa; Pereira, Valdelias Xavier; Valenti, Vitor Engracia; Sato, Monica Akemi
2013-10-01
Stroke has been associated with cardiac autonomic impairment due to damage in central nervous system. Dysfunction in heart rate variability (HRV) may reflect dysfunction of the autonomic nervous system. Aerobic training has been used in the rehabilitation procedure of patients, due to improvement of aerobic function and other beneficial effects as increased recruitment of motor units, favoring the development of muscle fibers. The purpose of this study was to evaluate the cardiac autonomic modulation in patients with stroke before, during, and after an acute bout of aerobic exercise. The heart rate of 38 stroke patients was recorded using a heart rate (HR) monitor and the data were used to assess cardiac autonomic modulation through HRV analysis. The patients were in supine position and remained at resting condition (R) for 10 min before starting the experiment. Afterwards, they were submitted to walking exercise (E) on a treadmill until achieve 50-70% of maximum heart rate. After 30 min of aerobic exercise, the subjects were advised to remain in supine position for additional 30 min in order to record the HR during the recovery (RC) period. The recordings were divided in three periods: RC1, immediately after the end of exercise bout, RC2, between 12 and 17 min of recovery, and RC3, at the final 5 min of recovery. A significant decrease was observed during exercise in the MeanRR index (577.3±92 vs. 861.1+109), RRtri (5.1±2 vs. 9.1±3), high frequency component (11.2±4 vs. 167±135 ms) and SD1 (5.7±2 vs. 16.9±7 ms) compared to resting values. The SDNN index reduced during E (27.6±19) and RC1 (29.9±11), RC2 (27.9±9) and RC3 (32.4±13) compared to resting values (42.4±19). The low frequency component increased during E (545±82), but decreased during RC1 (166.3±129), RC2 (206.9±152), and RC3 (249.5±236) compared to R levels (394.6±315). These findings suggest that stroke patients showed a reduced HRV during and at least 30 min after exercise, due to an autonomic imbalance reflected by increased indexes that represent the sympathetic nervous system.
Standage, Martyn; Sebire, Simon J; Loney, Tom
2008-08-01
This study examined the utility of motivation as advanced by self-determination theory (Deci & Ryan, 2000) in predicting objectively assessed bouts of moderate intensity exercise behavior. Participants provided data pertaining to their exercise motivation. One week later, participants wore a combined accelerometer and heart rate monitor (Actiheart; Cambridge Neurotechnology Ltd) and 24-hr energy expenditure was estimated for 7 days. After controlling for gender and a combined marker of BMI and waist circumference, results showed autonomous motivation to positively predict moderate-intensity exercise bouts of >or=10 min, or=20 min, and an accumulation needed to meet public health recommendations for moderate intensity activity (i.e., ACSM/AHA guidelines). The present findings add bouts of objectively assessed exercise behavior to the growing body of literature that documents the adaptive consequences of engaging in exercise for autonomous reasons. Implications for practice and future work are discussed.
Matrix metalloproteinases in exercise and obesity.
Jaoude, Jonathan; Koh, Yunsuk
2016-01-01
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.
ERIC Educational Resources Information Center
Ringenbach, Shannon D. R; Albert, Andrew R.; Chen, Chih-Chia; Alberts, Jay L.
2014-01-01
The aim of this study was to examine the effectiveness of 2 modes of exercise on cognitive and upper extremity movement functioning in adolescents with Down syndrome (DS). Nine participants randomly completed 3 interventions over 3 consecutive weeks. The interventions were: (a) voluntary cycling (VC), in which participants cycled at their…
Physical Activity and Aging: Implications for Health and Quality of Life in Older Persons.
ERIC Educational Resources Information Center
Chodzko-Zajko, Wojtek J.
1998-01-01
This publication summarizes what is known about the influence of regular physical activity on the health and quality of life of older individuals, addressing both the acute effects of a single bout of physical activity and the more persistent, long-term effects of sustained participation in exercise and physical activity. Section 1 discusses the…
Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing
Christiansen, Lasse; Roig, Marc
2016-01-01
High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616
Muscle damage and repeated bout effect induced by enhanced eccentric squats.
Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico
2016-12-01
Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P<0.05) than baseline respectively up to 72 and 96 hours. Isometric peak torque was significantly lower (P<0.05) up to 72 hours. After the second bout, CK showed no significant increase (P>0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.
Rendi, Mária; Szabo, Attila; Szabó, Tamás; Velenczei, Attila; Kovács, Arpád
2008-03-01
Eighty volunteers were tested in their natural exercise environment consisting of a fitness centre they regularly attended. Half of the sample exercised on a stationary bicycle, the other half on a treadmill. All participants filled in the Exercise-Induced Feeling Inventory before and after their 20 min of exercise that was performed at self-selected workload. The results revealed that exercise intensity and the other parallel measures like heart rate, perceived exercise intensity and estimates of burned calories were higher in participants who ran in contrast to those who cycled. There were no differences in self-reports of enjoyment of the exercise sessions and in the psychological improvements from pre- to post-exercise between the groups. It is concluded that significant psychological improvements occur even after a 20-min bout of exercise and these changes are independent of the workload or exercise intensity.
5' adenosine monophosphate-activated protein kinase, metabolism and exercise.
Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J
2004-01-01
The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.
Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.
Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012
Ledochowski, Larissa; Ruedl, Gerhard; Taylor, Adrian H.; Kopp, Martin
2015-01-01
Research has shown that acute exercise reduces urges for chocolate in normal weight people. This study aimed to examine the effects of an acute exercise bout on urges to consume sugary snacks, affect as well as ‘psychological and physiological responses’ to stress and a ‘sugary snack cue’, in overweight individuals. Following 3 days of chocolate-abstinence, 47 overweight, sugary snack consumers were assessed, in 2 randomly ordered conditions, in a within-subject design: 15-min brisk walk or passive control. Following each, participants completed 2 tasks: Stroop color–word interference task, and handling sugary snacks. Urges for sugary snacks, affective activation and valence were assessed. ANOVAs revealed significant condition x time interaction effects for: urges to consume sugary snacks, affective valence and activation. Obtained data show that exercise reduces urges for sugary snacks and attenuates urges in response to the stress situation and the cue in overweight people. PMID:25760042
Ledochowski, Larissa; Ruedl, Gerhard; Taylor, Adrian H; Kopp, Martin
2015-01-01
Research has shown that acute exercise reduces urges for chocolate in normal weight people. This study aimed to examine the effects of an acute exercise bout on urges to consume sugary snacks, affect as well as 'psychological and physiological responses' to stress and a 'sugary snack cue', in overweight individuals. Following 3 days of chocolate-abstinence, 47 overweight, sugary snack consumers were assessed, in 2 randomly ordered conditions, in a within-subject design: 15-min brisk walk or passive control. Following each, participants completed 2 tasks: Stroop color-word interference task, and handling sugary snacks. Urges for sugary snacks, affective activation and valence were assessed. ANOVAs revealed significant condition x time interaction effects for: urges to consume sugary snacks, affective valence and activation. Obtained data show that exercise reduces urges for sugary snacks and attenuates urges in response to the stress situation and the cue in overweight people.
Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.
Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I
2014-09-01
There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.
Statistical Learning Is Not Affected by a Prior Bout of Physical Exercise.
Stevens, David J; Arciuli, Joanne; Anderson, David I
2016-05-01
This study examined the effect of a prior bout of exercise on implicit cognition. Specifically, we examined whether a prior bout of moderate intensity exercise affected performance on a statistical learning task in healthy adults. A total of 42 participants were allocated to one of three conditions-a control group, a group that exercised for 15 min prior to the statistical learning task, and a group that exercised for 30 min prior to the statistical learning task. The participants in the exercise groups cycled at 60% of their respective V˙O2 max. Each group demonstrated significant statistical learning, with similar levels of learning among the three groups. Contrary to previous research that has shown that a prior bout of exercise can affect performance on explicit cognitive tasks, the results of the current study suggest that the physiological stress induced by moderate-intensity exercise does not affect implicit cognition as measured by statistical learning. Copyright © 2015 Cognitive Science Society, Inc.
Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide.
Lizardo, J H F; Silveira, E A A; Vassallo, D V; Oliveira, E M
2008-07-01
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Unick, Jessica L; O'Leary, Kevin C; Dorfman, Leah; Thomas, J Graham; Strohacker, Kelley; Wing, Rena R
2015-04-14
It is often assumed that some individuals reliably increase energy intake (EI) post-exercise ('compensators') and some do not ('non-compensators'), leading researchers to examine the characteristics that distinguish these two groups. However, it is unclear whether EI post-exercise is stable over time. The present study examined whether compensatory eating responses to a single exercise bout are consistent within individuals across three pairs of trials. Physically inactive, overweight/obese women (n 28, BMI 30·3 (SD 2·9) kg/m²) participated in three pairs of testing sessions, with each pair consisting of an exercise (30 min of moderate-intensity walking) and resting testing day. EI was measured using a buffet meal 1 h post-exercise/rest. For each pair, the difference in EI (EIdiff = EIex - EIrest) was calculated, where EIex is the EI of the exercise session and EIrest is the EI of the resting session, and women were classified as a 'compensator' (EIex > EIrest) or 'non-compensator' (EIex ≤ EIrest). The average EI on exercise days (3328·0 (SD 1686·2) kJ) was similar to those on resting days (3269·4 (SD 1582·4) kJ) (P= 0·67). Although EI was reliable within individuals across the three resting days (intraclass correlation coefficient (ICC) 0·75, 95 % CI 0·60, 0·87; P< 0·001) and three exercise days (ICC 0·83, 95 % CI 0·70, 0·91; P< 0·001), the ICC for EIdiff across the three pairs of trials was low (ICC 0·20, 95 % CI -0·02, 0·45; P= 0·04), suggesting that compensatory eating post-exercise is not a stable construct. Moreover, the classification of 'compensators'/'non-compensators' was not reliable (κ = -0·048; P= 0·66). The results were unaltered when 'relative' EI was used, which considers the energy expenditure of the exercise/resting sessions. Acute compensatory EI following an exercise bout is not reliable in overweight women. Seeking to understand what distinguishes 'compensators' from 'non-compensators' based on a single eating episode post-exercise is not justified.
Repeated high-intensity exercise in professional rugby union.
Austin, Damien; Gabbett, Tim; Jenkins, David
2011-07-01
The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.
Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise.
Borges, Juliana Pereira; da Silva Verdoorn, Karine
2017-01-01
Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.
No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women
Howe, Stephanie M.; Hand, Taryn M.; Larson-Meyer, D. Enette; Austin, Kathleen J.; Alexander, Brenda M.; Manore, Melinda M.
2016-01-01
In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18–40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3–36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3–36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869
Green, Nicole; Wertz, Timothy; LaPorta, Zachary; Mora, Adam; Serbas, Jasmine; Astorino, Todd A
2017-07-19
High intensity interval training (HIIT) elicits similar physiological adaptations as moderate intensity continuous training (MICT) despite less time commitment. However, there is debate whether HIIT is more aversive than MICT. This study compared physiological and perceptual responses between MICT and three regimes of HIIT. Nineteen active adults (age = 24.0 ± 3.3 yr) unfamiliar with HIIT initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (VO2 max) and determine workload for subsequent sessions, whose order was randomized. Sprint interval training (SIT) consisted of six 20 s bouts of "all-out" cycling at 140% of maximum watts (Wmax). Low volume (HIITLV) and high volume HIIT (HIITHV) consisted of eight 60 s bouts at 85% Wmax and six 2 min bouts at 70% Wmax, respectively. MICT consisted of 25 min at 40% Wmax. Across regimes, work was not matched. Heart rate, VO2, blood lactate concentration (BLa), affect, and rating of perceived exertion (RPE) were assessed during exercise. Ten minutes post-exercise, Physical Activity Enjoyment (PACES) was measured via a survey. Results revealed significantly higher (p<0.05) VO2, heart rate, BLa, and RPE in SIT, HIITLV, and HIITHV versus MICT. Despite a decline in affect during exercise (p<0.01) and significantly lower affect (p<0.05) during all HIIT regimes versus MICT at 50, 75, and 100 % of session duration, PACES was similar across regimes (p=0.65) although it was higher in women (p=0.03). Findings from healthy adults unaccustomed to interval training demonstrate that HIIT and SIT are perceived as enjoyable as MICT despite being more aversive.
Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.
Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J
2018-04-01
Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within-subject variability over time.
ERIC Educational Resources Information Center
Andreacci, Joseph L.; Dixon, Curt B.; Rompolski, Krista; VanGorden, Kelly M.
2008-01-01
Bioelectrical impedance analysis (BIA) is a fast, easy to administer, and relatively inexpensive method of evaluating body composition. Due to the ease of operation, interest in using BIA to estimate percentage of body fat (%BF) has grown, especially in settings where body composition assessments are often performed without the benefit of…
Mata, Jutta; Hogan, Candice L; Joormann, Jutta; Waugh, Christian E; Gotlib, Ian H
2013-02-01
Identifying factors that may protect individuals from developing Major Depressive Disorder (MDD) in the face of stress is critical. In the current study we experimentally tested whether such a potentially protective factor, engaging in acute exercise, reduces the adverse effects of repeated sad mood inductions in individuals who have recovered from depression. We hypothesized that recovered depressed participants who engage in acute exercise report a smaller increase in negative affect (NA) and a smaller decrease in positive affect (PA) when exposed to a repeated sad mood induction (i.e., habituation), whereas participants who do not exercise show sensitization (i.e., increased NA and decreased PA in response to a repeated adverse stimulus). Forty-one women recovered from MDD and 40 healthy control women were randomly assigned to either exercise for 15 minutes or quiet rest. Afterward, participants were exposed to two sad mood inductions and reported their levels of affect throughout the study. Recovered depressed participants who had not exercised exhibited higher NA after the second sad mood induction, a finding consistent with sensitization. In contrast, both recovered depressed participants who had engaged in acute exercise and healthy control participants showed no increase in NA in response to the repeated sad mood induction. Participants who exercised reported higher PA after the exercise bout; however, our hypothesis concerning reported PA trajectories following the sad mood inductions was not supported. Results suggest that exercise can serve as a protective factor in the face of exposure to repeated emotional stressors, particularly concerning NA in individuals who have recovered from depression. 2013 APA, all rights reserved
Exercise and the heart--the harm of too little and too much.
Lavie, Carl J; O'Keefe, James H; Sallis, Robert E
2015-01-01
Physical activity and exercise training are underutilized by much of Westernized society, and physical inactivity may be the greatest threat to health in the 21st century. Many studies have shown a linear relationship between one's activity level and heart health, leading to the conclusion that "if some exercise is good, more must be better." However, there is evolving evidence that high levels of exercise may produce similar or less overall cardiovascular (CV) benefits compared with those produced by lower doses of exercise. Very high doses of exercise may be associated with increased risk of atrial fibrillation, coronary artery disease, and malignant ventricular arrhythmias. These acute bouts of excessive exercise may lead to cardiac dilatation, cardiac dysfunction, and release of troponin and brain natriuretic peptide. The effects of too little and too much exercise on the heart are reviewed in this article, along with recommendations to optimize the dose of exercise to achieve heart health.
Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.
Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N
2014-12-01
This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE. © Georg Thieme Verlag KG Stuttgart · New York.
Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients.
Ramirez-Jimenez, M; Morales-Palomo, F; Pallares, J G; Mora-Rodriguez, Ricardo; Ortega, J F
2017-07-01
The effectiveness of exercise to lower blood pressure may depend on the type and intensity of exercise. We study the short-term (i.e., 14-h) effects of a bout of high-intensity aerobic interval training (HIIT) on blood pressure in metabolic syndrome (MetS) patients. Nineteen MetS patients (55.2 ± 7.3 years, 6 women) entered the study. Eight of them were normotensive and eleven hypertensive according to MetS threshold (≥130 mmHg for SBP and/or ≥85 mmHg for DBP). In the morning of 3 separated days, they underwent a cycling exercise bout of HIIT (>90% of maximal heart rate, ~85% VO 2max ), or a bout of isocaloric moderate-intensity continuous training (MICT; ~70% of maximal heart rate, ~60% VO 2max ), or a control no-exercise trial (REST). After exercise, ambulatory blood pressure (ABP; 14 h) was monitored, while subjects continued their habitual daily activities wearing a wrist-band activity monitor. No ABP differences were found for normotensive subjects. In hypertensive subjects, systolic ABP was reduced by 6.1 ± 2.2 mmHg after HIIT compared to MICT and REST (130.8 ± 3.9 vs. 137.4 ± 5.1 and 136.4 ± 3.8 mmHg, respectively; p < 0.05). However, diastolic ABP was similar in all three trials (77.2 ± 2.6 vs. 78.0 ± 2.6 and 78.9 ± 2.8 mmHg, respectively). Motion analysis revealed no differences among trials during the 14-h. This study suggests that the blood pressure reducing effect of a bout of exercise is influence by the intensity of exercise. A HIIT exercise bout is superior to an equivalent bout of continuous exercise when used as a non-pharmacological aid in the treatment of hypertension in MetS.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M.
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise. PMID:27471471
Nutrition and exercise in individuals with diabetes.
Zinker, B A
1999-07-01
Individuals with type 1 (insulin-dependent diabetes mellitus [IDDM]) and type 2 (non-insulin-dependent diabetes mellitus [NIDDM]) diabetes should be encouraged to exercise. Although there is an absence of consistent evidence that adaptations to routine exercise improve glucose control in type 1 diabetes, there is evidence that shows improved glucose control in individuals with type 2 diabetes. Although both groups benefit from exercise, the merit and suitability of routine exercise is measured by the extent to which the advantageous adaptive effects of regular exercise surpass the risks of a sole bout of exercise. In addition, when considering acute versus routine exercise, special considerations must be given to children with diabetes and older adults at risk for insulin resistance. Finally, a greater research focus is needed on engaging in competitive and recreational sports so that children and adults with diabetes may participate safely in activities such as baseball, swimming, basketball, soccer, and hockey.
Pesce, Caterina
2012-12-01
In exercise and cognition research, few studies have investigated whether and how the qualitative aspects of physical exercise may impact cognitive performance in the short or long term. This commentary, after recalling the evidence on the "dose-response" relationship, shifts the focus to intersections between different research areas that are proposed to shed light on how qualitative exercise characteristics can be used to obtain cognitive benefits. As concerns the acute exercise area, this commentary highlights the applied relevance of developmental and aging studies investigating the effects of exercise bouts differing in movement task complexity and cognitive demands. As regards the chronic exercise area, potential links to research on cognitive expertise in sport, functional ability in aging, and life skills training during development are discussed. "Gross-motor cognitive training" is proposed as a key concept with relevant implications for intervention strategies in childhood and older adulthood.
Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf
2017-01-01
Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.
Cell-derived microparticles promote coagulation after moderate exercise.
Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang
2011-07-01
Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.
Doma, Kenji; Schumann, Moritz; Sinclair, Wade H; Leicht, Anthony S; Deakin, Glen B; Häkkinen, Keijo
2015-08-01
This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p < 0.05) following the second bout. Cortisol was increased until T24 (p < 0.05) although there were no differences between bouts and no differences were found for testosterone and T/C ratio (p > 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.
Pontifex, Matthew B; Saliba, Brian J; Raine, Lauren B; Picchietti, Daniel L; Hillman, Charles H
2013-03-01
To examine the effect of a single bout of moderate-intensity aerobic exercise on preadolescent children with attention-deficit/hyperactivity disorder (ADHD) using objective measures of attention, brain neurophysiology, and academic performance. Using a within-participants design, task performance and event-related brain potentials were assessed while participants performed an attentional-control task following a bout of exercise or seated reading during 2 separate, counterbalanced sessions. Following a single 20-minute bout of exercise, both children with ADHD and healthy match control children exhibited greater response accuracy and stimulus-related processing, with the children with ADHD also exhibiting selective enhancements in regulatory processes, compared with after a similar duration of seated reading. In addition, greater performance in the areas of reading and arithmetic were observed following exercise in both groups. These findings indicate that single bouts of moderately intense aerobic exercise may have positive implications for aspects of neurocognitive function and inhibitory control in children with ADHD. Copyright © 2013 Mosby, Inc. All rights reserved.
Hopkins, Mark; Blundell, John E; King, Neil A
2014-10-01
While compensatory eating following acute aerobic exercise is highly variable, little is known about the underlying mechanisms that contribute to the alterations in exercise-induced eating behaviour. Overweight and obese women (body mass index=29.6±4.0 kg/m(2)) performed a bout of cycling individually tailored to expend 400 kcal (EX) or a time-matched no exercise control condition in a randomised, counter-balanced order. 60 min after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. While ad libitum energy intake (EI) did not differ between EX and the control condition (666.0±203.9 vs 664.6±174.4 kcal, respectively; ns), there was a marked individual variability in compensatory EI. The difference in EI between EX and the control condition ranged from -234.3 to 278.5 kcal. Carbohydrate oxidation during exercise was positively associated with postexercise EI, accounting for 37% of the variance in EI (r=0.57; p=0.02). These data indicate that the capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain a part of the variability in acute exercise-induced compensatory eating. Postexercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males
ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.
2016-01-01
ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216
Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A
2016-09-01
This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Breakfast food health and acute exercise: Effects on state body image.
Hayes, Jacqueline F; Giles, Grace E; Mahoney, Caroline R; Kanarek, Robin B
2018-05-10
Food intake and exercise have been shown to alter body satisfaction in a state-dependent manner. One-time consumption of food perceived as unhealthy can be detrimental to body satisfaction, whereas an acute bout of moderate-intensity aerobic exercise can be beneficial. The current study examined the effect of exercise on state body image and appearance-related self-esteem following consumption of isocaloric foods perceived as healthy or unhealthy in 36 female college students (18-30 years old) in the Northeastern United States. Using a randomized-controlled design, participants attended six study sessions with breakfast conditions (healthy, unhealthy, no food) and activity (exercise, quiet rest) as within-participants factors. Body image questionnaires were completed prior to breakfast condition, between breakfast and activity conditions, and following activity condition. Results showed that consumption of an unhealthy breakfast decreased appearance self-esteem and increased body size perception, whereas consumption of a healthy breakfast did not influence appearance self-esteem but increased body size perception. Exercise did not influence state body image attitudes or perceptions following meal consumption. Study findings suggest that morning meal type, but not aerobic exercise, influence body satisfaction in college-aged females. Copyright © 2018. Published by Elsevier Ltd.
Resistance exercise load does not determine training-mediated hypertrophic gains in young men
Mitchell, Cameron J.; Churchward-Venne, Tyler A.; West, Daniel W. D.; Burd, Nicholas A.; Breen, Leigh; Baker, Steven K.
2012-01-01
We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 repetition maximum)] or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1, and 80%-3. Subjects trained each leg with their assigned regime for a period of 10 wk, 3 times/wk. We made pre- and posttraining measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and posttraining biopsies of the vastus lateralis, and a single postexercise (1 h) biopsy following the first bout of exercise, to measure signaling proteins. Training-induced increases in MR-measured muscle volume were significant (P < 0.01), with no difference between groups: 30%-3 = 6.8 ± 1.8%, 80%-1 = 3.2 ± 0.8%, and 80%-3= 7.2 ± 1.9%, P = 0.18. Isotonic maximal strength gains were not different between 80%-1 and 80%-3, but were greater than 30%-3 (P = 0.04), whereas training-induced isometric strength gains were significant but not different between conditions (P = 0.92). Biopsies taken 1 h following the initial resistance exercise bout showed increased phosphorylation (P < 0.05) of p70S6K only in the 80%-1 and 80%-3 conditions. There was no correlation between phosphorylation of any signaling protein and hypertrophy. In accordance with our previous acute measurements of muscle protein synthetic rates a lower load lifted to failure resulted in similar hypertrophy as a heavy load lifted to failure. PMID:22518835
Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.
2013-01-01
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266
Protection from Muscle Damage in the Absence of Changes in Muscle Mechanical Behavior.
Hoffman, Ben W; Cresswell, Andrew G; Carroll, Timothy J; Lichtwark, Glen A
2016-08-01
The repeated bout effect characterizes the protective adaptation after a single bout of unaccustomed eccentric exercise that induces muscle damage. Sarcomerogenesis and increased tendon compliance have been suggested as potential mechanisms for the repeated bout effect by preventing muscle fascicles from being stretched onto the descending limb of the length-tension curve (the region where sarcomere damage is thought to occur). In this study, evidence was sought for three possible mechanical changes that would support either the sarcomerogenesis or the increased tendon compliance hypotheses: a sustained rightward shift in the fascicle length-tension relationship, reduced fascicle strain amplitude, and reduced starting fascicle length. Subjects (n = 10) walked backward downhill (5 km·h, 20% incline) on a treadmill for 30 min on two occasions separated by 7 d. Kinematic data and medial gastrocnemius fascicle lengths (ultrasonography) were recorded at 10-min intervals to compare fascicle strains between bouts. Fascicle length-torque curves from supramaximal tibial nerve stimulation were constructed before, 2 h after, and 2 d after each exercise bout. Maximum torque decrement and elevated muscle soreness were present after the first, but not the second, backward downhill walking bout signifying a protective repeated bout effect. There was no sustained rightward shift in the length-torque relationship between exercise bouts, nor decreases in fascicle strain amplitude or shortening of the starting fascicle length. Protection from a repeated bout of eccentric exercise was conferred without changes in muscle fascicle strain behavior, indicating that sarcomerogenesis and increased tendon compliance were unlikely to be responsible. As fascicle strains are relatively small in humans, we suggest that changes to connective tissue structures, such as extracellular matrix remodeling, are better able to explain the repeated bout effect observed here.
McHugh, Malachy P
2003-04-01
The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.
Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi
2015-01-01
Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18–30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585
Sharma, Sourabh Kumar; Raza, Shahid; Moiz, Jamal Ali; Verma, Shalini; Naqvi, Irshad Husain; Anwer, Shahnawaz; Alghadir, Ahmad H
2018-01-01
Postactivation potentiation is referred to as an acute and temporary enhancement of muscle performance resulting from previous muscle contraction. The purpose of this study was to compare the acute effect of plyometric exercise (PLY) and heavy-resistance exercise (RES) on the blood lactate level (BLa) and physical performance. Fourteen male collegiate soccer players were randomized to perform either RES or PLY first and then crossed over to perform the opposite intervention. PLY consisted of 40 jumps, whereas RES comprised ten single repetitions at 90% of one repetition maximum. BLa and physical performance (countermovement jump height and 20-m sprint) were measured before and at 1 and 10 min following the exercise. No significant difference was observed in the BLa for both exercises (PLY and RES). Relative to baseline, countermovement jump (CMJ) height was significantly better for the PLY group after 1 min ( P = 0.004) and after 10 min ( P = 0.001) compared to that of the RES group. The 20-m sprint time was significantly better for PLY at 10 min ( P = 0.003) compared to that of RES. The present study concluded that, compared to RES, PLY causes greater potentiation, which leads to improved physical performance. This trial is registered with NCT03150277.
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Engelke, K. A.; Doerr, D. F.
1999-01-01
Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.
Variability in Muscle Damage after Eccentric Exercise and the Repeated Bout Effect
ERIC Educational Resources Information Center
Chen, Trevor C.
2006-01-01
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE).…
Pasiakos, Stefan M; Lieberman, Harris R; McLellan, Tom M
2014-05-01
Protein supplements are frequently consumed by athletes and recreationally-active individuals, although the decision to purchase and consume protein supplements is often based on marketing claims rather than evidence-based research. To provide a systematic and comprehensive analysis of literature examining the hypothesis that protein supplements enhance recovery of muscle function and physical performance by attenuating muscle damage and soreness following a previous bout of exercise. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition and muscle, alone or in combination as keywords. Inclusion criteria required studies to recruit healthy adults less than 50 years of age and to evaluate the effects of protein supplements alone or in combination with carbohydrate on performance metrics including time-to-exhaustion, time-trial or isometric or isokinetic muscle strength and markers of muscle damage and soreness. Twenty-seven articles were identified of which 18 dealt exclusively with ingestion of protein supplements to reduce muscle damage and soreness and improve recovery of muscle function following exercise, whereas the remaining 9 articles assessed muscle damage as well as performance metrics during single or repeat bouts of exercise. Papers were evaluated based on experimental design and examined for confounders that explain discrepancies between studies such as dietary control, training state of participants, sample size, direct or surrogate measures of muscle damage, and sensitivity of the performance metric. High quality and consistent data demonstrated there is no apparent relationship between recovery of muscle function and ratings of muscle soreness and surrogate markers of muscle damage when protein supplements are consumed prior to, during or after a bout of endurance or resistance exercise. There also appears to be insufficient experimental data demonstrating ingestion of a protein supplement following a bout of exercise attenuates muscle soreness and/or lowers markers of muscle damage. However, beneficial effects such as reduced muscle soreness and markers of muscle damage become more evident when supplemental protein is consumed after daily training sessions. Furthermore, the data suggest potential ergogenic effects associated with protein supplementation are greatest if participants are in negative nitrogen and/or energy balance. Small sample numbers and lack of dietary control limited the effectiveness of several investigations. In addition, studies did not measure the effects of protein supplementation on direct indices of muscle damage such as myofibrillar disruption and various measures of protein signaling indicative of a change in rates of protein synthesis and degradation. As a result, the interpretation of the data was often limited. Overwhelmingly, studies have consistently demonstrated the acute benefits of protein supplementation on post-exercise muscle anabolism, which, in theory, may facilitate the recovery of muscle function and performance. However, to date, when protein supplements are provided, acute changes in post-exercise protein synthesis and anabolic intracellular signaling have not resulted in measureable reductions in muscle damage and enhanced recovery of muscle function. Limitations in study designs together with the large variability in surrogate markers of muscle damage reduced the strength of the evidence-base.
Ludyga, Sebastian; Brand, Serge; Gerber, Markus; Weber, Peter; Brotzmann, Mark; Habibifar, Fahimeh; Pühse, Uwe
2017-12-01
The current body of evidence suggests that an aerobic exercise session has a beneficial effect on inhibitory control, whereas the impact of coordinative exercise on this executive function has not yet been examined in children with ADHD. Therefore, the present study aims to investigate the acute effects of aerobic and coordinative exercise on behavioral performance and the allocation of attentional resources in an inhibitory control task. Using a cross-over design, children with ADHD-combined type and healthy comparisons completed a Flanker task before and after 20min moderately-intense cycling exercise, coordinative exercise and an inactive control condition. During the task, stimulus-locked event-related potentials were recorded with electroencephalography. Both groups showed an increase of P300 amplitude and decrease of reaction time after exercise compared to the control condition. Investigating the effect of exercise modality, aerobic exercise led to greater increases of P300 amplitude and reductions in reaction time than coordinative exercise in children with ADHD. The findings suggest that a single exercise bout improves inhibitory control and the allocation of attentional resources. There were some indications that an aerobic exercise session seems to be more efficient than coordinative exercise in reducing the inhibitory control deficits that persist in children with ADHD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A
2009-05-01
We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.
NASA Technical Reports Server (NTRS)
Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.
1992-01-01
To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).
Effect of acute aerobic exercise on vaccine efficacy in older adults.
Ranadive, Sushant Mohan; Cook, Marc; Kappus, Rebecca Marie; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffery A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo
2014-03-01
The most effective way of avoiding influenza is through influenza vaccination. However, the vaccine is ineffective in about 25% of the older population. Immunosenescence with advancing age results in inadequate protection from disease because of ineffective responses to vaccination. Recently, a number of strategies have been tested to improve the efficacy of a vaccine in older adults. An acute bout of moderate aerobic exercise may increase the efficacy of the vaccine in young individuals, but there are limited efficacy data in older adults who would benefit most. This study sought to evaluate whether acute moderate-intensity endurance exercise immediately before influenza vaccination would increase the efficacy of the vaccine. Fifty-nine healthy volunteers between 55 and 75 yr of age were randomly allocated to an exercise or control group. Antibody titers were measured at baseline before exercise and 4 wk after vaccination. C-reactive protein (CRP) and interleukin-6 (IL-6) were measured at 24 and 48 h after vaccination. Delta CRP and IL-6 at 24 and 48 h were significantly higher after vaccination as compared to the sham injection. There were no differences in the levels of antibody titers against the H3N2 influenza strain between groups. However, women in the exercise group had a significantly higher antibody response against the H1N1 influenza strain as compared to the men, probably because of lower prevaccine titers. There were no significant differences in seroprotection between groups. Acute moderate aerobic exercise was not immunostimulatory in healthy older men but may serve as a vaccine adjuvant in older women.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Promoting training adaptations through nutritional interventions.
Hawley, John A; Tipton, Kevin D; Millard-Stafford, Mindy L
2006-07-01
Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.
NASA Technical Reports Server (NTRS)
Colliander, E. B.; Dudley, G. A.; Tesch, P. A.
1988-01-01
Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.
Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace
2017-07-01
This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (P<0.001). In all participants, %HRR and %VO 2 R throughout walking and running bouts were around or above the gas exchange threshold. In conclusion, elderly men exhibited higher cardiorespiratory responses during 30-min bouts of running than walking at WRTS. Nevertheless, walking corresponded to relative metabolic intensities compatible with preservation or improvement of cardiorespiratory fitness and should be preferable over running at WRTS in the untrained elderly characterized by poor fitness and reduced exercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.
Cardiac Autonomic and Blood Pressure Responses to an Acute Bout of Kettlebell Exercise.
Wong, Alexei; Nordvall, Michael; Walters-Edwards, Michelle; Lastova, Kevin; Francavillo, Gwendolyn; Summerfield, Liane; Sanchez-Gonzalez, Marcos
2017-10-07
Kettlebell (KB) training has become an extremely popular exercise program for improving both muscle strength and aerobic fitness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute KB exercise session are currently unknown. Understanding the impact of this exercise modality on the post-exercise autonomic modulation and BP would facilitate appropriate exercise prescription in susceptible populations. The present study evaluated the effects of an acute session of KB exercise on heart rate variability (HRV) and BP responses in healthy individuals. Seventeen (M=10, F=7) healthy subjects completed either a KB or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 3, 10 and 30 min after each trial. There were significant increases (P < 0.01) in heart rate, markers of sympathetic activity (nLF) and sympathovagal balance (nLF/nHF) for 30 min after the trial KB trial, while no changes from baseline were observed after the control trial. There were also significant decreases (P < 0.01) in markers of vagal tone (RMMSD, nHF) for 30 min as well as (P < 0.01) systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that KB exercise increases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential clinical application of KB training in populations that might benefit from post-exercise hypotension, such as hypertensives.
Leung, Wilson K.C.; Chu, KL
2017-01-01
Background Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. Methods Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. Results After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P < 0.001), whereas the increases in the MG and LG stiffness were found to be more drastic by 75 + 47.7% (P < 0.001) and 71.7 + 51.8% (P < 0.001), respectively. Regarding the AT, MG and LG stiffness measurements, the inter-operator reliability was 0.940, 0.987 and 0.986, and the intra-operator reliability was 0.916 to 0.978, 0.801 to 0.961 and 0.889 to 0.985, respectively. Discussion The gastrocnemius muscles were shown to bear larger mechanical loads than the AT during an acute bout of eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy. PMID:28740756
Santana, Davi A; Poortmans, Jacques R; Dórea, Egidio Lima; Machado, Juliana Bannwart de Andrade; Fernandes, Alan Lins; Sá-Pinto, Ana Lúcia; Gualano, Bruno; Roschel, Hamilton
2017-08-01
Exercise has been overlooked as a potential therapy in chronic kidney disease (CKD), mainly because of a lack of understanding on its safety aspects. Notably, there are no data on renal function after exercise in CKD considering its stages. We investigated the acute effects of a 30-min moderate-intensity aerobic exercise bout on glomerular filtration rate (GFR) and albuminuria in 22 nondialysis CKD patients divided into: CKD stages 1 and 2 (CKD 1-2 ) and CKD stages 3 and 4 (CKD 3-4 ). Eleven body mass index-, age-, and sex-matched healthy individuals served as control (CON). Blood and urine samples were collected before, immediately after, and up to 90 min postexercise for creatinine and albumin assessments. GFR was determined by creatinine clearance (GFR Cr-Cl ). All CKD patients had significantly lower peak oxygen uptake than CON. CKD 1-2 and CKD 3-4 had increasingly higher serum creatinine than CON (9.6 ± 2.6, 25.6 ± 1.01, and 7.5 ± 1.4 mg/l, respectively); however, no within-group changes in serum or urinary creatinine were observed across time. GFR Cr-Cl was decreased in CKD 1-2 and CKD 3-4 compared with CON (91 ± 17 ml·min -1 ·1.73 m -2 ; 34 ± 15 ml·min -1 ·1.73 m -2 ; 122 ± 20 ml·min -1 ·1.73 m -2 , respectively). Most importantly, exercise did not affect GFR Cr-Cl in none of the groups across time. Albuminuria was significantly higher in CKD 3-4 (297 ± 284 µg/min) than in CON (5.4 ± 1.4 µg/min), but no within-group changes were observed after exercise. In conclusion, a single 30-min moderate-intensity aerobic exercise bout does not impair renal function in nondialysis CKD patients, regardless of disease stage, supporting the notion that exercise training can be safe in this disease. Copyright © 2017 the American Physiological Society.
Windsor, Mark T.; Bailey, Tom G.; Perissiou, Maria; Meital, Lara; Golledge, Jonathan; Russell, Fraser D.; Askew, Christopher D.
2018-01-01
Markers of chronic inflammation increase with aging, and are associated with cardiovascular disease prevalence and mortality. Increases in fitness with exercise training have been associated with lower circulating concentrations of cytokines known to have pro-inflammatory actions (such as interleukin-6 [IL-6]) and higher circulating concentrations of anti-inflammatory cytokines (interleukin-10 [IL-10]). However, the effect of cardiorespiratory fitness on acute cytokine responses to a single bout of exercise in healthy older individuals is unknown. We compared the response of plasma cytokines IL-6, tumor necrosis factor-alpha (TNF-α) and IL-10 to a bout of moderate-intensity continuous and higher-intensity interval exercise between older individuals with higher and lower levels of cardiorespiratory fitness. Sixteen lower-fit (VO2peak: 22.6±2.8 mL.kg−1.min−1) and fourteen higher-fit participants (VO2peak: 37.4±5.9 mL.kg−1.min−1) completed three 24 min experimental protocols in a randomized order: (1) moderate-intensity continuous exercise (40% of peak power output [PPO]); (2) higher-intensity interval exercise (12 × 1 min intervals at 70% PPO separated by 1 min periods at 10% PPO); or (3) non-exercise control. Plasma cytokines were measured at rest, immediately after, and during 90 min of recovery following exercise or control. Plasma IL-6 concentrations at baseline were greater in the higher-fit compared to the lower-fit group (P = 0.02), with no difference in plasma IL-10 or TNF-α concentrations at baseline between groups. Plasma IL-6 and IL-10 concentrations in both groups increased immediately after all protocols (IL-6: P = 0.02, IL-10: P < 0.01). However, there was no difference in the IL-6 and IL-10 response between the exercise and non-exercise (control) protocols. After all protocols, no changes in plasma TNF-α concentrations were observed in either the higher- or lower-fit groups. In this study, basal concentrations of circulating IL-6 were elevated in older individuals with higher levels of cardiorespiratory fitness. However, changes in plasma cytokine concentrations after exercise were not different to changes after non-exercise control in both the lower- and higher-fit groups. PMID:29599722
West, Daniel W. D.; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R.
2017-01-01
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27–0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise. PMID:28696380
Brown, Richard A; Prince, Mark A; Minami, Haruka; Abrantes, Ana M
2016-10-01
Aerobic exercise is currently being studied as a relapse prevention strategy for individuals with alcohol use disorders. Negative affect and cravings predict relapse. The acute effects of moderate-intensity exercise have been shown to improve mood and reduce craving. The current study examined the acute effects of exercise on changes in mood, anxiety, and craving from pre- to post-exercise at each week of a 12-week moderate intensity exercise intervention with sedentary alcohol dependent adults. Twenty-six participants in the exercise condition of a larger randomized clinical trial (Brown et al., 2014) exercised in small groups at moderate intensity for 20 to 40 minutes per session. Participants rated mood, anxiety, and cravings in the present moment before and after each exercise session over the course of the 12-week intervention. Data analyses focused on effect size and interval estimation. Joinpoint analysis was used to model longitudinal trends. Increases in mood and decreases in anxiety and craving were apparent at every session. Effect size estimates revealed that average change from pre- to post-exercise was in the small to medium range with some individual sessions reaching the large range. Joinpoint analyses revealed that the pre-post exercise changes in mood increased, anxiety remained stable, and craving diminished across the 12 weeks. This study provides provisional support for a change in mood, anxiety and alcohol cravings for the role of exercise in the early recovery period for alcohol dependence. Acute single bouts of moderate-intensity exercise may help individuals with alcohol dependence manage mood, anxiety, and craving thereby reducing relapse risk, but further research is needed with a more rigorous study design.
Medford, Heidi M.; Porter, Karen
2013-01-01
Cardiac hypertrophy induced by pathological stimuli is regulated by a complex formed by the repressor element 1-silencing transcription factor (REST) and its corepressor mSin3A. We previously reported that hypertrophic signaling is blunted by O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins. Regular exercise induces a physiological hypertrophic phenotype in the heart that is associated with decreased O-GlcNAc levels, but a link between O-GlcNAc, the REST complex, and initiation of exercise-induced cardiac hypertrophy is not known. Therefore, mice underwent a single 15- or 30-min bout of moderate- to high-intensity treadmill running, and hearts were harvested immediately and compared with sedentary controls. Cytosolic O-GlcNAc was lower (P < 0.05) following 15 min exercise with no differences in nuclear levels (P > 0.05). There were no differences in cytosolic or nuclear O-GlcNAc levels in hearts after 30 min exercise (P > 0.05). Cellular compartment levels of O-GlcNAc transferase (OGT, the enzyme that removes the O-GlcNAc moiety from proteins), REST, mSin3A, and histone deacetylases (HDACs) 1, 2, 3, 4, and 5 were not changed with exercise. Immunoprecipitation revealed O-GlcNAcylation of OGT and HDACs 1, 2, 4, and 5 that was not changed with acute exercise; however, exercised hearts did exhibit lower interactions between OGT and REST (P < 0.05) but not between OGT and mSin3A. These data suggest that hypertrophic signaling in the heart may be initiated by as little as 15 min of exercise via intracellular changes in protein O-GlcNAcylation distribution and reduced interactions between OGT and the REST chromatin repressor. PMID:23624624
Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.
ERIC Educational Resources Information Center
Kearney, Jay T.
The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…
Townsend, Jeremy R.; Hoffman, Jay R.; Gonzalez, Adam M.; Jajtner, Adam R.; Boone, Carleigh H.; Robinson, Edward H.; Mangine, Gerald T.; Wells, Adam J.; Fragala, Maren S.; Fukuda, David H.; Stout, Jeffrey R.
2015-01-01
Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation. PMID:25792982
Yanes, Danielle; Loprinzi, Paul D
2018-06-11
The present experiment evaluated the effects of acute exercise on iconic memory and short- and long-term episodic memory. A two-arm, parallel-group randomized experiment was employed ( n = 20 per group; M age = 21 year). The experimental group engaged in an acute bout of moderate-intensity treadmill exercise for 15 min, while the control group engaged in a seated, time-matched computer task. Afterwards, the participants engaged in a paragraph-level episodic memory task (20 min delay and 24 h delay recall) as well as an iconic memory task, which involved 10 trials (at various speeds from 100 ms to 800 ms) of recalling letters from a 3 × 3 array matrix. For iconic memory, there was a significant main effect for time (F = 42.9, p < 0.001, η² p = 0.53) and a trend towards a group × time interaction (F = 2.90, p = 0.09, η² p = 0.07), but no main effect for group (F = 0.82, p = 0.37, η² p = 0.02). The experimental group had higher episodic memory scores at both the baseline (19.22 vs. 17.20) and follow-up (18.15 vs. 15.77), but these results were not statistically significant. These findings provide some suggestive evidence hinting towards an iconic memory and episodic benefit from acute exercise engagement.
Kriel, Yuri; Kerhervé, Hugo A; Askew, Christopher D; Solomon, Colin
High intensity interval training (HIIT) has been proposed as a time-efficient format of exercise to reduce the chronic disease burden associated with sedentary behaviour. Changes in oxygen utilisation at the local tissue level during an acute session of HIIT could be the primary stimulus for the health benefits associated with this format of exercise. The recovery periods of HIIT effect the physiological responses that occur during the session. It was hypothesised that in sedentary individuals, local and systemic oxygen utilisation would be higher during HIIT interspersed with active recovery periods, when compared to passive recovery periods. Twelve sedentary males (mean ± SD; age 23 ± 3 yr) completed three conditions on a cycle ergometer: 1) HIIT with passive recovery periods between four bouts (HIITPASS) 2) HIIT with active recovery periods between four bouts (HIITACT) 3) HIITACT with four HIIT bouts replaced with passive periods (REC). Deoxygenated haemoglobin (HHb) in the vastus lateralis (VL) and gastrocnemius (GN) muscles and the pre-frontal cortex (FH), oxygen consumption (VO2), power output and heart rate (HR) were measured continuously during the three conditions. There was a significant increase in HHb at VL during bouts 2 (p = 0.017), 3 (p = 0.035) and 4 (p = 0.035) in HIITACT, compared to HIITPASS. Mean power output was significantly lower in HIITACT, compared to HIITPASS (p < 0.001). There was a significant main effect for site in both HIITPASS (p = 0.029) and HIITACT (p = 0.005). There were no significant differences in VO2 and HR between HIITPASS and HIITACT. The increase in HHb at VL and the lower mean power output during HIITACT could indicate that a higher level of deoxygenation contributes to decreased mechanical power in sedentary participants. The significant differences in HHb between sites indicates the specificity of oxygen utilisation.
Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi
2016-01-01
Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. © 2015 by the Society for Experimental Biology and Medicine.
Ellingsen, Maren Mikkelsen; Johannesen, Sunniva Launes; Martinsen, Egil W; Hallgren, Mats
2018-06-04
Novel treatments for substance use disorders are needed. Acute bouts of exercise can improve mood states in non-clinical populations, but effects in those with poly-substance dependence are understudied. We examined the feasibility and short-term effects of three types of exercise on drug cravings, self-esteem, mood and positive/negative affect in nine poly-drug-dependent inpatients. Using a cross-over design, changes in the four study outcomes were assessed immediately before exercise and on four separate occasions post-exercise (immediately after, then at 1, 2 and 4 h post-exercise) enabling patterns of change over time (analysis of covariance) to be observed. Participants were willing and able to engage in different non-laboratory based exercises. Football was associated with non-significant short-term reductions in drug cravings. A similar trend was seen for circuit-training, but not walking. Football and circuit-training were associated with brief improvements in mood and positive/negative affect. No adverse events were reported. Football, circuit training and walking are feasible therapeutic activities for inpatients with poly-substance dependence. Controlled trials are needed to determine the long-term effects of these activities. © 2018 Australasian Professional Society on Alcohol and other Drugs.
Combined effect of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation.
Kurobe, Kazumichi; Nakao, Saori; Nishiwaki, Masato; Matsumoto, Naoyuki
2017-03-01
We investigated the effect of the combination of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation. Subjects were seven young, healthy male adults. They performed four trials: a single 30-min bout of exercise following ingestion of plain hot water (WS) or coffee (CS); a trial with three 10-min bouts of exercise separated by 10-min periods of rest following ingestion of plain hot water (WR) or coffee (CR). The coffee contained 5 mg kg -1 of caffeine. All trials were performed on a cycle ergometer at 40% maximal oxygen uptake for each subject an hour after beverage ingestion. Oxygen uptake in the CS and CR trials was higher compared with the WS and WR trials at 90 min after exercise (P<0·05). Respiratory exchange ratio (RER) in the CS and CR trials was decreased during the whole recovery period compared with baseline (P<0·05), whereas no significant decreases were observed in either the WS or WR trials. Moreover, RER was significantly lower at 30 min after exercise in the CR trial than in either the WS or WR trials (P<0·05 each). Similarly, it is notable that fat oxidation rate in the CR trial was significantly higher at 30 min after exercise compared to that in the WS and WR trials (P<0·05). These results suggest that the combination of coffee intake and repeated bouts of low-intensity exercise enhances fat oxidation in the period after exercise. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Kao, Shih-Chun; Westfall, Daniel R; Soneson, Jack; Gurd, Brendon; Hillman, Charles H
2017-09-01
The purpose of this study was to investigate the effects of a single bout of high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) on inhibitory control. The P3 component of the stimulus-locked ERP was collected in 64 young adults during a modified flanker task following 20 min of seated rest, 20 min of CAE, and 9 min of HIIT on separate days in counterbalanced order. Participants exhibited shorter overall reaction time following CAE and HIIT compared to seated rest. Response accuracy improved following HIIT in the task condition requiring greater inhibitory control compared to seated rest and CAE. P3 amplitude was larger following CAE compared to seated rest and HIIT. Decreased P3 amplitude and latency were observed following HIIT compared to seated rest. The current results replicated previous findings indicating the beneficial effect of acute CAE on behavioral and neuroelectric indices of inhibitory control. With a smaller duration and volume of exercise, a single bout of HIIT resulted in additional improvements in inhibitory control, paralleled by a smaller and more efficient P3 component. In sum, the current study demonstrated that CAE and HIIT differentially facilitate inhibitory control and its underlying neuroelectric activation, and that HIIT may be a time-efficient approach for enhancing cognitive health. © 2017 Society for Psychophysiological Research.
Fatigue Exacerbation by Interval or Continuous Exercise in Chronic Fatigue Syndrome.
Sandler, Carolina X; Lloyd, Andrew R; Barry, Benjamin K
2016-10-01
The objective of this study is to determine whether the typical exacerbation of symptoms in patients with chronic fatigue syndrome (CFS) after a bout of exercise differs between high-intensity interval training (HIIT) or continuous (CONT) aerobic exercise of the same duration and mechanical work. Participants with specialist-diagnosed CFS performed two 20-min bouts of cycling in a randomized crossover study. The bouts were either moderate-intensity continuous (70% age-predicted HR maximum) or high-intensity interval exercise, separated by at least 2 wk. Self-report questionnaires capturing fatigue, the related symptoms, and actigraphy were collected across 2 d before and 4 d after the exercise. Comparisons between exercise bouts were made using paired sample t-tests. Fourteen moderately affected participants who were unable to work, but not bed bound, completed the study (nine female, 32 ± 10 yr, 67 ± 11 kg). Mechanical work was matched successfully between the exercise bouts (HIIT, 83,037, vs CONT, 83,348 J, P = 0.84). Mean HR (HIIT, 76% ± 5%, vs CONT, 73% ± 6% age-predicted HR maximum, P < 0.05) and RPE (6-20) in the legs (HIIT, 15.4 ± 1.4, vs CONT, 13.2 ± 1.2, P < 0.001) were higher for the interval compared with continuous exercise. Mean fatigue scores (0-10) were similar before each exercise challenge (HIIT, 4.5 ± 1.8, vs CONT, 4.1 ± 1.7, P = 0.43). Participants reported an increase in fatigue scores after both challenges (mean difference: HIIT, 1.0 ± 1.3, P < 0.01; CONT, 1.5 ± 0.7, P < 0.001), but these exacerbations in fatigue were not statistically or clinically different (P = 0.20). High-intensity interval exercise did not exacerbate fatigue any more than continuous exercise of comparable workload. This finding supports evaluation of HIIT in graded exercise therapy interventions for patients with CFS.
Intensity and duration of intermittent exercise and recovery during a soccer match.
Orendurff, Michael S; Walker, Jason D; Jovanovic, Mladen; Tulchin, Kirsten L; Levy, Morris; Hoffmann, David K
2010-10-01
Soccer is a sport consisting of high-intensity intermittent exercise, with players making forays across their anaerobic threshold for tactical advantage followed by periods of recovery. The intensity and duration of these work and recovery bouts were defined during a men's soccer match using StepWatch Activity Monitors recording step rate for each 3-second period. The data were coded by custom software to separate work bouts (step rate ≥ 4) from recovery bouts (step rate < 4), and a square wave of the pattern of bouts was plotted for 5 players: center forward, central midfielder, wing midfielder, central defender, and wing defender. Four values were calculated for each work and recovery bout identified: duration, and mean, maximum, and minimum step rate (intensity). This novel technique provided detailed graphical information on the duration and exercise intensity of each position throughout the match. The center midfielder was able to sustain work and recovery bout characteristics throughout the match and appeared to recover at higher intensity levels than other players. The forward showed the consequence of accumulated fatigue late in the match and was unable to sustain the duration of high-intensity work bouts observed earlier in the match. The central defender attenuated the intensity of his work and recovery bouts late in the match staying closer to a more moderate work rate with fewer high- or low-intensity bouts. Having objective data qualifying players' work and recovery bout characteristics might prove valuable for tactical decision making, substitution timing, and for planning future training sessions.
The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults
Röder, Brigitte; Schmidt-Kassow, Maren
2016-01-01
In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149
Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian
2016-12-01
Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kilian, Yvonne; Wehmeier, Udo F; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy
2016-01-01
The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min(-1)·kg(-1) peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30', 60', 180') and HVT (d3, 0', 60'). RESULTS of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.
Neck strength recovery after a single bout of specific strengthening exercise.
Netto, Kevin; Carstairs, Greg; Kidgell, Dawson; Aisbett, Brad
2010-08-01
To determine the level of neck strength decrement and the rate of strength recovery of the neck muscles after a single bout of specific neck conditioning exercise in both males and females. A decrement in neck strength may be evident after a bout of strengthening exercise. Intervention study with pre-and-post design. Biomechanics laboratory. Twenty healthy participants (10 male and 10 female, mean +/- standard deviation age 22 +/- 1.2 years). Participants performed a single bout of neck strengthening exercise. Neck strength testing using an isokinetic dynamometer was performed pre and at five time points (1 h, one, three, five and seven days) post-exercise to assess the level of neck strength decrement and neck strength recovery rate from pre-exercise levels. Statistically significant (p > or = 0.036) decreases in neck extension strength were recorded in all participants 1 h and one day post-exercise. The level of neck extension strength returned to pre-exercise levels three days post-exercise and surpassed pre-exercise levels five and seven days post-exercise. The male participants' neck flexion strength decrement and recovery followed a similar pattern to that displayed in neck extension but more variability in neck flexion strength recovery rates were recorded in the female participants in this study. The consistent strength recovery times for the male participants recorded in this study idealise the prescription of neck strengthening exercises in a periodised fashion. More investigation needs to be instigated for the female neck musculature as consistent strength recovery rates were not identified in this study. 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dunton, Genevieve Fridlund; Berrigan, David; Ballard-Barbash, Rachel; Perna, Frank; Graubard, Barry I.; Atienza, Audie A.
2012-01-01
We used data from the American Time Use Survey (years 2003-06) to analyze whether the intensity and duration of high school students' (ages 15-18 years) sports and exercise bouts differed across physical and social environments. Boys' sports and exercise bouts were more likely to reach a vigorous intensity when taking place at school and with…
Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S
2012-10-01
The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.
Individual Variation in Hunger, Energy Intake, and Ghrelin Responses to Acute Exercise.
King, James A; Deighton, Kevin; Broom, David R; Wasse, Lucy K; Douglas, Jessica A; Burns, Stephen F; Cordery, Philip A; Petherick, Emily S; Batterham, Rachel L; Goltz, Fernanda R; Thackray, Alice E; Yates, Thomas; Stensel, David J
2017-06-01
This study aimed to characterize the immediate and extended effect of acute exercise on hunger, energy intake, and circulating acylated ghrelin concentrations using a large data set of homogenous experimental trials and to describe the variation in responses between individuals. Data from 17 of our group's experimental crossover trials were aggregated yielding a total sample of 192 young, healthy males. In these studies, single bouts of moderate to high-intensity aerobic exercise (69% ± 5% V˙O2 peak; mean ± SD) were completed with detailed participant assessments occurring during and for several hours postexercise. Mean hunger ratings were determined during (n = 178) and after (n = 118) exercise from visual analog scales completed at 30-min intervals, whereas ad libitum energy intake was measured within the first hour after exercise (n = 60) and at multiple meals (n = 128) during the remainder of trials. Venous concentrations of acylated ghrelin were determined at strategic time points during (n = 118) and after (n = 89) exercise. At group level, exercise transiently suppressed hunger (P < 0.010, Cohen's d = 0.77) but did not affect energy intake. Acylated ghrelin was suppressed during exercise (P < 0.001, Cohen's d = 0.10) and remained significantly lower than control (no exercise) afterward (P < 0.024, Cohen's d = 0.61). Between participants, there were notable differences in responses; however, a large proportion of this spread lay within the boundaries of normal variation associated with biological and technical assessment error. In young men, acute exercise suppresses hunger and circulating acylated ghrelin concentrations with notable diversity between individuals. Care must be taken to distinguish true interindividual variation from random differences within normal limits.
Chronobiological considerations for exercise and heart disease.
Atkinson, Greg; Drust, Barry; George, Keith; Reilly, Thomas; Waterhouse, Jim
2006-01-01
Although regular physical activity is beneficial for many clinical conditions, an acute bout of exercise might increase the risk of an adverse clinical event, such as sudden cardiac death or myocardial infarction, particularly in vulnerable individuals. Since it is also known that the incidence of these events peaks in the morning and that some cardiac patients prefer to schedule leisure-time physical activity before lunch, the question arises as to whether morning exercise is 'inherently' more risky than physical activity performed at other times of day. We attempt to answer this question by reviewing the relevant epidemiological data as well as the results of chronobiological and exercise-related studies that have concentrated on the pathophysiological mechanisms for sudden cardiac events. We also consider generally how chronobiology might impact on exercise prescription in heart disease. We performed a structured literature search in the PubMed and WEBofSCIENCE databases for relevant studies published between 1981 and 2004. The limited amount of published epidemiological data did not allow us to conclude that a bout of vigorous exercise in the morning increases the relative risk of either primary cardiac events in apparently healthy individuals, or secondary events in cardiac patients enrolled in supervised exercise programmes. Nevertheless, these data are not directly relevant to individuals who have a history of heart disease and perform uncontrolled habitual activities. It appears as though the influence of time of day on the cardiovascular safety of this type of exercise has not been examined in this population. There is evidence that several pathophysiological variables (e.g. blood pressure, endothelial function, fibrinolysis) vary in parallel with typical diurnal changes in freely chosen activity. Nevertheless, few studies have been designed to examine specifically whether such variables respond differently to a 'set' level of exercise in the morning compared with the afternoon or evening. Even fewer researchers have adequately separated the influences of waking from sleep, adopting an upright posture and physical exertion per se on these pathophysiological responses at different times of day. In healthy individuals, exercise is generally perceived as more difficult and functional performance is decreased in the morning hours. These observations have been confirmed for patients with heart disease in only one small study. It has also not been confirmed, using an adequately powered study involving cardiac patients, that the responses of heart rate and oxygen consumption (VO(2)) to a set bout of exercise show the highest reactivity in the afternoon and evening, which is the case with healthy individuals. Confirmation of this circadian variation would be important, since it would mean that exercise might be prescribed at too high an intensity in the morning if heart rate or VO(2) responses are employed as markers of exercise load. We conclude that there is some parallelism between the diurnal changes in physical activity and those in the pathophysiological mechanisms associated with acute cardiac events. Nevertheless, more studies are needed to ascertain whether the responses of endothelial function, fibrinolysis and blood pressure to a set exercise regimen differ according to time of day. The results of epidemiological studies suggest that morning exercise is just as safe as afternoon exercise for cardiac patients enrolled in a supervised rehabilitation programme. Nevertheless, it is unclear whether time of day alters the risk of a cardiac event occurring during spontaneous physical activity performed by individuals with established risk factors for heart disease.
Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity
NASA Technical Reports Server (NTRS)
Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.
1996-01-01
We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.
Strength After Bouts of Eccentric or Concentric Actions
NASA Technical Reports Server (NTRS)
Golden, Catherine L.; Dudley, Gary A.
1992-01-01
This study examined the influence of an initial bout of eccentric or concentric actions and a subsequent bout of eccentric actions on muscular strength. Twenty-four healthy males, 24-45 yr old, were placed in three groups that performed eccentric actions in bouts 1 and 2 (ECC/ECC, N = 8), concentric actions in bout 1, and eccentric actions in bout 2 (CON/ECC, N = 8) or served as controls (N = 8). Bouts involved unilateral actions with the left and right quadriceps femoris. Ten sets of 10 repetitions with an initial resistance equal to 85% of the eccentric or concentric one repetition maximum (1 RM) were performed for each bout. Three minutes of rest were given between sets and 3 wk between bouts. Two weeks before bout 1 and 1, 4, 7, and 10 d after bouts 1 and 2, eccentric and concentric 1 RM were measured for the right quadriceps femoris and a speed-torque relation established for the left quadriceps femoris. Eccentric and concentric 1 RM decreased (P less than 0.05) 32% 1 d after bout 1 for group ECC/ECC. The speed-torque relation was down-shifted (P less than 0.05) 38%. Eccentric 1 RM and eccentric and isometric torque returned to normal 6 d later. Concentric 1 RM and torque at 3.14 rad-s(exp -1) had not recovered on day 10 (-7% for both, P less than 0.05). Decreases in strength after bout 2 for group ECC/ECC only occurred on day 1 (-9% for concentric 1 RM and 16% downshift of the speed- torque relation). Group CONIECC showed the opposite responses; marked decreases in strength after bout 2 but not bout 1. The results indicate that the initial decrease in strength after performance of a novel bout of eccentric exercise is comparable for eccentric, concentric and isometric muscle actions. Recovery of strength, however, appears to occur more rapidly for eccentric and isometric actions. They suggest that performance of a prior bout of eccentric but not concentric actions, as done in this study, can essentially eradicate decreases in strength after a subsequent bout of eccentric exercise. It is suggested that neural factors are, in part, responsible for adaptations to eccentric exercise.
Effect of fluid ingestion on orthostatic responses following acute exercise
NASA Technical Reports Server (NTRS)
Davis, J. E.; Fortney, S. M.
1997-01-01
Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.
Terink, Rieneke; Balvers, Michiel G J; Hopman, Maria T; Witkamp, Renger F; Mensink, Marco; Gunnewiek, Jacqueline M T Klein
2017-06-01
Magnesium is essential for optimal sport performance, generating an interest to monitor its status in athletes. However, before measuring magnesium status in blood could become routine, more insight into its diurnal fluctuations and effects of exercise itself is necessary. Therefore, we measured the effect of an acute bout of exercise on ionized (iMg) and total plasma magnesium (tMg) in blood obtained from 18 healthy well-trained endurance athletes (age, 31.1 ± 8.1 yr.; VO 2max , 50.9 ± 7.5 ml/kg/min) at multiple time points, and compared this with a resting situation. At both days, 7 blood samples were taken at set time points (8:30 fasted, 11:00, 12:30, 13:30, 15:00, 16:00, 18:30). The control day was included to correct for a putative diurnal fluctuation of magnesium. During the exercise day, athletes performed a 90 min bicycle ergometer test (70% VO 2max ) between 11:00 and 12:30. Whole blood samples were analyzed for iMg and plasma for tMg concentrations. Both concentrations decreased significantly after exercise (0.52 ± 0.04-0.45 ± 0.03 mmol/L and 0.81 ± 0.07-0.73 ± 0.06 mmol/L, respectively, p < .001) while no significant decline was observed during that time-interval on control days. Both, iMg and tMg, returned to baseline, on average, 2.5 hr after exercise. These findings suggest that timing of blood sampling to analyze Mg status is important. Additional research is needed to establish the recovery time after different types of exercise to come to a general advice regarding the timing of magnesium status assessment in practice.
Relationship between perceived exertion during exercise and subsequent recovery measurements.
Mann, T N; Lamberts, R P; Nummela, A; Lambert, M I
2017-03-01
The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg's Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOC MAG ), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR 60s ) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR 60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOC MAG . This finding suggests that, of the 4 recovery measurements under investigation, HRR 60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels.
Relationship between perceived exertion during exercise and subsequent recovery measurements
Lamberts, RP; Nummela, A; Lambert, MI
2016-01-01
The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg’s Rating of Perceived Exertion (RPE), a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36) completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake) followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR) were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the EPOC curve (EPOCτ), 1 min heart rate recovery (HRR60s) and the time constant of the HR recovery curve (HRRτ) for each participant. RPE taken in the last minute of exercise was significantly associated with HRR60s (r=-0.69), EPOCτ (r=0.52) and HRRτ (r=0.43) but not with EPOCMAG. This finding suggests that, of the 4 recovery measurements under investigation, HRR60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels. PMID:28416890
White, S H; Wohlgemuth, S; Li, C; Warren, L K
2017-09-01
Exercise is known to promote mitochondrial biogenesis in skeletal muscle as well as enhance mitochondrial function and efficiency in human and rodent models. These adaptations help to decrease exercise-associated production of reactive oxygen species, which can negatively affect health and performance if antioxidant mechanisms are overwhelmed. Little is known about the adaptations of mitochondria in response to exercise training in the growing horse or if supplementation with a dietary antioxidant can improve mitochondrial function. To evaluate the separate and combined effects of selenium (Se) supplementation, training, and an acute strenuous exercise bout on mitochondrial adaptations in young horses, 30 American Quarter Horse yearlings were randomly assigned to an exercise training group or a no-training group and, within each group, received either 0.1 or 0.3 mg Se/kg DM for 14 wk. The study was split into 2 phases (wk 0 to 8 and wk 9 to 14), with half of the trained horses switched to the opposite dietary treatment in Phase 2. At the end of each phase, all horses underwent a 120-min submaximal exercise test (SET; SET 1 and SET 2). Biopsies of the middle gluteal muscle were collected before and after each phase of the study and in response to each SET and analyzed for markers of mitochondrial number and function. At rest, horses receiving 0.3 mg Se/kg DM had higher citrate synthase activity ( = 0.021) than horses receiving 0.1 mg Se/kg DM, indicating higher mitochondrial content. In contrast, cytochrome oxidase (CCO) activity was not affected by dietary Se overall, but horses that were dropped from 0.3 mg Se/kg DM to 0.1 mg Se/kg DM during Phase 2 showed a decrease ( = 0.034) in integrated CCO activity from wk 9 to 14, suggesting impaired mitochondrial function. Mitochondrial enzyme activities were unaffected by an acute, strenuous exercise bout (SET 1 and SET 2). Our relatively low-intensity exercise training protocol did not appear to induce functional mitochondrial adaptations. However, elevated dietary Se may impart beneficial effects on mitochondrial biogenesis during growth and training. A more strenuous exercise training protocol should be investigated to determine the potential benefits of elevated dietary Se for elite equine athletes.
van Vliet, Stephan; Beals, Joseph W.; Martinez, Isabel G.; Skinner, Sarah K.; Burd, Nicholas A.
2018-01-01
Dietary protein ingestion is critical to maintaining the quality and quantity of skeletal muscle mass throughout adult life. The performance of acute exercise enhances muscle protein remodeling by stimulating protein synthesis rates for several hours after each bout, which can be optimized by consuming protein during the post-exercise recovery period. To date, the majority of the evidence regarding protein intake to optimize post-exercise muscle protein synthesis rates is limited to isolated protein sources. However, it is more common to ingest whole food sources of protein within a normal eating pattern. Emerging evidence demonstrates a promising role for the ingestion of whole foods as an effective nutritional strategy to support muscle protein remodeling and recovery after exercise. This review aims to evaluate the efficacy of the ingestion of nutrient-rich and protein-dense whole foods to support post-exercise muscle protein remodeling and recovery with pertinence towards physically active people. PMID:29462924
Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M
2014-01-01
Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001) above rest 60-180 min post-exercise and 184±28% (P = 0.037) 180-360 min post exercise. Quadriceps volume increased 7.9±1.6% (-1.9-24.7%) (P<0.001) after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1-3 h (r = 0.02), 3-6 h (r = 0.16) or the aggregate 1-6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.
Sex differences in autonomic function following maximal exercise.
Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo
2015-01-01
Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.
Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas
2018-01-01
The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.
Takimoto, Masaki; Takeyama, Mirei; Hamada, Taku
2013-11-01
The regulatory mechanisms responsible for acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in skeletal muscle remain unclear. 5'-adenosine-activated protein kinase (AMPK) is a key signaling molecule that regulates gene expression at the mRNA level. We examined whether AMPK activation is involved in acute exercise-induced expression of MCT1 and MCT4 mRNA in fast-twitch muscle. Male Sprague-Dawley rats were subjected to an acute bout of either 5min high-intensity intermittent swimming (HIS) or 6-h low-intensity prolonged swimming (LIS). The effects of acute exercise on the phosphorylation of AMPK (p-AMPK), calcium/calmodulin pendent kinase II (p-CaMKII), p38 mitogen-activated protein kinase (p-p38MAPK), and MCTs mRNA were analyzed in vivo. To observe the direct effects of AMPK activation on MCTs mRNA, the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), caffeine, and dantrolene were analyzed in vitro using an isolated muscle incubation model. The p-AMPK increased in response to both HIS and LIS, although the p-CaMKII and p-p38MAPK were increased only following HIS. Irrespective of exercise intensity, MCT1 and MCT4 mRNA was also transiently upregulated by both HIS and LIS. Direct exposure of the epitrochlearis muscle to 0.5mmol/L AICAR or 1mmol/L caffeine, which activated p-AMPK increased both MCT1 and MCT4 mRNA levels. When pAMPK was inhibited by dantrolene, neither MCT1 nor MCT4 mRNA was increased. These results suggest that acute exercise-induced increases in MCT1 and MCT4 mRNA expression may be possibly mediated by AMPK activation, at least in part in fast-twitch muscle. © 2013.
Heaney, Jennifer L J; Phillips, Anna C; Drayson, Mark T; Campbell, John P
2016-05-01
Traditionally, free light chains (FLCs) are used as key serum biomarkers in the diagnosis and monitoring of plasma cell malignancies, but polyclonal FLCs can also be used as an accurate real-time indicator of immune-activation and inflammation. The primary aim of the present study was to assess the effects of exercise training status on serum FLCs in older adults, and secondly, to examine if training status moderated serum FLC responses to acute exercise. Kappa and lambda serum FLC levels were measured in 45 healthy older adults (aged ≥ 60 years) who were either sedentary, physically active or endurance trained. FLCs were measured at baseline and in response to an acute bout of submaximal exercise. The endurance trained group had significantly lower levels of kappa and lambda serum FLCs compared with physically active or sedentary elderly adults; these effects were independent of age, BMI and renal function. There was no significant difference in whole immunoglobulins between groups. Exercise training status had no effect on serum FLC responses to acute exercise, which were marginal. In conclusion, endurance training was associated with lower FLC levels compared with less physically active individuals. These findings suggest that long-term endurance training may be beneficial in reducing basal inflammation in older adults as well as elevated FLCs present in inflammatory and autoimmune conditions, often associated with ageing. FLCs may serve as a useful biomarker for monitoring the efficacy of exercise intervention studies in healthy and clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.
A Pilot Study of Women’s Affective Responses to Common and Uncommon Forms of Aerobic Exercise
Stevens, Courtney J.; Smith, Jane Ellen; Bryan, Angela D.
2015-01-01
Objective To test the extent to which participants exposed to an uncommon versus common exercise stimulus would result in more favourable affect at post task. Design Experimental design. Participants, (N = 120) American women aged 18–45 years, were randomly assigned to complete 30-minutes of either the uncommon (HOOP; n = 58) or common (WALK; n = 62) exercise stimulus. Main Outcome Measures Self-reported affect and intentions for future exercise were measured before and after the 30-minute exercise bout. Results Analyses of covariance (ANCOVA) were run to compare post-task affect across the HOOP and WALK conditions. At post-task, participants assigned to HOOP reported more positively valenced affect, higher ratings of positive activated affect, lower ratings of negative deactivated affect, and stronger intentions for future aerobic exercise compared to participants assigned to WALK. Conclusions Participants who completed an uncommon bout of aerobic exercise (HOOP) reported more favourable affect post-exercise, as well as stronger intentions for future exercise, compared to participants who completed a common bout of aerobic exercise (WALK). Future work using a longitudinal design is needed to understand the relationships between familiarity with an exercise stimulus, affective responses to exercise, motivation for future exercise behaviour, and exercise maintenance over time. PMID:26394246
Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.
2007-01-01
Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964
Zorgati, Houssem; Prieur, Fabrice; Vergniaud, Thomas; Cottin, François; Do, Manh-Cuong; Labsy, Zakaria; Amarantini, David; Gagey, Olivier; Lasne, Françoise; Collomp, Katia
2014-08-01
All systemically administered glucocorticoids (GC) are prohibited in-competition, because of the potential ergogenic effects. Although short-term GC intake has been shown to improve performance during submaximal exercise, literature on its impact during brief intense exercise appears to be very scant. The purpose of this study was to examine the ergogenic and metabolic effects of prednisone during repeated bouts of high-intensity exercise. In a double-blind randomized protocol, ten recreational male athletes followed two 1-week treatments (Cor: prednisone, 60mg/day or Pla: placebo). At the end of each treatment, they hopped on their dominant leg for 30s three times consecutively and then hopped until exhaustion, with intervals of 5min of passive recovery. Blood and saliva samples were collected at rest and 3min after each exercise bout to determine the lactate, interleukin-6, interleukin-10, TNF-alpha, DHEA and testosterone values. The absolute peak force of the dominant leg was significantly increased by Cor but only during the first 30-s hopping bout (p<0.05), whereas time to exhaustion was not significantly changed after Cor treatment vs Pla (Pla: 119.9±24.7; Cor: 123.1±29.5s). Cor intake lowered basal and end-exercise plasma interleukin-6 and saliva DHEA (p<0.01) and increased interleukin-10 (p<0.01), whereas no significant change was found in blood lactate and TNF-alpha or saliva testosterone between Pla and Cor. According to these data, short-term glucocorticoid intake did not improve endurance performance during repeated bouts of high-intensity exercise, despite the significant initial increase in absolute peak force and anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.
Olenich, Sara A; Gutierrez-Reed, Navarre; Audet, Gerald N; Olfert, I Mark
2013-01-01
Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2–4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12–24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180–258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise. PMID:23878369
Forbes, Scott C; Harber, Vicki; Bell, Gordon J
2013-08-01
L-arginine may enhance endurance performance mediated by two primary mechanisms including enhanced secretion of endogenous growth hormone (GH) and as a precursor of nitric oxide (NO); however, research in trained participants has been equivocal. The purpose was to investigate the effect of acute L-arginine ingestion on the hormonal and metabolic response during submaximal exercise in trained cyclists. Fifteen aerobically trained men (age: 28 ± 5 y; body mass: 77.4 ± 9.5 kg; height: 180.9 ± 7.9 cm; VO2max: 59.6 ± 5.9 ml·kg- 1·min-1) participated in a randomized, double-blind, crossover study. Subjects consumed L-arginine (ARG; 0. 075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of submaximal exercise (60 min at 80% of power output achieved at ventilatory threshold). The ARG condition significantly increased plasma L-arginine concentrations (~146%), while no change was detected in the PLA condition. There were no differences between conditions for GH, nonesterified fatty acids (NEFA), lactate, glucose, VO2, VCO2, RER, CHO oxidation, and NOx. There was reduced fat oxidation at the start of exercise (ARG: 0.36 ± 0.25 vs. PLA: 0.42 ± 0.23 g·min-1, p < .05) and an elevated plasma glycerol concentrations at the 45-min time point (ARG: 340.3 vs. PLA: 288.5 μmol·L-1, p < .05) after L-arginine consumption. In conclusion, the acute ingestion of L-arginine did not alter any hormonal, metabolic, or cardio-respiratory responses during submaximal exercise except for a small but significant increase in glycerol at the 45-min time point and a reduction in fat oxidation at the start of exercise.
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-03-01
The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn't have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn't show statistically significant difference, it tended to increase in the pilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.
Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin
2014-01-01
[Purpose] The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. [Methods] We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. [Results] As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn’t have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn’t show statistically significant difference, it tended to increase in the pilates group (NS). [Conclusion] These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption. PMID:25566441
Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.
Rohde, T; MacLean, D A; Pedersen, B K
1998-06-01
The ability of lymphocytes to proliferate and generate lymphokine activated killer (LAK) cell activity in vitro is dependent on glutamine. In relation to intense exercise the lymphocyte concentration, the proliferative response, the natural killer and LAK cell activity, and the plasma glutamine concentration decline. It has been hypothesized that in relation to physical activity a lack of glutamine may temporarily affect the function of the immune system. The purpose of this study was to examine the influence of glutamine supplementation on exercise-induced immune changes. In a randomized cross-over placebo-controlled study, eight healthy male subjects performed three bouts of ergometer bicycle exercise lasting 60, 45, and 30 min at 75% of their VO2max separated by 2 h of rest. The arterial plasma glutamine concentration declined from 508 +/- 35 (pre-exercise) to 402 +/- 38 microM (2 h after the last exercise bout) in the placebo trial and was maintained above pre-exercise levels in the glutamine supplementation trial. The numbers of circulating lymphocytes and the phytohemagglutinin-stimulated lymphocyte proliferative response declined 2 h after, respectively, during each bout of exercise, whereas the LAK cell activity declined 2 h after the third bout. Glutamine supplementation in vivo, given in the described doses at the specific times, did not influence these changes. The present study does not appear to support the hypothesis that those aspects of postexercise immune changes studied are caused by decreased plasma glutamine concentrations.
Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig
2015-07-01
This study examined whether lower-volume exercise-induced muscle damage (EIMD) performed 2 weeks before high-volume muscle-damaging exercise protects against its detrimental effect on running performance. Sixteen male participants were randomly assigned to a lower-volume (five sets of ten squats, n = 8) or high-volume (ten sets of ten squats, n = 8) EIMD group and completed baseline measurements for muscle soreness, knee extensor torque, creatine kinase (CK), a 5-min fixed-intensity running bout and a 3-km running time-trial. Measurements were repeated 24 and 48 h after EIMD, and the running time-trial after 48 h. Two weeks later, both groups repeated the baseline measurements, ten sets of ten squats and the same follow-up testing (Bout 2). Data analysis revealed increases in muscle soreness and CK and decreases in knee extensor torque 24-48 h after the initial bouts of EIMD. Increases in oxygen uptake [Formula: see text], minute ventilation [Formula: see text] and rating of perceived exertion were observed during fixed-intensity running 24-48 h after EIMD Bout 1. Likewise, time increased and speed and [Formula: see text] decreased during a 3-km running time-trial 48 h after EIMD. Symptoms of EIMD, responses during fixed-intensity and running time-trial were attenuated in the days after the repeated bout of high-volume EIMD performed 2 weeks after the initial bout. This study demonstrates that the protective effect of lower-volume EIMD on subsequent high-volume EIMD is transferable to endurance running. Furthermore, time-trial performance was found to be preserved after a repeated bout of EIMD.
Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J
2015-09-01
Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Protein supplementation for military personnel: a review of the mechanisms and performance outcomes.
McLellan, Tom M
2013-11-01
Protein supplement use is common among athletes, active adults, and military personnel. This review provides a summary of the evidence base that either supports or refutes the ergogenic effects associated with different mechanisms that have been proposed to support protein supplementation. It was clear that if carbohydrate delivery was optimal either during or after an acute bout of exercise that additional protein will not increase exercise capacity. Evidence was also weak to substantiate use of protein supplements to slow the increase in brain serotonin and onset of central fatigue. It was also evident that additional research is warranted to test whether the benefits of protein supplements for enhancing recovery of fluid balance after exercise will affect subsequent work in the heat. In contrast, with repeated exercise, use of protein supplementation was associated with reductions in muscle soreness and often a faster recovery of muscle function due to reductions in protein degradation. There was also good supportive evidence for long-term benefits of protein supplementation for gains in muscle mass and strength through accelerated rates of protein synthesis, as long as the training stimulus was of sufficient intensity, frequency, and duration. However, studies have not examined the impact of protein supplements under the combined stress of a military environment that includes repeated bouts of exercise with little opportunity for feeding and recovery, lack of sleep, and exposure to extreme environments. Both additional laboratory and field research is warranted to help provide evidence-based guidance for the choice of protein supplements to enhance soldier performance.
Allsop, Susan; Dodd-Reynolds, Caroline J; Green, Benjamin P; Debuse, Dorothée; Rumbold, Penny L S
2015-12-28
The present study examined the acute effects of active gaming on energy intake (EI) and appetite responses in 8-11-year-old boys in a school-based setting. Using a randomised cross-over design, twenty-one boys completed four individual 90-min gaming bouts, each separated by 1 week. The gaming bouts were (1) seated gaming, no food or drink; (2) active gaming, no food or drink; (3) seated gaming with food and drink offered ad libitum; and (4) active gaming with food and drink offered ad libitum. In the two gaming bouts during which foods and drinks were offered, EI was measured. Appetite sensations - hunger, prospective food consumption and fullness - were recorded using visual analogue scales during all gaming bouts at 30-min intervals and at two 15-min intervals post gaming. In the two bouts with food and drink, no significant differences were found in acute EI (MJ) (P=0·238). Significant differences were detected in appetite sensations for hunger, prospective food consumption and fullness between the four gaming bouts at various time points. The relative EI calculated for the two gaming bouts with food and drink (active gaming 1·42 (sem 0·28) MJ; seated gaming 2·12 (sem 0·25) MJ) was not statistically different. Acute EI in response to active gaming was no different from seated gaming, and appetite sensations were influenced by whether food was made available during the 90-min gaming bouts.
Cockcroft, Emma J; Williams, Craig A; Jackman, Sarah R; Bassi, Shikhar; Armstrong, Neil; Barker, Alan R
2018-01-01
The purpose of this study was to assess the acute effect of high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on glucose tolerance, insulin sensitivity and fat oxidation in young boys. Eleven boys (8.8 ± 0.8 y) completed three conditions: 1) HIIE; 2) work-matched MIE; and 3) rest (CON) followed by an oral glucose tolerance test (OGTT) to determine glucose tolerance and insulin sensitivity (Cederholm index). Fat oxidation was measured following the OGTT using indirect calorimetry. There was no effect for condition on plasma [glucose] and [insulin] area under the curve (AUC) responses following the OGTT (P > 0.09). However, there was a "trend" for a condition effect for insulin sensitivity with a small increase after HIIE (P = 0.04, ES = 0.28, 9.7%) and MIE (P = 0.07, ES = 0.21, 6.5%) compared to CON. There was an increase in fat oxidation AUC following HIIE (P = 0.008, ES = 0.79, 38.9%) compared to CON, but with no differences between MIE and CON and HIIE and MIE (P > 0.13). In conclusion, 7- to 10-year-old boys may have limited scope to improve insulin sensitivity and glucose tolerance after a single bout of HIIE and MIE. However, fat oxidation is augmented after HIIE but not MIE.
Caffeine delays autonomic recovery following acute exercise.
Bunsawat, Kanokwan; White, Daniel W; Kappus, Rebecca M; Baynard, Tracy
2015-11-01
Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults. © The European Society of Cardiology 2014.
Temperature responses in severely burned children during exercise in a hot environment.
McEntire, Serina J; Chinkes, David L; Herndon, David N; Suman, Oscar E
2010-01-01
The authors have previously described thermoregulatory responses of severely burned children during submaximal exercise in a thermoneutral environment. However, the thermoregulatory response of burned children to exercise in the heat is not well understood and could have important safety implications for rehabilitation. Children (n = 10) with >40% TBSA burns and nonburned children (n = 10) performed a 30-minute bout of treadmill exercise at 75% of their peak aerobic power in a heated environment. Intestinal temperature, burned and unburned skin temperature, and heart rate were recorded pre-exercise, every 2 minutes during exercise, and during recovery. Three of the 10 burned children completed the exercise bout in the heat; however, all the nonburned children completed the 30-minute bout. One burned child reached a core body temperature >39 degrees C at minute 23. Burned children had significantly higher core body temperature through the first 12 minutes of exercise compared with nonburned children. However, nine of 10 (90%) burned children did not become hyperthermic during exercise in the heat. Specific to this study, hyperthermia did not typically occur in burned children, relative to nonburned children. Whether this is due to an intolerance to exercise in the heat or to an inability to generate sufficient heat during exercise needs to be explored further.
Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh
2008-04-04
Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less
The effect of histamine on changes in mental energy and fatigue after a single bout of exercise.
Loy, Bryan D; O'Connor, Patrick J
2016-01-01
The purpose of this research was to determine if histamine, acting on brain H1 receptors, influences changes in feelings of energy and fatigue or cognitive test performance after acute exercise. Women (n=20) with low vigor and high fatigue were administered the H1 antagonist drug doxepin hydrocholoride (6 mg) in tomato juice and tomato juice alone (placebo) in a randomized, double-blinded, cross-over experiment before performing 30 min of light intensity cycling exercise and completing energy, fatigue, sleepiness, and motivation scales, and cognitive tasks. After exercise, mental fatigue increased for the doxepin condition (p=0.014) but not placebo (p=0.700), while mental energy decreased for both PLA and DOX (p<0.001) and cognitive task performance was unaffected. It is inferred that histamine binding to H1 receptors in the brain has a role in exercise-induced reductions in mental fatigue, but not increases in energy. Copyright © 2015 Elsevier Inc. All rights reserved.
Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew
2014-01-01
The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199
Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.
de Gonzalo-Calvo, David; Dávalos, Alberto; Fernández-Sanjurjo, Manuel; Amado-Rodríguez, Laura; Díaz-Coto, Susana; Tomás-Zapico, Cristina; Montero, Ana; García-González, Ángela; Llorente-Cortés, Vicenta; Heras, Maria Eugenia; Boraita Pérez, Araceli; Díaz-Martínez, Ángel E; Úbeda, Natalia; Iglesias-Gutiérrez, Eduardo
2018-08-01
Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers. Functional enrichment analysis was performed. Pre- and post-M echocardiographic analyses were carried out. Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, "pseudo-disease" signatures were also observed. c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show "pseudo-disease" signatures in response to acute exercise. Clinical practitioners should be aware of the impact caused by exercise in the interpretation of miRNA data. Copyright © 2018 Elsevier B.V. All rights reserved.
Koopman, René; Gleeson, Benjamin G; Gijsen, Annemie P; Groen, Bart; Senden, Joan M G; Rennie, Michael J; van Loon, Luc J C
2011-08-01
We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg(-1) body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of L: -[ring-(13)C(6)]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound L: -[ring-(13)C(6)]phenylalanine labelling. Baseline (post-exercise) L: -[ring-(13)C(6)]phenylalanine muscle tissue labelling, expressed as (∂(13)C/(12)C), averaged -32.09 ± 0.28, -32.53 ± 0.10 and -32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.
Zdziarski, Laura Ann; Wasser, Joseph G; Vincent, Heather K
2015-01-01
In obese persons, general and specific musculoskeletal pain is common. Emerging evidence suggests that obesity modulates pain via several mechanisms such as mechanical loading, inflammation, and psychological status. Pain in obesity contributes to deterioration of physical ability, health-related quality of life, and functional dependence. We present the accumulating evidence showing the interrelationships of mechanical stress, inflammation, and psychological characteristics on pain. While acute exercise may transiently exacerbate pain symptoms, regular participation in exercise can lower pain severity or prevalence. Aerobic exercise, resistance exercise, or multimodal exercise programs (combination of the two types) can reduce joint pain in young and older obese adults in the range of 14%–71.4% depending on the study design and intervention used. While published attrition rates with regular exercise are high (∼50%), adherence to exercise may be enhanced with modification to exercise including the accumulation of several exercise bouts rather than one long session, reducing joint range of motion, and replacing impact with nonimpact activity. This field would benefit from rigorous comparative efficacy studies of exercise intensity, frequency, and mode on specific and general musculoskeletal pain in young and older obese persons. PMID:25709495
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
One Bout of Exercise Alters Free-Living Postprandial Glycemia in Type 2 Diabetes
Oberlin, Douglas J.; Mikus, Catherine R.; Kearney, Monica L.; Hinton, Pamela S.; Manrique, Camila; Leidy, Heather J.; Kanaley, Jill A.; Rector, R. Scott; Thyfault, John P.
2015-01-01
PURPOSE Elevated postprandial glycemic excursions (PPG) are significant risk factors for cardiovascular disease in type 2 diabetes patients. Here we tested if and for how many meals a single bout of exercise would reduce PPG responses to subsequent meals in type 2 diabetes (T2D) patients using continuous glucose monitors (CGMS). METHODS We recruited 9 sedentary (<30 minutes/week of exercise) individuals with T2D (BMI: 36.0 ± 1.1 kg/m2; age 60.3 ± 1.0 years; HbA1c: 6.3 ± 0.2 %). The subjects consumed a eucaloric diet (51% carbohydrate, 31% fat, 18% protein) consisting of 3 meals, identical in composition, over a 2-day period while wearing CGMS in two different conditions (exercise (EX; one 60 minute bout at 60-75% of heart rate reserve performed prior to breakfast) vs. a sedentary (SED) condition). We quantified 24-h average glucose, PPG-AUC (4 h glucose AUC following meals) and PPG-2 h (2 hour post-prandial glucose). RESULTS EX significantly reduced average [glucose] during the first 24 hour period (p=0.03). EX caused a reduction in PPG-AUC (p=0.02) for all of the meals over the two days (main effect between conditions). Comparison between the EX and SED conditions at each meal revealed that EX reduced PPG-AUC following the second meal of day 1 (lunch) (p=0.04). PPG-2 h was not significantly different between EX and SED. CONCLUSION Although a single EX bout does lower 24-h average [glucose], it only significantly lowered PPG-AUC at the second meal following the bout suggesting that daily exercise may be needed to most effectively improve PPG at the advent of exercise training in T2D patients. PMID:23872939
Muscle metaboreceptor modulation of cutaneous active vasodilation
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Stephens, D. P.; Johnson, J. M.
1998-01-01
PURPOSE: Isometric handgrip exercise in hyperthermia has been shown to reduce cutaneous vascular conductance (CVC) by inhibiting the cutaneous active vasodilator system. METHODS: To identify whether this response was initiated by muscle metaboreceptors, in seven subjects two 3-min bouts of isometric handgrip exercise in hyperthermia were performed, followed by 2 min of postexercise ischemia (PEI). An index of forearm skin blood flow (laser-Doppler flowmetry) was measured on the contralateral arm at an unblocked site and at a site at which adrenergic vasoconstrictor function was blocked via bretylium iontophoresis to reveal active cutaneous vasodilator function unambiguously. Sweat rate was measured via capacitance hygrometry, CVC was indexed from the ratio of skin blood flow to mean arterial pressure and was expressed as a percentage of maximal CVC at that site. In normothermia, neither isometric exercise nor PEI affected CVC (P > 0.05). RESULTS: The first bout of isometric handgrip exercise in hyperthermia reduced CVC at control sites and this reduction persisted through PEI (pre-exercise: 59.8 +/- 5.4, exercise: 49.8 +/- 4.9, PEI: 49.7 +/- 5.3% of maximum; both P < 0.05), whereas there were no significant changes in CVC at the bretylium treated sites. The succeeding bout of isometric exercise in hyperthermia significantly reduced CVC at both untreated (pre-exercise: 59.0 +/- 4.8, exercise: 47.3 +/- 4.0, PEI: 50.1 +/- 4.1% of maximum; both P < 0.05) and bretylium treated sites (pre-exercise: 61.4 +/- 7.3, exercise: 50.6 +/- 5.1, PEI: 53.9 +/- 6.0% of maximum, both P < 0.05). At both sites, CVC during PEI was lower than during the pre-exercise period (P < 0.05). Sweat rate rose significantly during both bouts of isometric exercise and remained elevated during PEI. CONCLUSIONS: These data suggest that the reduction in CVC during isometric exercise in hyperthermia, including the inhibition of the active vasodilator system, is primarily mediated by muscle metaboreceptors, whereas central command or muscle mechanoreceptors have less influence.
Metabolic consequences of resistive-type exercise
NASA Technical Reports Server (NTRS)
Dudley, G. A.
1988-01-01
This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.
A Randomized Crossover Trial on Acute Stress-Related Physiological Responses to Mountain Hiking
Grafetstätter, Carina; Hartl, Arnulf; Kopp, Martin
2017-01-01
Green exercise, defined as physical activity in natural environments, might have positive effects on stress-related physiological measures. Little is known about the acute effects of green exercise bouts lasting longer than 60 min. Therefore, the aim of the present study was to analyze the acute effects of a three-hour green exercise intervention (mountain hiking) on stress-related physiological responses. Using a randomized crossover design, 42 healthy participants were exposed to three different conditions in a field-based experiment: outdoor mountain hiking, indoor treadmill walking, and sedentary control condition (three hours each). At baseline and at follow-up (five minutes after the condition), stress-related physiological responses (salivary cortisol, blood pressure, and heart rate variability) were measured. Salivary cortisol decreased in all conditions, but showed a larger decrease after both mountain hiking and treadmill walking compared to the sedentary control situation (partial η2 = 0.10). No differences were found between mountain hiking and treadmill walking in salivary cortisol. In heart rate variability and blood pressure, changes from baseline to follow-up did not significantly differ between the three conditions. The results indicate that three hours of hiking indoors or outdoors elicits positive effects on salivary cortisol concentration. Environmental effects seem to play a minor role in salivary cortisol, blood pressure, and heart rate variability. PMID:28800067
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi
2016-03-01
Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF. Copyright © 2015 Elsevier Inc. All rights reserved.
Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
Jubeau, Marc; Rupp, Thomas; Temesi, John; Perrey, Stéphane; Wuyam, Bernard; Millet, Guillaume Y; Verges, Samuel
2017-03-01
Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Toskovic, N N
2001-06-01
This study was designed to investigate and to compare the acute alterations in selected measures of mood profile in novice Taekwondo practitioners while evaluating whether dynamic Taekwondo practice was an appropriate exercise modality for enhancing six psychological state dimensions: Vigor, Anxiety, Depression, Anger, Fatigue, and Confusion. 20 male and female college-age students enrolled in Taekwondo activity class and an additional 20 students enrolled in the lecture-con trol class (ages 18 to 21 years) completed the Profile of Mood States (POMS) inven tory prior to and immediately following one 75-min. session of dynamic Taekwondo or lecture. To examine the exercise effect, a series of 2 x 2 analysis of covariance were performed on mean posttest scores, using pretest scores as the covariate. Analysis indicated that Taekwondo participants reported a significant improvement (p<.007) with respect to the control group in scores on Tension, Depression, Anger, Fatigue, Confusion, and Vigor. Also, Total Mood Disturbance significantly improved after the dynamic Taekwondo session. The selected affective benefits of an acute Taekwondo exercise in this study were independent of sex. Unlike the exercising subjects. the control subjects reported no such benefits and, indeed, increased their scores for negative mood states. These results suggest that a dynamic version of Taekwondo achieves the necessary activity parameters that begin to induce positive mood state changes and that extensive Taekwondo skill is not necessary to elicit some beneficial change in affect. This study also supports the findings of several earlier studies indicating that acute exercise may elicit positive changes in affective states and that prolonged exercise is not necessary to produce immediate beneficial alterations of mood.
Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes.
Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Little, Jonathan P
2016-11-01
Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. Copyright © 2016 the American Physiological Society.
Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes
Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.
2016-01-01
Different modes of exercise, disease, and training status can modify endothelial shear stress and result in distinct effects on endothelial function. To date, no study has examined the influence of type 2 diabetes (T2D) and training status on the acute endothelial response to different modes of interval exercise (INT). We examined the effect of a single session of resistance- and cardio-based INT compared with a time-matched control on endothelial function in 12 age-matched T2D participants, 12 untrained, and 11 trained adults (aged 56 ± 7 yr). Flow-mediated dilation (%FMD) of the brachial artery was assessed at baseline and immediately, 1, and 2 h after an acute bout of cardio interval (C-INT), resistance interval (R-INT), and seated control (CTL); these interventions were randomized and separated by >2 days. C-INT involved seven 1-min cycling intervals at 85% of peak power with 1-min recovery between. R-INT involved the same pattern of seven 1-min intervals using leg resistance exercises. Endothelial function (%FMD) was improved after R-INT in all groups (Condition × Time interaction, P < 0.01), an effect that was most robust in T2D where %FMD was higher immediately (+4.0 ± 2.8%), 1 h (+2.5 ± 2.5%), and 2 h (+1.9 ± 1.9%) after R-INT compared with CTL (P < 0.01 for all). C-INT improved %FMD in T2D at 1-h postexercise (+1.6 ± 2.2%, P = 0.03) compared with CTL. In conclusion, R-INT acutely improves endothelial function throughout the 2-h postexercise period in T2D patients. The long-term impact of resistance exercise performed in an interval pattern is warranted. PMID:27638878
Hanssen, Henner; Nussbaumer, Monique; Moor, Christoph; Cordes, Mareike; Schindler, Christian; Schmidt-Trucksäss, Arno
2015-02-01
Our aim was to investigate the acute and 24-hour (h) effects of high-intensity interval training (HIIT) and moderate continuous training (MCT) on arterial pulse wave reflection, an established marker of arterial stiffness and cardiovascular risk. In a randomized cross-over design, 21 young healthy male participants performed a HIIT or a MCT on separate visits. Before and 5 (t5), 20 (t20), 35 (t35), and 50 (t50) minutes after the acute exercise bouts, the crude augmentation index (AIx) and the AIx at a set heart rate (AIx@75) were analysed by applanation tonometry. Starting 1 h post-exercise, both indices were captured over 24-h with an oscillometric monitoring device. AIx did not change significantly after MCT but declined progressively after HIIT, reaching significantly lower values compared to MCT at t35 (P = 0.045) and t50 (P = 0.008). AIx@75 increased after both acute exercise types but was higher after HIIT at t5 (P < 0.001), t20 (P < 0.001) and t35 (P = 0.009) compared to MCT. The 24-h follow-up revealed a significant decline in AIx@75 after HIIT (P = 0.007) but not after MCT (P = 0.813). Exercise intensity affects pulse wave reflection, with different time courses for AIx and AIx@75 post-exercise. Although initially higher after HIIT, AIx@75 declines in the 24-h recovery period indicating more favourable effects on pulse wave reflection compared to MCT. This may result in substantial positive chronic training effects on arterial stiffness in health and cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
O'Brien, Jessica; Ottoboni, Giovanni; Tessari, Alessia; Setti, Annalisa
2017-01-01
One single bout of exercise can be associated with positive effects on cognition, due to physiological changes associated with muscular activity, increased arousal, and training of cognitive skills during exercise. While the positive effects of life-long physical activity on cognitive ageing are well demonstrated, it is not well established whether one bout of exercise is sufficient to register such benefits in older adults. The aim of this study was to test the effect of one bout of exercise on two cognitive processes essential to daily life and known to decline with ageing: audio-visual perception and immediate memory. Fifty-eight older adults took part in a quasi-experimental design study and were divided into three groups based on their habitual activity (open skill exercise (mean age = 69.65, SD = 5.64), closed skill exercise, N = 18, 94% female; sedentary activity-control group, N = 21, 62% female). They were then tested before and after their activity (duration between 60 and 80 minutes). Results showed improvement in sensitivity in audio-visual perception in the open skill group and improvements in one of the measures of immediate memory in both exercise groups, after controlling for baseline differences including global cognition and health. These findings indicate that immediate benefits for cross-modal perception and memory can be obtained after open skill exercise. However, improvements after closed skill exercise may be limited to memory benefits. Perceptual benefits are likely to be associated with arousal, while memory benefits may be due to the training effects provided by task requirements during exercise. The respective role of qualitative and quantitative differences between these activities in terms of immediate cognitive benefits should be further investigated. Importantly, the present results present the first evidence for a modulation of cross-modal perception by exercise, providing a plausible avenue for rehabilitation of cross-modal perception deficits, which are emerging as a significant contributor to functional decline in ageing.
1996-12-09
some serum copper parameters in trained professional soccer players and control subjects. J. Sports Med. Phys. Fitness. 31:4123-416, 1991. 110. Ruz, M...WOMAN’S UNIVERSITY DEPARTMENT OF NUTRITION AND FOOD SCIENCES COLLEGE OF HEALTH SCIENCES BY KIMBERLY K. EDGREN, RD, BS, CDE DENTON, TEXAS DECEMBER 1996...of the requirements for the degree of Master of Science, with a major in Nutrition . Bett,/B. Alfor ,Ph.D., Major Professor We have read this thesis and
Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Ogoh, Shigehiko; Hashimoto, Takeshi
2016-06-01
A single bout of aerobic exercise improves executive function (EF), but only for a short period. Compared with a single bout of aerobic exercise, we recently found that high-intensity interval exercise (HIIE) could maintain a longer improvement in EF. However, the mechanism underlying the effect of different exercise modes on the modifications of EF remains unclear. The purpose of the current investigation was to test our hypothesis that the amount of exercise-induced lactate production and its accumulation affects human brain function during and after exercise, thereby affecting post-exercise EF. Ten healthy male subjects performed cycle ergometer exercise. The HIIE protocol consisted of four 4-min bouts at 90% peak VO2 with a 3-min active recovery period at 60% peak VO2. The amount of lactate produced during exercise was manipulated by repeating the HIIE twice with a resting period of 60min between the 1st HIIE and 2nd HIIE. To evaluate EF, a color-word Stroop task was performed, and reverse-Stroop interference scores were obtained. EF immediately after the 1st HIIE was significantly improved compared to that before exercise, and the improved EF was sustained during 40min of the post-exercise recovery. However, for the 2nd HIIE, the improved EF was sustained for only 10min of the post-exercise recovery period, despite the performance of the same exercise. In addition, during and following HIIE, the glucose and lactate accumulation induced by the 2nd HIIE was significantly lower than that induced by the 1st HIIE. Furthermore, there was an inverse relationship between lactate and EF by plotting the changes in lactate levels against changes in EF from pre-exercise during the late phase of post-exercise recovery. These findings suggested the possibility that repeated bouts of HIIE, which decreases lactate accumulation, may dampen the positive effect of exercise on EF during the post-exercise recovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Oxidative stress response in trained men following repeated squats or sprints.
Bloomer, Richard J; Falvo, Michael J; Fry, Andrew C; Schilling, Brian K; Smith, Webb A; Moore, Christopher A
2006-08-01
The purpose of this investigation was to measure the oxidative stress response to similarly matched work bouts of squat and sprint exercise. Twelve anaerobically trained men performed six 10-s sprints and, on a separate occasion, repeated barbell squats to approximately equal the amount of work performed during the sprints. Blood lactate, heart rate, and perceived exertion was measured before and following each exercise bout. Muscle soreness, muscle force, and creatine kinase activity was determined preexercise and through 48 h of recovery. Desmin cytoskeletal protein was determined via muscle biopsy of the vastus lateralis before and at 24 h following each exercise. Plasma protein carbonyls (PC) and malondialdehyde (MDA) were measured as biomarkers of oxidative stress. Heart rate and perceived exertion was not different between exercise sessions (P > 0.05), although lactate was higher following sprinting compared with squatting (P = 0.002). Muscle soreness was greater for squatting than sprinting (P = 0.003) and reached a peak immediately postexercise for both sessions (P = 0.0003). Muscle force was unaffected by either exercise session (P > 0.05), and creatine kinase activity was elevated to a similar extent following both sessions. Desmin-negative fibers were virtually nonexistent after either exercise bout, indicating no loss of this cytoskeletal protein. Neither PC nor MDA was affected by the exercise (P > 0.05). These results suggest that in anaerobically trained men, the oxidative stress and muscle injury response to similarly matched anaerobic exercise bouts is minimal, and not different between exercise modes. Furthermore, when compared with previous literature on untrained subjects, the response is significantly attenuated, possibly because of adaptations occurring as a result of chronic, strenuous anaerobic training.
McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D
2004-11-01
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.
Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.
Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L
2013-07-12
The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.
Cockcroft, Emma J; Williams, Craig A; Tomlinson, Owen W; Vlachopoulos, Dimitris; Jackman, Sarah R; Armstrong, Neil; Barker, Alan R
2015-11-01
High-intensity interval exercise (HIIE) may offer a time efficient means to improve health outcomes compared to moderate-intensity exercise (MIE). This study examined the acute effect of HIIE compared to a work-matched bout of MIE on glucose tolerance, insulin sensitivity (IS), resting fat oxidation and exercise enjoyment in adolescent boys. Within-measures design with counterbalanced experimental conditions. Nine boys (14.2 ± 0.4 years) completed three conditions on separate days in a counterbalanced order: (1) HIIE; (2) work matched MIE, both on a cycle ergometer; and (3) rest (CON). An oral glucose tolerance test (OGTT) was performed after exercise or rest and the area under curve (AUC) responses for plasma [glucose] and [insulin] were calculated, and IS estimated (Cederholm index). Energy expenditure and fat oxidation were measured following the OGTT using indirect calorimetry. Exercise enjoyment was assessed using the Physical Activity Enjoyment Scale. The incremental AUC (iAUC) for plasma [glucose] was reduced following both MIE (-23.9%, P = 0.013, effect size [ES] = -0.64) and HIIE (-28.9%, P=0.008, ES = -0.84) compared to CON. The iAUC for plasma [insulin] was lower for HIIE (-24.2%, P = 0.021, ES = -0.71) and MIE (-29.1%, P = 0.012, ES = -0.79) compared to CON. IS increased by 11.2% after HIIE (P = 0.03, ES = 0.76) and 8.4% after MIE (P = 0.10, ES = 0.58). There was a trend for an increase in fat oxidation following HIIE (P = 0.097, ES = 0.70). Both HIIE and MIE were rated as equally enjoyable (P > 0.05, ES < 0.01). A single bout of time efficient HIIE is an effective alternative to MIE for improving glucose tolerance and IS in adolescent boys immediately after exercise. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Velocity-specific strength recovery after a second bout of eccentric exercise.
Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P
2014-02-01
A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p < 0.05). Faster recovery of isometric strength associated with a repeated bout of ECC was evident when the velocity was matched between bouts, suggesting that specificity effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.
Rest Intervals Reduce the Number of Loading Bouts Required to Enhance Bone Formation
Srinivasan, Sundar; Ausk, Brandon J.; Bain, Steven D.; Gardiner, Edith M.; Kwon, Ronald Y.; Gross, Ted S.
2015-01-01
Purpose As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest-intervals between each cycle of mechanical loading holds potential to achieve this result as substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts/wk of rest-inserted loading could be reduced from 3/wk without loss of osteogenic efficacy. Methods We conducted a series of 3 wk in vivo experiments that non-invasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. Results While reducing loading bouts from 3/wk (i.e., 9 total bouts) to 1/wk (3 total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (3 bouts in the first week vs 1 bout/wk for three weeks). However, elimination of any single bout of the three 1/wk bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3 wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. Conclusions We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity. PMID:25207932
Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A
2015-06-01
Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.
Mika, Agnieszka; Bouchet, Courtney A.; Bunker, Preston; Hellwinkel, Justin E.; Spence, Katie G.; Day, Heidi E.W.; Campeau, Serge; Fleshner, Monika
2015-01-01
Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male, F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1 week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID:26454156
Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2015-11-01
Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Resistance exercise increases intramuscular NF-κb signaling in untrained males.
Townsend, Jeremy R; Stout, Jeffrey R; Jajtner, Adam R; Church, David D; Beyer, Kyle S; Oliveira, Leonardo P; La Monica, Michael B; Riffe, Joshua J; Muddle, Tyler W D; Baker, Kayla M; Fukuda, David H; Roberts, Michael D; Hoffman, Jay R
2016-12-01
The NF-κB signaling pathway regulates multiple cellular processes following exercise stress. This study aims to examine the effects of an acute lower-body resistance exercise protocol and subsequent recovery on intramuscular NF-κB signaling. Twenty-eight untrained males were assigned to either a control (CON; n = 11) or exercise group (EX; n = 17) and completed a lower-body resistance exercise protocol consisting of the back squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis pre-exercise (PRE), 1-hour (1H), 5-hours (5H), and 48-hours (48H) post-resistance exercise. Multiplex signaling assay kits (EMD Millipore, Billerica, MA, USA) were used to quantify the total protein (TNFR1, c-Myc) or phosphorylation status of proteins belonging to the NF-κB signaling pathway (IKKa/b, IkBα, NF-κB) using multiplex protein assay. Repeated measures ANOVA analysis was used to determine the effects of the exercise bout on intramuscular signaling at each time point. Additionally, change scores were analyzed by magnitude based inferences to determine a mechanistic interpretation. Repeated measures ANOVA indicated a trend for a two-way interaction between the EX and CON Group (p = 0.064) for c-Myc post resistance exercise. Magnitude based inference analysis suggest a "Very Likely" increase in total c-Myc from PRE-5H and a "Likely" increase in IkBα phosphorylation from PRE-5H post-resistance exercise. Results indicated that c-Myc transcription factor is elevated following acute intense resistance exercise in untrained males. Future studies should examine the role that post-resistance exercise NF-κβ signaling plays in c-Myc induction, ribosome biogenesis and skeletal muscle regeneration.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Exercise in middle-aged adults: self-efficacy and self-presentational outcomes.
McAuley, E; Bane, S M; Mihalko, S L
1995-07-01
Whereas self-efficacy expectations have been identified as important determinants of exercise participation patterns, little empirical work that examines efficacy expectations as outcomes of exercise participation or their theoretical relationship to other psychological outcomes associated with exercise has been conducted. In the context of middle-aged males and females, the present study attempted to integrate social cognitive and impression management perspectives with respect to anxiety associated with exercise. Formerly sedentary subjects participated in a 5-month exercise program with assessments of physique anxiety, efficacy, outcome expectations, and anthropometric variables prior to and following the program. Both acute bouts and long-term participation in exercise resulted in significant increases in self-efficacy. In turn, these changes in efficacy and initial positive outcome expectations were significant predictors of reductions in physique anxiety, even when controlling for the influence of gender and reductions in body fat, weight, and circumferences. The findings are discussed in terms of the implications for structure and content of exercise environments and the utility of the proposed theoretical integration. Strategies for enhancing beliefs regarding health and fitness outcomes associated with exercise rather than appearance outcomes may be required to maximize reductions in negative body image.
Shannon, Christopher E; Ghasemi, Reza; Greenhaff, Paul L; Stephens, Francis B
2018-01-01
Increasing skeletal muscle carnitine availability alters muscle metabolism during steady-state exercise in healthy humans. We investigated whether elevating muscle carnitine, and thereby the acetyl-group buffering capacity, altered the metabolic and physiological adaptations to 24 weeks of high-intensity interval training (HIIT) at 100% maximal exercise capacity (Watt max ). Twenty-one healthy male volunteers (age 23±2 years; BMI 24.2±1.1 kg/m 2 ) performed 2 × 3 minute bouts of cycling exercise at 100% Watt max , separated by 5 minutes of rest. Fourteen volunteers repeated this protocol following 24 weeks of HIIT and twice-daily consumption of 80 g carbohydrate (CON) or 3 g l-carnitine+carbohydrate (CARN). Before HIIT, muscle phosphocreatine (PCr) degradation (P<.0001), glycogenolysis (P<.0005), PDC activation (P<.05), and acetylcarnitine (P<.005) were 2.3-, 2.1-, 1.5-, and 1.5-fold greater, respectively, in exercise bout two compared to bout 1, while lactate accumulation tended (P<.07) to be 1.5-fold greater. Following HIIT, muscle free carnitine was 30% greater in CARN vs CON at rest and remained 40% elevated prior to the start of bout 2 (P<.05). Following bout 2, free carnitine content, PCr degradation, glycogenolysis, lactate accumulation, and PDC activation were all similar between CON and CARN, albeit markedly lower than before HIIT. VO 2max , Watt max , and work output were similarly increased in CON and CARN, by 9, 15, and 23% (P<.001). In summary, increased reliance on non-mitochondrial ATP resynthesis during a second bout of intense exercise is accompanied by increased carnitine acetylation. Augmenting muscle carnitine during 24 weeks of HIIT did not alter this, nor did it enhance muscle metabolic adaptations or performance gains beyond those with HIIT alone. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D
2018-05-02
Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.
Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L
2013-09-01
The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc
2017-08-01
One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.
Zheng, Xianjie; Niu, Sen
2018-01-29
Physical exercise is an efficient therapeutical tool in the management of insulin resistance (IR) and related metabolic diseases. Leptin, the well-known obesity hormone and the absence of which leads to IR, showed controversial effects on IR as research continues. Thus, in this study, a detailed investigation of the effect of leptin on exercise-mediated improvement of insulin sensitivity and its underlying mechanism was carried out. Using a rat model of chronic or acute swimming exercise training, we found that serum leptin increased 1 h after either acute exercise or the last session of chronic exercise, when impaired insulin action was observed in previous reports. However, chronic exercise reducd basal serum leptin levels and promoted insulin sensitivity compared with sedentary controls or rats subjected to one bout of aerobic exercise. Our animal results indicated the potential linkage between leptin and insulin sensitivity, which is further investigated in the skeletal muscle L6 cells. Leptin treatment in L6 cells promoted the basal levels of insulin signaling as well as glucose uptake, while blocking JAK2 signaling with either pharmacological intervention (JAK2 inhibitor AG490) or genetic manipulation (siRNA knockdown) decreased the basal levels of insulin signaling. Furthermore, leptin treatment inhibited insulin-stimulated insulin signaling and glucose uptake, while blocking JAK2 signaling restored leptin-attenuated insulin sensitivity. Taken together, our results demonstrated that reduced serum leptin, at least in part, contributes to exercise-mediated improvement of insulin sensitivity, indicating JAK2 as a potent therapeutical target of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.
Jacquart, Jolene; Roquet, Rheall F; Papini, Santiago; Powers, Mark B; Rosenfield, David; Smits, Jasper A J; Monfils, Marie-H
2017-08-01
Exposure therapy is an established learning-based intervention for the treatment of anxiety disorders with an average response rate of nearly 50%, leaving room for improvement. Emerging strategies to enhance exposure therapy in humans and fear extinction retention in animal models are primarily pharmacological. These approaches are limited as many patients report preferring non-pharmacological approaches in therapy. With general cognitive enhancement effects, exercise has emerged as a plausible non-pharmacological augmentation strategy. The present study tested the hypothesis that fear extinction and exposure therapy would be enhanced by a pre-training bout of exercise. We conducted four experiments with rats that involved a standardized conditioning and extinction paradigm and a manipulation of exercise. In a fifth experiment, we manipulated vigorous-intensity exercise prior to a standardized virtual reality exposure therapy session among adults with fear of heights. In experiments 1-4, exercise did not facilitate fear extinction, long-term memory, or fear relapse tests. In experiment 5, human participants showed an overall reduction in fear of heights but exercise did not enhance symptom improvement. Although acute exercise prior to fear extinction or exposure therapy, as operationalized in the present 5 studies, did not enhance outcomes, these results must be interpreted within the context of a broader literature that includes positive findings. Taken all together, this suggests that more research is necessary to identify optimal parameters and key individual differences so that exercise can be implemented successfully to treat anxiety disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cardoso, A M; Bagatini, M D; Roth, M A; Martins, C C; Rezer, J F P; Mello, F F; Lopes, L F D; Morsch, V M; Schetinger, M R C
2012-12-01
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Cardoso, A.M.; Bagatini, M.D.; Roth, M.A.; Martins, C.C.; Rezer, J.F.P.; Mello, F.F.; Lopes, L.F.D.; Morsch, V.M.; Schetinger, M.R.C.
2012-01-01
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity. PMID:23090122
Gundermann, David M.; Fry, Christopher S.; Dickinson, Jared M.; Walker, Dillon K.; Timmerman, Kyle L.; Drummond, Micah J.; Volpi, Elena
2012-01-01
Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise. PMID:22362401
Gundermann, David M; Fry, Christopher S; Dickinson, Jared M; Walker, Dillon K; Timmerman, Kyle L; Drummond, Micah J; Volpi, Elena; Rasmussen, Blake B
2012-05-01
Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.
Burnley, Mark; Doust, Jonathan H; Ball, Derek; Jones, Andrew M
2002-07-01
We hypothesized that the elevated primary O(2) uptake (VO(2)) amplitude during the second of two bouts of heavy cycle exercise would be accompanied by an increase in the integrated electromyogram (iEMG) measured from three leg muscles (gluteus maximus, vastus lateralis, and vastus medialis). Eight healthy men performed two 6-min bouts of heavy leg cycling (at 70% of the difference between the lactate threshold and peak VO(2)) separated by 12 min of recovery. The iEMG was measured throughout each exercise bout. The amplitude of the primary VO(2) response was increased after prior heavy leg exercise (from mean +/- SE 2.11 +/- 0.12 to 2.44 +/- 0.10 l/min, P < 0.05) with no change in the time constant of the primary response (from 21.7 +/- 2.3 to 25.2 +/- 3.3 s), and the amplitude of the VO(2) slow component was reduced (from 0.79 +/- 0.08 to 0.40 +/- 0.08 l/min, P < 0.05). The elevated primary VO(2) amplitude after leg cycling was accompanied by a 19% increase in the averaged iEMG of the three muscles in the first 2 min of exercise (491 +/- 108 vs. 604 +/- 151% increase above baseline values, P < 0.05), whereas mean power frequency was unchanged (80.1 +/- 0.9 vs. 80.6 +/- 1.0 Hz). The results of the present study indicate that the increased primary VO(2) amplitude observed during the second of two bouts of heavy exercise is related to a greater recruitment of motor units at the onset of exercise.
Lowe, Cassandra J; Kolev, Dimitar; Hall, Peter A
2016-12-01
The primary objective of this study was to examine the effects of aerobic exercise on executive function, specifically inhibitory control, and the transfer to self-control in the dietary domain. It was hypothesized that exercise would enhance inhibitory control, and that this enhancement would facilitate self-control in a laboratory taste test paradigm. Using a crossover design, 51 participants completed counterbalanced sessions of both moderate exercise (experimental condition) and minimal effort walking (control condition) using a treadmill; the intersession interval was 7days. Prior to each exercise bout participants completed a Stroop task. Following each bout participants completed a second Stoop task, as well as a bogus taste test involving three appetitive calorie dense snack foods and two control foods; the amount of each food type consumed during the taste test was covertly measured. Results revealed that moderate exercise significantly improved performance on the Stroop task, and also reduced food consumption during the taste test for appetitive calorie dense snack foods; there was no exercise effect on control food consumption. Exercise-induced gains in Stroop performance mediated the effects of moderate exercise on appetitive snack food consumption. Together these findings provide evidence that a bout of a moderate aerobic exercise can enhance inhibitory control, and support for cross-domain transfer effects to dietary self-control. Copyright © 2016 Elsevier Inc. All rights reserved.
International society of sports nutrition position stand: nutrient timing.
Kerksick, Chad M; Arent, Shawn; Schoenfeld, Brad J; Stout, Jeffrey R; Campbell, Bill; Wilborn, Colin D; Taylor, Lem; Kalman, Doug; Smith-Ryan, Abbie E; Kreider, Richard B; Willoughby, Darryn; Arciero, Paul J; VanDusseldorp, Trisha A; Ormsbee, Michael J; Wildman, Robert; Greenwood, Mike; Ziegenfuss, Tim N; Aragon, Alan A; Antonio, Jose
2017-01-01
The International Society of Sports Nutrition (ISSN) provides an objective and critical review regarding the timing of macronutrients in reference to healthy, exercising adults and in particular highly trained individuals on exercise performance and body composition. The following points summarize the position of the ISSN:Nutrient timing incorporates the use of methodical planning and eating of whole foods, fortified foods and dietary supplements. The timing of energy intake and the ratio of certain ingested macronutrients may enhance recovery and tissue repair, augment muscle protein synthesis (MPS), and improve mood states following high-volume or intense exercise.Endogenous glycogen stores are maximized by following a high-carbohydrate diet (8-12 g of carbohydrate/kg/day [g/kg/day]); moreover, these stores are depleted most by high volume exercise.If rapid restoration of glycogen is required (< 4 h of recovery time) then the following strategies should be considered:aggressive carbohydrate refeeding (1.2 g/kg/h) with a preference towards carbohydrate sources that have a high (> 70) glycemic indexthe addition of caffeine (3-8 mg/kg)combining carbohydrates (0.8 g/kg/h) with protein (0.2-0.4 g/kg/h) Extended (> 60 min) bouts of high intensity (> 70% VO 2 max) exercise challenge fuel supply and fluid regulation, thus carbohydrate should be consumed at a rate of ~30-60 g of carbohydrate/h in a 6-8% carbohydrate-electrolyte solution (6-12 fluid ounces) every 10-15 min throughout the entire exercise bout, particularly in those exercise bouts that span beyond 70 min. When carbohydrate delivery is inadequate, adding protein may help increase performance, ameliorate muscle damage, promote euglycemia and facilitate glycogen re-synthesis.Carbohydrate ingestion throughout resistance exercise (e.g., 3-6 sets of 8-12 repetition maximum [RM] using multiple exercises targeting all major muscle groups) has been shown to promote euglycemia and higher glycogen stores. Consuming carbohydrate solely or in combination with protein during resistance exercise increases muscle glycogen stores, ameliorates muscle damage, and facilitates greater acute and chronic training adaptations.Meeting the total daily intake of protein, preferably with evenly spaced protein feedings (approximately every 3 h during the day), should be viewed as a primary area of emphasis for exercising individuals.Ingestion of essential amino acids (EAA; approximately 10 g)either in free form or as part of a protein bolus of approximately 20-40 g has been shown to maximally stimulate muscle protein synthesis (MPS).Pre- and/or post-exercise nutritional interventions (carbohydrate + protein or protein alone) may operate as an effective strategy to support increases in strength and improvements in body composition. However, the size and timing of a pre-exercise meal may impact the extent to which post-exercise protein feeding is required.Post-exercise ingestion (immediately to 2-h post) of high-quality protein sources stimulates robust increases in MPS.In non-exercising scenarios, changing the frequency of meals has shown limited impact on weight loss and body composition, with stronger evidence to indicate meal frequency can favorably improve appetite and satiety. More research is needed to determine the influence of combining an exercise program with altered meal frequencies on weight loss and body composition with preliminary research indicating a potential benefit.Ingesting a 20-40 g protein dose (0.25-0.40 g/kg body mass/dose) of a high-quality source every three to 4 h appears to most favorably affect MPS rates when compared to other dietary patterns and is associated with improved body composition and performance outcomes.Consuming casein protein (~ 30-40 g) prior to sleep can acutely increase MPS and metabolic rate throughout the night without influencing lipolysis.
Edwards, Thomas; Motl, Robert W; Pilutti, Lara A
2018-01-01
Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.
Enhanced vagal baroreflex response during 24 h after acute exercise
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Adams, W. C.
1991-01-01
We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.
Aerobic exercise enhances neural correlates of motor skill learning.
Singh, Amaya M; Neva, Jason L; Staines, W Richard
2016-03-15
Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.
De Souza, Eduardo O; Lowery, Ryan P; Wilson, Jacob M; Sharp, Matthew H; Mobley, Christopher Brooks; Fox, Carlton D; Lopez, Hector L; Shields, Kevin A; Rauch, Jacob T; Healy, James C; Thompson, Richard M; Ormes, Jacob A; Joy, Jordan M; Roberts, Michael D
2016-01-01
The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.
Wax, Benjamin; Kavazis, Andreas N; Webb, Heather E; Brown, Stanley P
2012-04-17
Dietary supplements containing L-arginine are marketed to improve exercise performance, but the efficacy of such supplements is not clear. Therefore, this study examined the efficacy of acute ingestion of L-arginine alpha-ketoglutarate (AAKG) muscular strength and endurance in resistance trained and untrained men. Eight resistance trained and eight untrained healthy males ingested either 3000mg of AAKG or a placebo 45 minutes prior to a resistance exercise protocol in a randomized, double-blind crossover design. One-repetition maximum (1RM) on the standard barbell bench press and leg press were obtained. Upon determination of 1RM, subjects completed repetitions to failure at 60% 1RM on both the standard barbell bench press and leg press. Heart rate was measured pre and post exercise. One week later, subjects ingested the other supplement and performed the identical resistance exercise protocol. Our data showed statistical significant differences (p<0.05) between resistance trained and untrained males for both 1RM and total load volume (TLV; multiply 60% of 1RM times the number of repetitions to failure) for the upper body. However, 1RM and TLV were not statistically different (p>0.05) between supplementation conditions for either resistance trained or untrained men in the bench press or leg press exercises. Heart rate was similar at the end of the upper and lower body bouts of resistance exercise with AAKG vs. placebo. The results from our study indicate that acute AAKG supplementation provides no ergogenic benefit on 1RM or TLV as measured by the standard barbell bench press and leg press, regardless of the subjects training status.
Evidence for Anti-Inflammatory Effects of Exercise in CKD
Kosmadakis, George C.; Watson, Emma L.; Bevington, Alan; Feehally, John; Bishop, Nicolette C.; Smith, Alice C.
2014-01-01
CKD is associated with a complex state of immune dysfunction characterized by immune depression, predisposing patients to infections, and immune activation, resulting in inflammation that associates with higher risk of cardiovascular disease. Physical exercise may enhance immune function and exert anti-inflammatory effects, but such effects are unclear in CKD. We investigated the separate effects of acute and regular moderate-intensity aerobic exercise on neutrophil degranulation (elastase release), activation of T lymphocytes (CD69 expression) and monocytes (CD86 and HLA-DR expression), and plasma inflammatory markers (IL-6, IL-10, soluble TNF-receptors, and C-reactive protein) in patients with predialysis CKD. A single 30-minute (acute) bout of walking induced a normal pattern of leukocyte mobilization and had no effect on T-lymphocyte and monocyte activation but improved neutrophil responsiveness to a bacterial challenge in the postexercise period. Furthermore, acute exercise induced a systemic anti-inflammatory environment, evidenced by a marked increase in plasma IL-10 levels (peaked at 1 hour postexercise), that was most likely mediated by increased plasma IL-6 levels (peaked immediately postexercise). Six months of regular walking exercise (30 min/d for 5 times/wk) exerted anti-inflammatory effects (reduction in the ratio of plasma IL-6 to IL-10 levels) and a downregulation of T-lymphocyte and monocyte activation, but it had no effect on circulating immune cell numbers or neutrophil degranulation responses. Renal function, proteinuria, and BP were also unaffected. These findings provide compelling evidence that walking exercise is safe with regard to immune and inflammatory responses and has the potential to be an effective anti-inflammatory therapy in predialysis CKD. PMID:24700875
Mannerkorpi, Kaisa; Landin-Wilhelmsen, Kerstin; Larsson, Anette; Cider, Åsa; Arodell, Olivia; Bjersing, Jan L
2017-01-25
Increased Serum insulin-like growth factor-1 (S-IGF-1) has been noted after physical activity in healthy subjects, while the acute release of S-IGF-1 in relation to exercise has not previously been studied in women with fibromyalgia (FM). S-IGF-1 and its binding protein (S-IGFBP-3) are mediated by growth hormone and have anabolic effects on the skeletal muscle. Aim of the study was to investigate acute release of IGF-1 after aerobic exercise in women with FM. The acute effect of physical exercise on S-IGF-1 and S-IGFBP-3 were studied in 22 women with FM and in 27 healthy controls during moderate and high-intensity cycling (i.e. ratings 12-13 and 15-17, on Borg's perceived exertion scale (RPE), respectively). Self-reported pain and fatigue were recorded. Differences within and between the two groups were analyzed. After 15 min of bicycling, S-IGF-1 and S-IGFBP-3 increased both within the group with FM and in the healthy controls (p < 0.01). The increases in S-IGF-1 did not significantly differ between the women with FM and the healthy control group (mean increase 11 ± 10 vs. 11 ± 15 ng/ml and 13 ± 10 vs. 19 ± 22 ng/ml) when bicycling at moderate or high intensity, respectively. Self-reported pain and fatigue during exercise, irrespective of intensity, were higher in women with FM compared with healthy controls (p < 0.001). Fifteen minutes bicycling at moderate intensity was sufficient to acutely mobilise S-IGF-1 in women with FM similarly to healthy controls in spite of higher score of fatigue and pain in women with FM. Hence, patients with FM were able to activate their skeletal muscle metabolism during a short, moderate bout of exercise and were not resistant to training effects. The result is important for encouraging clinical rehabilitation of patients with FM who commonly exercise at a moderate, rather than at a high-intensity level. ClinicalTrials.govNCT01592916 , May 4, 2012.
Postaerobic Exercise Blood Pressure Reduction in Very Old Persons With Hypertension.
Oliveira, Joana; Mesquita-Bastos, José; Argel de Melo, Cristina; Ribeiro, Fernando
2016-01-01
A single bout of aerobic exercise acutely decreases blood pressure, even in older adults with hypertension. Nonetheless, blood pressure responses to aerobic exercise in very old adults with hypertension have not yet been documented. Therefore, this study aimed to assess the effect of a single session of aerobic exercise on postexercise blood pressure in very old adults with hypertension. Eighteen older adults with essential hypertension were randomized into exercise (N = 9, age: 83.4 ± 3.2 years old) or control (N = 9, age: 82.7 ± 2.5 years old) groups. The exercise group performed a session of aerobic exercise constituting 2 periods of 10 minutes of walking at an intensity of 40% to 60% of the heart rate reserve. The control group rested for the same period of time. Anthropometric variables and medication status were evaluated at baseline. Heart rate and systolic and diastolic blood pressures were measured at baseline, after exercise, and at 20 and 40 minutes postexercise. Systolic blood pressure showed a significant interaction for group × time (F3,24 = 6.698; P = .002; ηp(2) = 0.153). In the exercise group, the systolic blood pressure at 20 (127.3 ± 20.9 mm Hg) and 40 minutes (123.7 ± 21.0 mm Hg) postexercise was significantly lower in comparison with baseline (135.6 ± 20.6 mm Hg). Diastolic blood pressure did not change. Heart rate was significantly higher after the exercise session. In the control group, no significant differences were observed. A single session of aerobic exercise acutely reduces blood pressure in very old adults with hypertension and may be considered an important nonpharmacological strategy to control hypertension in this age group.
cfDNA as an Earlier Predictor of Exercise-Induced Performance Decrement Related to Muscle Damage.
Andreatta, Michely V; Curty, Victor M; Coutinho, João Victor S; Santos, Miguel Ângelo A; Vassallo, Paula F; de Sousa, Nuno F; Barauna, Valério G
2017-11-28
The aims of this study were: a) to evaluate whether cell-free DNA (cfDNA) levels increase immediately after an acute light and heavy resistance exercise (RE) bout, and b) to whether cfDNA levels are associated with functional muscle capacity until 48hrs after exercise session. Twenty healthy volunteers performed 3 sets of the leg press resistance exercise with 80% of 1RM (RE80) or 40% of 1RM (RE40) with similar exercise volume. Blood lactate was measured after completion of the 3 sets. Creatine kinase (CK), cfDNA and jump performance were evaluated before (pre) exercise, immediately post-exercise (Post-0) and every 24hrs until 48hrs. Lactate concentration increased similarly in both groups (RE40, 4.0±1.3mmol/L; RE80, 4.8±1.3mmol/L). No changes were observed in squat jump and countermovement jump performance after RE40, however both jumps remained reduced until 48h in RE80 group. CK concentration increased post-24h only in the RE80 group (Pre: 128.8±73.7U/L to Post-24h: 313.8±116.4U/L). cfDNA concentration increased post-0h only in the RE80 group (Pre, 249.8±82.3ng/mL; Post-0h, 406.3±67.2ng/mL). There was a negative correlation between post-0h cfDNA concentration and post-24h squat jump (r=-0.521; p=0.01) and post-0h cfDNA concentration and post-24h countermovement jump (r=-0.539; p=0.01). cfDNA increases in responsive to RE intensity even when not performed until exhaustion. cfDNA measured immediately after RE is a promising biomarker for muscle performance decrement until 48hrs of a RE bout.
Effect of exercise intensity on circulating microparticles in men and women.
Shill, Daniel D; Lansford, Kasey A; Hempel, Hannah K; Call, Jarrod A; Murrow, Jonathan R; Jenkins, Nathan T
2018-05-01
What is the central question of this study? What is the effect of exercise intensity on circulating microparticle populations in young, healthy men and women? What is the main finding and its importance? Acute, moderate-intensity continuous exercise and high-intensity interval exercise altered distinct microparticle populations during and after exercise in addition to a sex-specific response in CD62E + microparticles. The microparticles studied contribute to cardiovascular disease progression, regulate vascular function and facilitate new blood vessel formation. Thus, characterizing the impact of intensity on exercise-induced microparticle responses advances our understanding of potential mechanisms underlying the beneficial vascular adaptations to exercise. Circulating microparticles (MPs) are biological vectors of information within the cardiovascular system that elicit both deleterious and beneficial effects on the vasculature. Acute exercise has been shown to alter MP concentrations, probably through a shear stress-dependent mechanism, but evidence is limited. Therefore, we investigated the effect of exercise intensity on plasma levels of CD34 + and CD62E + MPs in young, healthy men and women. Blood samples were collected before, during and after two energy-matched bouts of acute treadmill exercise: interval exercise (10 × 1 min intervals at ∼95% of maximal oxygen uptake V̇O2max) and continuous exercise (65% V̇O2max). Continuous exercise, but not interval exercise, reduced CD62E + MP concentrations in men and women by 18% immediately after exercise (from 914.5 ± 589.6 to 754.4 ± 390.5 MPs μl -1 ; P < 0.05), suggesting that mechanisms underlying exercise-induced CD62E + MP dynamics are intensity dependent. Furthermore, continuous exercise reduced CD62E + MPs in women by 19% (from 1030.6 ± 688.1 to 829.9 ± 435.4 MPs μl -1 ; P < 0.05), but not in men. Although interval exercise did not alter CD62E + MPs per se, the concentrations after interval exercise were higher than those observed after continuous exercise (P < 0.05). Conversely, CD34 + MPs did not fluctuate in response to short-duration acute continuous or interval exercise in men or women. Our results suggest that exercise-induced MP alterations are intensity dependent and sex specific and impact MP populations differentially. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G
2015-07-01
Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p < 0.01). Exercise decreased peripheral (- 8 ± 7 mmHg) and central (- 7 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 5 mmHg) and central (- 4 ± 7 mmHg) diastolic BP (p < 0.01). In comparison to measurements during CPT pre-exercise, there was a significant reduction in aPWV (- 0.19 ± 0.3 m / sec), peripheral (- 6 ± 10 mmHg) and central (- 5 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 6 mmHg) and central (- 3 ± 6 mmHg) diastolic BP during CPT after exercise (p < 0.01). The present study suggests that acute endurance exercise leads not only to decreased BP but even more reduces aPWV as a measure of AS even after 60 minutes of recovery. In particular, the investigation provides evidence that acute moderate-intensity exercise has a favorable effect on BP and aPWV during stress testing.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
Paschalis, Vassilis; Theodorou, Anastasios A.; Panayiotou, George; Kyparos, Antonios; Patikas, Dimitrios; Grivas, Gerasimos V.; Nikolaidis, Michalis G.; Vrabas, Ioannis S.
2013-01-01
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status. PMID:23437093
Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori
2015-04-01
A single bout of eccentric exercise confers a protective effect against muscle damage and soreness in subsequent eccentric exercise bouts, but the mechanisms underpinning this effect are unclear. This study compared vastus lateralis (VL) muscle-tendon behavior between two eccentric cycling bouts to test the hypothesis that muscle-tendon behavior would be different between bouts and would be associated with the protective effect. Eleven untrained men (27.1 ± 7.0 yr) performed two bouts of eccentric cycling (ECC1 and ECC2) separated by 2 wk for 10 min at 65% of maximal concentric workload (191.9 ± 44.2 W) each. Muscle soreness (by visual analog scale) and maximal voluntary isometric contraction (MVC) torque of the knee extensors were assessed before and 1-2 d after exercise. Using ultrasonography, VL fascicle length and angle changes during cycling were assessed, and tendinous tissue (TT) length changes were estimated. VL EMG amplitude, crank torque, and knee joint angles were measured during cycling. Soreness was greater (P < 0.0001) after ECC1 than ECC2, although MVC changes were not different between bouts (P = 0.47). No significant differences in peak EMG amplitude (normalized to EMG during MVC), crank peak torque, or knee angles were evident between bouts. However, fascicle elongation was 16% less during ECC2 than ECC1 (P < 0.01), indicating less fascicle strain in ECC2. Maximum TT length occurred at a smaller knee joint angle during ECC2 than ECC1 (P = 0.055). These results suggest that a lesser fascicle elongation and earlier TT elongation were associated with reduced muscle soreness after ECC2 than ECC1; thus, changes in muscle-tendon behavior may be an important mechanism underpinning the protective effect.
Different Patterns of Walking and Postprandial Triglycerides in Older Women
KASHIWABARA, KYOKO; KIDOKORO, TETSUHIRO; YANAOKA, TAKUMA; BURNS, STEPHEN F.; STENSEL, DAVID J.; MIYASHITA, MASASHI
2018-01-01
ABSTRACT Purpose Although a single bout of continuous exercise (≥30 min) reduces postprandial triglyceride (TG), little evidence is available regarding the effect of multiple short (≤10 min) bouts of exercise on postprandial TG in individuals at increased risk for cardiovascular diseases. This study compared the effects of different patterns of walking on postprandial TG in postmenopausal, older women with hypertriglyceridemia. Methods Twelve inactive women (mean age ± SD, 71 ± 5 yr) with hypertriglyceridemia (fasting TG ≥1.70 mmol·L−1) completed three, 1-d laboratory-based trials in a random order: 1) control, 2) continuous walking, and 3) multiple short bouts of walking. On the control trial, participants sat in a chair for 8 h. For the walking trials, participants walked briskly in either one 30-min bout in the morning (0900–0930 h) or twenty 90-s bouts over 8 h. Except for walking, both exercise trials mimicked the control trial. In each trial, participants consumed a standardized breakfast (0800 h) and lunch (1100 h). Venous blood samples were collected in the fasted state and at 2, 4, 6, and 8 h after breakfast. Results The serum TG incremental area under the curve was 35% and 33% lower on the continuous and multiple short bouts of walking trials than that on the control trial (8.2 ± 3.1 vs 8.5 ± 5.4 vs 12.7 ± 5.8 mmol per 8 h·L−1, respectively; main effect of trial: effect size = 0.459, P = 0.001). Conclusions Accumulating walking in short bouts limits postprandial TG in at-risk, inactive older women with fasting hypertriglyceridemia. PMID:28857839
Muscle sympathetic nerve responses to physiological changes in prostaglandin production in humans
NASA Technical Reports Server (NTRS)
Doerzbacher, K. J.; Ray, C. A.
2001-01-01
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.
Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron
2013-08-01
The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.
Stensel, David
2010-01-01
Knowledge about the relationship between exercise and appetite is important both for athletes wishing to optimise performance and for those interested in maintaining a healthy body weight. A variety of hormones are involved in appetite regulation including both episodic hormones, which are responsive to episodes of feeding, and tonic hormones, which are important regulators of energy storage over the longer term (e.g. insulin and leptin). Notable among the episodic appetite-regulating hormones is ghrelin, which plays a unique role in stimulating appetite and energy intake. Many studies have demonstrated that acute bouts of moderately vigorous exercise transiently suppress appetite and this has been termed 'exercise-induced anorexia'. The mechanisms by which acute exercise suppresses appetite are not fully understood but may involve lowered concentrations of ghrelin and increased concentrations of satiety hormones, notably peptide YY and glucagon-like peptide 1. Evidence suggests that chronic exercise training typically causes a partial but incomplete compensation in energy intake perhaps due to beneficial changes in appetite-regulating hormones. The lack of a full compensatory response of appetite to exercise may facilitate the development of a negative energy balance and weight loss although there is individual variability in the response to exercise. From a practical standpoint athletes should not feel concerned that exercise will cause overeating as there is limited evidence to support this. For those desiring weight loss there may be some merit in performing exercise in the postprandial period as a means of enhancing the satiating effect of a meal but additional evidence is required to confirm the effectiveness of this strategy. Copyright © 2011 S. Karger AG, Basel.
Exercise Intervention for Cancer Survivors with Heart Failure: Two Case Reports
Hughes, Daniel C.; Lenihan, Daniel J.; Harrison, Carol A.; Basen-Engquist, Karen M.
2011-01-01
Rationale Cardiotoxicity is a troubling long-term side effect of chemotherapy cancer treatment, affecting therapy and quality of life (QOL). Exercise is beneficial in heart failure (HF) patients and in cancer survivors without HF, but has not been tested in cancer survivors with treatment induced HF. Methods We present case studies for two survivors: a 56-year old female Hodgkin’s lymphoma survivor (Pt 1) and a 44-year old male leukemia survivor (Pt 2). We conducted a 16-week exercise program with the goal of 30 minutes of exercise performed 3 times per week at a minimum intensity of 50% heart rate reserve (HRR) or ‘12’ rating of perceived exertion (RPE). Results Pt 1 improved from 11.5 minutes of exercise split over two bouts at an RPE of 14 to a 30 minute bout at an RPE of 15. Pt 2 improved from 11 minutes of exercise split over two bouts at an RPE of 12 to an 18 minute bout at an RPE of 12. Both improved in VO2 peak (Pt 1: 13.9 to 14.3 mlO2/kg/min; Pt 2: 12.5 to 18.7 mlO2/kg/min). Ejection fraction increased for Pt 2 (25–30% to 35–40%) but not for Pt 1 (35–40%). QOL as assessed by the SF-36 Physical Component Scale (PCS) improved from 17.79 to 25.31 for Pt 1 and the Mental Component Scale (MCS) improved from 43.84 to 56.65 for Pt 1 and from 34.79 to 44.45 for Pt 2. Conclusions Properly designed exercise interventions can improve physical functioning and quality of life for this growing group of survivors. PMID:21709755
Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation
Gahreman, Daniel; Wang, Rose; Boutcher, Yati; Boutcher, Stephen
2015-01-01
Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo. PMID:26184298
Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick
2015-01-01
Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686
The acute effect of Quercetin on muscle performance following a single resistance training session.
Patrizio, Federica; Ditroilo, Massimiliano; Felici, Francesco; Duranti, Guglielmo; De Vito, Giuseppe; Sabatini, Stefania; Sacchetti, Massimo; Bazzucchi, Ilenia
2018-05-01
To examine the effect of acute quercetin (Q) ingestion on neuromuscular function, biomarkers of muscle damage, and rate of perceived exertion (RPE) in response to an acute bout of resistance training. 10 young men (22.1 ± 1.8 years, 24.1 ± 3.1 BMI) participated in a randomized, double-blind, crossover study. Subjects consumed Q (1 g/day) or placebo (PLA) 3 h prior to a resistance training session which consisted of 3 sets of 8 repetitions at 80% of the one repetition maximum (1RM) completed bilaterally for eight different resistance exercises. Electromyographic (EMG) signals were recorded from the knee extensor muscles during maximal isometric (MVIC) and isokinetic voluntary contractions, and during an isometric fatiguing test. Mechanical and EMG signals, biomarkers of cell damage, and RPE score were measured PRE, immediately POST, and 24 h (blood indices only) following the resistance exercise. After a single dose of Q, the torque-velocity curve of knee extensors was enhanced and after the resistance exercise, subjects showed a lower MVIC reduction (Q: 0.91 ± 6.10%, PLA: 8.66 ± 5.08%) with a greater rate of torque development (+ 10.6%, p < 0.005) and neuromuscular efficiency ratio (+ 28.2%, p < 0.005). Total volume of the resistance exercises was significantly greater in Q (1691.10 ± 376.71 kg rep) compared to PLA (1663.65 ± 378.85 kg rep) (p < 0.05) with a comparable RPE score. No significant differences were found in blood marker between treatments. The acute ingestion of Q may enhance the neuromuscular performance during and after a resistance training session.
Markil, Nina; Whitehurst, Michael; Jacobs, Patrick L; Zoeller, Robert F
2012-10-01
The measurement of heart rate variability (HRV) is often applied as an index of autonomic nervous system (ANS) balance and, therefore, myocardial stability. Previous studies have suggested that relaxation or mind-body exercise can influence ANS balance positively as measured by HRV but may act via different mechanisms. No studies, to the authors' knowledge, have examined the acute response in HRV to interventions combining relaxation and mind-body exercise. The objective of this study was to compare the acute HRV responses to Yoga Nidra relaxation alone versus Yoga Nidra relaxation preceded by Hatha yoga. This was a randomized counter-balanced trial. The trial was conducted in a university exercise physiology laboratory. Subjects included 20 women and men (29.15±6.98 years of age, with a range of 18-47 years). Participants completed a yoga plus relaxation (YR) session and a relaxation only (R) session. The YR condition produced significant changes from baseline in heart rate (HR; beats per minute [bpm], p<0.001) and indices of HRV: R-R (ms, p<0.001), pNN50 (%, p=0.009), low frequency (LF; %, p=0.008) and high frequency (HF; %, p=0.035). The R condition produced significant changes from baseline in heart rate (bpm, p<0.001) as well as indices of HRV: R-R (ms, p<0.001), HF (ms(2), p=0.004), LF (%, p=0.005), HF (%, p=0.008) and LF:HF ratio (%, p=0.008). There were no significant differences between conditions at baseline nor for the changes from baseline for any of the variables. These changes demonstrate a favorable shift in autonomic balance to the parasympathetic branch of the ANS for both conditions, and that Yoga Nidra relaxation produces favorable changes in measures of HRV whether alone or preceded by a bout of Hatha yoga.
Prolonged adenosine triphosphate infusion and exercise hyperemia in humans.
Shepherd, John R A; Joyner, Michael J; Dinenno, Frank A; Curry, Timothy B; Ranadive, Sushant M
2016-09-01
In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand. Copyright © 2016 the American Physiological Society.
Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise.
Butterfield, Timothy A; Best, Thomas M
2009-02-01
The purpose of this study was to test the hypothesis that stretch-activated ion channel (SAC) function is essential for the repeated bout effect (RBE) in skeletal muscle. Specifically, we investigated if daily injections of streptomycin (a known SAC blocker) would abrogate the muscle's adaptive resistance to the damaging effects of eccentric exercise over a 4-wk period. Furthermore, we hypothesized that the lack of an RBE would be due to the lack of functional adaptations that typically result from repeated bouts of eccentric exercise, including increased peak isometric torque, muscle hypertrophy, and rightward shift of the torque-angle relationship. Twelve New Zealand white rabbits were each subjected to 12 bouts of eccentric exercise over a 4-wk period while receiving either daily injections of streptomycin or sham injections. Although blocking the SAC function completely eliminated the expected adaptive response in biomechanical parameters during the exercise regimen, there remained evidence of an acquired RBE, albeit with an attenuated response when compared with the muscles with intact SAC function. Blocking sarcolemmal SAC eliminates functional adaptations of muscle after eccentric exercise. In the absence of SAC function, muscles subjected to chronic eccentric exercise still exhibit some degree of the RBE. As such, it appears that the signaling cascade that results in functional, biomechanical adaptations associated with the RBE during eccentric exercise is dependent upon intact SAC function.
Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults.
Yoo, Jeung-Ki; Pinto, Michelle M; Kim, Han-Kyul; Hwang, Chueh-Lung; Lim, Jisok; Handberg, Eileen M; Christou, Demetra D
2017-05-01
There is growing evidence of sex differences in the chronic effect of aerobic exercise on endothelial function (flow-mediated dilation; FMD) in older adults, but whether there are sex differences also in the acute effect of aerobic exercise on FMD in older adults is unknown. The purpose of this study was to test the hypothesis that sex modulates the FMD response to acute aerobic exercise in older adults. Thirteen older men and fifteen postmenopausal women (67±1 vs. 65±2years, means±SE, P=0.6), non-smokers, free of major clinical disease, participated in this randomized crossover study. Brachial artery FMD was measured: 1) prior to exercise; 2) 20min after a single bout of high-intensity interval training (HIIT; 40min; 4×4 intervals 90% peak heart rate (HRpeak)), moderate-intensity continuous training (MICT; 47min 70% HRpeak) and low-intensity continuous training (LICT; 47min 50% HRpeak) on treadmill; and 3) following 60-min recovery from exercise. In older men, FMD was attenuated by 45% following HIIT (5.95±0.85 vs. 3.27±0.52%, P=0.003) and by 37% following MICT (5.97±0.87 vs. 3.73±0.47%, P=0.03; P=0.9 for FMD response to HIIT vs. MICT) and was normalized following 60-min recovery (P=0.99). In postmenopausal women, FMD did not significantly change in response to HIIT (4.93±0.55 vs. 6.31±0.57%, P=0.14) and MICT (5.32±0.62 vs. 5.60±0.68%, P=0.99). In response to LICT, FMD did not change in postmenopausal women nor older men (5.21±0.64 vs. 6.02±0.73%, P=0.7 and 5.70±0.80 vs. 5.55±0.67%, P=0.99). In conclusion, sex and exercise intensity influence the FMD response to acute aerobic exercise in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Acute coordinative exercise improves attentional performance in adolescents.
Budde, Henning; Voelcker-Rehage, Claudia; Pietrabyk-Kendziorra, Sascha; Ribeiro, Pedro; Tidow, Günter
2008-08-22
Teachers complain about growing concentration deficits and reduced attention in adolescents. Exercise has been shown to positively affect cognitive performance. Due to the neuronal connection between the cerebellum and the frontal cortex, we hypothesized that cognitive performance might be influenced by bilateral coordinative exercise (CE) and that its effect on cognition might be already visible after short bouts of exercise. One hundred and fifteen healthy adolescents aged 13-16 years of an elite performance school were randomly assigned to an experimental and a control group and tested using the d2-test, a test of attention and concentration. Both groups performed the d2-test after a regular school lesson (pre-test), after 10 min of coordinative exercise and of a normal sport lesson (NSL, control group), respectively (post-test). Exercise was controlled for heart rate (HR). CE and NSL enhanced the d2-test performance from pre- to post-test significantly. ANOVA revealed a significant group (CE, NSL) by performance interaction in the d2-test indicating a higher improvement of CE as compared to NSL. HR was not significantly different between the groups. CE was more effective in completing the concentration and attention task. With the HR being the same in both groups we assume that the coordinative character of the exercise might be responsible for the significant differences. CE might lead to a pre-activation of parts of the brain which are also responsible for mediating functions like attention. Thus, our results support the request for more acute CE in schools, even in elite performance schools.
Energy cost of isolated resistance exercises across low- to high-intensities
Garrido, Nuno Domingos; Vianna, Jeferson; Sousa, Ana Catarina; Alves, José Vilaça; Marques, Mário Cardoso
2017-01-01
This study aimed to estimate the energy cost across various intensities at eight popular resistance exercises: half squat, 45° inclined leg press, leg extension, horizontal bench press, 45° inclined bench press, lat pull down, triceps extension and biceps curl. 58 males (27.5 ± 4.9 years, 1.78 ± 0.06 m height, 78.67 ± 10.7 kg body mass and 11.4 ± 4.1% estimated body fat) were randomly divided into four groups of 14 subjects each. For each group, two exercises were randomly assigned and on different days, they performed four bouts of 5-min constant-intensity for each of the two assigned exercises: 12%, 16%, 20% and 24% 1-RM. Later, the subjects performed exhaustive bouts at 80% 1-RM in the same two exercises. The mean values of VO2 at the last 30s of exercise at 12, 16, 20 and 24% 1-RM bouts were plotted against relative intensity (% 1-RM) in a simple linear regression mode. The regressions were then used to predict O2 demand for the higher intensity (80% 1-RM). Energy cost rose linearly with exercise intensity in every exercise with the lowest mean values were found in biceps curl and the highest in half squat exercise (p<0.001). Half squat exercise presented significant (p<0.001) higher values of energy cost in all intensities, when compared with the remaining exercises. This study revealed that low-intensity resistance exercise provides energy cost comprised between 3 and 10 kcal∙min-1. Energy cost rose past 20 kcal∙min-1 at 80% 1-RM in leg exercise. In addition, at 80% 1-RM, it was found that upper body exercises are less anaerobic than lower-body exercises. PMID:28742112
Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.
2014-01-01
Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632
Caldwell, Lydia K; DuPont, William H; Beeler, Matthew K; Post, Emily M; Barnhart, Emily C; Hardesty, Vincent H; Anders, John P; Borden, Emily C; Volek, Jeff S; Kraemer, William J
2018-03-01
The purpose of this double-blind, placebo-controlled investigation was to examine the effects of a Korean Ginseng (GINST15) on measures of perception and physical performance following an acute bout of resistance exercise. Ten women (age: 38.7 ± 7.8 years; height: 1.64 ± 0.05 m; body mass: 76.0 ± 11.6 kg) and nine men (age: 41.2. ± 9.7 years; height: 1.77 ± 0.05 m; body mass: 88.5 ± 5.0 kg) completed the investigation. Participants were randomized to a three-cycle testing scheme consisting of high dose ginseng (HIGH: 960 mg/day), low dose ginseng (LOW: 160 mg/day) and placebo (PBO: 0 mg/day). After 14 days of supplementation participants returned to the laboratory for an acute resistance exercise trial (5 sets of 12 repetitions of the leg press at 70% of one-repetition-maximum [1RM]). Ratings of perceived exertion (RPE) were assessed after each set. Muscle pain/soreness was assessed before exercise and 24 hours post exercise. Psychomotor performance and peak power were measured before exercise, immediately post exercise and 24 hours after exercise. Each treatment cycle was separated by a minimum one-week washout period. HIGH significantly reduced perceived exertion during exercise. HIGH and LOW significantly reduced change in muscle soreness at 24 hours post exercise. Analysis of peak power demonstrated the presence of responders (n = 13) and non-responders (n = 6). Responders showed a significant effect of HIGH GINST15 on maintenance of neuromuscular function. The appearance of responders and non-responders, could explain the mixed literature base on the ergogenic properties of ginseng.
Complex active travel bout motivations: Gender, place, and social context associations.
Brown, Barbara B; Smith, Ken R
2017-09-01
Active travel bouts are healthy, but bout-specific motives, social, and physical contexts have been poorly characterized. Adults (n= 421 in 2012, 436 in 2013) described their moderate activity bouts over the past week, aided by accelerometry/GPS data integration. Participants viewed maps indicating date, time, and starting and ending locations of their past week moderate-to-vigorous active travel bouts of 3 or more minutes. These prompts helped participants recall their social and physical contexts and motives for the bouts. Three bout motivations were modeled: leisure, transportation, and their "T-L" difference scores (transportation minus leisure scores). Blends of leisure and transportation motives characterized most bouts, even though most studies do not allow participants to endorse multiple motives for their active travel. Bouts were often neighborhood-based. Leisure motives were related to pleasant place perceptions, homes, and exercise places; workplaces were associated with stronger transportation and T-L bout motives. Women's bout motives were more closely associated with place than men's. Our novel method of individual bout assessment can illuminate the social-ecological contexts and experiences of everyday healthy bouts of activity.
Prapavessis, Harry; De Jesus, Stefanie; Harper, Therese; Cramp, Anita; Fitzgeorge, Lyndsay; Mottola, Michelle F; Ussher, Michael; Faulkner, Guy; Selby, Peter
2014-03-01
Smoking during pregnancy is common, and quitting at any point during pregnancy can yield benefits to both the fetus and mother. Smoking cessation is typically followed by withdrawal symptoms and a strong desire to smoke, both of which are likely to contribute to relapse. Research has shown that a bout of exercise minimizes cravings and tobacco withdrawal symptoms (TWS) after temporary abstinence in smokers, but these findings have not been replicated in pregnant smokers. This study examined the effect of 20min of exercise on cravings (primary outcome) and TWS (secondary outcomes) among temporary abstinent, inactive pregnant smokers. Thirty female smokers (Mean(M) age=25.7years, Standard Deviation(SD)=5.5; M weeks pregnant=18.2, SD=5.3; Fagerstrom Test for Cigarette Dependence=3.3, SD=2.2; M 9.3 cigarettes/day, SD=4.7; M hours abstained=17.2, SD=2.8) were randomized to 20 min of mild-to-moderate intensity exercise (EC; n=14) or passive (PC; n=16) condition. Cravings and TWS were assessed immediately before, during (at 10 min), immediately post, and at 10, 20, and 30 min post-condition. A 2 (condition)×6 (time) repeated measures ANOVA revealed that the EC significantly (p<0.05) reduced cravings (ή(2)=0.46) compared with the PC, across time. Non-significant, but nevertheless, large effects were evident favouring the EC over time for TWS restlessness (ή(2)=0.34), stress (ή(2)=0.24), irritability (ή(2)=0.21), tension (ή(2)=0.15), and depression (ή(2)=0.14). Consistent with previous research, this study reveals that in pregnant smokers, a bout of exercise is associated with a reduction in cravings and similar patterns exist for TWS. Therefore, exercise may have the potential to assist in the initial stages of smoking cessation attempts during pregnancy. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Tossige-Gomes, Rosalina; Costa, Karine Beatriz; Ottone, Vinícius de Oliveira; Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel
2016-01-01
This study investigated whether an acute session of high-intensity interval training (HIIT) is sufficient to alter lymphocyte function and redox status. Sixteen young healthy men underwent a HIIT session on a cycloergometer, consisting of eight bouts of 1 min at 90-100% of peak power, with 75 seconds of active recovery at 30 W between bouts. Venous blood was collected before, immediately after, and 30 minutes after the HIIT session. In response to Staphylococcus aureus superantigen B (SEB) stimulation, lymphocyte proliferation decreased and the IL-2 concentration increased after the HIIT session. However, the HIIT session had no effect on lymphocyte proliferation or IL-2 response to phytohemagglutinin stimulation. The HIIT session also induced lymphocyte redox imbalance, characterized by an increase in the concentration of thiobarbituric acid reactive substances and a decrease in the activity of the antioxidant enzyme catalase. Lymphocyte viability was not affected by the HIIT session. The frequencies of CD25+ and CD69+ T helper and B lymphocytes in response to superantigen stimulation were lower after exercise, suggesting that superantigen-induced lymphocyte activation was reduced by HIIT. However, HIIT also led to a reduction in the frequency of CD4+ and CD19+ cells, so the frequencies of CD25+ and CD69+ cells within the CD4 and CD19 cell populations were not affected by HIIT. These data indicate that the reduced lymphocyte proliferation observed after HIIT is not due to reduced early lymphocyte activation by superantigen. Our findings show that an acute HIIT session promotes lymphocyte redox imbalance and reduces lymphocyte proliferation in response to superantigenic, but not to mitogenic stimulation. This observation cannot be explained by alteration of the early lymphocyte activation response to superantigen. The manner in which lymphocyte function modulation by an acute HIIT session can affect individual immunity and susceptibility to infection is important and requires further investigation.
Tossige-Gomes, Rosalina; Costa, Karine Beatriz; Ottone, Vinícius de Oliveira; Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel
2016-01-01
This study investigated whether an acute session of high-intensity interval training (HIIT) is sufficient to alter lymphocyte function and redox status. Sixteen young healthy men underwent a HIIT session on a cycloergometer, consisting of eight bouts of 1 min at 90–100% of peak power, with 75 seconds of active recovery at 30 W between bouts. Venous blood was collected before, immediately after, and 30 minutes after the HIIT session. In response to Staphylococcus aureus superantigen B (SEB) stimulation, lymphocyte proliferation decreased and the IL-2 concentration increased after the HIIT session. However, the HIIT session had no effect on lymphocyte proliferation or IL-2 response to phytohemagglutinin stimulation. The HIIT session also induced lymphocyte redox imbalance, characterized by an increase in the concentration of thiobarbituric acid reactive substances and a decrease in the activity of the antioxidant enzyme catalase. Lymphocyte viability was not affected by the HIIT session. The frequencies of CD25+ and CD69+ T helper and B lymphocytes in response to superantigen stimulation were lower after exercise, suggesting that superantigen-induced lymphocyte activation was reduced by HIIT. However, HIIT also led to a reduction in the frequency of CD4+ and CD19+ cells, so the frequencies of CD25+ and CD69+ cells within the CD4 and CD19 cell populations were not affected by HIIT. These data indicate that the reduced lymphocyte proliferation observed after HIIT is not due to reduced early lymphocyte activation by superantigen. Our findings show that an acute HIIT session promotes lymphocyte redox imbalance and reduces lymphocyte proliferation in response to superantigenic, but not to mitogenic stimulation. This observation cannot be explained by alteration of the early lymphocyte activation response to superantigen. The manner in which lymphocyte function modulation by an acute HIIT session can affect individual immunity and susceptibility to infection is important and requires further investigation. PMID:27096389
Shamlan, Ghalia; Bech, Paul; Robertson, M Denise; Collins, Adam L
2017-12-01
Exercise is capable of influencing the regulation of energy balance by acutely modulating appetite and energy intake coupled to effects on substrate utilization. Yet, few studies have examined acute effects of exercise intensity on aspects of both energy intake and energy metabolism, independently of energy cost of exercise. Furthermore, little is known as to the gender differences of these effects. One hour after a standardised breakfast, 40 (19 female), healthy participants (BMI 23.6 ± 3.6 kg·m -2 , V̇O 2peak 34.4 ± 6.8 mL·kg -1 ·min -1 ) undertook either high-intensity intermittent cycling (HIIC) consisting of 8 repeated 60 s bouts of cycling at 95% V̇O 2peak or low-intensity continuous cycling (LICC), equivalent to 50% V̇O 2peak , matched for energy cost (∼950 kJ) followed by 90 mins of rest, in a randomised crossover design. Throughout each study visit, satiety was assessed subjectively using visual analogue scales alongside blood metabolites and GLP-1. Energy expenditure and substrate utilization were measured over 75 min postexercise via indirect calorimetry. Energy intake was assessed for 48 h postintervention. No differences in appetite, GLP-1, or energy intakes were observed between HIIC and LICC, with or without stratifying for gender. Significant differences in postexercise nonesterified fatty acid concentrations were observed between intensities in both genders, coupled to a significantly lower respiratory exchange ratio following HIIC (P = 0.0028), with a trend towards greater reductions in respiratory exchange ratioin males (P = 0.079). In conclusion, high-intensity exercise, if energy matched, does not lead to greater appetite or energy intake, but may exert additional beneficial metabolic effects that may be more pronounced in males.
Péronnet, F; Massicotte, D; Paquet, J E; Brisson, G; de Champlain, J
1989-01-01
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)
Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci
2015-01-01
The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.
Comparison of responses to two high-intensity intermittent exercise protocols.
Gist, Nicholas H; Freese, Eric C; Cureton, Kirk J
2014-11-01
The purpose of this study was to compare peak cardiorespiratory, metabolic, and perceptual responses to acute bouts of sprint interval cycling (SIC) and a high-intensity intermittent calisthenics (HIC) protocol consisting of modified "burpees." Eleven (8 men and 3 women) moderately trained, college-aged participants (age = 21.9 ± 2.1, body mass index = 24.8 ± 1.9, V[Combining Dot Above]O2peak = 54.1 ± 5.4 ml·kg·min) completed 4 testing sessions across 9 days with each session separated by 48-72 hours. Using a protocol of 4 repeated bouts of 30-second "all-out" efforts interspersed with 4-minute active recovery periods, responses to SIC and HIC were classified relative to peak values. Mean values for %V[Combining Dot Above]O2peak and %HRpeak for SIC (80.4 ± 5.3% and 86.8 ± 3.9%) and HIC (77.6 ± 6.9% and 84.6 ± 5.3%) were not significantly different (p > 0.05). Effect sizes (95% confidence interval) calculated for mean differences were: %V[Combining Dot Above]O2peak Cohen's d = 0.51 (0.48-0.53) and %HRpeak Cohen's d = 0.57 (0.55-0.59). A low-volume, high-intensity bout of repeated whole-body calisthenic exercise induced cardiovascular responses that were not significantly different but were ∼1/2SD lower than "all-out" SIC. These results suggest that in addition to the benefit of reduced time commitment, a high-intensity interval protocol of calisthenics elicits vigorous cardiorespiratory and perceptual responses and may confer physiological adaptations and performance improvements similar to those reported for SIC. The potential efficacy of this alternative interval training method provides support for its application by athletes, coaches, and strength and conditioning professionals.
Koenigstorfer, Joerg; Schmidt, Walter F J
2011-10-24
This paper aims to examine the similarities in effects of exercise training and a hypocaloric diet within overweight female monozygotic twin pairs and to assess differences in twin partners' responses depending on the timing of exercise bouts and main meals. Six previously untrained twin pairs (aged 20-37 years, body fat 35.8±6.3%) performed an identical exercise program (12 bouts endurance and 8 bouts resistance training) and took part in a nutrition counseling program for a period of 28 days. They pursued one identical goal: to lose body weight and fat. Each twin partner was randomly assigned to one of the two intervention groups: "exercise after dinner" (A) and "exercise before dinner" (B). Subjects followed a hypocaloric diet, supervised by a nutritionist, in free-living conditions. Reductions in body weight, waist and hip circumference, glucose tolerance, mean daily %fat intake, changes in morning resting energy rate and resting metabolic rate showed great variation between twin pairs, but only small variation within twin pairs. Thus, the genetic influence on the changes in most of the examined anthropometric and physiological variables was high. There was no influence of the specific timing on the dependent variables. Copyright © 2011 Elsevier Inc. All rights reserved.
Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A
2015-01-01
Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser473) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser2448) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations. PMID:25902785
Tong, Tom K; Fu, Frank H; Eston, Roger; Chung, Pak-Kwong; Quach, Binh; Lu, Kui
2010-11-01
This study examined the hypothesis that chronic (training) and acute (warm-up) loaded ventilatory activities applied to the inspiratory muscles (IM) in an integrated manner would augment the training volume of an interval running program. This in turn would result in additional improvement in the maximum performance of the Yo-Yo intermittent recovery test in comparison with interval training alone. Eighteen male nonprofessional athletes were allocated to either an inspiratory muscle loading (IML) group or control group. Both groups participated in a 6-week interval running program consisting of 3-4 workouts (1-3 sets of various repetitions of selected distance [100-2,400 m] per workout) per week. For the IML group, 4-week IM training (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets·d-1, 6 d·wk-1) was applied before the interval program. Specific IM warm-up (2 sets of 30 inspiratory efforts at 40% P0) was performed before each workout of the program. For the control group, neither IML was applied. In comparison with the control group, the interval training volume as indicated by the repeatability of running bouts at high intensity was approximately 27% greater in the IML group. Greater increase in the maximum performance of the Yo-Yo test (control: 16.9 ± 5.5%; IML: 30.7 ± 4.7% baseline value) was also observed after training. The enhanced exercise performance was partly attributable to the greater reductions in the sensation of breathlessness and whole-body metabolic stress during the Yo-Yo test. These findings show that the combination of chronic and acute IML into a high-intensity interval running program is a beneficial training strategy for enhancing the tolerance to high-intensity intermittent bouts of running.
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Dungey, Maurice; Bishop, Nicolette C; Young, Hannah M L; Burton, James O; Smith, Alice C
2015-01-01
Patients requiring haemodialysis have cardiovascular and immune dysfunction. Little is known about the acute effects of exercise during haemodialysis. Exercise has numerous health benefits but in other populations has a profound impact upon blood pressure, inflammation and immune function; therefore having the potential to exacerbate cardiovascular and immune dysfunction in this vulnerable population. Fifteen patients took part in a randomised-crossover study investigating the effect of a 30-min bout of exercise during haemodialysis compared to resting haemodialysis. We assessed blood pressure, plasma markers of cardiac injury and systemic inflammation and neutrophil degranulation. Exercise increased blood pressure immediately post-exercise; however, 1 hour after exercise blood pressure was lower than resting levels (106±22 vs. 117±25 mm Hg). No differences in h-FABP, cTnI, myoglobin or CKMB were observed between trial arms. Exercise did not alter circulating concentrations of IL-6, TNF-α or IL-1ra nor clearly suppress neutrophil function. This study demonstrates fluctuations in blood pressure during haemodialysis in response to exercise. However, since the fall in blood pressure occurred without evidence of cardiac injury, we regard it as a normal response to exercise superimposed onto the haemodynamic response to haemodialysis. Importantly, exercise did not exacerbate systemic inflammation or immune dysfunction; intradialytic exercise was well tolerated. © 2015 The Author(s) Published by S. Karger AG, Basel.
Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress
McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.
2015-01-01
Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061
Wood, Kimberly M; Olive, Brittany; LaValle, Kaylyn; Thompson, Heather; Greer, Kevin; Astorino, Todd A
2016-01-01
High-intensity interval training (HIIT) and sprint interval training (SIT) elicit similar cardiovascular and metabolic adaptations vs. endurance training. No study, however, has investigated acute physiological changes during HIIT vs. SIT. This study compared acute changes in heart rate (HR), blood lactate concentration (BLa), oxygen uptake (VO2), affect, and rating of perceived exertion (RPE) during HIIT and SIT. Active adults (4 women and 8 men, age = 24.2 ± 6.2 years) initially performed a VO2max test to determine workload for both sessions on the cycle ergometer, whose order was randomized. Sprint interval training consisted of 8 bouts of 30 seconds of all-out cycling at 130% of maximum Watts (Wmax). High-intensity interval training consisted of eight 60-second bouts at 85% Wmax. Heart rate, VO2, BLa, affect, and RPE were continuously assessed throughout exercise. Repeated-measures analysis of variance revealed a significant difference between HIIT and SIT for VO2 (p < 0.001), HR (p < 0.001), RPE (p = 0.03), and BLa (p = 0.049). Conversely, there was no significant difference between regimens for affect (p = 0.12). Energy expenditure was significantly higher (p = 0.02) in HIIT (209.3 ± 40.3 kcal) vs. SIT (193.5 ± 39.6 kcal). During HIIT, subjects burned significantly more calories and reported lower perceived exertion than SIT. The higher VO2 and lower BLa in HIIT vs. SIT reflected dissimilar metabolic perturbation between regimens, which may elicit unique long-term adaptations. If an individual is seeking to burn slightly more calories, maintain a higher oxygen uptake, and perceive less exertion during exercise, HIIT is the recommended routine.
Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M
2015-09-15
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Heck, Thiago Gomes; Scomazzon, Sofia Pizzato; Nunes, Patrícia Renck; Schöler, Cinthia Maria; da Silva, Gustavo Stumpf; Bittencourt, Aline; Faccioni-Heuser, Maria Cristina; Krause, Mauricio; Bazotte, Roberto Barbosa; Curi, Rui; Homem de Bittencourt, Paulo Ivo
2017-03-01
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children
Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B.; Roig, Marc
2017-01-01
Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running indicates that the observed memory improvements are determined to a larger extent by physiological factors rather than the types of movements performed during the exercise protocol. PMID:28473761
Mullane, Sarah L; Buman, Matthew P; Zeigler, Zachary S; Crespo, Noe C; Gaesser, Glenn A
2017-05-01
To compare acute cognitive effects following bouts of standing (STAND), cycling (CYCLE) and walking (WALK) to a sit-only (SIT) condition. Randomized cross-over full-factorial study. Nine overweight (BMI=29±3kg/m 2 ) adults (30±15years; 7 females, 2 males) completed four conditions (SIT, STAND, WALK and CYCLE) across a 6h period with a 7days washout period between conditions. SIT consisted of uninterrupted sitting. Experimental conditions included intermittent bouts of standing (STAND), cycling (CYCLE) and walking (WALK). A cognitive performance battery (Cogstate) was completed twice in a seated position following bouts of standing and light-intensity physical activity. Mixed-effects models compared between-condition differences in standardized score (z-score), accuracy (%), and speed (log10ms). Cognitive performance z-score and accuracy measures were higher during STAND, CYCLE and WALK (P<0.05) conditions compared to the SIT condition. CYCLE was better than other experimental conditions. Compared to uninterrupted sitting, short bouts of standing or light-intensity cycling and walking may improve acute cognitive performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Tosovic, D; Than, C; Brown, J M M
2016-08-01
Muscle fatigue has been identified as a risk factor for spontaneous muscle injuries in sport. However, few studies have investigated the accumulated effects of muscle fatigue on human muscle contractile properties. This study aimed to determine whether repeated bouts of exercise inducing acute fatigue leads to longer-term fatigue-related changes in muscle contractile properties. Maximum voluntary contraction (MVC), electromyographic (EMG) and mechanomyographic (MMG) measures were recorded in the biceps brachii of 11 participants for 13 days, before and after a maximally fatiguing exercise protocol. The exercise protocol involved participants repetitively lifting a weight (concentric contractions only) equal to 40 % MVC, until failure. A significant (p < 0.05) acute pre- to post-exercise decline of biceps brachii MVC and median power frequency (MPF) was observed each day, whilst no difference existed between pre-exercise MVC or MPF values on subsequent days (days 2-13). However, decreases in number of lift repetitions and in pre-exercise MMG values of muscle belly displacement, contraction velocity and half-relaxation velocity were observed through to day 13. Whilst MVC and MPF measures resolved by the following day's test session, MMG measures indicated an ongoing decrement in muscle performance through days 2-13 consistent with the decline in lift repetitions observed. These results suggest that MMG may be more sensitive in detecting accumulated muscle fatigue than the 'gold standard' measures of MVC/MPF. Considering that muscle fatigue leads to injury, the on-going monitoring of MMG derived contractile properties of muscles in athletes may aid in the prediction of fatigued-induced muscle injury.
Joggin' the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits.
Stimpson, Nikolas J; Davison, Glen; Javadi, Amir-Homayoun
2018-05-01
This narrative review examines literature pertaining to possible physiological explanations for observed cognitive benefits stemming from improvements to cardiovascular fitness following chronic aerobic exercise. Studies regarding exercise and cardiovascular fitness, angiogenesis, neuroinflammation in relation to IGF-1 signalling, regulation of neurotrophins, neurogenesis and plasticity, cognitive training, are briefly described. We propose that current evidence points towards a mechanism by which cardiovascular fitness improvements act to promote long-term angiogenesis and cerebral circulation. This important adaptation allows for increased delivery and upregulation of neurotrophins along with supporting factors to the brain, particularly to the hippocampal neurogenic niche, following acute exercise bouts. We propose a sequential timeline and approximate time scale for this mechanism, describing how these stages generate increased support for neurogenesis and brain plasticity in combination with cognitive training to provide long-term cognitive benefits and protection against age-related cognitive decline. Influences from age, gender and other variables are considered, and methodological factors that could be utilised in future studies to further clarify the proposed model are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Physical activity interventions and children's mental function: An introduction and overview
Tomporowski, Phillip D.; Lambourne, Kate; Okumura, Michelle S.
2011-01-01
Background This review provides a historical overview of physical activity interventions designed by American educators and an evaluation of research that has assessed the effects of exercise on children's mental function. Method Historical descriptions of the emergence of American physical education doctrine throughout the 20th century were evaluated. Prior reviews of studies that assessed the effects of single acute bouts of exercise and the effects of chronic exercise training on children's mental function were examined and the results of recent studies were summarized. Results Physical activity interventions designed for American children have reflected two competing views: activities should promote physical fitness and activities should promote social, emotional, and intellectual development. Research results indicate that exercise fosters the emergence of children's mental function; particularly executive functioning. The route by which physical activity impacts mental functioning is complex and is likely moderated by several variables, including physical fitness level, health status, and numerous psycho-social factors. Conclusion Physical activity interventions for children should be designed to meet multiple objectives; e.g., optimize physical fitness, promote health-related behaviors that offset obesity, and facilitate mental development. PMID:21420981
Barr, David; Reilly, Thomas; Gregson, Warren
2011-06-01
This study investigated the impact of ice vests and hand/forearm immersion on accelerating the physiological recovery between two bouts of strenuous exercise in the heat [mean (SD), 49.1(1.3)°C, RH 12 (1)]. On four occasions, eight firefighters completed two 20-min bouts of treadmill walking (5 km h, 7.5% gradient) while wearing standard firefighter protective clothing. Each bout was separated by a 15-min recovery period, during which one of four conditions were administered: ice vest (VEST), hand/forearm immersion (W), ice vest combined with hand/forearm immersion (VEST + W) and control (CON). Core temperature was significantly lower at the end of the recovery period in the VEST + W (37.97 ± 0.23°C) and W (37.96 ± 0.19°C) compared with the VEST (38.21 ± 0.12°C) and CON (38.29 ± 0.25°C) conditions and remained consistently lower throughout the second bout of exercise. Heart rate responses during the recovery period and bout 2 were similar between the VEST + W and W conditions which were significantly lower compared with the VEST and CON which did not differ from each other. Mean skin temperature was significantly lower at the start of bout 2 in the cooling conditions compared with CON; these differences reduced as exercise progressed. These findings demonstrate that hand/forearm immersion (~19°C) is more effective than ice vests in reducing the physiological strain when firefighters re-enter structural fires after short rest periods. Combining ice vests with hand/forearm immersion provides no additional benefit.
Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick
2009-08-01
The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.
Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I
2001-06-01
This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.
Single swim sessions in C. elegans induce key features of mammalian exercise.
Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica
2017-04-10
Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.
Mang, Cameron S.; Snow, Nicholas J.; Campbell, Kristin L.; Ross, Colin J. D.
2014-01-01
The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (−100.8 ms) to late practice (−75.2 ms, P < 0.001) and was maintained at retention (−79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866
Exercise and the Regulation of Immune Functions.
Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel
2015-01-01
Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.
Nosaka, K; Muthalib, M; Lavender, A; Laursen, P B
2007-01-01
This study investigated the hypothesis that muscle damage would be attenuated in muscles subjected to passive hyperthermia 1 day prior to exercise. Fifteen male students performed 24 maximal eccentric actions of the elbow flexors with one arm; the opposite arm performed the same exercise 2-4 weeks later. The elbow flexors of one arm received a microwave diathermy treatment that increased muscle temperature to over 40 degrees C, 16-20 h prior to the exercise. The contralateral arm acted as an untreated control. Maximal voluntary isometric contraction strength (MVC), range of motion (ROM), upper arm circumference, muscle soreness, plasma creatine kinase activity and myoglobin concentration were measured 1 day prior to exercise, immediately before and after exercise, and daily for 4 days following exercise. Changes in the criterion measures were compared between conditions (treatment vs. control) using a two-way repeated measures ANOVA with a significance level of P < 0.05. All measures changed significantly following exercise, but the treatment arm showed a significantly faster recovery of MVC, a smaller change in ROM, and less muscle soreness compared with the control arm. However, the protective effect conferred by the diathermy treatment was significantly less effective compared with that seen in the second bout performed 4-6 weeks after the initial bout by a subgroup of the subjects (n = 11) using the control arm. These results suggest that passive hyperthermia treatment 1 day prior to eccentric exercise-induced muscle damage has a prophylactic effect, but the effect is not as strong as the repeated bout effect.
Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Tsiokanos, Athanasios; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z
2017-01-01
Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults ( n = 14) and children ( n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation ( p < 0.01). In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.
Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters.
Kinnunen, Susanna; Hyyppä, Seppo; Lehmuskero, Arja; Oksala, Niku; Mäenpää, Pekka; Hänninen, Osmo; Atalay, Mustafa
2005-12-01
Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.
Milioni, Fabio; Malta, Elvis de Souza; Rocha, Leandro George Spinola do Amaral; Mesquita, Camila Angélica Asahi; de Freitas, Ellen Cristini; Zagatto, Alessandro Moura
2016-05-01
The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg(-1)·min(-1)) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg(-1); p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.
NASA Technical Reports Server (NTRS)
Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.
1997-01-01
Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.
Altered insulin response to an acute bout of exercise in pediatric obesity.
Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro
2014-11-01
Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p < .0167 vs. NW). This insulin drop in Ob was disproportionately more pronounced in the half of Ob children with higher basal insulin (Ob-H). In all groups, high-fat feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations.
Cochran, Andrew J R; Percival, Michael E; Tricarico, Steven; Little, Jonathan P; Cermak, Naomi; Gillen, Jenna B; Tarnopolsky, Mark A; Gibala, Martin J
2014-05-01
High-intensity interval training (HIIT) performed in an 'all-out' manner (e.g. repeated Wingate tests) is a time-efficient strategy to induce skeletal muscle remodelling towards a more oxidative phenotype. A fundamental question that remains unclear, however, is whether the intermittent or 'pulsed' nature of the stimulus is critical to the adaptive response. In study 1, we examined whether the activation of signalling cascades linked to mitochondrial biogenesis was dependent on the manner in which an acute high-intensity exercise stimulus was applied. Subjects performed either four 30 s Wingate tests interspersed with 4 min of rest (INT) or a bout of continuous exercise (CONT) that was matched for total work (67 ± 7 kJ) and which required ∼4 min to complete as fast as possible. Both protocols elicited similar increases in markers of adenosine monophosphate-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase activation, as well as Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression (main effects for time, P ≤ 0.05). In study 2, we determined whether 6 weeks of the CONT protocol (3 days per week) would increase skeletal muscle mitochondrial content to a similar extent to what we have previously reported after 6 weeks of INT. Despite similar acute signalling responses to the CONT and INT protocols, training with CONT did not increase the maximal activity or protein content of a range of mitochondrial markers. However, peak oxygen uptake was higher after CONT training (from 45.7 ± 5.4 to 48.3 ± 6.5 ml kg(-1) min(-1); P < 0.05) and 250 kJ time trial performance was improved (from 26:32 ± 4:48 to 23:55 ± 4:16 min:s; P < 0.001) in our recreationally active participants. We conclude that the intermittent nature of the stimulus is important for maximizing skeletal muscle adaptations to low-volume, all-out HIIT. Despite the lack of skeletal muscle mitochondrial adaptations, our data show that a training programme based on a brief bout of high-intensity exercise, which lasted <10 min per session including warm-up, and performed three times per week for 6 weeks, improved peak oxygen uptake in young healthy subjects. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Oral L-arginine before resistance exercise blunts growth hormone in strength trained males.
Forbes, Scott C; Harber, Vicki; Bell, Gordon J
2014-04-01
Acute resistance exercise and L-arginine have both been shown to independently elevate plasma growth hormone (GH) concentrations; however, their combined effect is controversial. The purpose was to investigate the combined effects of resistance exercise and L-arginine supplementation on plasma L-arginine, GH, GH secretagogues, and IGF-1 in strength trained participants. Fourteen strength trained males (age: 25 ± 4 y; body mass: 81.4 ± 9.0 kg; height: 179.4 ± 6.9 cm; and training experience: 6.3 ± 3.4 y) participated in a randomized double-blind crossover design (separated by ~7 days). Subjects reported to the laboratory at 08:00 in a fasted state, consumed L-arginine (ARG; 0.075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of resistance exercise (3 sets of 8 exercises, 10 repetitions at ~75% 1RM). Blood samples were collected at rest, before exercise, and at 0, 15, 30, and 60 min of rest-recovery. The ARG condition significantly increased plasma L-arginine concentrations (~120%) while no change was detected in the PLA condition. There were no differences between conditions for GH, GH-releasing hormone, ghrelin, or IGF-1 at any time point. GH-inhibiting hormone was significantly lower in the ARG condition. However, integrated area under the curve for GH was blunted in the ARG condition (L-arginine = 288.4 ± 368.7 vs. placebo = 487.9± 482.0 min·ng·mL1, p < .05). L-arginine ingested before resistance exercise significantly elevated plasma L-arginine concentration but attenuated plasma GH in strength trained individuals despite a lower GHIH. Furthermore our data shows that the GH suppression was not due to a GH or IGF-1 induced autonegative feedback loop.
Licence to eat: Information on energy expended during exercise affects subsequent energy intake.
McCaig, Duncan C; Hawkins, Lydia A; Rogers, Peter J
2016-12-01
An acute bout of exercise, compared with no exercise, appears to have little influence on subsequent energy intake (EI), resulting in short-term negative energy balance. Whereas the labelling of food is evidenced to influence EI, little research has focused on how EI is affected by framing acute exercise in different ways. To explore this, 70 healthy, mostly lean, male and female participants in the current study completed a set amount of exercise (estimated energy expenditure (EE) 120 kcal), but were informed on three occasions before and after the exercise that they had expended either 50 kcal or 265 kcal. An ad libitum test meal, comprising orange juice, tortilla chips and chocolate chip cookies, was then presented after a 10-min break to assess subsequent EI. Measures of hunger and dietary restraint were also completed. Greater EI, primarily driven by chocolate chip cookie consumption (p = 0.015), was observed in participants receiving 265 kcal EE information. Hunger ratings were significantly lower in the 265 kcal EE information group than in the 50 kcal group following the test meal (p = 0.035), but not immediately after the exercise. These results support an interpretation that higher EE information (265 kcal) provides participants with a greater 'licence to eat' when palatable foods are accessible. Tentative evidence for a moderating effect of dietary restraint was observed, indicating a greater influence of EE information in participants with lower restraint. The findings of the current study suggest that the provision of EE information (e.g., through mobile device apps) could be counter-productive to healthy weight management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koenig, Ryan T; Dickman, Jonathan R; Kang, Choung-Hun; Zhang, Tianou; Chu, Yi-Fang; Ji, Li Li
2016-01-01
Rigorous exercise is known to generate reactive oxygen species (ROS) and inflict inflammatory response. The present study investigated whether dietary supplementation of avenanthramides (AVA) in oats would increase antioxidant protection and reduce inflammation in humans after an acute bout of eccentric exercise. Young women (age 18-30 years, N = 16) were randomly divided into two groups in a double-blinded fashion, receiving two cookies made of oat flour providing 9.2 mg AVA (AVA) or 0.4 mg AVA (Control, C) each day for 8 weeks. Before and after the dietary regimen each group of subjects ran downhill (DR) on a treadmill at -9% grade for 1 h at a speed to elicit 75% of maximal heart rate. Blood samples were collected at rest, immediately and 24 h post-DR. Before dietary supplementation plasma creatine kinase activity and tumor necrosis factor (TNF)-α concentration were increased immediately after DR (P < 0.05), whereas neutrophil respiratory burst (NRB) was elevated 24 h post-DR (P < 0.05). CK and TNF-α response to DR was abolished during post-supplementation tests in both AVA and C groups, whereas NRB was blunted only in AVA but not in C. Plasma interleukin-6 level and mononuclear cell nuclear factor (NF) κB activity were not affected by DR either before or after dietary supplementation, but were lowered 24 h post-DR in AVA versus C (P < 0.05). Both groups increased plasma total antioxidant activity following 8-week dietary regimen (P < 0.05), whereas only AVA group increased resting plasma glutathione (GSH) concentration (P < 0.05), decreased glutathione disulfide response to DR, and lowered erythrocyte GSH peroxidase activity (P < 0.05). Our data of pre- and post-supplementation difference reflect an interaction between repeated measure effect of eccentric exercise and AVA in diet. Long-term AVA supplementation can attenuate blood inflammation markers, decrease ROS generation and NFkB activation, and increased antioxidant capacity during an eccentric exercise bout.
Effects of Intermittent Neck Cooling During Repeated Bouts of High-Intensity Exercise
Galpin, Andrew J.; Bagley, James R.; Whitcomb, Blake; Wiersma, Leonard D.; Rosengarten, Jakob; Coburn, Jared W.; Judelson, Daniel A.
2016-01-01
The purpose of this investigation was to determine the influence of intermittent neck cooling during exercise bouts designed to mimic combat sport competitions. Participants (n = 13, age = 25.3 ± 5.0 year height = 176.9 ± 7.5 cm, mass = 79.3 ± 9.0 kg, body fat = 11.8% ± 3.1%) performed three trials on a cycle ergometer. Each trial consisted of two, 5-min high-intensity exercise (HEX) intervals (HEX1 and HEX2—20 s at 50% peak power, followed by 15 s of rest), and a time to exhaustion (TTE) test. One-minute rest intervals were given between each round (RI1 and RI2), during which researchers treated the participant’s posterior neck with either (1) wet-ice (ICE); (2) menthol spray (SPRAY); or (3) no treatment (CON). Neck (TNECK) and chest (TCHEST) skin temperatures were significantly lower following RI1 with ICE (vs. SPRAY). Thermal sensation decreased with ICE compared to CON following RI1, RI2, TTE, and a 2-min recovery. Rating of perceived exertion was also lower with ICE following HEX2 (vs. CON) and after RI2 (vs. SPRAY). Treatment did not influence TTE (68.9 ± 18.9s). The ability of intermittent ICE to attenuate neck and chest skin temperature rises during the initial HEX stages likely explains why participants felt cooler and less exerted during equivalent HEX bouts. These data suggest intermittent ICE improves perceptual stress during short, repeated bouts of vigorous exercise.
Exercise, an Active Lifestyle, and Obesity. Making the Exercise Prescription Work.
ERIC Educational Resources Information Center
Andersen, Ross E.
1999-01-01
An active lifestyle is important in helping overweight people both lose and manage their weight. Exercise has many health benefits beyond weight control. The traditional exercise prescription of regular bouts of continuous vigorous exercise may need modification to increase rates of adoption and compliance, with people needing encouragement to…
Acute exercise and motor memory consolidation: Does exercise type play a role?
Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J
2017-11-01
A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P < 0.001) and HOC (P < 0.001) compared to CON from POST to R1d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J
2016-09-01
Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptations to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy when consuming ibuprofen. © 2016 The Author(s).
Scribbans, Trisha D.; Edgett, Brittany A.; Vorobej, Kira; Mitchell, Andrew S.; Joanisse, Sophie D.; Matusiak, Jennifer B. L.; Parise, Gianni; Quadrilatero, Joe; Gurd, Brendon J.
2014-01-01
The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week training intervention (END or LV-HIT; 4 days/week), on whole body and skeletal muscle fibre specific markers of aerobic and anaerobic capacity. Six recreationally active men (Age: 20.7±3.8 yrs; VO2peak: 51.9±5.1 mL/kg/min) reported to the lab on two separate occasions for experiment 1. Following a muscle biopsy taken in a fasted state, participants completed an acute bout of each exercise protocol (LV-HIT: 8, 20-second intervals at ∼170% of VO2peak separated by 10 seconds of rest; END: 30 minutes at ∼65% of VO2peak), immediately followed by a muscle biopsy. Glycogen content of type I and IIA fibres was significantly (p<0.05) reduced, while p-ACC was significantly increased (p<0.05) following both protocols. Nineteen recreationally active males (n = 16) and females (n = 3) were VO2peak-matched and assigned to either the LV-HIT (n = 10; 21±2 yrs) or END (n = 9; 20.7±3.8 yrs) group for experiment 2. After 6 weeks, both training protocols induced comparable increases in aerobic capacity (END: Pre: 48.3±6.0, Mid: 51.8±6.0, Post: 55.0±6.3 mL/kg/min LV-HIT: Pre: 47.9±8.1, Mid: 50.4±7.4, Post: 54.7±7.6 mL/kg/min), fibre-type specific oxidative and glycolytic capacity, glycogen and IMTG stores, and whole-muscle capillary density. Interestingly, only LV-HIT induced greater improvements in anaerobic performance and estimated whole-muscle glycolytic capacity. These results suggest that 30 minutes of END exercise at ∼65% VO2peak or 4 minutes of LV-HIT at ∼170% VO2peak induce comparable changes in the intra-myocellular environment (glycogen content and signaling activation); correspondingly, training-induced adaptations resulting for these protocols, and other HIT and END protocols are strikingly similar. PMID:24901767
Moher, H E; Carey, G B
2002-05-01
The purpose of this study was to examine the 133xenon washout technique as a viable method for measuring adipose tissue blood flow (ATBF) in swine. Using a total of 32 female Yucatan miniature swine (Sus scrofa), the partition coefficient for 133xenon in swine subcutaneous adipose tissue was determined and ATBF was measured at rest and under various physiological conditions. These conditions included feeding, anesthesia, epinephrine infusion, and acute exercise. The effects of epinephrine and acute exercise were examined in both sedentary and exercise-trained swine. The partition coefficient value for 133xenon in swine subcutaneous adipose tissue was 9.23+/-0.26 mL/g (mean +/- SD, n = 10). The average value for resting ATBF in swine was 3.98+/-2.72 mL/(100 g tissue-min) (n = 19). Feeding increased ATBF by approximately fivefold over fasting values, and isoflurane anesthesia significantly decreased ATBF compared to rest (1.64+/-1.12 vs 3.92+/-4.22 mL/[100 g x min], n = 10). A 30-min epinephrine infusion (1 microg/[kg BW x min]) significantly increased ATBF from a resting value of 3.13+/-2.61 to 10.35+/-5.31 mL/(100 g x min) (n = 12). Epinephrine infusion into exercise-trained swine increased ATBF to the same extent as when infused into sedentary swine. An acute, 20-min bout of exercise significantly increased ATBF in swine, and the sedentary swine showed a larger increase in ATBF than their exercise-trained littermates relative to rest: 7.83 vs 2.98 mL/(100 g x min). In conclusion, the 133xenon washout technique appears to be a viable method for measuring ATBF in swine; our findings are comparable to swine ATBF values reported using the microsphere method and are consistent with values reported in animal and human studies.
Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J
2013-07-01
This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.
Roberts, Michael D; Holland, A Maleah; Kephart, Wesley C; Mobley, C Brooks; Mumford, Petey W; Lowery, Ryan P; Fox, Carlton D; McCloskey, Anna E; Shake, Joshua J; Mesquita, Paulo; Patel, Romil K; Martin, Jeffrey S; Young, Kaelin C; Kavazis, Andreas N; Wilson, Jacob M
2016-05-15
We examined whether acute and/or chronic skeletal muscle anabolism is impaired with a low-carbohydrate diet formulated to elicit ketosis (LCKD) vs. a mixed macronutrient Western diet (WD). Male Sprague-Dawley rats (9-10 wk of age, 300-325 g) were provided isoenergetic amounts of a LCKD or a WD for 6 wk. In AIM 1, basal serum and gastrocnemius assessments were performed. In AIM 2, rats were resistance exercised for one bout and were euthanized 90-270 min following exercise for gastrocnemius analyses. In AIM 3, rats voluntarily exercised daily with resistance-loaded running wheels, and hind limb muscles were analyzed for hypertrophy markers at the end of the 6-wk protocol. In AIM 1, basal levels of gastrocnemius phosphorylated (p)-rps6, p-4EBP1, and p-AMPKα were similar between diets, although serum insulin (P < 0.01), serum glucose (P < 0.001), and several essential amino acid levels (P < 0.05) were lower in LCKD-fed rats. In AIM 2, LCKD- and WD-fed rats exhibited increased postexercise muscle protein synthesis levels (P < 0.0125), but no diet effect was observed (P = 0.59). In AIM 3, chronically exercise-trained LCKD- and WD-fed rats presented similar increases in relative hind limb muscle masses compared with their sedentary counterparts (12-24%, P < 0.05), but there was no between-diet effects. Importantly, the LCKD induced "mild" nutritional ketosis, as the LCKD-fed rats in AIM 2 exhibited ∼1.5-fold greater serum β-hydroxybutyrate levels relative to WD-fed rats (diet effect P = 0.003). This study demonstrates that the tested LCKD in rodents, while only eliciting mild nutritional ketosis, does not impair the acute or chronic skeletal muscle hypertrophic responses to resistance exercise. Copyright © 2016 the American Physiological Society.
da Costa Santos, Vanessa Batista; de Paula Ramos, Solange; Milanez, Vinícius Flávio; Corrêa, Julio Cesar Molina; de Andrade Alves, Rubens Igor; Dias, Ivan Frederico Lupiano; Nakamura, Fábio Yuzo
2014-03-01
The aim of this study was to test, between two bouts of exercise, the effects of light-emitting diode (LED) therapy and cryotherapy regarding muscle damage, inflammation, and performance. Male Wistar rats were allocated in four groups: control, passive recovery (PR), cryotherapy (Cryo), and LED therapy. The animals were submitted to 45 min of swimming exercise followed by 25 min of recovery and then a second bout of either 45 min of exercise (muscle damage analysis) or time to exhaustion (performance). During the rest intervals, the rats were kept in passive rest (PR), submitted to cold water immersion (10 min, 10 °C) or LED therapy (940 nm, 4 J/cm(2)) of the gastrocnemius muscle. Blood samples were collected to analyze creatine kinase activity (CK), C-reactive protein (CRP), and leukocyte counts. The soleus muscles were evaluated histologically. Time to exhaustion was recorded during the second bout of exercise. After a second bout of 45 min, the results demonstrated leukocytosis in the PR and Cryo groups. Neutrophil counts were increased in all test groups. CK levels were increased in the Cryo group. CRP was increased in PR animals. The PR group presented a high frequency of necrosis, but the LED group had fewer necrotic areas. Edema formation was prevented, and fewer areas of inflammatory cells were observed in the LED group. The time to exhaustion was greater in both the LED and Cryo groups, without differences in CK levels. CRP was decreased in LED animals. We conclude that LED therapy and cryotherapy can improve performance, although LED therapy is more efficient in preventing muscle damage and local and systemic inflammation.
Taylor, Adrian H; Oliver, Anita J
2009-02-01
The study aimed to investigate the effects of an acute exercise bout on urges to eat chocolate, affect, and psychological and physiological responses to stress and a chocolate cue. Following 3 days of chocolate abstinence, 25 regular chocolate eaters, took part, on separate days, in two randomly ordered conditions, in a within-subject design: a 15-min brisk semi-self-paced brisk walk or a passive control. Following each, participants completed two tasks: the Stroop colour-word interference task, and unwrapping and handling a chocolate bar. Chocolate urges [State Food Cravings Questionnaire (FCQ-S); Rodríguez, S., Fernández, M. C., Cepeda-Benito, A., & Vila, J. (2005). Subjective and physiological reactivity to chocolate images in high and low chocolate cravers. Biological Psychology, 70, 9-18], affective activation [Felt Arousal Scale; Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance: a multimethod validation of reversal theory constructs. Journal of Perception and Social Psychology, 48, 107-116], affective pleasure/valence [Feelings Scale; Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: the measurement of affect during exercise. Journal of Sport and Exercise Psychology, 11, 304-317], and systolic/diastolic blood pressure (SBP/DBP) were assessed throughout. Exercise reduced chocolate urges and there was a trend towards attenuated urges in response to the chocolate cue. Exercise also attenuated SBP/DBP increases in response to the stressor and chocolate cue. The effects on urges varied across the dimensions of the FCQ-S.
Psychological stress impairs short-term muscular recovery from resistance exercise.
Stults-Kolehmainen, Matthew A; Bartholomew, John B
2012-11-01
The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function, perceived energy, fatigue, and soreness in the first hour after a bout of strenuous resistance exercise. Thirty-one undergraduate resistance training students (age = 20.26 ± 1.34 yr) completed the Perceived Stress Scale and Undergraduate Stress Questionnaire (USQ; a measure of life event stress) and completed fitness testing. After 5 to 14 d of recovery, they performed an acute heavy-resistance exercise protocol (10-repetition maximum (RM) leg press test plus six sets: 80%-100% of 10 RM). Maximal isometric force (MIF) was assessed before exercise, after exercise, and at 20, 40, and 60 min postexercise. Participants also reported their levels of perceived energy, fatigue, and soreness. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (P = 0.013) and squared (P = 0.05) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Likewise, perceived stress moderated linear recovery of MIF (P = 0.023). Neither USQ nor Perceived Stress Scale significantly moderated changes in energy, fatigue, or soreness. Life event stress and perceived stress both moderated the recovery of muscular function, but not psychological responses, in the first hour after strenuous resistance exercise.
The Chronic Effect of Interval Training on Energy Intake: A Systematic Review and Meta-Analysis
Holland, David J.; Coombes, Jeff S.; Leveritt, Michael D.
2018-01-01
Single bouts of acute exercise do not appear to increase subsequent energy intake (EI), even when energy deficit is large. However, studies have shown a compensatory effect on EI following chronic exercise, and it remains unclear whether this is affected by exercise intensity. We investigated the chronic effect of high-intensity interval training (HIIT) and sprint interval training (SIT) on EI when compared with moderate-intensity continuous training (MICT) or no exercise (CON). Databases were searched until 13 March 2017 for studies measuring EI in response to chronic exercise (≥4 weeks of duration) of a high-intensity interval nature. Meta-analysis was conducted for between-group comparisons on EI (kilojoules) and bodyweight (kg). Results showed large heterogeneity, and therefore, metaregression analyses were conducted. There were no significant differences in EI between HIIT/SIT versus MICT (P=0.282), HIIT/SIT versus CON (P=0.398), or MICT versus CON (P=0.329). Although bodyweight was significantly reduced after HIIT/SIT versus CON but not HIIT/SIT versus MICT (in studies measuring EI), this was not clinically meaningful (<2% mean difference). In conclusion, there is no compensatory increase in EI following a period of HIIT/SIT compared to MICT or no exercise. However, this review highlights important methodological considerations for future studies. PMID:29808115
Executive Function and the P300 after Treadmill Exercise and Futsal in College Soccer Players
Won, Junyeon; Wu, Shanshan; Ji, Hongqing; Smith, J. Carson; Park, Jungjun
2017-01-01
(1) Background: Although a body of evidence demonstrates that acute exercise improves executive function, few studies have compared more complex, laboratory-based modes of exercise, such as soccer that involve multiple aspects of the environment. (2) Methods: Twelve experienced soccer players (24.8 ± 2 years) completed three counterbalanced 20 min sessions of (1) seated rest; (2) moderate intensity treadmill exercise; and (3) a game of futsal. Once heart rate returned to within 10% of pre-activity levels, participants completed the Stroop Color Word Conflict Task while reaction time (RT) and P300 event-related potentials were measured. (3) Results: Reaction time during Stroop performance was significantly faster following the futsal game and treadmill exercise compared to the seated rest. The P300 amplitude during Stroop performance was significantly greater following futsal relative to both treadmill and seated-rest conditions. (4) Conclusions: These findings suggest that single bouts of indoor soccer among college-aged soccer players, compared to treadmill and seated-rest conditions, may engender the greatest effect on brain networks controlling attention allocation and classification speed during the performance of an inhibitory control task. Future research is needed to determine if cognitively engaging forms of aerobic exercise may differentially impact executive control processes in less experienced and older adult participants.
Electromyographic analyses of muscle pre-activation induced by single joint exercise.
Júnior, Valdinar A R; Bottaro, Martim; Pereira, Maria C C; Andrade, Marcelino M; P Júnior, Paulo R W; Carmo, Jake C
2010-01-01
To investigate whether performing a low-intensity, single-joint exercises for knee extensors was an efficient strategy for increasing the number of motor units recruited in the vastus lateralis muscle during a subsequent multi-joint exercises. Nine healthy male participants (23.33+/-3.46 yrs) underwent bouts of exercise in which knee extension and 45 degrees , and leg press exercises were performed in sequence. In the low-intensity bout (R30), 15 unilateral knee extensions were performed, followed by 15 repetitions of the leg presses at 30% and 60% of one maximum repetition load (1-MR), respectively. In the high-intensity bout (R60), the same sequence was performed, but the applied load was 60% of 1-MR for both exercises. A single set of 15 repetitions of the leg press at 60% of 1-MR was performed as a control exercise (CR). The surface electromyographic signals of the vastus lateralis muscle were recorded by means of a linear electrode array. The root mean square (RMS) values were determined for each repetition of the leg press, and linear regressions were calculated from these results. The slopes of the straight lines obtained were then normalized using the linear coefficients of the regression equations and compared using one-way ANOVAs for repeated measures. The slopes observed in the CR were significantly lower than those in the R30 and R60 (p<0.05). The results indicated that the recruitment of motor units was more effective when a single-joint exercise preceded the multi-joint exercise. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000413224.
Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352
Thum, Jacob S; Parsons, Gregory; Whittle, Taylor; Astorino, Todd A
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. NCT:02981667.
Jensen, Jeanette H; Conley, Lene N; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo
2012-07-01
Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression of the orphan nuclear hormone receptor NR4A3, which regulates metabolic functions associated with lipid, carbohydrate and energy homeostasis. Finally, we observed an unanticipated induction of the long non-coding RNA transcript NEAT1, which has been implicated in RNA processing and nuclear retention of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery phase.
High-volume resistance training session acutely diminishes respiratory muscle strength.
Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi
2012-01-01
This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.
Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N
2017-08-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.
Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.
Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N
2016-05-01
The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mood and selective attention in the cold: the effect of interval versus continuous exercise.
Muller, Matthew D; Muller, Sarah M; Kim, Chul-Ho; Ryan, Edward J; Gunstad, John; Glickman, Ellen L
2011-07-01
Both mood and cognitive function are altered in cold environments. Body warming through exercise may improve Stroop interference score and lessen total negative mood. The purpose of this study was to determine the effect of equal caloric bouts of interval (INT) and continuous (CONT) exercise on mood and selective attention in the cold. Eleven young men underwent two experimental trials in 5°C air. Both trials consisted of 90 min acute cold exposure (ACE), 30 min exercise (INT vs. CONT), and 60 min recovery (REC). The Profile of Mood States (POMS) and Stroop Color Word Test (SCWT) were administered at four time points. Mean body temperature decreased during ACE, increased during exercise, and decreased during REC. Repeated measures analysis of variance revealed a main effect for time for several of the POMS sub scores. In particular, negative mood was significantly decreased after exercise relative to ACE and then significantly increased during REC. Further, CONT appears to be more effective than INT at decreasing negative mood. Components of the SCWT supported both the arousal and distraction theories for simple perception, but no significant effects were shown for the interference score. In the cold, exercise decreases negative mood but does not appear to affect selective attention. Further mechanistic studies could determine the best mode and intensity of exercise for improving cognitive function in the cold.
Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I
2000-08-01
To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.
Lopes Krüger, Renata; Costa Teixeira, Bruno; Boufleur Farinha, Juliano; Cauduro Oliveira Macedo, Rodrigo; Pinto Boeno, Francesco; Rech, Anderson; Lopez, Pedro; Silveira Pinto, Ronei; Reischak-Oliveira, Alvaro
2016-12-01
The aim of this study was to compare the effects of 2 different exercise intensities on postprandial lipemia, oxidative stress markers, and endothelial function after a high-fat meal (HFM). Eleven young men completed 2-day trials in 3 conditions: rest, moderate-intensity exercise (MI-Exercise) and heavy-intensity exercise (HI-Exercise). Subjects performed an exercise bout or no exercise (Rest) on the evening of day 1. On the morning of day 2, an HFM was provided. Blood was sampled at fasting (0 h) and every hour from 1 to 5 h during the postprandial period for triacylglycerol (TAG), thiobarbituric acid reactive substance (TBARS), and nitrite/nitrate (NOx) concentrations. Flow-mediated dilatation (FMD) was also analyzed. TAG concentrations were reduced in exercise conditions compared with Rest during the postprandial period (P < 0.004). TAG incremental area under the curve (iAUC) was smaller after HI-Exercise compared with Rest (P = 0.012). TBARS concentrations were reduced in MI-Exercise compared with Rest (P < 0.041). FMD was higher in exercise conditions than Rest at 0 h (P < 0.02) and NOx concentrations were enhanced in MI-Exercise compared with Rest at 0 h (P < 0.01). These results suggest that acute exercise can reduce lipemia after an HFM. However, HI-Exercise showed to be more effective in reducing iAUC TAG, which might suggest higher protection against postprandial TAG enhancement. Conversely, MI-Exercise can be beneficial to attenuate the susceptibility of oxidative damage induced by an HFM and to increase endothelial function in the fasted state compared with Rest.
The sooner, the better: exercise outcome proximity and intrinsic motivation.
Evans, M Blair; Cooke, Lisa M; Murray, Robyn A; Wilson, Anne E
2014-11-01
Despite evidence that outcomes are highly valued when they are expected sooner rather than further into the future (Ainslie, 1975), limited research effort has been devoted to understanding the role of exercise outcome proximity. The purpose of this study was to examine how temporal proximity to positive outcomes influences exercisers' intrinsic motivation. We expected that focusing people on temporally proximal exercise outcomes would increase intrinsic motivation, especially among low-frequency exercisers. This online experimental study was completed by 135 community exercisers (Mage = 31.11, SD = 10.29; 62% female) who reported an average of 4.86 exercise bouts per week (SD = 2.12). Participants were randomly assigned to a condition that primed temporally proximal positive exercise outcomes (i.e. experienced during or directly following an exercise bout) or temporally distal outcomes (i.e. experienced after days, months, or years of regular exercise). Participants then reported perceptions of behavioral regulation in exercise. As expected, the proximal exercise outcome condition elicited increased intrinsic regulation among those participants who exercised less frequently (i.e. 1 SD below the mean). This study reveals the importance of considering proximity as an important dimension of exercise outcomes-particularly when promoting intrinsic motivation among relatively infrequent exercisers. © 2014 The International Association of Applied Psychology.
The Interaction of Fatigue and Potentiation Following an Acute Bout of Unilateral Squats.
Andrews, Samantha K; Horodyski, Jesse M; MacLeod, Daniel A; Whitten, Joseph; Behm, David G
2016-12-01
A prior conditioning resistance exercise can augment subsequent performance of the affected muscles due to the effects of post-activation potentiation (PAP). The non-local muscle fatigue literature has illustrated the global neural effects of unilateral fatigue. However, no studies have examined the possibility of acute non-local performance enhancements. The objective of the study was to provide a conditioning stimulus in an attempt to potentiate the subsequent jump performance of the affected limb and determine if there were performance changes in the contralateral limb. Using a randomized allocation, 14 subjects (6 females, 8 males) completed three conditions on separate days: 1) unilateral, dominant leg, Bulgarian split squat protocol with testing of the exercised leg, 2) unilateral, dominant leg, Bulgarian split squat protocol with testing of the contralateral, non-exercised leg and 3) control session with testing of the non-dominant leg. Pre- and post-testing consisted of countermovement (CMJ) and drop jumps (DJ). The exercised leg exhibited CMJ height increases of 3.5% (p = 0.008; d = 0.28), 4.0% (p = 0.011; d = 0.33) and 3.2% (p = 0.013; d = 0.26) at 1, 5, and 10 min post-intervention respectively. The contralateral CMJ height had 2.0% (p = 0.034; d = 0.18), 1.2% (p = 0.2; d = 0.12), and 2.1% (p = 0.05; d = 0.17) deficits at 1, 5, and 10 min post-intervention respectively. Similar relative results were found for CMJ power. There were no significant interactions for DJ measures or control CMJ measures. The findings suggest that PAP effects were likely predominant for the exercised leg whereas the conditioning exercise provided trivial magnitude although statistically significant neural impairments for the contralateral limb.
A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.
Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi
2010-09-01
Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.
Oliveira, L F; de Salles Painelli, V; Nemezio, K; Gonçalves, L S; Yamaguchi, G; Saunders, B; Gualano, B; Artioli, G G
2017-11-01
Since there is conflicting data on the buffering and ergogenic properties of calcium lactate (CL), we investigated the effect of chronic CL supplementation on blood pH, bicarbonate, and high-intensity intermittent exercise performance. Sodium bicarbonate (SB) was used as a positive control. Eighteen athletes participated in this double-blind, placebo-controlled, crossover, fully counterbalanced study. All participants underwent three different treatments: placebo (PL), CL, and SB. The dose was identical in all conditions: 500 mg/kg BM divided into four daily individual doses of 125 mg/kg BM, for five consecutive days, followed by a 2-7-day washout period. On the fifth day of supplementation, individuals undertook four 30-s Wingate bouts for upper body with 3-min recovery between bouts. Total mechanical work (TMW) for the overall protocol and for the initial (1st+2nd) and final (3rd+4th) bouts was determined at each session. Blood pH, bicarbonate, and lactate levels were determined at rest, immediately and 5 min after exercise. CL supplementation did not affect performance (P > 0.05 for the overall TMW as well for initial and final bouts), nor did it affect blood bicarbonate and pH prior to exercise. SB supplementation improved performance by 2.9% for overall TMW (P = 0.02) and 5.9% in the 3rd+4th bouts (P = 0001). Compared to the control session, SB also promoted higher increases in blood bicarbonate than CL and PL (+0.03 ± 0.04 vs +0.009 ± 0.02 and +0.01 ± 0.03, respectively). CL supplementation was not capable of enhancing high-intensity intermittent performance or changing extracellular buffering capacity challenging the notion that this dietary supplement is an effective buffering agent. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluating Daily Load Stimulus Formulas in Relating Bone Response to Exercise
NASA Technical Reports Server (NTRS)
Pennline, James A.; Mulugeta, Lealem
2014-01-01
Six formulas representing what is commonly referred to as "daily load stimulus" are identified, compared and tested in their ability to relate skeletal mechanical loading to bone maintenance and osteogenic response. Particular emphasis is placed on exercise- induced skeletal loading and whether or not the formulas can adequately capture the known experimental observations of saturation of continuous cyclic loading, rest insertion between repetitions (cycles), recovery of osteogenic potential following saturation, and multiple shorter bouts versus a single long bout of exercise. To evaluate the ability of the formulas to capture these characteristics, a set of exercise scenarios with type of exercise bout, specific duration, number of repetitions, and rest insertion between repetitions is defined. The daily load values obtained from the formulas for the loading conditions of the set of scenarios is illustrated. Not all of the formulas form estimates of daily load in units of stress or in terms of strain at a skeletal site due to the loading force from a specific exercise prescription. The comparative results show that none of the formulas are able to capture all of the experimentally observed characteristics of cyclic loading. However, the enhanced formula presented by Genc et al. does capture several characteristics of cyclic loading that the others do not, namely recovery of osteogenic potential and saturation. This could be a basis for further development of mathematical formulas that more adequately approximates the amount of daily stress at a skeletal site that contributes to bone adaptation.
Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł
2017-01-01
Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103
Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.
Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy
2007-01-01
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.
Frazão, Danniel Thiago; de Farias Junior, Luiz Fernando; Dantas, Teresa Cristina Batista; Krinski, Kleverton; Elsangedy, Hassan Mohamed; Prestes, Jonato; Hardcastle, Sarah J.; Costa, Eduardo Caldas
2016-01-01
Objectives To examine the affective responses during a single bout of a low-volume HIIE in active and insufficiently active men. Materials and methods Fifty-eight men (aged 25.3 ± 3.6 years) volunteered to participate in this study: i) active (n = 29) and ii) insufficiently active (n = 29). Each subject undertook i) initial screening and physical evaluation, ii) maximal exercise test, and iii) a single bout of a low-volume HIIE. The HIIE protocol consisted of 10 x 60s work bouts at 90% of maximal treadmill velocity (MTV) interspersed with 60s of active recovery at 30% of MTV. Affective responses (Feeling Scale, -5/+5), rating of perceived exertion (Borg’s RPE, 6–20), and heart rate (HR) were recorded during the last 10s of each work bout. A two-factor mixed-model repeated measures ANOVA, independent-samples t test, and chi-squared test were used to data analysis. Results There were similar positive affective responses to the first three work bouts between insufficiently active and active men (p > 0.05). However, insufficiently active group displayed lower affective responses over time (work bout 4 to 10) than the active group (p < 0.01). Also, the insufficiently active group displayed lower values of mean, lowest, and highest affective response, as well as lower values of affective response at the highest RPE than the active group (p < 0.001). There were no differences in the RPE and HR between the groups (p > 0.05). Conclusions Insufficiently active and active men report feelings of pleasure to few work bouts (i.e., 3–4) during low-volume HIIE, while the affective responses become more unpleasant over time for insufficiently active subjects. Investigations on the effects of low-volume HIIE protocols including a fewer number of work bouts on health status and fitness of less active subjects would be interesting, especially in the first training weeks. PMID:27028191
Effects of intervals between jumps or bouts on osteogenic response to loading.
Umemura, Yoshihisa; Sogo, Naota; Honda, Akiko
2002-10-01
Prolonged loading repetitions can diminish the mechanosensitivity of bones, and increased intervals between loading might restore sensitivity. This study was designed to investigate the effects of intervals between loadings or bouts on osteogenic response. Forty female Fisher 344 rats aged 5 wk were divided into a control group and three exercise groups: 20 jumps in a single bout with a 3-s (S3) or 30-s (S30) jump interval, or 20 jumps in 2 bouts (10 x 2) separated by a 6-h interval with a 3-s jump interval (D3). After 8 wk of training, the bone masses per body weight of the femur and tibia were significantly greater in the three exercise groups than in the control group, and these values were also greater in S30 than in S3, although they were at the same level in D3 and S3. These data suggest that a longer interval (30 s) between individual loading had more effective anabolic effects on bone than a shorter interval (3 s).
Philp, Andrew; MacKenzie, Matthew G; Belew, Micah Y; Towler, Mhairi C; Corstorphine, Alan; Papalamprou, Angela; Hardie, D Grahame; Baar, Keith
2013-01-01
Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.
Philp, Andrew; MacKenzie, Matthew G.; Belew, Micah Y.; Towler, Mhairi C.; Corstorphine, Alan; Papalamprou, Angela; Hardie, D. Grahame; Baar, Keith
2013-01-01
Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise. PMID:24146969
THE ANTIHYPERTENSIVE EFFECTS OF AEROBIC VERSUS ISOMETRIC HANDGRIP RESISTANCE EXERCISE
ASH, Garrett I.; TAYLOR, Beth A.; THOMPSON, Paul D.; MACDONALD, Hayley V.; LAMBERTI, Lauren; CHEN, Ming-Hui; FARINATTI, Paulo; KRAEMER, William J.; PANZA, Gregory A.; ZALESKI, Amanda L.; DESHPANDE, Ved; BALLARD, Kevin D.; MUJTABA, Mohammadtokir; WHITE, C. Michael; PESCATELLO, Linda S.
2017-01-01
Aerobic exercise reduces blood pressure (BP) on average 5 to 7 mmHg among those with hypertension; limited evidence suggests similar or even greater BP benefits may result from isometric handgrip (IHG) resistance exercise. We conducted a randomized controlled trial investigating the antihypertensive effects of an acute bout of aerobic compared to IHG exercise in the same individuals. Middle-aged adults (n=27) with prehypertension and obesity randomly completed three experiments: aerobic [60% peak oxygen uptake, 30 minutes]; IHG [30% maximum voluntary contraction, 4x2 minutes bilateral]; and non-exercise control. Subjects were assessed for carotid-femoral pulse wave velocity (PWV) pre and post exercise, and left the laboratory wearing an ambulatory BP monitor. Systolic and diastolic BP (SBP/DBP) were lower after aerobic versus IHG (4.8±1.8/3.1±1.3mmHg, p=0.01/0.04) and control (5.6±1.8/3.6±1.3mmHg, p=0.02/0.04) over the awake hours, with no difference between IHG versus control (p=0.80/0.83). PWV changes following acute exercise did not differ by modality (aerobic increased 0.01±0.21m•s−1, IHG decreased 0.06±0.15m•s−1, control increased 0.25±0.17m•s−1, p>0.05). A subset of participants then completed either 8 weeks of aerobic or IHG training. Awake SBP was lower after versus before aerobic training (7.6±3.1mmHg, p=0.02), while sleep DBP was higher after IHG training (7.7±2.3mmHg, p=0.02). Our findings did not support IHG as antihypertensive therapy but that aerobic exercise should continue to be recommended as the primary exercise modality for its immediate and sustained BP benefits. PMID:27861249
Substrate Utilization is Influenced by Acute Dietary Carbohydrate Intake in Active, Healthy Females.
Gregory, Sara; Wood, Richard; Matthews, Tracey; Vanlangen, Deborah; Sawyer, Jason; Headley, Samuel
2011-01-01
The present study compared the metabolic responses between a single low-carbohydrate (LC) and low-fat (LF) meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER) measurements were taken for 20 min fasted, for 55 min postprandial (PP), and during 30 min of exercise. Blood was collected for assessment of glucose (G), insulin (IN), triglycerides (TG), and free fatty acids (FFA) during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein). The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein). No significant differences existed between test meals for fasting blood measurements. PP IN (μU·mL(-1)) levels were significantly lower following LC compared to LF [10.7 (6.1) vs. 26.0 (21.0)]. Postexercise (PE) FFA (mEq·L(-1)) levels were significantly greater following LC [1.1 (0.3) vs. 0.5 (0.3)]. PE TG (mg·dL(-1)) levels were significantly greater following LC [152.0 (53.1) vs. 114.4 (40.9)]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization. Key pointsThe relative carbohydrate content of a single meal has a significant impact on postprandial metabolism and substrate utilization in healthy, active females.A single bout of aerobic exercise performed within an hour of meal ingestion has the potential to modify the postprandial response.Interventions aimed at improving body composition and preventing chronic disease should focus on dietary macronutrient redistribution and postprandial metabolism in concert with exercise training.
Dominick, Gregory M; Winfree, Kyle N; Pohlig, Ryan T; Papas, Mia A
2016-09-19
Wearable activity monitors such as Fitbit enable users to track various attributes of their physical activity (PA) over time and have the potential to be used in research to promote and measure PA behavior. However, the measurement accuracy of Fitbit in absolute free-living conditions is largely unknown. To examine the measurement congruence between Fitbit Flex and ActiGraph GT3X for quantifying steps, metabolic equivalent tasks (METs), and proportion of time in sedentary activity and light-, moderate-, and vigorous-intensity PA in healthy adults in free-living conditions. A convenience sample of 19 participants (4 men and 15 women), aged 18-37 years, concurrently wore the Fitbit Flex (wrist) and ActiGraph GT3X (waist) for 1- or 2-week observation periods (n=3 and n=16, respectively) that included self-reported bouts of daily exercise. Data were examined for daily activity, averaged over 14 days and for minutes of reported exercise. Average day-level data included steps, METs, and proportion of time in different intensity levels. Minute-level data included steps, METs, and mean intensity score (0 = sedentary, 3 = vigorous) for overall reported exercise bouts (N=120) and by exercise type (walking, n=16; run or sports, n=44; cardio machine, n=20). Measures of steps were similar between devices for average day- and minute-level observations (all P values > .05). Fitbit significantly overestimated METs for average daily activity, for overall minutes of reported exercise bouts, and for walking and run or sports exercises (mean difference 0.70, 1.80, 3.16, and 2.00 METs, respectively; all P values < .001). For average daily activity, Fitbit significantly underestimated the proportion of time in sedentary and light intensity by 20% and 34%, respectively, and overestimated time by 3% in both moderate and vigorous intensity (all P values < .001). Mean intensity scores were not different for overall minutes of exercise or for run or sports and cardio-machine exercises (all P values > .05). Fitbit Flex provides accurate measures of steps for daily activity and minutes of reported exercise, regardless of exercise type. Although the proportion of time in different intensity levels varied between devices, examining the mean intensity score for minute-level bouts across different exercise types enabled interdevice comparisons that revealed similar measures of exercise intensity. Fitbit Flex is shown to have measurement limitations that may affect its potential utility and validity for measuring PA attributes in free-living conditions.
Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout.
Vincent, Barbara; Windelinckx, An; Nielens, Henri; Ramaekers, Monique; Van Leemputte, Marc; Hespel, Peter; Thomis, Martine A
2010-08-01
The ACTN3 gene encodes for the alpha-actinin-3 protein, which has an important structural function in the Z line of the sarcomere in fast muscle fibers. A premature stop codon (R577X) polymorphism in the ACTN3 gene causes a complete loss of the protein in XX homozygotes. This study investigates a possible role for the alpha-actinin-3 protein in protecting the fast fiber from eccentric damage and studies repair mechanisms after a single eccentric exercise bout. Nineteen healthy young men (10 XX, 9 RR) performed 4 series of 20 maximal eccentric knee extensions with both legs. Blood (creatine kinase; CK) and muscle biopsy samples were taken to study differential expression of several anabolic (MyoD1, myogenin, MRF4, Myf5, IGF-1), catabolic (myostatin, MAFbx, and MURF-1), and contraction-induced muscle damage marker genes [cysteine- and glycine-rich protein 3 (CSRP3), CARP, HSP70, and IL-6] as well as a calcineurin signaling pathway marker (RCAN1). Baseline mRNA content of CSRP3 and MyoD1 was 49 + or - 12 and 67 + or - 25% higher in the XX compared with the RR group (P = 0.01-0.045). However, satellite cell number was not different between XX and RR individuals. After eccentric exercise, XX individuals tended to have higher serum CK activity (P = 0.10) and had higher pain scores than RR individuals. However, CSRP3 (P = 0.058) and MyoD1 (P = 0.08) mRNA expression tended to be higher after training in RR individuals compared with XX alpha-actinin-3-deficient subjects. This study suggests a protective role of alpha-actinin-3 protein in muscle damage after eccentric training and an improved stress-sensor signaling, although effects are small.
Orlando, Patrick; Silvestri, Sonia; Galeazzi, Roberta; Antonicelli, Roberto; Marcheggiani, Fabio; Cirilli, Ilenia; Bacchetti, Tiziana; Tiano, Luca
2018-12-01
Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q 10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.
Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H
2010-03-01
We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.
Effects of active recovery during interval training on plasma catecholamines and insulin.
Nalbandian, Harutiun M; Radak, Zsolt; Takeda, Masaki
2018-06-01
BACKGROUNDː Active recovery has been used as a method to accelerate the recovery during intense exercise. It also has been shown to improve performance in subsequent exercises, but little is known about its acute effects on the hormonal and metabolic profile. The aim of this research was to study the effects of active recovery on plasma catecholamines and plasma insulin during a high-intensity interval exercise. METHODSː Seven subjects performed two high-intensity interval training protocols which consisted of three 30-second high-intensity bouts (constant intensity), separated by a recovery of 4 minutes. The recovery was either active recovery or passive recovery. During the main test blood samples were collected and plasma insulin, plasma catecholamines and blood lactate were determined. Furthermore, respiratory gasses were also measured. RESULTSː Plasma insulin and blood lactate were significantly higher in the passive recovery trial, while plasma adrenaline was higher in the active recovery. Additionally, VO2 and VCO2 were significantly more increased during the active recovery trials. CONCLUSIONSː These results suggest that active recovery affects the hormonal and metabolic responses to high-intensity interval exercise. Active recovery produces a hormonal environment which may favor lipolysis and oxidative metabolism, while passive recovery may be favoring glycolysis.
Linking brains and brawn: exercise and the evolution of human neurobiology.
Raichlen, David A; Polk, John D
2013-01-07
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.
Sebire, Simon J; Standage, Martyn; Vansteenkiste, Maarten
2011-04-01
Grounded in self-determination theory (Deci & Ryan, 2000), the purpose of this work was to examine effects of the content and motivation of adults' exercise goals on objectively assessed moderate-to-vigorous physical activity (MVPA). After reporting the content and motivation of their exercise goals, 101 adult participants (Mage = 38.79 years; SD = 11.5) wore an ActiGraph (GT1M) accelerometer for seven days. Accelerometer data were analyzed to provide estimates of engagement in MVPA and bouts of physical activity. Goal content did not directly predict behavioral engagement; however, mediation analysis revealed that goal content predicted behavior via autonomous exercise motivation. Specifically, intrinsic versus extrinsic goals for exercise had a positive indirect effect on average daily MVPA, average daily MVPA accumulated in 10-min bouts and the number of days on which participants performed 30 or more minutes of MVPA through autonomous motivation. These results support a motivational sequence in which intrinsic versus extrinsic exercise goals influence physical activity behavior because such goals are associated with more autonomous forms of exercise motivation.
Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise
Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A
1998-01-01
The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403
Exercise immunology: practical applications.
Nieman, D C
1997-03-01
During the last 95 years, 629 papers (60% in the 1990s) dealing specifically with exercise and immunology have been published. Major findings of practical importance in terms of public health and athletic endeavor include: (a) In response to acute exercise (the most frequently studied area of exercise immunology), a rapid interchange of immune cells between peripheral lymphoid tissues and the circulation occurs. The response depends on many factors, including the intensity, duration, and mode of exercise, concentrations of hormones and cytokines, change in body temperature, blood flow, hydration status, and body position. Of all immune cells, natural killer (NK) cells, neutrophils, and macrophages (of the innate immune system) appear to be most responsive to the effects of acute exercise, both in terms of numbers and function. In general, acute exercise bouts of moderate duration (< 60 min) and intensity (< 60% VO2max) are associated with fewer perturbations and less stress to the immune system than are prolonged, high-intensity sessions. (b) In response to long-term exercise training, the only finding to date reported with some congruity between investigators is a significant elevation in NK cell activity. Changes in the function of neutrophils, macrophages, and T and B cells in response to training have been reported inconsistently, but there is some indication that neutrophil function is suppressed during periods of heavy training. (c) Limited data suggest that unusually heavy acute or chronic exercise may increase the risk of upper respiratory tract infection (URTI), while regular moderate physical activity may reduce URTI symptomatology. (d) Work performance tends to diminish with most systemic infectious, and clinical case studies and animal data suggest that infection severity, relapse, and myocarditis may result when patients exercise vigorously. (e) Although regular exercise has many benefits for HIV-infected individuals, helper T cell counts and other immune measures are not enhanced significantly. (f) Data suggest that the incidence and mortality rates for certain types of cancer are lower among active subjects. The role of the immune system may be limited, however, depending on the sensitivity of the specific tumor to cytolysis, the stage of cancer, the type of exercise program, and many other complex factors. (g) As individuals age, they experience a decline in most cell- mediated and humoral immune responses. Two human studies suggest that immune function is superior in highly conditioned versus sedentary elderly subjects. (h) Mental stress, undernourishment, quick weight loss, and improper hygiene have each been associated with impaired immunity. Athletes who are undergoing heavy training regimens should realize that each of these factors has the potential to compound the effect that exercise stress is having on their immune systems.
Sun, Yingwei; Pan, Shinong; Chen, Zhian; Zhao, Heng; Ma, Ying; Zheng, Liqiang; Li, Qi; Deng, Chunbo; Fu, Xihu; Lu, Zaiming; Guo, Qiyong
2014-01-01
Little is known about the value of (31)P-magnetic resonance spectroscopy ((31)P-MRS) in in vivo assessment of exhaustive exercise-induced injury in skeletal muscle. We aimed to evaluate the value of a (31)P-MRS study using the quadriceps femoris after a single bout of acute exhaustive swimming in rats, and the correlation between (31)P-MRS and histological changes. Sixty male Sprague-Dawley rats were randomly assigned to control, half-exhaustive, and exhaustive exercise groups. (31)P-MRS of the quadriceps femoris of the right lower limb was performed immediately after swimming exercise to detect Pi, PCr, and β-ATP. The Pi/PCr, Pi/β-ATP, PCr/β-ATP, and PCr/(PCr+Pi) were calculated and pH measured. Areas under the receiver operating characteristic curve (AUCs) were calculated to evaluate the diagnostic potential of (31)P-MRS in identifying and distinguishing the three groups. HE staining, electron microscopy and desmin immunostaining after imaging of the muscle were used as a reference standard. The correlation between (31)P-MRS and the mean absorbance (A value) of desmin staining were analyzed with the Pearson correlation test. Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) showed statistically significant intergroup differences (P < 0.05). AUCs of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were 0.905, 0.848, 0.930, and 0.930 for the control and half-exhaustive groups, while sensitivity and specificity were 90%/85%, 95%/55%, 95%/80%, and 90%/85%, respectively. The AUCs of Pi, PCr, Pi/PCr and PCr/(PCr+Pi) were 0.995, 0.980, 1.000, and 1.000 for the control and exhaustive groups, while sensitivity and specificity were 95%/90%, 100%/90%, 100%/95%, and 100%/95%, respectively. The AUCs of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were 0.735, 0.865, 0.903, and 0.903 for the half-exhaustive and exhaustive groups, while sensitivity and specificity were 80%/60%, 90%/75%, 95%/65%, and 95%/70%, respectively. In the half-exhaustive group, some muscle fibers exhibited edema in HE staining, and the unclear Z-discs and the mitochondria with vacuolar degeneration under electron microscopy. Compared with the half-exhaustive group, muscle fiber edema was increased in the exhaustive group, and the Z-discs were broken and the mitochondria exhibited marked vacuolar degeneration under electron microscopy. There were significant difference in A values of desmin staining in the right vastus lateralis among the control, half-exhaustive, and exhaustive groups with 0.58 ± 0.06, 0.30 ± 0.04, and 0.21 ± 0.02, respectively (P < 0.05). Histological examination also showed injury-induced changes in the vastus lateralis among the different intensities groups. Statistically a moderate correlation between (31)P-MRS and desmin was observed, the correlation coefficients of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) were -0.706, 0.709, -0.726, and 0.791, respectively (P < 0.01). (31)P-MRS can effectively reflect the changes in energy metabolism in the skeletal muscle after a single bout of acute exhaustive swimming in rats. Based on the significant correlation between (31)P-MRS parameters and histological changes, the changes of Pi, PCr, Pi/PCr, and PCr/(PCr+Pi) can indirectly reflect the degree of exercise-induced injury.
NASA Astrophysics Data System (ADS)
Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre
2012-07-01
Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and Endostatin levels. Conclusion: The present findings suggest 1) that resistance exercise, both with and without superimposed vibration, leads to a transient rise in circulating angiogenic factors, 2) which is not altered after a period of resistance exercise with or without vibration.
Rogerson, Mike; Barton, Jo
2015-01-01
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise. PMID:26133125
Rogerson, Mike; Barton, Jo
2015-06-30
Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion). In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention) pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007). Scores significantly improved in the nature condition (p < 0.001) but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise.
Effects of Performance Versus Game-Based Mobile Applications on Response to Exercise.
Gillman, Arielle S; Bryan, Angela D
2016-02-01
Given the popularity of mobile applications (apps) designed to increase exercise participation, it is important to understand their effects on psychological predictors of exercise behavior. This study tested a performance feedback-based app compared to a game-based app to examine their effects on aspects of immediate response to an exercise bout. Twenty-eight participants completed a 30-min treadmill run while using one of two randomly assigned mobile running apps: Nike + Running, a performance-monitoring app which theoretically induces an associative, goal-driven state, or Zombies Run!, an app which turns the experience of running into a virtual reality game, theoretically inducing dissociation from primary exercise goals. The two conditions did not differ on primary motivational state outcomes; however, participants reported more associative attentional focus in the performance-monitoring app condition compared to more dissociative focus in the game-based app condition. Game-based and performance-tracking running apps may not have differential effects on goal motivation during exercise. However, game-based apps may help recreational exercisers dissociate from exercise more readily. Increasing the enjoyment of an exercise bout through the development of new and innovative mobile technologies is an important avenue for future research.
Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D
2013-01-01
Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.
Obesity, Asthma, and Exercise in Child and Adolescent Health
Lu, Kim D.; Manoukian, Krikor; Radom-Aizik, Shlomit; Cooper, Dan M.; Galant, Stanley P.
2018-01-01
Obesity increases the risk of asthma throughout life but the underlying mechanisms linking these all too common threats to child health are poorly understood. Acute bouts of exercise, aerobic fitness, and levels of physical activity clearly play a role in the pathogenesis and/or management of both childhood obesity and asthma. Moreover, both obesity and physical inactivity are associated with asthma symptomatology and response to therapy (a particularly challenging feature of obesity-related asthma). In this article, we review current understandings of the link between physical activity, aerobic fitness and the asthma-obesity link in children and adolescents (e.g., the impact of chronic low-grade inflammation, lung mechanics, and direct effects of metabolic health on the lung). Gaps in our knowledge regarding the physiological mechanisms linking asthma, obesity and exercise are often compounded by imprecise estimations of adiposity and challenges of assessing aerobic fitness in children. Addressing these gaps could lead to practical interventions and clinical approaches that could mitigate the profound health care crisis of the increasing comorbidity of asthma, physical inactivity, and obesity in children. PMID:26618409
Effect of caffeine ingestion on anaerobic capacity quantified by different methods
Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim
2017-01-01
We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848
Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake
Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.
2014-01-01
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897
Exercise-trained men and women: role of exercise and diet on appetite and energy intake.
Howe, Stephanie M; Hand, Taryn M; Manore, Melinda M
2014-11-10
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.
Figueiredo, Vandré C; Roberts, Llion A; Markworth, James F; Barnett, Matthew P G; Coombes, Jeff S; Raastad, Truls; Peake, Jonathan M; Cameron-Smith, David
2016-02-01
Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Kingsley, J Derek; Tai, Yu Lun; Mayo, Xian; Glasgow, Alaina; Marshall, Erica
2017-09-01
We sought to determine the sex-specific effects of an acute bout of free-weight resistance exercise (RE) on pulse wave reflection (aortic blood pressures, augmentation index (AIx), AIx at 75 bpm (AIx@75), augmentation pressure (AP), time of the reflected wave (Tr), subendocardial viability ratio (SEVR)), and aortic arterial stiffness in resistance-trained individuals. Resistance-trained men (n = 14) and women (n = 12) volunteered to participate in the study. Measurements were taken in the supine position at rest, and 10 minutes after 3 sets of 10 repetitions at 75% 1-repetition maximum on the squat, bench press, and deadlift. A 2 × 2 × 2 ANOVA was used to analyse the effects of sex (men, women) across condition (RE, control) and time (rest, recovery). There were no differences between sexes across conditions and time. There was no effect of the RE on brachial or aortic blood pressures. There were significant condition × time interactions for AIx (rest: 12.1 ± 7.9%; recovery: 19.9 ± 10.5%, p = .003), AIx@75 (rest: 5.3 ± 7.9%; recovery: 24.5 ± 14.3%, p = .0001), AP (rest: 4.9 ± 2.8 mmHg; recovery: 8.3 ± 6.0 mmHg, p = .004), and aortic arterial stiffness (rest: 5.3 ± 0.6 ms; recovery: 5.9 ± 0.7 ms, p = .02) with significant increases during recovery from the acute RE. There was also a significant condition × time for time of the reflected wave (rest: 150 ± 7 ms; recovery: 147 ± 9 ms, p = .02) and SEVR (rest: 147 ± 17%; recovery: 83 ± 24%, p = .0001) such that they were reduced during recovery from the acute RE compared to the control. These data suggest that an acute bout of RE increases AIx, AIx@75, and aortic arterial stiffness similarly between men and women without significantly altering aortic blood pressures.
Oliveira, Getúlio P; Porto, William F; Palu, Cintia C; Pereira, Lydyane M; Petriz, Bernardo; Almeida, Jeeser A; Viana, Juliane; Filho, Nezio N A; Franco, Octavio L; Pereira, Rinaldo W
2018-01-01
Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.
Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance.
Tobias, Gabriel; Benatti, Fabiana Braga; de Salles Painelli, Vitor; Roschel, Hamilton; Gualano, Bruno; Sale, Craig; Harris, Roger C; Lancha, Antonio Herbert; Artioli, Guilherme Gianinni
2013-08-01
We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day⁻¹) was ingested for 4 weeks and 500 mg kg⁻¹ BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.
Nguemeni, Carine; McDonald, Matthew W; Jeffers, Matthew S; Livingston-Thomas, Jessica; Lagace, Diane; Corbett, Dale
2018-01-15
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R 2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W
1987-08-01
The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.
A single exercise bout augments adenovirus-specific T-cell mobilization and function.
Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J
2018-04-30
Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.
Validation of a New NIRS Method for Measuring Muscle Oxygenation During Rhythmic Handgrip Exercise
NASA Technical Reports Server (NTRS)
Hagan, R. Donald; Soller, Babs R.; Soyemi, Olusola; Landry, Michelle; Shear, Michael; Wu, Jacqueline
2006-01-01
Near infrared spectroscopy (NIRS) is commonly used to measure muscle oxygenation during exercise and recovery. Current NIRS algorithms do not account for variation in water content and optical pathlength during exercise. The current effort attempts to validate a newly developed NIRS algorithm during rhythmic handgrip exercise and recovery. Six female subjects, aver age 28 +/- 6 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space. A NIRS sensor with 30 mm source-detector separation was placed on the flexor digitorum profundus. Subjects performed two 5-min bouts of rhythmic handgrip exercise (2 s contraction/1 s relaxation) at 15% and 30% of maximal voluntary contraction. Venous blood was sampled before each bout, during the last minute of exercise, and after 5 minutes of recovery. Venous oxygen saturation (SvO2) was measured with a I-stat CG-4+ cartridge. Spectra were collected between 700-900 nm. A modified Beer's Law formula was used to calculate the absolute concentration of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb) and water, as well as effective pathlength for each spectrum. Muscle oxygen saturation (SmO2) was calculated from the HbO2 and Hb results. The correlation between SvO2 and SmO2 was determined. Optical pathlength and water varied significantly during each exercise bout, with pathlength increasing approximately 20% and water increasing about 2%. R2 between blood and muscle SO2 was found to be 0.74, the figure shows the relationship over SvO2 values between 22% and 82%. The NIRS measurement was, on average, 6% lower than the blood measurement. It was concluded that pathlength changes during exercise because muscle contraction causes variation in optical scattering. Water concentration also changes, but only slightly. A new NIRS algorithm which accounts for exercise-induced variation in water and pathlength provided an accurate assessment of muscle oxygen saturation before, during and after exercise.
Dobashi, Kohei; Fujii, Naoto; Watanabe, Kazuhito; Tsuji, Bun; Sasaki, Yosuke; Fujimoto, Tomomi; Tanigawa, Satoru; Nishiyasu, Takeshi
2017-08-01
To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. End-tidal CO 2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min -1 ; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min -1 ) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Guimarães, Giovanna C; Farinatti, Paulo T V; Midgley, Adrian W; Vasconcellos, Fabrício; Vigário, Patrícia; Cunha, Felipe A
2017-06-22
The present study investigated the relationship between percentages of heart rate reserve (%HRR) and oxygen uptake reserve (%VO2R) during a cardiopulmonary exercise test (CPET) and discrete bouts of isocaloric cycling and treadmill running. Thirty men visited the laboratory three times for anthropometrical and resting VO2 assessments, and perform cycling and running CPETs. Ten men visited the laboratory twice more to investigate the validity of the %HRR-%VO2R relationships during isocaloric bouts of cycling and running at 75% VO2R with energy expenditures of 400 kcals. The %HRR was significantly higher than the %VO2R during both CPETs at all exercise intensities (P < 0.001). During isocaloric exercise bouts, mean %HRR-%VO2R differences of 6.5% and 7.0% were observed for cycling and running, respectively (P = 0.007 to P < 0.001). The %HRR and %VO2R increased over time (P < 0.001), the rate of which was influenced by exercise modality (P < 0.001). On average, heart rate was 5 (P = 0.007) and 8 (P < 0.001) beats·min higher than predicted from the second energy expenditure quartile for cycling and running, respectively; however, observed VO2 was lower than predicted during all quartiles for cycling, and the first quartile for running. Consequently, time to achieve the target energy expenditure was greater than predicted (P < 0.01). In conclusion, the %HRR-%VO2R relationship observed during CPET data did not accurately transpose to prolonged isocaloric bouts of cycling and running. Additionally, power outputs and speeds defined by the ACSM equations for cycling and running, respectively, overestimated VO2 and energy expenditure.
The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.
Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori
2011-05-01
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.
Dietary sodium and plasma volume levels with exercise.
Luetkemeier, M J; Coles, M G; Askew, E W
1997-05-01
Sodium is the major cation of the extracellular fluid and has a potent influence on fluid movement. Sodium has been likened to a sponge that draws fluids into the extracellular space, including the plasma volume, to equalize gradients in concentration. Conventional wisdom suggests limiting dietary intake of Na+ to decrease risk of hypertension. However, there are some extreme occupational or exercise-related conditions where sweat losses are great and Na+ losses may exceed normal dietary intake. This can occur acutely such as in an ultra-endurance event or chronically as in hard manual work in the hear. In such cases, additional Na+ in the form of a higher Na+ diet or adding Na+ to beverages used for fluid replacement may be warranted. A higher Na+ diet also appears to accelerate the cardiovascular and thermoregulatory adaptations that accompany heat acclimation or short term exercise training. Saline ingestion before exercise causes an expansion of plasma volume at rest and throughout the subsequent exercise bout. This expansion of plasma volume alters cardiovascular and thermoregulatory responses to exercise in ways that may lead to beneficial changes in endurance exercise performance. Plasma volume expansion also occurs with saline infusion during exercise, but exercise performance advantages have yet to be reported. The purpose of this article is to review the literature concerning dietary sodium and its influence on fluid balance, plasma volume and thermoregulation during exercise. It contains 2 major sections. First, we will discuss manipulations in daily Na+ intake initiated before or throughout an exercise regime. Second, we will examine studies where an acute Na+ load was administered immediately before or during an exercise trial. The dependent variables that we will discuss pertain to: (i) body water compartments, i.e. plasma volume; (ii) thermoregulatory variables, i.e. core temperature and sweat rate; (iii) cardiovascular variables, i.e. heart rate and stroke volume; and (iv) performance, i.e. time trial performance and time to exhaustion. Particular attention will be given to the route by which Na+ was administered, the environmental conditions, the level of acclimation of the participants and specifics relating to Na+ administration such as the osmolality of the Na(+)-containing beverage.
NASA Technical Reports Server (NTRS)
Engelke, K. A.; Doerr, D. F.; Convertino, V. A.
1995-01-01
We tested the hypothesis that one bout of maximal exercise performed 24 h before reambulation from 16 days of 6 degrees head-down tilt (HDT) could increase integrated baroreflex sensitivity. Isolated carotid-cardiac and integrated baroreflex function was assessed in seven subjects before and after two periods of HDT separated by 11 mo. On the last day of one HDT period, subjects performed a single bout of maximal cycle ergometry (exercise). Subjects did not exercise after the other HDT period (control). Carotid-cardiac baroreflex sensitivity was evaluated using a neck collar device. Integrated baroreflex function was assessed by recording heart rate (HR) and blood pressure (MAP) during a 15-s Valsalva maneuver (VM) at a controlled expiratory pressure of 30 mmHg. The ratio of change in HR to change in MAP (delta HR/ delta MAP) during phases II and IV of the VM was used as an index of cardiac baroreflex sensitivity. Baroreflex-mediated vasoconstriction was assessed by measuring the late phase II rise in MAP. Following HDT, carotid-cardiac baroreflex sensitivity was reduced (2.8 to 2.0 ms/mmHg; P = 0.05) as was delta HR/ delta MAP during phase II (-1.5 to -0.8 beats/mmHg; P = 0.002). After exercise, isolated carotid baroreflex activity and phase II delta HR/ delta MAP returned to pre-HDT levels but remained attenuated in the control condition. Phase IV delta HR/ delta MAP was not altered by HDT or exercise. The late phase II increase of MAP was 71% greater after exercise compared with control (7 vs. 2 mmHg; P = 0.041).(ABSTRACT TRUNCATED AT 250 WORDS).
The effect of resistance exercise on the thermic effect of food.
Denzer, Charlene M; Young, John C
2003-09-01
The thermic effect of food (TEF) is the increment in energy expenditure above resting metabolic rate associated with the cost of absorption and processing of food for storage. Previous studies have shown that TEF is enhanced by aerobic endurance exercise of sufficient duration and intensity. The purpose of this study was to determine if a similar effect occurs with a single bout of resistance exercise (weightlifting). VO2 was measured in 9 healthy volunteers (3 males and 6 females) for 2 hours after ingestion of a 2760 kJ (660 kcal) carbohydrate meal with and without prior completion of a resistance training regimen (2 sets of 10 repetitions of 10 different exercises). The meal caused an immediate and persistent thermic effect in both the control and the exercise trial. Mean oxygen consumption over baseline increased 20% in the control trial and 34% in the exercise trial. TEF calculated from VO2 and RER (total area under the response curve above baseline) was 73% greater in the exercise trial compared with the control trial (159 +/- 18 vs. 92 +/- 14 KJ/2 hrs, p < .02). These results indicate that TEF in response to a carbohydrate meal is enhanced following a single bout of resistance exercise.
Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I
2000-01-01
Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899
Vera, Jesús; Jiménez, Raimundo; Madinabeitia, Iker; Masiulis, Nerijus; Cárdenas, David
2017-10-01
Fitness level modulates the physiological responses to exercise for a variety of indices. While intense bouts of exercise have been demonstrated to increase tear osmolarity (Tosm), it is not known if fitness level can affect the Tosm response to acute exercise. This study aims to compare the effect of a maximal incremental test on Tosm between trained and untrained military helicopter pilots. Nineteen military helicopter pilots (ten trained and nine untrained) performed a maximal incremental test on a treadmill. A tear sample was collected before and after physical effort to determine the exercise-induced changes on Tosm. The Bayesian statistical analysis demonstrated that Tosm significantly increased from 303.72 ± 6.76 to 310.56 ± 8.80 mmol/L after performance of a maximal incremental test. However, while the untrained group showed an acute Tosm rise (12.33 mmol/L of increment), the trained group experienced a stable Tosm physical effort (1.45 mmol/L). There was a significant positive linear association between fat indices and Tosm changes (correlation coefficients [r] range: 0.77-0.89), whereas the Tosm changes displayed a negative relationship with the cardiorespiratory capacity (VO2 max; r = -0.75) and performance parameters (r = -0.75 for velocity, and r = -0.67 for time to exhaustion). The findings from this study provide evidence that fitness level is a major determinant of Tosm response to maximal incremental physical effort, showing a fairly linear association with several indices related to fitness level. High fitness level seems to be beneficial to avoid Tosm changes as consequence of intense exercise. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Effects of prior aerobic exercise on sitting-induced vascular dysfunction in healthy men.
Ballard, Kevin D; Duguid, Robert M; Berry, Craig W; Dey, Priyankar; Bruno, Richard S; Ward, Rose Marie; Timmerman, Kyle L
2017-12-01
Acute aerobic exercise prevents sitting-induced impairment of flow-mediated dilation (FMD). Further, evidence suggests that sitting-induced impairment of FMD occurs via an oxidative stress-dependent mechanism that disrupts endothelial function. We hypothesized that acute aerobic exercise would prevent impairment of femoral artery FMD by limiting oxidative stress responses that increase endothelin-1 (ET-1) levels and disrupt nitric oxide (NO) status. In a randomized, cross-over study, healthy men (n = 11; 21.2 ± 1.9 years) completed two 3 h sitting trials that were preceded by 45 min of either quiet rest (REST) or a single bout of continuous treadmill exercise (65% maximal oxygen consumption) (EX). Superficial femoral artery FMD, plasma glucose, malondialdehyde (MDA), ET-1, arginine (ARG) and its related metabolites [homoarginine (HA), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA)] were assessed at baseline, 1 h following EX (or REST) (0 h), and at 1 h intervals during 3 h of uninterrupted sitting. Data were analyzed using repeated measures ANOVA. During REST, femoral artery FMD declined from baseline (2.6 ± 1.8%) at 1, 2, and 3 h of sitting and resting shear rate decreased at 3 h. In contrast, when sitting was preceded by EX, femoral artery FMD (2.7 ± 2.0%) and resting shear rate responses were unaffected. No between trial differences were detected for plasma glucose, MDA, ET-1, ARG, HA, ADMA, or SDMA. Prior aerobic exercise prevented the decline in femoral artery FMD that is otherwise induced by prolonged sitting independent of changes in oxidative stress, ET-1, and NO status.
Schaun, Gustavo Z; Del Vecchio, Fabrício B
2018-01-01
Schaun, GZ and Del Vecchio, FB. High-intensity interval exercises' acute impact on heart rate variability: comparison between whole-body and cycle ergometer protocols. J Strength Cond Res 32(1): 223-229, 2018-Study aimed to compare the effects of 2 high-intensity interval training (HIIT) protocols on heart rate variability. Twelve young adult males (23.3 ± 3.9 years, 177.8 ± 7.4 cm, 76.9 ± 12.9 kg) volunteered to participate. In a randomized cross-over design, subjects performed 2 HIIT protocols, 1 on a cycle ergometer (Tabata protocol [TBT]; eight 20-second bouts at 170% Pmax interspersed by 10-second rest) and another with whole-body calisthenic exercises (McRae protocol; eight 20-second all-out intervals interspersed by 10-second rest). Heart rate variability outcomes in the time, frequency, and nonlinear domains were assessed on 3 moments: (a) presession; (b) immediately postsession; and (c) 24 hours postsession. Results revealed that RRmean, Ln rMSSD, Ln high frequency (HF), and Ln low frequency (LF) were significantly reduced immediately postsession (p ≤ 0.001) and returned to baseline 24 h after both protocols. In addition, LF/HF ratio was reduced 24 h postsession (p ≤ 0.01) and SD2 was significantly lower immediately postsession only in TBT. Our main finding was that responses from heart rate autonomic control were similar in both protocols, despite different modes of exercise performed. Specifically, exercises resulted in a high parasympathetic inhibition immediately after session with subsequent recovery within 1 day. These results suggest that subjects were already recovered the day after and can help coaches to better program training sessions with such protocols.
Heart rate variability in type 2 diabetes mellitus.
Stuckey, Melanie I; Petrella, Robert J
2013-01-01
Heart rate variability (HRV) is a noninvasive measure of cardiac autonomic modulation. Time and frequency domain measures have primarily been examined in patients with type 2 diabetes mellitus (T2D). Not only do frequency domain HRV parameters tend to be reduced in T2D, but healthy individuals with low HRV are also more likely to develop T2D. Furthermore, patients with T2D with low HRV have an increased prevalence of complications and risk of mortality compared with those with normal autonomic function. These findings provide support for the use of HRV as a risk indicator in T2D. Exercise is considered an important component to T2D prevention and treatment strategies. To date, few studies have examined the changes in HRV with exercise in T2D. One study showed changes in resting HRV, two studies showed changes in HRV during or following acute stressors, and one study showed no changes in HRV but improvements in baroreflex sensitivity. The most pronounced changes in HRV were realized following the exercise intervention with the greatest frequency of supervised exercise sessions and with the greatest intensity and duration of exercise bouts. These findings suggest that exercise following current American College of Sports Medicine/American Diabetes Association guidelines may be important in the prevention and treatment of T2D to improve autonomic function and reduce the risk of complications and mortality.
Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming
2016-05-01
Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Acute effect of stretching one leg on regional arterial stiffness in young men.
Yamato, Yosuke; Hasegawa, Natsuki; Fujie, Shumpei; Ogoh, Shigehiko; Iemitsu, Motoyuki
2017-06-01
Our previous study demonstrated that a single bout of stretching exercises acutely reduced arterial stiffness. We hypothesized that this acute vascular response is due to regional mechanical stimulation of the peripheral arteries. To test this hypothesis, we examined the effect of a single bout of passive one leg stretching on arterial stiffness, comparing the stretched and the non-stretched leg in the same subject. Twenty-five healthy young men (20.9 ± 0.3 years, 172.5 ± 1.4 cm, 64.1 ± 1.2 kg) volunteered for the study. Subjects underwent a passive calf stretching on one leg (six repetitions of 30-s static stretch with a 10-s recovery). Pulse wave velocity (PWV, an index of arterial stiffness), blood pressure (BP), and heart rate (HR) were measured before and immediately, 15, and 30 min after the stretching. Femoral-ankle PWV (faPWV) in the stretched leg was significantly decreased from baseline (835.0 ± 15.9 cm/s) to immediately (802.9 ± 16.8 cm/s, P < 0.01) and 15 min (810.5 ± 16.0 cm/s, P < 0.01) after the stretching, despite no changes in systolic and diastolic BP, or HR. However, faPWV in the non-stretched leg was not significantly altered at any time. Brachial-ankle PWV (baPWV) also showed similar responses with faPWV, but this response was not significant. Additionally, the passive stretching did not alter carotid-femoral PWV (cfPWV). These results suggest that mechanical stimulation to peripheral arteries as induced by static passive stretch may modulate arterial wall properties directly, rather than resulting in a systemic effect.
Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.
2017-01-01
Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy when consuming ibuprofen. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. Clinical Relevance Ibuprofen is a commonly used drug by sedentary individuals and athletes. This study suggests that ibuprofen has tissue-dependent effects that should be considered when prescribing the drug. PMID:27281275
Otocka-Kmiecik, Aneta; Lewandowski, Marek; Szkudlarek, Urszula; Nowak, Dariusz; Orlowska-Majdak, Monika
2014-01-01
The aim of the study was to compare the effect of maximal exercise (ME) on paraoxonase (PON) and arylesterase (ARE) activity depending on lifestyle in respect to physical activity. The study was performed on 46 young men divided into two groups: sedentary (S) and physically active (PA). All participants performed ME on a treadmill. PON1 activities, FRAP, uric acid, bilirubin, TBARS, and lipid profile were determined in their blood before, at the bout of, and after ME. No significant differences in PON1 activities were found between S and PA subjects at baseline. Nearly all biochemicals increased at ME in both groups. Both PON and ARE activity increased at the bout of ME in PA subjects and only ARE activity in S subjects. ARE/HDL-C ratio increased at the bout of ME in PA and S subjects. The difference in PON1 activity response to ME between study groups may be a result of adaptation of PA subjects to regular physical activity. We suggest that PON1 activity may be a marker of antioxidant protection at ME and an indicator of adaptation to exercise. PMID:25379522
Otocka-Kmiecik, Aneta; Lewandowski, Marek; Szkudlarek, Urszula; Nowak, Dariusz; Orlowska-Majdak, Monika
2014-01-01
The aim of the study was to compare the effect of maximal exercise (ME) on paraoxonase (PON) and arylesterase (ARE) activity depending on lifestyle in respect to physical activity. The study was performed on 46 young men divided into two groups: sedentary (S) and physically active (PA). All participants performed ME on a treadmill. PON1 activities, FRAP, uric acid, bilirubin, TBARS, and lipid profile were determined in their blood before, at the bout of, and after ME. No significant differences in PON1 activities were found between S and PA subjects at baseline. Nearly all biochemicals increased at ME in both groups. Both PON and ARE activity increased at the bout of ME in PA subjects and only ARE activity in S subjects. ARE/HDL-C ratio increased at the bout of ME in PA and S subjects. The difference in PON1 activity response to ME between study groups may be a result of adaptation of PA subjects to regular physical activity. We suggest that PON1 activity may be a marker of antioxidant protection at ME and an indicator of adaptation to exercise.
Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre
2015-01-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908
Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin
2016-01-01
Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise. PMID:27547577
Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P
2016-02-01
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.
The prevention and treatment of exercise-induced muscle damage.
Howatson, Glyn; van Someren, Ken A
2008-01-01
Exercise-induced muscle damage (EIMD) can be caused by novel or unaccustomed exercise and results in a temporary decrease in muscle force production, a rise in passive tension, increased muscle soreness and swelling, and an increase in intramuscular proteins in blood. Consequently, EIMD can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere to an exercise training programme. A variety of interventions have been used prophylactically and/or therapeutically in an attempt to reduce the negative effects associated with EIMD. This article focuses on some of the most commonly used strategies, including nutritional and pharmacological strategies, electrical and manual therapies and exercise. Long-term supplementation with antioxidants or beta-hydroxy-beta-methylbutyrate appears to provide a prophylactic effect in reducing EIMD, as does the ingestion of protein before and following exercise. Although the administration of high-dose NSAIDs may reduce EIMD and muscle soreness, it also attenuates the adaptive processes and should therefore not be prescribed for long-term treatment of EIMD. Whilst there is some evidence that stretching and massage may reduce muscle soreness, there is little evidence indicating any performance benefits. Electrical therapies and cryotherapy offer limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of these and other interventions may account for the lack of consensus regarding their efficacy. Both as a cause and a consequence of this, there are very few evidence-based guidelines for the application of many of these interventions. Conversely, there is unequivocal evidence that prior bouts of eccentric exercise provide a protective effect against subsequent bouts of potentially damaging exercise. Further research is warranted to elucidate the most appropriate dose and frequency of interventions to attenuate EIMD and if these interventions attenuate the adaptation process. This will both clarify the efficacy of such strategies and provide guidelines for evidence-based practice.
Hip-abduction torque and muscle activation in people with low back pain.
Sutherlin, Mark A; Hart, Joseph M
2015-02-01
Individuals with a history of low back pain (LBP) may present with decreased hip-abduction strength and increased trunk or gluteus maximus (GMax) fatigability. However, the effect of hip-abduction exercise on hip-muscle function has not been previously reported. To compare hip-abduction torque and muscle activation of the hip, thigh, and trunk between individuals with and without a history of LBP during repeated bouts of side-lying hip-abduction exercise. Repeated measures. Clinical laboratory. 12 individuals with a history of LBP and 12 controls. Repeated 30-s hip-abduction contractions. Hip-abduction torque, normalized root-mean-squared (RMS) muscle activation, percent RMS muscle activation, and forward general linear regression. Hip-abduction torque reduced in all participants as a result of exercise (1.57 ± 0.36 Nm/kg, 1.12 ± 0.36 Nm/kg; P < .001), but there were no group differences (F = 0.129, P = .723) or group-by-time interactions (F = 1.098, P = .358). All participants had increased GMax activation during the first bout of exercise (0.96 ± 1.00, 1.18 ± 1.03; P = .038). Individuals with a history of LBP had significantly greater GMax activation at multiple points during repeated exercise (P < .05) and a significantly lower percent of muscle activation for the GMax (P = .050) at the start of the third bout of exercise and for the biceps femoris (P = .039) at the end of exercise. The gluteal muscles best predicted hip-abduction torque in controls, while no consistent muscles were identified for individuals with a history of LBP. Hip-abduction torque decreased in all individuals after hip-abduction exercise, although individuals with a history of LBP had increased GMax activation during exercise. Gluteal muscle activity explained hip-abduction torque in healthy individuals but not in those with a history of LBP. Alterations in hip-muscle function may exist in individuals with a history of LBP.
Pugh, Jamie K; Faulkner, Steve H; Turner, Mark C; Nimmo, Myra A
2018-02-01
Sarcopenia can begin from the 4-5th decade of life and is exacerbated by obesity and inactivity. A combination of resistance exercise (RE) and endurance exercise is recommended to combat rising obesity and inactivity levels. However, work continues to elucidate whether interference in adaptive outcomes occur when RE and endurance exercise are performed concurrently. This study examined whether a single bout of concurrent RE and high-intensity interval training (HIIT) alters the satellite cell response following exercise compared to RE alone. Eight sedentary, overweight/obese, middle-aged individuals performed RE only (8 × 8 leg extensions at 70% 1RM), or RE + HIIT (10 × 1 min at 90% HR max on a cycle ergometer). Muscle biopsies were collected from the vastus lateralis before and 96 h after the RE component to determine muscle fiber type-specific total (Pax7 + cells) and active (MyoD + cells) satellite cell number using immunofluorescence microscopy. Type-I-specific Pax7 + (P = 0.001) cell number increased after both exercise trials. Type-I-specific MyoD + (P = 0.001) cell number increased after RE only. However, an elevated baseline value in RE + HIIT compared to RE (P = 0.046) was observed, with no differences between exercise trials at 96 h (P = 0.21). Type-II-specific Pax7 + and MyoD + cell number remained unchanged after both exercise trials (all P ≥ 0.13). Combining a HIIT session after a single bout of RE does not interfere with the increase in type-I-specific total, and possibly active, satellite cell number, compared to RE only. Concurrent RE + HIIT may offer a time-efficient way to maximise the physiological benefits from a single bout of exercise in sedentary, overweight/obese, middle-aged individuals.
Palm cooling does not reduce heat strain during exercise in a hot, dry environment.
Amorim, Fabiano T; Yamada, Paulette M; Robergs, Robert A; Schneider, Suzanne M
2010-08-01
To compare the effectiveness of the rapid thermal exchange device (RTX) in slowing the development of hyperthermia and associated symptoms among hand immersed in water bath (WB), water-perfused vest (WPV), and no cooling condition (NC). Ten subjects performed 4 heat stress trials. The protocol consisted of 2 bouts of treadmill walking, separated by a cooling-rehydration period. The times to reach the predetermined rectal temperature in the first (38.5 degrees C) and second bouts (39 degrees C) were not different among RTX, NC, and WB, but was longer for the WPV in both bouts (p<0.05). Heat storage was significantly lower for WPV only in the first bout vs. the other conditions (p<0.05). Heart rate (HR) was not different at 10, 20, and 30 min during the first bout among RTX, NC, and WB, but was lower for WPV (p<0.05). HR was not different among conditions during the second bout. The RTX was not effective in slowing the development of hyperthermia.