Science.gov

Sample records for acute exercise enhanced

  1. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  2. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  3. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly.

  4. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly. PMID:27220529

  5. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  6. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise.

    PubMed

    Lambert, Brad S; Shimkus, Kevin L; Fluckey, James D; Riechman, Steven E; Greene, Nicholas P; Cardin, Jessica M; Crouse, Stephen F

    2015-02-01

    Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM.

  7. An acute bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity.

    PubMed

    Brestoff, Jonathan R; Clippinger, Benjamin; Spinella, Thomas; von Duvillard, Serge P; Nindl, Bradley C; Nindl, Bradley; Arciero, Paul J

    2009-02-01

    An acute bout of endurance exercise (EE) enhances insulin sensitivity, but the effects of sprint interval exercise (SIE) have not yet been described. We sought to compare insulin sensitivity at baseline and after an acute bout of EE and SIE in healthy men (n = 8) and women (n = 5) (age, 20.7 +/- 0.3 years; peak oxygen consumption (VO2 peak), 42.6 +/- 1.7 mL.kg(-1).min(-1); <1.5 days.week(-1) structured exercise; body fat, 21.1 +/- 1.9%). Subjects underwent 3 oral glucose tolerance tests (OGTT(s)) the day after each of the following 3 conditions: no exercise, baseline (OGTT(B)); SIE at approximately 125% VO(2 peak) (OGTT(SIE)); and EE at approximately 75% VO(2 peak )(OGTT(EE)). SIE and EE sessions were randomized for each subject. Subjects consumed identical meals the day preceding each OGTT. Two insulin sensitivity indices - composite whole-body insulin sensitivity index (ISI-COMP) and ISI-hepatic insulin sensitivity (HOMA) - were calculated, using previously validated formulas (ISI-COMP = 10 000/ radical(glucose(fasting)) x insulin(fasting) x glucose(mean OGTT) x insulin(mean OGTT)); ISI-HOMA = 22.5/(insulin(fasting) x glucose(fasting)), and the plasma concentrations of cytokines interleukin-6 and tumor necrosis factor-alpha were measured. There were no differences by sex for any condition (men vs. women, p > 0.05). Pearson's correlation coefficients between ISI-COMP and ISI-HOMA for each condition were highly correlated (p < 0.01), and followed similar patterns of response. ISI-COMP(EE) was 71.4% higher than ISI-COMP(B) (8.4 +/- 1.4 vs. 4.9 +/- 1.0; p < 0.01) and 40.0% higher than ISI-COMPSIE (8.4 +/- 1.4 vs. 6.0 +/- 1.5; p < 0.05), but there was no difference between ISI-COMP(B) and ISI-COMP(SIE) (p = 0.182). VO(2 peak) was highly correlated with both ISI-COMP and ISI-HOMA during baseline and SIE test conditions (p < 0.02). These findings demonstrate that an acute bout of EE, but not SIE, increases insulin sensitivity relative to a no-exercise control condition

  8. EEG recovery enhanced by acute aerobic exercise after performing mental task with listening to unpleasant sound.

    PubMed

    Nishifuji, Seiji

    2011-01-01

    The present paper investigated response of electroencephalogram (EEG) to aerobic exercise with low intensity after performing mental task with listening to acoustic stimuli in order to measure a recovery effect of the acute exercise on the EEG. The mean amplitude of the alpha wave (8-13 Hz) was significantly reduced during performing mental arithmetic and/or listening to 5 KHz unpleasant tone. In particular, the mean reduction rate of the amplitude was more than 20 % in the low-frequency range of the alpha wave (8-10 Hz) under both stressors. On the other hand, the alpha wave was fixed after an acute exercise of 20 min; the mean amplitude of the alpha wave exceeded 30 % of spontaneous level prior to stressed conditions in the low-frequency range but unchanged in the high-frequency range. Response of the theta wave was similar to the low-alpha wave, while beta and gamma waves showed no significant change in response to the stressors and exercise. The observation indicates that the acute exercise with low intensity may be responsible for the rapid recovery and enhancement of the alpha wave in the low-frequency range and theta wave.

  9. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure.

    PubMed

    Duncan, M J; Oxford, S W

    2012-06-01

    This double-blind, within-subjects experiment examined the effects of acute caffeine ingestion on perceptions of muscle pain following a bout of high-intensity, upper-body resistance exercise to failure. Moderately trained males (N.=18) ingested a dose of caffeine (5 mg · kg-1) or placebo in a randomised and counterbalanced order and 1 hour later completed bench press exercise to failure at an intensity of 60% 1 repetition maximum. Repetitions completed was taken as a measure of performance, peak heart rate was determined via heart rate telemetry during the exercise bout, rating of perceived exertion (RPE) and upper body muscle pain was recorded immediately upon failure of the exercise task and peak blood lactate concentration was determined post-exercise. Caffeine resulted in improved repetitions to failure (t [17]=3.119, P=0.006), greater peak blood lactate (t [17] =5.080, P=0.0001) and lower RPE (t 17=-3.431, P=0.003) compared to placebo. Muscle pain perception was also significantly lower in the caffeine condition compared to placebo (t [17]=-2.567, P=0.04). These results support prior studies using aerobic based exercise modes in suggesting that caffeine ingestion can dampen exercise-induced muscle pain. Specifically, caffeine ingestion enhances muscular strength performance and reduces upper body muscle pain perception immediately following a bout of high-intensity resistance exercise to failure.

  10. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise.

    PubMed

    Lippi, Giuseppe; Buonocore, Ruggero; Tarperi, Cantor; Montagnana, Martina; Festa, Luca; Danese, Elisa; Benati, Marco; Salvagno, Gian Luca; Bonaguri, Chiara; Roggenbuck, Dirk; Schena, Federico

    2016-09-01

    The aim of this study was to evaluate DNA damage in response to increasing bulks of aerobic physical exercise. Fifteen adult and trained athletes performed four sequential trials with increasing running distance (5-, 10-, 21- and 42-km) in different periods of the year. The γ-H2AX foci parameters were analyzed before and 3h after the end of each trial. The values of all γ-H2AX foci parameters were enhanced after the end of each trial, with values gradually increasing from the 5- to the 42-km trial. Interestingly, a minor increase of γ-H2AX foci was still evident after 5- to 10-km running, but a much higher increase occurred when the running distance exceeded 21km. The generation of DNA injury was then magnified by running up to 42-km. The increase of each γ-H2AX foci parameter was then found to be associated with both running distance and average intensity. In multivariate linear regression analysis, the running distance was significantly associated with average intensity and post-run variation in the percentage of cells with γ-H2AX foci. We can hence conclude that aerobic exercise may generate an acute DNA damage in trained athletes, which is highly dependent upon running distance and average intensity. PMID:27374303

  11. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise.

    PubMed

    Apicella, Jenna M; Lee, Elaine C; Bailey, Brooke L; Saenz, Catherine; Anderson, Jeffrey M; Craig, Stuart A S; Kraemer, William J; Volek, Jeff S; Maresh, Carl M

    2013-03-01

    Our aim was to examine the effect of betaine supplementation on selected circulating hormonal measures and Akt muscle signaling proteins after an acute exercise session. Twelve trained men (age 19.7 ± 1.23 years) underwent 2 weeks of supplementation with either betaine (B) (1.25 g BID) or placebo (P). Following a 2-week washout period, subjects underwent supplementation with the other treatment (B or P). Before and after each 2-week period, subjects performed an acute exercise session (AES). Circulating GH, IGF-1, cortisol, and insulin were measured. Vastus lateralis samples were analyzed for signaling proteins (Akt, p70 S6k, AMPK). B (vs. P) supplementation approached a significant increase in GH (mean ± SD (Area under the curve, AUC), B: 40.72 ± 6.14, P: 38.28 ± 5.54, p = 0.060) and significantly increased IGF-1 (mean ± SD (AUC), B: 106.19 ± 13.45, P: 95.10 ± 14.23, p = 0.010), but significantly decreased cortisol (mean ± SD (AUC), B: 1,079.18 ± 110.02, P: 1,228.53 ± 130.32, p = 0.007). There was no difference in insulin (AUC). B increased resting Total muscle Akt (p = 0.003). B potentiated phosphorylation (relative to P) of Akt (Ser(473)) and p70 S6 k (Thr(389)) (p = 0.016 and p = 0.005, respectively). Phosphorylation of AMPK (Thr(172)) decreased during both treatments (both p = 0.001). Betaine (vs. placebo) supplementation enhanced both the anabolic endocrine profile and the corresponding anabolic signaling environment, suggesting increased protein synthesis.

  12. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise.

    PubMed

    Duncan, Michael J; Stanley, Michelle; Parkhouse, Natalie; Cook, Kathryn; Smith, Mike

    2013-01-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. However, despite suggestions that caffeine may enhance resistance exercise performance, research is equivocal on the effect of acute caffeine ingestion on resistance exercise performance. It has also been suggested that dampened perception of perceived exertion and pain perception might be an explanation for any possible enhancement of resistance exercise performance due to caffeine ingestion. Therefore, the aim of this study was to examine the acute effect of caffeine ingestion on repetitions to failure, rating of perceived exertion (RPE) and muscle pain perception during resistance exercise to failure. Eleven resistance trained individuals (9 males, 2 females, mean age±SD=26.4±6.4 years), took part in this double-blind, randomised cross-over experimental study whereby they ingested a caffeinated (5 mg kg(-1)) or placebo solution 60 minutes before completing a bout of resistance exercise. Experimental conditions were separated by at least 48 hours. Resistance exercise sessions consisted of bench press, deadlift, prone row and back squat exercise to failure at an intensity of 60% 1 repetition maximum. Results indicated that participants completed significantly greater repetitions to failure, irrespective of exercise, in the presence of caffeine (p=0.0001). Mean±S.D of repetitions to failure was 19.6±3.7 and 18.5±4.1 in caffeine and placebo conditions, respectively. There were no differences in peak heart rate or peak blood lactate values across conditions (both p >0.05). RPE was significantly lower in the caffeine compared to the placebo condition (p=0.03) and was significantly higher during lower body exercises compared to upper body exercises irrespective of substance ingested (p=0.0001). For muscle pain perception, a significant condition by exercise interaction (p=0.027) revealed that muscle pain perception was lower in the caffeine condition, irrespective of exercise

  13. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise.

    PubMed

    Duncan, Michael J; Stanley, Michelle; Parkhouse, Natalie; Cook, Kathryn; Smith, Mike

    2013-01-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. However, despite suggestions that caffeine may enhance resistance exercise performance, research is equivocal on the effect of acute caffeine ingestion on resistance exercise performance. It has also been suggested that dampened perception of perceived exertion and pain perception might be an explanation for any possible enhancement of resistance exercise performance due to caffeine ingestion. Therefore, the aim of this study was to examine the acute effect of caffeine ingestion on repetitions to failure, rating of perceived exertion (RPE) and muscle pain perception during resistance exercise to failure. Eleven resistance trained individuals (9 males, 2 females, mean age±SD=26.4±6.4 years), took part in this double-blind, randomised cross-over experimental study whereby they ingested a caffeinated (5 mg kg(-1)) or placebo solution 60 minutes before completing a bout of resistance exercise. Experimental conditions were separated by at least 48 hours. Resistance exercise sessions consisted of bench press, deadlift, prone row and back squat exercise to failure at an intensity of 60% 1 repetition maximum. Results indicated that participants completed significantly greater repetitions to failure, irrespective of exercise, in the presence of caffeine (p=0.0001). Mean±S.D of repetitions to failure was 19.6±3.7 and 18.5±4.1 in caffeine and placebo conditions, respectively. There were no differences in peak heart rate or peak blood lactate values across conditions (both p >0.05). RPE was significantly lower in the caffeine compared to the placebo condition (p=0.03) and was significantly higher during lower body exercises compared to upper body exercises irrespective of substance ingested (p=0.0001). For muscle pain perception, a significant condition by exercise interaction (p=0.027) revealed that muscle pain perception was lower in the caffeine condition, irrespective of exercise

  14. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.

    PubMed

    Popovich, Christina; Staines, W Richard

    2015-03-15

    Neuroimaging research has shown that acute bouts of moderate intensity aerobic exercise can enhance attention-based neuronal activity in frontal brain regions, namely in the prefrontal cortex (PFC), as well as improve cognitive performance. The circuitry of the PFC is complex with extensive reciprocal corticocortical and thalamocortical connections, yet it remains unclear if aerobic exercise can also assist attentional control over modality-specific sensory cortices. To test this, we used a tactile discrimination task to compare tactile event-related potentials (ERPs) prior to and following an acute bout of moderate intensity aerobic exercise. We hypothesized that exercise preceding performance of the task would result in more efficient sensory gating of irrelevant/non-attended and enhancement of relevant/attended sensory information, respectively. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only. ERP amplitudes for the P50, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at FC4, C4, CP4 and P4 while P300 amplitudes were quantified in response to attended target stimuli at electrodes FCZ, CZ and CPZ. Results showed no effect of attention on the P50, however, both P100 and LLP amplitudes were significantly greater during attended, task-relevant trials, while the N140 was enhanced for non-attended, task-irrelevant stimuli. Moreover, unattended N140 amplitudes over parietal sites contralateral to stimulation were significantly greater post-exercise versus pre-exercise, while LLP modulation varied with greater unattended amplitudes post-exercise over frontal sites and greater attended amplitudes post-exercise over parietal sites. These results suggest that a single session of moderate intensity aerobic exercise facilitated the sensory gating of task-irrelevant tactile stimuli so that relevant sensory signals could be enhanced at

  15. Stretching exercises enhance vascular endothelial function and improve peripheral circulation in patients with acute myocardial infarction.

    PubMed

    Hotta, Kazuki; Kamiya, Kentaro; Shimizu, Ryosuke; Yokoyama, Misako; Nakamura-Ogura, Misao; Tabata, Minoru; Kamekawa, Daisuke; Akiyama, Ayako; Kato, Michitaka; Noda, Chiharu; Matsunaga, Atsuhiko; Masuda, Takashi

    2013-01-01

    The purpose of this study was to clarify the acute effects of a single session of stretching exercises on vascular endothelial function and peripheral circulation in patients with acute myocardial infarction. This study evaluated 32 patients (mean age, 66 ± 9 years) who received phase I cardiac rehabilitation after acute myocardial infarction. Five types of stretching exercises were performed on the floor: wrist dorsiflexion, close-legged trunk flexion, open-legged trunk flexion, open-legged lateral trunk bending, and cross-legged trunk flexion. Each exercise entailed a 30-second stretching followed by a 30-second relaxation, and was repeated twice. Low- and high-frequency components (LF and HF) of heart rate variability (LF, 0.04-0.15 Hz; HF, 0.15-0.40 Hz) were analyzed, and HF and LF/HF were used as indices of parasympathetic and sympathetic nervous activities, respectively. Reactive hyperemia peripheral arterial tonometry (RH-PAT) index was measured and used as a parameter for vascular endothelial function. Transcutaneous oxygen pressure (tcPO2) on the right foot and chest was also measured, and the Foot-tcPO2/Chest-tcPO2 ratio was used as a parameter for peripheral circulation. The HF, RH-PAT index, and Foot-tcPO2/Chest-tcPO2 ratio were significantly higher after the exercises than before (P < 0.05, P < 0.01, and P < 0.05, respectively). There was no significant difference in the LF/HF ratio measured before and after stretching exercises. These findings demonstrate that stretching exercises improve vascular endothelial function and peripheral circulation in patients with acute myocardial infarction.

  16. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults.

  17. Acute Effects of Enhanced Eccentric and Concentric Resistance Exercise on Metabolism and Inflammation

    PubMed Central

    Vincent, HK; Percival, S; Creasy, R; Alexis, D; Seay, AN; Laura Ann, Zdziarski; MacMillan, M; Vincent, KR

    2015-01-01

    This study compared the metabolic, cardiopulmonary and inflammatory responses of novel acute machine based concentrically-focused resistance exercise (CON RX) and eccentrically-focused resistance exercise (ECC RX). Twenty healthy adults (26.8 ± 5.9 yrs; 25.4 ± 4.0 kg/m2) performed two work-matched RX exercise sessions. Cardiopulmonary responses, rating of perceived exertion (RPE), soreness, oxygen consumption; (VO2) were collected during each session. Blood lactate and levels of inflammatory cytokines interleukin-1 alpha (IL1α), interleukin-6 (IL6) and tumor necrosis factor-alpha (TNFα) were analyzed pre, post ad 24 hours post-exercise. HR were higher (5-15bpm) during ECC RX (p<.05). Soreness ratings were consistently higher post-ECC RX compared to CON RX. VO2 area under the curve was higher during ECC than CON (31,905 ml/kg/min vs 25,864 ml/kg/min; p<.0001). Post-ECC RX, TNFα levels increased compared to CON RX 23.2 ± 23.9% versus 6.3 ± 16.2% ( p=.021). ECC RX induced greater metabolic, cardiopulmonary and soreness responses compared to matched CON RX. This may be due to recruitment of additional stabilizer muscles and metabolic stress during the ECC RX. These factors should be considered when designing ECC RX programs particularly for untrained persons, older adults or those with history of cardiovascular disease. PMID:26807345

  18. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  19. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise.

  20. Does acute side-alternating vibration exercise enhance ballistic upper-body power?

    PubMed

    Cochrane, D J; Black, M J; Barnes, M J

    2014-11-01

    The aim of this study was to investigate the effects of acute vibration exercise, at 2 different frequencies, on upper body power output. Muscle activity (EMG) and upper-body peak power was measured in 12 healthy males during ballistic bench press throws at 30% of 1-repetition maximum on a Smith machine. Measures were made prior to, 30 s and 5 min after one of 3 conditions performed for 30 s in a press-up position: side-alternating vibration at 20 Hz, 26 Hz and no vibration. EMG was recorded in the anterior deltoid, triceps brachii and pectoralis major during ballistic bench press throws as well as during application of each condition. While peak power output was higher at 5 min post condition across all conditions, compared to baseline measures (P<0.05), only 20 Hz vibration resulted in a significant increase in peak power output (P<0.05) compared to no vibration. EMG was greater during both vibration conditions, compared to no vibration (P<0.001). However, this difference was not evident during bench press throws when no difference was seen in muscle activity between conditions. These findings suggest that 20 Hz vibration has an ergogenic effect on upper-body power that may be due to peripheral, rather than central, mediated mechanisms.

  1. Enhanced carotid-cardiac baroreflex response and elimination of orthostatic hypotension 24 hours after acute exercise in paraplegics

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.

    1992-01-01

    To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).

  2. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  3. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men

    PubMed Central

    Parker, Lewan; Stepto, Nigel K.; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell; Hare, David L.; Levinger, Itamar

    2016-01-01

    Background: Obesity and aging are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK), and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE) on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods: Participants completed a 2 h hyperinsulinaemic-euglycaemic clamp at rest, and 60 min after HIIE (4 × 4 mins at 95% HRpeak; 2 min recovery periods), separated by 1–3 weeks. Results: Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SOD activity, JNK, p38 MAPK and NF-κB phosphorylation (r = 0.63, r = 0.71, r = 0.72, r = 0.71; p < 0.05, respectively). Conclusion:These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 h after HIIE.

  4. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men

    PubMed Central

    Parker, Lewan; Stepto, Nigel K.; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell; Hare, David L.; Levinger, Itamar

    2016-01-01

    Background: Obesity and aging are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK), and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE) on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods: Participants completed a 2 h hyperinsulinaemic-euglycaemic clamp at rest, and 60 min after HIIE (4 × 4 mins at 95% HRpeak; 2 min recovery periods), separated by 1–3 weeks. Results: Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SOD activity, JNK, p38 MAPK and NF-κB phosphorylation (r = 0.63, r = 0.71, r = 0.72, r = 0.71; p < 0.05, respectively). Conclusion:These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 h after HIIE. PMID:27695421

  5. Lipoprotein subfraction oxidation in acute exercise and ageing.

    PubMed

    Medlow, Paul; McEneny, Jane; Murphy, Marie H; Trinick, Tom; Duly, Ellie; Davison, Gareth W

    2016-01-01

    Exercise and ageing can independently increase free radical production that may enhance the susceptibility of LDL to oxidation and create a more atherogenic LDL particle. This investigation was designed to examine exercise and ageing on the susceptibility of LDL subfractions to oxidation. Eleven aged (55 ± 4 years) and twelve young (21 ± 2 years) participants completed a progressive exercise test to exhaustion and within one week performed a 1 h bout of moderate intensity (65% VO(2max)) exercise. Blood was assayed for metabolites associated with lipid composition (total cholesterol, free cholesterol, triglycerides) and lipoprotein susceptibility to oxidation. Exercise increased small density (sdLDL) oxidation, independently of age (p < 0.05). However, sdLDL oxidation further increased 24 h post exercise in the aged group (p < 0.05). With regards to the changes in lipid components within LDL, free and total cholesterol and triglycerides in large buoyant (lbLDL) were all elevated 24 h post exercise in aged compared with young (p < 0.05 for all comparisons). There was a decrease in triglycerides in medium density (mdLDL) 24 h post exercise in the aged group (p < 0.05). The lipid composition of sdLDL, VLDL, HDL(2), HDL(3) and serum lipid hydroperoxides remained unchanged as a function of exercise and ageing (p > 0.05). Although regular exercise training is known to be protective against cardiovascular disease (CVD) onset, our data demonstrates that acute exercise can increase sdLDL oxidative susceptibility, and this is independent of age and regardless of a change in LDL lipid composition. However, age seems to be a determining factor with regards the susceptibility of sdLDL to oxidation 24 h following exercise.

  6. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  7. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    PubMed

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  8. Acute hernial strangulation following Wii Fit exercises.

    PubMed

    Khan, O A; Parvaiz, A C; Vassallo, D J

    2013-01-01

    The Wii Fit is one the most popular fitness games on the market. Although this device has been linked to a number of injuries, the vast majority of these have been relatively minor musculo-skeletal complaints. We present a case of a patient who presented with an acute strangulation of a pre-existing asymptomatic paraumbilical hernia after completing a series of aerobic exercises on her Wii Fit. She required laparotomy and small bowel resection for infarcted bowel. Although a number of minor mechanical and orthopaedic injurieshave been reported with the Wii Fit, this represents the first case of a life-threatening complication associated with the use of this device.

  9. Effects of acute exercise on long-term memory.

    PubMed

    Labban, Jeffrey D; Etnier, Jennifer L

    2011-12-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of three groups: exercise prior to exposure, exercise after exposure, or no-exercise. Exercise consisted of 30 min on a cycle ergometer including 20 min at moderate intensity. Only the exercise prior group recalled significantly more than the control group (p < .05). Differences among the exercise groups failed to reach significance (p = .09). Results indicated that acute exercise positively influenced recall and that exercise timing relative to memory task may have an impact on this effect.

  10. The Effects of Acute Exercise and Exercise Training on Plasma Homocysteine: A Meta-Analysis

    PubMed Central

    Deminice, Rafael; Ribeiro, Diogo Farias; Frajacomo, Fernando Tadeu Trevisan

    2016-01-01

    Background Although studies have demonstrated that physical exercise alters homocysteine levels in the blood, meta-analyses of the effects of acute exercise and exercise training on homocysteine blood concentration have not been performed, especially regarding the duration and intensity of exercise, which could affect homocysteine levels differently. Objective The aim of this meta-analysis was to ascertain the effects of acute exercise and exercise training on homocysteine levels in the blood. Method A review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses using the online databases PubMed, SPORTDiscus, and SciELO to identify relevant studies published through June 2015. Review Manager was used to calculate the effect size of acute exercise and exercise training using the change in Hcy plasmaserum concentration from baseline to post-acute exercise and trained vs. sedentary control groups, respectively. Weighted mean differences were calculated using random effect models. Results Given the abundance of studies, acute exercise trials were divided into two subgroups according to exercise volume and intensity, whereas the effects of exercise training were analyzed together. Overall, 22 studies with a total of 520 participants indicated increased plasma homocysteine concentration after acute exercise (1.18 μmol/L, 95% CI: 0.71 to 1.65, p < .01). Results of a subgroup analysis indicated that either long-term exercise of low-to-moderate intensity (1.39 μmol/L, 95% CI: 0.9 to 1.89, p < .01) or short-term exercise of high intensity (0.83 μmol/L, 95% CI: 0.19 to 1.40, p < .01) elevated homocysteine levels in the blood. Increased homocysteine induced by exercise was significantly associated with volume of exercise, but not intensity. By contrast, resistance training reduced plasma homocysteine concentration (-1.53 μmol/L, 95% CI: -2.77 to -0.28, p = .02), though aerobic training did not. The cumulative

  11. Sodium bicarbonate treatment prevents gastric emptying delay caused by acute exercise in awake rats.

    PubMed

    Silva, Moisés T B; Palheta-Junior, Raimundo C; Sousa, Daniel F; Fonseca-Magalhães, Patrícia A; Okoba, Willy; Campos, Caio P S; Oliveira, Ricardo B; Magalhães, Pedro J C; Santos, Armenio A

    2014-05-01

    Physical exercise, mainly after vigorous activity, may induce gastrointestinal dysmotility whose mechanisms are still unknown. We hypothesized that physical exercise and ensuing lactate-related acidemia alter gastrointestinal motor behavior. In the present study, we evaluated the effects of short-term exercise on gastric emptying rate in awake rats subjected to 15-min swimming sessions against a load equivalent to 5% of their body weight. After 0, 10, or 20 min of exercise testing, the rats were gavage fed with 1.5 ml of a liquid test meal (0.5 mg/ml of phenol red in 5% glucose solution) and euthanized 10 min postprandially to measure fractional gastric dye recovery. In addition to inducing acidemia and increasing blood lactate levels, acute exercise increased (P < 0.05) gastric retention. Such a phenomenon presented a positive correlation (P < 0.001) between blood lactate levels and fractional gastric dye recovery. Gastric retention and other acidbase-related changes were all prevented by NaHCO3 pretreatment. Additionally, exercise enhanced (P < 0.05) the marker's progression through the small intestine. In anesthetized rats, exercise increased (P < 0.05) gastric volume, measured by a balloon catheter in a barostat system. Compared with sedentary control rats, acute exercise also inhibited (P < 0.05) the contractility of gastric fundus strips in vitro. In conclusion, acute exercise delayed the gastric emptying of a liquid test meal by interfering with the acid-base balance. PMID:24557800

  12. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  13. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  14. [Exercise test after acute myocardial infarction: without therapy?].

    PubMed

    Gregorio, G

    2001-12-01

    In this article we analyze the role of ECG exercise test in the clinical evaluation and prognostic stratification of patients after acute myocardial infarction. Moreover, we analyze if test results may be influenced by drugs. In clinical practice, most of the cardiologists working in hospital perform pre-discharge tests while patients are on medical therapy; after the acute event, exercise test is performed after pharmacological wash-out. In the thrombolytic age exercise test has a well-defined role in the evaluation and prognostic stratification of postinfarction patients, but some aspects regarding the way of performance and the opportunity of a pharmacological wash-out need further investigation.

  15. Pathophysiology of Acute Exercise-Induced Muscular Injury: Clinical Implications

    PubMed Central

    Page, Phillip

    1995-01-01

    Acute muscular injury is the most common injury affecting athletes and those participating in exercise. Nearly everyone has experienced soreness after unaccustomed or intense exercise. Clinically, acute strains and delayed-onset muscle soreness are very similar. The purpose of this paper is to review the predisposing factors, mechanisms of injury, structural changes, and biochemical changes associated with these injuries. Laboratory and clinical findings are discussed to help athletic trainers differentiate between the two conditions and to provide a background knowledge for evaluation, prevention, and treatment of exercise-induced muscular injury. PMID:16558305

  16. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12

    PubMed Central

    Kim, Young-Nam; Hwang, Ji Hyeon

    2016-01-01

    BACKGROUND/OBJECTIVES Energy production and the rebuilding and repair of muscle tissue by physical activity require folate and vitamin B12 as a cofactor. Thus, this study investigated the effects of regular moderate exercise training and durations of acute aerobic exercise on plasma folate and vitamin B12 concentrations in moderate exercise trained rats. MATERIALS/METHODS Fifty rats underwent non-exercise training (NT, n = 25) and regular exercise training (ET, n = 25) for 5 weeks. The ET group performed moderate exercise on a treadmill for 30 min/day, 5 days/week. At the end of week 5, each group was subdivided into 4 groups: non-exercise and 3 exercise groups. The non-exercise group (E0) was sacrificed without exercising and the 3 exercise groups were sacrificed immediately after exercising on a treadmill for 0.5 h (E0.5), 1 h (E1), and 2 h (E2). Blood samples were collected and plasma folate and vitamin B12 were analyzed. RESULTS After exercise training, plasma folate level was significantly lower and vitamin B12 concentration was significantly higher in the ET group compared with the NT group (P < 0.05). No significant associations were observed between plasma folate and vitamin B12 concentrations. In both the NT and ET groups, plasma folate and vitamin B12 were not significantly changed by increasing duration of aerobic exercise. Plasma folate concentration of E0.5 was significantly lower in the ET group compared with that in the NT group. Significantly higher vitamin B12 concentrations were observed in the E0 and E0.5 groups of the ET group compared to those of the NT group. CONCLUSION Regular moderate exercise training decreased plasma folate and increased plasma vitamin B12 levels. However, no significant changes in plasma folate and vitamin B12 concentrations were observed by increasing duration of acute aerobic exercise. PMID:27087899

  17. Acute Exercise Increases Sex Differences in Amateur Athletes' Risk Taking.

    PubMed

    Pighin, S; Savadori, L; Bonini, N; Andreozzi, L; Savoldelli, A; Schena, F

    2015-10-01

    The research presented here investigates the interaction between acute exercise, biological sex and risk-taking behavior. The study involved 20 amateur athletes (19-33 years old), 10 males and 10 females, who were asked to undergo subsequent experimental sessions designed to compare their risky behaviors on the Balloon Analogue Risk Task (BART) 34 at rest and while exercising at moderate intensity (60% of their maximal aerobic power). Results showed that physical exercise affected male and female participants differently: Whereas males became more risk seeking, females became more risk averse during exercise. PMID:26090877

  18. A single bout of resistance exercise can enhance episodic memory performance

    PubMed Central

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  19. A single bout of resistance exercise can enhance episodic memory performance.

    PubMed

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-11-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  20. A single bout of resistance exercise can enhance episodic memory performance.

    PubMed

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-11-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise.

  1. Executive function and endocrinological responses to acute resistance exercise

    PubMed Central

    Tsai, Chia-Liang; Wang, Chun-Hao; Pan, Chien-Yu; Chen, Fu-Chen; Huang, Tsang-Hai; Chou, Feng-Ying

    2014-01-01

    This study had the following two aims: First, to explore the effects of acute resistance exercise (RE, i.e., using exercise machines to contract and stretch muscles) on behavioral and electrophysiological performance when performing a cognitive task involving executive functioning in young male adults; Second, to investigate the potential biochemical mechanisms of such facilitative effects using two neurotrophic factors [i.e., growth hormone (GH) and insulin-like growth factor-1 (IGF-1)] and the cortisol levels elicited by such an exercise intervention mode with two different exercise intensities. Sixty young male adults were recruited and randomly assigned to a high-intensity (HI) exercise group, moderate-intensity (MI) exercise group, and non-exercise-intervention (NEI) group. Blood samples were taken, and the behavioral and electrophysiological indices were simultaneously measured when individuals performed a Go/No-Go task combined with the Erikson Flanker paradigm at baseline and after either an acute bout of 30 min of moderate- or high-intensity RE or a control period. The results showed that the acute RE could not only benefit the subjects' behavioral (i.e., RTs and accuracy) performance, as found in previous studies, but also increase the P3 amplitude. Although the serum GH and IGF-1 levels were significantly increased via moderate or high intensity RE in both the MI and HI groups, the increased serum levels of neurotrophic factors were significantly decreased about 20 min after exercise. In addition, such changes were not correlated with the changes in cognitive (i.e., behavioral and electrophysiological) performance. In contrast, the serum levels of cortisol in the HI and MI groups were significantly lower after acute RE, and the changes in cortisol levels were significantly associated with the changes in electrophysiological (i.e., P3 amplitude) performance. The findings suggest the beneficial effects of acute RE on executive functioning could be due to

  2. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF.

  3. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation.

    PubMed

    Kido, Kohei; Ato, Satoru; Yokokawa, Takumi; Makanae, Yuhei; Sato, Koji; Fujita, Satoshi

    2016-08-01

    Acute aerobic exercise (AE) is a major physiological stimulus for skeletal muscle glucose uptake through activation of 5' AMP-activated protein kinase (AMPK). However, the regulation of glucose uptake by acute resistance exercise (RE) remains unclear. To investigate the intracellular regulation of glucose uptake after acute RE versus acute AE, male Sprague-Dawley rats were divided into three groups: RE, AE, or nonexercise control. After fasting for 12 h overnight, the right gastrocnemius muscle in the RE group was exercised at maximum isometric contraction via percutaneous electrical stimulation (3 × 10 sec, 5 sets). The AE group ran on a treadmill (25 m/min, 60 min). Muscle samples were taken 0, 1, and 3 h after completion of the exercises. AMPK, Ca(2+)/calmodulin-dependent protein kinase II, and TBC1D1 phosphorylation were increased immediately after both forms of exercise and returned to baseline levels by 3 h. Muscle IGF1 expression was increased by RE but not AE, and maintained until 3 h after RE Additionally, Akt and AS160 phosphorylation were sustained for 3 h after RE, whereas they returned to baseline levels by 3 h after AE Similarly, GLUT4 translocation remained elevated 3 h after RE, although it returned to the baseline level by 3 h after AE Overall, this study showed that AMPK/TBC1D1 and IGF1/Akt/AS160 signaling were enhanced by acute RE, and that GLUT4 translocation after acute RE was more prolonged than after acute AE These results suggest that acute RE-induced increases in intramuscular IGF1 expression might be a distinct regulator of GLUT4 translocation. PMID:27550988

  4. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  5. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test.

    PubMed

    Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity.

  6. Acute nutritional ketosis: implications for exercise performance and metabolism

    PubMed Central

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  7. Acute exercise and subsequent energy intake. A meta-analysis.

    PubMed

    Schubert, Matthew M; Desbrow, Ben; Sabapathy, Surendran; Leveritt, Michael

    2013-04-01

    The precise magnitude of the effect of acute exercise on subsequent energy intake is not well understood. Identifying how large a deficit exercise can produce in energy intake and whether this is compensated for, is important in design of long-term exercise programs for weight loss and weight maintenance. Thus, this paper sought to review and perform a meta-analysis on data from the existing literature. Twenty-nine studies, consisting of 51 trials, were identified for inclusion. Exercise duration ranged from 30 to 120min at intensities of 36-81% VO(2)max, with trials ranging from 2 to 14h, and ad libitum test meals offered 0-2h post-exercise. The outcome variables included absolute energy intake and relative energy intake. A random effects model was employed for analysis due to expected heterogeneity. Results indicated that exercise has a trivial effect on absolute energy intake (n=51; ES=0.14, 95% CI: -0.005 to 0.29) and a large effect on relative energy intake (creating an energy deficit, n=25; ES=-1.35, 95% CI: -1.64 to -1.05). Despite variability among studies, results suggest that exercise is effective for producing a short-term energy deficit and that individuals tend not to compensate for the energy expended during exercise in the immediate hours after exercise by altering food intake.

  8. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  9. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  10. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  11. Exercise and cognition in multiple sclerosis: The importance of acute exercise for developing better interventions.

    PubMed

    Sandroff, Brian M

    2015-12-01

    Cognitive dysfunction is highly prevalent, disabling, and poorly-managed in persons with multiple sclerosis (MS). Exercise training represents a promising approach for managing this clinical symptom of the disease. However, results from early randomized controlled trials of exercise on cognition in MS are equivocal, perhaps due to methodological concerns. This underscores the importance of considering the well-established literature in the general population that documents robust, beneficial effects of exercise training on cognition across the lifespan. The development of such successful interventions is based on examinations of fitness, physical activity, and acute exercise effects on cognition. Applying such an evidence-based approach in MS serves as a way of better informing exercise training interventions for improving cognition in this population. To that end, this paper provides a focused, updated review on the evidence describing exercise effects on cognition in MS, and develops a rationale and framework for examining acute exercise on cognitive outcomes in this population. This will provide keen insight for better developing exercise interventions for managing cognitive impairment in MS.

  12. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  13. Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise.

    PubMed

    Alves, Christiano Rodrigues; Gualano, Bruno; Takao, Pollyana Pereira; Avakian, Paula; Fernandes, Rafael Mistura; Morine, Diego; Takito, Monica Yuri

    2012-08-01

    The aim of this study was to compare the effects of acute aerobic and strength exercises on selected executive functions. A counterbalanced, crossover, randomized trial was performed. Forty-two healthy women were randomly submitted to three different conditions: (1) aerobic exercise, (2) strength exercise, and (3) control condition. Before and after each condition, executive functions were measured by the Stroop Test and the Trail Making Test. Following the aerobic and strength sessions, the time to complete the Stroop "non-color word" and "color word" condition was lower when compared with that of the control session. The performance in the Trail Making Test was unchanged. In conclusion, both acute aerobic and strength exercises improve the executive functions. Nevertheless, this positive effect seems to be task and executive function dependent. PMID:22889693

  14. Acute exercise and subsequent nutritional adaptations: what about obese youths?

    PubMed

    Thivel, David; Blundell, John E; Duché, Pascale; Morio, Béatrice

    2012-07-01

    The imbalance between energy expenditure and energy intake is the main factor accounting for the progression of obesity. For many years, physical activity has been part of weight-loss programmes to increase energy expenditure. It is now recognized that exercise can also affect appetite and energy consumption. In the context of seeking new obesity treatments, it is of major interest to clarify the impact of physical exercise on energy intake. Many reviews on this topic have been published regarding both lean and overweight adults, and this review focuses on the relationships between acute exercise and the short-term regulation of energy intake in lean and overweight or obese youths. The current literature provides very few data regarding the impact of exercise on subsequent energy intake and perceived and measured appetite in children and adolescents, mainly because of methodological difficulties in the assessment of both energy intake and expenditure. It has been long suggested that energy intake was regulated after exercise in order to compensate for the exercise-induced energy expenditure and then preserve energy balance. This overview underlines that the energy expended during exercise is not the main parameter that influences subsequent energy intake in both lean and overweight/obese children and adolescents, and that factors such as the duration or intensity of exercise may have larger impact. The effects of acute exercise on the following nutritional adaptations (energy intake and appetite feelings) remain inconclusive in lean youths, mainly due to the lack of data and the disparity of the methodologies used. Studies in overweight or obese children and adolescents are confronted with the same difficulties, and the few available data suggest that intensive exercise (>70% maximal oxygen consumption) can induce a reduction in daily energy balance, as a result of its anorexigenic effect in obese adolescents. However, further studies are needed to clarify the

  15. Effects of acute and chronic physical exercise and stress on different types of memory in rats.

    PubMed

    Mello, Pâmela Billig; Benetti, Fernando; Cammarota, Martín; Izquierdo, Iván

    2008-06-01

    Here we study the effect of acute and chronic physical exercise in a treadmill and of daily stress (because forced exercise involves a degree of stress) during 2 or 8 weeks on different types of memory in male Wistar rats. The memory tests employed were: habituation in an open field, object recognition and spatial learning in the Morris water maze. Daily foot-shock stress enhanced habituation learning after 2 but not after 8 weeks; it hindered both short- (STM) and long-term memory (LTM) of the recognition task at 2 weeks but only STM after 8 weeks and had no effect on spatial learning after either 2 or 8 weeks. Acute but not chronic exercise also enhanced habituation in the open field and hindered STM and LTM in the recognition task. Chronic exercise enhanced one important measure of spatial learning (latency to escape) but not others. Our findings indicate that some care must be taken when interpreting effects of forced exercise on brain parameters since at least part of them may be due to the stress inherent to the training procedure.

  16. Specific Effects of Acute Moderate Exercise on Cognitive Control

    ERIC Educational Resources Information Center

    Davranche, Karen; McMorris, Terry

    2009-01-01

    The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…

  17. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  18. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  19. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans.

  20. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  1. The acute immune response to exercise: what does it mean?

    PubMed

    Gabriel, H; Kindermann, W

    1997-03-01

    The purpose of this article is to provide information about the exercise-induced alterations of cellular immune parameters depending on the intensity related to the individual anaerobic threshold (IAT) and duration of exercise. Immunological parameters were differential blood counts (CD14, CD45), monocyte subpopulations (CD14, CD16), lymphocyte subpopulations (CD3, CD4, CD8, CD45RO, CD19, CD16, CD56, HLA-DR) and natural killer cells (CD3, CD16, CD56), oxidative burst activity of neutrophils, and phagocytosis of neutrophils (flow cytometry). The main results were: (a) "Moderate" exercise (duration < 2h at about 85% of the IAT corresponding to a lactate steady state at about 2 mmol.l-1, < 30 min at the IAT corresponding to a lactate steady state of 4 mmol.l-1) elicits lower changes in cell concentrations and hormonal responses than strenuous exercise [exhaustive exercise at 100% IAT or above; (exhaustive) long-term (> 2-3h) endurance exercise]. Similar investigations about cell functions to decide about the positive or negative nature of these observations will have to follow in the future. (b) The neutrocytosis following exercise is more dependent on the duration than on the intensity of exercise. Especially exercise sessions that lead to a strong incline of the adrenocorticotropic hormone, beta-endorphin and cortisol are associated with this neutrocytosis. (c) Neutrophils' function during the exercise-induced neutrocytosis indicated by phagocytosis and oxidative burst activity is unchanged or reduced following strenuous endurance exercise, whereas bacterial URTI leads to similar neutrophil counts but significantly increased cell activities indicating the diverse meaning of the leukocytosis in infections (primed cells, enhanced cell activity, stimulated defense mechanism) and following exercise (impaired cell function, suppressed defense mechanism). (d) Regular monocytes (early differentiation stage) are strongly recruited into the circulation during long

  2. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  3. Influence of Acute and Chronic Exercise on Glucose Uptake

    PubMed Central

    Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten

    2016-01-01

    Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930

  4. Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study.

    PubMed

    Tsujii, Takeo; Komatsu, Kazutoshi; Sakatani, Kaoru

    2013-01-01

    We examined the acute effect of physical exercise on prefrontal cortex activity in older adults using functional near-infrared spectroscopy (NIRS). Fourteen older adults visited our laboratory twice: once for exercise and once for the control condition. On each visit, subjects performed working memory tasks before and after moderate intensity exercise with a cycling ergo-meter. We measured the NIRS response at the prefrontal cortex during the working memory task. We found that physical exercise improved behavioral performance of the working memory task compared with the control condition. Moreover, NIRS analysis showed that physical exercise enhanced the prefrontal cortex activity, especially in the left hemisphere, during the working memory task. These findings suggest that the moderate intensity exercise enhanced the prefrontal cortex activity associated with working memory performance in older adults.

  5. Acute responses to exercise training and relationship with exercise adherence in moderate chronic obstructive pulmonary disease.

    PubMed

    Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique

    2015-11-01

    The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour.

  6. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    PubMed Central

    Müller, Anna E.; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  7. Sleep disruption and its effect on lymphocyte redeployment following an acute bout of exercise.

    PubMed

    Ingram, Lesley A; Simpson, Richard J; Malone, Eva; Florida-James, Geraint D

    2015-07-01

    Sleep disruption and deprivation are common in contemporary society and have been linked with poor health, decreased job performance and increased life-stress. The rapid redeployment of lymphocytes between the blood and tissues is an archetypal feature of the acute stress response, but it is not known if short-term perturbations in sleep architecture affect lymphocyte redeployment. We examined the effects of a disrupted night sleep on the exercise-induced redeployment of lymphocytes and their subtypes. 10 healthy male cyclists performed 1h of cycling at a fixed power output on an indoor cycle ergometer, following a night of undisrupted sleep (US) or a night of disrupted sleep (DS). Blood was collected before, immediately after and 1h after exercise completion. Lymphocytes and their subtypes were enumerated using direct immunofluorescence assays and 4-colour flow cytometry. DS was associated with elevated concentrations of total lymphocytes and CD3(-)/CD56(+) NK-cells. Although not affecting baseline levels, DS augmented the exercise-induced redeployment of CD8(+) T-cells, with the naïve/early differentiated subtypes (KLRG1(-)/CD45RA(+)) being affected most. While the mobilisation of cytotoxic lymphocyte subsets (NK cells, CD8(+) T-cells γδ T-cells), tended to be larger in response to exercise following DS, their enhanced egress at 1h post-exercise was more marked. This occurred despite similar serum cortisol and catecholamine levels between the US and DS trials. NK-cells redeployed with exercise after DS retained their expression of perforin and Granzyme-B indicating that DS did not affect NK-cell 'arming'. Our findings indicate that short-term changes in sleep architecture may 'prime' the immune system and cause minor enhancements in lymphocyte trafficking in response to acute dynamic exercise.

  8. Exercise enhances memory consolidation in the aging brain

    PubMed Central

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W.; Cotman, Carl W.

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long-term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 min on a treadmill) on memory consolidation in aged canines both right after, an hour after, and 24 h after acute exercise training in concurrent discrimination, object location memory (OLM), and novel object recognition tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at 24 h post-exercise and not right after or 1 h after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days) on OLM or till criterion were reached (for reversal learning task). We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise. PMID:24550824

  9. Exercise enhances memory consolidation in the aging brain.

    PubMed

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W; Cotman, Carl W

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long-term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 min on a treadmill) on memory consolidation in aged canines both right after, an hour after, and 24 h after acute exercise training in concurrent discrimination, object location memory (OLM), and novel object recognition tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at 24 h post-exercise and not right after or 1 h after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days) on OLM or till criterion were reached (for reversal learning task). We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise.

  10. Mood alterations in older adults following acute exercise.

    PubMed

    Pierce, E F; Pate, D W

    1994-08-01

    Limited research indicates positive affective change following acute bouts of exercise, but whether this improved affect among younger subjects may be generalized to older individuals is not known. The present study, then, examined the effects of a single bout of physical activity among older participants. 16 trained women (Mage = 64.5 +/- 7.6 yr.) completed an abbreviated Profile of Mood States prior to and immediately following a 75-min. session of aerobic line dancing. A series of one-way analyses of variance with repeated measures were used to examine differences between pre- and posttest subscores on mood states. Significant decreases following exercise in scores on Tension, Depression, Fatigue, and Anger and a significant increase in scores on Vigor relative to preexercise (control) scores were found. Global mood was significantly improved after the exercise session. No significant difference was found between pre- and postexercise measures of Confusion. Previous findings of significant improvements in affect immediately after an acute bout of exercise may be generalized to older adults. Repetition with a nonexercised control group is desirable.

  11. Acute exercise-induced bilateral thigh compartment syndrome.

    PubMed

    Boland, Michael R; Heck, Chris

    2009-03-01

    Acute compartment syndrome of the thigh is rare due to the space's ability to accommodate large volumes of fluid and, with the exception of the lateral septum, its thin compliant linings. This article describes a case of bilateral exercise-induced severe compartment syndrome treated with anterior and posterior fasciotomies. A 29-year-old man was admitted to intensive care with myoglobinuria. His left thigh was evaluated 18 hours later for compartment syndrome. The patient reported that 14 hours prior to initial presentation, he had participated in a 1-hour session of vigorous basketball. He gradually developed bilateral moderately severe thigh pain and tea-colored urine. Physical examination revealed pain secondary to passive stretch of both knees at 20 degrees flexion, plus firm anterior and posterior compartments to palpation. A handheld pressure monitor revealed the following compartment pressures: left anterior 80 mm Hg; left posterior 75 mm Hg; right anterior 45 mm Hg; and right posterior 50 mm Hg. Bilateral emergent anterior and posterior compartment fasciotomies were performed. The patient developed a significant severe distal motor and sensory neurological deficit on the left side, which recovered to 3/5 motor strength and protective sensation. At 6-month follow-up, he ambulated with the assistance of a left ankle foot orthosis. Acute severe compartment syndrome can occur following vigorous exercise. We recommend fasciotomies after exercise-induced acute compartment syndrome rather than initial observation because of the severity of morbidity associated with undertreated compartment syndrome.

  12. Enhancing Adherence in Clinical Exercise Trials.

    ERIC Educational Resources Information Center

    O'Neal, Heather A.; Blair, Steven N.

    2001-01-01

    Discusses exercise adherence from the perspective of adhering to an exercise treatment in a controlled trial, focusing on: adherence (to intervention and measurement); the development of randomized clinical trials; exemplary randomized clinical trials in exercise science (exercise training studies and physical activity interventions); and study…

  13. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults.

    PubMed

    Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J

    2011-01-01

    This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a "cybercycle;" a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort.

  14. Possible Cognitive Benefits of Acute Physical Exercise in Children With ADHD: A Systematic Review.

    PubMed

    Grassmann, Viviane; Alves, Marcus Vinicius; Santos-Galduróz, Ruth Ferreira; Galduróz, José Carlos Fernandes

    2014-03-12

    Objective: Studies have suggested that even a single session of physical exercise enhances executive functions. ADHD is among the most common developmental disorders in childhood, but little is known about alternative treatments for this disorder. Therefore, we performed a systematic review of the literature to analyze articles that evaluated the executive functions of children with ADHD after an acute exercise session. Method: We reviewed articles indexed in the PubMed, American Psychiatric Association (APA) psychNET, Scopus, and Web of Knowledge databases between 1980 and 2013. Results: Of 231 articles selected, only three met the inclusion criteria. Conclusion: Based on these 3 articles, we concluded that 30 min of physical exercise reportedly improved the executive functions of children with ADHD. Due to the small number of articles selected, further studies are needed to confirm these benefits. PMID:24621460

  15. Possible Cognitive Benefits of Acute Physical Exercise in Children With ADHD: A Systematic Review.

    PubMed

    Grassmann, Viviane; Alves, Marcus Vinicius; Santos-Galduróz, Ruth Ferreira; Galduróz, José Carlos Fernandes

    2014-03-12

    Objective: Studies have suggested that even a single session of physical exercise enhances executive functions. ADHD is among the most common developmental disorders in childhood, but little is known about alternative treatments for this disorder. Therefore, we performed a systematic review of the literature to analyze articles that evaluated the executive functions of children with ADHD after an acute exercise session. Method: We reviewed articles indexed in the PubMed, American Psychiatric Association (APA) psychNET, Scopus, and Web of Knowledge databases between 1980 and 2013. Results: Of 231 articles selected, only three met the inclusion criteria. Conclusion: Based on these 3 articles, we concluded that 30 min of physical exercise reportedly improved the executive functions of children with ADHD. Due to the small number of articles selected, further studies are needed to confirm these benefits.

  16. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample

    ERIC Educational Resources Information Center

    Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo

    2016-01-01

    Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…

  17. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity

    PubMed Central

    Geertsen, Svend S.; Christiansen, Lasse; Ritz, Christian; Roig, Marc

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory. PMID:27454423

  18. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity.

    PubMed

    Thomas, Richard; Johnsen, Line K; Geertsen, Svend S; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory. PMID:27454423

  19. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity.

    PubMed

    Thomas, Richard; Johnsen, Line K; Geertsen, Svend S; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.

  20. Evaluation of acute cardiorespiratory responses to hydraulic resistance exercise.

    PubMed

    Katch, F I; Freedson, P S; Jones, C A

    1985-02-01

    Accurate evaluation of the acute responses to resistance exercise training depends on the stability of the criterion measures. This is particularly true for maximal effort exercise where continuous "all-out" effort for each repetition is encouraged. The present study evaluated reliability of repetition number (repN), respiratory gas parameters (VO2, VCO2, VE), and heart rate (HR) for shoulder (SE), chest (CE), and leg (LE) exercise performed maximally on a single-unit, 3-station hydraulic resistance exercise machine (Hydra-Fitness, Belton, TX). On 2 separate days, 20 college men completed three 20-s bouts of SE, CE, and LE with a 20-s rest between bouts and 5 min between exercise modes. There were no significant differences between bouts or test days for repN, gas measures, or HR. Subjects performed 17, 19, and 21 reps during SE, LE, and CE. VO2 was 1.7 l . min-1 (24.3 ml . kg-1 . min-1) for SE, 1.87 l . min-1 (25.5 ml . kg-1 . min-1) for CE, and 2.1 l . min-1 (28.6 ml . kg-1 . min-1) for LE. These values, averaged, represented 52.8% of the max VO2 determined on a continuous cycle ergometer test. The corresponding HR's during hydraulic exercise averaged 84.6% of HR max. Test-retest reliability coefficients ranged from r = .67 to .87 for repN, r = .41 to .83 for gas measures, and r = .72 to .89 for HR.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Expression of gluconeogenic enzymes and 11β-hydroxysteroid dehydrogenase type 1 in liver of diabetic mice after acute exercise

    PubMed Central

    Brust, Korie B; Corbell, Kathryn A; Al-Nakkash, Layla; Babu, Jeganathan Ramesh; Broderick, Tom L

    2014-01-01

    During acute exercise, normoglycemia is maintained by a precise match between hepatic glucose production and its peripheral utilization. This is met by a complex interplay of hepatic responses and glucose uptake by muscle. However, the effect of a single bout of exercise on hepatic gluconeogenesis, corticosterone (CORT) secretion, and glucose homeostasis in the db/db mouse model of type 2 diabetes is poorly understood. Diabetic db/db and lean control littermates were subjected to a 30 minute session of treadmill running and sacrificed either immediately after exercise or 8 hours later. Plasma glucose levels were markedly increased in db/db mice after exercise, whereas no change in glucose was observed in lean mice. Post-exercise measurements revealed that plasma CORT levels were also significantly increased in db/db mice compared to lean mice. Plasma hypothalamic corticotropin releasing hormone and pituitary adrenocorticotropic hormone levels were reciprocally decreased in both db/db and lean mice after exercise, indicating intact feedback mechanisms. Protein expression, determined by Western blot analysis, of the glucocorticoid receptor in liver was significantly increased in db/db mice subjected to prior exercise. In liver of db/db mice, a significant increase in the expression of phosphoenolpyruvate carboxykinase was noted compared to lean mice after exercise. However, no change in the expression of glucose-6-phosphatase (G6Pase) α or β was observed in db/db mice. Expression of 11β-hydroxysteroid dehydrogenase type 1 was increased significantly in db/db mice compared to lean mice after exercise. Our results show differences in plasma glucose and protein expression of gluconeogenic enzymes after acute exercise between lean and diabetic db/db mice. The db/db diabetic mouse is hyperglycemic after acute exercise. This hyperglycemic state may be explained, in part, by enhanced endogenous CORT secretion and regulated hepatic phosphoenolpyruvate carboxykinase and 11

  2. Effects of Acute Physical Exercise on Mathematical Computation Depending on the Parts of the Training in Young Children.

    PubMed

    Bala, Gustav; Adamović, Tatjana; Madić, Dejan; Popović, Boris

    2015-07-01

    The aim of this study was to determine whether acute physical exercise may increase the ability to quickly solve basic mathematical operations in young children. In this way, the children acquired the means to activate a larger area of the brain when necessary. The research sample of 38 preschool and 18 schoolchildren was tested in basic mathematical operations before and after physical exercise. The results showed that children's computational performance was enhanced significantly during exercise and remained stable after relaxation part of their physical training. PMID:26434008

  3. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test.

    PubMed

    Al-Alawi, Abdullah M; Janardan, Jyotsna; Peck, Kah Y; Soward, Alan

    2016-05-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health.

  4. The acute hormonal response to the kettlebell swing exercise.

    PubMed

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs. PMID:24714543

  5. The acute hormonal response to the kettlebell swing exercise.

    PubMed

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs.

  6. Reduced Tic Symptomatology in Tourette Syndrome After an Acute Bout of Exercise: An Observational Study.

    PubMed

    Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M

    2014-03-01

    In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications.

  7. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  8. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  9. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype.

    PubMed

    Campbell, John P; Riddell, Natalie E; Burns, Victoria E; Turner, Mark; van Zanten, Jet J C S Veldhuijzen; Drayson, Mark T; Bosch, Jos A

    2009-08-01

    An acute bout of exercise evokes mobilisation of lymphocytes into the bloodstream, which can be largely attributed to increases in CD8+ T lymphocytes (CD8TLs) and natural killer (NK) cells. Evidence further suggests that, even within these lymphocyte subsets, there is preferential mobilisation of cells that share certain functional and phenotypic characteristics, such as high cytotoxicity, low proliferative ability, and high tissue-migrating potential. These features are characteristic of effector-memory CD8TL subsets. The current study therefore investigated the effect of exercise on these newly-identified subsets. Thirteen healthy and physically active males (mean+/-SD: age 20.9+/-1.5 yr) attended three sessions: a control session (no exercise); cycling at 35% Watt(max) (low intensity exercise); and 85% Watt(max) (high intensity exercise). Each bout lasted 20 min. Blood samples were obtained before exercise, during the final min of exercise, and +15, and +60 min post-exercise. CD8TLs were classified into naïve, central memory (CM), effector-memory (EM), and CD45RA+ effector-memory (RAEM) using combinations of the cell surface markers CCR7, CD27, CD62L, CD57, and CD45RA. In parallel, the phenotypically distinct CD56(bright) 'regulatory' and CD56(dim) 'cytotoxic' NK subsets were quantified. The results show a strong differential mobilisation of CD8TL subsets (RAEM>EM>CM>naïve); during high intensity exercise the greatest increase was observed for RAEM CD8Tls (+450%) and the smallest for naïve cells (+84%). Similarly, CD56(dim) NK cells (+995%) were mobilised to a greater extent than CD56(bright) (+153%) NK cells. In conclusion, memory CD8TL that exhibit a high effector and tissue-migrating potential are preferentially mobilised during exercise. This finding unifies a range of independent observations regarding exercise-induced phenotypic and functional changes in circulating lymphocytes. The selective mobilisation of cytotoxic tissue-migrating subsets, both

  10. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level.

    PubMed

    Labelle, Véronique; Bosquet, Laurent; Mekary, Saïd; Bherer, Louis

    2013-02-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling for key methodological confounds. Thirty-seven participants (M(age)=23. 8 years; SD=2.6) completed a computerized modified-Stroop task (involving denomination, inhibition and switching conditions) while pedalling at 40%, 60% and 80% of their peak power output (PPO). Results showed that in the switching condition of the task, error rates increased as a function of exercise intensity (from 60% to 80% of PPO) in all participants and that lower fit individuals showed increased reaction time variability. This suggests that acute bouts of cardiovascular exercise can momentarily alter executive control and increase performance instability in lower fit individuals. PMID:23146780

  11. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation.

    PubMed

    Tanimura, Yuko; Aoi, Wataru; Takanami, Yoshikazu; Kawai, Yukari; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu

    2016-06-01

    Fibroblast growth factor 21, a metabolic regulator, plays roles in lipolysis and glucose uptake in adipose tissues and skeletal muscles. Its expression in skeletal muscle is upregulated upon activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is induced by exercise and muscle contraction. We examined the increase of fibroblast growth factor 21 after acute exercise in metabolic organs, especially skeletal muscles and circulation. Participants exercised on bicycle ergometers for 60 min at 75% of their V˙O2max. Venous blood samples were taken before exercise and immediately after exercise. In an animal study, male ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed treadmill exercises at 30 m min(-1) for 60 min. Shortly thereafter, blood, liver, and skeletal muscle samples were taken from mice. Acute exercise induced the increase of serum fibroblast growth factor 21 in both humans and mice, and increased fibroblast growth factor 21 expression in the skeletal muscles and the liver of mice. Acute exercise activated Akt in mice skeletal muscle. Acute exercise increases fibroblast growth factor 21 concentrations in both serum and metabolic organs. Moreover, results show that acute exercise increased the expression of fibroblast growth factor 21 in skeletal muscle, accompanied by the phosphorylation of Akt in mice. PMID:27335433

  12. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation.

    PubMed

    Tanimura, Yuko; Aoi, Wataru; Takanami, Yoshikazu; Kawai, Yukari; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu

    2016-06-01

    Fibroblast growth factor 21, a metabolic regulator, plays roles in lipolysis and glucose uptake in adipose tissues and skeletal muscles. Its expression in skeletal muscle is upregulated upon activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is induced by exercise and muscle contraction. We examined the increase of fibroblast growth factor 21 after acute exercise in metabolic organs, especially skeletal muscles and circulation. Participants exercised on bicycle ergometers for 60 min at 75% of their V˙O2max. Venous blood samples were taken before exercise and immediately after exercise. In an animal study, male ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed treadmill exercises at 30 m min(-1) for 60 min. Shortly thereafter, blood, liver, and skeletal muscle samples were taken from mice. Acute exercise induced the increase of serum fibroblast growth factor 21 in both humans and mice, and increased fibroblast growth factor 21 expression in the skeletal muscles and the liver of mice. Acute exercise activated Akt in mice skeletal muscle. Acute exercise increases fibroblast growth factor 21 concentrations in both serum and metabolic organs. Moreover, results show that acute exercise increased the expression of fibroblast growth factor 21 in skeletal muscle, accompanied by the phosphorylation of Akt in mice.

  13. Achilles tendon biomechanics in response to acute intense exercise.

    PubMed

    Joseph, Michael F; Lillie, Kurtis R; Bergeron, Daniel J; Cota, Kevin C; Yoon, Joseph S; Kraemer, William J; Denegar, Craig R

    2014-05-01

    Achilles tendinopathy is a common disorder and is more prevalent in men. Although differences in tendon mechanics between men and women have been reported, understanding of tendon mechanics in young active people is limited. Moreover, there is limited understanding of changes in tendon mechanics in response to acute exercise. Our purpose was to compare Achilles tendon mechanics in active young adult men and women at rest and after light and strenuous activity in the form of repeated jumping with an added load. Participants consisted of 17 men and 14 women (18-30 years) who were classified as being at least moderately physically active as defined by the International Physical Activity Questionnaire. Tendon force/elongation measures were obtained during an isometric plantarflexion contraction on an isokinetic dynamometer with simultaneous ultrasound imaging of the Achilles tendon approximate to the soleus myotendinous junction. Data were collected at rest, after a 10-minute treadmill walk, and after a fatigue protocol of 100 toe jumps performed in a Smith machine, with a load equaling 20% of body mass. We found greater tendon elongation, decreased stiffness, and lower Young's modulus only in women after the jumping exercise. Force and stress were not different between groups but decreased subsequent to the jumping exercise bout. In general, women had greater elongation and strain, less stiffness, and a lower Young's modulus during plantarflexor contraction. These data demonstrate differences in tendon mechanics between men and women and suggest a potential protective mechanism explaining the lower incidence of Achilles tendinopathy in women.

  14. Vocal exercise may attenuate acute vocal fold inflammation

    PubMed Central

    Abbott, Katherine Verdolini; Li, Nicole Y.K.; Branski, Ryan C.; Rosen, Clark A.; Grillo, Elizabeth; Steinhauer, Kimberly; Hebda, Patricia A.

    2012-01-01

    Objectives/Hypotheses The objective was to assess the utility of selected “resonant voice” exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact exercises associated with resonant voice would reduce inflammation more than spontaneous speech and possibly more than voice rest. Study Design The study design was prospective, randomized, double-blind. Methods Nine vocally healthy adults underwent a 1-hr vocal loading procedure, followed by randomization to (a) a spontaneous speech condition, (b) a vocal rest condition, or (c) a resonant voice exercise condition. Treatments were monitored in clinic for 4 hr, and continued extra-clinically until the next morning. At baseline, immediately following loading, after the 4-hr in-clinic treatment, and 24 hr post baseline, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay (ELISA) to estimate concentrations of key markers of tissue injury and inflammation: IL-1β, IL-6, IL-8, TNF-α, MMP-8, and IL-10. Results Complete data sets were obtained for 3 markers -- IL-1β, IL-6, and MMP-8 -- for one subject in each treatment condition. For those markers, results were poorest at 24-hr follow-up in the spontaneous speech condition, sharply improved in the voice rest condition, and best in the resonant voice condition. Average results for all markers, for all responsive subjects with normal baseline mediator concentrations, revealed an almost identical pattern. Conclusions Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation. PMID:23177745

  15. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    PubMed

    Chen, Hsuan-Ying; Cheng, Fu-Chou; Pan, Huan-Chuan; Hsu, Jaw-Cheng; Wang, Ming-Fu

    2014-01-01

    Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg) is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p.) 30 min before treadmill exercise (20 m/min for 60 min). Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05) in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05) than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise. PMID:24465574

  16. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    PubMed

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE.

  17. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    PubMed

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE. PMID:27239681

  18. The Team Boat Exercise: Enhancing Team Communication Midsemester

    ERIC Educational Resources Information Center

    Cox, Pamela L.; Friedman, Barry A.

    2009-01-01

    This paper discusses the Team Boat Exercise, which was developed to provide students with a mechanism for addressing team problems and enhancing team communication midsemester. The inspiration for the exercise came from a video by Prentice Hall, Inc. (2001). Part III of the video, entitled "Corporate Coaching," shows senior staff members from the…

  19. Personality Does not Influence Exercise-Induced Mood Enhancement Among Female Exercisers.

    PubMed

    Lane, Andrew M; Milton, Karen E; Terry, Peter C

    2005-09-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a) exercise would be associated with significant mood enhancement across all personality types, (b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr) who completed the Eysenck Personality Inventory (EPI) once and the Brunel Mood Scale (BRUMS) before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25), stable extroverts (n = 20), neurotic introverts (n = 26), and neurotic extroverts (n = 19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood. Key PointsResearch in general psychology has found that stable personality trait are associated changes in mood states. Ninety females exercisers completed a personality test and mood scales before and after exercise. Results indicated mood changes were not associated with personality, although neuroticism was associated with negative mood.

  20. Effects of Acute Aerobic Exercise on Executive Function in Older Women.

    PubMed

    Peiffer, Roseann; Darby, Lynn A; Fullenkamp, Adam; Morgan, Amy L

    2015-09-01

    Acute aerobic exercise may increase cognitive processing speed among tasks demanding a substantial degree of executive function. Few studies have investigated executive function after acute exercise in older adults across various exercise intensities. Healthy females 60-75 years of age (n = 11) who were not on medications completed 20-min exercise sessions at a moderate (50%VO2max) exercise intensity and a vigorous (75%VO2max) exercise intensity. Modified flanker tasks (reaction times) and d2 tests of sustained and selective attention (components of executive function) were completed before, immediately after, and 30-min post-exercise. Results indicated that older adult females had improved scores on the modified flanker task reaction times (RTT, RTI, RTC) and d2 tests immediately after both moderate and vigorous intensity aerobic exercise. Some of these effects were maintained 30 min post-exercise. These findings suggest that an acute bout of exercise, regardless of intensity, can improve performance on tests of executive function in older women. Key pointsFew studies have investigated the effects of the intensity of exercise on executive function in older womenExecutive function improved after 20-min of aerobic exercise regardless of exercise intensity in older womenFindings from the study were not confounded by prescribed medications; all participants who were older women were not taking any medications.

  1. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed. PMID:21088545

  2. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed.

  3. High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise.

    PubMed

    Croft, Louise; Bartlett, Jonathan D; MacLaren, Don P M; Reilly, Thomas; Evans, Louise; Mattey, Derek L; Nixon, Nicola B; Drust, Barry; Morton, James P

    2009-12-01

    This aims of this study were to investigate the effects of carbohydrate availability during endurance training on the plasma interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-alpha response to a subsequent acute bout of high-intensity interval exercise. Three groups of recreationally active males performed 6 weeks of high-intensity interval running. Groups 1 (LOW+GLU) and 2 (LOW+PLA) trained twice per day, 2 days per week, and consumed a 6.4% glucose or placebo solution, respectively, before every second training session and at regular intervals throughout exercise. Group 3 (NORM) trained once per day, 4 days per week, and consumed no beverage during training. Each group performed 50 min of high-intensity interval running at the same absolute workloads before and after training. Muscle glycogen utilization in the gastrocnemius muscle during acute exercise was reduced (p < 0.05) in all groups following training, although this was not affected by training condition. Plasma IL-6 concentration increased (p < 0.05) after acute exercise in all groups before and after training. Furthermore, the magnitude of increase was reduced (p < 0.05) following training. This training-induced attenuation in plasma IL-6 increase was similar among groups. Plasma IL-8 concentration increased (p < 0.05) after acute exercise in all groups, although the magnitude of increase was not affected (p > 0.05) by training. Acute exercise did not increase (p > 0.05) plasma TNF-alpha when undertaken before or after training. Data demonstrate that the exercise-induced increase in plasma IL-6 concentration in response to customary exercise is attenuated by previous exercise training, and that this attenuation appears to occur independent of carbohydrate availability during training.

  4. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults

    PubMed Central

    Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J

    2011-01-01

    This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a “cybercycle;” a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort. PMID:22087067

  5. A study on macronutrient self-selection after acute aerobic exercise in college females

    PubMed Central

    Kim, Tae-Young; Kim, Min-Jeong; Cho, Ik-Rae; Won, Yu-Mi; Han, Mi-Kyung; Jung, Kon-Nym; Lee, Sang-Ho; Lee, Jae-Hee; Chin, Ji-Hyoung; Roh, Jae-Hun; Min, Seung-Hi; Lee, Taek-Kyun; Park, Hyo-Joo; Jang, Kwon; Kwon, Se-Jeong; Kang, Suh-Jung; Shin, Mi-Ae; Kim, Hu-Nyun; Hong, Jae-Seung; Choi, Eun-Hi; An, Nam-Il; Kim, Ji-Hyuk; Kim, Mi-Suk

    2016-01-01

    [Purpose] This study was conducted to determine whether acute aerobic exercise (climbing) is associated with changes in the dietary intake pattern. [Subjects and Methods] Food intake and physical activity data for 15 female college students were sampled for 3 days and categorized according to routine activity or high-intensity activity such as hiking. Nutrient intake based on the data was analyzed using a nutrition program. [Results] Carbohydrate and protein intake was significantly decreased after exercise compared to before acute aerobic exercise, but lipid intake showed no significant difference. Calorie intake was significantly decreased after exercise compared to before exercise; however, calorie consumption was significantly increased after exercise. [Conclusion] Aerobic exercise causes a decrease in total calories by inducing reduction in carbohydrate and protein intake. Therefore, aerobic exercise is very important for weight (body fat) control since it causes positive changes in the food intake pattern in female students. PMID:27799693

  6. Sildenafil does not Improve Exercise Capacity under Acute Hypoxia Exposure.

    PubMed

    Toro-Salinas, A H; Fort, N; Torrella, J R; Pagès, T; Javierre, C; Viscor, G

    2016-09-01

    The increase in pulmonary arterial pressure (PAP) due to hypoxic pulmonary vasoconstriction (HPV) could be a limiting factor for physical performance during hypoxic exposure. Sildenafil has been shown to reduce PAP in situations of moderate or severe hypoxia, and consequently its role as an ergogenic aid and even a possible doping substance must be considered. We performed a double-blind crossover study to determine the effects of sildenafil on cardiovascular, respiratory and metabolic parameters in normoxia and during acute exposure to hypobaric hypoxia (4 000 m) at rest and during maximal and submaximal (60% VO2 max) exercise tests. One hour before testing started, sildenafil (100 mg) or a placebo was orally administered to 11 volunteers. In normoxic conditions, sildenafil did not affect performance. Similarly, no significant differences were found in cardiovascular and respiratory parameters in hypoxic conditions at rest or during exercise. The use of sildenafil to improve physical performance in non-acclimatized subjects is not supported by our data. PMID:27414159

  7. Carbohydrate supplementation and immune responses after acute exhaustive resistance exercise.

    PubMed

    Carlson, Lara A; Headley, Samuel; DeBruin, Jason; Tuckow, Alex T; Koch, Alexander J; Kenefick, Robert W

    2008-06-01

    This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 +/- 1.4 yr, 177.2 +/- 5.5 cm, 80.9 +/- 9.7 kg, 8.7% +/- 3.8% fat) and 10 male ice hockey athletes (21.0 +/- 2.2 yr, 174.3 +/- 6.2 cm, 79.6 +/-11.1 kg, 13.9% +/- 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE. PMID:18562773

  8. Acute and training effects of resistance exercise on heart rate variability.

    PubMed

    Kingsley, J Derek; Figueroa, Arturo

    2016-05-01

    Heart rate variability (HRV) has been used as a non-invasive method to evaluate heart rate (HR) regulation by the parasympathetic and sympathetic divisions of the autonomic nervous system. In this review, we discuss the effect of resistance exercise both acutely and after training on HRV in healthy individuals and in those with diseases characterized by autonomic dysfunction, such as hypertension and fibromyalgia. HR recovery after exercise is influenced by parasympathetic reactivation and sympathetic recovery to resting levels. Therefore, examination of HRV in response to acute exercise yields valuable insight into autonomic cardiovascular modulation and possible underlying risk for disease. Acute resistance exercise has shown to decrease cardiac parasympathetic modulation more than aerobic exercise in young healthy adults suggesting an increased risk for cardiovascular dysfunction after resistance exercise. Resistance exercise training appears to have no effect on resting HRV in healthy young adults, while it may improve parasympathetic modulation in middle-aged adults with autonomic dysfunction. Acute resistance exercise appears to decrease parasympathetic activity regardless of age. This review examines the acute and chronic effects of resistance exercise on HRV in young and older adults.

  9. Enhancing the Group Experience: Creative Writing Exercises.

    ERIC Educational Resources Information Center

    Wenz, Kathie; McWhirter, J. Jeffries

    1990-01-01

    Reviews the literature surrounding the use of personal/creative writing as an adjunct to group therapy. Several writing exercises, including a stain glass poem, personal logo, and epigram, as well as client responses, are discussed. The article concludes with suggestions for using writing with groups. (Author/TE)

  10. Dural enhancement and thickening in acute mastoiditis

    PubMed Central

    Shemesh, Shay; Marom, Tal; Raichman, Dominique Ben Ami

    2015-01-01

    Dural enhancement and thickening in imaging studies observed in acute mastoiditis patients is an uncommon phenomenon. It is infrequently seen in dural sinus thrombosis, and may be caused by infiltration of inflammatory cells and an increased number of thin-walled blood vessels. We present a three-year-old boy who presented with acute mastoiditis, complicated by subperiosteal abscess. Computerized tomography (CT) demonstrated subperiosteal abscess, and the child underwent mastoidectomy. Despite adequate treatment, symptoms worsened and neurological sequelae were suspected. CT and magnetic resonance imaging (MRI) studies demonstrated an atypical dural enhancement at the sigmoid perisinus and suboccipital abscess. The child underwent revision mastoidectomy and drainage of the abscess. Following the second procedure, resolution of symptoms was noted. Follow-up MRI did not demonstrate any dural pathologies. PMID:25963158

  11. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments.

    PubMed

    West, Daniel W D; Lee-Barthel, Ann; McIntyre, Todd; Shamim, Baubak; Lee, Cassandra A; Baar, Keith

    2015-10-15

    Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.

  12. Musical feedback during exercise machine workout enhances mood

    PubMed Central

    Fritz, Thomas H.; Halfpaap, Johanna; Grahl, Sophia; Kirkland, Ambika; Villringer, Arno

    2013-01-01

    Music making has a number of beneficial effects for motor tasks compared to passive music listening. Given that recent research suggests that high energy musical activities elevate positive affect more strongly than low energy musical activities, we here investigated a recent method that combined music making with systematically increasing physiological arousal by exercise machine workout. We compared mood and anxiety after two exercise conditions on non-cyclical exercise machines, one with passive music listening and the other with musical feedback (where participants could make music with the exercise machines). The results showed that agency during exercise machine workout (an activity we previously labeled jymmin – a cross between jammin and gym) had an enhancing effect on mood compared to workout with passive music listening. Furthermore, the order in which the conditions were presented mediated the effect of musical agency for this subscale when participants first listened passively, the difference in mood between the two conditions was greater, suggesting that a stronger increase in hormone levels (e.g., endorphins) during the active condition may have caused the observed effect. Given an enhanced mood after training with musical feedback compared to passively listening to the same type of music during workout, the results suggest that exercise machine workout with musical feedback (jymmin) makes the act of exercise machine training more desirable. PMID:24368905

  13. Musical feedback during exercise machine workout enhances mood.

    PubMed

    Fritz, Thomas H; Halfpaap, Johanna; Grahl, Sophia; Kirkland, Ambika; Villringer, Arno

    2013-01-01

    Music making has a number of beneficial effects for motor tasks compared to passive music listening. Given that recent research suggests that high energy musical activities elevate positive affect more strongly than low energy musical activities, we here investigated a recent method that combined music making with systematically increasing physiological arousal by exercise machine workout. We compared mood and anxiety after two exercise conditions on non-cyclical exercise machines, one with passive music listening and the other with musical feedback (where participants could make music with the exercise machines). The results showed that agency during exercise machine workout (an activity we previously labeled jymmin - a cross between jammin and gym) had an enhancing effect on mood compared to workout with passive music listening. Furthermore, the order in which the conditions were presented mediated the effect of musical agency for this subscale when participants first listened passively, the difference in mood between the two conditions was greater, suggesting that a stronger increase in hormone levels (e.g., endorphins) during the active condition may have caused the observed effect. Given an enhanced mood after training with musical feedback compared to passively listening to the same type of music during workout, the results suggest that exercise machine workout with musical feedback (jymmin) makes the act of exercise machine training more desirable. PMID:24368905

  14. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise.

    PubMed

    Gonzalez, Adam M; Walsh, Allyson L; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2011-01-01

    The effect of a pre-workout energy supplement on acute multi- joint resistance exercise was examined in eight resistance-trained college-age men. Subjects were randomly provided either a placebo (P) or a supplement (S: containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and the amino acids; leucine, isoleucine, valine, glutamine and arginine) 10 minutes prior to resistance exercise. Subjects performed 4 sets of no more than 10 repetitions of either barbell squat or bench press at 80% of their pre-determined 1 repetition- maximum (1RM) with 90 seconds of rest between sets. Dietary intake 24 hours prior to each of the two training trials was kept constant. Results indicate that consuming the pre-workout energy drink 10 minutes prior to resistance exercise enhances performance by significantly increasing the number of repetitions successfully performed (p = 0.022) in S (26.3 ± 9.2) compared to P (23.5 ± 9.4). In addition, the average peak and mean power performance for all four sets was significantly greater in S compared to P (p < 0.001 and p < 0.001, respectively). No differences were observed between trials in subjective feelings of energy during either pre (p = 0.660) or post (p = 0.179) meaures. Similary, no differences between groups, in either pre or post assessments, were observed in subjective feelings of focus (p = 0.465 and p = 0.063, respectively), or fatigue (p = 0.204 and p = 0.518, respectively). Results suggest that acute ingestion of a high-energy supplement 10 minutes prior to the onset of a multi-joint resistance training session can augment training volume and increase power performance during the workout. Key pointsConsumption of a pre-workout energy supplement containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and amino acids consumed 10 minutes prior to a bout of resistance exercise enhances the total number of repetitions performed during the exercise bout.Power outputs for each repetition during the

  15. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise.

    PubMed

    Gonzalez, Adam M; Walsh, Allyson L; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2011-01-01

    The effect of a pre-workout energy supplement on acute multi- joint resistance exercise was examined in eight resistance-trained college-age men. Subjects were randomly provided either a placebo (P) or a supplement (S: containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and the amino acids; leucine, isoleucine, valine, glutamine and arginine) 10 minutes prior to resistance exercise. Subjects performed 4 sets of no more than 10 repetitions of either barbell squat or bench press at 80% of their pre-determined 1 repetition- maximum (1RM) with 90 seconds of rest between sets. Dietary intake 24 hours prior to each of the two training trials was kept constant. Results indicate that consuming the pre-workout energy drink 10 minutes prior to resistance exercise enhances performance by significantly increasing the number of repetitions successfully performed (p = 0.022) in S (26.3 ± 9.2) compared to P (23.5 ± 9.4). In addition, the average peak and mean power performance for all four sets was significantly greater in S compared to P (p < 0.001 and p < 0.001, respectively). No differences were observed between trials in subjective feelings of energy during either pre (p = 0.660) or post (p = 0.179) meaures. Similary, no differences between groups, in either pre or post assessments, were observed in subjective feelings of focus (p = 0.465 and p = 0.063, respectively), or fatigue (p = 0.204 and p = 0.518, respectively). Results suggest that acute ingestion of a high-energy supplement 10 minutes prior to the onset of a multi-joint resistance training session can augment training volume and increase power performance during the workout. Key pointsConsumption of a pre-workout energy supplement containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and amino acids consumed 10 minutes prior to a bout of resistance exercise enhances the total number of repetitions performed during the exercise bout.Power outputs for each repetition during the

  16. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity.

    PubMed

    Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Jamurtas, Athanasios Z; Carlos Barbero, Jose; Tsoukas, Dimitrios; Theodorou, Apostolos Spyridon; Margonis, Konstantinos; Michailidis, Yannis; Avloniti, Alexandra; Theodorou, Anastasios; Kambas, Antonis; Fatouros, Ioannis

    2013-01-01

    The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8-10 repetitions/set, 65-70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4-6 repetitions/set, 85-90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session. PMID:23301779

  17. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity.

    PubMed

    Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Jamurtas, Athanasios Z; Carlos Barbero, Jose; Tsoukas, Dimitrios; Theodorou, Apostolos Spyridon; Margonis, Konstantinos; Michailidis, Yannis; Avloniti, Alexandra; Theodorou, Anastasios; Kambas, Antonis; Fatouros, Ioannis

    2013-01-01

    The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8-10 repetitions/set, 65-70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4-6 repetitions/set, 85-90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.

  18. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution

    PubMed Central

    Thacker, Jonathan S.; Middleton, Laura E.; McIlroy, William E.; Staines, W. Richard

    2014-01-01

    Abstract Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement‐related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self‐paced wrist extension movements before and after a 20‐min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time‐locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement. PMID:25355852

  19. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice.

    PubMed

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  20. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice

    PubMed Central

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  1. Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: An ERP study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Chang, Yu-Kai

    2015-08-01

    This study aimed to determine the effect of acute exercise in the potential context of non-pharmacological intervention for methamphetamine (MA)-related craving; we additionally determine its effect on the inhibitory control induced by standard and MA-related tasks according to behavioral and neuroelectric measurements among MA-dependent individuals. The present study employed a within-subjects, counterbalanced design. A total of 24 participants who met the DSM-IV criteria for MA dependence were recruited. The craving level, reaction time, and response accuracy, as well as the event-related potential (ERP) components N2 and P3, were measured following exercise and the control treatment in a counterbalanced order. The exercise session consisted of an acute stationary cycle exercise at a moderate intensity, whereas the control treatment consisted of an active reading session. The self-reported MA craving was significantly attenuated during, immediately following, and 50min after the exercise session compared with the pre-exercise ratings, whereas the craving scores at these time points following exercise were lower than those for the reading control session. Acute exercise also facilitated inhibitory performance in both the standard and MA-related Go/Nogo tasks. A larger N2 amplitude, but not a larger P3 amplitude, was observed during both tasks in the exercise session and the Nogo condition compared with the reading control session and the Go condition. This is the first empirical study to demonstrate these beneficial effects of acute aerobic exercise at a moderate intensity on MA-related craving and inhibitory control in MA-dependent individuals. These results suggest a potential role for acute aerobic exercise in treating this specific type of substance abuse.

  2. Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: An ERP study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Chang, Yu-Kai

    2015-08-01

    This study aimed to determine the effect of acute exercise in the potential context of non-pharmacological intervention for methamphetamine (MA)-related craving; we additionally determine its effect on the inhibitory control induced by standard and MA-related tasks according to behavioral and neuroelectric measurements among MA-dependent individuals. The present study employed a within-subjects, counterbalanced design. A total of 24 participants who met the DSM-IV criteria for MA dependence were recruited. The craving level, reaction time, and response accuracy, as well as the event-related potential (ERP) components N2 and P3, were measured following exercise and the control treatment in a counterbalanced order. The exercise session consisted of an acute stationary cycle exercise at a moderate intensity, whereas the control treatment consisted of an active reading session. The self-reported MA craving was significantly attenuated during, immediately following, and 50min after the exercise session compared with the pre-exercise ratings, whereas the craving scores at these time points following exercise were lower than those for the reading control session. Acute exercise also facilitated inhibitory performance in both the standard and MA-related Go/Nogo tasks. A larger N2 amplitude, but not a larger P3 amplitude, was observed during both tasks in the exercise session and the Nogo condition compared with the reading control session and the Go condition. This is the first empirical study to demonstrate these beneficial effects of acute aerobic exercise at a moderate intensity on MA-related craving and inhibitory control in MA-dependent individuals. These results suggest a potential role for acute aerobic exercise in treating this specific type of substance abuse. PMID:25846839

  3. Myofibrillar instability exacerbated by acute exercise in filaminopathy.

    PubMed

    Chevessier, Frédéric; Schuld, Julia; Orfanos, Zacharias; Plank, Anne-C; Wolf, Lucie; Maerkens, Alexandra; Unger, Andreas; Schlötzer-Schrehardt, Ursula; Kley, Rudolf A; Von Hörsten, Stephan; Marcus, Katrin; Linke, Wolfgang A; Vorgerd, Matthias; van der Ven, Peter F M; Fürst, Dieter O; Schröder, Rolf

    2015-12-20

    Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates. PMID:26472074

  4. Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study.

    PubMed

    Chang, Yu-Kai; Chu, Chien-Heng; Wang, Chun-Chih; Song, Tai-Fen; Wei, Gao-Xia

    2015-03-01

    This study aimed to clarify the effects of acute exercise and cardiovascular fitness on cognitive function using the Stroop test and event-related desynchronization (ERD) in an aged population. Old adults (63.10 ± 2.89 years) were first assigned to either a high-fitness or a low-fitness group, and they were then subjected to an acute exercise treatment and a reading control treatment in a counterbalanced order. Alpha ERD was recorded during the Stroop test, which was administered after both treatments. Acute exercise improved cognitive performance regardless of the level of cognition, and old adults with higher fitness levels received greater benefits from acute exercise. Additionally, acute exercise, rather than overall fitness, elicited greater lower and upper alpha ERDs relative to the control condition. These findings indirectly suggest that the beneficial effects of acute exercise on cognitive performance may result from exercise-induced attentional control observed during frontal neural excitation. PMID:25308605

  5. Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children

    ERIC Educational Resources Information Center

    Tine, Michele T.; Butler, Allison G.

    2012-01-01

    Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…

  6. Acute Effect of Decaffeinated Coffee on Heart Rate, Blood Pressure, and Exercise Performance in Healthy Subjects

    PubMed Central

    Prakash, Ravi; Kaushik, Vidya S.

    1988-01-01

    The effect of decaffeinated coffee on the cardiovascular exercise performance in nine healthy volunteers was evaluated in a double-blind randomized fashion. The heart rate, blood pressure, and duration of exercise were unchanged, and no arrhythmias or ischemic changes were seen on the electrocardiogram after drinking decaffeinated coffee. It was concluded that decaffeinated coffee has no discernible, acute, adverse cardiovascular effects. PMID:3339645

  7. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder.

    PubMed

    Chang, Yu-Kai; Liu, Suyen; Yu, Hui-Hsiang; Lee, Yuan-Hung

    2012-03-01

    This study was conducted to determine the effect of acute aerobic exercise on executive function in children with attention deficit hyperactivity disorder (ADHD). Forty children with ADHD were randomly assigned into exercise or control groups. Participants in the exercise group performed a moderate intensity aerobic exercise for 30 min, whereas the control group watched a running/exercise-related video. Neuropsychological tasks, the Stroop Test and the Wisconsin Card Sorting Test (WCST), were assessed before and after each treatment. The results indicated that acute exercise facilitated performance in the Stroop Test, particularly in the Stroop Color-Word condition. Additionally, children in the exercise group demonstrated improvement in specific WCST performances in Non-perseverative Errors and Categories Completed, whereas no influences were found in those performances in the control group. Tentative explanations for the exercise effect postulate that exercise allocates attention resources, influences the dorsolateral prefrontal cortex, and is implicated in exercise-induced dopamine release. These findings are promising and additional investigations to explore the efficacy of exercise on executive function in children with ADHD are encouraged.

  8. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder.

    PubMed

    Chang, Yu-Kai; Liu, Suyen; Yu, Hui-Hsiang; Lee, Yuan-Hung

    2012-03-01

    This study was conducted to determine the effect of acute aerobic exercise on executive function in children with attention deficit hyperactivity disorder (ADHD). Forty children with ADHD were randomly assigned into exercise or control groups. Participants in the exercise group performed a moderate intensity aerobic exercise for 30 min, whereas the control group watched a running/exercise-related video. Neuropsychological tasks, the Stroop Test and the Wisconsin Card Sorting Test (WCST), were assessed before and after each treatment. The results indicated that acute exercise facilitated performance in the Stroop Test, particularly in the Stroop Color-Word condition. Additionally, children in the exercise group demonstrated improvement in specific WCST performances in Non-perseverative Errors and Categories Completed, whereas no influences were found in those performances in the control group. Tentative explanations for the exercise effect postulate that exercise allocates attention resources, influences the dorsolateral prefrontal cortex, and is implicated in exercise-induced dopamine release. These findings are promising and additional investigations to explore the efficacy of exercise on executive function in children with ADHD are encouraged. PMID:22306962

  9. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: evidence for β-adrenoceptor mediated enhanced coupling during exercise testing

    PubMed Central

    del Rio, Carlos L.; Clymer, Bradley D.; Billman, George E.

    2015-01-01

    Introduction: Autonomic neural activation during cardiac stress testing is an established risk-stratification tool in post-myocardial infarction (MI) patients. However, autonomic activation can also modulate myocardial electrotonic coupling, a known factor to contribute to the genesis of arrhythmias. The present study tested the hypothesis that exercise-induced autonomic neural activation modulates electrotonic coupling (as measured by myocardial electrical impedance, MEI) in post-MI animals shown to be susceptible or resistant to ventricular fibrillation (VF). Methods: Dogs (n = 25) with healed MI instrumented for MEI measurements were trained to run on a treadmill and classified based on their susceptibility to VF (12 susceptible, 9 resistant). MEI and ECGs were recorded during 6-stage exercise tests (18 min/test; peak: 6.4 km/h @ 16%) performed under control conditions, and following complete β-adrenoceptor (β-AR) blockade (propranolol); MEI was also measured at rest during escalating β-AR stimulation (isoproterenol) or overdrive-pacing. Results: Exercise progressively increased heart rate (HR) and reduced heart rate variability (HRV). In parallel, MEI decreased gradually (enhanced electrotonic coupling) with exercise; at peak exercise, MEI was reduced by 5.3 ± 0.4% (or -23 ± 1.8Ω, P < 0.001). Notably, exercise-mediated electrotonic changes were linearly predicted by the degree of autonomic activation, as indicated by changes in either HR or in HRV (P < 0.001). Indeed, β-AR blockade attenuated the MEI response to exercise while direct β-AR stimulation (at rest) triggered MEI decreases comparable to those observed during exercise; ventricular pacing had no significant effects on MEI. Finally, animals prone to VF had a significantly larger MEI response to exercise. Conclusions: These data suggest that β-AR activation during exercise can acutely enhance electrotonic coupling in the myocardium, particularly in dogs susceptible to ischemia-induced VF. PMID

  10. Core stabilization exercises enhance lactate clearance following high-intensity exercise.

    PubMed

    Navalta, James W; Hrncir, Stephen P

    2007-11-01

    Dynamic activities such as running, cycling, and swimming have been shown to effectively reduce lactate in the postexercise period. It is unknown whether core stabilization exercises performed following an intense bout would exhibit a similar effect. Therefore, this study was designed to assess the extent of the lactate response with core stabilization exercises following high-intensity anaerobic exercise. Subjects (N = 12) reported twice for testing, and on both occasions baseline lactate was obtained after 5 minutes of seated rest. Subjects then performed a 30-second Wingate anaerobic cycle test, immediately followed by a blood lactate sample. In the 5-minute postexercise period, subjects either rested quietly or performed core stabilization exercises. A final blood lactate sample was obtained following the 5-minute intervention period. Analysis revealed a significant interaction (p = 0.05). Lactate values were similar at rest (core = 1.4 +/- 0.1, rest = 1.7 +/- 0.2 mmol x L(-1)) and immediately after exercise (core = 4.9 +/- 0.6, rest = 5.4 +/- 0.4 mmol x L(-1)). However, core stabilization exercises performed during the 5-minute postexercise period reduced lactate values when compared to rest (5.9 +/- 0.6 vs. 7.6 +/- 0.8 mmol x L(-1)). The results of this study show that performing core stabilization exercises during a recovery period significantly reduces lactate values. The reduction in lactate may be due to removal via increased blood flow or enhanced uptake into the core musculature. Incorporation of core stability exercises into a cool-down period following muscular work may result in benefits to both lactate clearance as well as enhanced postural control.

  11. Regular exercise is associated with emotional resilience to acute stress in healthy adults

    PubMed Central

    Childs, Emma; de Wit, Harriet

    2014-01-01

    Physical activity has long been considered beneficial to health and regular exercise is purported to relieve stress. However empirical evidence demonstrating these effects is limited. In this study, we compared psychophysiological responses to an acute psychosocial stressor between individuals who did, or did not, report regular physical exercise. Healthy men and women (N = 111) participated in two experimental sessions, one with the Trier Social Stress Test (TSST) and one with a non-stressful control task. We measured heart rate, blood pressure, cortisol, and self-reported mood before and at repeated times after the tasks. Individuals who reported physical exercise at least once per week exhibited lower heart rate at rest than non-exercisers, but the groups did not differ in their cardiovascular responses to the TSST. Level of habitual exercise did not influence self-reported mood before the tasks, but non-exercisers reported a greater decline in positive affect after the TSST in comparison to exercisers. These findings provide modest support for claims that regular exercise protects against the negative emotional consequences of stress, and suggest that exercise has beneficial effects in healthy individuals. These findings are limited by their correlational nature, and future prospective controlled studies on the effects of regular exercise on response to acute stress are needed. PMID:24822048

  12. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children.

    PubMed

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-08-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5-8 Hz), alpha (8-12 Hz), sensory motor rhythm (12-16 Hz), and beta (16-25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children.

  13. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children

    PubMed Central

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-01-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5–8 Hz), alpha (8–12 Hz), sensory motor rhythm (12–16 Hz), and beta (16–25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children. PMID:27656629

  14. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children

    PubMed Central

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-01-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5–8 Hz), alpha (8–12 Hz), sensory motor rhythm (12–16 Hz), and beta (16–25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children.

  15. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children.

    PubMed

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-08-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5-8 Hz), alpha (8-12 Hz), sensory motor rhythm (12-16 Hz), and beta (16-25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children. PMID:27656629

  16. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    PubMed

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  17. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    PubMed

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  18. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  19. Fatiguing exercise enhances hyperalgesia to muscle inflammation.

    PubMed

    Sluka, Kathleen A; Rasmussen, Lynn A

    2010-02-01

    Since many people with chronic fatigue present with pain and many people with chronic pain present with fatigue, we tested if fatigue would enhance the response to pain in male and female mice. We further tested for the activation of brainstem nuclei by the fatigue task using c-fos as a marker. Fatigue was induced by having mice spontaneously run in running wheel for 2h. Carrageenan (0.03%) was injected into the gastrocnemius muscle either 2h before or 2h after the fatigue task. The mechanical sensitivity of the paw (von Frey filaments), muscle (tweezers), grip force and running wheel activity was assessed before and 24h after injection of carrageenan. Both male and female mice that performed the fatigue task, either before or after intramuscular injection of carrageenan, showed an enhanced mechanical sensitivity of the paw, but not the muscle. Ovariectomized mice showed a similar response to male mice. There was a decrease in running wheel activity after carrageenan injection, but no change in grip force suggesting that mice had no deficit in motor performance induced by the carrageenan. C-fos expression was observed in the nucleus raphe pallidus, obscurus, and magnus after the fatigue task suggesting an increased activity in the raphe nuclei in response to the fatigue task. Therefore, widespread hyperalgesia is enhanced by the fatigue response but not hyperalgesia at the site of insult. We suggest that this effect is sex-dependent and involves mechanisms in the brainstem to result in an enhanced hyperalgesia.

  20. Acute effects of moderate intensity aerobic exercise on affective withdrawal symptoms and cravings among women smokers.

    PubMed

    Williams, David M; Dunsiger, Shira; Whiteley, Jessica A; Ussher, Michael H; Ciccolo, Joseph T; Jennings, Ernestine G

    2011-08-01

    A growing number of laboratory studies have shown that acute bouts of aerobic exercise favorably impact affect and cravings among smokers. However, randomized trials have generally shown exercise to have no favorable effect on smoking cessation or withdrawal symptoms during quit attempts. The purpose of the present study was to explore this apparent contradiction by assessing acute changes in affect and cravings immediately prior to and following each exercise and contact control session during an eight-week smoking cessation trial. Sixty previously low-active, healthy, female smokers were randomized to an eight-week program consisting of brief baseline smoking cessation counseling and the nicotine patch plus either three sessions/week of moderate intensity aerobic exercise or contact control. Findings revealed a favorable impact of exercise on acute changes in positive activated affect (i.e., energy), negative deactivated affect (i.e., tiredness), and cigarette cravings relative to contact control. However, effects dissipated from session to session. Results suggest that aerobic exercise has potential as a smoking cessation treatment, but that it must be engaged in frequently and consistently over time in order to derive benefits. Thus, it is not surprising that previous randomized controlled trials-in which adherence to exercise programs has generally been poor-have been unsuccessful in showing effects of aerobic exercise on smoking cessation outcomes.

  1. Triphasic multinutrient supplementation during acute resistance exercise improves session volume load and reduces muscle damage in strength-trained athletes.

    PubMed

    Bird, Stephen P; Mabon, Tom; Pryde, Mitchell; Feebrey, Sarah; Cannon, Jack

    2013-05-01

    We hypothesized that triphasic multinutrient supplementation during acute resistance exercise would enhance muscular performance, produce a more favorable anabolic profile, and reduce biochemical markers of muscle damage in strength-trained athletes. Fifteen male strength-trained athletes completed two acute lower-body resistance exercise sessions to fatigue 7 days apart. After a 4-hour fast, participants consumed either a multinutrient supplement (Musashi 1-2-3 Step System, Notting Hill, Australia) (SUPP) or placebo (PLA) beverage preexercise (PRE), during (DUR), and immediately postexercise (IP). Session volume loads were calculated as kilograms × repetitions. Lower-body peak power was measured using unloaded repeated countermovement jumps, and blood samples were collected to assess biochemistry, serum hormones, and muscle damage markers at PRE, DUR, IP, 30 minutes postexercise (P30), and 24 hours postexercise (P24h). The SUPP demonstrated increased glucose concentrations at DUR and IP compared with at PRE (P < .01), whereas PLA demonstrated higher glucose at P30 compared with at PRE (P < .001). Session volume load was higher for SUPP compared with PLA (P < .05). Cortisol increased at DUR, IP, and P30 compared with at PRE in both treatments (P < .05); however, SUPP also displayed lower cortisol at P24h compared with at PRE and PLA (P < .01). The total testosterone response to exercise was higher for PLA compared with SUPP (P < .01); however, total creatine kinase and C-reactive protein responses to exercise were lower for SUPP compared with PLA (P < .05). These data indicate that although triphasic multinutrient supplementation did not produce a more favorable anabolic profile, it improved acute resistance exercise performance while attenuating muscle damage in strength-trained athletes.

  2. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

    PubMed

    Cui, Shu F; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J; Zhang, Chen Y; Chen, Xi; Ma, Ji Z

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  3. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise

    PubMed Central

    Cui, Shu F.; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J.; Zhang, Chen Y.; Chen, Xi; Ma, Ji Z.

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  4. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

    PubMed

    Cui, Shu F; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J; Zhang, Chen Y; Chen, Xi; Ma, Ji Z

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  5. Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution

    PubMed Central

    Berse, Timo; Rolfes, Kathrin; Barenberg, Jonathan; Dutke, Stephan; Kuhlenbäumer, Gregor; Völker, Klaus; Winter, Bernward; Wittig, Michael; Knecht, Stefan

    2015-01-01

    The executive function of shifting between mental sets demands cognitive flexibility. Based on evidence that physical exercise fostered cognition, we tested whether acute physical exercise can improve shifting in an unselected sample of adolescents. Genetic polymorphisms were analyzed to gain more insight into possibly contributing neurophysiological processes. We examined 297 students aged between 13 and 17 years in their schools. Physical exercise was manipulated by an intense incremental exercise condition using bicycle ergometers and a control condition which involved watching an infotainment cartoon while sitting calm. The order of conditions was counterbalanced between participants. Shifting was assessed by a switching task after both conditions. Acute intense physical exercise significantly improved shifting as indicated by reduced switch costs. Exercise-induced performance gains in switch costs were predicted by a single nucleotide polymorphism (SNP) targeting the Dopamine Transporter (DAT1/SLCA6A3) gene suggesting that the brain dopamine system contributed to the effect. The results demonstrate the potential of acute physical exercise to improve cognitive flexibility in adolescents. The field conditions of the present approach suggest applications in schools. PMID:26283937

  6. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  7. Acute and chronic response of skeletal muscle to resistance exercise.

    PubMed

    Abernethy, P J; Jürimäe, J; Logan, P A; Taylor, A W; Thayer, R E

    1994-01-01

    Skeletal muscle tissue is sensitive to the acute and chronic stresses associated with resistance training. These responses are influenced by the structure of resistance activity (i.e. frequency, load and recovery) as well as the training history of the individuals involved. There are histochemical and biochemical data which suggest that resistance training alters the expression of myosin heavy chains (MHCs). Specifically, chronic exposure to bodybuilding and power lifting type activity produces shifts towards the MHC I and IIb isoforms, respectively. However, it is not yet clear which training parameters trigger these differential expressions of MHC isoforms. Interestingly, many programmes undertaken by athletes appear to cause a shift towards the MHC I isoform. Increments in the cross-sectional area of muscle after resistance training can be primarily attributed to fibre hypertrophy. However, there may be an upper limit to this hypertrophy. Furthermore, significant fibre hypertrophy appears to follow the sequence of fast twitch fibre hypertrophy preceding slow twitch fibre hypertrophy. Whilst some indirect measures of fibre number in living humans suggest that there is no interindividual variation, postmortem evidence suggests that there is. There are also animal data arising from investigations using resistance training protocols which suggest that chronic exercise can increase fibre number. Furthermore, satellite cell activity has been linked to myotube formation in the human. However, other animal models (i.e. compensatory hypertrophy) do not support the notion of fibre hyperplasia. Even if hyperplasia does occur, its effect on the cross-sectional area of muscle appears to be small. Phosphagen and glycogen metabolism, whilst important during resistance activity appear not to normally limit the performance of resistance activity. Phosphagen and related enzyme adaptations are affected by the type, structure and duration of resistance training. Whilst endogenous

  8. Transient Increase in Homocysteine but Not Hyperhomocysteinemia during Acute Exercise at Different Intensities in Sedentary Individuals

    PubMed Central

    Iglesias-Gutiérrez, Eduardo; Egan, Brendan; Díaz-Martínez, Ángel Enrique; Peñalvo, José Luis; González-Medina, Antonio; Martínez-Camblor, Pablo; O’Gorman, Donal J.; Úbeda, Natalia

    2012-01-01

    Considering that hyperhomocysteinemia is an independent risk factor for cardiovascular disease, the purpose of this study was to determine the kinetics of serum homocysteine (tHcy) and the vitamins involved in its metabolism (folates, B12, and B6) in response to acute exercise at different intensities. Eight sedentary males (18–27 yr) took part in the study. Subjects were required to complete two isocaloric (400 kcal) acute exercise trials on separate occasions at 40% (low intensity, LI) and 80% VO2peak (high intensity, HI). Blood samples were drawn at different points before (pre4 and pre0 h), during (exer10, exer20, exer30, exer45, and exer60 min), and after exercise (post0, post3, and post19 h). Dietary, genetic, and lifestyle factors were controlled. Maximum tHcy occurred during exercise, both at LI (8.6 (8.0–10.1) µmol/L, 9.3% increase from pre0) and HI (9.4 (8.2–10.6) µmol/L, 25.7% increase from pre0), coinciding with an accumulated energy expenditure independent of the exercise intensity. From this point onwards tHcy declined until the cessation of exercise and continued descending. At post19, tHcy was not different from pre-exercise values. No values of hyperhomocysteinemia were observed at any sampling point and intensity. In conclusion, acute exercise in sedentary individuals, even at HI, shows no negative effect on tHcy when at least 400 kcal are spent during exercise and the nutritional status for folate, B12, and B6 is adequate, since no hyperhomocysteinemia has been observed and basal concentrations were recovered in less than 24 h. This could be relevant for further informing healthy exercise recommendations. PMID:23236449

  9. Acute Exercise Improves Physical Sexual Arousal in Women Taking Antidepressants

    PubMed Central

    Lorenz, Tierney A.; Meston, Cindy M.

    2012-01-01

    Background Antidepressants can impair sexual arousal. Exercise increases genital arousal in healthy women, likely due to increasing sympathetic nervous system (SNS) activity. Purpose Test if exercise increases genital arousal in women taking antidepressants, including selective serotonin reuptake inhibitors (SSRIs), which suppress SNS activity, and selective serotonin and norepinephrine reuptake inhibitors (SNRIs), which suppress the SNS less. Method Women reporting antidepressant-related sexual arousal problems (N=47) participated in three counterbalanced sessions where they watched an erotic film while we recorded genital and SNS arousal. In two sessions, women exercised for 20 min, either 5 or 15 min prior to the films. Results During the no-exercise condition, women taking SSRIs showed significantly less genital response than women taking SNRIs. Exercise prior to sexual stimuli increased genital arousal in both groups. Women reporting greater sexual dysfunction had larger increases in genital arousal post-exercise. For women taking SSRIs, genital arousal was linked to SNS activity. Conclusions Exercise may improve antidepressant-related genital arousal problems. PMID:22403029

  10. Acute aerobic exercise increases exogenously infused bone marrow cell retention in the heart

    PubMed Central

    Chirico, Erica N; Ding, Dennis; Muthukumaran, Geetha; Houser, Steven R; Starosta, Tim; Mu, Anbin; Margulies, Kenneth B; Libonati, Joseph R

    2015-01-01

    Stem cell therapy for myocardial infarction (MI) has been shown to improve cardiac function and reduce infarct size. Exercise training, in the form of cardiac rehabilitation, is an essential part of patient care post-MI. Hence, we tested the effects of acute and chronic aerobic exercise on stem cell retention and cardiac remodeling post-MI. Small epicardial MI’s were induced in 12-month-old C57BL/6 mice via cryoinjury. Two weeks post-MI, vehicle infusion (N = 4) or GFP+ bone marrow-derived cells (BMC) were injected (tail vein I.V.) immediately after acute exercise (N = 14) or sedentary conditions (N = 14). A subset of mice continued a 5-week intervention of chronic treadmill exercise (10–13 m/min; 45 min/day; 4 days/week; N = 7) or remained sedentary (N = 6). Exercise tolerance was assessed using a graded exercise test, and cardiac function was assessed with echocardiography. Acute exercise increased GFP+ BMC retention in the infarcted zone of the heart by 30% versus sedentary (P < 0.05). This was not associated with alterations in myocardial function or gene expression of key cell adhesion molecules. Animals treated with chronic exercise increased exercise capacity (P < 0.05) and cardiac mass (P < 0.05) without change in left ventricular ejection fraction (LVEF), infarct size, or regional wall thickness (P = NS) compared with sedentary. While BMC’s alone did not affect exercise capacity, they increased LVEF (P < 0.05) and Ki67+ nuclei number in the border zone of the heart (P < 0.05), which was potentiated with chronic exercise training (P < 0.05). We conclude that acute exercise increases BMC retention in infarcted hearts and chronic training increases exogenous BMC-mediated effects on stimulating the cardiomyocyte cell cycle. These preclinical results suggest that exercise may help to optimize stem cell therapeutics following MI. PMID:26486160

  11. The effects of time following acute growth hormone administration on metabolic and power output measures during acute exercise.

    PubMed

    Irving, Brian A; Patrie, James T; Anderson, Stacey M; Watson-Winfield, Deidre D; Frick, Kirsten I; Evans, William S; Veldhuis, Johannes D; Weltman, Arthur

    2004-09-01

    We examined the effects of GH infusion on metabolism and performance measures during acute exercise. Nine males [(X+/-SEM): age 23.7+/-1.9 yr, height 182.6+/-1.6 cm, weight 77.3+/- 2.6 kg, percent fat 17.7+/-1.9%, peak oxygen consumption 37.9 +/- 2.9 ml/kg.min] completed six 30-min randomly assigned bicycle ergometer exercise trials at a power output midway between the lactate threshold and peak oxygen consumption. In five of the six trials, the subjects received a recombinant humanGHinfusion (10 microg/kg, 6-min square wave pulse) at 0800 h, followed by a 30-min exercise trial initiated at one of the following times: 0845, 0930, 1015, 1100, or 1145 h. During one of the six trials, the subject received a saline infusion followed by a 30-min exercise trial initiated at 0845 h. Mixed-effect, repeated-measures ANOVA analyses corrected for multiple comparisons revealed that there were no significant condition effects for total work, caloric expenditure, heart rate response, the blood lactate response, or ratings of perceived exertion response. However, acute GH administration resulted in a lower exercise oxygen consumption without a drop-off in power output. We conclude that the time of exercise initiation after GH infusion does not affect total work, caloric expenditure, heart rate response, blood lactate response, or ratings of perceived exertion but reduces oxygen consumption in response to 30 min of constant load exercise at an intensity above the lactate threshold. The last outcome may suggest that GH administration can improve exercise economy.

  12. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy.

    PubMed

    Nader, G A; von Walden, F; Liu, C; Lindvall, J; Gutmann, L; Pistilli, E E; Gordon, P M

    2014-03-15

    We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program (training+acute). The dominant arm was either unexercised (control) or subjected to the same acute exercise bout as the trained arm (acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations.

  13. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro.

    PubMed

    Witkowski, Sarah; Guhanarayan, Gayatri; Burgess, Rachel

    2016-02-01

    Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony-forming unit CAC (CFU-CAC) were cultured from young active men (n = 9, 24 ± 2 years) at rest and after exercise under normal (5 mmol/L) and elevated (15 mmol/L) glucose. Preliminary relative multiplex cytokine analysis revealed that CAC conditioned culture media contained three of six measured cytokines: transforming growth factor-beta-1 (TGFβ1), tumor necrosis factor alpha (TNFα), and monocyte chemotactic protein-1 (MCP-1). Single quantitative cytokine analysis was used to determine the concentration of each cytokine from the four conditions. NO was measured via Griess assay. There was a significant effect of CAC exposure to in vivo exercise on in vitro TGFβ1 secretion (P = 0.024) that was independent of glucose concentration. There was no effect of glucose or acute exercise on TNFα or MCP-1 concentration (both P > 0.05). The concentration of NO from CFU-CAC cultured in elevated glucose was lower following acute exercise (P = 0.002) suggesting that exercise did not maintain NO secretion under hyperglycemic conditions. Our results identify paracrine signaling factors that may be responsible for the proangiogenic function of CFU-CAC and an influence of acute exercise and elevated glucose on CFU-CAC soluble factor secretion. PMID:26847726

  14. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro.

    PubMed

    Witkowski, Sarah; Guhanarayan, Gayatri; Burgess, Rachel

    2016-02-01

    Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony-forming unit CAC (CFU-CAC) were cultured from young active men (n = 9, 24 ± 2 years) at rest and after exercise under normal (5 mmol/L) and elevated (15 mmol/L) glucose. Preliminary relative multiplex cytokine analysis revealed that CAC conditioned culture media contained three of six measured cytokines: transforming growth factor-beta-1 (TGFβ1), tumor necrosis factor alpha (TNFα), and monocyte chemotactic protein-1 (MCP-1). Single quantitative cytokine analysis was used to determine the concentration of each cytokine from the four conditions. NO was measured via Griess assay. There was a significant effect of CAC exposure to in vivo exercise on in vitro TGFβ1 secretion (P = 0.024) that was independent of glucose concentration. There was no effect of glucose or acute exercise on TNFα or MCP-1 concentration (both P > 0.05). The concentration of NO from CFU-CAC cultured in elevated glucose was lower following acute exercise (P = 0.002) suggesting that exercise did not maintain NO secretion under hyperglycemic conditions. Our results identify paracrine signaling factors that may be responsible for the proangiogenic function of CFU-CAC and an influence of acute exercise and elevated glucose on CFU-CAC soluble factor secretion.

  15. Early myogenic responses to acute exercise before and after resistance training in young men

    PubMed Central

    Caldow, Marissa K; Thomas, Emily E; Dale, Michael J; Tomkinson, Grant R; Buckley, Jonathan D; Cameron-Smith, David

    2015-01-01

    To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70–85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training. PMID:26359239

  16. Early myogenic responses to acute exercise before and after resistance training in young men.

    PubMed

    Caldow, Marissa K; Thomas, Emily E; Dale, Michael J; Tomkinson, Grant R; Buckley, Jonathan D; Cameron-Smith, David

    2015-09-01

    To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70-85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training.

  17. The effects of acute exercise on pulsatile LH release in high-mileage male runners.

    PubMed

    McColl, E M; Wheeler, G D; Gomes, P; Bhambhani, Y; Cumming, D C

    1989-11-01

    Evidence suggests that acute exercise and endurance training has a suppressive effect on the hypothalamic-pituitary-gonadal (HPG) axis in men and women. To determine if training and acute exercise influence the neuroendocrine regulation of the HPG axis in men we examined pulsatile LH release in six male endurance runners with a training volume of at least 80 km per week, and compared this with values in six age-matched sedentary controls. Blood samples were obtained through an indwelling i.v. cannula from the subjects at 15-min intervals for 6 h following 24 h without significant physical activity and again in the runners, following 60 min of running at a speed equivalent to 5% below the anaerobic threshold. Mean LH pulse frequency and amplitude, as well as areas under the LH pulses and total LH curve, were calculated but only the mean post-exercise area under the total LH curve area was significantly lower than basal values (P less than 0.05) following exercise compared with the resting values in runners. Other measures of LH release did not change with acute exercise. Basal and pre-exercise testosterone levels were also measured and found to be at the lower end of normal men. The mean pre-exercise serum testosterone levels were significantly higher than basal levels. Mean testosterone levels, mean pulse amplitude, and mean area under the LH curve were significantly lower in resting runners than in the controls. The data suggest that exercise induces a general lowering of LH levels but does not inhibit LH pulsatile release. An anticipatory increase in serum testosterone occurred before exercise.

  18. Acute effect of two aerobic exercise modes on maximum strength and strength endurance.

    PubMed

    de Souza, Eduardo Oliveira; Tricoli, Valmor; Franchini, Emerson; Paulo, Anderson Caetano; Regazzini, Marcelo; Ugrinowitsch, Carlos

    2007-11-01

    The purpose of this study was to evaluate the effects of 2 modes of aerobic exercise (continuous or intermittent) on maximum strength (1 repetition maximum, 1RM) and strength endurance (maximum repetitions at 80% of 1RM) for lower- and upper-body exercises to test the acute hypothesis in concurrent training (CT) interference. Eight physically active men (age: 26.9 +/- 4.2 years; body mass: 82.1 +/- 7.5 kg; height: 178.9 +/- 6.0 cm) were submitted to: (a) a graded exercise test to determine V(.-)O2max (39.26 +/- 6.95 ml x kg(-1) x min(-1)) and anaerobic threshold velocity (3.5 mmol x L(-1)) (9.3 +/- 1.27 km x h(-1)); (b) strength tests in a rested state (control); and (c) 4 experimental sessions, at least 7 days apart. The experimental sessions consisted of a 5-kilometer run on a treadmill continuously (90% of the anaerobic threshold velocity) or intermittently (1:1 minute at V(.-)O2max). Ten minutes after the aerobic exercise, either a maximum strength or a strength endurance test was performed (leg press and bench press exercises). The order of aerobic and strength exercises followed a William's square distribution to avoid carryover effects. Results showed that only the intermittent aerobic exercise produced an acute interference effect on leg strength endurance, decreasing significantly (p < 0.05) the number of repetitions from 10.8 +/- 2.5 to 8.1 +/- 2.2. Maximum strength was not affected by the aerobic exercise mode. In conclusion, the acute interference hypothesis in concurrent training seems to occur when both aerobic and strength exercises produce significant peripheral fatigue in the same muscle group.

  19. Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females.

    PubMed

    Córdova, C; Silva, V C; Moraes, C F; Simões, H G; Nóbrega, O T

    2009-05-01

    The objective of the present study was to compare the effect of acute exercise performed at different intensities in relation to the anaerobic threshold (AT) on abilities requiring control of executive functions or alertness in physically active elderly females. Forty-eight physically active elderly females (63.8 +/- 4.6 years old) were assigned to one of four groups by drawing lots: control group without exercise or trial groups with exercise performed at 60, 90, or 110% of AT (watts) and submitted to 5 cognitive tests before and after exercise. Following cognitive pretesting, an incremental cycle ergometer test was conducted to determine AT using a fixed blood lactate concentration of 3.5 mmol/L as cutoff. Acute exercise executed at 90% of AT resulted in significant (P < 0.05, ANOVA) improvement in the performance of executive functions when compared to control in 3 of 5 tests (verbal fluency, Tower of Hanoi test (number of movements), and Trail Making test B). Exercising at 60% of AT did not improve results of any tests for executive functions, whereas exercise executed at 110% of AT only improved the performance in one of these tests (verbal fluency) compared to control. Women from all trial groups exhibited a remarkable reduction in the Simple Response Time (alertness) test (P = 0.001). Thus, physical exercise performed close to AT is more effective to improve cognitive processing of older women even if conducted acutely, and using a customized exercise prescription based on the anaerobic threshold should optimize the beneficial effects. PMID:19377796

  20. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    PubMed Central

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  1. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

    PubMed

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  2. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men. PMID:22124354

  3. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.

  4. Regular Exercise Enhances Task-Based Industriousness in Laboratory Rats

    PubMed Central

    Laurence, Nicholas C.; Labuschagne, Lisa G.; Lura, Brent G.; Hillman, Kristin L.

    2015-01-01

    Individuals vary greatly in their willingness to select and persist in effortful tasks, even when high-effort will knowingly result in high-reward. Individuals who select and successively complete effortful, goal-directed tasks can be described as industrious. Trying to increase one’s industriousness is desirable from a productivity standpoint, yet intrinsically challenging given that effort expenditure is generally aversive. Here we show that in laboratory rats, a basic physical exercise regimen (20 min/day, five days/week) is sufficient to increase industriousness across a battery of subsequent testing tasks. Exercised rats outperformed their non-exercised counterparts in tasks designed to tax effort expenditure, strategic decision-making, problem solving and persistence. These increases in performance led to quicker reward obtainment and greater reward gain over time, and could not be accounted for simply by increased locomotor activity. Our results suggest that a basic exercise regimen can enhance effortful goal-directed behaviour in goal-directed tasks, which highlights a potential productivity benefit of staying physically active. PMID:26083255

  5. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  6. Acute Effects of Aerobic Exercise on Feelings of Energy in Relation to Age and Sex.

    PubMed

    Legrand, Fabien D; Bertucci, William M; Hudson, Joanne

    2016-01-01

    A crossover experiment was performed to determine whether age and sex, or their interaction, affect the impact of acute aerobic exercise on vigor-activity (VA). We also tested whether changes in VA mediated exercise effects on performance on various cognitive tasks. Sixty-eight physically inactive volunteers participated in exercise and TV-watching control conditions. They completed the VA subscale of the Profile of Mood States immediately before and 2 min after the intervention in each condition. They also performed the Trail Making Test 3 min after the intervention in each condition. Statistical analyses produced a condition . age . sex interaction characterized by a higher mean VA gain value in the exercise condition (compared with the VA gain value in the TV-watching condition) for young female participants only. In addition, the mediational analyses revealed that changes in VA fully mediated the effects of exercise on TMT-Part A performance.

  7. Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Costa, Eduardo Caldas; Sales, Marcelo Magalhães; Fonteles, André Igor; de Moraes, José Fernando Vila Nova; Barros, Jônatas de França

    2016-01-01

    Abstract Objective: To assess the acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Methods: Controlled, randomized study with crossover design. Twenty pubertal individuals underwent two 30-minute sessions: (1) aerobic exercise session performed between 65% and 75% of heart rate reserve, divided into 5 min of warm-up, 20 min at the target intensity and 5 min of cool down; and (2) control session watching a cartoon. Before and after the sessions, the computerized Stroop test-Testinpacs™ was applied to evaluate the inhibitory control. Reaction time (ms) and errors (n) were recorded. Results: The control session reaction time showed no significant difference. On the other hand, the reaction time of the exercise session decreased after the intervention (p<0.001). The number of errors made at the exercise session were lower than in the control session (p=0.011). Additionally, there was a positive association between reaction time (Δ) of the exercise session and age (r 2=0.404, p=0.003). Conclusions: Vigorous aerobic exercise seems to promote acute improvement in the inhibitory control in adolescents. The effect of exercise on the inhibitory control performance was associated with age, showing that it was reduced at older age ranges. PMID:26564328

  8. Corticomotor Excitability is Increased Following an Acute Bout of Blood Flow Restriction Resistance Exercise

    PubMed Central

    Brandner, Christopher Roy; Warmington, Stuart Anthony; Kidgell, Dawson John

    2015-01-01

    We used transcranial magnetic stimulation (TMS) to investigate whether an acute bout of resistance exercise with blood flow restriction (BFR) stimulated changes in corticomotor excitability (motor evoked potential, MEP) and short-interval intracortical inhibition (SICI), and compared the responses to two traditional resistance exercise methods. Ten males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (1) heavy-load (HL: 80% one-repetition maximum [1-RM]); (2) light-load (LL; 20% 1-RM) and two other light-load trials with BFR applied; (3) continuously at 80% resting systolic blood pressure (BFR-C); or (4) intermittently at 130% resting systolic blood pressure (BFR-I). MEP amplitude and SICI were measured using TMS at baseline, and at four time-points over a 60 min post-exercise period. MEP amplitude increased rapidly (within 5 min post-exercise) for BFR-C and remained elevated for 60 min post-exercise compared with all other trials. MEP amplitudes increased for up to 20 and 40 min for LL and BFR-I, respectively. These findings provide evidence that BFR resistance exercise can modulate corticomotor excitability, possibly due to altered sensory feedback via group III and IV afferents. This response may be an acute indication of neuromuscular adaptations that underpin changes in muscle strength following a BFR resistance training programme. PMID:26696864

  9. Flow-mediated dilation in the inactive limb following acute hypoxic exercise.

    PubMed

    Katayama, Keisho; Yamashita, Shin; Iwamoto, Erika; Ishida, Koji

    2016-01-01

    The purpose of this study was to elucidate the effect of acute aerobic exercise performed under hypoxic conditions on flow-mediated dilation (FMD) in the inactive limb. Seven males participated in the study. The subjects performed two submaximal leg cycling on a semirecumbent ergometer at the same relative intensity (60% peak oxygen uptake) in normoxia [inspired oxygen fraction (FIO2) = 0·21] and hypoxia (FIO2 = 0·12-0·13) for 30 min. The brachial artery diameter and blood velocity during exercise were measured via ultrasound, and the antegrade and retrograde shear rates were calculated. Before and 5, 30 and 60 min after exercise, brachial artery FMD was measured in normoxia. FMD was estimated as the percentage increase in peak diameter from the baseline diameter at prior occlusion (%FMD) and as the controlling changes in baseline diameter (the corrected-%FMD). No difference in antegrade shear rate during exercise was detected between the normoxic and hypoxic conditions, whereas the retrograde shear rate was larger during hypoxic exercise. The %FMD decreased significantly at 5 min after exercise in both normoxia and hypoxia, and it returned to pre-exercise levels within 60 min of recovery. Significant decreases in FMD at 5 min after exercise had disappeared when the baseline diameter was controlled using an analysis of covariance (the corrected-%FMD). No significant differences were observed between the normoxic and hypoxic trials in the %FMD and corrected-%FMD following exercise. These results suggest that hypoxia has no impact on endothelial function in the inactive limb following acute aerobic exercise.

  10. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P < 0.001). These findings suggest that acute exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  11. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men. PMID:26872295

  12. The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise.

    PubMed

    Scott, Jonathan P R; Sale, Craig; Greeves, Julie P; Casey, Anna; Dutton, John; Fraser, William D

    2011-02-01

    We compared the effects of exercise intensity (EI) on bone metabolism during and for 4 days after acute, weight-bearing endurance exercise. Ten males [mean ± SD maximum oxygen uptake (Vo(2max)): 56.2 ± 8.1 ml·min(-1)·kg(-1)] completed three counterbalanced 8-day trials. Following three control days, on day 4, subjects completed 60 min of running at 55%, 65%, and 75% Vo(2max). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH(2)-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone-alkaline phosphatase (ALP)], osteoprotegerin (OPG), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate (PO(4)), and cortisol were measured during and for 3 h after exercise and on four follow-up days (FU1-FU4). At 75% Vo(2max), β-CTX was not significantly increased from baseline by exercise but was higher compared with 55% (17-19%, P < 0.01) and 65% (11-13%, P < 0.05) Vo(2max) in the first hour postexercise. Concentrations were decreased from baseline in all three groups by 39-42% (P < 0.001) at 3 h postexercise but not thereafter. P1NP increased (P < 0.001) during exercise only, while bone-ALP was increased (P < 0.01) at FU3 and FU4, but neither were affected by EI. PTH and cortisol increased (P < 0.001) with exercise at 75% Vo(2max) only and were higher (P < 0.05) than at 55% and 65% Vo(2max) during and immediately after exercise. The increases (P < 0.001) in OPG, ACa, and PO(4) with exercise were not affected by EI. Increasing EI from 55% to 75% Vo(2max) during 60 min of running resulted in higher β-CTX concentrations in the first hour postexercise but had no effect on bone formation markers. Increased bone-ALP concentrations at 3 and 4 days postexercise suggest a beneficial effect of this type of exercise on bone mineralization. The increase in OPG was not influenced by exercise intensity, whereas PTH was increased at 75% Vo(2max) only, which cannot be fully explained by changes in

  13. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  14. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  15. THE POTENTIAL OF USING EXERCISE IN NATURE AS AN INTERVENTION TO ENHANCE EXERCISE BEHAVIOR: RESULTS FROM A PILOT STUDY.

    PubMed

    Calogiuri, Giovanna; Nordtug, Hildegunn; Weydahl, Andi

    2015-10-01

    According to attention-restoration theory (ART), natural environments can provide restorative experiences. In this pilot study, a mixed-methods approach was used to examine the potential of using exercise in a natural environment to enhance exercise behaviors. The study included an assessment study and an intervention study (overall n = 19). The participants underwent a standardized exercise program including biking and circuit strength training, either indoors or outdoors in nature. Measurements included connectedness to nature, perceived exertion, perceived environmental restorativeness, enjoyment, affect, future exercise intention, and self-reported exercise behavior. The participants also wrote a brief text describing the way in which the environment influenced their feelings while exercising. Quantitative data were analyzed using the Spearman rank correlation and linear mixed-effects modeling. The qualitative information was analyzed thematically. The integrated results indicated that, in accordance with ART, exercising in nature was associated with a greater potential for restoration and affective responses, which in some participants led to enhanced intention to exercise and increased exercise behavior. However, some perceived that the indoor exercise provided a more effective workout. Further studies on larger samples are needed. PMID:26348226

  16. THE POTENTIAL OF USING EXERCISE IN NATURE AS AN INTERVENTION TO ENHANCE EXERCISE BEHAVIOR: RESULTS FROM A PILOT STUDY.

    PubMed

    Calogiuri, Giovanna; Nordtug, Hildegunn; Weydahl, Andi

    2015-10-01

    According to attention-restoration theory (ART), natural environments can provide restorative experiences. In this pilot study, a mixed-methods approach was used to examine the potential of using exercise in a natural environment to enhance exercise behaviors. The study included an assessment study and an intervention study (overall n = 19). The participants underwent a standardized exercise program including biking and circuit strength training, either indoors or outdoors in nature. Measurements included connectedness to nature, perceived exertion, perceived environmental restorativeness, enjoyment, affect, future exercise intention, and self-reported exercise behavior. The participants also wrote a brief text describing the way in which the environment influenced their feelings while exercising. Quantitative data were analyzed using the Spearman rank correlation and linear mixed-effects modeling. The qualitative information was analyzed thematically. The integrated results indicated that, in accordance with ART, exercising in nature was associated with a greater potential for restoration and affective responses, which in some participants led to enhanced intention to exercise and increased exercise behavior. However, some perceived that the indoor exercise provided a more effective workout. Further studies on larger samples are needed.

  17. Delayed voluntary exercise does not enhance cognitive performance after hippocampal injury: an investigation of differentially distributed exercise protocols

    PubMed Central

    Wogensen, Elise; Gram, Marie Gajhede; Sommer, Jens Bak; Vilsen, Christina Rytter; Mogensen, Jesper; Malá, Hana

    2016-01-01

    Voluntary exercise has previously been shown to enhance cognitive recovery after acquired brain injury (ABI). The present study evaluated effects of two differentially distributed protocols of delayed, voluntary exercise on cognitive recovery using an allocentric place learning task in an 8-arm radial maze. Fifty-four Wistar rats were subjected to either bilateral transection of the fimbria-fornix (FF) or to sham surgery. Twenty-one days postinjury, the animals started exercising in running wheels either for 14 consecutive days (FF/exercise daily [ExD], sham/ExD) or every other day for 14 days (FF/exercise every second day [ExS], sham/ExS). Additional groups were given no exercise treatment (FF/not exercise [NE], sham/NE). Regardless of how exercise was distributed, we found no cognitively enhancing effects of exercise in the brain injured animals. Design and protocol factors possibly affecting the efficacy of post-ABI exercise are discussed. PMID:27807517

  18. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  19. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  20. Early exercise rehabilitation of muscle weakness in acute respiratory failure patients.

    PubMed

    Berry, Michael J; Morris, Peter E

    2013-10-01

    Acute respiratory failure patients experience significant muscle weakness, which contributes to prolonged hospitalization and functional impairments after hospital discharge. Based on our previous work, we hypothesize that an exercise intervention initiated early in the intensive care unit aimed at improving skeletal muscle strength could decrease hospital stay and attenuate the deconditioning and skeletal muscle weakness experienced by these patients.

  1. State/Trait Anxiety and Anxiolytic Effects of Acute Physical Exercises

    ERIC Educational Resources Information Center

    Guszkowska, Monika

    2009-01-01

    Study aim: To determine anxiolytic effects of acute physical exertions in relation to the initial anxiety state and trait in women. Material and methods: A group of 163 women aged 16-56 years, attending fitness clubs in Warsaw, participated in the study. They selected a single exercise to perform--strength, aerobic or mixed, lasting 30 to over 60…

  2. The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.

    ERIC Educational Resources Information Center

    Roitman, J. L.; Brewer, J. P.

    This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…

  3. Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man.

    PubMed Central

    Piepoli, M; Isea, J E; Pannarale, G; Adamopoulos, S; Sleight, P; Coats, A J

    1994-01-01

    1. It is known that acute exercise is often followed by a reduction in arterial blood pressure. Little is known about the time course of the recovery of the blood pressure or the influence of the intensity of the exercise on this response. Controversy exists, in particular, concerning the changes in peripheral resistance that occur during this period. 2. Eight normal volunteers performed, in random order on separate days, voluntary upright bicycle exercise of three different intensities (maximal, moderate and minimal load) and, on another day, a control period of sitting on a bicycle. They were monitored for 60 min after each test. 3. Diastolic pressure fell after maximal exercise at 5 min (-15.45 mmHg) and 60 min (-9.45 mmHg), compared with the control day. Systolic and mean pressure also fell (non-significantly) after 45 min; heart rate was significantly elevated for the whole hour of recovery (at 60 min, +7.23 beats min-1). No changes in post-exercise blood pressure and heart rate were observed on the days of moderate and minimal exercises. 4. An increase in cardiac index was observed after maximal exercise compared with control (at 60 min, 2.6 +/- 0.3 vs. 1.9 +/- 0.2 l min-1 m-2). This was entirely accounted for by the persistent increase in heart rate, with no significant alteration in stroke volume after exercise on any day.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7965851

  4. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion

    PubMed Central

    Mak, Wai Yip Vincent; Lai, Wai Keung Christopher

    2015-01-01

    Background. Performing resistance exercise could lead to an increase in arterial stiffness. Objective. We investigate the acute effect on arterial stiffness by performing Valsalva manoeuvre during resistance exercise. Materials and Methods. Eighteen healthy young men were assigned to perform bicep curls by using two breathing techniques (exhalation and Valsalva manoeuvre during muscle contraction) on two separate study days. Carotid pulsed wave velocity (cPWV) was measured as an indicator to reflect the body central arterial stiffness using a high-resolution ultrasound system, and its value was monitored repeatedly at three predefined time intervals: before resistance exercise, immediately after exercise, and 15 minutes after exercise. Results. At the 0th minute after resistance exercise was performed using the Valsalva manoeuvre during exertion, a significant increase in cPWV (4.91 m/s ± 0.52) compared with the baseline value (4.67 m/s ± 0.32, P = 0.008) was observed, and then it nearly returned to its baseline value at the 15th minute after exercise (4.66 m/s ± 0.44, P = 0.010). These findings persisted after adjusting for age, body mass index, and systolic blood pressure. Conclusion. Our result suggests short duration of resistance exercise may provoke a transient increase in central arterial stiffness in healthy young men. PMID:26539481

  5. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback.

    PubMed

    Zschucke, Elisabeth; Renneberg, Babette; Dimeo, Fernando; Wüstenberg, Torsten; Ströhle, Andreas

    2015-01-01

    According to the cross-stressor adaptation hypothesis, physically trained individuals show lower physiological and psychological responses to stressors other than exercise, e.g. psychosocial stress. Reduced stress reactivity may constitute a mechanism of action for the beneficial effects of exercise in maintaining mental health. With regard to neural and psychoneuroendocrine stress responses, the acute stress-buffering effects of exercise have not been investigated yet. A sample of highly trained (HT) and sedentary (SED) young men was randomized to either exercise on a treadmill at moderate intensity (60-70% VO2max; AER) for 30 min, or to perform 30 min of "placebo" exercise (PLAC). 90 min later, an fMRI experiment was conducted using an adapted version of the Montreal Imaging Stress Task (MIST). The subjective and psychoneuroendocrine (cortisol and α-amylase) changes induced by the exercise intervention and the MIST were assessed, as well as neural activations during the MIST. Finally, associations between the different stress responses were analysed. Participants of the AER group showed a significantly reduced cortisol response to the MIST, which was inversely related to the previous exercise-induced α-amylase and cortisol fluctuations. With regard to the sustained BOLD signal, we found higher bilateral hippocampus (Hipp) activity and lower prefrontal cortex (PFC) activity in the AER group. Participants with a higher aerobic fitness showed lower cortisol responses to the MIST. As the Hipp and PFC are brain structures prominently involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, these findings indicate that the acute stress-buffering effect of exercise relies on negative feedback mechanisms. Positive affective changes after exercise appear as important moderators largely accounting for the effects related to physical fitness.

  6. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    PubMed Central

    Christiansen, Lasse; Roig, Marc

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  7. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing.

    PubMed

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen; Korsgaard Johnsen, Line; Geertsen, Svend Sparre; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  8. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing.

    PubMed

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen; Korsgaard Johnsen, Line; Geertsen, Svend Sparre; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.

  9. Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation.

    PubMed

    Trombold, Justin R; Christmas, Kevin M; Machin, Daniel R; Kim, Il-Young; Coyle, Edward F

    2013-03-15

    Acute exercise has been shown to attenuate postprandial plasma triglyceride elevation (PPTG). However, the direct contribution of exercise intensity is less well understood. The purpose of this study was to examine the effects of exercise intensity on PPTG and postprandial fat oxidation. One of three experimental treatments was performed in healthy young men (n = 6): nonexercise control (CON), moderate-intensity exercise (MIE; 50% Vo2peak for 60 min), or isoenergetic high-intensity exercise (HIE; alternating 2 min at 25% and 2 min at 90% Vo2peak). The morning after the exercise, a standardized meal was provided (16 kcal/kg BM, 1.02 g fat/kg, 1.36 g CHO/kg, 0.31 g PRO/kg), and measurements of plasma concentrations of triglyceride (TG), glucose, insulin, and β-hydroxybutyrate were made in the fasted condition and hourly for 6 h postprandial. Indirect calorimetry was used to determine fat oxidation in the fasted condition and 2, 4, and 6 h postprandial. Compared with CON, both MIE and HIE significantly attenuated PPTG [incremental AUC; 75.2 (15.5%), P = 0.033, and 54.9 (13.5%), P = 0.001], with HIE also significantly lower than MIE (P = 0.03). Postprandial fat oxidation was significantly higher in MIE [83.3 (10.6%) of total energy expenditure] and HIE [89.1 (9.8) %total] compared with CON [69.0 (16.1) %total, P = 0.039, and P = 0.018, respectively], with HIE significantly greater than MIE (P = 0.012). We conclude that, despite similar energy expenditure, HIE was more effective than MIE for lowering PPTG and increasing postprandial fat oxidation.

  10. Sex differences in creatine kinase after acute heavy resistance exercise on circulating granulocyte estradiol receptors.

    PubMed

    Wolf, Megan R; Fragala, Maren S; Volek, Jeff S; Denegar, Craig R; Anderson, Jeffrey M; Comstock, Brett A; Dunn-Lewis, Courtenay; Hooper, David R; Szivak, Tunde K; Luk, Hui-Ying; Maresh, Carl M; Häkkinen, Keijo; Kraemer, William J

    2012-09-01

    Previous research has shown reduced tissue disruption and inflammatory responses in women as compared to men following acute strenuous exercise. While the mechanism of this action is not known, estrogen may reduce the inflammatory response through its interaction with granulocytes. The purpose of this study was to determine if estrogen receptor β expression on granulocytes is related to sex differences in tissue disruption in response to an acute heavy resistance exercise protocol. Seven healthy, resistance-trained, eumenorrheic women (23 ± 3 years, 169 ± 9.1 cm, 66.4 ± 10.5 kg) and 8 healthy, resistance-trained men (25 ± 5 years, 178 ± 6.7 cm, 82.3 ± 9.33 kg) volunteered to participate in the study. Subjects performed an acute resistance exercise test consisting of six sets of five squats at 90% of the subject's one repetition maximum. Blood samples were obtained pre-, mid-, post-, and 1-, 6-, and 24-h postexercise. Blood samples were analyzed for 17-β-estradiol by ELISA, creatine kinase by colorimetric enzyme immunoassay, and estradiol receptors on circulating granulocytes through flow cytometry. Men had higher CK concentrations than women at baseline/control. Men had significantly higher CK concentrations at 24-h postexercise than women. No significant changes in estradiol β receptors were expressed on granulocytes after exercise or between sexes. While sex differences occur in CK activity in response to strenuous eccentric exercise, they may not be related to estradiol receptor β expression on granulocytes. Thus, although there are sex differences in CK expression following acute resistance exercise, the differences may not be attributable to estrogen receptor β expression on granulocytes.

  11. Human Monocyte Heat Shock Protein 72 Responses to Acute Hypoxic Exercise after 3 Days of Exercise Heat Acclimation

    PubMed Central

    Lee, Ben J.; Mackenzie, Richard W. A.; Cox, Valerie; James, Rob S.; Thake, Charles D.

    2015-01-01

    The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V˙O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72. PMID:25874231

  12. Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure.

    PubMed

    Gayda, Mathieu; Normandin, Eve; Meyer, Philippe; Juneau, Martin; Haykowsky, Mark; Nigam, Anil

    2012-12-01

    The aim of this study was to compare the acute hemodynamic responses during high-intensity intermittent exercise (HIIE) session compared with moderate-intensity continuous exercise (MICE) session in patients with heart failure and reduced ejection fraction (HFREF). Thirteen patients with HFREF (age, 59 ± 6 years; left ventricular ejection fraction, 27% ± 6%; New York Heart Association class I to III) were randomly assigned to a single session of HIIE (2 × 8 min) corresponding to 30 s at 100% of peak power output (PPO) and 30 s passive recovery intervals or to a MICE (22 min) at 60% of PPO. Gas exchange and central hemodynamic parameters (cardiac bioimpedance) were measured continuously during exercise. Oxygen uptake, stroke volume (SV), cardiac output (CO), and arterio-venous difference (C(a-v)O(2)) were compared. Mean oxygen uptake and ventilation were lower during HIIE vs. MICE. CO, SV, and C(a-v)O(2)) were not different between MICE and HIIE. Optimized HIIE was well tolerated (similar perceived exertion) and no significant ventricular arrhythmias and (or) abnormal blood pressure responses occurred during HIEE session. Compared with MICE, optimized HIIE elicited similar central hemodynamic and C(a-v)O(2) responses in HFREF patients with lower oxygen uptake and ventilation. HIIE may be an efficient exercise training modality in patients with HFREF.

  13. Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect

    PubMed Central

    Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.

    2012-01-01

    The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780

  14. Differential effects of acute and regular physical exercise on cognition and affect.

    PubMed

    Hopkins, M E; Davis, F C; Vantieghem, M R; Whalen, P J; Bucci, D J

    2012-07-26

    The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans.

  15. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults

    PubMed Central

    Richards, Jennifer C.; Crecelius, Anne R.; Larson, Dennis G.

    2015-01-01

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼20%); however, vasoconstriction to reflex increases in sympathetic activity during −40 mmHg lower-body negative pressure at rest (ΔFVC: −16 ± 3 vs. −16 ± 2%) or during 15% MVC (ΔFVC: −12 ± 2 vs. −11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation. PMID:25980023

  16. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation

    PubMed Central

    Carpio-Rivera, Elizabeth; Moncada-Jiménez, José; Salazar-Rojas, Walter; Solera-Herrera, Andrea

    2016-01-01

    Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication. PMID:27168471

  17. Exercise Lowers Plasma Angiopoietin-Like 2 in Men with Post-Acute Coronary Syndrome

    PubMed Central

    Thorin-Trescases, Nathalie; Hayami, Doug; Yu, Carol; Luo, Xiaoyan; Nguyen, Albert; Larouche, Jean-François; Lalongé, Julie; Henri, Christine; Arsenault, André; Gayda, Mathieu; Juneau, Martin; Lambert, Jean

    2016-01-01

    Pro-inflammatory angiopoietin-like 2 (angptl2) promotes endothelial dysfunction in mice and circulating angptl2 is higher in patients with cardiovascular diseases. We previously reported that a single bout of physical exercise was able to reduce angptl2 levels in coronary patients. We hypothesized that chronic exercise would reduce angptl2 in patients with post-acute coronary syndrome (ACS) and endothelial dysfunction. Post-ACS patients (n = 40, 10 women) were enrolled in a 3-month exercise-based prevention program. Plasma angptl2, hs-CRP, and endothelial function assessed by scintigraphic forearm blood flow, were measured before and at the end of the study. Exercise increased VO2peak by 10% (p<0.05), but did not significantly affect endothelial function, in both men and women. In contrast, exercise reduced angptl2 levels only in men (-26±7%, p<0.05), but unexpectedly not in women (+30±16%), despite similar initial levels in both groups. Exercise reduced hs-CRP levels in men but not in women. In men, levels of angptl2, but not of hs-CRP, reached at the end of the training program were negatively correlated with VO2peak (r = -0.462, p = 0.012) and with endothelial function (r = -0.419, p = 0.033) measured at baseline: better initial cardiopulmonary fitness and endothelial function correlated with lower angptl2 levels after exercise. Pre-exercise angptl2 levels were lower if left ventricular ejection time was long (p<0.05) and the drop in angptl2 induced by exercise was greater if the cardiac output was high (p<0.05). In conclusion, in post-ACS men, angptl2 levels are sensitive to chronic exercise training. Low circulating angptl2 reached after training may reflect good endothelial and cardiopulmonary functions. PMID:27736966

  18. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  19. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  20. Effects of acute physical exercise on hepatocyte volume and function in rat.

    PubMed

    Latour, M G; Brault, A; Huet, P M; Lavoie, J M

    1999-05-01

    The goal of the present experiment was to measure the volume of the different compartments in liver of exercised rats and to get some insights into the appropriate working of the hepatic function following exercise. Hence, livers from male rats were isolated and perfused after treadmill exercise or rest. This procedure was performed on rats that were overnight semifasted (50% food restriction) or well fed. To evaluate the hepatocyte cell volume, the multiple-indicator dilution curve technique was used after 40 min of perfusion. Radioactive tracers for red blood cells, sucrose, and water were used to measure liver vascular space, liver interstitial space, and water cellular space, respectively. The hepatocyte function was assessed by taurocholate and propanolol clearance. Oxygen consumption, intrahepatic resistance, bile secretion, and lactate dehydrogenase release estimated liver viability. Liver viability and hepatocyte function were not changed following exercise either in the fed or in the semifasted animals. As expected, liver glycogen levels were significantly (P < 0.01) reduced in the food-restricted rats. Consequently, liver glycogen levels following exercise were decreased significantly (P < 0.01) only in the fed rats. Despite this, exercise decreased the hepatocyte water space in both food-restricted and fed groups ( approximately 15%; P < 0.01) without altering the sinusoidal and interstitial space. The present data show that acute exercise decreased the hepatocyte volume and that this volume change is not entirely linked to a decrease in hepatic glycogen level. PMID:10233015

  1. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.

  2. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  3. Association of calprotectin with leukocyte chemotactic and inflammatory mediators following acute aerobic exercise.

    PubMed

    Maharaj, Arun; Slusher, Aaron L; Zourdos, Michael C; Whitehurst, Michael; Fico, Brandon G; Huang, Chun-Jung

    2016-01-01

    The objective of this study was to examine whether acute aerobic exercise-mediated calprotectin in plasma would be associated with monocyte chemotactic protein-1 (MCP-1), myeloperoxidase (MPO), and interleukin-6 (IL-6) in healthy individuals. Eleven healthy participants, aged 18 to 30 years, were recruited to perform a 30-min bout of aerobic exercise at 75% maximal oxygen uptake. Acute aerobic exercise elicited a significant elevation across time in plasma calprotectin, MCP-1, MPO, and IL-6. Body mass index (BMI) was positively correlated with calprotectin area-under-the-curve with "respect to increase" (AUCi) and IL-6 AUCi. Furthermore, calprotectin AUCi was positively correlated with IL-6 AUCi and MPO AUCi, even after controlling for BMI. Although MPO AUCi was positively correlated with IL-6 AUCi, this relationship no longer existed after controlling for BMI. These results suggest that acute aerobic exercise could mediate innate immune response associated with calprotectin and its related leukocyte chemotactic and inflammatory mediators, especially in individuals with elevated BMI.

  4. Acute, Low-dose CO Inhalation does not Alter Energy Expenditure during Submaximal Exercise.

    PubMed

    Kane, L A; Ryan, B J; Schmidt, W; Byrnes, W C

    2016-01-01

    Carbon monoxide, a gas known most widely for its toxic effects at high doses, is receiving increased attention for its role as a physiological signaling molecule and potential therapeutic agent when administered in low doses. We sought to quantify any changes to oxygen consumption and energy expenditure during submaximal exercise after low-dose CO inhalation. 9 active individuals completed 4 graded submaximal exercise tests, with each test occurring during a separate visit. For their first exercise test, subjects inhaled CO or room air (1.2 mL·kg(-1) body mass) in a randomized, subject-blind fashion. A second test was repeated 24 h later when the inhaled gas should have cleared the system. Subjects repeated study procedures with the alternate dose after a washout period of at least 2 days. Low-dose CO administration did not affect oxygen consumption or energy expenditure during submaximal exercise immediately or 24 h following its administration. Increases in heart rate, blood [lactate], and perceived exertion were observed following acute CO inhalation but these effects were absent after 24 h. The results of this study suggest that low-dose CO administration does not influence the energetics of submaximal exercise, but it acutely increases the relative intensity associated with absolute workloads below the lactate threshold.

  5. Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.

    PubMed

    Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N

    2014-12-01

    This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE.

  6. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  7. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Klei, Samantha; Dougherty, Brian M; Kang, Jie; Smith, Charles R; Ross, Ryan E; Faigenbaum, Avery D

    2015-01-01

    The purpose of this study was to quantify and compare the acute metabolic responses to resistance exercise protocols comprising free-weight, body-weight, and battling rope (BR) exercises. Ten resistance-trained men (age = 20.6 ± 1.3 years) performed 13 resistance exercise protocols on separate days in random order consisting of only one exercise per session. For free-weight exercise protocols, subjects performed 3 sets of up to 10 repetitions with 75% of their 1 repetition maximum. For the push-up (PU) and push-up on a BOSU ball protocols, subjects performed 3 sets of 20 repetitions. For the burpee and PU with lateral crawl protocols, subjects performed 3 sets of 10 repetitions. For the plank and BR circuit protocols, subjects performed 3 sets of 30-second bouts. A standard 2-minute rest interval (RI) was used in between all sets for each exercise. Data were averaged for the entire protocol including work and RIs. Mean oxygen consumption was significantly greatest during the BR (24.6 ± 2.6 ml·kg·min) and burpee (22.9 ± 2.1 ml·kg·min) protocols. For the free-weight exercises, highest mean values were seen in the squat (19.6 ± 1.8 ml·kg·min), deadlift (18.9 ± 3.0 ml·kg·min), and lunge (17.3 ± 2.6 ml·kg·min). No differences were observed between PUs performed on the floor vs. on a BOSU ball. However, adding a lateral crawl to the PU significantly increased mean oxygen consumption (19.5 ± 2.9 ml·kg·min). The lowest mean value was seen during the plank exercise (7.9 ± 0.7 ml·kg·min). These data indicate performance of exercises with BRs and a body-weight burpee exercise elicit relatively higher acute metabolic demands than traditional resistance exercises performed with moderately heavy loading.

  8. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Klei, Samantha; Dougherty, Brian M; Kang, Jie; Smith, Charles R; Ross, Ryan E; Faigenbaum, Avery D

    2015-01-01

    The purpose of this study was to quantify and compare the acute metabolic responses to resistance exercise protocols comprising free-weight, body-weight, and battling rope (BR) exercises. Ten resistance-trained men (age = 20.6 ± 1.3 years) performed 13 resistance exercise protocols on separate days in random order consisting of only one exercise per session. For free-weight exercise protocols, subjects performed 3 sets of up to 10 repetitions with 75% of their 1 repetition maximum. For the push-up (PU) and push-up on a BOSU ball protocols, subjects performed 3 sets of 20 repetitions. For the burpee and PU with lateral crawl protocols, subjects performed 3 sets of 10 repetitions. For the plank and BR circuit protocols, subjects performed 3 sets of 30-second bouts. A standard 2-minute rest interval (RI) was used in between all sets for each exercise. Data were averaged for the entire protocol including work and RIs. Mean oxygen consumption was significantly greatest during the BR (24.6 ± 2.6 ml·kg·min) and burpee (22.9 ± 2.1 ml·kg·min) protocols. For the free-weight exercises, highest mean values were seen in the squat (19.6 ± 1.8 ml·kg·min), deadlift (18.9 ± 3.0 ml·kg·min), and lunge (17.3 ± 2.6 ml·kg·min). No differences were observed between PUs performed on the floor vs. on a BOSU ball. However, adding a lateral crawl to the PU significantly increased mean oxygen consumption (19.5 ± 2.9 ml·kg·min). The lowest mean value was seen during the plank exercise (7.9 ± 0.7 ml·kg·min). These data indicate performance of exercises with BRs and a body-weight burpee exercise elicit relatively higher acute metabolic demands than traditional resistance exercises performed with moderately heavy loading. PMID:24942174

  9. Kinetics and utilization of lipid sources during acute exercise and acipimox.

    PubMed

    Nellemann, Birgitte; Søndergaard, Esben; Jensen, Jørgen; Pedersen, Steen Bønløkke; Jessen, Niels; Jørgensen, Jens Otto Lunde; Nielsen, Søren

    2014-07-15

    Overweight is associated with abnormalities of lipid metabolism, many of which are reversed by exercise. We investigated the impact of experimental antilipolysis and acute exercise on lipid kinetics and oxidation from VLDL-TG, plasma FFA, and "residual lipids" in overweight men (n = 8) using VLDL-TG and palmitate tracers in combination with muscle biopsies in a randomized, placebo-controlled design. Participants received placebo or acipimox on each study day (4 h of rest, 90 min of exercise at 50% V(O(2 max))). Exercise suppressed VLDL-TG secretion significantly during placebo but not acipimox (placebo-rest: 64.2 ± 9.4; placebo-exercise: 48.3 ± 8.0; acipimox-rest: 55.2 ± 13.4; acipimox-exercise: 52.0 ± 10.9). Resting oxidation of VLDL-TG FA and FFA was significantly reduced during acipimox compared with placebo, whereas "residual lipid oxidation" increased significantly [VLDL-TG oxidation (placebo: 18 ± 3 kcal/h; acipimox: 11 ± 2 kcal/h), FFA oxidation (placebo: 14 ± 2 kcal/h; acipimox: 4 ± 0.5 kcal/h), and residual lipid oxidation (placebo: 3 ± 5 kcal/h; acipimox: 14 ± 5 kcal/h)]. Additionally, during exercise on both placebo and acipimox, oxidation of VLDL-TG and FFA increased, but the relative contribution to total lipid oxidation diminished, except for FFA, which remained unchanged during acipimox. Residual lipid oxidation increased significantly during exercise in both absolute and relative terms. Changes in selected cellular enzymes and proteins provided no explanations for kinetic changes. In conclusion, suppressed FFA availability blunts the effect of exercise on VLDL-TG secretion and modifies the contribution of lipid sources for oxidation.

  10. Exercise capacity in patients 3 days after acute, uncomplicated myocardial infarction

    SciTech Connect

    Burek, K.A.; Kirscht, J.; Topol, E.J. )

    1989-11-01

    In a randomized, controlled trial of early hospital discharge after acute myocardial infarction (MI), a heart rate, symptom-limited exercise thallium test was performed after the onset of MI. Patients' exercise capacity was evaluated by the exercise treadmill with accompanying thallium scintigraphy. Of 507 consecutive patients screened, the condition of 179 was classified as uncomplicated, which is defined as the absence of angina, heart failure, or serious arrhythmias at 72 hours from admission. Of the patients with uncomplicated conditions, 126 had an exercise test on day 3 and 53 did not exercise on day 3. Of the 126 patients who exercised on day 3, 36 had a positive test and 90 had a negative test for ischemia. The 36 patients with a positive test result exercised a mean time of 6.71 +/- 2.8 minutes, achieved a mean peak heart rate of 120.9 +/- 21.4 beats/min, reached a peak systolic blood pressure of 144.7 +/- 33.3 mm Hg, and achieved a double product (rate-pressure product) of 183.4 +/- 67.6. The 90 patients with a negative test result for ischemia exercised 9.45 +/- 12.7 minutes, achieved a peak heart rate of 130.2 +/- 14.4 beats/min, reached a mean systolic blood pressure of 155.5 +/- 29.4 mm Hg, and achieved a rate-pressure product of 210.5 +/- 44.0. Of the 90 patients with uncomplicated conditions who had a negative exercise test for ischemia, 85 patients received reperfusion therapy, which included thrombolysis or coronary angioplasty or both.

  11. How to regulate the acute physiological response to "aerobic" high-intensity interval exercise.

    PubMed

    Tschakert, Gerhard; Kroepfl, Julia; Mueller, Alexander; Moser, Othmar; Groeschl, Werner; Hofmann, Peter

    2015-03-01

    The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l(-1)), peak La (7.14 ± 2.48 mmol·l(-1)), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min(-1)) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l(-1); Lapeak: 12.37 ± 4.17 mmol·l(-1), HRpeak: 187.67 ± 5.72 b·min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key pointsHigh-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak

  12. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women.

    PubMed

    Hagobian, Todd Alan; Yamashiro, Megan; Hinkel-Lipsker, Jake; Streder, Katherine; Evero, Nero; Hackney, Terry

    2013-01-01

    Acute exercise suppresses relative energy intake; however, it remains unclear whether this occurs in both men and women exposed to the same relative exercise treatment. Eleven healthy men (22 ± 2 years; 16% ± 6% body fat (BF); 26 ± 4 body mass index (BMI); 42.9 ± 6.5 mL·kg(-1)·min(-1) peak oxygen consumption ([Formula: see text]O(2peak))) and 10 healthy women (21 ± 2 years; 24 ± 2 BMI; 23% ± 3% BF; 39.9 ± 5.5 mL·kg(-1)·min(-1) [Formula: see text]O(2peak)) rested for 60 min or exercised on a cycle ergometer at 70% [Formula: see text]O(2peak) until 30% of total daily energy expenditure was expended (men, expenditure = 975 ± 195 kcal in 82 ± 13 min; women, expenditure = 713 ± 86 kcal in 84 ± 17 min) in a counterbalanced, crossover fashion. Appetite hormones and appetite ratings were assessed in response to each condition. Forty minutes after both conditions, ad libitum total and relative energy intake (energy intake minus energy cost of exercise) were assessed at a buffet meal. There was no significant sex or condition effect in appetite hormones (PYY(3-36), acylated ghrelin, insulin) and appetite ratings (hunger, satisfaction, fullness). Total energy intake in men was significantly higher (P < 0.05) in exercise and rest conditions (1648 ± 950, 1216 ± 633 kcal, respectively) compared with women (591 ± 183, 590 ± 231 kcal, respectively). Relative energy intake was significantly lower (P < 0.05) after exercise compared with rest in men (672 ± 827, 1133 ± 619 kcal, respectively) and women (-121 ± 243, 530 ± 233 kcal, respectively). These data highlight the effectiveness of acute exercise to suppress relative energy intake regardless of sex.

  13. Effects of acute exercise, exercise training, and diabetes on the expression of lymphangiogenic growth factors and lymphatic vessels in skeletal muscle.

    PubMed

    Kivelä, Riikka; Silvennoinen, Mika; Lehti, Maarit; Kainulainen, Heikki; Vihko, Veikko

    2007-10-01

    Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. We studied lymphatic vessel density and expression of the main lymphangiogenic growth factors VEGF-C and VEGF-D and their receptor VEGFR-3 in response to acute running exercise and endurance exercise training in the skeletal muscle of healthy and diabetic mice. VEGF-C mRNA expression increased after the acute exercise bout (P < 0.05) in healthy muscles, but there was no change in diabetic muscles. VEGF-C levels were not changed either in healthy or in diabetic muscle after the exercise training. Neither acute exercise nor exercise training had an effect on the mRNA expression of VEGF-D or VEGFR-3 in healthy or diabetic muscles. Lymphatic vessel density was similar in sedentary and trained mice and was >10-fold smaller than blood capillary density. Diabetes increased the mRNA expression of VEGF-D (P < 0.01). Increased immunohistochemical staining of VEGF-D was found in degenerative muscle fibers in the diabetic mice. In conclusion, the results suggest that acute exercise or exercise training does not significantly affect lymphangiogenesis in skeletal muscle. Diabetes increased the expression of VEGF-D in skeletal muscle, and this increase may be related to muscle fiber damage.

  14. Effects of Acute Endurance Exercise on Plasma Protein Profiles of Endurance-Trained and Untrained Individuals over Time

    PubMed Central

    Schild, Marius; Eichner, Gerrit; Beiter, Thomas; Zügel, Martina; Krumholz-Wagner, Ilke; Hudemann, Jens; Pilat, Christian; Krüger, Karsten; Niess, Andreas M.; Steinacker, Jürgen M.; Mooren, Frank C.

    2016-01-01

    Acute physical exercise and repeated exercise stimuli affect whole-body metabolic and immunologic homeostasis. The aim of this study was to determine plasma protein profiles of trained (EET, n = 19) and untrained (SED, n = 17) individuals at rest and in response to an acute bout of endurance exercise. Participants completed a bicycle exercise test at an intensity corresponding to 80% of their VO2max. Plasma samples were taken before, directly after, and three hours after exercise and analyzed using multiplex immunoassays. Seventy-eight plasma variables were included in the final analysis. Twenty-nine variables displayed significant acute exercise effects in both groups. Seven proteins differed between groups, without being affected by acute exercise. Among these A2Macro and IL-5 were higher in EET individuals while leptin showed elevated levels in SED individuals. Fifteen variables revealed group and time differences with elevated levels for IL-3, IL-7, IL-10, and TNFR2 in EET individuals. An interaction effect could be observed for nine variables including IL-6, MMP-2, MMP-3, and muscle damage markers. The proteins that differ between groups indicate a long-term exercise effect on plasma protein concentrations. These findings might be of importance in the development of exercise-based strategies in the prevention and therapy of chronic metabolic and inflammatory diseases and for training monitoring. PMID:27239103

  15. The acute effects of different stretching exercises on jump performance.

    PubMed

    Pacheco, Laura; Balius, Ramon; Aliste, Luisa; Pujol, Montse; Pedret, Carles

    2011-11-01

    The purpose of this study was to demonstrate the short-term effects of different stretching exercises during the warm-up period on the lower limbs. A controlled, crossover clinical study involving 49 volunteers (14 women and 35 men; mean age: 20.4 years) enrolled in a "physical and sporting activities monitor" program. The explosive force was assessed using the Bosco test. The protocol was as follows: The test involved a (pre) jump test, general warm-up, intervention and (post) jump test. Each volunteer was subjected to each of the 5 interventions (no stretching [NS] and stretching: static passive stretching [P]; proprioceptive neuromuscular facilitation [PNF] techniques; static active stretching in passive tension [PT]; static active stretching in active tension [AT]) in a random order. The jump test was used to assess the squat jump, countermovement jump (CMJ), elasticity index (EI), and drop jump. An intragroup statistical analysis was performed before and after each intervention to compare the differences between the different stretching exercises. An intergroup analysis was also performed. Significant differences (p < 0.05) were found between all variables for the interventions "P," "PNF," and "TA" in the intragroup analysis, with each value being higher in the postjump test. Only the "P" intervention showed a significant difference (p = 0.046) for "EI," with the postvalue being lower. Likewise, significant differences (p < 0.05) were observed for the "CMJ" measurements during the intergroup analysis, especially between "NS" and the interventions "P," "PNF," "AT," and "PT," with each value, particularly that for "AT," being higher after stretching. The results of this study suggest that static active stretching in AT can be recommended during the warm-up for explosive force disciplines. PMID:21993032

  16. Different Circulating Brain-Derived Neurotrophic Factor Responses to Acute Exercise Between Physically Active and Sedentary Subjects

    PubMed Central

    Nofuji, Yu; Suwa, Masataka; Sasaki, Haruka; Ichimiya, Atsushi; Nishichi, Reiko; Kumagai, Shuzo

    2012-01-01

    Although circulating brain-derived neurotrophic factor (BDNF) level is affected by both acute and chronic physical activity, the interaction of acute and chronic physical activity was still unclear. In this study, we compared the serum and plasma BDNF responses to maximal and submaximal acute exercises between physically active and sedentary subjects. Eight active and 8 sedentary female subjects participated in the present study. Both groups performed 3 exercise tests with different intensities, i.e. 100% (maximal), 60% (moderate) and 40% (low) of their peak oxygen uptake. In each exercise test, blood samples were taken at the baseline and immediately, 30 and 60 min after the test. The serum BDNF concentration was found to significantly increase immediately after maximal and moderate exercise tests in both groups. In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. These findings suggest that regular exercise facilitates the utilization of circulating BDNF during and/or after acute exercise with maximal intensity. Key points In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of serum BDNF change for moderate or low exercise tests. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. PMID:24137066

  17. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle.

    PubMed

    Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A

    2015-04-01

    Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser(473)) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser(2448)) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations.

  18. Acute chest pain after bench press exercise in a healthy young adult

    PubMed Central

    Smereck, Janet A; Papafilippaki, Argyro; Sudarshan, Sawali

    2016-01-01

    Bench press exercise, which involves repetitive lifting of weights to full arm extension while lying supine on a narrow bench, has been associated with complications ranging in acuity from simple pectoral muscle strain, to aortic and coronary artery dissection. A 39-year-old man, physically fit and previously asymptomatic, presented with acute chest pain following bench press exercise. Diagnostic evaluation led to the discovery of critical multivessel coronary occlusive disease, and subsequently, highly elevated levels of lipoprotein (a). Judicious use of ancillary testing may identify the presence of “high-risk” conditions in a seemingly “low-risk” patient. Emergency department evaluation of the young adult with acute chest pain must take into consideration an extended spectrum of potential etiologies, so as to best guide appropriate management. PMID:27703399

  19. Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise

    PubMed Central

    Hankinson, Paul B.; Simpson, Craig A.; Little, Jonathan P.; Graham, Ryan B.; Gurd, Brendon J.

    2013-01-01

    Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n  = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05). PMID:23951207

  20. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    PubMed

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  1. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    PubMed Central

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise − rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = −0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. PMID:25038148

  2. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-01-01

    This study investigated the effects of acute moderate alcohol intake on muscular performance during recovery from eccentric exercise-induced muscle damage. Eleven healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed a beverage containing 1g/kg bodyweight ethanol (as vodka and orange juice) (ALC). On another occasion they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed an isocaloric quantity of orange juice (OJ). Measurement of maximal isokinetic (concentric and eccentric) and isometric torque produced across the knee, plasma creatine kinase (CK) concentrations and muscle soreness were made before and at 36 and 60h following each exercise bout. All measures of muscle performance were significantly reduced at 36 and 60h post-exercise compared to pre-exercise measures (all p<0.05). The greatest decreases in peak strength were observed at 36h with losses of 12%, 28% and 19% occurring for OJ isometric, concentric, and eccentric contractions, respectively. However, peak strength loss was significantly greater in ALC with the same performance measures decreasing by 34%, 40% and 34%, respectively. Post-exercise plasma creatine kinase activity and ratings of muscle soreness were not different between conditions (both p>0.05). These results indicate that consumption of even moderate amounts of alcohol following eccentric-based exercise magnifies the normally observed losses in dynamic and static strength. Therefore, to minimise exercise related losses in muscle function and expedite recovery, participants in sports involving eccentric muscle work should avoid alcohol-containing beverages in the post-event period. PMID:19230764

  3. Clinical impact of time of day on acute exercise response in COPD.

    PubMed

    Chan-Thim, Emilie; Dumont, Marie; Moullec, Grégory; Rizk, Amanda K; Wardini, Rima; Trutschnigg, Barbara; Paquet, Jean; de Lorimier, Myriam; Parenteau, Simon; Pepin, Véronique

    2014-04-01

    The purpose of this pilot study was to determine the impact of time of day on the acute response to incremental exercise in chronic obstructive pulmonary disease (COPD). Fourteen subjects (nine men) aged 71 ± 7 years with moderate to severe airflow obstruction (FEV1: 58 ± 13% predicted) followed a counterbalanced randomized design, performing three symptom-limited incremental cycling tests at 8:00, 12:00, and 16:00 hours on different days, each preceded by a spirometry. COPD medications were withdrawn prior to testing. No overall time effect was found for peak exercise capacity (p = 0.22) or pulmonary function (FEV1, p = 0.56; FVC, p = 0.79). However, a large effect size (f = 0.48) was observed for peak exercise capacity and several pulmonary function parameters. For peak exercise capacity, the average within-subject coefficient of variation was 5.5 ± 3.9% and the average amplitude of change was 7 ± 5W. Seven subjects (50%) showed diurnal changes at levels equal to or beyond the minimal clinically important difference for both peak exercise capacity and pulmonary function. In this sub-group, peak exercise capacity was greatest at 16:00 hours (p = 0.03, ƒ = 1.04). No systematic time-of-day effect on peak exercise capacity was obtained in COPD patients in the present pilot study. However, based on the observed effect size and on the average amplitude of change and within-subject variations seen across testing times, the guidelines recommendation that time of day be standardized for repeat exercise testing in COPD should be maintained.

  4. Energy intake and appetite-related hormones following acute aerobic and resistance exercise.

    PubMed

    Balaguera-Cortes, Liliana; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J

    2011-12-01

    Previous research has shown that resistance and aerobic exercise have differing effects on perceived hunger and circulating levels of appetite-related hormones. However, the effect of resistance and aerobic exercise on actual energy intake has never been compared. This study investigated the effect of an acute bout of resistance exercise, compared with aerobic exercise, on subsequent energy intake and appetite-regulating hormones. Ten active men completed 3 trials in a counterbalanced design: 45 min of resistance exercise (RES; free and machine weights), aerobic exercise (AER; running), or a resting control trial (CON). Following exercise or CON, participants had access to a buffet-style array of breakfast foods and drinks to consume ad libitum. Plasma concentrations of a range of appetite-regulating hormones were measured throughout each trial. Despite significantly higher energy expenditure with AER compared with RES (p < 0.05), there was no difference in total energy intake from the postexercise meal between trials (p = 0.779). Pancreatic polypeptide was significantly higher prior to the meal after both RES and AER compared with CON. In contrast, active ghrelin was lower following RES compared with both CON and AER (p ≤ 0.05), while insulin was higher following RES compared with CON (p = 0.013). In summary, the differential response of appetite-regulating hormones to AER and RES does not appear to influence energy intake in the postexercise meal. However, given the greater energy expenditure associated with AER compared with RES, AER modes of exercise may be preferable for achieving short-term negative energy balance. PMID:22111518

  5. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  6. Antioxidant status in haemoglobin E carriers after acute and chronic strenuous exercises.

    PubMed

    Palasuwan, Attakorn; Soogarun, Suphan; Suksom, Daroonwan; Pitaksathienkul, Chatchadaporn; Rousseau, Anne-Sophie

    2015-01-01

    Haemoglobin E (HbE), an unstable haemoglobin, is highly susceptible to oxidative damages. We examined how acute or chronic physiological challenge induced by exercise affects antioxidant response in HbE carriers. Two independent studies were conducted in individuals with HbE trait and paired normal Hb. In study 1, sedentary participants were tested in a graded maximal exercise and blood samples were collected before, immediately after, and 45 minutes after an acute exercise. Our data showed that erythrocyte glutathione peroxidase (GPx) activity failed to recover in HbE carriers after 45 minutes of rest. In study 2, athletes were trained in a 10-week strenuous training and blood samples were collected before and after training period. We found that athletes with HbE carriers showed a larger increase in plasma GPx activity compared to those with normal Hb. These data suggest that HbE carriers could cope with exercise-induced oxidative stress by adjusting endogenous antioxidant markers.

  7. TNF-α and TNFR1 responses to recovery therapies following acute resistance exercise

    PubMed Central

    Townsend, Jeremy R.; Hoffman, Jay R.; Fragala, Maren S.; Jajtner, Adam R.; Gonzalez, Adam M.; Wells, Adam J.; Mangine, Gerald T.; Fukuda, David H.; Stout, Jeffrey R.

    2015-01-01

    The purpose of this investigation was to compare the effect of two commonly used therapeutic modalities (a) neuromuscular electrical stimulation (NMES) and (b) cold water immersion (CWI) on circulating tumor necrosis factor alpha (TNF-α) and monocyte TNF-α receptor (TNFR1) expression following intense acute resistance exercise and subsequent recovery. Thirty (n = 30) resistance trained men (22.5 ± 2.7 y) performed an acute heavy resistance exercise protocol on three consecutive days followed by one of three recovery methods (CON, NMES, and CWI). Circulating TNF-α levels were assayed and TNFR1 expression on CD14+ monocytes was measured by flow cytometry measured PRE, immediately post (IP), 30-min post (30M), 24 h post (24H), and 48 h post (48H) exercise. Circulating TNF-α was elevated at IP (p = 0.001) and 30M (p = 0.005) and decreased at 24H and 48H recovery from IP in CON (p = 0.015) and CWI (p = 0.011). TNF-α did not significantly decrease from IP during recovery in NMES. TNFR1 expression was elevated (p < 0.001) at 30M compared to PRE and all other time points. No significant differences between groups were observed in TNFR1 expression. During recovery (24H, 48H) from muscle damaging exercise, NMES treatment appears to prevent the decline in circulating TNF-α observed during recovery in those receiving no treatment or CWI. PMID:25741287

  8. Microvolt T-wave alternans during exercise and pacing in patients with acute myocardial infarction.

    PubMed

    Raatikainen, M J Pekka; Jokinen, Vesa; Virtanen, Vesa; Hartikainen, Juha; Hedman, Antti; Huikuri, Heikki V

    2005-01-01

    Cardiac Arrhythmias and Risk Stratification after Myocardial infarction (CARISMA) is a prospective multicenter trial designed to document the incidence of cardiac arrhythmias after acute myocardial infarction (AMI), and to assess the predictive accuracy of various arrhythmic risk markers. In this substudy of the CARISMA trial, microvolt T-wave alternans (TWA) was assessed with specific equipment 6 weeks after AMI during bicycle exercise, atrial (A) pacing, and simultaneous ventricular and atrial (V + A) pacing in 80 patients with left ventricular ejection fraction (LVEF) <40%. The agreement between the acute test results was determined by overall proportion of concordance and the kappa statistic. Sustained TWA was observed in 24, 45, and 50% of the patients during the exercise test, A pacing, and V + A pacing, respectively. The number of indeterminate TWA was significantly lower during V + A pacing (n = 7) than exercise test (n = 34). The TWA concordance rate was 71% between exercise and V + A pacing (kappa= 0.53, P = 0.001), 79% between exercise and A pacing (kappa= 0.54, P < 0.001), and 95% between the two pacing modes (kappa= 0.89, P < 0.001). Patients with positive TWA in all tests had lower LVEF (28 +/- 7% vs 35 +/- 9%, P < 0.01) and wider QT dispersion (99 +/- 44 ms vs 67 +/- 38 ms, P < 0.01) than those with inconsistent test result. The low number of indeterminate tests and high concordance between the test results indicate that V + A pacing may provide a valuable means to assess TWA in patients who cannot complete the exercise test.

  9. Bilevel ventilation during exercise in acute on chronic respiratory failure: a preliminary study.

    PubMed

    Menadue, Collette; Alison, J A; Piper, A J; Flunt, D; Ellis, E R

    2010-02-01

    To determine the immediate effects of bilevel non-invasive ventilation plus oxygen (NIV+O(2)) during exercise compared to exercise with O(2) alone in people recovering from acute on chronic hypercapnic respiratory failure (HRF), a randomised crossover study with repeated measures was performed. Eighteen participants performed six minute walk tests (6MWT) and 16 participants performed unsupported arm exercise (UAE) tests with NIV+O(2) and with O(2) alone in random order. Distance walked increased by a mean of 43.4m (95% CI 14.1 to 72.8, p=0.006) with NIV+O(2) compared to exercise with O(2) alone. In addition, isotime oxygen saturation increased by a mean of 5% (95% CI 2-7, p=0.001) and isotime dyspnoea was reduced [median 2 (interquartile range (IQR) 1-4) versus 4 (3-5), p=0.028] with NIV+O(2). A statistically significant increase was also observed in UAE endurance time with NIV+O(2) [median 201s (IQR 93-414) versus 157 (90-342), p=0.033], and isotime perceived exertion (arm muscle fatigue) was reduced by a mean of 1.0 on the Borg scale (95% CI -1.9 to -0.1, p=0.037) compared with O(2) alone. Non-invasive ventilation plus O(2) during walking resulted in an immediate improvement in distance walked and oxygen saturation, and a reduction in dyspnoea compared to exercise with O(2) alone in people recovering from acute on chronic HRF. The reduction of dyspnoea during walking and arm muscle fatigue during UAE observed with NIV+O(2) may allow patients to better tolerate exercise early in the recovery period. PMID:19804963

  10. Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise

    PubMed Central

    Dennis, Richard A; Trappe, Todd A; Simpson, Pippa; Carroll, Chad; Emma Huang, B; Nagarajan, Radhakrishnan; Bearden, Edward; Gurley, Cathy; Duff, Gordon W; Evans, William J; Kornman, Kenneth; Peterson, Charlotte A

    2004-01-01

    Inflammation appears to play an important role in the repair and regeneration of skeletal muscle after damage. We tested the hypothesis that the severity of the inflammatory response in muscle after an acute bout of resistance exercise is associated with single nucleotide polymorphisms (SNPs) previously shown to alter interleukin-1 (IL-1) activity. Using a double-blind prospective design, sedentary young men were screened (n = 100) for enrolment (n = 24) based upon having 1 of 4 haplotype patterns composed of five polymorphic sites in the IL-1 gene cluster: IL-1A (+4845), IL-1B (+3954), IL-1B (−511), IL-1B (−3737) and IL-1RN (+2018). Subjects performed a standard bout of resistance leg exercise and vastus lateralis biopsies were obtained pre-, and at 24, and 72 h post-exercise. Inflammatory marker mRNAs (IL-1β, IL-6 and tumor necrosis factor-α (TNF-α)) and the number of CD68+ macrophages were quantified. Considerable variation was observed in the expression of these gene products between subjects. At 72 h post-exercise, IL-1β had increased in a number of subjects (n = 10) and decreased (n = 4) or did not change (n = 10) in others. Inflammatory responses were significantly associated with specific haplotype patterns and were also influenced by individual SNPs. Subjects with genotypes 1.1 at IL-1B (+3954) or 2.2 at IL-1B (−3737) had approximately a 2-fold higher median induction of several markers, but no increase in macrophages, suggesting that cytokine gene expression is elevated per macrophage. The IL-1RN (+2018) SNP maximized the response specifically within these groups and was associated with increased macrophage recruitment. This is the first report that IL-1 genotype is associated with the inflammation of skeletal muscle following acute resistance exercise that may potentially affect the adaptations to chronic resistance exercise. PMID:15331687

  11. Affective Responses to Acute Exercise in Elderly Impaired Males: The Moderating Effects of Self-Efficacy and Age.

    ERIC Educational Resources Information Center

    McAuley, Edward; And Others

    1995-01-01

    Examined relationships between perceptions of personal efficacy and affective responsibility to acute exercise in elderly male inpatients and outpatients at a Veterans Administration Medical Center. A significant change in feelings of fatigue was revealed over time but exercise effects on affect were shown to be moderated by perceptions of…

  12. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

  13. Acute Effects of Classroom Exercise Breaks on Executive Function and Math Performance: A Dose-Response Study

    ERIC Educational Resources Information Center

    Howie, Erin K.; Schatz, Jeffrey; Pate, Russell R.

    2015-01-01

    Purpose: The purpose of this study was to determine the acute dose-response relationship of classroom exercise breaks with executive function and math performance in 9- to 12-year-old children by comparing 5-min, 10-min, or 20-min classroom exercise breaks to 10 min of sedentary classroom activity. Method: This study used a within-subjects…

  14. The effects of cold exposure on leukocytes, hormones and cytokines during acute exercise in humans.

    PubMed

    Gagnon, Dominique D; Gagnon, Sheila S; Rintamäki, Hannu; Törmäkangas, Timo; Puukka, Katri; Herzig, Karl-Heinz; Kyröläinen, Heikki

    2014-01-01

    The purpose of the study was to examine the effects of exercise on total leukocyte count and subsets, as well as hormone and cytokine responses in a thermoneutral and cold environment, with and without an individualized pre-cooling protocol inducing low-intensity shivering. Nine healthy young men participated in six experimental trials wearing shorts and t-shirts. Participants exercised for 60 min on a treadmill at low (LOW: 50% of peak VO2) and moderate (MOD: 70% VO2peak) exercise intensities in a climatic chamber set at 22°C (NT), and in 0°C (COLD) with and without a pre-exercise low-intensity shivering protocol (SHIV). Core and skin temperature, heart rate and oxygen consumption were collected continuously. Blood samples were collected before and at the end of exercise to assess endocrine and immunological changes. Core temperature in NT was greater than COLD and SHIV by 0.4±0.2°C whereas skin temperature in NT was also greater than COLD and SHIV by 8.5±1.4°C and 9.3±2.5°C respectively in MOD. Total testosterone, adenocorticotropin and cortisol were greater in NT vs. COLD and SHIV in MOD. Norepinephrine was greater in NT vs. other conditions across intensities. Interleukin-2, IL-5, IL-7, IL-10, IL-17, IFN-γ, Rantes, Eotaxin, IP-10, MIP-1β, MCP-1, VEGF, PDGF, and G-CSF were elevated in NT vs. COLD and/or SHIV. Furthermore, IFN-γ, MIP-1β, MCP-1, IL-10, VEGF, and PDGF demonstrate greater concentrations in SHIV vs. COLD, mainly in the MOD condition. This study demonstrated that exercising in the cold can diminish the exercise-induced systemic inflammatory response seen in a thermoneutral environment. Nonetheless, prolonged cooling inducing shivering thermogenesis prior to exercise, may induce an immuno-stimulatory response following moderate intensity exercise. Performing exercise in cold environments can be a useful strategy in partially inhibiting the acute systemic inflammatory response from exercise but oppositely, additional body cooling may reverse

  15. Acute Inflammatory Response to Low-, Moderate-, and High-Load Resistance Exercise in Women With Breast Cancer-Related Lymphedema.

    PubMed

    Cormie, Prue; Singh, Benjamin; Hayes, Sandi; Peake, Jonathan M; Galvão, Daniel A; Taaffe, Dennis R; Spry, Nigel; Nosaka, Kazunori; Cornish, Bruce; Schmitz, Kathryn H; Newton, Robert U

    2016-09-01

    Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low, moderate, and high loads. The impact on lymphedema status and associated symptoms was also compared. Methods A total of 21 women, 62 ± 10 years old, with BCRL participated in the study. Participants completed low-load (15-20 repetition maximum [RM]), moderate-load (10-12 RM), and high-load (6-8 RM) exercise sessions consisting of 3 sets of 6 upper-body resistance exercises. Sessions were completed in a randomized order separated by a 7- to 10-day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation. Lymphedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using Visual Analogue Scales for pain, heaviness, and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in creatine kinase, C-reactive protein, interleukin-6, and tumor necrosis factor-α were observed following the 3 resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the 3 resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads.

  16. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle.

    PubMed

    Peternelj, Tina Tinkara; Marsh, Susan A; Strobel, Natalie A; Matsumoto, Aya; Briskey, David; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise. PMID:25416863

  17. Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle

    PubMed Central

    Sako, Hiroaki; Yada, Koichi; Suzuki, Katsuhiko

    2016-01-01

    Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of individual genes at a genome-wide scale. Here, we conducted a genome-wide translational analysis using ribosome profiling to investigate the effect of a single bout of treadmill running (20 m/min for 60 min) on mouse gastrocnemius. Global translational profiles largely differed from those in transcription even at a basal resting condition as well as immediately after exercise. As for individual gene, Slc25a25 (Solute carrier family 25, member 25), localized in mitochondrial inner membrane and maintaining ATP homeostasis and endurance performance, showed significant up-regulation at translational level. However, multiple regression analysis suggests that Slc25a25 protein degradation may also have a role in mediating Slc25a25 protein abundance in the basal and early stages after acute endurance exercise. PMID:26845575

  18. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation.

    PubMed

    Fogarty, Mark C; Hughes, Ciara M; Burke, George; Brown, John C; Davison, Gareth W

    2013-01-28

    Pharmacological antioxidant vitamins have previously been investigated for a prophylactic effect against exercise-induced oxidative stress. However, large doses are often required and may lead to a state of pro-oxidation and oxidative damage. Watercress contains an array of nutritional compounds such as β-carotene and α-tocopherol which may increase protection against exercise-induced oxidative stress. The present randomised controlled investigation was designed to test the hypothesis that acute (consumption 2 h before exercise) and chronic (8 weeks consumption) watercress supplementation can attenuate exercise-induced oxidative stress. A total of ten apparently healthy male subjects (age 23 (SD 4) years, stature 179 (SD 10) cm and body mass 74 (SD 15) kg) were recruited to complete the 8-week chronic watercress intervention period (and then 8 weeks of control, with no ingestion) of the experiment before crossing over in order to compete the single-dose acute phase (with control, no ingestion). Blood samples were taken at baseline (pre-supplementation), at rest (pre-exercise) and following exercise. Each subject completed an incremental exercise test to volitional exhaustion following chronic and acute watercress supplementation or control. The main findings show an exercise-induced increase in DNA damage and lipid peroxidation over both acute and chronic control supplementation phases (P< 0.05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H₂O₂ accumulation following exhaustive exercise (P< 0.05 v. control). A marked increase in the main lipid-soluble antioxidants (α-tocopherol, γ-tocopherol and xanthophyll) was observed following watercress supplementation (P< 0.05 v. control) in both experimental phases. These findings suggest that short- and long-term watercress ingestion has potential antioxidant effects against exercise-induced DNA damage and lipid peroxidation.

  19. Exercise to enhance neurocognitive function after traumatic brain injury.

    PubMed

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  20. Inter-modal comparisons of acute energy expenditure during perceptually based exercise in obese adults.

    PubMed

    Kim, Jong-Kyung; Nho, Hosung; H Whaley, Mitchell

    2008-02-01

    Previous studies have suggested that if exercise intensity is established by perceived effort, the metabolic demand varies among exercise machines and the treadmill optimizes energy expenditure (EE). However, these studies have been completed utilizing young people with normal body fat percentages. Therefore, the purpose of this study was to assess whether there was a difference in acute EE when obese people used different exercise modes at a self-selected intensity (ratings of perceived exertion 11-12) commonly recommended for overweight individuals. Twelve obese subjects (7 male; 5 female; BMI>29 kg/m(2)), aged 37-71 y completed two familiarization trials on four machines: treadmill (TM), stationary cycle (C), body trec elliptical arm/leg (BT), and airdyne (AD). On separate days, subjects then completed a 15 min trial on each machine at a self-selected intensity corresponding to a target RPE of 11-12 on the Borg 15-point scale. Machine order was randomly assigned, and subjects were blinded to the workload throughout each trial. Workload was self-adjusted during the first 5 min and then remained stable for the rest of the trial. Physiological data were obtained during the last 5 min of each trial. The BT produced the highest rate of EE among exercise machines and C the lowest. These results suggest that perceptually-based exercise prescriptions are not reliable across modes typically found in a fitness center environment, and that weight-bearing arm/leg exercise optimizes EE during self-selected exercise of moderate intensity in obese subjects.

  1. Exercises

    MedlinePlus

    ... Obstructive Pulmonary Disease (COPD) COPD: Lifestyle Management Exercises Exercises Make an Appointment Refer a Patient Ask a ... riding a stationary bike. Medication to Help You Exercise People with COPD often use a metered-dose ...

  2. Acute changes in muscle activation and leg extension performance after different running exercises in elite long distance runners.

    PubMed

    Vuorimaa, Timo; Virlander, Rami; Kurkilahti, Pasi; Vasankari, Tommi; Häkkinen, Keijo

    2006-02-01

    This study investigated acute changes in muscle activation and muscular power performance after three different running exercises in elite long-distance runners. Twenty-two nationally and internationally ranked long-distance runners performed first an incremental treadmill running test until exhaustion (MR) and then 40 min continuous (TR) and intermittent (2 min run/2 min rest) (IR) running exercises at an intensity of 80 and 100% of the velocity associated with VO(2max), respectively. Muscle activation and muscular power performance tests (counter-movement jumps, CMJ, and a set of ten maximal half squats from the static starting position with an extra load of 35% of the subjects, one repetition maximum) were performed before and immediately after the runs. The average mechanical power (P) of the half squats was calculated and the root mean square electromyogram (EMGrms) from the vastus lateralis, vastus medialis, gastrocnemius and biceps femoris muscles was recorded simultaneously during the half squat performances. The results showed an acute exercise-induced increase in P (ANOVA time effect, P = 0.000) together with a reduction in EMGrms of the knee extensor muscles (ANOVA time effect, P = 0.000). However, mechanical P expressed as a relative change within the set decreased after MR. In TR the improvement in P correlated positively with the maximal running performance of the runners (P < 0.05), while in IR it correlated negatively (P < 0.05). Jumping performance was significantly enhanced after each run (P < 0.001, for all) and the improvement correlated negatively with the maximal sprinting speed and maximal jumping height of the runners (P < 0.01, for all). It is concluded that in elite long distance runners an intensive prolonged running exercise reduces the surface EMG of the knee extensor muscles, and may lead to a different coordination strategy in leg extension exercises performed into the vertical direction. After continuous type of running the power

  3. The acute effect of cold air exercise in determination of exercise-induced bronchospasm in apparently healthy athletes.

    PubMed

    Carey, Daniel G; Aase, Katelyn A; Pliego, German J

    2010-08-01

    The primary objective of this study was to assess the acute effects for both cold and warm air running on pulmonary function testing and the diagnosis of exercise-induced bronchospasm (EIB). Subjects (n = 12, 8 men, 4 women) were distance runners (25.91 +/- 4.91 milesxwk) with mean age 30.2 +/- 5.1 years, mean height 179.0 +/- 11.5 cm, and mean weight 77.1 +/- 15.7 kg. Subjects first performed a maximal oxygen test on a motor-driven treadmill to assess Vo2max and maximal heart rate (MHR). On 2 subsequent days and within a 1-week time period, subjects ran 8 minutes in random order either on an outside 478.2-m course or on the treadmill at 6% grade. Speed was adjusted under both conditions to elicit 85-95% of MHR achieved on the Vo2max test. All tests were conducted in the month of January to maximize the potential for a cold climate. Pulmonary function test was performed immediately prerun, immediately postrun, and at 5, 10, 18, and 30 minutes postrun. There was no significant difference in any of the pulmonary function tests over time for cold vs. warm running (p > 0.05). Also, the pattern of change over time for the pulmonary function variables was not significantly different by condition (p > 0.05). Although group comparisons were not significant over time and for any variable between the 2 conditions, 7 of our subjects (58.3%) at some point postexercise exhibited a change that would be considered a positive response and diagnostic of EIB. Cold running produced significantly more positive responses (75%) than warm running (25%) (p = 0.001). It is concluded that healthy individuals need not be concerned about the acute effects of cold air exercise on the lungs. Also, physicians need to be vigilant in prescribing medications and should use strict, objective criteria when doing so.

  4. Adipocytokine and ghrelin responses to acute exercise and sport training in children during growth and maturation.

    PubMed

    Jürimäe, Jaak

    2014-11-01

    Physical exercise is known to regulate energy balance. Important to this regulatory system is the existence of several peptides that communicate the status of body energy stores to the brain and are related to the body fatness including leptin, adiponectin and ghrelin. These hormones assist in regulating energy balance as well as somatic and pubertal growth in children. It appears that rather few studies have investigated the responses of leptin, adiponectin and ghrelin to acute exercise and these studies have demonstrated no changes in these peptides as a result of exercise. Leptin levels are decreased and may remain unchanged advancing from prepuberty to pubertal maturation in young male and female athletes. A limited number of studies indicate that adiponectin levels are not different between prepubertal and pubertal athletes and untrained controls. However, in certain circumstances circulating adiponectin could be increased in young athletes after onset of puberty as a result of heavily increased energy expenditure. Ghrelin levels are elevated in young sportsmen. However, pubertal onset decreases ghrelin levels in boys and girls even in the presence of chronically elevated energy expenditure as seen in young athletes. Ghrelin may also be used as an indicator of energy imbalance across the menstrual cycle in adolescent athletes. There are no studies with high-molecular-weight adiponectin and only very few studies with acylated ghrelin responses to acute exercise and chronic training have been performed in young athletes. Since these forms of adiponectin and ghrelin have been thought to be bioactive forms, further studies with these specific forms of adiponectin and ghrelin are needed. In conclusion, further studies should be conducted to investigate the response of these hormones to acute and chronic negative energy balance to better understand their role in regulating energy balance during growth and maturation in young athletes.

  5. Acute Cardiovascular Response during Resistance Exercise with Whole-body Vibration in Sedentary Subjects: A Randomized Cross-over Trial.

    PubMed

    Dias, Thaisa; Polito, Marcos

    2015-01-01

    This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values ​​(P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values ​​of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.

  6. Isometric exercise and cognitive function: an investigation of acute dose-response effects during submaximal fatiguing contractions.

    PubMed

    Brown, Denver M Y; Bray, Steven R

    2015-01-01

    The purpose of this study was to explore the dose-response relationship between exercise and cognitive performance using an acute bout of isometric exercise. University students (N = 55) were randomly assigned to control, 30%, 50% and 70% of maximum voluntary handgrip contraction groups. Participants performed a modified Stroop task before and after completion of an isometric handgrip endurance trial at their assigned exercise intensity. Ratings of perceived exertion (RPE) and forearm muscle activation (EMG) showed linear trends of progressively greater RPE and muscle activation at greater exercise intensity levels. Regression analysis showed significant (P < .05) linear degradations in frequency of errors on the Stroop task with increasing exercise intensity. We conclude that performing isometric exercise until exhaustion is associated with reduced cognitive performance and that higher intensity isometric exercise leads to greater performance impairments in a linear dose-response manner.

  7. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  8. Effect of an Acute Bout of Kettlebell Exercise on Glucose Tolerance in Sedentary Men: A Preliminary Study

    PubMed Central

    GREENWALD, SAMANTHA; SEGER, EDWARD; NICHOLS, DAVID; RAY, ANDREW D.; RIDEOUT, TODD C.; GOSSELIN, LUC E.

    2016-01-01

    Impaired glucose tolerance can have significant health consequences. The purposes of this preliminary study were to examine whether a single session of kettlebell exercise improves acute post-exercise glucose tolerance in sedentary individuals, and whether it was as effective as high-intensity interval running. Six sedentary male subjects underwent a two-hour oral glucose tolerance test following three different conditions: 1) control (no exercise); 2) kettlebell exercise (2 sets of 7 exercises, 15 repetitions per exercise with 30 seconds rest between each exercise); or 3) high-intensity interval running (10 one-minute intervals at a workload corresponding to 90% VO2max interspersed with one-minute active recovery periods). Blood glucose and insulin levels were measured before (0 minutes), and 60 and 120 minutes after glucose ingestion. Both kettlebell and high-intensity interval running exercise significantly lowered blood glucose 60 minutes after glucose ingestion compared with control. However, there was no significant difference in blood glucose between the two exercise conditions at any time point. In addition, there were no significant differences in insulin concentration between high intensity interval running, kettlebell, and control conditions at all time points. Results indicate that an acute bout of kettlebell exercise is as effective as high intensity interval running at improving glucose tolerance in sedentary young men. PMID:27766136

  9. Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men.

    PubMed

    Numao, Shigeharu; Katayama, Yasutomi; Hayashi, Yoichi; Matsuo, Tomoaki; Tanaka, Kiyoji

    2011-02-01

    Exercise intensity may induce changes in total adiponectin and adiponectin oligomer levels. However, the effects of acute aerobic exercise on total adiponectin and adiponectin oligomers in middle-aged abdominally obese men remain unknown. The purpose of this study was to investigate the influence of aerobic exercise intensity on changes in the concentrations of total adiponectin and adiponectin oligomers (high-molecular weight [HMW] and middle- plus low-molecular weight [MLMW] adiponectin), and the endocrine mechanisms involved in exercise-induced changes in adiponectin oligomer profiles in middle-aged abdominally obese men. Using a crossover design, 9 middle-aged abdominally obese men (age, 54.1 ± 2.4 years; body mass index, 27.9 ± 0.6 kg/m²) underwent 2 trials that consisted of 60 minutes of stationary cycle exercise at either moderate-intensity (ME) or high-intensity (HE) aerobic exercise (50% or 70% of peak oxygen uptake, respectively). Blood samples were collected to measure the concentrations of adiponectin oligomers, hormones (catecholamines, insulin, and growth hormone), metabolites (free fatty acid, glycerol, triglyceride, and glucose), and cytokines (interleukin-6 and tumor necrosis factor-α). After exercise, plasma catecholamine concentrations were higher during HE than during ME (P < .05). Total adiponectin concentration decreased at the end of HE (P < .05), but remained unchanged after ME. The HMW adiponectin concentration did not change at either intensity, whereas the MLMW concentration decreased at the end of HE (P < .05). The ratio of HMW to total adiponectin concentration increased significantly (P < .05), whereas the ratio of MLMW to total adiponectin concentration decreased significantly (P < .05), at the end of HE. The percentage changes in epinephrine concentration from baseline to the end of exercise were correlated with the percentage changes in total adiponectin concentration (r = -0.67, P < .05) and MLMW adiponectin concentration (r

  10. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  11. Differences in arterial stiffness at rest and after acute exercise between young men and women.

    PubMed

    Doonan, Robert J; Mutter, Andrew; Egiziano, Giordano; Gomez, Yessica-Haydee; Daskalopoulou, Stella S

    2013-03-01

    There is controversy as to whether there are sex differences in arterial stiffness. Acute physical stress can elicit vascular abnormalities not present at rest. Our objective was to assess sex differences in arterial stiffness at rest and in response to acute physical stress. Healthy young men (n=67) and women (n=55) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest and 2, 5, 10 and 15 min following an exercise test to exhaustion. At rest, aortic systolic, diastolic, pulse and mean pressures were all significantly higher in men as was aortic pulse pressure at 10 and 15 min post exercise and aortic systolic pressure at 15 min. Carotid-femoral pulse wave velocity was significantly higher in men (6.0±0.7 m s(-1) vs. 5.6±0.6 m s(-1), P=0.03) at rest and at all time points post exercise. Heart rate-adjusted augmentation index was significantly lower (-10.7±10.2% vs. -4.0±10.9, P<0.0001) and subendocardial viability ratio was significantly higher (176.2±43.8% vs. 163.4±40.9, P=0.04) in men at rest. To our knowledge, this is the first study to assess sex differences in the arterial stiffness response to acute physical stress in young men and women. Although we were not able to elicit differences in vascular function after adjustment, which were not present at rest, we found that young men and women exhibit differences in arterial stiffness at rest and after acute physical stress.

  12. Insulin Signaling and Glucose Uptake in the Soleus Muscle of 30-Month-Old Rats After Calorie Restriction With or Without Acute Exercise.

    PubMed

    Wang, Haiyan; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D

    2016-03-01

    Exercise and calorie restriction (CR) can each improve insulin sensitivity in older individuals, but benefits of combining these treatments on skeletal muscle insulin signaling and glucose uptake are poorly understood, especially in predominantly slow-twitch muscles (eg, soleus). Accordingly, our purpose was to determine independent and combined effects of prior acute exercise and CR (beginning at 14 weeks old) on insulin signaling and glucose uptake in insulin-stimulated soleus muscles of 30-month-old rats. CR alone (but not exercise alone) versus ad libitum sedentary controls induced greater insulin-stimulated glucose uptake. There was a main effect of diet (CR > ad libitum) for insulin-stimulated Akt(Ser473) and Akt(Thr308) phosphorylation. CR alone versus ad libitum sedentary increased Akt substrate of 160 kDa (AS160) Ser(588) phosphorylation and TBC1D1 Thr(596), but not AS160 Thr(642) phosphorylation or abundance of GLUT4, GLUT1, or hexokinase II proteins. Combined CR and exercise versus CR alone did not further increase insulin-stimulated glucose uptake although phosphorylation of Akt(Ser473), Akt(Thr308), TBC1D1(Thr596), and AMPK(Thr172) for the combined group exceeded values for CR and/or exercise alone. These results revealed that although the soleus was highly responsive to a CR-induced enhancement of insulin-stimulated glucose uptake, the exercise protocol did not elevate insulin-stimulated glucose uptake, either alone or when combined with CR.

  13. Altered insulin response to an acute bout of exercise in pediatric obesity.

    PubMed

    Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro

    2014-11-01

    Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p < .0167 vs. NW). This insulin drop in Ob was disproportionately more pronounced in the half of Ob children with higher basal insulin (Ob-H). In all groups, high-fat feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations. PMID:24723046

  14. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise. PMID:27377137

  15. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.

  16. Acute Anabolic Response and Muscular Adaptation After Hypertrophy-Style and Strength-Style Resistance Exercise.

    PubMed

    Gonzalez, Adam M

    2016-10-01

    Gonzalez, AM. Acute anabolic response and muscular adaptation after hypertrophy-style and strength-style resistance exercise. J Strength Cond Res 30(10): 2959-2964, 2016-Resistance training paradigms are often divided into protocols designed to promote an increase in either hypertrophy or strength. Hypertrophy-style protocols (HYPs) typically involve greater volume (3-6 sets; 8-12 repetitions), moderate intensities (<85% 1 repetition maximum [1RM]), and short rest intervals (30-90 seconds), whereas strength-style protocols (STRs) typically involve higher intensities (≥85% 1RM), low volumes (2-6 sets; ≤6 repetitions), and longer rest intervals (3-5 minutes). However, the literature supporting such classifications is surprisingly sparse in trained individuals, and the distinct classifications of such protocols may be an oversimplification. Thus, the purpose of this review was to examine the acute anabolic responses and training-induced muscular adaptations after HYP and STR styles of resistance exercise in trained individuals. Despite the classification of training paradigms, HYP and STR resistance training routines appear to elicit similar magnitudes of muscle growth, although STR routines appear to be more conducive to increasing strength in resistance-trained individuals. Current evidence suggests that the classification of HYP and STR is an oversimplification, and practitioners are advised to look beyond the classification of resistance exercise protocols when aiming to elicit specific physiological responses.

  17. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    PubMed

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  18. Altered Arterial Stiffness and Subendocardial Viability Ratio in Young Healthy Light Smokers after Acute Exercise

    PubMed Central

    Doonan, Robert J.; Scheffler, Patrick; Yu, Alice; Egiziano, Giordano; Mutter, Andrew; Bacon, Simon; Carli, Franco; Daskalopoulos, Marios E.; Daskalopoulou, Stella S.

    2011-01-01

    Background Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals. Methods/Results Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions. Conclusion Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired ‘vascular reserve’ or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have

  19. Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans.

    PubMed

    Amann, Markus; Pegelow, David F; Jacques, Anthony J; Dempsey, Jerome A

    2007-11-01

    Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.

  20. Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions

    PubMed Central

    Haller, Christine A; Duan, Minjing; Jacob, Peyton; Benowitz, Neal

    2008-01-01

    AIMS Dietary supplements (DS) promoted to enhance athletic performance often contain herbal sympathomimetics such as Citrus aurantium (synephrine) and caffeine. We aimed to characterize the pharmacology of a performance-enhancing DS in the setting of exercise. METHODS Ten healthy adults (three women) aged 20–31 years participated in a three-arm, double-blind, placebo-controlled, crossover study. Subjects ingested one dose of DS (Ripped Fuel Extreme Cut® with 21 mg synephrine and 304 mg caffeine by analysis) under resting conditions and 1 h prior to moderately intense exercise (30 min on cycle ergometer at 75–80% HRmax), with a placebo (PLC)/exercise control. Plasma synephrine and caffeine concentrations were measured over 12 h, and vital signs, serum electrolytes, oxygen consumption and perceived exercise exertion were monitored. RESULTS No significant adverse events occurred. Synephrine and caffeine pharmacokinetics were unaffected by exercise. Post-exercise diastolic blood pressure was higher after DS (peak mean 71.7 ± 8.7 mmHg) than PLC (63.0 ± 4.9 mmHg) (p = 0.007). There were no substantial treatment-related differences in post-exercise HR, systolic blood pressure, or temperature. Postprandial plasma glucose increased to 121.0 ± 31.6 mg dl−1 with DS and exercise vs. 103.7 ± 25.5 mg dl−1 with PLC and exercise (P = 0.004). No treatment differences in exercise-related oxygen consumption, serum lactate, or insulin were observed. Exercise was rated less difficult with DS than PLC (P = 0.001). CONCLUSIONS Blood pressure and plasma glucose increased post-exercise with DS use, which could be detrimental in some people. Exercise was perceived as less strenuous after DS, presumably due to the stimulant effects of caffeine. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Performance-enhancing dietary supplements have not been clinically tested for safety or efficacy. In clinical trials performed under resting conditions, performance-enhancing supplements raise

  1. Acute Physical Exercise Affects Cognitive Functioning in Children With Cerebral Palsy.

    PubMed

    Maltais, Désirée B; Gane, Claire; Dufour, Sophie-Krystale; Wyss, Dominik; Bouyer, Laurent J; McFadyen, Bradford J; Zabjek, Karl; Andrysek, Jan; Voisen, Julien I

    2016-05-01

    Little is known about the effects of acute exercise on the cognitive functioning of children with cerebral palsy (CP). Selected cognitive functions were thus measured using a pediatric version of the Stroop test before and after maximal, locomotor based aerobic exercise in 16 independently ambulatory children (8 children with CP), 6-15 years old. Intense exercise had: 1) a significant, large, positive effect on reaction time (RT) for the CP group (preexercise: 892 ± 56.5 ms vs. postexercise: 798 ± 45.6 ms, p < .002, d = 1.87) with a trend for a similar but smaller response for the typically developing (TD) group (preexercise: 855 ± 56.5 ms vs. postexercise: 822 ± 45.6 ms, p < .08, d = 0.59), and 2) a significant, medium, negative effect on the interference effect for the CP group (preexercise: 4.5 ± 2.5%RT vs. postexercise: 13 ± 2.9%RT, p < .04, d = 0.77) with no significant effect for the TD group (preexercise: 7.2 ± 2.5%RT vs. postexercise: 6.9 ± 2.9%RT, p > .4, d = 0.03). Response accuracy was high in both groups pre- and postexercise (>96%). In conclusion, intense exercise impacts cognitive functioning in children with CP, both by increasing processing speed and decreasing executive function. PMID:26502458

  2. Acute pulmonary effects of nitrogen dioxide exposure during exercise in competitive athletes

    SciTech Connect

    Kim, S.U.; Koenig, J.Q.; Pierson, W.E.; Hanley, Q.S. )

    1991-04-01

    The acute pulmonary responses of athletes after short-term exposure to ambient concentrations of NO{sub 2} during heavy exercise have been examined. Intercollegiate male athletes were screened for history of cardiac disease, respiratory disease, allergic conditions and extensive exposure to pollutants. After completion of serum IgE level determination, exercise tolerance test and methacholine challenge test with normal results, nine healthy subjects 18 to 23 years of age were exposed to filtered air and to 0.18 and 0.30 ppm NO{sub 2} for 30 min on different days while exercising on a treadmill. Pulmonary function parameters were measured before and after each exposure. In this study, no statistically significant changes were observed in FEV1, RT PEFR, and Vmax50% after exposure to 0.18 and 0.30 ppm NO{sub 2}. For these selected healthy athletes, short-term exposure to ambient NO{sub 2} levels during heavy exercise does not affect adversely the pulmonary function.

  3. CD94 expression and natural killer cell activity after acute exercise.

    PubMed

    Roberts, C; Pyne, D B; Horn, P L

    2004-06-01

    This study examined the effects of acute exercise on natural killer (NK) cell numbers, their expression of CD94 and cytotoxic capacity in triathletes over a 10-week training period. Nine highly trained male triathletes (age 25.9+/-4.1 yrs, VO2max 5.14+/-0.33 L.min(-1)) attended the laboratory on weeks 0, 2, 5 and 10 for incremental submaximal and maximal cycle ergometry. Peripheral blood was analysed for white blood cell counts, lymphocyte phenotype and cytolytic activity (51Cr release from K562 cells). Maximum oxygen consumption increased from week 2 (5.14+/-0.33 L.min(-1)) to week 10 (5.28+/-0.32 L.min(-1)). Resting NK cell numbers and their expression of CD94 were not altered over the 10-week study period. Natural killer cells expressing CD94+ were not differentially recruited into the circulation and cytolytic activity of exercise-recruited NKs did not differ from those present at rest. There was longitudinal stability (over the 10 weeks of the study) in CD94 expression on NK cells, exercise recruitment of CD94+ NK cells and cytolytic capacity of NK cells. The distribution and functional activity of NK cells are not markedly influenced by 10 weeks of training in competitive triathletes. Natural killer cytotoxic activity after exercise reflects numbers of NK cells and not a changed activation state of these cells per se.

  4. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance

    PubMed Central

    Goodall, Stuart; Twomey, Rosie; Amann, Markus

    2015-01-01

    Purpose To outline how hypoxia profoundly affects neuronal functionality and thus compromise exercise-performance. Methods Investigations using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) detecting neuronal changes at rest and those studying fatiguing effects on whole-body exercise performance in acute (AH) and chronic hypoxia (CH) were evaluated. Results At rest during very early hypoxia (<1-h), slowing of cerebral neuronal activity is evident despite no change in corticospinal excitability. As time in hypoxia progresses (3-h), increased corticospinal excitability becomes evident; however, changes in neuronal activity are unknown. Prolonged exposure (3–5 d) causes a respiratory alkalosis which modulates Na+ channels, potentially explaining reduced neuronal excitability. Locomotor exercise in AH exacerbates the development of peripheral-fatigue; as the severity of hypoxia increases, mechanisms of peripheral-fatigue become less dominant and CNS hypoxia becomes the predominant factor. The greatest central-fatigue in AH occurs when SaO2 is ≤75%, a level that coincides with increasing impairments in neuronal activity. CH does not improve the level of peripheral-fatigue observed in AH; however, it attenuates the development of central-fatigue paralleling increases in cerebral O2 availability and corticospinal excitability. Conclusions The attenuated development of central-fatigue in CH might explain, the improvements in locomotor exercise-performance commonly observed after acclimatisation to high altitude. PMID:25593787

  5. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  6. Exercise training improves renal excretory responses to acute volume expansion in rats with heart failure.

    PubMed

    Zheng, Hong; Li, Yi-Fan; Zucker, Irving H; Patel, Kaushik P

    2006-12-01

    Experiments were performed to test the postulate that exercise training (ExT) improves the blunted renal excretory response to acute volume expansion (VE), in part, by normalizing the neural component of the volume reflex typically observed in chronic heart failure (HF). Diuretic and natriuretic responses to acute VE were examined in sedentary and ExT groups of rats with either HF or sham-operated controls. Experiments were performed in anesthetized (Inactin) rats 6 wk after coronary ligation surgery. Histological data indicated that there was a 34.9 +/- 3.0% outer and 42.5 +/- 3.2% inner infarct of the myocardium in the HF group. Sham rats had no observable damage to the myocardium. In sedentary rats with HF, VE produced a blunted diuresis (46% of sham) and natriuresis (35% of sham) compared with sham-operated control rats. However, acute VE-induced diuresis and natriuresis in ExT rats with HF were comparable to sham rats and significantly higher than sedentary HF rats. Renal denervation abolished the salutary effects of ExT on renal excretory response to acute VE in HF. Since glomerular filtration rates were not significantly different between the groups, renal hemodynamic changes may not account for the blunted renal responses in rats with HF. Additional experiments confirmed that renal sympathetic nerve activity responses to acute VE were blunted in sedentary HF rats; however, ExT normalized the renal sympathoinhibition in HF rats. These results confirm an impairment of neurally mediated excretory responses to acute VE in rats with HF. ExT restored the blunted excretory responses as well as the renal sympathoinhibitory response to acute VE in HF rats. Thus the beneficial effects of ExT on cardiovascular regulation in HF may be partly due to improvement of the neural component of volume reflex.

  7. The effect of an acute bout of resistance exercise on carotid artery strain and strain rate.

    PubMed

    Black, Jane M; Stöhr, Eric J; Stone, Keeron; Pugh, Christopher J A; Stembridge, Mike; Shave, Rob; Esformes, Joseph I

    2016-09-01

    Arterial wall mechanics likely play an integral role in arterial responses to acute physiological stress. Therefore, this study aimed to determine the impact of low and moderate intensity double-leg press exercise on common carotid artery (CCA) wall mechanics using 2D vascular strain imaging. Short-axis CCA ultrasound images were collected in 15 healthy men (age: 21 ± 3 years; stature: 176.5 ± 6.2 cm; body mass; 80.6 ± 15.3 kg) before, during, and immediately after short-duration isometric double-leg press exercise at 30% and 60% of participants' one-repetition maximum (1RM: 317 ± 72 kg). Images were analyzed for peak circumferential strain (PCS), peak systolic and diastolic strain rate (S-SR and D-SR), and arterial diameter. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP) were simultaneously assessed and arterial stiffness indices were calculated post hoc. A two-way repeated measures ANOVA revealed that during isometric contraction, PCS and S-SR decreased significantly (P < 0.01) before increasing significantly above resting levels post exercise (P < 0.05 and P < 0.01, respectively). Conversely, D-SR was unaltered throughout the protocol (P = 0.25). No significant differences were observed between the 30% and 60% 1RM trials. Multiple regression analysis highlighted that HR, BP, and arterial diameter did not fully explain the total variance in PCS, S-SR, and D-SR Acute double-leg press exercise is therefore associated with similar transient changes in CCA wall mechanics at low and moderate intensities. CCA wall mechanics likely provide additional insight into localized intrinsic vascular wall properties beyond current measures of arterial stiffness. PMID:27624687

  8. The effects of an acute dose of Rhodiola rosea on endurance exercise performance.

    PubMed

    Noreen, Eric E; Buckley, James G; Lewis, Stephanie L; Brandauer, Josef; Stuempfle, Kristin J

    2013-03-01

    The purpose of this study was to determine the effects of an acute oral dose of 3 mg·kg(-1) of Rhodiola rosea on endurance exercise performance, perceived exertion, mood, and cognitive function. Subjects (n = 18) ingested either R. rosea or a carbohydrate placebo 1 hour before testing in a double-blind, random crossover manner. Exercise testing consisted of a standardized 10-minute warm-up followed by a 6-mile time trial (TT) on a bicycle ergometer. Rating of perceived exertion (RPE) was measured every 5 minutes during the TT using a 10-point Borg scale. Blood lactate concentration, salivary cortisol, and salivary alpha amylase were measured before warm-up, 2 minutes after warm-up, and 2 minutes after TT (n = 15). A Profile of Mood States questionnaire and a Stroop Color Test were completed before warm-up and after TT. Testing was repeated 2-7 days later with the other condition. Rhodiola rosea ingestion significantly decreased heart rate during the standardized warm-up (R. rosea = 136 ± 17 b·min(-1); placebo = 140 ± 17 b·min(-1); mean ± SD; p = 0.001). Subjects completed the TT significantly faster after R. rosea ingestion (R. rosea = 25.4 ± 2.7 minutes; placebo = 25.8 ± 3.0 minutes; p = 0.037). The mean RPE was lower in the R. rosea trial (R. rosea = 6.0 ± 0.9; placebo = 6.6 ± 1.0; p = 0.04). This difference was even more pronounced when a ratio of the RPE relative to the workload was calculated (R. rosea = 0.048 ± 0.01; placebo = 0.057 ± 0.02; p = 0.007). No other statistically significant differences were observed. Acute R. rosea ingestion decreases heart rate response to submaximal exercise and appears to improve endurance exercise performance by decreasing the perception of effort.

  9. Enhancement of ozone-induced lung injury by exercise

    SciTech Connect

    Mautz, W.J.; McClure, T.R.; Reischl, P.; Phalen, R.F.; Crocker, T.T.

    1985-01-01

    Rats were exposed for up to 3.75 h to 0.20-0.80 ppm O/sub 3/ under conditions of rest and treadmill exercise up to 30 m/min, 20% grade, to assess the importance of exposure duration, O/sub 3/ concentration, and exercise on lung tissue injury. Focal lung parenchymal lesions increased in abundance and severity in response to the three variables; however, exercise was the most important. Lesion response to exercise was greater than that predicted by a simple proportion to estimated effective dose of O/sub 3/. The results emphasize the importance of including exercise in assessment of possible adverse health effects of exposure to airborne pollutants.

  10. The acute phase inflammatory response to maximal exercise testing in children and young adults with sickle cell anaemia.

    PubMed

    Liem, Robert I; Onyejekwe, Kasiemobi; Olszewski, Marie; Nchekwube, Chisalu; Zaldivar, Frank P; Radom-Aizik, Shlomit; Rodeghier, Mark J; Thompson, Alexis A

    2015-12-01

    Although individuals with sickle cell anaemia (SCA) have elevated baseline inflammation and endothelial activation, the acute phase response to maximal exercise has not been evaluated among children with SCA. We measured the acute phase response to maximal exercise testing for soluble vascular cell adhesion molecule (sVCAM) as well as interleukin 6 (IL6), total white blood cell (WBC) count, C-reactive protein (CRP) and D-dimer in a cohort of children with SCA and matched controls at baseline, immediately after, and 30, 60 and 120 min following exercise. Despite higher baseline levels of all biomarkers except CRP, the acute phase response from baseline to immediately after exercise was significantly greater in subjects versus controls for CRP (2·1 vs. 0·2 mg/l, P = 0·02) and D-dimer (160 vs. 10 μg/l, P < 0·01) only. Similar between-group trends were observed over time for all biomarkers, including sVCAM, IL6, total WBC, CRP and D-dimer. Lower fitness, defined by peak oxygen consumption (VO2 ), was independently associated with greater acute phase responses to exercise for sVCAM. Our results suggest maximal exercise may not be associated with any greater escalation of endothelial activation or inflammation in SCA and provide preliminary biomarker evidence for the safety of brief, high-intensity physical exertion in children with SCA.

  11. Exercise capacity is not impaired after acute alcohol ingestion: a pilot study.

    PubMed

    Popovic, Dejana; Damjanovic, Svetozar S; Plecas-Solarovic, Bosiljka; Pešić, Vesna; Stojiljkovic, Stanimir; Banovic, Marko; Ristic, Arsen; Mantegazza, Valentina; Agostoni, Piergiuseppe

    2014-08-01

    The usage of alcohol is widespread, but the effects of acute alcohol ingestion on exercise performance and the stress hormone axis are not fully elucidated.We studied 10 healthy white men, nonhabitual drinkers, by Doppler echocardiography at rest, spirometry, and maximal cardiopulmonary exercise test (CPET) in two visits (2-4 days in between), one after administration of 1.5 g/kg ethanol (whisky) diluted at 15% in water, and the other after administration of an equivalent volume of water. Plasma levels of NT-pro-BNP, cortisol, and adrenocorticotropic hormone (ACTH) were also measured 10 min before the test, at maximal effort and at the third minute of recovery. Ethanol concentration was measured from resting blood samples by gas chromatography and it increased from 0.00 ± 0.00 to 1.25 ± 0.54‰ (P < 0.001). Basal echocardiographic and spirometric parameters were normal and remained so after acute alcohol intake, whereas ACTH, cortisol, and NT-pro-BNP nonsignificantly increased in all phases of the test. CPET data suggested a trend toward a slight reduction of exercise performance (peak VO2 = 3008 ± 638 vs. 2900 ± 543 ml/min, ns; peak workload = 269 ± 53 vs. 249 ± 40 W, ns; test duration 13.7 ± 2.2 vs. 13.3 ± 1.7 min, ns; VE/VCO2 22.1 ± 1.4 vs. 23.3 ± 2.9, ns). Ventilatory equivalent for carbon dioxide at rest was higher after alcohol intake (28 ± 2.5 vs. 30.4 ± 3.2, P = 0.039) and maximal respiratory exchange ratio was lower after alcohol intake (1.17 ± 0.02 vs. 1.14 ± 0.04, P = 0.04). In conclusion, we showed that acute alcohol intake in healthy white men is associated with a nonsignificant exercise performance reduction and stress hormone stimulation, with an unchanged exercise metabolism. PMID:25083719

  12. Acute exercise stimulates macrophage function: possible role of NF-kappaB pathways.

    PubMed

    Silveira, Elza M S; Rodrigues, Mariana F; Krause, Maurício S; Vianna, Damiana R; Almeida, Bibiana S; Rossato, Juliane S; Oliveira, Lino P; Curi, Rui; de Bittencourt, Paulo I Homem

    2007-01-01

    Moderate physical activity when performed on a regular basis presents a number of benefits to the whole organism, especially regarding immune system function, such as augmenting resistance to infections and to cancer growth. Although glutamine production by active muscle cells as well as neuroendocrine alterations mediated by the chronic adaptation to exercise may play a role, the entire mechanism by which exercise makes the immune system aware of challenges remains mostly uncovered. This is particularly true for the effects of an acute exercise session on immune function. In this work, circulating monocytes/macrophages from sedentary rats submitted to an acute (1 h) swimming session were tested for the ability of phagocytosing zymosan particles, phorbol myristate acetate (PMA)-induced hydrogen peroxide production, nitric oxide (NO) release (assessed by nitrate and nitrite production) and the expression of NO synthases (NOS-1, NOS-2 and NOS-3). The results showed that an exercise bout induced a 2.4-fold rise in macrophage phagocytic capacity (p = 0.0041), a 9.6-fold elevation in PMA-induced hydrogen peroxide release into the incubation media (1-h, p = 0.0022) and a 95.5%-augmentation in nitrite basal production (1-h incubation; p = 0.0220), which was associated with a marked expression of NOS-2 (the inducible NOS isoform; p = 0.0319), but not in other NOS gene products. Although NOS-2 expression is nuclear factor-kappaB (NF-kappaB)-dependent, no systemic oxidative stress was found, as inferred from the data of plasma TBARS and glutathione disulphide (GSSG) to glutathione (GSH) ratio in circulating blood erythrocytes which remained constant after the acute exercise. Also, no stressful situation seemed to be faced by monocytes/macrophages, since the expression of the 70-kDa heat shock protein (HSP70) remained unchanged. We conclude that NF-kappaB-dependent induction of NOS-2 and macrophage activation must be related to local factor(s) produced in the surroundings of

  13. Exercise-induced acute compartment syndrome in a young man, occurring after a short race

    PubMed Central

    Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-01-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome. PMID:27034546

  14. Acute Exercise-Induced Compartment Syndrome of the Leg- Don’t Miss It

    PubMed Central

    Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-01-01

    Acute exercise induced compartment syndrome of leg is a very rare and very oftenly missed entity which leads to delay in its management. We are presenting such case in which diagnosis was established two days after the onset of symptoms. Urgent decompressive fasciotomy was done. After 3 months of follow up, patient has got full functional recovery of his affected limb. This case highlights the importance of keeping high index of clinical suspicion to diagnose the problem and manage promptly. We have reviewed the English literature and found only about 40 cases since 1945. PMID:27042521

  15. Influence of Vitamin C Supplementation on Oxidative Stress and Neutrophil Inflammatory Response in Acute and Regular Exercise

    PubMed Central

    Popovic, Ljiljana M.; Mitic, Nebojsa R.; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  16. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    PubMed

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. PMID:24799137

  17. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    PubMed

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions.

  18. Meditation or Exercise for Preventing Acute Respiratory Infection: A Randomized Controlled Trial

    PubMed Central

    Barrett, Bruce; Hayney, Mary S.; Muller, Daniel; Rakel, David; Ward, Ann; Obasi, Chidi N.; Brown, Roger; Zhang, Zhengjun; Zgierska, Aleksandra; Gern, James; West, Rebecca; Ewers, Tola; Barlow, Shari; Gassman, Michele; Coe, Christopher L.

    2012-01-01

    PURPOSE This study was designed to evaluate potential preventive effects of meditation or exercise on incidence, duration, and severity of acute respiratory infection (ARI) illness. METHODS Community-recruited adults aged 50 years and older were randomized to 1 of 3 study groups: 8-week training in mindfulness meditation, matched 8-week training in moderate-intensity sustained exercise, or observational control. The primary outcome was area-under-the-curve global illness severity during a single cold and influenza season, using the Wisconsin Upper Respiratory Symptom Survey (WURSS-24) to assess severity. Health care visits and days of missed work were counted. Nasal wash collected during ARI illness was assayed for neutrophils, interleukin-8, and viral nucleic acid. RESULTS Of 154 adults randomized into the study, 149 completed the trial (82% female, 94% white, mean age 59.3 ± 6.6 years). There were 27 ARI episodes and 257 days of ARI illness in the meditation group (n = 51), 26 episodes and 241 illness days in the exercise group (n = 47), and 40 episodes and 453 days in the control group (n = 51). Mean global severity was 144 for meditation, 248 for exercise, and 358 for control. Compared with control, global severity was significantly lower for meditation (P = .004). Both global severity and total days of illness (duration) trended toward being lower for the exercise group (P=.16 and P=.032, respectively), as did illness duration for the meditation group (P=.034). Adjusting for covariates using zero-inflated multivariate regression models gave similar results. There were 67 ARI-related days of-work missed in the control group, 32 in the exercise group (P = .041), and 16 in the meditation group (P <.001). Health care visits did not differ significantly. Viruses were identified in 54% of samples from meditation, 42% from exercise, and 54% from control groups. Neutrophil count and interleukin-8 levels were similar among intervention groups. CONCLUSIONS Training in

  19. Cortisol is not the primary mediator for augmented CXCR4 expression on natural killer cells after acute exercise.

    PubMed

    Okutsu, Mitsuharu; Ishii, Kenji; Niu, Kaijun; Nagatomi, Ryoichi

    2014-08-01

    CXC-chemokine receptor 4 (CXCR4) and its ligand, stromal-derived factor 1α (SDF-1α; also known as CXCL12), are crucial for the redistribution of immune cells after acute exercise. We investigated the relationships between acute exercise and CXCR4 expression on natural killer (NK) cells. Peripheral blood mononuclear cells (PBMCs) were cultured with cortisol and analyzed for CXCR4 expression on CD3(-)/CD56(+) NK cells and NK cell migration activity. To determine the effect of exercise, we isolated PBMCs from subjects before and after a 90-min exercise at 70% peak O2 uptake (V̇o2peak) and determined the changes in CXCR4 expression on NK cells after exercise. We cultured PBMCs with plasma obtained before and after exercise and with the glucocorticoid antagonist RU-486 to determine NK cell migration activity and the effects of cortisol on CXCR4 expression in vitro. Cortisol treatment increased CXCR4 expression (P < 0.05) and migration activity (P < 0.05) of NK cells. Exercise did not affect CXCR4 expression on NK cells, whereas incubating them with postexercise plasma significantly increased CXCR4 expression (P < 0.05) and migration activity (P < 0.05). RU-486 blocked cortisol-induced CXCR4 upregulation on NK cells, but only partially blocked (7%) CXCR4 upregulation when PMBCs were incubated with postexercise plasma. Thus acute exercise increases CXCR4 expression on NK cells and their migration activity and may contribute to NK cell redistribution after acute exercise; however, cortisol did not appear to be the primary mediator of augmented CXCR4 expression.

  20. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder

    PubMed Central

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-01-01

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD. PMID:27187236

  1. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder.

    PubMed

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-05-17

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD.

  2. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder.

    PubMed

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-01-01

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD. PMID:27187236

  3. Acute ventilatory responses to hypoxia during voluntary and electrically induced leg exercise in man.

    PubMed Central

    Pandit, J J; Robbins, P A

    1994-01-01

    1. The acute ventilatory response to a brief period of hypoxia (AHVR) was measured in six subjects (a) at rest, (b) during electrically induced leg exercise (EEL), (c) during voluntary leg exercise at an external work rate matched to electrical exercise (EV1) and (d) during voluntary leg exercise at an internal work rate (i.e. metabolic rate) matched to electrical exercise (EV2). The end-tidal PO2 during hypoxia was 50 mmHg and the end-tidal PCO2 was held constant at 1-2 mmHg above resting values throughout each of these four protocols. 2. EEL was produced by surface electrode stimulation of the quadriceps muscles so as to cause the legs to extend at the knee and lift a set of weights via a pulley system. During EV1, each subject lifted the same weight through the same height and at the same frequency as during his EEL protocol. During EV2, the weight, the height through which it was lifted and the frequency of voluntary contractions were altered to produce a similar O2 consumption and CO2 production as during EEL. 3. In each subject, end-tidal PCO2 values showed no change between the four protocols, and in three subjects in whom they were measured, arterial PCO2 values were also similar between the protocols. Venous lactate levels did not increase after EEL or EV2. 4. The AHVR during EEL (14.1 +/- 1.42 l min-1; mean +/- S.E.M) was significantly increased (Student's paired t test) compared with rest (7.55 +/- 1.10 l min-1; P < 0.003).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8071883

  4. Caffeine Attenuates Acute Growth Hormone Response to a Single Bout of Resistance Exercise

    PubMed Central

    Wu, Bo-Han; Lin, Jung-Chang

    2010-01-01

    The purpose of this study was to investigate the effects of caffeine consume on substrate metabolism and acute hormonal responses to a single bout of resistance exercise (RE). Ten resistance-trained men participated in this study. All subjects performed one repetition maximum (1RM) test and then performed two protocols: caffeine (CAF, 6 mg·kg-1) and control (CON) in counter balanced order. Subjects performed RE (8 exercises, 3 sets of 10 repetitions at 75% of 1RM) after caffeine or placebo ingestion one hour prior to RE. Blood samples collected prior to treatment ingestion (pre-60), immediately prior to RE (pre-exe), and 0, 15, 30 min post to RE (P0, P15, P30) for analysis of insulin, testosterone, cortisol, growth hormone, glucose, free fatty acid and lactic acid. Each experiment was separated by seven days. In this study, statistical analysis of a two-way analysis of variance (treatment by time) with repeated measures was applied. After ingesting caffeine, the concentrations of free fatty acid (pre- exe, P0, P15, P30) in CAF were significantly higher than CON (p < 0.05). Additionally, the responses of GH (P0, P15, P30) in CAF were significantly lower than CON (p < 0.05), whereas the concentrations of insulin, testosterone and cortisol were not different between CAF and CON (p < 0.05) after RE. The results of this study indicated that caffeine ingestion prior to RE might attenuate the response of GH. This effect might be caused by the elevation in blood FFA concentration at the beginning of RE. Key points Caffeine ingestion may attenuate the response of GH to a single bout of resistance exercise. The depression of GH response may be caused by the elevation in serum FFA concentration at the beginning of resistance exercise. Caffeine ingestion before resistance exercise may not alert the concentration of cortisol and testosterone. PMID:24149694

  5. Efficacy of Exercise Interventions in Patients with Acute Leukemia: A Meta-Analysis

    PubMed Central

    Zhu, Jinjie; Gu, Zejuan; Yin, Xiangguang

    2016-01-01

    Background Decreased physical performance and impaired physiological and psychological fitness have been reported in patients with acute leukemia (AL). We performed a meta-analysis to assess the efficacy of exercise in patients with AL. Methods In this meta-analysis, the electronic databases MEDLINE, Embase, Cochrane, Web of Science, SPORTDiscus, CINAHL and PEDro were searched through November 2015. Three authors participated in the study selection, data extraction and quality assessment. The instrument used for quality assessment was derived from the Cochrane Handbook for Systematic Reviews of Interventions. Analyses were performed according to the recommendations of The Cochrane Collaboration using Review Manager 5.3. Results Nine trials (8 randomized controlled trials and 1 quasi-experimental design trial) with 314 AL participants were included in this meta-analysis. The pooled standardized mean differences between the exercise and control groups were 0.45 (95% confidence interval (CI): 0.09 to 0.80, P value = 0.01, P for heterogeneity = 0.23, I2 = 28%) for cardiorespiratory fitness and 0.67 (95% CI: 0.28 to 1.06, P value = 0.0007, P for heterogeneity = 0.14, I2 = 43%) for muscle strength. Based on the data for fatigue, anxiety, and depression, there were no significant differences in these parameters between the exercise and control groups. Conclusions Exercise has beneficial effects on cardiorespiratory fitness, muscle strength and functional mobility; however, no significant improvements in fatigue, anxiety, depression or quality of life were observed. Further large-scale randomized trials are needed to assess the safety, feasibility and efficacy of exercise programs for AL patients. PMID:27463234

  6. A Theory-Based Exercise App to Enhance Exercise Adherence: A Pilot Study

    PubMed Central

    Voth, Elizabeth C; Oelke, Nelly D

    2016-01-01

    Background Use of mobile health (mHealth) technology is on an exponential rise. mHealth apps have the capability to reach a large number of individuals, but until now have lacked the integration of evidence-based theoretical constructs to increase exercise behavior in users. Objective The purpose of this study was to assess the effectiveness of a theory-based, self-monitoring app on exercise and self-monitoring behavior over 8 weeks. Methods A total of 56 adults (mean age 40 years, SD 13) were randomly assigned to either receive the mHealth app (experimental; n=28) or not to receive the app (control; n=28). All participants engaged in an exercise goal-setting session at baseline. Experimental condition participants received weekly short message service (SMS) text messages grounded in social cognitive theory and were encouraged to self-monitor exercise bouts on the app on a daily basis. Exercise behavior, frequency of self-monitoring exercise behavior, self-efficacy to self-monitor, and self-management of exercise behavior were collected at baseline and at postintervention. Results Engagement in exercise bouts was greater in the experimental condition (mean 7.24, SD 3.40) as compared to the control condition (mean 4.74, SD 3.70, P=.03, d=0.70) at week 8 postintervention. Frequency of self-monitoring increased significantly over the 8-week investigation between the experimental and control conditions (P<.001, partial η2=.599), with participants in the experimental condition self-monitoring significantly more at postintervention (mean 6.00, SD 0.93) in comparison to those in the control condition (mean 1.95, SD 2.58, P<.001, d=2.10). Self-efficacy to self-monitor and perceived self-management of exercise behavior were unaffected by this intervention. Conclusions The successful integration of social cognitive theory into an mHealth exercise self-monitoring app provides support for future research to feasibly integrate theoretical constructs into existing exercise apps

  7. Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise

    PubMed Central

    van den Berg, Vera; Saliasi, Emi; de Groot, Renate H. M.; Jolles, Jelle; Chinapaw, Mai J. M.; Singh, Amika S.

    2016-01-01

    Recent studies indicate that a single bout of physical exercise can have immediate positive effects on cognitive performance of children and adolescents. However, the type of exercise that affects cognitive performance the most in young adolescents is not fully understood. Therefore, this controlled study examined the acute effects of three types of 12-min classroom-based exercise sessions on information processing speed and selective attention. The three conditions consisted of aerobic, coordination, and strength exercises, respectively. In particular, this study focused on the feasibility and efficiency of introducing short bouts of exercise in the classroom. One hundred and ninety five students (5th and 6th grade; 10–13 years old) participated in a double baseline within-subjects design, with students acting as their own control. Exercise type was randomly assigned to each class and acted as between-subject factor. Before and immediately after both the control and the exercise session, students performed two cognitive tests that measured information processing speed (Letter Digit Substitution Test) and selective attention (d2 Test of Attention). The results revealed that exercising at low to moderate intensity does not have an effect on the cognitive parameters tested in young adolescents. Furthermore, there were no differential effects of exercise type. The results of this study are discussed in terms of the caution which should be taken when conducting exercise sessions in a classroom setting aimed at improving cognitive performance. PMID:27242629

  8. Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise.

    PubMed

    van den Berg, Vera; Saliasi, Emi; de Groot, Renate H M; Jolles, Jelle; Chinapaw, Mai J M; Singh, Amika S

    2016-01-01

    Recent studies indicate that a single bout of physical exercise can have immediate positive effects on cognitive performance of children and adolescents. However, the type of exercise that affects cognitive performance the most in young adolescents is not fully understood. Therefore, this controlled study examined the acute effects of three types of 12-min classroom-based exercise sessions on information processing speed and selective attention. The three conditions consisted of aerobic, coordination, and strength exercises, respectively. In particular, this study focused on the feasibility and efficiency of introducing short bouts of exercise in the classroom. One hundred and ninety five students (5th and 6th grade; 10-13 years old) participated in a double baseline within-subjects design, with students acting as their own control. Exercise type was randomly assigned to each class and acted as between-subject factor. Before and immediately after both the control and the exercise session, students performed two cognitive tests that measured information processing speed (Letter Digit Substitution Test) and selective attention (d2 Test of Attention). The results revealed that exercising at low to moderate intensity does not have an effect on the cognitive parameters tested in young adolescents. Furthermore, there were no differential effects of exercise type. The results of this study are discussed in terms of the caution which should be taken when conducting exercise sessions in a classroom setting aimed at improving cognitive performance. PMID:27242629

  9. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness.

    PubMed

    Brugniaux, Julien V; Marley, Christopher J; Hodson, Danielle A; New, Karl J; Bailey, Damian M

    2014-12-01

    Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sedentary healthy males. Middle cerebral artery blood velocity (MCAv) and prefrontal cortical oxyhemoglobin (cO(2)Hb) concentration were monitored continuously at rest and throughout an incremental cycling test to exhaustion. Despite a subtle elevation in the maximal oxygen uptake (active: 52±9 ml/kg per minute versus sedentary: 33±5 ml/kg per minute, P<0.05), resting MCAv was not different between groups. However, more marked increases in both MCAv (+28±13% versus +18±6%, P<0.05) and cO(2)Hb (+5±4% versus -2±3%, P<0.05) were observed in the active group during the transition from low- to moderate-intensity exercise. Collectively, these findings indicate that the long-term benefits associated with moderate increase in physical activity are not observed in the resting state and only become apparent when the cerebrovasculature is challenged by acute exertional stress. This has important clinical implications when assessing the true extent of cerebrovascular adaptation. PMID:25269518

  10. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength.

    PubMed

    Bacurau, Reury Frank Pereira; Monteiro, Gizele Assis; Ugrinowitsch, Carlos; Tricoli, Valmor; Cabral, Leonardo Ferreira; Aoki, Marcelo Saldanha

    2009-01-01

    Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.

  11. Effects of acute resistance exercise on acyl-ghrelin and obestatin levels in hemodialysis patients: a pilot study.

    PubMed

    Moraes, Cristiane; Borges, Natália A; Barboza, Jorge; Barros, Amanda F; Mafra, Denise

    2015-11-01

    Chronic physical exercises may be beneficial to modulate appetite hormones as acyl-ghrelin (orexigenic) and obestatin (anorexigenic) in chronic kidney disease (CKD) patients; however, there are no data about the effects of acute exercises on these hormones. Thus, the aim of the present study was to assess the effect of acute resistance exercise on appetite hormones (acyl-ghrelin and obestatin) of patients undergoing hemodialysis (HD). Twenty-five patients (44.7 ± 12.9 years, 68% women) on regular HD program were enrolled into two groups, 16 patients performed exercises and 9 patients comprised the control group. The patients performed the exercises in both lower limbs with ankle-cuffs and elastic bands, 30 min after the initiation of hemodialysis session. Blood samples of both the groups were drawn in the morning before and after 30 min with exercise session (exercise group) and, before and after the same time without exercise (control group). Acyl-ghrelin and obestatin plasma levels were measured using an enzyme immunometric assay. Acyl-ghrelin plasma levels did not change in both the groups. However, when stratified by gender the acyl-ghrelin increased significantly right after exercise in men [32.1 pg/mL (25.6-41.2) to 46.0 pg/mL (39.0-59.5)] (p = 0.04). Obestatin plasma levels reduced after a single bout of exercise and changes remained significantly when the sample was stratified by gender. There was no change in obestatin plasma levels in control group. A single bout of resistance exercise seems to modulate the levels of appetite hormones in HD patients. PMID:26381714

  12. Effects of acute resistance exercise on acyl-ghrelin and obestatin levels in hemodialysis patients: a pilot study.

    PubMed

    Moraes, Cristiane; Borges, Natália A; Barboza, Jorge; Barros, Amanda F; Mafra, Denise

    2015-11-01

    Chronic physical exercises may be beneficial to modulate appetite hormones as acyl-ghrelin (orexigenic) and obestatin (anorexigenic) in chronic kidney disease (CKD) patients; however, there are no data about the effects of acute exercises on these hormones. Thus, the aim of the present study was to assess the effect of acute resistance exercise on appetite hormones (acyl-ghrelin and obestatin) of patients undergoing hemodialysis (HD). Twenty-five patients (44.7 ± 12.9 years, 68% women) on regular HD program were enrolled into two groups, 16 patients performed exercises and 9 patients comprised the control group. The patients performed the exercises in both lower limbs with ankle-cuffs and elastic bands, 30 min after the initiation of hemodialysis session. Blood samples of both the groups were drawn in the morning before and after 30 min with exercise session (exercise group) and, before and after the same time without exercise (control group). Acyl-ghrelin and obestatin plasma levels were measured using an enzyme immunometric assay. Acyl-ghrelin plasma levels did not change in both the groups. However, when stratified by gender the acyl-ghrelin increased significantly right after exercise in men [32.1 pg/mL (25.6-41.2) to 46.0 pg/mL (39.0-59.5)] (p = 0.04). Obestatin plasma levels reduced after a single bout of exercise and changes remained significantly when the sample was stratified by gender. There was no change in obestatin plasma levels in control group. A single bout of resistance exercise seems to modulate the levels of appetite hormones in HD patients.

  13. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  14. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID

  15. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  16. Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration.

    PubMed

    Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; de Lima Montebelo, Maria Imaculada

    2011-01-01

    There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury.

  17. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects

    PubMed Central

    Koutroumpi, Matina; Dimopoulos, Stavros; Psarra, Katherini; Kyprianou, Theodoros; Nanas, Serafim

    2012-01-01

    Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. PMID:23272272

  18. Swimming Exercise in the Acute or Late Phase after Sciatic Nerve Crush Accelerates Nerve Regeneration

    PubMed Central

    Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; Montebelo, Maria Imaculada de Lima

    2011-01-01

    There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury. PMID:21876821

  19. Patient Activation through Counseling and ExerciseAcute Leukemia (PACE-AL) – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Patients with acute leukemia experience a substantial symptom burden and are at risk of developing infections throughout the course of repeated cycles of intensive chemotherapy. Physical activity in recent years has been a strategy for rehabilitation in cancer patients to remedy disease and treatment related symptoms and side effects. To date, there are no clinical practice exercise guidelines for patients with acute leukemia undergoing induction and consolidation chemotherapy. A randomized controlled trial is needed to determine if patients with acute leukemia can benefit by a structured and supervised counseling and exercise program. Methods/design This paper presents the study protocol: Patient Activation through Counseling and ExerciseAcute Leukemia (PACE-AL) trial, a two center, randomized controlled trial of 70 patients with acute leukemia (35 patients/study arm) following induction chemotherapy in the outpatient setting. Eligible patients will be randomized to usual care or to the 12 week exercise and counseling program. The intervention includes 3 hours + 30 minutes per week of supervised and structured aerobic training (moderate to high intensity 70 - 80%) on an ergometer cycle, strength exercises using hand weights and relaxation exercise. Individual health counseling sessions include a self directed home walk program with a step counter. The primary endpoint is functional performance/exercise capacity (6 minute walk distance). The secondary endpoints are submaximal VO2 max test, sit to stand and bicep curl test, physical activity levels, patient reported outcomes (quality of life, anxiety and depression, symptom prevalence, intensity and interference). Evaluation of clinical outcomes will be explored including incidence of infection, hospitalization days, body mass index, time to recurrence and survival. Qualitative exploration of patients’ health behavior and experiences. Discussion PACE-AL will provide evidence of the effect of

  20. Prognostic utility of intravenous dipyridamole thallium-201 imaging and exercise testing after an acute infarction

    SciTech Connect

    Leppo, J.A.

    1984-01-01

    To define the prognosis in asymptomatic survivors of acute infarcts (MI), coronary vasodilation was induced with I.V. dipyridamole, followed by Thallium-201 (T1) imaging in 26 patients just prior to discharge. All patients (pts) also had a modified exercise treadmill (MET) test. During the imaging protocol, 10 (39%) pts experienced transient adverse effects and 12 (46%) pts had either angina or ST depression with MET. During a mean follow-up of 17 months, 13 (50%) pts had a cardiac event defined as readmission for control of angina, MI or death. In the 13 pts having cardiac events, 4 (31%) had ST depression and 2 (15%) had angina during MET, but 12 (92%) demonstrated T1 redistribution (RD) as determined by at least 1 segment/scan having a transient defect. A logistic regression analysis using several exercise, scintigraphic and general clinical parameters, showed that the presence of T1 RD was the only significant (p <0.001) predictor for future cardiac events. The predicted probability for events in pts with T1 RD was 80 +- 10% (SD) and was 9 +- 9% in those without T1 RD. The mean number of defects per scan was similar in pts with and without cardiac events, but compared to persistent defects, transient ones are associated with potentially ischemic myocardium. Although the pt population is relatively small, dipyridamole T1 imaging after MI appears to be safe and has demonstrated prognostic value. It also offers an alternative and/or addition to exercise testing in the predischarge evaluation after acute MI.

  1. Exercise training enhances multiple mechanisms of relaxation in coronary arteries from ischemic hearts

    PubMed Central

    Deer, Rachel R.

    2013-01-01

    Exercise training of coronary artery disease patients is of considerable interest, since it has been shown to improve vascular function and, thereby, enhance blood flow into compromised myocardial regions. However, the mechanisms underlying exercise-induced improvements in vascular function have not been fully elucidated. We tested the hypothesis that exercise training increases the contribution of multiple mediators to endothelium-dependent relaxation of coronary arteries in the underlying setting of chronic coronary artery occlusion. To induce gradual occlusion, an ameroid constrictor was placed around the proximal left circumflex coronary artery in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary or exercise (treadmill, 5 days/wk) regimens for 14 wk. Exercise training significantly enhanced the contribution of nitric oxide, prostanoids, and large-conductance Ca2+-dependent K+ (BKCa) channels to endothelium-dependent, bradykinin-mediated relaxation in nonoccluded and collateral-dependent arteries. Combined nitric oxide synthase, prostanoid, and BKCa channel inhibition ablated the enhanced relaxation associated with exercise training. Exercise training significantly increased nitric oxide levels in response to bradykinin in endothelial cells isolated from nonoccluded and collateral-dependent arteries. Bradykinin treatment significantly increased PGI2 levels in all artery treatment groups and tended to be further enhanced after nitric oxide synthase inhibition in exercise-trained pigs. No differences were found in whole cell BKCa channel currents, BKCa channel protein levels, or arterial cyclic nucleotide levels. Although redundant, upregulation of parallel vasodilator pathways appears to contribute to enhanced endothelium-dependent relaxation, potentially providing a more refined control of blood flow after exercise training. PMID:23997097

  2. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization.

    PubMed

    Lee, Ho-Seong

    2015-12-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization.

  3. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization

    PubMed Central

    Lee, Ho-Seong

    2015-01-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization. PMID:26730390

  4. Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats.

    PubMed

    Santos, Ronaldo Vagner Thomatieli; Caperuto, Erico Chagas; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-16

    Transitory immunosupression is reported after intense exercise, especially after an increase in training overload and in overtraining. The influence of intense exercise on plasma hormones and glutamine concentration may contribute to this effect. However, the effect of such exercise-induced changes upon lymphocyte and glutamine metabolism is not known. We compared glutamine metabolism in lymphocytes in sedentary (SED) and trained rats. Rats from the moderate group (MOD) swam for 6 weeks, 1 h/day, in water at 32+/-1 degrees C, with a load of 5.5% body weight attached to the tail. Animals from the exhaustive group (EXT) trained like MOD, with training increasing to 3 times 1 h a day during the last week, with 150 min rest between each bout. Animals were killed immediately after the last training bout. We observed reduced concentrations of plasma glucose (p<0.05), glutamine (p<0.05), glutamate (p<0.05) in EXT compared to SED. In MOD, decreases in glutamine (p<0.05) were observed. Analyzing lymphocyte metabolism, we observed an increase in lactate production and glutamine consumption (p<0.05) in MOD (p<0.05) compared to SED and a decrease in glutamine consumption (p<0.05) and aspartate production in EXT. An increase in the proliferative response of lymphocytes in MOD and EXT was also observed when stimulated by ConA and LPS similarly to SED. Acute exercise promoted decreased glutamine plasma concentration and changes in glutamine metabolism that did not impair lymphocyte proliferation in exhaustive trained rats. PMID:17123550

  5. Functional significance of predischarge exercise thallium-201 findings following intravenous streptokinase therapy during acute myocardial infarction

    SciTech Connect

    Touchstone, D.A.; Beller, G.A.; Nygaard, T.W.; Watson, D.D.; Tedesco, C.; Kaul, S.

    1988-12-01

    The purpose of this study was to determine which predischarge exercise thallium-201 imaging pattern(s) best correlate with myocardial salvage following intravenous streptokinase therapy (IVSK). Myocardial salvage was defined as improvement in regional left ventricular function determined by two-dimensional echocardiography between the time of admission and time of discharge in 21 prospectively studied patients receiving IVSK within 4 hours of chest pain. All patients had coronary angiography 2 hours following IVSK. Whereas 16 of the 21 patients (76%) had patent infarct-related vessels, only seven (33%) showed significant improvement in regional function at hospital discharge. Eleven patients demonstrated persistent defects (PD), and five each showed delayed and reverse redistribution. Patients with both delayed and reverse redistribution demonstrated significant improvement in regional left ventricular function score, while those with PD did not (+3.9 +/- 3.3 versus -0.5 +/- 2.9, p = 0.004). All other clinical, exercise, electrocardiographic, scintigraphic, and angiographic variables were similar between all patients, with the exception of the interval between chest pain and the institution of IVSK, which was longer in patients with reverse compared to delayed redistribution (3.5 +/- 0.4 versus 2.2 +/- 0.4 hours, p = 0.001). It is concluded that both delayed and reverse redistribution seen on predischarge exercise thallium-201 imaging are associated with myocardial salvage, defined as serial improvement in regional systolic function. Despite a high infarct vessel patency rate in patients with acute myocardial infarction receiving IVSK within 4 hours of onset of symptoms, only one third demonstrated improvement in regional function that was associated with either delayed or reverse redistribution seen on predischarge exercise thallium-201 imaging.

  6. Acute exercise and aerobic fitness influence selective attention during visual search.

    PubMed

    Bullock, Tom; Giesbrecht, Barry

    2014-01-01

    Successful goal directed behavior relies on a human attention system that is flexible and able to adapt to different conditions of physiological stress. However, the effects of physical activity on multiple aspects of selective attention and whether these effects are mediated by aerobic capacity, remains unclear. The aim of the present study was to investigate the effects of a prolonged bout of physical activity on visual search performance and perceptual distraction. Two groups of participants completed a hybrid visual search flanker/response competition task in an initial baseline session and then at 17-min intervals over a 2 h 16 min test period. Participants assigned to the exercise group engaged in steady-state aerobic exercise between completing blocks of the visual task, whereas participants assigned to the control group rested in between blocks. The key result was a correlation between individual differences in aerobic capacity and visual search performance, such that those individuals that were more fit performed the search task more quickly. Critically, this relationship only emerged in the exercise group after the physical activity had begun. The relationship was not present in either group at baseline and never emerged in the control group during the test period, suggesting that under these task demands, aerobic capacity may be an important determinant of visual search performance under physical stress. The results enhance current understanding about the relationship between exercise and cognition, and also inform current models of selective attention.

  7. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    PubMed Central

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  8. Enhancing Facial Aesthetics with Muscle Retraining Exercises-A Review

    PubMed Central

    D’souza, Raina; Kini, Ashwini; D’souza, Henston; Shetty, Omkar

    2014-01-01

    Facial attractiveness plays a key role in social interaction. ‘Smile’ is not only a single category of facial behaviour, but also the emotion of frank joy which is expressed on the face by the combined contraction of the muscles involved. When a patient visits the dental clinic for aesthetic reasons, the dentist considers not only the chief complaint but also the overall harmony of the face. This article describes muscle retraining exercises to achieve control over facial movements and improve facial appearance which may be considered following any type of dental rehabilitation. Muscle conditioning, training and strengthening through daily exercises will help to counter balance the aging effects. PMID:25302289

  9. Acute Pro- and Anti-Inflammatory Responses to Resistance Exercise in Patients with Coronary Artery Disease: A Pilot Study

    PubMed Central

    Volaklis, Konstantinos A.; Smilios, Ilias; Spassis, Apostolos T.; Zois, Christos E.; Douda, Helen T.; Halle, Martin; Tokmakidis, Savvas P.

    2015-01-01

    Little is known about the inflammatory effects of resistance exercise in healthy and even less in diseased individuals such as cardiac patients. The purpose of this study was to examine the acute pro- and anti-inflammatory responses during resistance exercise (RE) in patients with coronary artery disease. Eight low risk patients completed two acute RE protocols at low (50% of 1 RM; 2x18 rps) and moderate intensity (75% of 1 RM; 3x8 rps) in random order. Both protocols included six exercises and had the same total load volume. Blood samples were obtained before, immediately after and 60 minutes after each protocol for the determination of lactate, TNFα, INF-γ, IL-6, IL-10, TGF-β1, and hsCRP concentrations. IL-6 and IL-10 levels increased (p < 0.05) immediately after both RE protocols with no differences between protocols. INF-γ was significantly lower (p < 0.05) 60 min after the low intensity protocol, whereas TGF-β1 increased (p < 0.05) immediately after the low intensity protocol. There were no differences in TNF-& and hs-CRP after both RE protocols or between protocols. The above data indicate that acute resistance exercise performed at low to moderate intensity in low risk, trained CAD patients is safe and does not exacerbate the inflammation associated with their disease. Key points Acute resistance exercise is safe without exacerbating inflammation in patients with CAD. Both exercise intensities (50 and 75% of 1 RM) elicit desirable pro-and anti-inflammatory responses. With both exercise intensities (50 and 75% of 1 RM) acceptable clinical hemodynamic alterations were observed. PMID:25729295

  10. Acute pro- and anti-inflammatory responses to resistance exercise in patients with coronary artery disease: a pilot study.

    PubMed

    Volaklis, Konstantinos A; Smilios, Ilias; Spassis, Apostolos T; Zois, Christos E; Douda, Helen T; Halle, Martin; Tokmakidis, Savvas P

    2015-03-01

    Little is known about the inflammatory effects of resistance exercise in healthy and even less in diseased individuals such as cardiac patients. The purpose of this study was to examine the acute pro- and anti-inflammatory responses during resistance exercise (RE) in patients with coronary artery disease. Eight low risk patients completed two acute RE protocols at low (50% of 1 RM; 2x18 rps) and moderate intensity (75% of 1 RM; 3x8 rps) in random order. Both protocols included six exercises and had the same total load volume. Blood samples were obtained before, immediately after and 60 minutes after each protocol for the determination of lactate, TNFα, INF-γ, IL-6, IL-10, TGF-β1, and hsCRP concentrations. IL-6 and IL-10 levels increased (p < 0.05) immediately after both RE protocols with no differences between protocols. INF-γ was significantly lower (p < 0.05) 60 min after the low intensity protocol, whereas TGF-β1 increased (p < 0.05) immediately after the low intensity protocol. There were no differences in TNF-& and hs-CRP after both RE protocols or between protocols. The above data indicate that acute resistance exercise performed at low to moderate intensity in low risk, trained CAD patients is safe and does not exacerbate the inflammation associated with their disease. Key pointsAcute resistance exercise is safe without exacerbating inflammation in patients with CAD.Both exercise intensities (50 and 75% of 1 RM) elicit desirable pro-and anti-inflammatory responses.With both exercise intensities (50 and 75% of 1 RM) acceptable clinical hemodynamic alterations were observed. PMID:25729295

  11. Relationship between T-wave normalization on exercise ECG and myocardial functional recovery in patients with acute myocardial infarction

    PubMed Central

    Kim, Kyung Jin; Shim, Wan Joo; Jung, Seong Won; Pak, Hui Nam; Lee, Soo Jin; Song, Woo Hyuk; Kim, Young Hoon; Seo, Hong Seog; Oh, Dong Joo; Ro, Young Moo

    2002-01-01

    Background Several studies suggested that T-wave normalization (TWN) in exercise ECG indicates the presence of viable myocardium. But the clinical implication of this phenomenon in patients with acute myocardial infarction who received proper revascularization therapy was not determined. Precisely the aim of this study was to investigate the relationship between TWN in exercise ECG and myocardial functional recovery after acute myocardial infarction. Methods We studied 30 acute myocardial infarction patients with negative T waves in infarct related electrocardiographic leads and who had received successful revascularization therapy. Exercise ECG was performed 10–14days after infarct onset using Naughton protocol. Patients were divided into 2 groups according to presence (group I; n=14) or not (group II; n=16) of TWN in exercise ECG. Exercise parameters and coronary angiographic findings were compared between groups. Baseline and follow-up (mean 11 months) regional and global left ventricular function was analyzed by echocardiography. Results Exercise parameters were similar between groups. There was no difference in baseline ejection fraction and wall motion score between group I and II (EF; 56±12% vs 52±11%, p=ns. WMS; 21±3 vs 23±4, p=ns) and it was improved at the tenth month by similar magnitude (group I/group II, EF % change=12±12% vs 7±6%, p=ns, WMS % change=6±6% vs 7±5%, p=ns). The finding of no relation between TWN and functional recovery was observed also when the patients were analysed according to infarct location and presence or absence of Q-waves. Conclusion As the exercise-induced TWN in patients with acute myocardial infarction was not related with better functional recovery of dysfunctional regional wall motion and ejection fraction, TWN does not appear to be an indicator of myocardial viability. PMID:12164089

  12. The effects of an acute dose of Rhodiola rosea on endurance exercise performance.

    PubMed

    Noreen, Eric E; Buckley, James G; Lewis, Stephanie L; Brandauer, Josef; Stuempfle, Kristin J

    2013-03-01

    The purpose of this study was to determine the effects of an acute oral dose of 3 mg·kg(-1) of Rhodiola rosea on endurance exercise performance, perceived exertion, mood, and cognitive function. Subjects (n = 18) ingested either R. rosea or a carbohydrate placebo 1 hour before testing in a double-blind, random crossover manner. Exercise testing consisted of a standardized 10-minute warm-up followed by a 6-mile time trial (TT) on a bicycle ergometer. Rating of perceived exertion (RPE) was measured every 5 minutes during the TT using a 10-point Borg scale. Blood lactate concentration, salivary cortisol, and salivary alpha amylase were measured before warm-up, 2 minutes after warm-up, and 2 minutes after TT (n = 15). A Profile of Mood States questionnaire and a Stroop Color Test were completed before warm-up and after TT. Testing was repeated 2-7 days later with the other condition. Rhodiola rosea ingestion significantly decreased heart rate during the standardized warm-up (R. rosea = 136 ± 17 b·min(-1); placebo = 140 ± 17 b·min(-1); mean ± SD; p = 0.001). Subjects completed the TT significantly faster after R. rosea ingestion (R. rosea = 25.4 ± 2.7 minutes; placebo = 25.8 ± 3.0 minutes; p = 0.037). The mean RPE was lower in the R. rosea trial (R. rosea = 6.0 ± 0.9; placebo = 6.6 ± 1.0; p = 0.04). This difference was even more pronounced when a ratio of the RPE relative to the workload was calculated (R. rosea = 0.048 ± 0.01; placebo = 0.057 ± 0.02; p = 0.007). No other statistically significant differences were observed. Acute R. rosea ingestion decreases heart rate response to submaximal exercise and appears to improve endurance exercise performance by decreasing the perception of effort. PMID:23443221

  13. Adventures in Exercise Physiology: Enhancing Problem Solving and Assessment

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.

    2004-01-01

    I altered the format of an exercise physiology course from traditional lecture to emphasizing daily reading quizzes and group problem-solving activities. I used the SALGains evaluation to compare the two approaches and saw significant improvements in the evaluation ratings of students who were taught using the new format. Narrative responses…

  14. Exercise enhances hippocampal recovery following binge ethanol exposure.

    PubMed

    Maynard, Mark E; Leasure, J Leigh

    2013-01-01

    Binge drinking damages the brain, and although a significant amount of recovery occurs with abstinence, there is a need for effective strategies to maximize neurorestoration. In contrast to binge drinking, exercise promotes brain health, so the present study assessed whether it could counteract ethanol-induced damage by augmenting natural self-repair processes following one or more binge exposures. Adult female rats were exposed to 0 (control), 1 or 2 binges, using an established 4-day model of binge-induced neurodegeneration. Half of the animals in each group remained sedentary, or had running wheel access beginning 7 days after the final binge, and were sacrificed 28 days later. To assess binge-induced hippocampal damage and exercise restoration, we quantified volume of the dentate gyrus and number of granule neurons. We found that a single binge exposure significantly decreased the volume of the dentate gyrus and number of granule neurons. A second binge did not exacerbate the damage. Exercise completely restored baseline volume and granule neuron numbers. To investigate a potential mechanism of this restoration, we administered IdU (a thymidine analog) in order to label cells generated after the first binge. Previous studies have shown that neurogenesis in the dentate gyrus is decreased by binge alcohol exposure, and that the hippocampus responds to this insult by increasing cell genesis during abstinence. We found increased IdU labeling in binge-exposed animals, and a further increase in binged animals that exercised. Our results indicate that exercise reverses long-lasting hippocampal damage by augmenting natural self-repair processes. PMID:24098797

  15. Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review

    PubMed Central

    2014-01-01

    Background There is increasing evidence for the beneficial effects of exercise training in stroke survivors. In order to reach the desired training effects, exercise training principles must be considered as this ensures the prescription of adequate exercises at an adequate dose. Moreover, exercise training interventions must be designed in a way that maximizes patients’ adherence to the prescribed exercise regimen. The objectives of this systematic review were (1) to investigate whether training principles for physical exercise interventions are reported in RCTs for sub-acute and chronic stroke survivors, (2) to evaluate whether the RCTs reported the prescription of the FITT components of the exercise interventions as well as (3) patients’ adherence to this prescription, and (4) to assess the risk of bias of the included studies. Methods We performed a systematic review of RCTs with exercise training as the primary intervention and muscular strength and/or endurance as primary outcomes. The Cochrane library’s risk of bias (ROB) tool was used to judge the methodological quality of RCTs. Results Thirty-seven RCTs were included in this systematic review. Eighteen studies (48.7%) focused on aerobic, 8 (21.6%) on resistance and 11 (29.7%) on combined interventions of aerobic and resistive strength exercise. Twenty-nine studies (78.4%) included only chronic stroke survivors, 5 studies (13.5%) only sub-acute stroke survivors whilst 3 studies (8.1%) included both. In terms of principle of exercise training, 89% reported specificity, 75.7% progression, 48.7% overload, 37.8% initial values, 32.4% reversibility and 13.5% diminishing returns. One RCT described all principles of physical exercise training and 19 (51.4%) all FITT components. Patients’ adherence to exercise prescription was accounted for in 3 studies (8.1%). Failure to report blinding in patients and participants and failure to report allocation concealment were the most prevalent methodological

  16. Effects of Acute Exercise on Some Respiratory, Circulatory and Oxidative Stress Parameters of School Boys Aged 15-17 Years

    ERIC Educational Resources Information Center

    Kurkcu, Recep; Gokhan, Ismail

    2013-01-01

    The purpose of this study was to evaluate the effects of acute exercise on respiratory functions, heart-beats, blood pressure, total antioxidative capacity (TAC), oxidative stress index (OSI), lipid hydro-peroxide (LOOHs) and Paraoxonase (PON) in school boys. A sample of 18 male amateur wrestlers are selected for this study. The participants…

  17. Antioxidant status and oxidative stress at rest and in response to acute exercise in judokas and sedentary men.

    PubMed

    El Abed, Kaïs; Rebai, Haitham; Bloomer, Richard J; Trabelsi, Khaled; Masmoudi, Liwa; Zbidi, Abdelkarim; Sahnoun, Zouhaier; Hakim, Ahmed; Tabka, Zouhaier

    2011-09-01

    It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different. PMID:21869626

  18. Voluntary exercise does not enhance long-term potentiation in the adolescent female dentate gyrus.

    PubMed

    Titterness, A K; Wiebe, E; Kwasnica, A; Keyes, G; Christie, B R

    2011-06-01

    The hippocampus is a dynamic brain structure involved with learning and memory. Long-term potentiation (LTP) is a neuronal model of learning and memory and, in adult rodents, is enhanced by voluntary exercise (VEx). The current study sought to elucidate whether synaptic plasticity in the male and female adolescent hippocampus is augmented by VEx. Consistent with previous studies, VEx significantly enhanced LTP in adolescent males following weak and strong theta-burst stimulation. Despite running the same amount as males, however, VEx did not enhance LTP in females above non-runner females. Surprisingly, the exercise-induced enhancement to LTP in males was seen in the absence of a change in brain derived neurotrophic factor in the dentate gyrus (DG). These findings indicate that adolescent males and females are differentially sensitive to the potentiating effect of exercise on hippocampal synaptic plasticity.

  19. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.

  20. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat. PMID:25811813

  1. Effect of acute endurance and resistance exercise on endocrine hormones directly related to lipolysis and skeletal muscle protein synthesis in adult individuals with obesity.

    PubMed

    Hansen, Dominique; Meeusen, Romain; Mullens, Annelies; Dendale, Paul

    2012-05-01

    In subjects with obesity, the implementation of long-term exercise intervention increases lean tissue mass and lowers adipose tissue mass. However, data indicate a blunted lipolytic response, and/or skeletal muscle protein synthesis, when subjects with obesity are exposed to acute endurance or resistance exercise, respectively. Therefore, subjects with obesity seem to display a suboptimal physiological response to acute exercise stimuli. It might be hypothesized that hormonal disturbances contribute, at least in part, to these abnormal physiological reactions in the obese. This review discusses the impact of acute endurance and resistance exercise on endocrine hormones directly related to lipolysis and/or skeletal muscle protein synthesis (insulin, [nor]epinephrine, cortisol, growth hormone, testosterone, triiodothyronine, atrial natriuretic peptide, insulin-like growth factor-1), as well as the impact of long-term endurance and resistance exercise intervention on these hormonal responses to acute endurance and resistance exercise. In the obese, some endocrinological disturbances during acute endurance and resistance exercise have been identified: a blunted blood growth hormone, atrial natriuretic peptide and epinephrine release, and greater cortisol and insulin release. These hormonal disturbances might contribute to a suppressed lipolytic response, and/or suppressed skeletal muscle protein synthesis, as a result of acute endurance or resistance exercise, respectively. In subjects with obesity, the impact of acute endurance and resistance exercise on other endocrine hormones (norepinephrine, testosterone, triiodothyronine, insulin-like growth factor-1) remains elusive. Furthermore, whether long-term endurance and resistance exercise intervention might reverse these hormonal disturbances during acute endurance and resistance exercise in these individuals remains unknown.

  2. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  3. Music can enhance exercise-induced sympathetic dominancy assessed by heart rate variability.

    PubMed

    Urakawa, Kayoko; Yokoyama, Kazuhito

    2005-07-01

    Many studies have been conducted on physiological responses of music, yielding controversial results. In the present study, we examined whether music affects the exercise-induced changes in the autonomic nervous system activity in twelve healthy female college students. On the first day, the subjects were asked to rest, exercise, and then rest for 15 min, respectively. On the second day, they were asked to rest with music, exercise, and then rest with music for 15 min, respectively. Heart rate variability was measured for the pre- and post-exercise periods. Music was given according to subjects' preferences using a vibroacoustic apparatus (body sonic system), i.e. a chair on which subjects laid and felt low-pitch sounds by their body in addition to listening music. With music, ratio of low frequency to high frequency component of heart rate variability (LH/HF) was significantly increased after exercise as compared with before exercise (p < 0.01). By contrast, the changes in LH/HF were not significant without music (p > 0.05). It is suggested that after exercise in which sympathetic nerve activity is dominant, preferred music synchronizes with the activated physical response, further promoting the response and increasing sympathetic nerve activity. Combining music with exercise is therefore not only enjoyable in terms of mood but also may promote physiological excitation and enhance physical activation. PMID:15942147

  4. Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring.

    PubMed

    Yin, M M; Wang, W; Sun, J; Liu, S; Liu, X L; Niu, Y M; Yuan, H R; Yang, F Y; Fu, L

    2013-09-15

    Both epidemiologic and laboratory studies suggest that parents can shape their offspring's development. Recently, it has been shown that maternal exercise during pregnancy benefits the progeny's brain function. However, little is known regarding the influence of paternal exercise on their offspring's phenotype. In this study we attempt to determine the effects of 6 weeks paternal treadmill exercise on spatial learning and memory and the expression of brain-derived neurotrophic factor (BDNF) and reelin in their male offspring. Sibling males were divided into two groups: the control (C) and the exercise group (E). The mice in the E group were exercised on a motor-driven rodent treadmill for 5 days per week for 6 weeks. After 6 weeks of exercise, the male mouse was mated with its sibling female. After weaning, male pups underwent behavioral assessment (Open field and Morris water maze tests). Immunohistochemistry staining, real time-PCR and western blot were performed to determine hippocampal BDNF and reelin expression of the male pups after behavior tasks. Our results showed that paternal treadmill exercise improved the spatial learning and memory capability of male pups, which was accompanied by significantly increased expression of BDNF and reelin, as compared to those of C group. Our results provide novel evidence that paternal treadmill exercise can enhance the brain functions of their F1 male offspring. PMID:23916757

  5. Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring.

    PubMed

    Yin, M M; Wang, W; Sun, J; Liu, S; Liu, X L; Niu, Y M; Yuan, H R; Yang, F Y; Fu, L

    2013-09-15

    Both epidemiologic and laboratory studies suggest that parents can shape their offspring's development. Recently, it has been shown that maternal exercise during pregnancy benefits the progeny's brain function. However, little is known regarding the influence of paternal exercise on their offspring's phenotype. In this study we attempt to determine the effects of 6 weeks paternal treadmill exercise on spatial learning and memory and the expression of brain-derived neurotrophic factor (BDNF) and reelin in their male offspring. Sibling males were divided into two groups: the control (C) and the exercise group (E). The mice in the E group were exercised on a motor-driven rodent treadmill for 5 days per week for 6 weeks. After 6 weeks of exercise, the male mouse was mated with its sibling female. After weaning, male pups underwent behavioral assessment (Open field and Morris water maze tests). Immunohistochemistry staining, real time-PCR and western blot were performed to determine hippocampal BDNF and reelin expression of the male pups after behavior tasks. Our results showed that paternal treadmill exercise improved the spatial learning and memory capability of male pups, which was accompanied by significantly increased expression of BDNF and reelin, as compared to those of C group. Our results provide novel evidence that paternal treadmill exercise can enhance the brain functions of their F1 male offspring.

  6. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease

    PubMed Central

    Kenjale, Aarti A.; Ham, Katherine L.; Stabler, Thomas; Robbins, Jennifer L.; Johnson, Johanna L.; VanBruggen, Mitch; Privette, Grayson; Yim, Eunji; Kraus, William E.

    2011-01-01

    Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O2) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO2−) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO2− concentration, increase exercise tolerance, and decrease gastrocnemius fractional O2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO2−] (152 ± 72 nM) following PL. BR increased plasma [NO2−] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO2−-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. PMID:21454745

  7. The effect of acute exercise on pistol shooting performance of police officers.

    PubMed

    Brown, Melissa J; Tandy, Richard D; Wulf, Gabriele; Young, John C

    2013-07-01

    Previous studies indicate that rifle shooting performance while standing is compromised when fatigued. Apprehension of suspects by police officers may involve foot pursuit and firing a weapon from a standing position. The purpose of the current study was to investigate pistol shooting performance in police officers under similar conditions of physical fatigue. Participants (mean age: 30.1 years; 4.4 years of experience as police officer) completed two shooting trials separated by an acute bout of exercise on a cycle ergometer to voluntary exhaustion. Each trial consisted of three rounds of five rapid-fire shots at a target, each round separated by a 15-s rest. Participants' backs were turned to the target between rounds. Despite physical exertion, with an average heart rate of 164 bpm, shooting accuracy (mean distance of the closest 4 shots from the center of the target) and precision (diameter of the tightest 4-shot grouping) remained unchanged on postexercise trials relative to preexercise trials. This suggests that automatic shooting reactions override the adverse consequences of fatiguing exercise on shooting performance.

  8. The effect of acute exercise on pistol shooting performance of police officers.

    PubMed

    Brown, Melissa J; Tandy, Richard D; Wulf, Gabriele; Young, John C

    2013-07-01

    Previous studies indicate that rifle shooting performance while standing is compromised when fatigued. Apprehension of suspects by police officers may involve foot pursuit and firing a weapon from a standing position. The purpose of the current study was to investigate pistol shooting performance in police officers under similar conditions of physical fatigue. Participants (mean age: 30.1 years; 4.4 years of experience as police officer) completed two shooting trials separated by an acute bout of exercise on a cycle ergometer to voluntary exhaustion. Each trial consisted of three rounds of five rapid-fire shots at a target, each round separated by a 15-s rest. Participants' backs were turned to the target between rounds. Despite physical exertion, with an average heart rate of 164 bpm, shooting accuracy (mean distance of the closest 4 shots from the center of the target) and precision (diameter of the tightest 4-shot grouping) remained unchanged on postexercise trials relative to preexercise trials. This suggests that automatic shooting reactions override the adverse consequences of fatiguing exercise on shooting performance. PMID:23756320

  9. Acute response to 3. 0 ppm formaldehyde in exercising healthy nonsmokers and asthmatics

    SciTech Connect

    Green, D.J.; Sauder, L.R.; Kulle, T.J.; Bascom, R.

    1987-06-01

    Formaldehyde is an ubiquitous industrial and indoor air pollutant to which millions are daily exposed. Because of the paucity of scientific data concerning the inhalation toxicity of this compound in humans, we determined the symptoms and alterations in pulmonary function resulting from inhalation for 1 h of 3 parts per million formaldehyde in a controlled environmental chamber. The protocol consisted of randomized exposure of each subject to clean air or 3.0 ppm HCHO on 2 separate days. Twenty-two healthy normal subjects engaged in intermittent heavy exercise (VE = 65 L/min) and 16 asthmatic subjects performed intermittent moderate exercise (VE = 37 L/min). Symptoms and pulmonary function were assessed during the time course of exposure; nonspecific airway reactivity was assessed after exposure. Both groups exhibited similar, significant (p less than 0.01) increases in perceived odor, nose/throat irritation, and eye irritation throughout the exposure. The normal group had the following statistically significant (p less than 0.02) lower pulmonary functions after 55 min of exposure to formaldehyde as compared to clean air: 3.8% in FEV1, 2.6% in FVC, and 2.8% in FEV3. The asthmatic group showed no statistically significant decrements in pulmonary function. Five of 38 subjects studied had decrements in FEV1 greater than 10%. In conclusion, acute exposure to 3 ppm HCHO produced: consistent irritant symptoms in both normal and asthmatic subjects, small decreases in pulmonary function in normal subjects engaging in heavy exercise, and clinically significant responses (defined here as decrements in FEU1 greater than 10) in 13% of the study population.

  10. Acute stress affects the global DNA methylation profile in rat brain: modulation by physical exercise.

    PubMed

    Rodrigues, Gelson M; Toffoli, Leandro V; Manfredo, Marcelo H; Francis-Oliveira, José; Silva, Andrey S; Raquel, Hiviny A; Martins-Pinge, Marli C; Moreira, Estefânia G; Fernandes, Karen B; Pelosi, Gislaine G; Gomes, Marcus V

    2015-02-15

    The vulnerability of epigenetic marks of brain cells to environmental stimuli and its implication for health have been recently debated. Thus, we used the rat model of acute restraint stress (ARS) to evaluate the impact of stress on the global DNA methylation and on the expression of the Dnmt1 and Bdnf genes of hippocampus, cortex, hypothalamus and periaqueductal gray (PAG). Furthermore, we verified the potential of physical exercise to modulate epigenetic responses evoked by ARS. Sedentary male Wistar rats were submitted to ARS at the 75th postnatal day (PND), whereas animals from a physically active group were previously submitted to swimming sessions (35-74th PND) and to ARS at the 75th PND. Global DNA methylation profile was quantified using an ELISA-based method and the quantitative expression of the Dnmt1 and Bdnf genes was evaluated by real-time PCR. ARS induced a decrease in global DNA methylation in hippocampus, cortex and PAG of sedentary animals and an increased expression of Bdnf in PAG. No change in DNA methylation was associated with ARS in the exercised animals, although it was associated with abnormal expression of Dnmt1 and Bdnf in cortex, hypothalamus and PAG. Our data reveal that ARS evokes adaptive changes in global DNA methylation of rat brain that are independent of the expression of the Dnmt1 gene but might be linked to abnormal expression of the Bdnf gene in the PAG. Furthermore, our evidence indicates that physical exercise has the potential to modulate changes in DNA methylation and gene expression consequent to ARS.

  11. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat.

    PubMed

    Mauger, Alexis R; Taylor, Lee; Harding, Christopher; Wright, Benjamin; Foster, Josh; Castle, Paul C

    2014-01-01

    Acetaminophen (paracetamol) is a commonly used over-the-counter analgesic and antipyretic and has previously been shown to improve exercise performance through a reduction in perceived pain. This study sought to establish whether its antipyretic action may also improve exercise capacity in the heat by moderating the increase in core temperature. On separate days, 11 recreationally active participants completed two experimental time-to-exhaustion trials on a cycle ergometer in hot conditions (30°C, 50% relative humidity) after ingesting a placebo control or an oral dose of acetaminophen in a randomized, double-blind design. Following acetaminophen ingestion, participants cycled for a significantly longer period of time (acetaminophen, 23 ± 15 min versus placebo, 19 ± 13 min; P = 0.005; 95% confidence interval = 90-379 s), and this was accompanied by significantly lower core (-0.15°C), skin (-0.47°C) and body temperatures (0.19°C; P < 0.05). In the acetaminophen condition, participants also reported significantly lower ratings of thermal sensation (-0.39; P = 0.015), but no significant change in heart rate was observed (P > 0.05). This is the first study to demonstrate that an acute dose of acetaminophen can improve cycling capacity in hot conditions, and that this may be due to the observed reduction in core, skin and body temperature and the subjective perception of thermal comfort. These findings suggest that acetaminophen may reduce the thermoregulatory strain elicited from exercise, thus improving time to exhaustion.

  12. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Musazzi, Laura; Popoli, Maurizio

    2015-11-01

    Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.

  13. Changes in rest and exercise myocardial perfusion and left ventricular function 3 to 26 weeks after clinically uncomplicated acute myocardial infarction: effects of exercise training

    SciTech Connect

    Hung, J.; Gordon, E.P.; Houston, N.; Haskell, W.L.; Goris, M.L.; DeBusk, R.F.

    1984-11-01

    The effects of exercise training on exercise myocardial perfusion and left ventricular (LV) function in the first 6 months after clinically uncomplicated acute myocardial infarction (AMI) were assessed in 53 consecutive men aged 55 +/- 9 years. Symptom-limited treadmill exercise with thallium myocardial perfusion scintigraphy and symptom-limited upright bicycle ergometry with equilibrium gated radionuclide ventriculography were performed 3, 11 and 26 weeks after AMI by 23 men randomized to training and 30 randomized to no training. Peak cycle capacity increased in both groups between 3 and 26 weeks (p less than 0.01), but reached higher levels in trained than in untrained patients (803 +/- 149 vs 648 +/- 182 kg-m/min, p less than 0.01). Reversible thallium perfusion defects were significantly more frequent at 3 than at 26 weeks: 59% and 36% of patients, respectively (p less than 0.05), without significant inter-group differences. Values of LV ejection fraction at rest, submaximal and peak exercise did not change significantly in either group. The increase in functional capacity, i.e., peak treadmill or bicycle workload, that occurred 3 to 26 weeks after infarction was significantly correlated with the increase in peak exercise heart rate (p less than 0.001), but not with changes in myocardial perfusion or LV function determined by radionuclide techniques. Changes in myocardial perfusion or LV function do not appear to account for the improvement in peak functional capacity that occurs within the first 6 months after clinically uncomplicated AMI.

  14. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

    PubMed

    Cochran, Andrew J R; Percival, Michael E; Tricarico, Steven; Little, Jonathan P; Cermak, Naomi; Gillen, Jenna B; Tarnopolsky, Mark A; Gibala, Martin J

    2014-05-01

    High-intensity interval training (HIIT) performed in an 'all-out' manner (e.g. repeated Wingate tests) is a time-efficient strategy to induce skeletal muscle remodelling towards a more oxidative phenotype. A fundamental question that remains unclear, however, is whether the intermittent or 'pulsed' nature of the stimulus is critical to the adaptive response. In study 1, we examined whether the activation of signalling cascades linked to mitochondrial biogenesis was dependent on the manner in which an acute high-intensity exercise stimulus was applied. Subjects performed either four 30 s Wingate tests interspersed with 4 min of rest (INT) or a bout of continuous exercise (CONT) that was matched for total work (67 ± 7 kJ) and which required ∼4 min to complete as fast as possible. Both protocols elicited similar increases in markers of adenosine monophosphate-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase activation, as well as Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression (main effects for time, P ≤ 0.05). In study 2, we determined whether 6 weeks of the CONT protocol (3 days per week) would increase skeletal muscle mitochondrial content to a similar extent to what we have previously reported after 6 weeks of INT. Despite similar acute signalling responses to the CONT and INT protocols, training with CONT did not increase the maximal activity or protein content of a range of mitochondrial markers. However, peak oxygen uptake was higher after CONT training (from 45.7 ± 5.4 to 48.3 ± 6.5 ml kg(-1) min(-1); P < 0.05) and 250 kJ time trial performance was improved (from 26:32 ± 4:48 to 23:55 ± 4:16 min:s; P < 0.001) in our recreationally active participants. We conclude that the intermittent nature of the stimulus is important for maximizing skeletal muscle adaptations to low-volume, all-out HIIT. Despite the lack of skeletal muscle mitochondrial adaptations

  15. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    PubMed Central

    Pournot, Hervé; Tindel, Jérémy; Testa, Rodolphe; Mathevon, Laure; Lapole, Thomas

    2016-01-01

    Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV) as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude). Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE), immediately after exercise (POST-EX) and 5 min after the recovery period (POST-REC). Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001) and POST-REC (+31 ± 46%; p = 0.025) when compared to PRE. No differences were found between passive and LV recovery (p = 0.210). LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations. Key points Bouts of barbell curl exercise induce an immediate increased passive stiffness of the biceps brachii muscle, as evidenced by greater shear elastic modulus measured by supersonic shear imaging. The administration of a vibratory massage did not reduce this acute exercise-induced increased stiffness. PMID:26957937

  16. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats

    PubMed Central

    2013-01-01

    It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. PMID:23442260

  17. Exercise for workers with musculoskeletal pain: Does enhancing compliance decrease pain?

    PubMed

    Linton, S J; Hellsing, A L; Bergström, G

    1996-09-01

    A low rate of compliance for exercise regimens is a difficult problem for programs aimed at treating or preventing musculoskeletal pain. In fact, the utility of exercise for common pain problems has been debated since poor compliance confounds proper program evaluation. Thus, the purpose of the present study was to evaluate the effects of a compliance enhancement measure and subsequently to assess the effects of physical activity on pain perception. Forty-eight employees (mean age=42, 20 females) currently working at two companies and who reported musculoskeletal pain, but noexercise habit voluntarily served as subjects. The Comparison Group was provided with information and free membership at a health center. The Exercise Compliance Enhancement Group met individually with a behavioral psychologist, who employed cognitive-behavioral techniques, to plan their activity program. Results showed that the Compliance Enhancement Group had a higher rate of adherence and participated in significantly more exercises over the course of 6 months than did the Comparison Group. However, analyses based on pre- and posttest gain scores showed that the differences between the groups for aerobic capacity and pain intensity were not significant. However, when compilers were compared with noncompliers, those complying with the activity program were found to have improved their aerobic capacity more than noncompliers. Yet for overall pain intensity ratings, the difference between compilers and noncompliers was still not significant. Intensity ratings made immediately before and after exercising indicated that exercise activities were related to a significant increase in pain intensity. These results indicate that compliance for exercise may be significantly improved, but the effect of exercise activities on overall pain intensity was not significant relative to the comparison group. PMID:24234978

  18. Computer-enhanced thallium scintigrams in asymptomatic men with abnormal exercise tests

    SciTech Connect

    Uhl, G.S.; Kay, T.N.; Hickman, J.R., Jr.

    1981-12-01

    The usefulness of computer-enhanced thallium-201 myocardial perfusion scintigraphy in excluding the diagnosis of coronary artery disease in asymptomatic patients showing abnormal exercise electrocardiograms is evaluated. Multigated thallium scans were obtained immediately following and 3 or 4 hours after maximal exercise testing in 191 consecutive asymptomatic Air Force aircrew members who had shown abnormal exercise electrocardiograms and who were due to undergo coronary angiography. Computer enhancement of the raw images is found to lead to four false positive and two false negative scintigrams as revealed by angiographic results, while the group of 15 with subcritical coronary disease exhibited equivocal results. Results reveal that enhanced thallium scintigrams are an accurate diagnostics tool in detecting myocardial ischemia in asymptomatic patients and may be used in counseling asymptomatic patients on their likelihood of having coronary artery disease.

  19. Exercise

    MedlinePlus

    ... article Exercise / physical activity with MS Judy Boone, physical therapist Lynn Williams, Dan Melfi and Dave Altman discuss ... adjusted as changes occur in MS symptoms. A physical therapist experienced with MS can be helpful in designing, ...

  20. Prevention of subsequent exercise-induced periinfarct ischemia by emergency coronary angioplasty in acute myocardial infarction: comparison with intracoronary streptokinase

    SciTech Connect

    Fung, A.Y.; Lai, P.; Juni, J.E.; Bourdillon, P.D.; Walton, J.A. Jr.; Laufer, N.; Buda, A.J.; Pitt, B.; O'Neill, W.W.

    1986-09-01

    To compare the efficacy of emergency percutaneous transluminal coronary angioplasty and intracoronary streptokinase in preventing exercise-induced periinfarct ischemia, 28 patients presenting within 12 hours of the onset of symptoms of acute myocardial infarction were prospectively randomized. Of these, 14 patients were treated with emergency angioplasty and 14 patients received intracoronary streptokinase. Recatheterization and submaximal exercise thallium-201 single photon emission computed tomography were performed before hospital discharge. Periinfarct ischemia was defined as a reversible thallium defect adjacent to a fixed defect assessed qualitatively. Successful reperfusion was achieved in 86% of patients treated with emergency angioplasty and 86% of patients treated with intracoronary streptokinase (p = NS). Residual stenosis of the infarct-related coronary artery shown at predischarge angiography was 43.8 +/- 31.4% for the angioplasty group and 75.0 +/- 15.6% for the streptokinase group (p less than 0.05). Of the angioplasty group, 9% developed exercise-induced periinfarct ischemia compared with 60% of the streptokinase group (p less than 0.05). Thus, patients with acute myocardial infarction treated with emergency angioplasty had significantly less severe residual coronary stenosis and exercise-induced periinfarct ischemia than did those treated with intracoronary streptokinase. These results suggest further application of coronary angioplasty in the management of acute myocardial infarction.

  1. Acute exercise modulates the Foxo1/PGC-1α pathway in the liver of diet-induced obesity rats

    PubMed Central

    Ropelle, Eduardo R; Pauli, José R; Cintra, Dennys E; Frederico, Marisa J S; de Pinho, Ricardo A; Velloso, Lício A; De Souza, Cláudio T

    2009-01-01

    PGC-1α expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1α activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1α and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1α/Foxo1 association is unknown. Here we investigate the expression of PGC-1α and the association of PGC-1α/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1α expression and PGC-1α/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia. PMID:19273580

  2. Efficacy of Postural and Neck-Stabilization Exercises for Persons with Acute Whiplash-Associated Disorders: A Systematic Review

    PubMed Central

    Hardy, Sandra; MacLean, Jill; Schindler, Martine; Scott, Katrin

    2008-01-01

    Purpose: We systematically reviewed randomized and quasi-randomized clinical trials in the literature to assess the efficacy of neck stabilization and postural exercises on pain, neck range of motion, and time off work in adults with acute whiplash-associated disorders. Methods: Electronic databases, reference lists of relevant Cochrane reviews, reference lists of studies selected for inclusion, and tables of contents of relevant journals were systematically searched for randomized and quasi-randomized controlled trials. Two independent reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Because of the heterogeneity of the interventions, a qualitative synthesis was performed using “levels of evidence” as recommended by van Tulder et al. Results: Eight studies representing five clinical trials were selected for inclusion. Two trials were graded as high quality, two as moderate quality, and one as low quality. Many of these studies had mixed results, demonstrating significant differences on some outcome measures but not on others. Conclusions: There is moderate evidence to support the use of postural exercises for decreasing pain and time off work in the treatment of patients with acute whiplash-associated disorders. However, no evidence exists to support the use of postural exercises for increasing neck range of motion. There is conflicting evidence in support of neck stabilization exercises in the treatment of patients with acute whiplash-associated disorders. PMID:20145754

  3. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects.

    PubMed

    McMorris, Terry; Sproule, John; Turner, Anthony; Hale, Beverley J

    2011-03-01

    The purpose of this study was to compare, using meta-analytic techniques, the effect of acute, intermediate intensity exercise on the speed and accuracy of performance of working memory tasks. It was hypothesized that acute, intermediate intensity exercise would have a significant beneficial effect on response time and that effect sizes for response time and accuracy data would differ significantly. Random-effects meta-analysis showed a significant, beneficial effect size for response time, g=-1.41 (p<0.001) but a significant detrimental effect size, g=0.40 (p<0.01), for accuracy. There was a significant difference between effect sizes (Z(diff)=3.85, p<0.001). It was concluded that acute, intermediate intensity exercise has a strong beneficial effect on speed of response in working memory tasks but a low to moderate, detrimental one on accuracy. There was no support for a speed-accuracy trade-off. It was argued that exercise-induced increases in brain concentrations of catecholamines result in faster processing but increases in neural noise may negatively affect accuracy.

  4. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity

    PubMed Central

    Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2015-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18–30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585

  5. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    PubMed

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation.

  6. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    PubMed

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585

  7. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists.

    PubMed

    Muggeridge, David J; Sculthorpe, Nicholas; Grace, Fergal M; Willis, Gareth; Thornhill, Laurence; Weller, Richard B; James, Philip E; Easton, Chris

    2015-08-01

    Dietary nitrate supplementation has been shown to increase nitric oxide (NO) metabolites, reduce blood pressure (BP) and enhance exercise performance. Acute exposure to ultraviolet (UV)-A light also increases NO bioavailability and reduces BP. We conducted a randomized, counterbalanced placebo-controlled trial to determine the effects of UV-A light alone and in combination with nitrate on the responses to sub-maximal steady-state exercise and time trial (TT) performance. Nine cyclists (VO2max 53.1 ± 4.4 ml/kg/min) completed five performance trials comprising 10 min submaximal steady-state cycling followed by a 16.1 km TT. Following a familiarization the final four trials were preceded, in random order, by either (1) Nitrate gels (NIT) + UV-A, (2) Placebo (PLA) + UV-A, (3) NIT + Sham light (SHAM) and (4) PLA + SHAM (control). The NIT gels (2 × 60 ml gels, ~8.1 mmol nitrate) or a low-nitrate PLA were ingested 2.5 h prior to the trial. The light exposure consisted of 20 J/cm(2) whole body irradiation with either UV-A or SHAM light. Plasma nitrite was measured pre- and post-irradiation and VO2 was measured continuously during steady-state exercise. Plasma nitrite was higher for NIT + SHAM (geometric mean (95% CI), 332 (292-377) nM; P = 0.029) and NIT + UV-A (456 (312-666) nM; P = 0.014) compared to PLA + SHAM (215 (167-277) nM). Differences between PLA + SHAM and PLA + UV-A (282 (248-356) nM) were small and non-significant. During steady-state exercise VO2 was reduced following NIT + UVA (P = 0.034) and tended to be lower in NIT + SHAM (P = 0.086) but not PLA + UV-A (P = 0.381) compared to PLA + SHAM. Performance in the TT was significantly faster following NIT + UV-A (mean ± SD 1447 ± 41 s P = 0.005; d = 0.47), but not PLA + UV-A (1450 ± 40 s; d = 0.41) or NIT + SHAM (1455 ± 47 s; d = 0.28) compared to PLA + SHAM (1469 ± 52 s). These findings demonstrate that exposure to UV-A light alone does not alter the physiological responses to exercise or improve

  8. Prognostic value of predischarge low-level exercise thallium testing after thrombolytic treatment of acute myocardial infarction

    SciTech Connect

    Tilkemeier, P.L.; Guiney, T.E.; LaRaia, P.J.; Boucher, C.A. )

    1990-11-15

    Low-level exercise thallium testing is useful in identifying the high-risk patient after acute myocardial infarction (AMI). To determine whether this use also applies to patients after thrombolytic treatment of AMI, 64 patients who underwent early thrombolytic therapy for AMI and 107 patients without acute intervention were evaluated. The ability of both the electrocardiogram and thallium tests to predict future events was compared in both groups. After a mean follow-up of 374 days, there were 25 and 32% of cardiac events in the 2 groups, respectively, with versus without acute intervention. These included death, another AMI, coronary artery bypass grafting or angioplasty with 75% of the events occurring in the 3 months after the first infarction. The only significant predictors of outcome were left ventricular cavity dilatation in the intervention group and ST-segment depression and increased lung uptake in the nonintervention group. The sensitivity of exercise thallium was 55% in the intervention group and 81% in the nonintervention group (p less than 0.05). Therefore, in patients having thrombolytic therapy for AMI, nearly half the events after discharge are not predicted by predischarge low-level exercise thallium testing. The relatively weak correlation of outcome with unmasking ischemia in the laboratory before discharge may be due to an unstable coronary lesion or rapid progression of disease after the test. Tests considered useful for prognostication after AMI may not necessarily have a similar value if there has been an acute intervention, such as thrombolytic therapy.

  9. The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males

    PubMed Central

    Gahreman, Daniel E; Boutcher, Yati N; Bustamante, Sonia; Boutcher, Stephen H

    2016-01-01

    [Purpose] This study investigated the combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. [Methods] Fourteen trained and 14 untrained males ingested one capsule containing either green tea or cellulose with breakfast, lunch, and dinner, 24 hours before two exercise sessions. A fourth capsule was consumed 90 minutes before exercise after overnight NPO (nil per os). Participants performed a 20-minute interval sprinting cycling protocol, consisting of repeated bouts of 8-seconds of sprint cycling (at 65% of maximum power output) and 12-seconds of recovery (at 25% of maximum power output), followed by 75 minutes of post-exercise recovery. [Results] Fat oxidation was significantly greater in the resting condition after green tea ingestion (p < 0.05) compared with the placebo. Fat oxidation was also significantly increased post-exercise in the green tea, compared with the placebo condition (p < 0.01). During and after exercise the plasma glycerol levels significantly increased in both groups after green tea consumption and were significantly higher in the untrained group compared with the trained group (p < 0.05). Compared with the placebo, the plasma epinephrine levels were significantly higher for both groups in the green tea condition during and after exercise, however, norepinephrine levels were only significantly greater, p < 0.05, during and after exercise in the untrained group. [Conclusion] Green tea significantly increased resting and post-exercise fat oxidation and also elevated plasma glycerol and epinephrine levels during and after interval sprinting. Glycerol and norepinephrine levels during interval sprinting were significantly higher in the untrained group compared with the trained group. PMID:27298806

  10. Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies.

    PubMed

    McMorris, Terry

    2016-10-15

    The catecholamines hypothesis for the acute exercise-cognition interaction in humans fails to adequately explain the interaction between peripherally circulating catecholamines and brain concentrations; how different exercise intensities×durations affect different cognitive tasks; and how brain catecholamines, glucocorticoids, BDNF and 5-hydroxytryptamine interact. A review of the animal literature was able to clarify many of the issues. Rodent studies showed that facilitation of cognition during short to moderate duration (SMD), moderate exercise could be accounted for by activation of the locus coeruleus via feedback from stretch reflexes, baroreceptors and, post-catecholamines threshold, β-adrenoceptors on the vagus nerve. SMD, moderate exercise facilitates all types of task by stimulation of the reticular system by norepinephrine (NE) but central executive tasks are further facilitated by activation of α2A-adrenoceptors and D1-dopaminergic receptors in the prefrontal cortex, which increases the signal to 'noise' ratio. During long-duration, moderate exercise and heavy exercise, brain concentrations of glucocorticoids and 5-hydroxytryptamine, the latter in moderate exercise only, also increase. This further increases catecholamines release. This results in increased activation of D1-receptors and α1-adrenoceptors, in the prefrontal cortex, which dampens all neural activity, thus inhibiting central executive performance. However, activation of β- and α1-adrenoceptors can positively affect signal detection in the sensory cortices, hence performance of perception/attention and autonomous tasks can be facilitated. Animal studies also show that during long-duration, moderate exercise and heavy exercise, NE activation of β-adrenoceptors releases cAMP, which modulates the signaling and trafficking of the BDNF receptor Trk B, which facilitates long-term potentiation. PMID:27526999

  11. Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies.

    PubMed

    McMorris, Terry

    2016-10-15

    The catecholamines hypothesis for the acute exercise-cognition interaction in humans fails to adequately explain the interaction between peripherally circulating catecholamines and brain concentrations; how different exercise intensities×durations affect different cognitive tasks; and how brain catecholamines, glucocorticoids, BDNF and 5-hydroxytryptamine interact. A review of the animal literature was able to clarify many of the issues. Rodent studies showed that facilitation of cognition during short to moderate duration (SMD), moderate exercise could be accounted for by activation of the locus coeruleus via feedback from stretch reflexes, baroreceptors and, post-catecholamines threshold, β-adrenoceptors on the vagus nerve. SMD, moderate exercise facilitates all types of task by stimulation of the reticular system by norepinephrine (NE) but central executive tasks are further facilitated by activation of α2A-adrenoceptors and D1-dopaminergic receptors in the prefrontal cortex, which increases the signal to 'noise' ratio. During long-duration, moderate exercise and heavy exercise, brain concentrations of glucocorticoids and 5-hydroxytryptamine, the latter in moderate exercise only, also increase. This further increases catecholamines release. This results in increased activation of D1-receptors and α1-adrenoceptors, in the prefrontal cortex, which dampens all neural activity, thus inhibiting central executive performance. However, activation of β- and α1-adrenoceptors can positively affect signal detection in the sensory cortices, hence performance of perception/attention and autonomous tasks can be facilitated. Animal studies also show that during long-duration, moderate exercise and heavy exercise, NE activation of β-adrenoceptors releases cAMP, which modulates the signaling and trafficking of the BDNF receptor Trk B, which facilitates long-term potentiation.

  12. Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part I.

    PubMed

    Rossi, Fabrício E; Gerosa-Neto, Jose; Zanchi, Nelo E; Cholewa, Jason M; Lira, Fabio S

    2016-06-01

    Rossi, FE, Gerosa-Neto, J, Zanchi, NE, Cholewa, JM, and Lira, FS. Impact of short and moderate rest intervals on the acute immunometabolic response to exhaustive strength exercise. J Strength Cond Res 30(6): 1563-1569, 2016-The purpose of this study was to verify the influence of the short and moderate intervals of recovery in response to an acute bout of exhaustive strength exercise on performance, inflammatory, and metabolic responses in healthy adults. Eight healthy subjects (age = 24.6 ± 4.1 years) performed 2 randomized sequences: short = 70% of 1 repetition maximum (1RM) with 30 seconds of rest between sets; moderate = 70% of 1RM with 90 seconds of rest between sets. All sequences of exercises were performed over 4 sets until movement failure in the squat and bench press exercises, respectively. The total number of repetitions performed was recorded for each set of each exercise for all sequences. The percentages of fat mass and fat-free mass were estimated by dual-energy x-ray absorptiometry. Glucose, tumor necrosis factor-α, interleukin (IL)-6, IL-10, and nonester fatty acid were assessed, at baseline, immediately after exercise, after 15 and 30 minutes. When compared with the maximum number of repetitions and the total weight lifted, there was a statistically significant decrease after both intervals. The only statistically significant decreases over time occurred at the post-15 minutes assessment of the IL-6 and glucose when a moderate interval of recovery was performed. When comparing the alterations between the pools (the mean of the cluster of all periods in each variable), there was a statistically significant increase on the IL-6 and IL-10 when a moderate interval of recovery was performed again, however, not considering a statistical difference on the IL-10. Thus, we concluded that different interval of recovery in response to exhaustive strength exercise decreases performance but in only moderate intervals, it is associated with inflammatory and

  13. Comparative value of maximal treadmill testing, exercise thallium myocardial perfusion scintigraphy and exercise radionuclide ventriculography for distinguishing high- and low-risk patients soon after acute myocardial infarction

    SciTech Connect

    Hung, J.; Goris, M.L.; Nash, E.; Kraemer, H.C.; DeBusk, R.F.; Berger, W.E.; Lew, H.

    1984-05-01

    The prognostic value of symptom-limited treadmill exercise electrocardiography, exercise thallium myocardial perfusion scintigraphy and rest and exercise radionuclide ventriculography was compared in 117 men, aged 54 +/- 9 years, tested 3 weeks after a clinically uncomplicated acute myocardial infarction (MI). During a mean follow-up period of 11.6 months, 8 men experienced ''hard'' medical events (cardiac death, nonfatal ventricular fibrillation or recurrent MI) and 14 were hospitalized for unstable angina pectoris, congestive heart failure or coronary bypass surgery (total of 22 combined events). By multivariate analysis (Cox proportional hazards model), peak treadmill work load and the change in left ventricular ejection fraction (EF) during exercise were significant (p less than 0.01) predictors of hard medical events; these 2 risk factors and recurrent ischemic chest pain in the coronary care unit were also significantly predictive (p less than 0.001) for combined events. A peak treadmill work load of 4 METs or less or a decrease in EF of 5% or more below the value at rest during submaximal effort distinguished 22 high-risk patients (20% of the study population) from 89 low-risk patients. The rate of hard medical events within 12 months was 23% (5 of 22 patients), vs 2% (2 of 89 patients) in the high- and low-risk patient subsets, respectively (p less than 0.001). Thus, in patients who underwent evaluation 3 weeks after a clinically uncomplicated MI, exercise radionuclide ventriculography contributed independent prognostic information to that provided by symptom-limited treadmill testing and was superior to exercise thallium scintigraphy for this purpose.

  14. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    PubMed Central

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic

  15. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

    PubMed Central

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-01-01

    Abstract We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these

  16. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study.

    PubMed

    Tschakert, Gerhard; Kroepfl, Julia M; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter

    2016-03-01

    Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn't show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key pointsHigh-intensity interval exercise (HIIE

  17. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study

    PubMed Central

    Tschakert, Gerhard; Kroepfl, Julia M.; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter

    2016-01-01

    Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn’t show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key points High-intensity interval exercise (HIIE

  18. Inhalation of Shin-I essential oil enhances lactate clearance in treadmill exercise

    PubMed Central

    Chen, Hsuan-Ying; Wang, Ming-Fu; Lin, Jun-Ying; Tsai, Ying-Chieh; Cheng, Fu-Chou

    2014-01-01

    Objective To evaluate the effect of Shin-I essential oil inhalation on blood lactate changes in rats subjected to treadmill exercise. Methods : Adult male Sprague Dawley rats (n=12) were randomly divided into the control or the Shin-I group. Rats were subjected to a treadmill exercise program (15 m/min for 30 min). After exercise, rats were exposed to 200 µL of water or Shin-I essential oil, respectively, using a nebulizer for 180 min during the recovery period. Blood samples were collected every 15 min. Blood glucose and lactate concentrations were determined in a CMA 600 analyzer. Results : The basal glucose and lactate levels were no significantly different between two groups. After exercise, glucose levels were slightly increased to about 110%-120% of the basal level in both groups. Lactate levels of both groups reached to 110%-140% of basal levels during exercise. In the recovery period, lactate levels further increased to 180% of the basal level and were maintained at a plateau in the control group. However, lactate levels gradually decreased to 60%-65% of the basal level in the Shin-I group. Lactate clearance was significantly enhanced after Shin-I essential oil inhalation. Conclusions : Our results provide evidence that Shin-I essential oil inhalation may accelerate recovery after exercise in rats. PMID:25182288

  19. Voluntary stand-up physical activity enhances endurance exercise capacity in rats

    PubMed Central

    Seo, Dae Yun; Lee, Sung Ryul; Kwak, Hyo-Bum; Seo, Kyo Won; McGregor, Robin A; Yeo, Ji Young; Ko, Tae Hee; Bolorerdene, Saranhuu; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity. PMID:27162483

  20. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice.

    PubMed

    Ferreira-Vieira, Talita H; Bastos, Cristiane P; Pereira, Grace S; Moreira, Fabricio A; Massensini, André R

    2014-01-01

    It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.

  1. New Insights into Enhancing Maximal Exercise Performance Through the Use of a Bitter Tastant.

    PubMed

    Gam, Sharon; Guelfi, Kym J; Fournier, Paul A

    2016-10-01

    It is generally acknowledged that for an orally administered ergogenic aid to enhance exercise performance it must first be absorbed by the gastrointestinal tract before exerting its effects. Recently, however, it has been reported that some ergogenic aids can affect exercise performance without prior absorption by the gastrointestinal tract. This is best illustrated by studies that have shown that rinsing the mouth with a carbohydrate (CHO) solution, without swallowing it, significantly improves exercise performance. The ergogenic effects of CHO mouth rinsing in these studies have been attributed to the activation of the brain by afferent taste signals, but the specific mechanisms by which this brain activation translates to enhanced exercise performance have not yet been elucidated. Given the benefits of CHO mouth rinsing for exercise performance, this raises the issue of whether other types of tastants, such as bitter-tasting solutions, may also improve exercise performance. Recently, we performed a series of studies investigating whether the bitter tastant quinine can improve maximal sprint performance in competitive male cyclists, and, if so, to examine some of the possible mechanisms whereby this effect may occur. These studies have shown that mouth rinsing and ingesting a bitter-tasting quinine solution can significantly improve the performance of a maximal cycling sprint. There is also evidence that the ergogenic effect of quinine is mediated, at least in part, by an increase in autonomic nervous system activation and/or corticomotor excitability. The purpose of this article is to discuss the results and implications of these recent studies and to suggest avenues for further research, which may add to the understanding of the way the brain integrates signals from the oral cavity with motor behaviour, as well as uncover novel strategies to improve exercise performance.

  2. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    PubMed

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  3. Use of Martial Art Exercises in Performance Enhancement Training.

    ERIC Educational Resources Information Center

    McClellan, Tim; Anderson, Warren

    2002-01-01

    Details some of the many martial arts training techniques and their potential applications for inclusion in performance enhancement programs, focusing on the benefits of martial training, the arts continuum, and martial arts training modes. The article concludes that the various martial arts techniques provide a stimulating and intuitively…

  4. Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells

    PubMed Central

    Yeh, S‐H; Chuang, H; Lin, L‐W; Hsiao, C‐Y; Eng, H L

    2006-01-01

    Background The duration and vigour of physical exercise are widely considered to be critical elements that may positively or negatively affect physical health and immune response. Objectives To investigate the effect of a 12 week programme of regular tai chi chuan exercise (TCC) on functional mobility, beliefs about benefits of exercise on physical and psychological health, and immune regulation in middle aged volunteers. Methods This quasi‐experimental research design involving one group with testing before and after the programme was conducted to measure the effect of 12 weeks of TCC exercise in 14 men and 23 women from the normal community. Results Regular TCC exercise had a highly significant positive effect on functional mobility (p  =  0.001) and beliefs about the health benefits of exercise (p  =  0.013) in the 37 participants. Total white blood cell and red blood cell count did not change significantly, but a highly significant (p<0.001) decrease in monocyte count occurred. A significant (p  =  0.05) increase in the ratio of T helper to suppressor cells (CD4:CD8) was found, along with a significant (p  =  0.015) increase in CD4CD25 regulatory T cells. Production of the regulatory T cell mediators transforming growth factor β and interleukin 10 under specific antigen stimulation (varicella zoster virus) was also significantly increased after this exercise programme. Conclusions A 12 week programme of regular TCC exercise enhances functional mobility, personal health expectations, and regulatory T cell function. PMID:16505081

  5. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks.

    PubMed

    Alves, Christiano R R; Tessaro, Victor H; Teixeira, Luis A C; Murakava, Karina; Roschel, Hamilton; Gualano, Bruno; Takito, Monica Y

    2014-02-01

    Acute moderate intensity continuous aerobic exercise can improve specific cognitive functions, such as short-term memory and selective attention. Moreover, high-intensity interval training (HIT) has been recently proposed as a time-efficient alternative to traditional cardiorespiratory exercise. However, considering previous speculations that the exercise intensity affects cognition in a U-shaped fashion, it was hypothesized that a HIT session may impair cognitive performance. Therefore, this study assessed the effects of an acute HIT session on selective attention and short-term memory tasks. 22 healthy middle-aged individuals (M age = 53.7 yr.) engaged in both (1) a HIT session, 10 1 min. cycling bouts at the intensity corresponding to 80% of the reserve heart rate interspersed by 1 min. active pauses cycling at 60% of the reserve heart rate and (2) a control session, consisting of an active condition with low-intensity active stretching exercise. Before and after each experimental session, cognitive performance was assessed by the Victoria Version of the Stroop test (a selective attention test) and the Digit Span test (a short-term memory test). Following the HIT session, the time to complete the Stroop "Color word" test was significantly lower when compared with that of the control session. The performances in the other subtasks of the Stroop test as well as in the Digit Span test were not significantly different. A HIT session can improve cognitive function.

  6. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    PubMed

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, p<0.05). The combination of caffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain. PMID:24726708

  7. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    PubMed

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, p<0.05). The combination of caffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain.

  8. Lumbar manipulation and exercise for the treatment of acute low back pain in adolescents: a randomized controlled trial

    PubMed Central

    Selhorst, Brittany

    2015-01-01

    Objectives Low back pain (LBP) is a common condition in adolescents. Although much has been written about the efficacy of lumbar manipulation for adults with LBP, little is known about its effectiveness in adolescents. This study had two primary aims: (1) to assess the efficacy of adding lumbar manipulation to an exercise program in adolescents with acute (<90 days) LBP and (2) to report and assess any adverse reactions associated with lumbar manipulation noted in this study. Methods Patients were randomly assigned to receive lumbar manipulation or sham manipulation. All patients performed 4 weeks of physical therapy exercise. Pain, patient-specific functional scale (PSFS), and global rating of change (GROC) scores were measured at evaluation, 1 week, 4 weeks, and 6 months. Relative risk was calculated for adverse reactions noted. Results We recruited 35 consecutive patients with acute LBP. One patient was excluded after being diagnosed with a spondylolysis, 34 patients remained for analysis. Both groups experienced significant improvement over time in all measures. There were no differences between groups for pain, PSFS, or GROC scores. No increased risk of adverse reaction from lumbar manipulation was noted. Discussion The addition of lumbar manipulation to exercise did not benefit adolescents with acute LBP. There was not an increased risk of an adverse reaction noted in this study from lumbar manipulation performed on adolescents. Further research needs to be done to identify factors that predict positive outcomes following lumbar manipulation in adolescents. PMID:26917941

  9. Neuroelectric and Behavioral Effects of Acute Exercise on Task Switching in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Hung, Chiao-Ling; Huang, Chung-Ju; Tsai, Yu-Jung; Chang, Yu-Kai; Hung, Tsung-Min

    2016-01-01

    The main purpose of this two-part study was to examine the effects of acute, moderate intensity exercise on task switching in children with attention-deficit/hyperactivity disorder (ADHD). In Study 1, we compared the task switching performance of children with and without ADHD. Twenty children with ADHD and 20 matched controls performed the task switching paradigm, in which the behavioral indices and P3 component of event-related potentials elicited by task-switching were assessed simultaneously. The amplitude and latency of P3 reflected the amount of attention resource allocated to task-relevant stimulus in the environment and the efficiency of stimulus detection and evaluation, respectively. The task switching included two conditions; the pure condition required participants to perform the task on the same rule (e.g., AAAA or BBBB) whereas the mixed condition required participants to perform the task on two alternating rules (e.g., AABBAA…). The results indicated that children with ADHD had significantly longer RTs, less accuracy, and larger global switch cost for accuracy than controls. Additionally, ADHD participants showed smaller amplitudes and longer P3 latencies in global switch effects. In Study 2, we further examined the effects of an acute aerobic exercise session on task switching in children with ADHD. Thirty-four children with ADHD performed a task switching paradigm after 30 min of moderate-intensity aerobic exercise on a treadmill and after control sessions (watching videos while seated). The results revealed that following exercise, children with ADHD exhibited smaller global switch costs in RT compared with after control sessions. The P3 amplitude only increased following exercise in the mixed condition relative to the pure condition, whereas no effects were found in the control session. These findings suggest that single bouts of moderate intensity aerobic exercise may have positive effects on the working memory of children with ADHD. PMID

  10. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress.

    PubMed

    Kahle, Laura E; Kelly, Patrick V; Eliot, Kathrin A; Weiss, Edward P

    2013-06-01

    Oral ingestion of sodium bicarbonate (bicarbonate loading) has acute ergogenic effects on short-duration, high-intensity exercise. Because sodium bicarbonate is 27% sodium, ergogenic doses (ie, 300 mg∙kg⁻¹) result in sodium intakes well above the Dietary Reference Intakes upper limit of 2300 mg/day. Therefore, it is conceivable that bicarbonate loading could have hypertensive effects. Therefore, we performed a double-blind crossover trial to evaluate the hypothesis that bicarbonate loading increases resting and exercise blood pressure (BP). A secondary hypothesis was that bicarbonate loading causes gastrointestinal distress. Eleven endurance-trained men and women (exercise frequency, 4.6 ± 0.4 sessions/wk; duration, 65 ± 6 min/session) underwent testing on two occasions in random sequence: once after bicarbonate loading (300 mg∙kg⁻¹) and once after placebo ingestion. BP and heart rate were measured before bicarbonate or placebo consumption, 30 minutes after consumption, during 20 min of steady state submaximal cycling exercise, and during recovery. Bicarbonate loading did not affect systolic BP during rest, exercise, or recovery (P = .38 for main treatment effect). However, it resulted in modestly higher diastolic BP (main treatment effect, +3.3 ± 1.1 mmHg, P = .01) and higher heart rate (main treatment effect, +10.1 ± 2.4 beats per minute, P = .002). Global ratings of gastrointestinal distress severity (0-10 scale) were greater after bicarbonate ingestion (5.1 ± 0.5 vs 0.5 ± 0.2, P < .0001). Furthermore, 10 of the 11 subjects (91%) experienced diarrhea, 64% experience bloating and thirst, and 45% experienced nausea after bicarbonate loading. In conclusion, although a single, ergogenic dose of sodium bicarbonate does not appear to have acute, clinically important effects on resting or exercise BP, it does cause substantial gastrointestinal distress.

  11. Acute oral administration of a tyrosine and phenylalanine-free amino acid mixture reduces exercise capacity in the heat.

    PubMed

    Tumilty, Les; Davison, Glen; Beckmann, Manfred; Thatcher, Rhys

    2013-06-01

    Acute tyrosine administration is associated with increased exercise capacity in the heat. To explore whether reduced plasma tyrosine and phenylalanine (tyrosine precursor) is associated with impaired exercise capacity in the heat, eight healthy, moderately trained male volunteers, unacclimated to exercise in the heat, performed two tests in a crossover design separated by at least 7 days. In a randomised, double-blind fashion, subjects ingested 500 mL flavoured, sugar-free water containing amino acids [(TYR-free; isoleucine 15 g, leucine 22.5 g, valine 17.5 g, lysine 17.5 g, methionine 5 g, threonine 10 g, tryptophan 2.5 g)] to lower the ratio of plasma tyrosine plus phenylalanine:amino acids competing for blood-brain barrier uptake (CAA), a key determinant of brain uptake, or a balanced mixture (BAL; TYR-free plus 12.5 g tyrosine and 12.5 g phenylalanine). One hour later, subjects cycled to exhaustion at 63 ± 5 % [Formula: see text]O2peak in 30 °C and 60 % relative humidity. Pre-exercise ratio of plasma tyrosine plus phenylalanine:ΣCAA declined 75 ± 5 % from rest in TYR-free (P < 0.001), but was unchanged in BAL (P = 0.061). Exercise time was shorter in TYR-free (59.8 ± 19.0 min vs. 66.2 ± 16.9 min in TYR-free and BAL respectively; P = 0.036). Heart rate (P = 0.298), core (P = 0.134) and skin (P = 0.384) temperature, RPE (P > 0.05) and thermal sensation (P > 0.05) were similar at exhaustion in both trials. These data indicate that acutely depleting plasma catecholamine precursors:ΣCAA is associated with reduced submaximal exercise capacity in the heat.

  12. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice.

    PubMed

    Kurauti, Mirian A; Freitas-Dias, Ricardo; Ferreira, Sandra M; Vettorazzi, Jean F; Nardelli, Tarlliza R; Araujo, Hygor N; Santos, Gustavo J; Carneiro, Everardo M; Boschero, Antonio C; Rezende, Luiz F; Costa-Júnior, José M

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  13. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice.

    PubMed

    Kurauti, Mirian A; Freitas-Dias, Ricardo; Ferreira, Sandra M; Vettorazzi, Jean F; Nardelli, Tarlliza R; Araujo, Hygor N; Santos, Gustavo J; Carneiro, Everardo M; Boschero, Antonio C; Rezende, Luiz F; Costa-Júnior, José M

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.

  14. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice

    PubMed Central

    Ferreira, Sandra M.; Vettorazzi, Jean F.; Nardelli, Tarlliza R.; Araujo, Hygor N.; Santos, Gustavo J.; Carneiro, Everardo M.; Boschero, Antonio C.; Rezende, Luiz F.; Costa-Júnior, José M.

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60–70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  15. Acute effects of a thermogenic nutritional supplement on energy expenditure and cardiovascular function at rest, during low-intensity exercise, and recovery from exercise.

    PubMed

    Ryan, Eric D; Beck, Travis W; Herda, Trent J; Smith, Abbie E; Walter, Ashley A; Stout, Jeffrey R; Cramer, Joel T

    2009-05-01

    The purpose of present study was to examine the acute effects of a thermogenic nutritional supplement on energy expenditure (EE) and cardiovascular function at rest, during low-intensity exercise, and recovery from exercise. Twenty-eight healthy sedentary participants (mean +/- SD; age, 22.3 +/- 1.9 years; body mass index, 24.0 +/- 3.7) volunteered for this randomized, double-blinded, placebo-controlled, crossover study. Each experimental trial was divided into 4 phases: (a) 30 minutes of initial resting, followed by the placebo or thermogenic nutritional supplementation, (b) 50 minutes of postsupplementation resting, (c) 60 minutes of treadmill walking (3.2-4.8 km x h), and (d) 50 minutes of postexercise recovery. Gas exchange variables measured by indirect calorimetry and heart rate (HR) were recorded during all 4 phases, blood pressure was only measured at rest, and rating of perceived exertion (RPE) was only recorded during exercise. EE and oxygen consumption rate (Vo2) were greater for the supplement than the placebo at 50 minutes after supplementation. Also, during the postsupplementation period, diastolic blood pressure (DBP) was higher at all time periods, whereas the respiratory exchange ratio (RER) was higher at 20 and 30 minutes for the supplement. During exercise, only Vo2 and minute ventilation (VE) were greater for the supplement than the placebo, with HR being less than the placebo at 20 minutes for the men. Postexercise EE, Vo2, systolic blood pressure (SBP), DBP, and HR (men only) at 10, 20, 30, and 50 minutes were greater for the supplement than the placebo. These findings indicated that the thermogenic nutritional supplement increased resting EE and exercise Vo2 with only minimal effects on blood pressure and HR and no meaningful effects on RER or RPE. These results suggested that the combination of thermogenic ingredients in this nutritional supplement may be useful to help maintain a negative caloric balance but may not influence substrate use

  16. Acute supplementation of N-acetylcysteine does not affect muscle blood flow and oxygenation characteristics during handgrip exercise.

    PubMed

    Smith, Joshua R; Broxterman, Ryan M; Ade, Carl J; Evans, Kara K; Kurti, Stephanie P; Hammer, Shane M; Barstow, Thomas J; Harms, Craig A

    2016-04-01

    N-acetylcysteine (NAC; antioxidant and thiol donor) supplementation has improved exercise performance and delayed fatigue, but the underlying mechanisms are unknown. One possibility isNACsupplementation increases limb blood flow during severe-intensity exercise. The purpose was to determine ifNACsupplementation affected exercising arm blood flow and muscle oxygenation characteristics. We hypothesized thatNACwould lead to higher limb blood flow and lower muscle deoxygenation characteristics during severe-intensity exercise. Eight healthy nonendurance trained men (21.8 ± 1.2 years) were recruited and completed two constant power handgrip exercise tests at 80% peak power until exhaustion. Subjects orally consumed either placebo (PLA) orNAC(70 mg/kg) 60 min prior to handgrip exercise. Immediately prior to exercise, venous blood samples were collected for determination of plasma redox balance. Brachial artery blood flow (BABF) was measured via Doppler ultrasound and flexor digitorum superficialis oxygenation characteristics were measured via near-infrared spectroscopy. FollowingNACsupplementaiton, plasma cysteine (NAC: 47.2 ± 20.3 μmol/L vs.PLA: 9.6 ± 1.2 μmol/L;P = 0.001) and total cysteine (NAC: 156.2 ± 33.9 μmol/L vs.PLA: 132.2 ± 16.3 μmol/L;P = 0.048) increased. Time to exhaustion was not significantly different (P = 0.55) betweenNAC(473.0 ± 62.1 sec) andPLA(438.7 ± 58.1 sec). RestingBABFwas not different (P = 0.79) withNAC(99.3 ± 31.1 mL/min) andPLA(108.3 ± 46.0 mL/min).BABFwas not different (P = 0.42) during exercise or at end-exercise (NAC: 413 ± 109 mL/min;PLA: 445 ± 147 mL/min). Deoxy-[hemoglobin+myoglobin] and total-[hemoglobin+myoglobin] were not significantly different (P = 0.73 andP = 0.54, respectively) at rest or during exercise between conditions. We conclude that acuteNACsupplementation does not alter oxygen delivery during exercise in men. PMID:27044854

  17. Acute supplementation of N-acetylcysteine does not affect muscle blood flow and oxygenation characteristics during handgrip exercise.

    PubMed

    Smith, Joshua R; Broxterman, Ryan M; Ade, Carl J; Evans, Kara K; Kurti, Stephanie P; Hammer, Shane M; Barstow, Thomas J; Harms, Craig A

    2016-04-01

    N-acetylcysteine (NAC; antioxidant and thiol donor) supplementation has improved exercise performance and delayed fatigue, but the underlying mechanisms are unknown. One possibility isNACsupplementation increases limb blood flow during severe-intensity exercise. The purpose was to determine ifNACsupplementation affected exercising arm blood flow and muscle oxygenation characteristics. We hypothesized thatNACwould lead to higher limb blood flow and lower muscle deoxygenation characteristics during severe-intensity exercise. Eight healthy nonendurance trained men (21.8 ± 1.2 years) were recruited and completed two constant power handgrip exercise tests at 80% peak power until exhaustion. Subjects orally consumed either placebo (PLA) orNAC(70 mg/kg) 60 min prior to handgrip exercise. Immediately prior to exercise, venous blood samples were collected for determination of plasma redox balance. Brachial artery blood flow (BABF) was measured via Doppler ultrasound and flexor digitorum superficialis oxygenation characteristics were measured via near-infrared spectroscopy. FollowingNACsupplementaiton, plasma cysteine (NAC: 47.2 ± 20.3 μmol/L vs.PLA: 9.6 ± 1.2 μmol/L;P = 0.001) and total cysteine (NAC: 156.2 ± 33.9 μmol/L vs.PLA: 132.2 ± 16.3 μmol/L;P = 0.048) increased. Time to exhaustion was not significantly different (P = 0.55) betweenNAC(473.0 ± 62.1 sec) andPLA(438.7 ± 58.1 sec). RestingBABFwas not different (P = 0.79) withNAC(99.3 ± 31.1 mL/min) andPLA(108.3 ± 46.0 mL/min).BABFwas not different (P = 0.42) during exercise or at end-exercise (NAC: 413 ± 109 mL/min;PLA: 445 ± 147 mL/min). Deoxy-[hemoglobin+myoglobin] and total-[hemoglobin+myoglobin] were not significantly different (P = 0.73 andP = 0.54, respectively) at rest or during exercise between conditions. We conclude that acuteNACsupplementation does not alter oxygen delivery during exercise in men.

  18. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    PubMed Central

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  19. An Acute Exercise Session Increases Self-Efficacy in Sedentary Endometrial Cancer Survivors and Controls

    PubMed Central

    Hughes, Daniel; Baum, George; Jovanovic, Jennifer; Carmack, Cindy; Greisinger, Anthony; Basen-Engquist, Karen

    2011-01-01

    Background Self-efficacy can be affected by mastery experiences and somatic sensations. A novel exercise experience and associated sensations may impact self-efficacy and subsequent behaviors. We investigated the effect of a single exercise session on self-efficacy for sedentary endometrial cancer survivors compared with sedentary women of a similar age, but with no cancer history. Methods Twenty survivors and 19 controls completed an exercise session performed as a submaximal cycle ergometry test. Sensations and efficacy were measured before and after exercise. Repeated measures analysis of variance (ANOVA) was performed. Regression models were used to determine predictors of self-efficacy and subsequent exercise. Results Self-efficacy increased for both survivors and controls, but survivors had a higher rate of increase, and the change predicted subsequent exercise. The association between exercise-related somatic sensations and self-efficacy differed between the 2 groups. Conclusions A novel exercise experience had a larger effect on self-efficacy and subsequent exercise activity for endometrial cancer survivors than controls. Somatic sensations experienced during exercise may differ for survivors, which may be related to the experience of having cancer. Understanding factors affecting confidence in novel exercise experiences for populations with specific cancer histories is of the utmost importance in the adoption of exercise behaviors. PMID:21088310

  20. The impact of acute dynamic exercise on intraocular pressure: role of the beta 2-adrenergic receptor polymorphism.

    PubMed

    Güngör, K; Beydaği, H; Bekir, N; Arslan, C; Süer, C; Erbağci, I; Ergenoğlu, T; Aynacioğlu, A S

    2002-01-01

    Effects of mutations in the beta 2-adrenergic receptor (beta 2AR) gene on intraocular pressure (IOP), in response to acute dynamic exercise, were investigated in 19 healthy males (age 22.6 +/- 2.8 years). Intraocular pressures were measured pre- and post-exercise. Weight, height, body mass index, and maximal oxygen (VO2max) uptake were recorded and subjects were genotyped for Arg16Gly, Gln27Glu and Thr164Ile mutations of the beta 2AR gene. Post-exercise, reductions in mean IOP values were found in 16 subjects with the Gly16Gly and Arg16Gly genotypes, but these values remained low in the eight patients with the Gly16Gly genotype 3 h post-exercise, whereas they returned to baseline within 1 h in the eight subjects with the Arg16Gly genotype. beta 2AR stimulation during exercise could be an important regulator of IOP response and determining beta 2AR polymorphisms may improve understanding of pathogenesis and treatment selection in ophthalmic diseases, e.g. glaucoma.

  1. Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues.

    PubMed

    Kaptanoğlu, B; Turgut, G; Genç, O; Enli, Y; Karabulut, I; Zencir, M; Turgut, S

    2003-02-01

    In this study, we investigated the effects of acute exercise on tissue levels of iron, magnesium, and uric acid of rats. Twenty adult Wistar albino rats were used for the study. They were divided into two groups: controls (n=10) and the study group (n=10). The study group was left into a small water pool and allowed to do swimming exercise for 30 min while controls rested. All of the animals were sacrificed, and their livers and spleens removed and homogenized immediately. The iron, magnesium, and uric acid levels of the homogenates were measured by an autoanalyzer (ILAB 900, Italy) with commercial kits from the same company. Results were evaluated by the Mann-Whitney U-test. According to our results, the liver iron levels increased significantly with exercise, whereas spleen iron levels decreased significantly (p<0.05) compared to controls. We found no significant differences in the levels of the other two parameters with exercise. These results show that the iron distribution in organs changes with exercise. PMID:12719612

  2. Characterizing the affective responses to an acute bout of moderate-intensity exercise among outpatients with schizophrenia.

    PubMed

    Duncan, Markus J; Faulkner, Guy; Remington, Gary; Arbour-Nicitopoulos, Kelly

    2016-03-30

    In addition to offering many physical health benefits, exercise may help improve mental health among individuals with schizophrenia through regulating affect. Therefore, the purpose of this study is to characterize affective responses experienced before, during and after a 10-min bout of exercise versus passive sitting among individuals with schizophrenia. A randomized crossover design compared affect related to feelings of pleasure and arousal at baseline, 6-min into the task, immediately post-task, and 10min post-task to sitting. Thirty participants enroled in the study; 28 participants completed the study. Separate mixed model analyses of variance were conducted for pleasure and arousal, with test order as the between-subject factor, and time and task as within-subject factors. For pleasure, a significant main effect for time and a time x task interaction effect emerged. Post-hoc Bonferroni corrected t-tests (α=.0125) revealed significant differences between pleasure at baseline and both immediately post-task and 10min post-task. No other main effects or interactions emerged. Individuals with schizophrenia derive acute feelings of pleasure from exercise. Thus, exercise may provide a method of regulating affect to improve mental health. Future studies should examine the links between affective responses to health behaviours such as long-term adherence to exercise within this population.

  3. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men.

    PubMed

    Totosy de Zepetnek, Julia O; Au, Jason S; Ditor, David S; MacDonald, Maureen J

    2015-04-01

    Vascular improvements in the nonactive regions during exercise are likely primarily mediated by increased shear rate (SR). Individuals with spinal cord injury (SCI) experience sublesional vascular deconditioning and could potentially benefit from upper body exercise-induced increases in lower body SR. The present study utilized a single bout of incremental arm-crank exercise to generate exercise-induced SR changes in the superficial femoral artery in an effort to evaluate the acute postexercise impact on superficial femoral artery endothelial function via flow-mediated dilation (FMD), and determine regulatory factors in the nonactive legs of individuals with and without SCI. Eight individuals with SCI and eight age, sex, and waist-circumference-matched able-bodied (AB) controls participated. Nine minutes of incremental arm-crank exercise increased superficial femoral artery anterograde SR (P = 0.02 and P < 0.01), retrograde SR (P < 0.01 and P < 0.01), and oscillatory shear index (OSI) (P < 0.001 and P < 0.001) in both SCI and AB, respectively. However, these SR alterations resulted in acute postexercise increases in FMD in the AB group only (SCI 6.0 ± 1.2% to 6.3 ± 2.7%, P = 0.74; AB 7.5 ± 1.4% to 11.2 ± 1.4%, P = 0.03). While arm exercise has many cardiovascular benefits and results in changes in SR patterns in the nonactive legs, these changes are not sufficient to induce acute changes in FMD among individuals with SCI, and therefore are less likely to stimulate exercise training-associated improvements in nonactive limb endothelial function. Understanding the role of SR patterns on FMD brings us closer to designing effective strategies to combat impaired vascular function in both healthy and clinical populations.

  4. Protective action of a hexane crude extract of Pterodon emarginatus fruits against oxidative and nitrosative stress induced by acute exercise in rats

    PubMed Central

    Paula, Fernanda BA; Gouvêa, Cibele MCP; Alfredo, Patrícia P; Salgado, Ione

    2005-01-01

    Background The aim of the present work was to evaluate the effect of a hexane crude extract (HCE) of Pterodon emarginatus on the oxidative and nitrosative stress induced in skeletal muscle, liver and brain of acutely exercised rats. Methods Adult male rats were subjected to acute exercise by standardized contractions of the tibialis anterior (TA) muscle (100 Hz, 15 min) and treated orally with the HCE (once or three times with a fixed dose of 498 mg/kg), before and after acute exercise. Serum creatine kinase activity was determined by a kinetic method and macrophage infiltration by histological analyses of TA muscle. Lipid peroxidation was measured as malondialdehyde (MDA) levels. Nitric oxide production was evaluated by measuring nitrite formation, using Griess reagent, and nitrotyrosine was assessed by western blotting. Results Serum creatine kinase activities in the controls (111 U/L) increased 1 h after acute exercise (443 U/L). Acute exercise also increased the infiltration of macrophages into TA muscle; lipid peroxidation levels in TA muscle (967%), liver (55.5%) and brain (108.9%), as well as the nitrite levels by 90.5%, 30.7% and 60%, respectively. The pattern of nitrotyrosine formation was also affected by acute exercise. Treatment with HCE decreased macrophage infiltration, lipid peroxidation, nitrite production and nitrotyrosine levels to control values. Conclusion Acute exercise induced by functional electrical stimulation in rats resulted in increase in lipid peroxidation, nitrite and nitrotyrosine levels in brain, liver and skeletal muscle. The exercise protocol, that involved eccentric muscle contraction, also caused some muscle trauma, associated with over-exertion, leading to inflammation. The extract of P. emarginatus abolished most of these oxidative processes, thus confirming the high antioxidant activity of this oil which infusions are used in folk medicine against inflammatory processes. PMID:16107219

  5. Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises

    SciTech Connect

    Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray; Nauer, Kevin S.; Anderson, Benjamin Robert; Forsythe, James Chris

    2012-09-01

    This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the context of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.

  6. Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise.

    PubMed

    Williams, Cameron B; Zelt, Jason G E; Castellani, Laura N; Little, Jonathan P; Jung, Mary E; Wright, David C; Tschakovsky, Michael E; Gurd, Brendon J

    2013-12-01

    The purpose of this study was to investigate the acute effects of endurance exercise (END; 65% V̇O2peak for 60 min) and high-intensity interval exercise (HIE; four 30 s Wingates separated by 4.5 min of active rest) on cardiorespiratory, hormonal, and subjective appetite measures that may account for the previously reported superior fat loss with low volume HIE compared with END. Recreationally active males (n = 18) completed END, HIE, and control (CON) protocols. On each test day, cardiorespiratory measures including oxygen uptake (V̇O2), respiratory exchange ratio (RER), and heart rate were recorded and blood samples were obtained at baseline (BSL), 60 min after exercise, and 180 min after exercise (equivalent times for CON). Subjective measures of appetite (hunger, fullness, nausea, and prospective consumption) were assessed using visual analogue scales, administered at BSL, 0, 60, 120, and 180 min after exercise. No significant differences in excess postexercise oxygen consumption (EPOC) were observed between conditions. RER was significantly (P < 0.05) depressed in HIE compared with CON at 60 min after exercise, yet estimates of total fat oxidation over CON were not different between HIE and END. No differences in plasma adiponectin concentrations between protocols or time points were present. Epinephrine and norepinephrine were significantly (P < 0.05) elevated immediately after exercise in HIE compared with CON. Several subjective measures of appetite were significantly (P < 0.05) depressed immediately following HIE. Our data indicate that increases in EPOC or fat oxidation following HIE appear unlikely to contribute to the reported superior fat loss compared with END.

  7. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training.

    PubMed

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-09-15

    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.

  8. Making acute hospital exercises more realistic without impacting on healthcare delivery.

    PubMed

    Riley, Paul W; Dalby, David J; Turner, Elizabeth A

    Exercises can suffer from a lack of realism that reduces the value of the exercise in terms of the positive experience of the participant and the possibility that outcomes are based on artificialities created by the exercise environment. It is important to minimise these so that participants actively engage and recommendations are based on robust observations. Field exercises provide the most realistic format in which to exercise but are disruptive to normal working and expensive. In a health environment, anything but the most minimal disruption to normal service would be considered unacceptable. This paper describes a possible alternative that combines different exercise formats with a simple, but well thought-out, patient simulation tool to explore the health response to two different mass casualty events. Key outcomes from these exercises are discussed to demonstrate the potential of this system when applied to the health community.

  9. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    PubMed

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  10. Computer-enhanced thallium scintigrams in asymptomatic men with abnormal exercise tests

    SciTech Connect

    Uhl, G.S.; Kay, T.N.; Hickman, J.R. Jr.

    1981-12-01

    The use of treadmill testing in asymptomatic patients and those with an atypical chest pain syndrome is increasing, yet the proportion of false positive stress electrocardiograms increases as the prevalence of disease decreases. To determine the diagnostic accuracy of computer-enhanced thallium perfusion scintigraphy in this subgroup of patients, multigated thallium scans were obtained after peak exercise and 3 or 4 hours after exercise and the raw images enhanced by a computer before interpretations were made. The patient group consisted of 191 asymptomatic U.S. Air force aircrewmen who had an abnormal exercise electrocardiogram. Of these, 135 had normal coronary angiographic findings, 15 had subcritical coronary stenosis (less than 50 percent diameter narrowing) and 41 had significant coronary artery disease. Use of computer enhancement resulted in only four false positive and two false negative scintigrams. The small subgroup with subcritical coronary disease had equivocal results on thallium scintigraphy, 10 men having abnormal scans and 5 showing no defects. The clinical significance of such subcritical disease in unclear, but it can be detected with thallium scintigraphy. Thallium scintigrams that have been enhanced by readily available computer techniques are an accurate diagnostic tool even in asymptomatic patients with an easily interpretable abnormal maximal stress electrocardiogram. Thallium scans can be effectively used in counseling asymptomatic patients on the likelihood of their having coronary artery disease.

  11. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  12. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival

    PubMed Central

    Volland, Cornelia; Bremer, Sebastian; Hellenkamp, Kristian; Hartmann, Nico; Dybkova, Nataliya; Khadjeh, Sara; Kutschenko, Anna; Liebetanz, David; Wagner, Stefan; Unsöld, Bernhard; Didié, Michael; Toischer, Karl; Sossalla, Samuel; Hasenfuß, Gerd; Seidler, Tim

    2016-01-01

    TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity. PMID:27667030

  13. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  14. The implicit Power Motive and Adolescents' Salivary Cortisol Responses to Acute Psychosocial Stress and Exercise in School.

    PubMed

    Wegner, Mirko; Schüler, Julia; Scheuermann, Katharina S; Machado, Sergio; Budde, Henning

    2015-01-01

    In the present study we examined the moderating effect of the power motive on salivary cortisol responses to acute psychosocial stress and exercise in adolescents. Fifty-seven high school students aged M = 14.8 years participated in the study. The Operant Motive Test was applied to measure the implicit power motive and the Personality Research Form was used to measure the explicit power motive. Salivary cortisol levels were assessed before and after the stress stimuli. Participants were randomly assigned to three experimental groups. An exercise group ran 15 minutes at a defined heart rate of 65-75% HRmax. A psychosocial stress group worked on a standard intelligence test for the same amount of time under the assumption, that their test scores will be made public in class after the test. The control group participated in a regular class session. The implicit power motive was significantly associated with increased cortisol levels in the psychosocial stress group. The explicit power motive was not associated with cortisol responses. Findings suggest that the implicit power motive moderates the cortisol responses to acute stress in an adolescent age group with higher responses to psychosocial stress in comparison to exercise or control conditions.

  15. Acute enhancement of lower-extremity dynamic strength and flexibility with whole-body vibration.

    PubMed

    Jacobs, Patrick L; Burns, Patricia

    2009-01-01

    The purpose of this investigation was to examine the acute effects of whole-body vibration (WBV) on muscular strength, flexibility, and heart rate (HR). Twenty adults (10 men, 10 women) untrained to WBV participated in the study. All subjects completed assessment of lower-extremity isokinetic torque, flexibility, and HR immediately before and after 6 minutes of WBV and 6 minutes of leg cycling ergometry (CYL), in randomized order. During WBV, subjects stood upright on a vibration platform for a total of 6 minutes. Vibration frequency was gradually increased during the first minute to a frequency of 26 Hz, which was maintained for the remaining 5 minutes. During CYL, power output was gradually increased to 50 W during the first minute and maintained at that power output for the remaining 5 minutes. Lower-extremity flexibility was determined using the sit-and-reach box test. Peak and average isokinetic torque of knee extension and flexion were measured by means of a motor-driven dynamometer with velocity fixed at 120 degrees .s. Change scores for the outcome measures were compared between treatments using Student's paired t-tests. Analysis revealed significantly greater HR acceleration with CYL (24.7 bpm) than after WBV (15.8 bpm). The increase of sit-and-reach scores after WBV (4.7 cm) was statistically greater (p < 0.05) than after CYL (0.8 cm). After WBV, increases in peak and average isokinetic torque of knee extension, 7.7% and 9.6%, were statistically greater than after CYL (p < 0.05). Average torque of knee flexion also increased more with WBV (+7.8%) than with CYL (-1.5%) (p < 0.05). The findings of this study indicate that short-term WBV standing elicits acute enhancements of lower-extremity muscular torque and flexibility, suggesting the application of this technology as a preparatory activity before more intense exercise.

  16. Effect of aerobic training on plasma cytokines and soluble receptors in elderly women with knee osteoarthritis, in response to acute exercise.

    PubMed

    Gomes, Wellington Fabiano; Lacerda, Ana Cristina Rodrigues; Mendonça, Vanessa Amaral; Arrieiro, Arthur Nascimento; Fonseca, Sueli Ferreira; Amorim, Mateus Ramos; Rocha-Vieira, Etel; Teixeira, Antônio Lúcio; Teixeira, Mauro Martins; Miranda, Aline Silva; Coimbra, Cândido Celso; Brito-Melo, Gustavo Eustáquio Alvim

    2012-05-01

    The aim of this study was to evaluate levels of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and soluble forms of the TNF-α receptor (sTNFR1 and sTNFR2) from plasma taken from the peripheral blood of elderly individuals presenting with osteoarthritis (OA) of the knee. These patients underwent aerobic treatment through the use of physical exercises. The study consisted of a longitudinal analysis of older individuals presenting clinical and radiographic diagnosis of knee OA that were submitted to 12 weeks of aerobic treatment. The individuals were evaluated during acute exercise or after chronic exercise. During acute exercise (walking slowly on the mat), blood samples of the patients were collected before, immediately after, and 30 min following the end of training. After chronic exercise (aerobic walking training, three times/week for 12 weeks), patient blood samples were obtained for comparison. Additionally, clinical and functional assessments (WOMAC test and 6-min walk) were performed at the end of all physical exercises. Plasma concentrations of cytokines and soluble receptors were measured by ELISA. Aerobic training increased the plasma concentration of sTNR1; however, it decreased the plasma concentration of sTNFR2, when compared with levels of resting patients. Acute exercise differentially affects the levels of sTNFR1 dependent on when the samples were taken, before and after aerobic training. However, the levels of sTNFR2 were not affected by training. For the population studied, we observed differences in the levels of sTNFR1 and sTNFR2 following acute and chronic exercise. Other additional factors, like the level of inactivity of the individual and the type of physical exercise that patients are exposed to, need to be considered as well. The variation in the levels of soluble receptors correlated with functional improvement; however, the inflammatory osteoarthritis markers (IL-6 and TNF-α) were unaffected by the walking exercises.

  17. The Effect of Exercise Training on Diastolic and Systolic Function After Acute Myocardial Infarction: A Randomized Study.

    PubMed

    Fontes-Carvalho, Ricardo; Azevedo, Ana Isabel; Sampaio, Francisco; Teixeira, Madalena; Bettencourt, Nuno; Campos, Lilibeth; Gonçalves, Francisco Rocha; Ribeiro, Vasco Gama; Azevedo, Ana; Leite-Moreira, Adelino

    2015-09-01

    After acute myocardial infarction (AMI), diastolic dysfunction is frequent and an important determinant of adverse outcome. However, few interventions have proven to be effective in improving diastolic function. We aimed to determine the effect of exercise training on diastolic and systolic function after AMI.One month after AMI, 188 patients were prospectively randomized (1:1) to an 8-week supervised program of endurance and resistance exercise training (n = 86; 55.9 ± 10.8 years) versus standard of care (n = 89; 55.4 ± 10.3 years). All patients were submitted to detailed echocardiography and cardiopulmonary exercise test, at baseline and immediately after the study. Diastolic function was evaluated by the determination of tissue-Doppler derived early diastolic velocities (E' velocity at the septal and lateral sides of mitral annulus) and by the E/E' (ratio between the E wave velocity from mitral inflow and the E' velocity) as recommended in the consensus document for diastolic function assessment.At the end of the study, there was no significant change in E' septal velocity or E/E' septal ratio in the exercise group. We observed a small, although nonsignificant, improvement in E' lateral (mean change 0.1 ± 2.0 cm/s; P = 0.40) and E/E' lateral ratio (mean change of -0.3 ± 2.5; P = 0.24), while patients in the control group had a nonsignificant reduction in E' lateral (mean change -0.4 ± 1.9 cm/s; P = 0.09) and an increase in E/E' lateral ratio (mean change + 0.3 ± 3.3; P = 0.34). No relevant changes occurred in other diastolic parameters. The exercise-training program also did not improve systolic function (either tissue Doppler systolic velocities or ejection fraction).Exercise capacity improved only in the exercise-training group, with an increase of 1.6 mL/kg/min in pVO2 (P = 0.001) and of 1.9 mL/kg/min in VO2 at anaerobic threshold (P < 0.001).After AMI, an 8-week endurance plus

  18. The influence of acute intense exercise on exogenous spatial attention depends on physical fitness level.

    PubMed

    Llorens, Francesc; Sanabria, Daniel; Huertas, Florentino

    2015-01-01

    We investigated the effect of a previous bout of intense exercise on exogenous spatial attention. In Experiment 1, a group of participants performed an exogenous spatial task at rest (without prior effort), immediately after intense exercise, and after recovering from an intense exercise. The analyses revealed that the typical "facilitation effect" (i.e., faster reaction times on cued than on uncued trials) immediately after exercise was positively correlated with participants' fitness level. In Experiment 2, a high-fit and a low-fit group performed the same task at rest (without prior effort) and immediately after an intense exercise. Results revealed that, after the bout of exercise, only low-fit participants showed reduced attentional effects compared to the rest condition. We argue that the normal functioning of exogenous attention was influenced by intense effort, affecting low-fit participants to a larger extent than to high-fit participants. As a consequence, target processing was prioritized over irrelevant stimuli.

  19. Acute aerobic exercise differentially alters acylated ghrelin and perceived fullness in normal-weight and obese individuals.

    PubMed

    Heden, Timothy D; Liu, Ying; Park, Youngmin; Dellsperger, Kevin C; Kanaley, Jill A

    2013-09-01

    Adiposity alters acylated ghrelin concentrations, but it is unknown whether adiposity alters the effect of exercise and feeding on acylated ghrelin responses. Therefore, the purpose of this study was to determine whether adiposity [normal-weight (NW) vs. obese (Ob)] influences the effect of exercise and feeding on acylated ghrelin, hunger, and fullness. Fourteen NW and 14 Ob individuals completed two trials in a randomized counterbalanced fashion, including a prior exercise trial (EX) and a no exercise trial (NoEX). During the EX trial, the participants performed 1 h of treadmill walking (55-60% peak O2 uptake) during the evening, 12 h before a 4-h standardized mixed meal test. Frequent blood samples were taken and analyzed for acylated ghrelin, and a visual analog scale was used to assess perceived hunger and fullness. In NW individuals, EX, compared with NoEX, reduced fasting acylated ghrelin concentrations by 18% (P = 0.03), and, in response to feeding, the change in acylated ghrelin (P = 0.02) was attenuated by 39%, but perceived hunger and fullness were unaltered. In Ob individuals, despite no changes in fasting or postprandial acylated ghrelin concentrations with EX, postprandial fullness was attenuated by 46% compared with NoEX (P = 0.05). In summary, exercise performed the night before a meal suppresses acylated ghrelin concentrations in NW individuals without altering perceived hunger or fullness. In Ob individuals, despite no changes in acylated ghrelin concentrations, EX reduced the fullness response to the test meal. Acylated ghrelin and perceived fullness responses are differently altered by acute aerobic exercise in NW and Ob individuals.

  20. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults.

    PubMed

    Melo, Xavier; Fernhall, Bo; Santos, Diana A; Pinto, Rita; Pimenta, Nuno M; Sardinha, Luís B; Santa-Clara, Helena

    2016-03-01

    This study compared the effects of a bout of maximal running exercise on arterial stiffness in children and adults. Right carotid blood pressure and artery stiffness indices measured by pulse wave velocity (PWV), compliance and distensibility coefficients, stiffness index α and β (echo-tracking), contralateral carotid blood pressure, and upper and lower limb and central/aortic PWV (applanation tonometry) were taken at rest and 10 min after a bout of maximal treadmill running in 34 children (7.38 ± 0.38 years) and 45 young adults (25.22 ± 0.91 years) having similar aerobic potential. Two-by-two repeated measures analysis of variance and analysis of covariance were used to detect differences with exercise between groups. Carotid pulse pressure (PP; η(2) = 0.394) increased more in adults after exercise (p < 0.05). Compliance (η(2) = 0.385) decreased in particular in adults and in those with high changes in distending pressure, similarly to stiffness index α and β. Carotid PWV increased more in adults and was related to local changes in PP but not mean arterial pressure (MAP). Stiffness in the lower limbs decreased (η(2) = 0.115) but apparently only in those with small MAP changes (η(2) = 0.111). No significant exercise or group interaction effects were found when variables were adjusted to height. An acute bout of maximal exercise can alter arterial stiffness and hemodynamics in the carotid artery and within the active muscle beds. Arterial stiffness and hemodynamic response to metabolic demands during exercise in children simply reflect their smaller body size and may not indicate a particular physiological difference compared with adults. PMID:26842667

  1. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass

    PubMed Central

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Saltin, Bengt

    2009-01-01

    Peak aerobic power in humans () is markedly affected by inspired O2 tension (). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak in hypoxia: arterial O2 partial pressure () or O2 content ()? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee) muscle mass in normoxia, acute hypoxia (AH) () and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on in AH and abolished completely the effect of hypoxia on after altitude acclimatization. Acclimatization improved Bike peak exercise from 34 ± 1 in AH to 45 ± 1 mmHg in CH (P < 0.05) and Knee from 38 ± 1 to 55 ± 2 mmHg (P < 0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in . Altitude acclimatization restored fully peak systemic and leg O2 delivery in CH (2.69 ± 0.27 and 1.28 ± 0.11 l min−1, respectively) to sea level values (2.65 ± 0.15 and 1.16 ± 0.11 l min−1, respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also in spite of a of 55 mmHg. Reducing the size of the active muscle mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the

  2. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.

    PubMed

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Saltin, Bengt

    2009-01-15

    Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude

  3. Enhancing the Psychological Well-Being of Elderly Individuals through Tai Chi Exercise: A Latent Growth Curve Analysis.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Duncan, Susan C.; McAuley, Edward; Chaumeton, Nigel R.; Harmer, Peter

    2001-01-01

    Examined whether a Tai Chi exercise program enhanced the psychological well-being of 98 elderly individuals. Analyzed repeated measures data about participants using latent growth curve analysis. Results indicate the beneficial effects of participation in the Tai Chi program. Discusses implications related to the exercise-psychological health…

  4. Effects of acute dehydration on neuromuscular responses of exercised and nonexercised muscles after exercise in the heat.

    PubMed

    Rodrigues, Rodrigo; Baroni, Bruno M; Pompermayer, Marcelo G; de Oliveira Lupion, Raquel; Geremia, Jeam M; Meyer, Flávia; Vaz, Marco A

    2014-12-01

    Dehydration can impair aerobic performance, but its effects on muscular strength are still unclear. This study evaluated the effect of dehydration induced by cycling in the heat on exercised (knee extensors) and nonexercised (elbow flexors) muscles' strength and activation. Ten healthy recreationally active and nonacclimatized men (age, 22.71 ± 2.21 years old; body mass (BM), 77.94 ± 7.35 kg; height, 1.76 ± 6.46 m; body fat, 18.93 ± 3.01%) cycled in the heat in 2 separate sessions: dehydrated (DHY) and euhydrated (EUH). Dehydrated session led to a 2% BM loss, and water ingestion prevented the water loss in the euhydrated session. Knee extensor and elbow flexor maximal isometric torques and muscle activation were assessed before and after exercising in both sessions. Knee extensor torque decreased 15.8% (p < 0.001; 294.27 ± 44.82-247.16 ± 40.54) in dehydrated session, whereas no significant reduction (2.98%; p = 0.348; 291.99 ± 48.37-281.74 ± 38.65) was observed in the euhydrated session. No significant session-time interaction (p = 0.098) was observed for elbow flexor responses (DHY, 67.51 ± 14.53-62.95 ± 13.60; EUH, 68.26 ± 13.06-67.87 ± 13.89). Muscle activation capacity was unaffected by the hydration status. Maintenance of euhydration state during cycling in the heat may attenuate strength impairments caused by water loss in exercised muscle groups.

  5. Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle.

    PubMed

    Cheng, I-Shiung; Huang, Shih-Wei; Lu, Hsang-Chu; Wu, Ching-Lin; Chu, Ying-Chieh; Lee, Shin-Da; Huang, Chih-Yang; Kuo, Chia-Hua

    2012-04-01

    Glycogen stored in skeletal muscle is the main fuel for endurance exercise. The present study examined the effects of oral hydroxycitrate (HCA) supplementation on post-meal glycogen synthesis in exercised human skeletal muscle. Eight healthy male volunteers (aged 22·0 (se 0·3) years) completed a 60-min cycling exercise at 70-75 % VO₂max and received HCA or placebo in a crossover design repeated after a 7 d washout period. They consumed 500 mg HCA or placebo with a high-carbohydrate meal (2 g carbohydrate/kg body weight, 80 % carbohydrate, 8 % fat, 12 % protein) for a 3-h post-exercise recovery. Muscle biopsy samples were obtained from vastus lateralis immediately and 3 h after the exercise. We found that HCA supplementation significantly lowered post-meal insulin response with similar glucose level compared to placebo. The rate of glycogen synthesis with the HCA meal was approximately onefold higher than that with the placebo meal. In contrast, GLUT4 protein level after HCA supplementation was significantly decreased below the placebo level, whereas expression of fatty acid translocase (FAT)/CD36 mRNA was significantly increased above the placebo level. Furthermore, HCA supplementation significantly increased energy reliance on fat oxidation, estimated by the gaseous exchange method. However, no differences were found in circulating NEFA and glycerol levels with the HCA meal compared with the placebo meal. The present study reports the first evidence that HCA supplementation enhanced glycogen synthesis rate in exercised human skeletal muscle and improved post-meal insulin sensitivity. PMID:21824444

  6. Magnesium sulfate enhances exercise performance and manipulates dynamic changes in peripheral glucose utilization.

    PubMed

    Cheng, Shiu-Min; Yang, Lin-Lan; Chen, Sy-Huah; Hsu, Mei-Hsiang; Chen, I-Ju; Cheng, Fu-Chou

    2010-01-01

    contribute to the enhancement of exercise performance in athletes.

  7. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  8. Prognostic evaluation by clinical exercise test scores in patients treated with primary percutaneous coronary intervention or fibrinolysis for acute myocardial infarction (a Danish Trial in Acute Myocardial Infarction-2 Sub-Study).

    PubMed

    Valeur, Nana; Clemmensen, Peter; Grande, Peer; Saunamäki, Kari

    2007-10-01

    The prognostic accuracy of exercise testing after myocardial infarction is low, and different models have been proposed to enhance the predictive value for subsequent mortality. This study tested a simple score against 3 established scores. Patients with ST-elevation myocardial infarctions were randomized in the Danish Trial in Acute Myocardial Infarction-2 (DANAMI-2) to either primary percutaneous coronary intervention or fibrinolysis with predischarge exercise testing. Clinical and exercise test data were collected prospectively and were available for 1,115 patients. A simple score was derived, awarding 1 point for history or new signs of heart failure, 1 point for a left ventricular ejection fraction <40%, 1 point for age >65 years in men and age >70 years in women, and 1 point for exercise capacity <5 METs in men and exercise capacity <4 METs in women. This DANAMI score was compared with the Veterans Affairs Medical Center score, the Duke treadmill score, and the Gruppo Italiano per lo Studio Della Sopravvivenza nell'Infarto Miocardico-2 (GISSI-2) score in multivariate Cox models and receiver-operating characteristic plots. All scoring systems were predictive of adverse outcomes. The DANAMI score performed better, with greater chi-square values (142 vs 53 to 88 for the prediction of death). Areas under the receiver-operating characteristic curves were compared and were larger for the DANAMI score (C-statistic 0.79 vs 0.71 to 0.74 for the other tests regarding mortality). The DANAMI score stratified patients into a small high-risk group (8% of the population with 43% mortality in 6 years), an intermediate-risk group (13% with 16% mortality in 6 years), and a low-risk group (79% with 4% mortality in 6 years). In conclusion, a simple exercise test score composed of age, METs, heart failure, and a left ventricular ejection fraction <40% seems to outperform the Duke treadmill score, Veterans Affairs Medical Center score, and GISSI-2 score in risk stratifying

  9. Acute Effect of Morning and Afternoon Aerobic Exercise on Appetite of Overweight Women

    PubMed Central

    Alizadeh, Zahra; Mostafaee, Masoumeh; Mazaheri, Reza; Younespour, Shima

    2015-01-01

    Background: The best time of exercise along the day for weight management in overweight and obese patients is not determined. The time of exercise may influence its effect on appetite and food intake. Objectives: The aim of this study was to compare the effects of two different times of exercise during the day on appetite, energy intake, and the rating of perceived exertion (RPE) on overweight women. Patients and Methods: Fifty overweight female subjects were recruited in this interventional study. Two sessions of exercise were performed in the morning and afternoon with the target heart rate corresponding to the ventilatory threshold (VT). The appetite was evaluated with visual analogue scale, the energy intake was measured with 24 hours food record and the RPE was determined by visual Borg scale; these variables were compared between the two sessions. Results: The behavior of appetite in relation to hunger, satiety, fullness, prospective food consumption, tendency to salty, savoury, sweet and fatty foods, did not change significantly after both exercise sessions (P > 0.05). Except for the satiety, no significant difference was found among changes in the appetite scores between the two exercise sessions. The median change in the satiety score of the morning exercise was significantly higher than that of the afternoon exercise (5.5 (-8.5, 22.5) vs. -1 (-8, 4.5) respectively, P = 0.01). The median RPE value did not differ significantly between the morning and afternoon sessions (13 (12, 14) vs. 13 (12, 13) respectively, P = 0.46). There was no significant association between the time of exercise and the estimates of the carbohydrate (P = 0.41), fat (P = 0.23), protein (P = 0.13), and calorie intake (P = 0.18). Conclusions: One session of moderate intensity exercise disregarding the time of exercise did not affect appetite significantly. However, morning exercise may cause greater levels of satiety in comparison with afternoon exercise. Moderate intensity aerobic

  10. Enhancement of Fat Oxidation by Licorice Flavonoid Oil in Healthy Humans during Light Exercise.

    PubMed

    Mori, Noriyuki; Nakanishi, Saki; Shiomi, Seiko; Kiyokawa, Shoko; Kakimoto, Sachie; Nakagawa, Kaku; Hosoe, Kazunori; Minami, Kazuhiro; Nadamoto, Tomonori

    2015-01-01

    Licorice flavonoid oil (LFO) is a new functional food ingredient consisting of hydrophobic licorice polyphenols in medium-chain triglycerides. Recent studies reported that LFO prevented and ameliorated diet-induced obesity via the regulation of lipid metabolism-related gene expression in the livers of mice and rats, while it reduced body weight in overweight human subjects by reducing total body fat. However, the direct effects of LFO on energy metabolism have not been studied in human subjects. Therefore, we investigated the effects of ingestion of LFO on energy metabolism, including fat oxidation, by measuring body surface temperature under resting conditions and respiratory gas analysis under exercise conditions in healthy humans. We showed that ingestion of a single 600 mg dose of LFO elevated body trunk skin temperature when measured in a slightly cooled air-conditioned room, and increased oxygen consumption and decreased the respiratory exchange ratio as measured by respiratory gas analysis during 40% Vo2max exercise with a cycle ergometer. Furthermore, repeated ingestion of 300 mg of LFO for 8 d decreased respiratory exchange during the recovery period following 40 min of 30% Vo2max exercise on a treadmill. These results suggest that LFO enhances fat oxidation in humans during light exercise. PMID:26639849

  11. Enhancement of Fat Oxidation by Licorice Flavonoid Oil in Healthy Humans during Light Exercise.

    PubMed

    Mori, Noriyuki; Nakanishi, Saki; Shiomi, Seiko; Kiyokawa, Shoko; Kakimoto, Sachie; Nakagawa, Kaku; Hosoe, Kazunori; Minami, Kazuhiro; Nadamoto, Tomonori

    2015-01-01

    Licorice flavonoid oil (LFO) is a new functional food ingredient consisting of hydrophobic licorice polyphenols in medium-chain triglycerides. Recent studies reported that LFO prevented and ameliorated diet-induced obesity via the regulation of lipid metabolism-related gene expression in the livers of mice and rats, while it reduced body weight in overweight human subjects by reducing total body fat. However, the direct effects of LFO on energy metabolism have not been studied in human subjects. Therefore, we investigated the effects of ingestion of LFO on energy metabolism, including fat oxidation, by measuring body surface temperature under resting conditions and respiratory gas analysis under exercise conditions in healthy humans. We showed that ingestion of a single 600 mg dose of LFO elevated body trunk skin temperature when measured in a slightly cooled air-conditioned room, and increased oxygen consumption and decreased the respiratory exchange ratio as measured by respiratory gas analysis during 40% Vo2max exercise with a cycle ergometer. Furthermore, repeated ingestion of 300 mg of LFO for 8 d decreased respiratory exchange during the recovery period following 40 min of 30% Vo2max exercise on a treadmill. These results suggest that LFO enhances fat oxidation in humans during light exercise.

  12. Apolipoprotein E ε4 allele modulates the immediate impact of acute exercise on prefrontal function.

    PubMed

    De Marco, Matteo; Clough, Peter J; Dyer, Charlotte E; Vince, Rebecca V; Waby, Jennifer S; Midgley, Adrian W; Venneri, Annalena

    2015-01-01

    The difference between Apolipoprotein E ε4 carriers and non-carriers in response to single exercise sessions was tested. Stroop and Posner tasks were administered to young untrained women immediately after walking sessions or moderately heavy exercise. Exercise had a significantly more profound impact on the Stroop effect than on the Posner effect, suggesting selective involvement of prefrontal function. A significant genotype-by-exercise interaction indicated differences in response to exercise between ε4 carriers and non-carriers. Carriers showed facilitation triggered by exercise. The transient executive down-regulation was construed as due to exercise-dependent hypofrontality. The facilitation observed in carriers was interpreted as better management of prefrontal metabolic resources, and explained within the antagonistic pleiotropy hypothesis framework. The findings have implications for the interpretation of differences between ε4 carriers and non-carriers in the benefits triggered by long-term exercise that might depend, at least partially, on mechanisms of metabolic response to physical activity. PMID:25218559

  13. Acute regulation of IGF-I by alterations in post-exercise macronutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...

  14. Acute Positive Effects of Exercise on Center-of-Pressure Fluctuations During Quiet Standing in Middle-Aged and Elderly Women.

    PubMed

    Fukusaki, Chiho; Masani, Kei; Miyasaka, Maya; Nakazawa, Kimitaka

    2016-01-01

    Acute effects of exercise on postural stability have been studied with a focus on fatigue. This study investigated the acute effects of moderate-intensity exercise on center-of-pressure (COP) fluctuation measures in middle-aged and elderly women. Thirty-five healthy women volunteered: 18 women performed a moderate aquatic exercise session for 80 minutes and 17 remained calm in a sitting position for the same duration. Center-of-pressure fluctuations during quiet standing were recorded for 60 seconds with eyes open and closed before and after the exercise and sitting tasks. The time- and frequency-domain measures of the COP time series were calculated. The frequency-domain measures were also calculated for the COP velocity time series. According to 2-way analysis of variance and paired t-tests with a Bonferroni's correction, mean velocity of COP fluctuations, mean velocity of COP fluctuations in the medial-lateral (ML) direction, and total power of the COP velocity time series in the ML direction exhibited significant reductions after 1 session of exercise. These results indicated that a moderate-intensity aquatic exercise decreased COP velocity, counteracting age-related and fatigue-inducing postural deterioration. Therefore, we concluded that a single session of moderate-intensity aquatic exercise has acute positive effects on postural stability in middle-aged and elderly women.

  15. Acute physical exercise is safe in patients with primary antiphospholipid syndrome with exclusive venous thrombosis and under oral anticoagulation with warfarin.

    PubMed

    Garcia, Carolina Borges; Seguro, Luciana Parente Costa; Perandini, Luiz Augusto; de Sá Pinto, Ana Lúcia; Lima, Fernanda Rodrigues; Negrão, Carlos Eduardo; Bonfa, Eloisa; Borba, Eduardo Ferreira

    2014-12-01

    The purpose of present study was to evaluate the effects of maximal acute physical exercise on prothrombin time/international normalized ratio (PT/INR) in patients with primary antiphospholipid syndrome (PAPS) under oral anticoagulation with warfarin and the safety of acute exercise in regard to thrombosis and bleeding risk. Eighteen physically inactive women with PAPS (Sydney criteria) with exclusive venous events and without thrombocytopenia were included. All patients were under stable warfarin therapy (PT/INR target: 2.0-3.0). Eighteen age-matched healthy sedentary women without thrombosis/bleeding disorders were selected as controls. All subjects performed a maximal exercise test, and capillary blood samples were obtained pre-, post- and at 1-h post-exercise (recovery time) for PT/INR analysis using a portable CoaguCheck. PAPS patients and controls had similar mean age (31.50 ± 8.06 vs. 29.61 ± 7.05 years, p = 0.46) and body mass index (24.16 ± 3.67 vs. 24.66 ± 2.71 kg/m(2), p = 0.65). PAPS had a mild but significant increase in PT/INR value at 1-h post-exercise (recovery) compared with pre- (2.33 ± 0.34 vs. 2.26 ± 0.29, p = 0.001) and post-exercise (2.33 ± 0.34 vs. 2.26 ± 0.32, p = 0.001) that was observed in 61.11 % of these patients. None of the subjects had thrombotic or bleeding complications related to the acute exercise. Acute exercise in patients with PAPS with exclusive venous thrombosis was safe with a minor increase in PT/INR. This is an important step to introduce regular exercise training as a therapeutic tool in the management of these patients.

  16. The effects of acute aerobic exercise on the primary motor cortex.

    PubMed

    Singh, Amaya M; Staines, W Richard

    2015-01-01

    The effect of aerobic exercise on primary motor cortical excitability is a relevant area of interest for both motor learning and motor rehabilitation. Transient excitability changes that may follow an exercise session are a necessary precursor to more lasting neuroplastic changes. While the number of studies is limited, research suggests that a session of aerobic exercise can create an ideal environment for the early induction of plasticity. Potential mechanisms include the upregulation of neurotransmitter activity, altered cerebral metabolism and cortisol levels, and increases in brain-derived neurotrophic factor. While there is considerable evidence that chronic physical activity positively impacts brain health and function, studies examining cortical excitability changes and motor performance after a single session of exercise are lacking. Further research is required to determine the clinical utility and feasibility of aerobic exercise.

  17. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal.

    PubMed

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-08-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal-induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  18. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal

    PubMed Central

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-01-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal–induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  19. Effects of acute resistance exercise on muscle damage and perceptual measures between men who are lean and obese.

    PubMed

    Comstock, Brett A; Thomas, Gwendolyn A; Dunn-Lewis, Courtenay; Volek, Jeff S; Szivak, Tunde K; Hooper, David R; Kupchak, Brian R; Flanagan, Shawn D; Denegar, Craig R; Kraemer, William J

    2013-12-01

    The purpose of this investigation was to assess indices of muscle damage and psychological stress between young, untrained, lean, and obese men. Using a between-subject design, 19 young men (9 lean men [age, 20.1 ± 2.1 years; body mass, 71.7 ± 5.8 kg; height, 177.8 ± 8.7 cm; body fat (BF), 14.7 ± 3.5%], 5 World Health Organization [WHO] class 1 obese men [age, 21.6 ± 2.5 years; body mass, 97.8 ± 8.6 kg; height, 176.3 ± 3.7 cm; BF, 34.7 ± 3.0%], and 5 WHO class 2 or 3 men [age, 20.0 ± 1.4 years; body mass, 120.8 ± 10.5 kg; height, 177.7 ± 5.2 cm; BF, 40.5 ± 5.8%]) volunteered and completed an acute resistance exercise (RE) protocol (6 exercises performed for 3 sets of 10 repetitions at an intensity of 85-95% of a 10 repetition maximum). Plasma myoglobin and serum creatine kinase were obtained before and immediately after exercise, and in recovery (at +110 minutes and +24 hours). Perceptual measures including rating of perceived exertion, pain and soreness, fatigue, and general soreness were assessed at different time points (during exercise for rating of perceived exertion, and for the fatigue and soreness measures before, immediately after, and at 24 hours of recovery from exercise). The primary findings of this investigation were that lean and obese, sedentary, young men do not significantly differ from each other in terms of indirect, humoral measures of muscle damage, or perceptual scales in response to a moderate-intensity acute RE bout, despite using significantly more exercise volume relative to fat mass (FM). We conclude that excess FM during daily activities of life provides a protective effect for muscle damage. When strength training individuals who are obese, practitioners should be aware of how excess FM affects muscle damage and total volume. But these considerations do not preclude individuals who are obese from using well-designed RE workouts which use free-weight, multijoint movements that stimulate all of the major muscle groups.

  20. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review.

    PubMed

    Astorino, Todd A; Roberson, Daniel W

    2010-01-01

    Caffeine is the most widely used drug in the world, commonly ingested in coffee, tea, soda, and energy drinks. Its ability to enhance muscular work has been apparent since the early 1900s. Caffeine typically increases endurance performance; however, efficacy of caffeine ingestion for short-term high-intensity exercise is equivocal, which may be explained by discrepancies in exercise protocols, dosing, and subjects' training status and habitual caffeine intake found across studies. The primary aim of this review is to critically examine studies that have tested caffeine's ability to augment performance during exercise dependent on nonoxidative metabolism such as sprinting, team sports, and resistance training. A review of the literature revealed 29 studies that measured alterations in short-term performance after caffeine ingestion. Each study was critically analyzed using the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro score was 7.76 +/- 0.87. Eleven of 17 studies revealed significant improvements in team sports exercise and power-based sports with caffeine ingestion, yet these effects were more common in elite athletes who do not regularly ingest caffeine. Six of 11 studies revealed significant benefits of caffeine for resistance training. Some studies show decreased performance with caffeine ingestion when repeated bouts are completed. The exact mechanism explaining the ergogenic effect of caffeine for short-term exercise is unknown.

  1. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review.

    PubMed

    Astorino, Todd A; Roberson, Daniel W

    2010-01-01

    Caffeine is the most widely used drug in the world, commonly ingested in coffee, tea, soda, and energy drinks. Its ability to enhance muscular work has been apparent since the early 1900s. Caffeine typically increases endurance performance; however, efficacy of caffeine ingestion for short-term high-intensity exercise is equivocal, which may be explained by discrepancies in exercise protocols, dosing, and subjects' training status and habitual caffeine intake found across studies. The primary aim of this review is to critically examine studies that have tested caffeine's ability to augment performance during exercise dependent on nonoxidative metabolism such as sprinting, team sports, and resistance training. A review of the literature revealed 29 studies that measured alterations in short-term performance after caffeine ingestion. Each study was critically analyzed using the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro score was 7.76 +/- 0.87. Eleven of 17 studies revealed significant improvements in team sports exercise and power-based sports with caffeine ingestion, yet these effects were more common in elite athletes who do not regularly ingest caffeine. Six of 11 studies revealed significant benefits of caffeine for resistance training. Some studies show decreased performance with caffeine ingestion when repeated bouts are completed. The exact mechanism explaining the ergogenic effect of caffeine for short-term exercise is unknown. PMID:19924012

  2. The acute effects of exercise on cortical excitation and psychosocial outcomes in men treated for prostate cancer: a randomized controlled trial

    PubMed Central

    Santa Mina, Daniel; Guglietti, Crissa L.; de Jesus, Danilo R.; Azargive, Saam; Matthew, Andrew G.; Alibhai, Shabbir M. H.; Trachtenberg, John; Daskalakis, Jeffrey Z.; Ritvo, Paul

    2014-01-01

    Purpose: Regular exercise improves psychological well-being in men treated for prostate cancer (PCa). For this population and among cancer survivors in general, the effect of a single bout of exercise on self-report or objective measures of psychological well-being has not been examined. We examined the acute effect of a single bout of exercise on the cortical silent period (CSP) and on self-reported mood in men that have received treatment for PCa. Methods: Thirty-six PCa survivors were randomly assigned to 60 min of low to moderate intensity exercise or to a control condition. Outcomes were assessed immediately before and after either the exercise or the control condition. Results: No significant between-group differences were observed in CSP or mood were observed following the exercise session or control conditions. Participants with higher scores of trait anxiety had significantly shorter CSP at baseline, as well as those receiving androgen deprivation therapy. Age and baseline CSP had a low-moderate, but significant negative correlation. Changes in CSP following the exercise condition were strongly negatively correlated with changes in self-reported vigor. Conclusion: While we did not observe any acute effect of exercise on the CSP in this population, the associations between CSP and trait anxiety, age, and vigor are novel findings requiring further examination. Implications for Cancer Survivors: Exercise did not acutely affect our participants in measures of psychological well-being. Additional mechanisms to explain the chronic psychosocial benefits of exercise previously observed in men with PCa require further exploration. Clinicaltrials.gov Identifier: NCT01715064 (http://clinicaltrials.gov/show/NCT01715064). PMID:25505413

  3. Acute effect of high-intensity aerobic exercise performed on treadmill and cycle ergometer on strength performance.

    PubMed

    Panissa, Valéria L G; Tricoli, Valmor A A; Julio, Ursula F; Ribeiro, Natalia; de Azevedo Neto, Raymundo M A; Carmo, Everton C; Franchini, Emerson

    2015-04-01

    Concurrent training (i.e., combination of endurance with strength training) may result in negative interference on strength performance. Moreover, there are indications that the magnitude of this interference is dependent on endurance exercise mode. Thus, this study aimed to verify the acute effects of previous running and cycling on strength endurance performance. After the determination of the maximum intensity reached (Imax) during treadmill running and cycle ergometer pedaling and half-squat maximum strength (1 repetition maximum [1RM]), 10 physically active men were submitted to 3 experimental conditions: control condition (S) comprised of 4 sets of maximum repetitions at 80% 1RM, intermittent running (RS), and cycling (CS) conditions (15 × 1 minute:1 minute in the Imax) followed by the strength exercise (S). Maximum number of repetitions (MNR), total session volume (TV), and vastus lateralis electromyographic signal (VLRMS) were analyzed. It was observed that MNR and TV performed in set 1 in the S condition was superior to that performed in set 1 in the RS (p < 0.001) and CS (p < 0.001) conditions; and set 2 in the S condition was superior to set 2 only in the CS for the MNR (p = 0.032) and TV (p = 0.012). For the VLRMS, there was a main effect for repetition, with higher values in the last repetition compared with the second one (p < 0.01). In conclusion, an aerobic exercise bout before strength exercise impairs the subsequent strength endurance performance. In addition, the magnitude of the interference effect was higher after the aerobic cycling exercise.

  4. Acute effect of high-intensity aerobic exercise performed on treadmill and cycle ergometer on strength performance.

    PubMed

    Panissa, Valéria L G; Tricoli, Valmor A A; Julio, Ursula F; Ribeiro, Natalia; de Azevedo Neto, Raymundo M A; Carmo, Everton C; Franchini, Emerson

    2015-04-01

    Concurrent training (i.e., combination of endurance with strength training) may result in negative interference on strength performance. Moreover, there are indications that the magnitude of this interference is dependent on endurance exercise mode. Thus, this study aimed to verify the acute effects of previous running and cycling on strength endurance performance. After the determination of the maximum intensity reached (Imax) during treadmill running and cycle ergometer pedaling and half-squat maximum strength (1 repetition maximum [1RM]), 10 physically active men were submitted to 3 experimental conditions: control condition (S) comprised of 4 sets of maximum repetitions at 80% 1RM, intermittent running (RS), and cycling (CS) conditions (15 × 1 minute:1 minute in the Imax) followed by the strength exercise (S). Maximum number of repetitions (MNR), total session volume (TV), and vastus lateralis electromyographic signal (VLRMS) were analyzed. It was observed that MNR and TV performed in set 1 in the S condition was superior to that performed in set 1 in the RS (p < 0.001) and CS (p < 0.001) conditions; and set 2 in the S condition was superior to set 2 only in the CS for the MNR (p = 0.032) and TV (p = 0.012). For the VLRMS, there was a main effect for repetition, with higher values in the last repetition compared with the second one (p < 0.01). In conclusion, an aerobic exercise bout before strength exercise impairs the subsequent strength endurance performance. In addition, the magnitude of the interference effect was higher after the aerobic cycling exercise. PMID:25259468

  5. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxyg