Science.gov

Sample records for acute exercise enhanced

  1. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  2. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly.

  3. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  4. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  5. Acute physical exercise in humans enhances reconsolidation of emotional memories.

    PubMed

    Keyan, Dharani; Bryant, Richard A

    2017-09-22

    Increasing evidence suggests that when a memory is reactivated through retrieval, it becomes temporarily vulnerable to environmental or pharmacological manipulation, which can consequently update or strengthen the memory. Physical exercise has been shown to modulate the maintenance of fear memories in animals following memory reactivation. This study investigated the effect of intense exercise in modulating the reconsolidation of trauma memories. Fifty-four undergraduate students watched a trauma film depicting the aftermath of a highway car crash. Two days later, participants engaged in either (a) 20-25min of incremental cycling following a memory reactivation induction (Reactivation/Exercise), (b) 20-25min of mild cycling (Reactivation/No Exercise) following memory reactivation, or (c) 20-25min of incremental cycling but no memory reactivation (No Reactivation/Exercise). Saliva samples were collected to index salivary amylase and cortisol at baseline and post activity. Participants completed memory questionnaires relating to declarative and intrusive memory recall two days after memory reactivation. Reactivation/Exercise participants recalled more central details of the trauma film relative to other participants. Increased cortisol predicted better total memory recall in the Reactivation/Exercise, but not in the other conditions. These findings suggest that intense exercise during the period of memory reactivation enhances subsequent trauma memory, and provides human evidence consistent with recent findings of exercise-induced fear reconsolidation in animals. Copyright © 2017. Published by Elsevier Ltd.

  6. Enhancing consolidation of a rotational visuomotor adaptation task through acute exercise

    PubMed Central

    Busquets, Albert; Lopez-Alonso, Virginia; Fernandez-del-Olmo, Miguel; Angulo-Barroso, Rosa

    2017-01-01

    We assessed the effect of a single bout of intense exercise on the adaptation and consolidation of a rotational visuomotor task, together with the effect of the order of exercise presentation relative to the learning task. Healthy adult participants (n = 29) were randomly allocated to one of three experimental groups: (1) exercise before task practice, (2) exercise after task practice, and (3) task practice only. After familiarization with the learning task, participants undertook a baseline practice set. Then, four 60° clockwise rotational sets were performed, comprising an adaptation set and three retention sets at 1 h, 24 h, and 7 days after the adaptation set. Depending on the experimental group, exercise was presented before or after the adaptation sets. We found that error reduction during adaptation was similar regardless of when exercise was presented. During retention, significant error reduction was found in the retention set at 1 h for both exercise groups, but this enhancement was not present during subsequent retention sets, with no differences present between exercise groups. We conclude that an acute bout of intense exercise could positively affect retention, although the order in which exercise is presented does not appear to influence its benefits during the early stages of consolidation. PMID:28406936

  7. Enhancing consolidation of a rotational visuomotor adaptation task through acute exercise.

    PubMed

    Ferrer-Uris, Blai; Busquets, Albert; Lopez-Alonso, Virginia; Fernandez-Del-Olmo, Miguel; Angulo-Barroso, Rosa

    2017-01-01

    We assessed the effect of a single bout of intense exercise on the adaptation and consolidation of a rotational visuomotor task, together with the effect of the order of exercise presentation relative to the learning task. Healthy adult participants (n = 29) were randomly allocated to one of three experimental groups: (1) exercise before task practice, (2) exercise after task practice, and (3) task practice only. After familiarization with the learning task, participants undertook a baseline practice set. Then, four 60° clockwise rotational sets were performed, comprising an adaptation set and three retention sets at 1 h, 24 h, and 7 days after the adaptation set. Depending on the experimental group, exercise was presented before or after the adaptation sets. We found that error reduction during adaptation was similar regardless of when exercise was presented. During retention, significant error reduction was found in the retention set at 1 h for both exercise groups, but this enhancement was not present during subsequent retention sets, with no differences present between exercise groups. We conclude that an acute bout of intense exercise could positively affect retention, although the order in which exercise is presented does not appear to influence its benefits during the early stages of consolidation.

  8. EEG recovery enhanced by acute aerobic exercise after performing mental task with listening to unpleasant sound.

    PubMed

    Nishifuji, Seiji

    2011-01-01

    The present paper investigated response of electroencephalogram (EEG) to aerobic exercise with low intensity after performing mental task with listening to acoustic stimuli in order to measure a recovery effect of the acute exercise on the EEG. The mean amplitude of the alpha wave (8-13 Hz) was significantly reduced during performing mental arithmetic and/or listening to 5 KHz unpleasant tone. In particular, the mean reduction rate of the amplitude was more than 20 % in the low-frequency range of the alpha wave (8-10 Hz) under both stressors. On the other hand, the alpha wave was fixed after an acute exercise of 20 min; the mean amplitude of the alpha wave exceeded 30 % of spontaneous level prior to stressed conditions in the low-frequency range but unchanged in the high-frequency range. Response of the theta wave was similar to the low-alpha wave, while beta and gamma waves showed no significant change in response to the stressors and exercise. The observation indicates that the acute exercise with low intensity may be responsible for the rapid recovery and enhancement of the alpha wave in the low-frequency range and theta wave.

  9. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure.

    PubMed

    Duncan, M J; Oxford, S W

    2012-06-01

    This double-blind, within-subjects experiment examined the effects of acute caffeine ingestion on perceptions of muscle pain following a bout of high-intensity, upper-body resistance exercise to failure. Moderately trained males (N.=18) ingested a dose of caffeine (5 mg · kg-1) or placebo in a randomised and counterbalanced order and 1 hour later completed bench press exercise to failure at an intensity of 60% 1 repetition maximum. Repetitions completed was taken as a measure of performance, peak heart rate was determined via heart rate telemetry during the exercise bout, rating of perceived exertion (RPE) and upper body muscle pain was recorded immediately upon failure of the exercise task and peak blood lactate concentration was determined post-exercise. Caffeine resulted in improved repetitions to failure (t [17]=3.119, P=0.006), greater peak blood lactate (t [17] =5.080, P=0.0001) and lower RPE (t 17=-3.431, P=0.003) compared to placebo. Muscle pain perception was also significantly lower in the caffeine condition compared to placebo (t [17]=-2.567, P=0.04). These results support prior studies using aerobic based exercise modes in suggesting that caffeine ingestion can dampen exercise-induced muscle pain. Specifically, caffeine ingestion enhances muscular strength performance and reduces upper body muscle pain perception immediately following a bout of high-intensity resistance exercise to failure.

  10. Self-regulation strategies may enhance the acute effect of exercise on smoking delay.

    PubMed

    Hatzigeorgiadis, Antonis; Pappa, Vassiliki; Tsiami, Anastasia; Tzatzaki, Theodora; Georgakouli, Kalliopi; Zourbanos, Nikos; Goudas, Marios; Chatzisarantis, Nikos; Theodorakis, Yannis

    2016-06-01

    The present study examined the acute effect of a moderate intensity aerobic exercise session combined with self-regulation on smoking delay in physically inactive smokers. Participants were 11 adults (5 males and 6 females) that completed three experimental conditions: control, exercise, and exercise using self-regulation strategies (SR). Following the experimental treatment smoking for the two exercise conditions delayed significantly more than for the control condition; in addition exercise SR delayed smoking marginally more that the plain exercise condition. Findings supported previous research that acute exercise reduces cravings to smoke, and suggests that the use of self-regulation strategies may strengthen exercise for smoking cessation interventions.

  11. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children.

    PubMed

    Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan

    2016-01-01

    Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.

  12. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children

    PubMed Central

    Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan

    2016-01-01

    Working memory lies at the core of cognitive function and plays a crucial role in children’s learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children’s working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory’s brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children’s working memory, and the neural basis may be related to changes in the working memory’s brain activation patterns elicited by acute aerobic exercise. PMID:27917141

  13. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise.

    PubMed

    Apicella, Jenna M; Lee, Elaine C; Bailey, Brooke L; Saenz, Catherine; Anderson, Jeffrey M; Craig, Stuart A S; Kraemer, William J; Volek, Jeff S; Maresh, Carl M

    2013-03-01

    Our aim was to examine the effect of betaine supplementation on selected circulating hormonal measures and Akt muscle signaling proteins after an acute exercise session. Twelve trained men (age 19.7 ± 1.23 years) underwent 2 weeks of supplementation with either betaine (B) (1.25 g BID) or placebo (P). Following a 2-week washout period, subjects underwent supplementation with the other treatment (B or P). Before and after each 2-week period, subjects performed an acute exercise session (AES). Circulating GH, IGF-1, cortisol, and insulin were measured. Vastus lateralis samples were analyzed for signaling proteins (Akt, p70 S6k, AMPK). B (vs. P) supplementation approached a significant increase in GH (mean ± SD (Area under the curve, AUC), B: 40.72 ± 6.14, P: 38.28 ± 5.54, p = 0.060) and significantly increased IGF-1 (mean ± SD (AUC), B: 106.19 ± 13.45, P: 95.10 ± 14.23, p = 0.010), but significantly decreased cortisol (mean ± SD (AUC), B: 1,079.18 ± 110.02, P: 1,228.53 ± 130.32, p = 0.007). There was no difference in insulin (AUC). B increased resting Total muscle Akt (p = 0.003). B potentiated phosphorylation (relative to P) of Akt (Ser(473)) and p70 S6 k (Thr(389)) (p = 0.016 and p = 0.005, respectively). Phosphorylation of AMPK (Thr(172)) decreased during both treatments (both p = 0.001). Betaine (vs. placebo) supplementation enhanced both the anabolic endocrine profile and the corresponding anabolic signaling environment, suggesting increased protein synthesis.

  14. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise.

    PubMed

    Duncan, Michael J; Stanley, Michelle; Parkhouse, Natalie; Cook, Kathryn; Smith, Mike

    2013-01-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. However, despite suggestions that caffeine may enhance resistance exercise performance, research is equivocal on the effect of acute caffeine ingestion on resistance exercise performance. It has also been suggested that dampened perception of perceived exertion and pain perception might be an explanation for any possible enhancement of resistance exercise performance due to caffeine ingestion. Therefore, the aim of this study was to examine the acute effect of caffeine ingestion on repetitions to failure, rating of perceived exertion (RPE) and muscle pain perception during resistance exercise to failure. Eleven resistance trained individuals (9 males, 2 females, mean age±SD=26.4±6.4 years), took part in this double-blind, randomised cross-over experimental study whereby they ingested a caffeinated (5 mg kg(-1)) or placebo solution 60 minutes before completing a bout of resistance exercise. Experimental conditions were separated by at least 48 hours. Resistance exercise sessions consisted of bench press, deadlift, prone row and back squat exercise to failure at an intensity of 60% 1 repetition maximum. Results indicated that participants completed significantly greater repetitions to failure, irrespective of exercise, in the presence of caffeine (p=0.0001). Mean±S.D of repetitions to failure was 19.6±3.7 and 18.5±4.1 in caffeine and placebo conditions, respectively. There were no differences in peak heart rate or peak blood lactate values across conditions (both p >0.05). RPE was significantly lower in the caffeine compared to the placebo condition (p=0.03) and was significantly higher during lower body exercises compared to upper body exercises irrespective of substance ingested (p=0.0001). For muscle pain perception, a significant condition by exercise interaction (p=0.027) revealed that muscle pain perception was lower in the caffeine condition, irrespective of exercise

  15. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.

    PubMed

    Popovich, Christina; Staines, W Richard

    2015-03-15

    Neuroimaging research has shown that acute bouts of moderate intensity aerobic exercise can enhance attention-based neuronal activity in frontal brain regions, namely in the prefrontal cortex (PFC), as well as improve cognitive performance. The circuitry of the PFC is complex with extensive reciprocal corticocortical and thalamocortical connections, yet it remains unclear if aerobic exercise can also assist attentional control over modality-specific sensory cortices. To test this, we used a tactile discrimination task to compare tactile event-related potentials (ERPs) prior to and following an acute bout of moderate intensity aerobic exercise. We hypothesized that exercise preceding performance of the task would result in more efficient sensory gating of irrelevant/non-attended and enhancement of relevant/attended sensory information, respectively. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only. ERP amplitudes for the P50, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at FC4, C4, CP4 and P4 while P300 amplitudes were quantified in response to attended target stimuli at electrodes FCZ, CZ and CPZ. Results showed no effect of attention on the P50, however, both P100 and LLP amplitudes were significantly greater during attended, task-relevant trials, while the N140 was enhanced for non-attended, task-irrelevant stimuli. Moreover, unattended N140 amplitudes over parietal sites contralateral to stimulation were significantly greater post-exercise versus pre-exercise, while LLP modulation varied with greater unattended amplitudes post-exercise over frontal sites and greater attended amplitudes post-exercise over parietal sites. These results suggest that a single session of moderate intensity aerobic exercise facilitated the sensory gating of task-irrelevant tactile stimuli so that relevant sensory signals could be enhanced at

  16. Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise.

    PubMed

    Decroix, Lieselot; Tonoli, Cajsa; Soares, Danusa D; Tagougui, Semah; Heyman, Elsa; Meeusen, Romain

    2016-12-01

    Acute exercise-induced improvements in cognitive function are accompanied by increased (cerebral) blood flow and increased brain-derived neurotrophic factor (BDNF) levels. Acute cocoa flavanol (CF) intake may improve cognitive function, cerebral blood flow (in humans), and BNDF levels (in animals). This study investigated (i) the effect of CF intake in combination with exercise on cognitive function and (ii) cerebral hemodynamics and BDNF in response to CF intake and exercise. Twelve healthy men participated in this randomized, double-blind, crossover study. Participants performed a cognitive task (CT) at 100 min after acute 903-mg CF or placebo (PL) intake, followed by a 30-min time-trial. Immediately after this exercise, the same CT was performed. Prefrontal near-infrared spectroscopy was applied during CT and exercise to measure changes in oxygenated (ΔHbO2), deoxygenated (ΔHHb), and total haemoglobin (ΔHbtot) and blood samples were drawn and analyzed for BDNF. Reaction time was faster postexercise, but was not influenced by CF. ΔHbO2 during the resting CT was increased by CF, compared with PL. ΔHbO2, ΔHHb, and ΔHbtot increased in response to exercise without any effect of CF. During the postexercise cognitive task, there were no hemodynamic differences between CF or PL. Serum BDNF was increased by exercise, but was not influenced by CF. In conclusion, at rest, CF intake increased cerebral oxygenation, but not BDNF concentrations, and no impact on executive function was detected. This beneficial effect of CF on cerebral oxygenation at rest was overruled by the strong exercise-induced increases in cerebral perfusion and oxygenation.

  17. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. Copyright © 2015 the American Physiological Society.

  18. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults

    PubMed Central

    Treichler, David P.; Ganger, Charles T.; Schneider, Aaron C.; Ueda, Kenichi

    2014-01-01

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min−1·100 mmHg−1) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. PMID:25414241

  19. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-06

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise.

  20. Does acute side-alternating vibration exercise enhance ballistic upper-body power?

    PubMed

    Cochrane, D J; Black, M J; Barnes, M J

    2014-11-01

    The aim of this study was to investigate the effects of acute vibration exercise, at 2 different frequencies, on upper body power output. Muscle activity (EMG) and upper-body peak power was measured in 12 healthy males during ballistic bench press throws at 30% of 1-repetition maximum on a Smith machine. Measures were made prior to, 30 s and 5 min after one of 3 conditions performed for 30 s in a press-up position: side-alternating vibration at 20 Hz, 26 Hz and no vibration. EMG was recorded in the anterior deltoid, triceps brachii and pectoralis major during ballistic bench press throws as well as during application of each condition. While peak power output was higher at 5 min post condition across all conditions, compared to baseline measures (P<0.05), only 20 Hz vibration resulted in a significant increase in peak power output (P<0.05) compared to no vibration. EMG was greater during both vibration conditions, compared to no vibration (P<0.001). However, this difference was not evident during bench press throws when no difference was seen in muscle activity between conditions. These findings suggest that 20 Hz vibration has an ergogenic effect on upper-body power that may be due to peripheral, rather than central, mediated mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Acute moderate exercise improves mnemonic discrimination in young adults.

    PubMed

    Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A; Soya, Hideaki

    2017-03-01

    Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O2peak ) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. © 2016 Wiley Periodicals, Inc.

  2. Exercise Enhances the Behavioral Responses to Acute Stress in an Animal Model of PTSD.

    PubMed

    Hoffman, Jay R; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-10-01

    This study examined the effects of endurance exercise on the behavioral response to stress and patterns of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), and δ-opioid receptor (phospho-DOR) expression in the hippocampus. Animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. After training, one group of animals was exposed to a predator scent stress (PSS) protocol for 10 min. Outcome measurements included behavior in an elevated plus-maze (EPM) and acoustic startle response (ASR) 7 d after exposure to stress. Immunohistochemical technique was used to detect the expression of the BDNF, NPY, and phospho-DOR in the hippocampus 8 d after exposure. Sedentary animals exposed to PSS were observed to have a greater incidence of extreme behavior responses including higher anxiety, less total activity in the EPM, and greater amplitude in the ASR than unexposed and/or trained animals. Exercise-trained animals exposed to PSS developed a resiliency to the stress, reflected by significantly greater total activity in the EPM, reduced anxiety, and reduced ASR compared to the sedentary, exposed animals. Exercise in the absence of stress significantly elevated the expression of BDNF and phospho-DOR, whereas exposure to PSS resulted in a significant decline in the expression of NPY, BDNF, and phospho-DOR. Trained animals that were exposed maintained expression of BDNF, NPY, and phospho-DOR in most subregions of the hippocampus. Results indicated that endurance training provided a mechanism to promote resilience and/or recovery from stress. In addition, exercise increased expression of BDNF, NPY, and DOR signaling in the hippocampus that was associated with the greater resiliency seen in the trained animals.

  3. Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2014-11-01

    There is evidence that a single session of aerobic exercise can modulate intracortical inhibition. While decreases in inhibition appear to be a necessary precursor to the induction of long-term potentiation (LTP)-like plasticity, it is not known whether aerobic exercise can enhance the response to LTP induction. We investigated whether the addition of a preceding bout of exercise would modulate the response to paired associative stimulation (PAS) of the upper limb. It was hypothesized that exercise would enhance motor cortical (M1) excitability following PAS compared to a session of PAS alone. Ten healthy individuals underwent a control session involving PAS alone and an exercise session where PAS was preceded by 20 min of moderate-intensity stationary biking. PAS involved 180 pairs of stimuli (right median nerve, left M1) delivered at 0.1 Hz to the right abductor pollicis brevis representation. Excitability changes were measured by the area under a stimulus-response curve, and intracortical circuits were probed by testing short-interval intracortical inhibition (SICI), long-interval intracortical inhibition and intracortical facilitation. Two-way ANOVAs were conducted to compare excitability changes between sessions. PAS-induced increases in M1 excitability were enhanced in the exercise session (p < 0.026). In addition, SICI was differentially modulated between the two sessions, with greater decreases in SICI observed immediately after PAS when it was preceded by the exercise session (p < 0.03). Aerobic exercise enhances the effectiveness of PAS and may be a useful adjunct to traditional therapies and interventions that aim to promote neuroplasticity in cortical networks.

  4. Enhanced carotid-cardiac baroreflex response and elimination of orthostatic hypotension 24 hours after acute exercise in paraplegics

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.

    1992-01-01

    To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).

  5. Enhanced carotid-cardiac baroreflex response and elimination of orthostatic hypotension 24 hours after acute exercise in paraplegics

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.

    1992-01-01

    To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).

  6. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  7. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  8. Effect of a pre-exercise energy supplement on the acute hormonal response to resistance exercise.

    PubMed

    Hoffman, Jay R; Ratamess, Nicholas A; Ross, Ryan; Shanklin, Miles; Kang, Jie; Faigenbaum, Avery D

    2008-05-01

    The effect of a pre-exercise energy sport drink on the acute hormonal response to resistance exercise was examined in eight experienced resistance trained men. Subjects were randomly provided either a placebo (P: maltodextrin) or the supplement (S: combination of branched chain amino acids, creatine, taurine, caffeine, and glucuronolactone). Subjects performed 6 sets of no more than 10 repetitions of the squat exercise at 75% of their 1 repetition maximum (1RM) with 2 minutes of rest between sets. Blood draws occurred at baseline pre-exercise, immediately post- (IP), 15 minutes post- (15P), and 30-minutes post (30P) exercise for measurement of serum growth hormone, total and free testosterone, cortisol, and insulin concentrations. Although significant differences were seen only at set 5, the total number of repetitions and training volume tended (p = 0.08) to be higher with S compared to P. Serum growth hormone and insulin concentrations were significantly higher at 15P and IP, respectively, in S compared to P. Results suggest that a pre-exercise energy S consumed 10 minutes before resistance exercise can enhance acute exercise performance by increasing the number of repetitions performed and the total volume of exercise. The enhanced exercise performance resulted in a significantly greater increase in both growth hormone and insulin concentrations, indicating an augmented anabolic hormone response to this pre-exercise S.

  9. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men.

    PubMed

    Parker, Lewan; Stepto, Nigel K; Shaw, Christopher S; Serpiello, Fabio R; Anderson, Mitchell; Hare, David L; Levinger, Itamar

    2016-01-01

    Background: Obesity and aging are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK), and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE) on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods: Participants completed a 2 h hyperinsulinaemic-euglycaemic clamp at rest, and 60 min after HIIE (4 × 4 mins at 95% HRpeak; 2 min recovery periods), separated by 1-3 weeks. Results: Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160(Ser588), were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SOD activity, JNK, p38 MAPK and NF-κB phosphorylation (r = 0.63, r = 0.71, r = 0.72, r = 0.71; p < 0.05, respectively). Conclusion:These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 h after HIIE.

  10. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men

    PubMed Central

    Parker, Lewan; Stepto, Nigel K.; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell; Hare, David L.; Levinger, Itamar

    2016-01-01

    Background: Obesity and aging are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK), and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE) on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods: Participants completed a 2 h hyperinsulinaemic-euglycaemic clamp at rest, and 60 min after HIIE (4 × 4 mins at 95% HRpeak; 2 min recovery periods), separated by 1–3 weeks. Results: Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SOD activity, JNK, p38 MAPK and NF-κB phosphorylation (r = 0.63, r = 0.71, r = 0.72, r = 0.71; p < 0.05, respectively). Conclusion:These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 h after HIIE. PMID:27695421

  11. Acute changes in lipoprotein subclasses during exercise.

    PubMed

    Søndergaard, Esben; Poulsen, Marianne K; Jensen, Michael D; Nielsen, Søren

    2014-01-01

    Lipids are important substrates for oxidation in the basal fasting state and during exercise. Studies have demonstrated beneficial changes in lipoprotein subclass composition the day after an exercise bout. However, the acute effect of exercise on TG concentration and lipoprotein subclass composition remains unclear. Sixteen lean, healthy individuals (8 men and 8 women) were recruited (age 20-30 years, BMI<25 kg/m(2)). The subjects were studied during basal fasting conditions as well as during and after 90 min of cycling at 50% of VO2peak. Lipoprotein subclass composition was measured with (1)H NMR spectroscopy. During exercise, LDL and HDL particle concentration increased significantly (p<0.05) despite lower total TG concentration. In addition, exercise resulted in a shift towards smaller VLDL particles in men (p<0.05), but VLDL-TG concentration was unaltered. Acute exercise induces beneficial changes in lipoprotein subclass composition. These changes are similar to the effects of exercise training. © 2013.

  12. Effects of acute ingestion of salbutamol during submaximal exercise.

    PubMed

    Collomp, K; Candau, R; Collomp, R; Carra, J; Lasne, F; Préfaut, C; De Ceaurriz, J

    2000-10-01

    To assess the eventual effects of acute oral salbutamol intake on performance and metabolism during submaximal exercise, nine healthy volunteers completed two cycling trials at a power corresponding to 80-85% VO2max, after either placebo (Pla) or salbutamol (Sal, 6 mg) treatment, according to a double-blind randomized protocol. Blood samples were collected both at rest and during exercise (5 min-, 10 min-, 15 min-exhaustion) for C-peptide, FFA, lactate and blood glucose measurements. Cycling performance was significantly improved in the Sal vs. Pla trials (p < 0.05). After Sal intake, resting C-peptide, lactate, FFA and blood glucose values were higher whereas exercise lactate and free fatty acid concentrations were greater during and at the conclusion of the exercise period (p < 0.05). These results suggest that acute salbutamol ingestion improved performance during submaximal exercise probably through an enhancement of the overall contribution to energy production from both aerobic and anaerobic metabolisms.

  13. The acute effect of vibration exercise on concentric muscular characteristics.

    PubMed

    Cochrane, D J; Stannard, S R; Walmsely, A; Firth, E C

    2008-11-01

    This study was designed to compare the acute effect of vibration exercise with a concentric-only activity (arm cranking) on concentric-only muscle action using an upper body isoinertial exercise. Twelve healthy, physically active men, 30.0y+/-6.1 (mean+/-S.D.); height 1.81m+/-0.06; and weight 83.4kg+/-9.7, performed four maximal prone bench pull (PBP) efforts before and after a 5-min period of three different interventions: (1) acute vibration exercise (VBX); (2) arm cranking (AC); and (3) control (no exercise) (NVBX). Electromyography (EMG) activity was assessed from the middle trapezius muscle during PBP. Acute VBX was induced with an electric-powered dumbbell (DB) (frequency 26Hz, amplitude 3mm), with 30-s exposures at five different shoulder positions. NVXB was performed with the participants holding the DB with the machine turned off, and AC was performed at 25W. There was a significant (intervention x pre-post) interaction such that acute VBX and AC enhanced peak power by 4.8% (p<0.001) and 3.0% (p<0.001), respectively, compared to NVBX (-2.7%). However, there was no effect of any treatments on EMG activity compared to the control. In conclusion, acute VBX provides an acute ergogenic effect which potentiates concentric-only muscle performance, though not to a significantly greater extent than concentric (arm cranking) exercise.

  14. Acute Exercise Enhances the Consolidation of Fear Extinction Memory and Reduces Conditioned Fear Relapse in a Sex-Dependent Manner

    ERIC Educational Resources Information Center

    Bouchet, Courtney A.; Lloyd, Brian A.; Loetz, Esteban C.; Farmer, Caroline E.; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M.; Greenwood, Benjamin N.

    2017-01-01

    Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can…

  15. Acute psychological and physical stress transiently enhances brachial artery flow-mediated dilation stimulated by exercise-induced increases in shear stress.

    PubMed

    Szijgyarto, Ingrid C; Poitras, Veronica J; Gurd, Brendon J; Pyke, Kyra E

    2014-08-01

    Exercise elevates conduit artery shear stress and stimulates flow-mediated dilation (FMD). However, little is known regarding the impact of acute psychological and physical stress on this response. The purpose of this study was to examine the impact of the Trier Social Stress Test (TSST (speech and arithmetic tasks)) and a cold pressor test (CPT) with and without social evaluation (SE) on exercise-induced brachial artery FMD (EX-FMD). A total of 59 healthy male subjects were randomly assigned to 1 of 3 conditions: TSST, CPT, or CPT with SE. During 6 min of handgrip exercise, brachial artery EX-FMD was assessed before and 15 and 35 min poststress with echo and Doppler ultrasound. Shear stress was estimated as shear rate, calculated as brachial artery mean blood velocity/brachial artery diameter. Results are means ± SD. All conditions elicited significant physiological stress responses. Salivary cortisol increased from 4.6 ± 2.4 nmol/L to 10.0 ± 5.0 nmol/L (p < 0.001; condition effect: p = 0.292). Mean arterial pressure increased from 98.6 ± 12.1 mm Hg to 131.9 ± 18.7 mm Hg (p < 0.001; condition effect: p = 0.664). Exercise shear rate did not differ between conditions (p = 0.592), although it was modestly lower poststress (prestress: 72.3 ± 4.5 s(-1); 15 min poststress: 70.8 ± 5.4 s(-1); 35 min poststress: 70.6 ± 6.1 s(-1); trial effect: p = 0.011). EX-FMD increased from prestress to 15 min poststress in all conditions (prestress: 6.2% ± 2.8%; 15 min poststress: 7.9% ± 3.2%; 35 min poststress: 6.6% ± 2.9%; trial effect: p < 0.001; condition effect: p = 0.611). In conclusion, all conditions elicited similar stress responses that transiently enhanced EX-FMD. This response may help to support muscle perfusion during stress.

  16. Response of muscle protein turnover to insulin after acute exercise and training.

    PubMed Central

    Davis, T A; Karl, I E

    1986-01-01

    To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events. PMID:3548710

  17. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  19. Acute aerobic exercise modulates primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  20. Regular Exercise Participation Mediates the Affective Response to Acute Bouts of Vigorous Exercise

    PubMed Central

    Hallgren, Mats Å.; Moss, Nathan D.; Gastin, Paul

    2010-01-01

    Physical inactivity is a leading factor associated with cardiovascular disease and a major contributor to the global burden of disease in developed countries. Subjective mood states associated with acute exercise are likely to influence future exercise adherence and warrant further investigation. The present study examined the effects of a single bout of vigorous exercise on mood and anxiety between individuals with substantially different exercise participation histories. Mood and anxiety were assessed one day before an exercise test (baseline), 5 minutes before (pre-test) and again 10 and 25 minutes post-exercise. Participants were 31 university students (16 males, 15 females; Age M = 20), with 16 participants reporting a history of regular exercise with the remaining 15 reporting to not exercise regularly. Each participant completed an incremental exercise test on a Monark cycle ergometer to volitional exhaustion. Regular exercisers reported significant post-exercise improvements in mood and reductions in state anxiety. By contrast, non-regular exercisers reported an initial decline in post-exercise mood and increased anxiety, followed by an improvement in mood and reduction in anxiety back to pre-exercise levels. Our findings suggest that previous exercise participation mediates affective responses to acute bouts of vigorous exercise. We suggest that to maximise positive mood changes following exercise, practitioners should carefully consider the individual's exercise participation history before prescribing new regimes. Key points Previous exercise participation mediates the affective response to acute bouts of vigorous exercise. Regular exercisers respond positively to acute bouts of vigorous physical activity, reporting less state anxiety and fatigue, and more vigour. Non-regular exercisers respond with an initial reduction in positive mood states, followed by a rebound to baseline levels 25 minutes post-exercise. To maximise positive post-exercise mood

  1. Eccentric Exercise: Physiological Characteristics and Acute Responses.

    PubMed

    Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike

    2017-04-01

    An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.

  2. Isometric handgrip exercise improves acute neurocardiac regulation.

    PubMed

    Millar, Philip J; MacDonald, Maureen J; Bray, Steven R; McCartney, Neil

    2009-11-01

    Isometric handgrip (IHG) training (>6 weeks) has been shown to reduce resting arterial blood pressure (ABP) and improve cardiac autonomic modulation. However, the effects of a single bout of IHG on acute neurocardiac regulation remain unknown. The purpose of this study was to examine the effect of IHG exercise on nonlinear heart rate dynamics and cardiac vagal activity. Nonlinear dynamics were assessed by sample entropy, detrended fluctuation analysis (alpha(1)), and correlation dimension techniques. The 4-second exercise test was used to calculate the cardiac vagal index (CVI), an indirect measure of cardiac vagal activity. In a randomized crossover design, 18 older (70 +/- 5 years of age) subjects completed IHG exercise (four 2-min isometric contractions at 30% MVC) and a time-matched control condition. Following a single bout of bilateral IHG, there was a small reduction in systolic blood pressure (125 +/- 2 to 122 +/- 1 mmHg, P < 0.01), in addition to, a significant decrease in alpha(1) (1.42 +/- 0.12 to 1.22 +/- 0.10, P < 0.05), an increase in sample entropy (1.28 +/- 0.03 to 1.40 +/- 0.05, P < 0.001), and an increase in the CVI (1.24 +/- 0.03 to 1.29 +/- 0.03, P < 0.01). These results suggest improvements in acute cardiac autonomic modulation following a single bout of IHG. This may be mechanistically linked to the observed reductions in ABP seen in previous IHG training studies. Alternatively, these acute effects may have clinical applications and require further investigation.

  3. Effects of acute exercise on long-term memory.

    PubMed

    Labban, Jeffrey D; Etnier, Jennifer L

    2011-12-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of three groups: exercise prior to exposure, exercise after exposure, or no-exercise. Exercise consisted of 30 min on a cycle ergometer including 20 min at moderate intensity. Only the exercise prior group recalled significantly more than the control group (p < .05). Differences among the exercise groups failed to reach significance (p = .09). Results indicated that acute exercise positively influenced recall and that exercise timing relative to memory task may have an impact on this effect.

  4. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits.

    PubMed

    Mang, Cameron S; Brown, Katlyn E; Neva, Jason L; Snow, Nicholas J; Campbell, Kristin L; Boyd, Lara A

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to "prime" M1 plasticity for enhanced motor skill learning in applied settings.

  5. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  6. Acute coordinative exercise improves attentional performance in adolescents.

    PubMed

    Budde, Henning; Voelcker-Rehage, Claudia; Pietrabyk-Kendziorra, Sascha; Ribeiro, Pedro; Tidow, Günter

    2008-08-22

    Teachers complain about growing concentration deficits and reduced attention in adolescents. Exercise has been shown to positively affect cognitive performance. Due to the neuronal connection between the cerebellum and the frontal cortex, we hypothesized that cognitive performance might be influenced by bilateral coordinative exercise (CE) and that its effect on cognition might be already visible after short bouts of exercise. One hundred and fifteen healthy adolescents aged 13-16 years of an elite performance school were randomly assigned to an experimental and a control group and tested using the d2-test, a test of attention and concentration. Both groups performed the d2-test after a regular school lesson (pre-test), after 10 min of coordinative exercise and of a normal sport lesson (NSL, control group), respectively (post-test). Exercise was controlled for heart rate (HR). CE and NSL enhanced the d2-test performance from pre- to post-test significantly. ANOVA revealed a significant group (CE, NSL) by performance interaction in the d2-test indicating a higher improvement of CE as compared to NSL. HR was not significantly different between the groups. CE was more effective in completing the concentration and attention task. With the HR being the same in both groups we assume that the coordinative character of the exercise might be responsible for the significant differences. CE might lead to a pre-activation of parts of the brain which are also responsible for mediating functions like attention. Thus, our results support the request for more acute CE in schools, even in elite performance schools.

  7. The Effects of Acute Exercise and Exercise Training on Plasma Homocysteine: A Meta-Analysis.

    PubMed

    Deminice, Rafael; Ribeiro, Diogo Farias; Frajacomo, Fernando Tadeu Trevisan

    2016-01-01

    Although studies have demonstrated that physical exercise alters homocysteine levels in the blood, meta-analyses of the effects of acute exercise and exercise training on homocysteine blood concentration have not been performed, especially regarding the duration and intensity of exercise, which could affect homocysteine levels differently. The aim of this meta-analysis was to ascertain the effects of acute exercise and exercise training on homocysteine levels in the blood. A review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses using the online databases PubMed, SPORTDiscus, and SciELO to identify relevant studies published through June 2015. Review Manager was used to calculate the effect size of acute exercise and exercise training using the change in Hcy plasmaserum concentration from baseline to post-acute exercise and trained vs. sedentary control groups, respectively. Weighted mean differences were calculated using random effect models. Given the abundance of studies, acute exercise trials were divided into two subgroups according to exercise volume and intensity, whereas the effects of exercise training were analyzed together. Overall, 22 studies with a total of 520 participants indicated increased plasma homocysteine concentration after acute exercise (1.18 μmol/L, 95% CI: 0.71 to 1.65, p < .01). Results of a subgroup analysis indicated that either long-term exercise of low-to-moderate intensity (1.39 μmol/L, 95% CI: 0.9 to 1.89, p < .01) or short-term exercise of high intensity (0.83 μmol/L, 95% CI: 0.19 to 1.40, p < .01) elevated homocysteine levels in the blood. Increased homocysteine induced by exercise was significantly associated with volume of exercise, but not intensity. By contrast, resistance training reduced plasma homocysteine concentration (-1.53 μmol/L, 95% CI: -2.77 to -0.28, p = .02), though aerobic training did not. The cumulative results of the seven studies with a

  8. The Effects of Acute Exercise and Exercise Training on Plasma Homocysteine: A Meta-Analysis

    PubMed Central

    Deminice, Rafael; Ribeiro, Diogo Farias; Frajacomo, Fernando Tadeu Trevisan

    2016-01-01

    Background Although studies have demonstrated that physical exercise alters homocysteine levels in the blood, meta-analyses of the effects of acute exercise and exercise training on homocysteine blood concentration have not been performed, especially regarding the duration and intensity of exercise, which could affect homocysteine levels differently. Objective The aim of this meta-analysis was to ascertain the effects of acute exercise and exercise training on homocysteine levels in the blood. Method A review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses using the online databases PubMed, SPORTDiscus, and SciELO to identify relevant studies published through June 2015. Review Manager was used to calculate the effect size of acute exercise and exercise training using the change in Hcy plasmaserum concentration from baseline to post-acute exercise and trained vs. sedentary control groups, respectively. Weighted mean differences were calculated using random effect models. Results Given the abundance of studies, acute exercise trials were divided into two subgroups according to exercise volume and intensity, whereas the effects of exercise training were analyzed together. Overall, 22 studies with a total of 520 participants indicated increased plasma homocysteine concentration after acute exercise (1.18 μmol/L, 95% CI: 0.71 to 1.65, p < .01). Results of a subgroup analysis indicated that either long-term exercise of low-to-moderate intensity (1.39 μmol/L, 95% CI: 0.9 to 1.89, p < .01) or short-term exercise of high intensity (0.83 μmol/L, 95% CI: 0.19 to 1.40, p < .01) elevated homocysteine levels in the blood. Increased homocysteine induced by exercise was significantly associated with volume of exercise, but not intensity. By contrast, resistance training reduced plasma homocysteine concentration (-1.53 μmol/L, 95% CI: -2.77 to -0.28, p = .02), though aerobic training did not. The cumulative

  9. Music enhances performance and perceived enjoyment of sprint interval exercise.

    PubMed

    Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A

    2015-05-01

    Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.

  10. Acute hormonal responses following different velocities of eccentric exercise.

    PubMed

    Libardi, Cleiton A; Nogueira, Felipe R D; Vechin, Felipe C; Conceição, Miguel S; Bonganha, Valéria; Chacon-Mikahil, Mara Patricia T

    2013-11-01

    The aim of this study was to compare the acute hormonal responses following two different eccentric exercise velocities. Seventeen healthy, untrained, young women were randomly placed into two groups to perform five sets of six maximal isokinetic eccentric actions at slow (30° s(-1) ) and fast (210° s(-1) ) velocities with 60-s rest between sets. Growth hormone, cortisol, free and total testosterone were assessed by blood samples collected at baseline, immediately postexercise, 5, 15 and 30 min following eccentric exercise. Changes in hormonal responses over time were compared between groups, using a mixed model followed by a Tukey's post hoc test. The main findings of the present study were that the slow group showed higher growth hormone values immediately (5·08 ± 2·85 ng ml(-1) , P = 0·011), 5 (5·54 ± 3·01 ng ml(-1) , P = 0·004) and 15 min (4·30 ± 2·87 ng ml(-1) , P = 0·021) posteccentric exercise compared with the fast group (1·39 ± 2·41 ng ml(-1) , 1·34 ± 1·97 ng ml(-1) and 1·24 ± 1·87 ng ml(-1) , respectively), and other hormonal responses were not different between groups (P>0·05). In conclusion, slow eccentric exercise velocity enhances more the growth hormone(GH) response than fast eccentric exercise velocity without cortisol and testosterone increases. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  12. Acute exercise and motor memory consolidation: Does exercise type play a role?

    PubMed

    Thomas, R; Flindtgaard, M; Skriver, K; Geertsen, S S; Christiansen, L; Korsgaard Johnsen, L; Busk, D V P; Bojsen-Møller, E; Madsen, M J; Ritz, C; Roig, M; Lundbye-Jensen, J

    2016-10-27

    A single bout of high-intensity exercise can augment off-line gains in skills acquired during motor practice. It is currently unknown if the type of physical exercise influences the effect on motor skill consolidation. This study investigated the effect of three types of high-intensity exercise following visuomotor skill acquisition on the retention of motor memory in 40 young (25.3 ±3.6 years), able-bodied male participants randomly assigned to one of four groups either performing strength training (STR), circuit training (CT), indoor hockey (HOC) or rest (CON). Retention tests of the motor skill were performed 1 (R1h) and 24 h (R1d) post acquisition. For all exercise groups, mean motor performance scores decreased at R1h compared to post acquisition (POST) level; STR (P = 0.018), CT (P = 0.02), HOC (P = 0.014) and performance scores decreased for CT compared to CON (P = 0.049). Mean performance scores increased from POST to R1d for all exercise groups; STR (P = 0.010), CT (P = 0.020), HOC (P = 0.007) while performance scores for CON decreased (P = 0.043). Changes in motor performance were thus greater for STR (P = 0.006), CT (P < 0.001) and HOC (P < 0.001) compared to CON from POST to R1d. The results demonstrate that high-intensity, acute exercise can lead to a decrease in motor performance assessed shortly after motor skill practice (R1h), but enhances offline effects promoting long-term retention (R1d). Given that different exercise modalities produced similar positive off-line effects on motor memory, we conclude that exercise-induced effects beneficial to consolidation appear to depend primarily on the physiological stimulus rather than type of exercise and movements employed.

  13. Exercise enhances creativity independently of mood

    PubMed Central

    Steinberg, Hannah; Sykes, Elizabeth A; Moss, Tim; Lowery, Susan; LeBoutillier, Nick; Dewey, Alison

    1997-01-01

    Objectives It has been widely accepted in the literature that various forms of physical exercise, even in a single session, enhance positive mood. It has also been shown that physical exercise may sometimes enhance creative thinking, but the evidence is inconclusive. Positive moods can favour creative thinking, but the opposite has also been reported and these relations are unclear. There is a large anecdotal literature suggesting that creative people sometimes use bodily movement to help overcome “blocks”. The aim of this study was to establish whether post-exercise creative thinking was attributable to improved mood. Methods The responses of 63 participants to an exercise (aerobic workout or aerobic dance) and a “neutral” video watching condition were compared. Mood was measured using an adjective list, and creative thinking was tested by three measures of the Torrance test. Results Analysis of variance showed a large and significant increase in positive mood after exercise (P<0.001) and a significant decrease in positive mood after video watching (P<0.001). A significant increase between the creative thinking scores of the two conditions was found on the flexibility (variety of responses) measure (P<0.05). A multifactorial analysis of all data failed to show a significant covariance of creative thinking with the two measures of mood (P>0.05). Conclusions These results suggest that mood and creativity were improved by physical exercise independently of each other. ImagesFigure 1Figure 2 PMID:9298561

  14. Exercise enhances creativity independently of mood.

    PubMed

    Steinberg, H; Sykes, E A; Moss, T; Lowery, S; LeBoutillier, N; Dewey, A

    1997-09-01

    It has been widely accepted in the literature that various forms of physical exercise, even in a single session, enhance positive mood. It has also been shown that physical exercise may sometimes enhance creative thinking, but the evidence is inconclusive. Positive moods can favour creative thinking, but the opposite has also been reported and these relations are unclear. There is a large anecdotal literature suggesting that creative people sometimes use bodily movement to help overcome "blocks". The aim of this study was to establish whether post-exercise creative thinking was attributable to improved mood. The responses of 63 participants to an exercise (aerobic workout or aerobic dance) and a "neutral" video watching condition were compared. Mood was measured using an adjective list, and creative thinking was tested by three measures of the Torrance test. Analysis of variance showed a large and significant increase in positive mood after exercise (P < 0.001) and a significant decrease in positive mood after video watching (P < 0.001). A significant increase between the creative thinking scores of the two conditions was found on the flexibility (variety of responses) measure (P < 0.05). A multifactorial analysis of all data failed to show a significant covariance of creative thinking with the two measures of mood (P > 0.05). These results suggest that mood and creativity were improved by physical exercise independently of each other.

  15. A single bout of resistance exercise can enhance episodic memory performance.

    PubMed

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-11-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise.

  16. A single bout of resistance exercise can enhance episodic memory performance

    PubMed Central

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  17. Exploring genetic influences underlying acute aerobic exercise effects on motor learning.

    PubMed

    Mang, Cameron S; McEwen, Lisa M; MacIsaac, Julia L; Snow, Nicholas J; Campbell, Kristin L; Kobor, Michael S; Ross, Colin J D; Boyd, Lara A

    2017-09-21

    The objective of the current work was to evaluate whether the effects of acute aerobic exercise on motor learning were dependent on genetic variants impacting brain-derived neurotrophic factor (BDNF val66met polymorphism) and the dopamine D2 receptor (DRD2/ANKK1 glu713lys polymorphism) in humans. A retrospective analysis was performed to determine whether these polymorphisms influence data from our two previous studies, which both demonstrated that a single bout of aerobic exercise prior to motor practice enhanced implicit motor learning. Here, our main finding was that the effect of acute aerobic exercise on motor learning was dependent on DRD2/ANKK1 genotype. Motor learning was enhanced when aerobic exercise was performed prior to skill practice in glu/glu homozygotes, but not lys allele carriers. In contrast, the BDNF val66met polymorphism did not impact the exercise effect. The results suggest that the dopamine D2 receptor may be involved in acute aerobic exercise effects on motor learning. Such genetic information could inform the development of individualized aerobic exercise strategies to promote motor learning.

  18. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  19. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  20. Perceived Benefits and Barriers to Exercise for Recently Treated Adults With Acute Leukemia.

    PubMed

    Leak Bryant, Ashley; Walton, AnnMarie L; Pergolotti, Mackenzi; Phillips, Brett; Bailey, Charlotte; Mayer, Deborah K; Battaglini, Claudio

    2017-07-01

    To explore perceived exercise benefits and barriers in adults with acute leukemia who recently completed an inpatient exercise intervention during induction therapy.
. Descriptive, exploratory design using semistructured interviews.
. Inpatient hematology/oncology unit at North Carolina Cancer Hospital in Chapel Hill.
. 6 adults with acute leukemia aged 35-67 years.
. Content analyses of semistructured interviews that were conducted with each participant prior to hospital discharge.
. Most participants were not meeting the recommended physical activity levels of 150 minutes of moderate-intensity exercise per week before their diagnosis. Patients were highly pleased with the exercise intervention and the overall program. Common barriers to exercise were anxiety and aches and pains.
. Overall, participants experienced physical and psychological benefits with the exercise intervention with no adverse events from exercising regularly during induction chemotherapy. Referrals for cancer rehabilitation management will lead to prolonged recovery benefits.
. Findings inform the nurses' role in encouraging and supporting adults with acute leukemia to exercise and be physically active during their hospitalization. Nurses should also be responsible for assisting patients with physical function activities to increase mobility and enhance overall health-related quality of life.

  1. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12.

    PubMed

    Kim, Young-Nam; Hwang, Ji Hyeon; Cho, Youn-Ok

    2016-04-01

    Energy production and the rebuilding and repair of muscle tissue by physical activity require folate and vitamin B12 as a cofactor. Thus, this study investigated the effects of regular moderate exercise training and durations of acute aerobic exercise on plasma folate and vitamin B12 concentrations in moderate exercise trained rats. Fifty rats underwent non-exercise training (NT, n = 25) and regular exercise training (ET, n = 25) for 5 weeks. The ET group performed moderate exercise on a treadmill for 30 min/day, 5 days/week. At the end of week 5, each group was subdivided into 4 groups: non-exercise and 3 exercise groups. The non-exercise group (E0) was sacrificed without exercising and the 3 exercise groups were sacrificed immediately after exercising on a treadmill for 0.5 h (E0.5), 1 h (E1), and 2 h (E2). Blood samples were collected and plasma folate and vitamin B12 were analyzed. After exercise training, plasma folate level was significantly lower and vitamin B12 concentration was significantly higher in the ET group compared with the NT group (P < 0.05). No significant associations were observed between plasma folate and vitamin B12 concentrations. In both the NT and ET groups, plasma folate and vitamin B12 were not significantly changed by increasing duration of aerobic exercise. Plasma folate concentration of E0.5 was significantly lower in the ET group compared with that in the NT group. Significantly higher vitamin B12 concentrations were observed in the E0 and E0.5 groups of the ET group compared to those of the NT group. Regular moderate exercise training decreased plasma folate and increased plasma vitamin B12 levels. However, no significant changes in plasma folate and vitamin B12 concentrations were observed by increasing duration of acute aerobic exercise.

  2. Effects of acute bouts of exercise on cognition.

    PubMed

    Tomporowski, Phillip D

    2003-03-01

    A review was conducted of studies that assessed the effects of acute bouts of physical activity on adults' cognitive performance. Three groups of studies were constituted on the basis of the type of exercise protocol employed. Each group was then evaluated in terms of information-processing theory. It was concluded that submaximal aerobic exercise performed for periods up to 60 min facilitate specific aspects of information processing; however, extended exercise that leads to dehydration compromises both information processing and memory functions. The selective effects of exercise on cognitive performance are explained in terms of Sanders' [Acta Psychol. 53 (1983) 61] cognitive-energetic model.

  3. Exercise training does not enhance hypothalamic responsiveness to leptin or ghrelin in male mice.

    PubMed

    Borg, M L; Andrews, Z B; Watt, M J

    2014-02-01

    The detection of hormone and nutrient signals by the hypothalamus is blunted in obesity and contributes to dysregulated energy homeostasis. We investigated whether aerobic exercise training would improve long-term hypothalamic sensitivity to both leptin and ghrelin, independent of acute exercise-induced signalling. Male C57Bl/6J mice were fed either a chow or high-fat diet for 6 weeks, then remained sedentary on their respective diet, or completed 6 weeks of treadmill exercise training with a progressive increase in exercise volume and intensity. Food intake and hypothalamic signalling were assessed in mice injected with leptin or ghrelin at least 24 h after the last exercise bout. Exercise training reduced body mass, increased daily food intake and improved glucose tolerance. Intraperitoneal leptin administration reduced food intake in lean and obese mice, and this was not enhanced after exercise training. Leptin-mediated activation of phosphorylated signal transducer and activator of transcription 3 in the arcuate nucleus and ventromedial nucleus of the hypothalamus was not enhanced with exercise training. Ghrelin increased food intake and c-Fos positive neurones in the hypothalamus in lean and obese mice, and these physiological and molecular responses were not enhanced with exercise training. This suggests that the previously reported exercise effects on sensitising hypothalamic signalling and food intake responses may be limited to the period immediately after an exercise bout, and are not a result of stable structural or molecular changes that occur with exercise training. © 2014 British Society for Neuroendocrinology.

  4. Acute Mucociliary Clearance Response to Aerobic Exercise in Smokers.

    PubMed

    Ramos, Ercy M C; Vanderlei, Luiz Carlos M; Ito, Juliana T; Lima, Fabiano F; Rodrigues, Fernanda M M; Manzano, Beatriz M; Fernandes, Rômulo A; Cecílio, Michel J; Toledo-Arruda, Alessandra C; Ramos, Dionei

    2015-11-01

    Mucociliary clearance is the main defense mechanism of the respiratory system, and it is influenced by several stimuli, including aerobic exercise and cigarette smoking. We evaluated the acute response of mucociliary clearance to aerobic exercise in smokers and nonsmokers compared with that found after acute smoking and smoking combined with exercise. Also, we investigated whether there was a correlation between mucociliary clearance and the autonomic nervous system under these conditions. Twenty-one smokers were evaluated for mucociliary clearance by saccharin transit time (STT), and the response of the autonomic nervous system was evaluated by heart rate variability after aerobic exercise, after exercise followed by smoking, after acute smoking, and after rest. For comparison, 17 nonsmokers were also assessed during exercise. Repeated-measures analysis of variance with the Tukey test or the Friedman test followed by the Dunn test was used to evaluate the STT, autonomic response, and other variables to exercise and/or smoking in smokers. A paired t test or Wilcoxon test was used to analyze responses to exercise in nonsmokers. Correlations were evaluated using Pearson or Spearman coefficients. The STT was reduced after exercise in both groups, with similar responses between them. Other stimuli also reduced the STT. The STT showed a negative correlation with sympathetic activity in smokers and a positive correlation with the parasympathetic system in nonsmokers. Although impaired in smokers, mucociliary clearance responded to the stimulus of exercise, as demonstrated by similar STTs compared with nonsmokers. This response was correlated with the autonomic nervous system in both groups. In smokers, mucociliary clearance also responded to the stimuli of smoking and exercise followed by smoking. Copyright © 2015 by Daedalus Enterprises.

  5. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF.

  6. Prior Acute Mental Exertion in Exercise and Sport

    PubMed Central

    Silva-Júnior, Fernando Lopes e; Emanuel, Patrick; Sousa, Jordan; Silva, Matheus; Teixeira, Silmar; Pires, Flávio; Machado, Sérgio; Arias-Carrion, Oscar

    2016-01-01

    Introduction: Mental exertion is a psychophysiological state caused by sustained and prolonged cognitive activity. The understanding of the possible effects of acute mental exertion on physical performance, and their physiological and psychological responses are of great importance for the performance of different occupations, such as military, construction workers, athletes (professional or recreational) or simply practicing regular exercise, since these occupations often combine physical and mental tasks while performing their activities. However, the effects of implementation of a cognitive task on responses to aerobic exercise and sports are poorly understood. Our narrative review aims to provide information on the current research related to the effects of prior acute mental fatigue on physical performance and their physiological and psychological responses associated with exercise and sports. Methods: The literature search was conducted using the databases PubMed, ISI Web of Knowledge and PsycInfo using the following terms and their combinations: “mental exertion”, “mental fatigue”, “mental fatigue and performance”, “mental exertion and sports” “mental exertion and exercise”. Results: We concluded that prior acute mental exertion affects effectively the physiological and psychophysiological responses during the cognitive task, and performance in exercise. Conclusion: Additional studies involving prior acute mental exertion, exercise/sports and physical performance still need to be carried out in order to analyze the physiological, psychophysiological and neurophysiological responses subsequently to acute mental exertion in order to identify cardiovascular factors, psychological, neuropsychological associates. PMID:27867415

  7. Acute psychological benefits of exercise: reconsideration of the placebo effect.

    PubMed

    Szabo, Attila

    2013-10-01

    The psychological benefits of exercise are repeatedly and consistently reported in the literature. Various forms of exercise, varying in duration and intensity, yield comparably positive changes in affect, which sheds doubt on the significance of exercise characteristics in the acute mental health benefits resulting from physical activity. Based on research evidence, it is argued that the placebo effect may play a key role in the subjective exercise experience. This report is aimed at highlighting those aspects of the extant literature that call for the reconsideration of the placebo effect in the understanding of the acute mental benefits of physical activity. This narrative review focuses on research evidence demonstrating that the duration and intensity of physical activity are not mediatory factors in the mental health benefits of acute exercise. Current research evidence pointing to the roles of expectancy and conditioning in the affective benefits of exercise calls for the reconsideration of the placebo effect. The present evaluation concludes that new research effort ought to be invested in the placebo-driven affective beneficence of exercise.

  8. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice

    PubMed Central

    Dubé, John J.; Sitnick, Mitch T.; Schoiswohl, Gabriele; Wills, Rachel C.; Basantani, Mahesh K.; Cai, Lingzhi; Pulinilkunnil, Thomas

    2015-01-01

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser660 phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent. PMID:25783895

  9. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice.

    PubMed

    Dubé, John J; Sitnick, Mitch T; Schoiswohl, Gabriele; Wills, Rachel C; Basantani, Mahesh K; Cai, Lingzhi; Pulinilkunnil, Thomas; Kershaw, Erin E

    2015-05-15

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.

  10. Acute exercise regulates adipogenic gene expression in white adipose tissue.

    PubMed

    Shen, Y; Zhou, H; Jin, W; Lee, H J

    2016-12-01

    White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.

  11. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test.

    PubMed

    Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity.

  12. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  13. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  14. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle

    PubMed Central

    Vainshtein, Anna; Tryon, Liam D.; Pauly, Marion

    2015-01-01

    Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/. PMID

  15. Acute nutritional ketosis: implications for exercise performance and metabolism.

    PubMed

    Cox, Pete J; Clarke, Kieran

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics.

  16. Acute nutritional ketosis: implications for exercise performance and metabolism

    PubMed Central

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  17. Acute exercise and subsequent energy intake. A meta-analysis.

    PubMed

    Schubert, Matthew M; Desbrow, Ben; Sabapathy, Surendran; Leveritt, Michael

    2013-04-01

    The precise magnitude of the effect of acute exercise on subsequent energy intake is not well understood. Identifying how large a deficit exercise can produce in energy intake and whether this is compensated for, is important in design of long-term exercise programs for weight loss and weight maintenance. Thus, this paper sought to review and perform a meta-analysis on data from the existing literature. Twenty-nine studies, consisting of 51 trials, were identified for inclusion. Exercise duration ranged from 30 to 120min at intensities of 36-81% VO(2)max, with trials ranging from 2 to 14h, and ad libitum test meals offered 0-2h post-exercise. The outcome variables included absolute energy intake and relative energy intake. A random effects model was employed for analysis due to expected heterogeneity. Results indicated that exercise has a trivial effect on absolute energy intake (n=51; ES=0.14, 95% CI: -0.005 to 0.29) and a large effect on relative energy intake (creating an energy deficit, n=25; ES=-1.35, 95% CI: -1.64 to -1.05). Despite variability among studies, results suggest that exercise is effective for producing a short-term energy deficit and that individuals tend not to compensate for the energy expended during exercise in the immediate hours after exercise by altering food intake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    PubMed

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity.

  19. Differential Effects of Acute Exercise on Distinct Aspects of Executive Function.

    PubMed

    Weng, Timothy B; Pierce, Gary L; Darling, Warren G; Voss, Michelle W

    2015-07-01

    To increase understanding about the effects of moderate-intensity physical activity on cognitive function, the current study examined whether a single bout of aerobic exercise exerts differential effects on distinct aspects of executive function in healthy young adults. A within-subjects study was designed where 26 young adult participants (mean age = 25.23 yr, 12 males) engaged in a 30-min bout of both (a) moderate-intensity aerobic cycling and (b) passive motor-driven cycling, occurring on two separate occasions and counterbalanced in their order. To assess changes in cognitive function, performance on two tasks of executive function-working memory and inhibitory control, counterbalanced in the order of administration-was collected before and immediately after each exercise session. Results indicate that working memory performance on the 2-back condition of a facial n-back task was acutely enhanced by moderate-intensity exercise (mean increase in accuracy = 6.4% ± 1.1%), which was significantly greater than the changes after passive exercise control (P < 0.05). This finding was not observed for inhibitory control in which neither of the exercise sessions elicited significant changes in performance on a flanker task. Acute aerobic exercise evokes differential effects on executive functions. This specificity in behavioral outcomes leads to the prediction that brain mechanisms related to working memory, compared to inhibitory control, are selectively benefited by moderate-intensity exercise.

  20. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  1. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  2. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  3. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  4. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  5. Effects of acute and chronic physical exercise and stress on different types of memory in rats.

    PubMed

    Mello, Pâmela Billig; Benetti, Fernando; Cammarota, Martín; Izquierdo, Iván

    2008-06-01

    Here we study the effect of acute and chronic physical exercise in a treadmill and of daily stress (because forced exercise involves a degree of stress) during 2 or 8 weeks on different types of memory in male Wistar rats. The memory tests employed were: habituation in an open field, object recognition and spatial learning in the Morris water maze. Daily foot-shock stress enhanced habituation learning after 2 but not after 8 weeks; it hindered both short- (STM) and long-term memory (LTM) of the recognition task at 2 weeks but only STM after 8 weeks and had no effect on spatial learning after either 2 or 8 weeks. Acute but not chronic exercise also enhanced habituation in the open field and hindered STM and LTM in the recognition task. Chronic exercise enhanced one important measure of spatial learning (latency to escape) but not others. Our findings indicate that some care must be taken when interpreting effects of forced exercise on brain parameters since at least part of them may be due to the stress inherent to the training procedure.

  6. Exercise and cognition in multiple sclerosis: The importance of acute exercise for developing better interventions.

    PubMed

    Sandroff, Brian M

    2015-12-01

    Cognitive dysfunction is highly prevalent, disabling, and poorly-managed in persons with multiple sclerosis (MS). Exercise training represents a promising approach for managing this clinical symptom of the disease. However, results from early randomized controlled trials of exercise on cognition in MS are equivocal, perhaps due to methodological concerns. This underscores the importance of considering the well-established literature in the general population that documents robust, beneficial effects of exercise training on cognition across the lifespan. The development of such successful interventions is based on examinations of fitness, physical activity, and acute exercise effects on cognition. Applying such an evidence-based approach in MS serves as a way of better informing exercise training interventions for improving cognition in this population. To that end, this paper provides a focused, updated review on the evidence describing exercise effects on cognition in MS, and develops a rationale and framework for examining acute exercise on cognitive outcomes in this population. This will provide keen insight for better developing exercise interventions for managing cognitive impairment in MS.

  7. Acute exercise and subsequent nutritional adaptations: what about obese youths?

    PubMed

    Thivel, David; Blundell, John E; Duché, Pascale; Morio, Béatrice

    2012-07-01

    The imbalance between energy expenditure and energy intake is the main factor accounting for the progression of obesity. For many years, physical activity has been part of weight-loss programmes to increase energy expenditure. It is now recognized that exercise can also affect appetite and energy consumption. In the context of seeking new obesity treatments, it is of major interest to clarify the impact of physical exercise on energy intake. Many reviews on this topic have been published regarding both lean and overweight adults, and this review focuses on the relationships between acute exercise and the short-term regulation of energy intake in lean and overweight or obese youths. The current literature provides very few data regarding the impact of exercise on subsequent energy intake and perceived and measured appetite in children and adolescents, mainly because of methodological difficulties in the assessment of both energy intake and expenditure. It has been long suggested that energy intake was regulated after exercise in order to compensate for the exercise-induced energy expenditure and then preserve energy balance. This overview underlines that the energy expended during exercise is not the main parameter that influences subsequent energy intake in both lean and overweight/obese children and adolescents, and that factors such as the duration or intensity of exercise may have larger impact. The effects of acute exercise on the following nutritional adaptations (energy intake and appetite feelings) remain inconclusive in lean youths, mainly due to the lack of data and the disparity of the methodologies used. Studies in overweight or obese children and adolescents are confronted with the same difficulties, and the few available data suggest that intensive exercise (>70% maximal oxygen consumption) can induce a reduction in daily energy balance, as a result of its anorexigenic effect in obese adolescents. However, further studies are needed to clarify the

  8. Caffeine delays autonomic recovery following acute exercise.

    PubMed

    Bunsawat, Kanokwan; White, Daniel W; Kappus, Rebecca M; Baynard, Tracy

    2015-11-01

    Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults. © The European Society of Cardiology 2014.

  9. Acute exercise improves motor memory: exploring potential biomarkers.

    PubMed

    Skriver, Kasper; Roig, Marc; Lundbye-Jensen, Jesper; Pingel, Jessica; Helge, Jørn Wulff; Kiens, Bente; Nielsen, Jens Bo

    2014-12-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory and skill acquisition. Thirty-two healthy young male subjects were randomly allocated into either an exercise or control group. Following either an intense bout of cycling or rest subjects practiced a visuomotor tracking task. Motor skill acquisition was assessed during practice and retention 1 h, 24 h and 7 days after practice. Plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1), epinephrine, norepinephrine, dopamine and lactate were analyzed at baseline, immediately after exercise or rest and during motor practice. The exercise group showed significantly better skill retention 24h and 7 days after acquisition. The concentration of all blood compounds increased significantly immediately after exercise and remained significantly elevated for 15 min following exercise except for BDNF and VEGF. Higher concentrations of norepinephrine and lactate immediately after exercise were associated with better acquisition. Higher concentrations of BDNF correlated with better retention 1 h and 7 days after practice. Similarly, higher concentrations of norepinephrine were associated with better retention 7 days after practice whereas lactate correlated with better retention 1h as well as 24 h and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory.

  10. Specific Effects of Acute Moderate Exercise on Cognitive Control

    ERIC Educational Resources Information Center

    Davranche, Karen; McMorris, Terry

    2009-01-01

    The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…

  11. Specific Effects of Acute Moderate Exercise on Cognitive Control

    ERIC Educational Resources Information Center

    Davranche, Karen; McMorris, Terry

    2009-01-01

    The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…

  12. Protective effect of exercise and sildenafil on acute stress and cognitive function.

    PubMed

    Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur

    2015-11-01

    There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Adipose Tissue Lipolysis Is Upregulated in Lean and Obese Men During Acute Resistance Exercise

    PubMed Central

    Chatzinikolaou, Athanasios; Fatouros, Ioannis; Petridou, Anatoli; Jamurtas, Athanasios; Avloniti, Alexandra; Douroudos, Ioannis; Mastorakos, George; Lazaropoulou, Christina; Papassotiriou, Ioannis; Tournis, Symeon; Mitrakou, Asimina; Mougios, Vassilis

    2008-01-01

    OBJECTIVE—To investigate the effect of acute resistance exercise on adipose tissue triacylglycerol lipase activity (TGLA) in lean and obese men. RESEARCH DESIGN AND METHODS—Nine lean and eight obese men performed 30 min of circuit resistance exercise. Adipose tissue and blood were sampled during exercise for TGLA, metabolite, and hormone determinations. Respiratory exchange ratio (RER) was measured throughout exercise. RESULTS—Energy expenditure of exercise relative to body mass was higher in the lean and RER was higher in the obese men, suggesting lower fat oxidation. TGLA increased 18-fold at 5 min of exercise in the lean men and 16-fold at 10 min of exercise in the obese men. The delayed lipolytic activation in the obese men was reflected in serum nonesterified fatty acid and glycerol concentrations. Plasma insulin increased in the obese but did not change in the lean men. CONCLUSIONS—Resistance exercise upregulated adipose tissue lipolysis and enhanced energy expenditure in lean and obese men, with a delayed lipolytic activation in the obese men. PMID:18375413

  14. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  15. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans.

  16. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents.

    PubMed

    Stroth, Sanna; Kubesch, Sabine; Dieterle, Katrin; Ruchsow, Martin; Heim, Rüdiger; Kiefer, Markus

    2009-05-07

    Physical activity and aerobic exercise in particular, promotes health and effective cognitive functioning. To elucidate mechanisms underlying the beneficial effects of physical fitness and acute exercise, behavioral and electrophysiological indices of task preparation and response inhibition as a part of executive functions were assessed in a modified version of an Eriksen flanker task subsequent to an acute bout of aerobic exercise and a period of rest, respectively. 35 higher- and lower-fit adolescents between 13 and 14 years of age participated in a controlled cross-over study design. Results indicate that higher-fit individuals show significantly greater CNV amplitudes, reflecting enhanced task preparation processes, as well as decreased amplitudes in N2, indexing more efficient executive control processes. P3 amplitudes associated with the allocation of attentional and memory control neither showed influences of physical fitness nor the acute bout of exercise. Furthermore, acute aerobic exercise was not related to any of the dependent measures. The current findings suggest that physical fitness, but not an acute bout of aerobic exercise enhances cognitive processing by increasing attentional allocation to stimulus encoding during task preparation.

  17. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  18. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  19. Acute hypoxia and exercise-induced blood oxidative stress.

    PubMed

    McGinnis, Graham; Kliszczewiscz, Brian; Barberio, Matthew; Ballmann, Christopher; Peters, Bridget; Slivka, Dustin; Dumke, Charles; Cuddy, John; Hailes, Walter; Ruby, Brent; Quindry, John

    2014-12-01

    Hypoxic exercise is characterized by workloads decrements. Because exercise and high altitude independently elicit redox perturbations, the study purpose was to examine hypoxic and normoxic steady-state exercise on blood oxidative stress. Active males (n = 11) completed graded cycle ergometry in normoxic (975 m) and hypoxic (3,000 m) simulated environments before programing subsequent matched intensity or workload steady-state trials. In a randomized counterbalanced crossover design, participants completed three 60-min exercise bouts to investigate the effects of hypoxia and exercise intensity on blood oxidative stress. Exercise conditions were paired as such; 60% normoxic VO(2)peak performed in a normoxic environment (normoxic intensity-normoxic environment, NI-NE), 60% hypoxic VO(2)peak performed in a normoxic environment (HI-NE), and 60% hypoxic VO(2)peak performed in a hypoxic environment (HI-HE). Blood plasma samples drawn pre (Pre), 0 (Post), 2 (2HR) and 4 (4HR) hr post exercise were analyzed for oxidative stress biomarkers including ferric reducing ability of plasma (FRAP), trolox equivalent antioxidant capacity (TEAC), lipid hydroperoxides (LOOH) and protein carbonyls (PCs). Repeated-measures ANOVA were performed, a priori significance of p ≤ .05. Oxygen saturation during the HI-HE trial was lower than NI-NE and HI-NE (p < .05). A Time × Trial interaction was present for LOOH (p = .013). In the HI-HE trial, LOOH were elevated for all time points post while PC (time; p = .001) decreased post exercise. As evidenced by the decrease in absolute workload during hypoxic VO(2)peak and LOOH increased during HI-HE versus normoxic exercise of equal absolute (HI-NE) and relative (NI-NE) intensities. Results suggest acute hypoxia elicits work decrements associated with post exercise oxidative stress.

  20. Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study.

    PubMed

    Tsujii, Takeo; Komatsu, Kazutoshi; Sakatani, Kaoru

    2013-01-01

    We examined the acute effect of physical exercise on prefrontal cortex activity in older adults using functional near-infrared spectroscopy (NIRS). Fourteen older adults visited our laboratory twice: once for exercise and once for the control condition. On each visit, subjects performed working memory tasks before and after moderate intensity exercise with a cycling ergo-meter. We measured the NIRS response at the prefrontal cortex during the working memory task. We found that physical exercise improved behavioral performance of the working memory task compared with the control condition. Moreover, NIRS analysis showed that physical exercise enhanced the prefrontal cortex activity, especially in the left hemisphere, during the working memory task. These findings suggest that the moderate intensity exercise enhanced the prefrontal cortex activity associated with working memory performance in older adults.

  1. Exercise enhances memory consolidation in the aging brain.

    PubMed

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W; Cotman, Carl W

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long-term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 min on a treadmill) on memory consolidation in aged canines both right after, an hour after, and 24 h after acute exercise training in concurrent discrimination, object location memory (OLM), and novel object recognition tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at 24 h post-exercise and not right after or 1 h after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days) on OLM or till criterion were reached (for reversal learning task). We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise.

  2. Enhancing Adherence in Clinical Exercise Trials.

    ERIC Educational Resources Information Center

    O'Neal, Heather A.; Blair, Steven N.

    2001-01-01

    Discusses exercise adherence from the perspective of adhering to an exercise treatment in a controlled trial, focusing on: adherence (to intervention and measurement); the development of randomized clinical trials; exemplary randomized clinical trials in exercise science (exercise training studies and physical activity interventions); and study…

  3. Influence of Acute and Chronic Exercise on Glucose Uptake

    PubMed Central

    Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten

    2016-01-01

    Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930

  4. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  5. Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment.

    PubMed

    Segal, Sabrina K; Cotman, Carl W; Cahill, Lawrence F

    2012-01-01

    Post-trial pharmacological activation of the noradrenergic system can facilitate memory consolidation. Because exercise activates the locus coeruleus and increases brain norepinephrine release, we hypothesized that post-trial exercise could function as a natural stimulus to enhance memory consolidation. We investigated this in amnestic mild cognitive impairment (aMCI) and cognitively normal elderly individuals by examining the effects of an acute bout of post-learning, aerobic exercise (6 minutes at 70% VO2 max on a stationary bicycle) on memory for some emotional images. Exercise significantly elevated endogenous norepinephrine (measured via the biomarker, salivary alpha-amylase) in both aMCI patients and controls. Additionally, exercise retrogradely enhanced memory in both aMCI patients and controls. Acute exercise that activates the noradrenergic system may serve as a beneficial, natural, and practical therapeutic intervention for cognitive decline in the aging population.

  6. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters.

    PubMed

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina; Bak, Lars; Petersen, Ellen; Lindholm, Maria; Jacobsen, Stine

    2014-04-01

    The purpose of the study was to investigate whether acute strenuous exercise (1600- to 2500-m race) would elicit an acute phase response (APR) in Standardbred trotters. Blood levels of several inflammatory markers [serum amyloid A (SAA), haptoglobin, fibrinogen, white blood cell count (WBC), and iron], muscle enzymes [creatinine kinase (CK) and aspartate transaminase (AST)], and hemoglobin were assessed in 58 Standardbred trotters before and after racing. Hemoglobin levels increased and iron levels decreased 12 to 14 h after racing and haptoglobin concentrations, white blood cell counts, and iron levels were decreased 2 and/or 7 d after racing. Concentrations of CK, AST, SAA, and fibrinogen were unaltered in response to racing. Acute strenuous exercise did not elicit an acute phase reaction. The observed acute increase in hemoglobin levels and decreases in haptoglobin and iron levels may have been caused by exercise-induced hemolysis, which indicates that horses might experience a condition similar to athlete's anemia in humans. The pathogenesis and clinical implications of the hematological and blood-biochemical changes elicited by acute exercise in Standardbred trotters in the present study warrant further investigation.

  7. Acute responses to exercise training and relationship with exercise adherence in moderate chronic obstructive pulmonary disease.

    PubMed

    Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique

    2015-11-01

    The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour.

  8. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle

    PubMed Central

    Fernström, Maria; Tonkonogi, Michail; Sahlin, Kent

    2004-01-01

    Mitochondrial proteins such as uncoupling protein 3 (UCP3) and adenine nucleotide translocase (ANT) may mediate back-leakage of protons and serve as uncouplers of oxidative phosphorylation. We hypothesized that UCP3 and ANT increase after prolonged exercise and/or endurance training, resulting in increased uncoupled respiration (UCR). Subjects were investigated with muscle biopsies before and after acute exercise (75 min of cycling at 70% of V̇O2peak) or 6 weeks endurance training. Mitochondria were isolated and respiration measured in the absence (UCR or state 4) and presence of ADP (coupled respiration or state 3). Protein expression of UCP3 and ANT was measured with Western blotting. After endurance training V̇O2peak, citrate synthase activity (CS), state 3 respiration and ANT increased by 24, 47, 40 and 95%, respectively (all P < 0.05), whereas UCP3 remained unchanged. When expressed per unit of CS (a marker of mitochondrial volume) UCP3 and UCR decreased by 54% and 18%(P < 0.05). CS increased by 43% after acute exercise and remained elevated after 3 h of recovery (P < 0.05), whereas the other muscle parameters remained unchanged. An intriguing finding was that acute exercise reversibly enhanced the capacity of mitochondria to accumulate Ca2+(P < 0.05) before opening of permeability transition pores. In conclusion, UCP3 protein and UCR decrease after endurance training when related to mitochondrial volume. These changes may prevent excessive basal thermogenesis. Acute exercise enhances mitochondrial resistance to Ca2+ overload but does not influence UCR or protein expression of UCP3 and ANT. The increased Ca2+ resistance may prevent mitochondrial degradation and the mechanism needs to be further explored. PMID:14634202

  9. Acute metabolic response to fasted and postprandial exercise

    PubMed Central

    de Lima, Filipe Dinato; Correia, Ana Luiza Matias; Teixeira, Denilson da Silva; da Silva Neto, Domingos Vasco; Fernandes, Ítalo Sávio Gonçalves; Viana, Mário Boratto Xavier; Petitto, Mateus; da Silva Sampaio, Rodney Antônio; Chaves, Sandro Nobre; Alves, Simone Teixeira; Dantas, Renata Aparecida Elias; Mota, Márcio Rabelo

    2015-01-01

    The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial), with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%), 9.97 g of protein (12.90%), 8.01 g of lipids (10.37%), with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase plasma lactate and triglycerides. However, exercise performed in fasting condition decreases glucose concentration and increases triglycerides, even more than postprandial exercise. PMID:26316800

  10. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults.

    PubMed

    Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J

    2011-01-01

    This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a "cybercycle;" a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort.

  11. Acute aerobic exercise influences the inhibitory process in the go/no-go task in humans.

    PubMed

    Akatsuka, Kosuke; Yamashiro, Koya; Nakazawa, Sho; Mitsuzono, Ryouichi; Maruyama, Atsuo

    2015-07-23

    This study evaluated the influence of acute aerobic exercise on the human inhibitory system. For studies on the neural mechanisms of somato-motor inhibitory processing in humans, the go/no-go task is a useful paradigm for recording event-related potentials. Ten subjects performed somatosensory go/no-go tasks in a control condition and exercise condition. In the control condition, the subjects performed the go/no-go task before and after 20 min of rest. In the exercise condition, the subjects performed the go/no-go task before and after 15 min of treadmill running with the exercise intensity set individually for each subject at 50% of peak oxygen intake. We successfully recorded a clear-cut N140 component under all conditions, and found that the peak amplitude of no-go-N140 at Fz and Cz was significantly enhanced during moderate exercise. In contrast, there were no significant changes in Fz and Cz in the control condition. These results suggest that moderate exercise can affect the amplitude of no-go-N140, which could be interpreted as an index of the human inhibition process in the central nervous system. The human inhibitory system is an important cognitive process, and this system may underlie the hypothetical ability of physical exercise to maintain and improve cognitive performance throughout the lifespan. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. [Exercise and the detection of severe acute mountain sickness].

    PubMed

    Garófoli, Adrian; Montoya, Paula; Elías, Carlos; Benzo, Roberto

    2010-01-01

    Acute mountain sickness (AMS) is a group of non-specific symptoms, seen in subjects that ascend from low to high altitude too quickly, without allowing sufficient time to acclimatize. Usually it is self-limiting, but the severe forms (pulmonary and cerebral edema) can be fatal. Exaggerated hypoxemia at rest is related to later development of AMS but its predictive value is limited. Since exercise at altitude induces greater hypoxemia and symptoms, we postulated the predictive value of a simple exercise test to prognosticate severe AMS. We studied the predictive value of the oxygen saturation during rest and sub-maximum exercise at 2.700 m and 4.300 m in 63 subjects that intended the ascent to Mount Aconcagua (6.962 m). We considered exercise oxygen desaturation to a drop of 5% respect to the resting value. Lake-Louise Score was used to quantify the presence of severe AMS. Six subjects developed severe AMS (9.5%) and required evacuation. Resting oxygen saturation at 2.700 m was not significant to classify subjects that then developed severe AMS. The association of oxygen desaturation during exercise at 2.700 m plus inappropriate resting oxygen saturation at 4.300 m was significant to classify the subjects that then developed severe AMS with a positive predictive value of 80% and a negative predictive value of 97%. Our results are relevant for mountaineering and suggest the use of a simple exercise test in the prediction of severe AMS.

  13. Sleep disruption and its effect on lymphocyte redeployment following an acute bout of exercise.

    PubMed

    Ingram, Lesley A; Simpson, Richard J; Malone, Eva; Florida-James, Geraint D

    2015-07-01

    Sleep disruption and deprivation are common in contemporary society and have been linked with poor health, decreased job performance and increased life-stress. The rapid redeployment of lymphocytes between the blood and tissues is an archetypal feature of the acute stress response, but it is not known if short-term perturbations in sleep architecture affect lymphocyte redeployment. We examined the effects of a disrupted night sleep on the exercise-induced redeployment of lymphocytes and their subtypes. 10 healthy male cyclists performed 1h of cycling at a fixed power output on an indoor cycle ergometer, following a night of undisrupted sleep (US) or a night of disrupted sleep (DS). Blood was collected before, immediately after and 1h after exercise completion. Lymphocytes and their subtypes were enumerated using direct immunofluorescence assays and 4-colour flow cytometry. DS was associated with elevated concentrations of total lymphocytes and CD3(-)/CD56(+) NK-cells. Although not affecting baseline levels, DS augmented the exercise-induced redeployment of CD8(+) T-cells, with the naïve/early differentiated subtypes (KLRG1(-)/CD45RA(+)) being affected most. While the mobilisation of cytotoxic lymphocyte subsets (NK cells, CD8(+) T-cells γδ T-cells), tended to be larger in response to exercise following DS, their enhanced egress at 1h post-exercise was more marked. This occurred despite similar serum cortisol and catecholamine levels between the US and DS trials. NK-cells redeployed with exercise after DS retained their expression of perforin and Granzyme-B indicating that DS did not affect NK-cell 'arming'. Our findings indicate that short-term changes in sleep architecture may 'prime' the immune system and cause minor enhancements in lymphocyte trafficking in response to acute dynamic exercise. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Acute effects of flexible pole exercise on heart rate dynamics.

    PubMed

    de Oliveira, Letícia Santana; Moreira, Patrícia S; Antonio, Ana M; Cardoso, Marco A; de Abreu, Luiz Carlos; Navega, Marcelo T; Raimundo, Rodrigo D; Valenti, Vitor E

    2015-01-01

    Exercise with flexible poles provides fast eccentric and concentric muscle contractions. Although the literature reports significant muscle chain activity during this exercise, it is not clear if a single bout of exercise induces cardiac changes. In this study we assessed the acute effects of flexible pole exercise on cardiac autonomic regulation. The study was performed on 22 women between 18 and 26 years old. We assessed heart rate variability (HRV) in the time (SDNN, RMSSD and pNN50) and frequency (HF, LF and LF/HF ratio) domains and geometric indices of HRV (RRTri, TINN, SD1, SD2 and SD1/SD2 ratio). The subjects remained at rest for 10 min and then performed the exercises with the flexible poles. Immediately after the exercise protocol, the volunteers remained seated at rest for 60 min and HRV was analyzed. We observed no significant changes in time domain (SDNN: p=0.72; RMSSD: p=0.94 and pNN50: p=0.92) or frequency domain indices (LF [nu]: p=0.98; LF [ms(2)]: p=0.72; HF [nu]: p=0.98; HF [ms(2)]: p=0.82 and LF/HF ratio: p=0.7) or in geometric indices (RRTri: p=0.54; TINN: p=0.77; SD1: p=0.94; SD2: p=0.67 and SD/SD2: p=0.42) before and after a single bout of flexible pole exercise. A single bout of flexible pole exercise did not induce significant changes in cardiac autonomic regulation in healthy women. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults.

    PubMed

    Dimitrova, Julia; Hogan, Michael; Khader, Patrick; O'Hora, Denis; Kilmartin, Liam; Walsh, Jane C; Roche, Richard; Anderson-Hanley, Cay

    2016-11-19

    Physical exercise has been shown to improve cognitive and neural functioning in older adults. The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., "exergaming") on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise.

  16. Serum irisin levels are regulated by acute strenuous exercise.

    PubMed

    Löffler, Dennis; Müller, Ulrike; Scheuermann, Kathrin; Friebe, Daniela; Gesing, Julia; Bielitz, Julia; Erbs, Sandra; Landgraf, Kathrin; Wagner, Isabel Viola; Kiess, Wieland; Körner, Antje

    2015-04-01

    The newly discovered myokine irisin has been proposed to affect obesity and metabolism by promoting browning of white adipose tissue. However, clinical and functional studies on the association of irisin with obesity, muscle mass, and metabolic status remain controversial. Here we assessed the effect of 4 distinct exercise regimens on serum irisin levels in children and young adults and systematically evaluated the influence of diurnal rhythm, anthropometric and metabolic parameters, and exercise on irisin. Serum irisin levels did not show diurnal variations, nor were they affected by meal intake or defined glucose load during oral glucose tolerance testing. Irisin levels decreased with age. In adults, irisin levels were higher in men than in women, and obese subjects had significantly higher levels than lean control subjects. Irisin levels were closely correlated with muscle-associated bioimpedance parameters such as fat-free mass and body cell mass. Of the 4 exercise regimens that differed in duration and intensity, we identified a clear and immediate increase in serum irisin levels after acute strenuous exercise (cycling ergometry) and a 30-minute bout of intensive exercise in children and young adults, whereas longer (6 weeks) or chronic (1 year) increases in physical activity did not affect irisin levels. We show that irisin levels are affected by age, sex, obesity, and particularly muscle mass, whereas diurnal rhythm and meals do not contribute to the variation in irisin levels. Short bouts of intensive exercise but not long-term elevations in physical activity, acutely and transiently increase serum irisin levels in children and adults.

  17. Acute exercise-induced bilateral thigh compartment syndrome.

    PubMed

    Boland, Michael R; Heck, Chris

    2009-03-01

    Acute compartment syndrome of the thigh is rare due to the space's ability to accommodate large volumes of fluid and, with the exception of the lateral septum, its thin compliant linings. This article describes a case of bilateral exercise-induced severe compartment syndrome treated with anterior and posterior fasciotomies. A 29-year-old man was admitted to intensive care with myoglobinuria. His left thigh was evaluated 18 hours later for compartment syndrome. The patient reported that 14 hours prior to initial presentation, he had participated in a 1-hour session of vigorous basketball. He gradually developed bilateral moderately severe thigh pain and tea-colored urine. Physical examination revealed pain secondary to passive stretch of both knees at 20 degrees flexion, plus firm anterior and posterior compartments to palpation. A handheld pressure monitor revealed the following compartment pressures: left anterior 80 mm Hg; left posterior 75 mm Hg; right anterior 45 mm Hg; and right posterior 50 mm Hg. Bilateral emergent anterior and posterior compartment fasciotomies were performed. The patient developed a significant severe distal motor and sensory neurological deficit on the left side, which recovered to 3/5 motor strength and protective sensation. At 6-month follow-up, he ambulated with the assistance of a left ankle foot orthosis. Acute severe compartment syndrome can occur following vigorous exercise. We recommend fasciotomies after exercise-induced acute compartment syndrome rather than initial observation because of the severity of morbidity associated with undertreated compartment syndrome.

  18. Effects of acute exercise on fear extinction in rats and exposure therapy in humans: Null findings from five experiments.

    PubMed

    Jacquart, Jolene; Roquet, Rheall F; Papini, Santiago; Powers, Mark B; Rosenfield, David; Smits, Jasper A J; Monfils, Marie-H

    2017-08-01

    Exposure therapy is an established learning-based intervention for the treatment of anxiety disorders with an average response rate of nearly 50%, leaving room for improvement. Emerging strategies to enhance exposure therapy in humans and fear extinction retention in animal models are primarily pharmacological. These approaches are limited as many patients report preferring non-pharmacological approaches in therapy. With general cognitive enhancement effects, exercise has emerged as a plausible non-pharmacological augmentation strategy. The present study tested the hypothesis that fear extinction and exposure therapy would be enhanced by a pre-training bout of exercise. We conducted four experiments with rats that involved a standardized conditioning and extinction paradigm and a manipulation of exercise. In a fifth experiment, we manipulated vigorous-intensity exercise prior to a standardized virtual reality exposure therapy session among adults with fear of heights. In experiments 1-4, exercise did not facilitate fear extinction, long-term memory, or fear relapse tests. In experiment 5, human participants showed an overall reduction in fear of heights but exercise did not enhance symptom improvement. Although acute exercise prior to fear extinction or exposure therapy, as operationalized in the present 5 studies, did not enhance outcomes, these results must be interpreted within the context of a broader literature that includes positive findings. Taken all together, this suggests that more research is necessary to identify optimal parameters and key individual differences so that exercise can be implemented successfully to treat anxiety disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise.

    PubMed

    Davison, Glen; Callister, Robin; Williamson, Gary; Cooper, Karen A; Gleeson, Michael

    2012-02-01

    Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.

  20. Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle.

    PubMed

    Jensen, Lotte; Pilegaard, Henriette; Neufer, P Darrell; Hellsten, Ylva

    2004-08-01

    The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to approximately 70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF(165) mRNA. Acute exercise induced an increase (P < 0.05) in total VEGF mRNA levels as well as VEGF(165) and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg (P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF(165) mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF(165) mRNA.

  1. Exercise, but not acute sleep loss, increases salivary antimicrobial protein secretion.

    PubMed

    Gillum, Trevor L; Kuennen, Matthew R; Castillo, Micaela N; Williams, Nicole L; Jordan-Patterson, Alex T

    2015-05-01

    Sleep deficiencies may play a role in depressing immune parameters. Little is known about the impact of exercise after sleep deprivation on mucosal immunity. The purpose of this study was to quantify salivary antimicrobial proteins (AMPs) in response to sleep loss before and after exercise. Four men and 4 women (age: 22.8 ± 2; : 49.1 ± 7.1 ml · kg(-1) · min(-1)) completed 2 exercise trials consisting of 45 minutes of running at 75% VO2peak after a normal night of sleep (CON) and after a night without sleep (WS). Exercise trials were separated by 10 ± 3 days. Saliva was collected before, immediately after, and 1 hour after exercise. LL-37, HNP1-3, Lactoferrin (Lac), and Lysozyme (Lys) were measured. Sleep loss did not affect the concentration or secretion rate of AMPs before or in response to exercise. However, exercise increased the concentration from pre- to post-exercise of LL-37 (pre: 15.5 ± 8.7; post: 22.3 ± 16.2 ng · ml(-1)), HNP1-3 (pre: 2.2 ± 2.3; post: 3.3 ± 2.5 µg · ml(-1)), Lac (pre: 5,234 ± 4,202; post: 12,283 ± 10,995 ng · ml(-1)), and Lys (pre: 5,831 ± 4,465; post: 12,542 ± 10,755 ng · ml(-1)), p <= 0.05. The secretion rates were higher immediately after and 1 hour after exercise compared with before exercise for LL-37 (pre: 3.1 ± 2.1; post: 5.1 ± 3.7; +1: 6.9 ± 8.4 ng · min(-1)), HNP1-3 (pre: 0.38 ± 0.38; post: 0.80 ± 0.75; +1: 0.84 ± 0.67 µg · min(-1)), Lac (pre: 1,096 ± 829; post: 2,948 ± 2,923; +1: 2,464 ± 3,785 ng · min(-1)), and Lys (pre: 1,534 ± 1,790; post: 3,042 ± 2,773; +1: 1,916 ± 1,682 ng · min-(1)), p <= 0.05. These data suggest that the major constituents of the mucosal immune system are unaffected by acute sleep loss and by exercise after acute sleep loss. Exercise increased the concentration and secretion rate of each AMP suggesting enhanced immunity and control of inflammation, despite limited sleep.

  2. Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle.

    PubMed

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo; Peltonen, Juha E; Sipilä, Hannu T; Nuutila, Pirjo; Knuuti, Juhani; Boushel, Robert; Kalliokoski, Kari K

    2012-02-01

    Glucose metabolism increases in hypoxia and can be influenced by endogenous adenosine, but the role of adenosine for regulating glucose metabolism at rest or during exercise in hypoxia has not been elucidated in humans. We studied the effects of exogenous adenosine on human skeletal muscle glucose uptake and other blood energy substrates [free fatty acid (FFA) and lactate] by infusing adenosine into the femoral artery in nine healthy young men. The role of endogenous adenosine was studied by intra-arterial adenosine receptor inhibition (aminophylline) during dynamic one-leg knee extension exercise in normoxia and acute hypoxia corresponding to ∼3,400 m of altitude. Extraction and release of energy substrates were studied by arterial-to-venous (A-V) blood samples, and total uptake or release was determined by the product of A-V differences and muscle nutritive perfusion measured by positron emission tomography. The results showed that glucose uptake increased from a baseline value of 0.2 ± 0.2 to 2.0 ± 2.2 μmol·100 g(-1)·min(-1) during adenosine infusion (P < 0.05) at rest. Although acute hypoxia enhanced arterial FFA levels, it did not affect muscle substrate utilization at rest. During exercise, glucose uptake was higher (195%) during acute hypoxia compared with normoxia (P = 0.058), and aminophylline had no effect on energy substrate utilization during exercise, despite that arterial FFA levels were increased. In conclusion, exogenous adenosine at rest and acute moderate hypoxia during low-intensity knee-extension exercise increases skeletal muscle glucose uptake, but the increase in hypoxia appears not to be mediated by adenosine.

  3. The impact of obesity on pentraxin 3 and inflammatory milieu to acute aerobic exercise.

    PubMed

    Slusher, Aaron L; Mock, J Thomas; Whitehurst, Michael; Maharaj, Arun; Huang, Chun-Jung

    2015-02-01

    Pentraxin 3 (PTX3) has recently been linked to obesity-associated inflammation, serving as a cardioprotective modulator against cardiovascular disease (CVD). Aerobic exercise has been shown to enhance plasma PTX3 levels; however, the impact of obesity on PTX3 response to exercise remains unknown. Therefore, this study sought to examine whether obese subjects would have an attenuated plasma PTX3 response compared to normal-weight subjects following acute aerobic exercise. The relationship of plasma PTX3 with pro-inflammatory cytokines (IL-6 and TNF-α) was also examined. Twenty healthy subjects (10 obese [4 males and 6 females] and 10 normal-weight [4 males, 6 females]) performed 30min of continuous submaximal aerobic exercise. At baseline, obese subjects exhibited approximately 40% lower plasma PTX3 and a 7-fold greater IL-6 concentration compared to normal-weight subjects. In response to exercise, no difference was observed in PTX3 or IL-6 as indicated by area-under-the-curve "with respect to increase" (AUCi) analyses. Furthermore, PTX3 AUCi was positively correlated with cardiorespiratory fitness levels (VO(2max)) (r=0.594, p=0.006), even after controlling for body mass index. These findings suggest that in addition to obesity-associated complications, low cardiorespiratory fitness levels could impact exercise-induced PTX3 elevations, thereby potentially diminishing PTX3's effects of anti-inflammation and/or cardioprotection. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample

    ERIC Educational Resources Information Center

    Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo

    2016-01-01

    Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…

  5. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample

    ERIC Educational Resources Information Center

    Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo

    2016-01-01

    Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…

  6. The Effect of Acute Vibration Exercise on Short-Distance Sprinting and Reactive Agility

    PubMed Central

    Cochrane, Darryl J.

    2013-01-01

    Vibration exercise (VbX) has been a popular modality to enhancing physical performance, where various training methods and techniques have been employed to improve immediate and long-term sprint performance. However, the use of acute side-alternating VbX on sprint and agility performance remains unclear. Eight female athletes preformed side-alternating vibration exercise (VbX) and control (no VbX) in a cross over randomised design that was conducted one week apart. After performing a warm-up, the athletes undertook maximal 5m sprints and maximal reactive agility sprints (RAT), this was followed by side-alternating VbX (26 Hz, 6mm) or control (no VbX). Immediately following the intervention, post-sprint tests and RAT were performed. There was a significant treatment effect but there was no time effect (pre vs. post) or interaction effect for sprint and RAT; however, side-alternating VbX did not compromise sprint and agility performance. Key Points Acute VbX could be beneficial for the acceleration phase (1.5m) of a short-distance sprint. Acute VbX does not have positive influence on short-distance (3m & 5m) sprint performance. Acute VbX does not enhance reactive agility performance. PMID:24149157

  7. Personality does not influence exercise-induced mood enhancement among female exercisers.

    PubMed

    Milton, K E; Lane, A M; Terry, P C

    2005-06-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that a) exercise would be associated with significant mood enhancement across all personality types, b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M=25.8 y, SD=9.0 y) who completed the Eysenck Personality Inventory once and the Brunel Mood Scale before and after a 60-min exercise session. Median splits were used to group participants into 4 personality types: stable introverts (n=25), stable extroverts (n=20), neurotic introverts (n=26), and neurotic extroverts (n=19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. Findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood.

  8. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity.

    PubMed

    Thomas, Richard; Johnsen, Line K; Geertsen, Svend S; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory.

  9. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity

    PubMed Central

    Geertsen, Svend S.; Christiansen, Lasse; Ritz, Christian; Roig, Marc

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory. PMID:27454423

  10. Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease.

    PubMed

    van de Bool, Coby; Steiner, Michael C; Schols, Annemie M W J

    2012-11-01

    This review presents current knowledge regarding the rationale and efficacy of nutrition as an ergogenic aid to enhance the effects of exercise and training in chronic obstructive pulmonary disease (COPD). Altered body composition and skeletal muscle dysfunction in COPD suggest that exercise capacity can be targeted via several metabolic routes. Muscle metabolic alterations in COPD include a reduced oxidative metabolism and enhanced susceptibility for oxidative stress. Muscle wasting may be associated with deficiencies of vitamin D and low branched-chain amino acid levels. Exercise training is of established benefit in COPD but clear-cut clinical trial evidence to support the performance enhancing effect of nutritional intervention is lacking. One randomized controlled trial suggested that augmentation of training with polyunsaturated fatty acids may improve exercise capacity. Conflicting results are reported on dietary creatine supplementation in patients with COPD receiving pulmonary rehabilitation and results from acute intervention studies do not directly imply long-term effects of glutamate or glutamine supplementation as an ergogenic aid in COPD. Recent data indicate that not only muscle but also visceral fat may be an important additional target for combined nutrition and exercise intervention in COPD to improve physical performance and decrease cardiometabolic risk. There is a clear need for adequately powered and controlled intervention and maintenance trials to establish the role of nutritional supplementation in the enhancement of exercise performance and training and the wider management of the systemic features of the disease.

  11. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children.

    PubMed

    Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B; Roig, Marc

    2017-01-01

    Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also

  12. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    PubMed Central

    Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B.; Roig, Marc

    2017-01-01

    Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also

  13. Volume Exercise in Older Athletes Influences Inflammatory and Redox Responses to Acute Exercise.

    PubMed

    Estrela, Andre L; Zaparte, Aline; da Silva, Jefferson D; Moreira, José C; Turner, James E; Bauer, Moisés E

    2017-02-09

    To examine whether the volume of previous exercise training in older athletes influences inflammatory, redox and hormonal profiles, forty trained marathon runners were divided into higher-volume (HVG, ~480 min/week) and lower-volume groups (LVG, ~240 min/week). Plasma inflammatory proteins, redox biomarkers and salivary testosterone and cortisol, were assessed at rest and following two maximal acute exercise bouts. At rest, the LVG exhibited higher CRP, higher protein carbonyls and lower SOD activity compared to the HVG (p's<0.05). In response to exercise, TNF- declined similarly in both groups whereas CRP increased differentially (+60% LVG; +24% HVG; p's<0.05). Protein carbonyls decreased and thiols increased similarly in both groups, but SOD declined differentially between groups (-14% LVG; -20% HVG; p's<0.05). Salivary testosterone decreased similarly in both groups, whereas cortisol did not change. Higher-volume of training is associated with favorable inflammatory and redox profiles at rest, perhaps mediated by small inflammatory responses to acute exercise.

  14. Evaluation of acute cardiorespiratory responses to hydraulic resistance exercise.

    PubMed

    Katch, F I; Freedson, P S; Jones, C A

    1985-02-01

    Accurate evaluation of the acute responses to resistance exercise training depends on the stability of the criterion measures. This is particularly true for maximal effort exercise where continuous "all-out" effort for each repetition is encouraged. The present study evaluated reliability of repetition number (repN), respiratory gas parameters (VO2, VCO2, VE), and heart rate (HR) for shoulder (SE), chest (CE), and leg (LE) exercise performed maximally on a single-unit, 3-station hydraulic resistance exercise machine (Hydra-Fitness, Belton, TX). On 2 separate days, 20 college men completed three 20-s bouts of SE, CE, and LE with a 20-s rest between bouts and 5 min between exercise modes. There were no significant differences between bouts or test days for repN, gas measures, or HR. Subjects performed 17, 19, and 21 reps during SE, LE, and CE. VO2 was 1.7 l . min-1 (24.3 ml . kg-1 . min-1) for SE, 1.87 l . min-1 (25.5 ml . kg-1 . min-1) for CE, and 2.1 l . min-1 (28.6 ml . kg-1 . min-1) for LE. These values, averaged, represented 52.8% of the max VO2 determined on a continuous cycle ergometer test. The corresponding HR's during hydraulic exercise averaged 84.6% of HR max. Test-retest reliability coefficients ranged from r = .67 to .87 for repN, r = .41 to .83 for gas measures, and r = .72 to .89 for HR.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Acute Cardiovascular Response to Sign Chi Do Exercise

    PubMed Central

    Rogers, Carol E.; Carlson, John; Garver, Kayla

    2015-01-01

    Safe and gentle exercise may be important for older adults overcoming a sedentary lifestyle. Sign Chi Do (SCD), a novel form of low impact exercise, has shown improved balance and endurance in healthy older adults, and there have been no SCD-related injuries reported. Sedentary older adults are known to have a greater cardiovascular (CV) response to physical activity than those who regularly exercise. However their CV response to SCD is unknown. This study explored the acute CV response of older adults to SCD. Cross-sectional study of 34 sedentary and moderately active adults over age 55 with no previous experience practicing SCD. Participants completed a 10 min session of SCD. CV outcomes of heart rate, blood pressure, rate pressure product were recorded at 0, 5, 10 min of SCD performance, and after 10 min of rest. HR was recorded every minute. There was no difference in CV scores of sedentary and moderately active older adults after a session of SCD-related activity. All CV scores increased at 5 min, were maintained at 10 min, and returned to baseline within 10 min post SCD (p < 0.05). SCD may be a safe way to increase participation in regular exercise by sedentary older adults. PMID:27417797

  16. The Team Boat Exercise: Enhancing Team Communication Midsemester

    ERIC Educational Resources Information Center

    Cox, Pamela L.; Friedman, Barry A.

    2009-01-01

    This paper discusses the Team Boat Exercise, which was developed to provide students with a mechanism for addressing team problems and enhancing team communication midsemester. The inspiration for the exercise came from a video by Prentice Hall, Inc. (2001). Part III of the video, entitled "Corporate Coaching," shows senior staff members from the…

  17. The Team Boat Exercise: Enhancing Team Communication Midsemester

    ERIC Educational Resources Information Center

    Cox, Pamela L.; Friedman, Barry A.

    2009-01-01

    This paper discusses the Team Boat Exercise, which was developed to provide students with a mechanism for addressing team problems and enhancing team communication midsemester. The inspiration for the exercise came from a video by Prentice Hall, Inc. (2001). Part III of the video, entitled "Corporate Coaching," shows senior staff members from the…

  18. Acute effects of stretching exercise on the heart rate variability in subjects with low flexibility levels.

    PubMed

    Farinatti, Paulo T V; Brandão, Carolina; Soares, Pedro P S; Duarte, Antonio F A

    2011-06-01

    The study investigated the heart rate (HR) and heart rate variability (HRV) before, during, and after stretching exercises performed by subjects with low flexibility levels. Ten men (age: 23 ± 2 years; weight: 82 ± 13 kg; height: 177 ± 5 cm; sit-and-reach: 23 ± 4 cm) had the HR and HRV assessed during 30 minutes at rest, during 3 stretching exercises for the trunk and hamstrings (3 sets of 30 seconds at maximum range of motion), and after 30 minutes postexercise. The HRV was analyzed in the time ('SD of normal NN intervals' [SDNN], 'root mean of the squared sum of successive differences' [RMSSD], 'number of pairs of adjacent RR intervals differing by >50 milliseconds divided by the total of all RR intervals' [PNN50]) and frequency domains ('low-frequency component' [LF], 'high-frequency component' [HF], LF/HF ratio). The HR and SDNN increased during exercise (p < 0.03) and decreased in the postexercise period (p = 0.02). The RMSSD decreased during stretching (p = 0.03) and increased along recovery (p = 0.03). At the end of recovery, HR was lower (p = 0.01), SDNN was higher (p = 0.02), and PNN50 was similar (p = 0.42) to pre-exercise values. The LF increased (p = 0.02) and HF decreased (p = 0.01) while stretching, but after recovery, their values were similar to pre-exercise (p = 0.09 and p = 0.3, respectively). The LF/HF ratio increased during exercise (p = 0.02) and declined during recovery (p = 0.02), albeit remaining higher than at rest (p = 0.03). In conclusion, the parasympathetic activity rapidly increased after stretching, whereas the sympathetic activity increased during exercise and had a slower postexercise reduction. Stretching sessions including multiple exercises and sets acutely changed the sympathovagal balance in subjects with low flexibility, especially enhancing the postexercise vagal modulation.

  19. The acute hormonal response to the kettlebell swing exercise.

    PubMed

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs.

  20. Reduced Tic Symptomatology in Tourette Syndrome After an Acute Bout of Exercise: An Observational Study.

    PubMed

    Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M

    2014-03-01

    In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications.

  1. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  2. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype.

    PubMed

    Campbell, John P; Riddell, Natalie E; Burns, Victoria E; Turner, Mark; van Zanten, Jet J C S Veldhuijzen; Drayson, Mark T; Bosch, Jos A

    2009-08-01

    An acute bout of exercise evokes mobilisation of lymphocytes into the bloodstream, which can be largely attributed to increases in CD8+ T lymphocytes (CD8TLs) and natural killer (NK) cells. Evidence further suggests that, even within these lymphocyte subsets, there is preferential mobilisation of cells that share certain functional and phenotypic characteristics, such as high cytotoxicity, low proliferative ability, and high tissue-migrating potential. These features are characteristic of effector-memory CD8TL subsets. The current study therefore investigated the effect of exercise on these newly-identified subsets. Thirteen healthy and physically active males (mean+/-SD: age 20.9+/-1.5 yr) attended three sessions: a control session (no exercise); cycling at 35% Watt(max) (low intensity exercise); and 85% Watt(max) (high intensity exercise). Each bout lasted 20 min. Blood samples were obtained before exercise, during the final min of exercise, and +15, and +60 min post-exercise. CD8TLs were classified into naïve, central memory (CM), effector-memory (EM), and CD45RA+ effector-memory (RAEM) using combinations of the cell surface markers CCR7, CD27, CD62L, CD57, and CD45RA. In parallel, the phenotypically distinct CD56(bright) 'regulatory' and CD56(dim) 'cytotoxic' NK subsets were quantified. The results show a strong differential mobilisation of CD8TL subsets (RAEM>EM>CM>naïve); during high intensity exercise the greatest increase was observed for RAEM CD8Tls (+450%) and the smallest for naïve cells (+84%). Similarly, CD56(dim) NK cells (+995%) were mobilised to a greater extent than CD56(bright) (+153%) NK cells. In conclusion, memory CD8TL that exhibit a high effector and tissue-migrating potential are preferentially mobilised during exercise. This finding unifies a range of independent observations regarding exercise-induced phenotypic and functional changes in circulating lymphocytes. The selective mobilisation of cytotoxic tissue-migrating subsets, both

  3. Acute volume loading and exercise capacity in postural tachycardia syndrome.

    PubMed

    Figueroa, Rocío A; Arnold, Amy C; Nwazue, Victor C; Okamoto, Luis E; Paranjape, Sachin Y; Black, Bonnie K; Diedrich, Andre; Robertson, David; Biaggioni, Italo; Raj, Satish R; Gamboa, Alfredo

    2014-09-15

    Postural tachycardia syndrome (POTS) is associated with exercise intolerance, hypovolemia, and cardiac atrophy, which may contribute to reduced stroke volume and compensatory exaggerated heart rate (HR) increases. Acute volume loading with intravenous (iv) saline reduces HR and improves orthostatic tolerance and symptoms in POTS, but its effect on exercise capacity is unknown. In this study, we determined the effect of iv saline infusion on peak exercise capacity (VO2peak) in POTS. Nineteen patients with POTS participated in a sequential study. VO2peak was measured on two separate study days, following administration of placebo or 1 liter of i.v. saline (NaCl 0.9%). Patients exercised on a semirecumbent bicycle with resistance increased by 25 W every 2 min until maximal effort was achieved. Patients exhibited blood volume deficits (-13.4 ± 1.4% ideal volume), consistent with mild to moderate hypovolemia. At baseline, saline significantly increased stroke volume (saline 80 ± 8 ml vs. placebo 64 ± 4 ml; P = 0.010), increased cardiac output (saline 6.9 ± 0.5 liter/min vs. placebo 5.7 ± 0.2 liter/min; P = 0.021), and reduced systemic vascular resistance (saline 992.6 ± 70.0 dyn-s/cm(5) vs. placebo 1,184.0 ± 50.8 dyn-s/cm(5); P = 0.011), with no effect on HR or blood pressure. During exercise, saline did not produce differences in VO2peak (saline 26.3 ± 1.2 mg·kg(-1)·min(-1) vs. placebo 27.7 ± 1.8 mg·kg(-1)·min(-1); P = 0.615), peak HR [saline 174 ± 4 beats per minute (bpm) vs. placebo 175 ± 3 bpm; P = 0.672] or other cardiovascular parameters. These findings suggest that acute volume loading with saline does not improve VO2peak or cardiovascular responses to exercise in POTS, despite improvements in resting hemodynamic function.

  4. Personality Does not Influence Exercise-Induced Mood Enhancement Among Female Exercisers.

    PubMed

    Lane, Andrew M; Milton, Karen E; Terry, Peter C

    2005-09-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a) exercise would be associated with significant mood enhancement across all personality types, (b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr) who completed the Eysenck Personality Inventory (EPI) once and the Brunel Mood Scale (BRUMS) before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25), stable extroverts (n = 20), neurotic introverts (n = 26), and neurotic extroverts (n = 19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood. Key PointsResearch in general psychology has found that stable personality trait are associated changes in mood states. Ninety females exercisers completed a personality test and mood scales before and after exercise. Results indicated mood changes were not associated with personality, although neuroticism was associated with negative mood.

  5. Personality Does not Influence Exercise-Induced Mood Enhancement Among Female Exercisers

    PubMed Central

    Lane, Andrew M.; Milton, Karen E.; Terry, Peter C.

    2005-01-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a) exercise would be associated with significant mood enhancement across all personality types, (b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr) who completed the Eysenck Personality Inventory (EPI) once and the Brunel Mood Scale (BRUMS) before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25), stable extroverts (n = 20), neurotic introverts (n = 26), and neurotic extroverts (n = 19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood. Key Points Research in general psychology has found that stable personality trait are associated changes in mood states. Ninety females exercisers completed a personality test and mood scales before and after exercise. Results indicated mood changes were not associated with personality, although neuroticism was associated with negative mood. PMID:24453525

  6. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level.

    PubMed

    Labelle, Véronique; Bosquet, Laurent; Mekary, Saïd; Bherer, Louis

    2013-02-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling for key methodological confounds. Thirty-seven participants (M(age)=23. 8 years; SD=2.6) completed a computerized modified-Stroop task (involving denomination, inhibition and switching conditions) while pedalling at 40%, 60% and 80% of their peak power output (PPO). Results showed that in the switching condition of the task, error rates increased as a function of exercise intensity (from 60% to 80% of PPO) in all participants and that lower fit individuals showed increased reaction time variability. This suggests that acute bouts of cardiovascular exercise can momentarily alter executive control and increase performance instability in lower fit individuals. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ischemic Preconditioning Enhances Muscle Endurance during Sustained Isometric Exercise.

    PubMed

    Tanaka, D; Suga, T; Tanaka, T; Kido, K; Honjo, T; Fujita, S; Hamaoka, T; Isaka, T

    2016-07-01

    Ischemic preconditioning (IPC) enhances whole-body exercise endurance. However, it is poorly understood whether the beneficial effects originate from systemic (e. g., cardiovascular system) or peripheral (e. g., skeletal muscle) adaptations. The present study examined the effects of IPC on local muscle endurance during fatiguing isometric exercise. 12 male subjects performed sustained isometric unilateral knee-extension exercise at 20% of maximal voluntary contraction until failure. Prior to the exercise, subjects completed IPC or control (CON) treatments. During exercise trial, electromyography activity and near-infrared spectroscopy-derived deoxygenation in skeletal muscle were continuously recorded. Endurance time to task failure was significantly longer in IPC than in CON (mean±SE; 233±9 vs. 198±9 s, P<0.001). Quadriceps electromyography activity was not significantly different between IPC and CON. In contrast, deoxygenation dynamics in the quadriceps vastus lateralis muscle was significantly faster in IPC than in CON (27.1±3.4 vs. 35.0±3.6 s, P<0.01). The present study found that IPC can enhance muscular endurance during fatiguing isometric exercise. Moreover, IPC accelerated muscle deoxygenation dynamics during the exercise. Therefore, we suggest that the origin of beneficial effects of IPC on exercise performance may be the enhanced mitochondrial metabolism in skeletal muscle.

  8. Eccentric Exercise to Enhance Neuromuscular Control.

    PubMed

    Lepley, Lindsey K; Lepley, Adam S; Onate, James A; Grooms, Dustin R

    Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Clinical review. Level 4. Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.

  9. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults

    PubMed Central

    Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J

    2011-01-01

    This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a “cybercycle;” a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort. PMID:22087067

  10. Achilles tendon biomechanics in response to acute intense exercise.

    PubMed

    Joseph, Michael F; Lillie, Kurtis R; Bergeron, Daniel J; Cota, Kevin C; Yoon, Joseph S; Kraemer, William J; Denegar, Craig R

    2014-05-01

    Achilles tendinopathy is a common disorder and is more prevalent in men. Although differences in tendon mechanics between men and women have been reported, understanding of tendon mechanics in young active people is limited. Moreover, there is limited understanding of changes in tendon mechanics in response to acute exercise. Our purpose was to compare Achilles tendon mechanics in active young adult men and women at rest and after light and strenuous activity in the form of repeated jumping with an added load. Participants consisted of 17 men and 14 women (18-30 years) who were classified as being at least moderately physically active as defined by the International Physical Activity Questionnaire. Tendon force/elongation measures were obtained during an isometric plantarflexion contraction on an isokinetic dynamometer with simultaneous ultrasound imaging of the Achilles tendon approximate to the soleus myotendinous junction. Data were collected at rest, after a 10-minute treadmill walk, and after a fatigue protocol of 100 toe jumps performed in a Smith machine, with a load equaling 20% of body mass. We found greater tendon elongation, decreased stiffness, and lower Young's modulus only in women after the jumping exercise. Force and stress were not different between groups but decreased subsequent to the jumping exercise bout. In general, women had greater elongation and strain, less stiffness, and a lower Young's modulus during plantarflexor contraction. These data demonstrate differences in tendon mechanics between men and women and suggest a potential protective mechanism explaining the lower incidence of Achilles tendinopathy in women.

  11. Resting and exercising cardiorespiratory variables and acute mountain sickness.

    PubMed

    Hooper, T J; Levett, D Z H; Mellor, A J; Grocott, M P W

    2010-01-01

    The incidence of Acute Mountain Sickness (AMS) is increasing. In a military context our current operational areas include mountainous regions with the implications of AMS including loss of operational tempo and logistical overstretch. Oxygen saturation and heart rate variability have in some studies been predictive of AMS while in others not. No single factor has been demonstrated consistently to be predictive of developing AMS. During an expedition to climb Mt Aconcagua (6959m) we explored the relationship between cardiorespiratory variables and AMS. In 11 subjects we measured simple physiological variables and Lake Louise Score both pre and post a standardised exercise challenge at on arrival at different altitudes and after a period of acclimatization. The changes in cardiorespiratory variables we observed with altitude were consistent with previous studies. Heart rate, respiratory rate and blood pressure increased whilst oxygen saturation reduced. Over time at altitude, respiratory rate and heart rate were maintained whilst there was a reduction in blood pressure towards sea level values. Oxygen saturations improved over time at altitude and the change in heart rate on exercise was reduced with acclimatization. In this small pilot study individuals with AMS may have a greater heart rate response to exercise than non-AMS subjects and this may warrant further investigation. The incidence of AMS in our study was low reflecting a conservative ascent profile. Further larger studies are necessary to fully assess the predictive value of cardiorespiratory variables in AMS.

  12. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.

    PubMed

    Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd

    2016-06-10

    Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16(pos) monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14(pos) CD16(pos) monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14(pos) CD16(pos) monocytes and a lower basal ratio of CD16(neg) /CD16(pos) monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  13. Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, M; Huang, C-J

    2015-09-01

    Fibroblast growth factor 21 (FGF21) is positively associated with body mass index, potentially as a compensatory mechanism to mediate obesity related metabolic and inflammatory insult due to chronic low-grade elevations of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Therefore, FGF21 response in obese subjects and the associations with increased pro-inflammatory cytokines, insulin resistance, and energy utilization warrants investigation. Twenty four untrained subjects (12 obese and 12 normal-weight) performed 30 min of continuous submaximal aerobic exercise. Following exercise, obese subjects exhibited a blunted FGF21 response to exercise compared to normal-weight subjects as indicated by area-under-the-curves "with respect to increase" (AUCi) analyses (p = 0.005). Furthermore, while exercise-induced plasma FGF21 was not associated with any inflammatory cytokine (IL-6 and TNF-α) response, FGF21 AUCi was positively correlated with glucose AUCi (r = 0.495, p = 0.014), total relative energy expenditure (r = 0.562, p = 0.004), and relative maximal oxygen consumption (VO2max; r = 0.646, p = 0.001) in all subjects. Impaired cardiorespiratory fitness may influence the sensitivity of FGF21 response to acute exercise in obese individuals, potentially contributing to the attenuated metabolic response (e.g., glucose) and total exercise energy expenditure. Therefore, exercise training aimed at improving cardiorespiratory fitness and/or body composition may augment cardioprotective properties against obesity-associated CVD through enhanced FGF21 flux. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise.

    PubMed

    Saleem, Ayesha; Carter, Heather N; Hood, David A

    2014-02-01

    An acute bout of exercise activates downstream signaling cascades that ultimately result in mitochondrial biogenesis. In addition to inducing mitochondrial synthesis, exercise triggers the removal of damaged cellular material via autophagy and of dysfunctional mitochondria through mitophagy. Here, we investigated the necessity of p53 to the changes that transpire within the muscle upon an imposed metabolic and physiological challenge, such as a bout of endurance exercise. We randomly assigned wild-type (WT) and p53 knockout (KO) mice to control, acute exercise (AE; 90 min at 15 m/min), and AE + 3 h recovery (AER) groups and measured downstream alterations in markers of mitochondrial biogenesis, autophagy, and mitophagy. In the absence of p53, activation of p38 MAPK upon exercise was abolished, whereas CaMKII and AMP-activated protein kinase only displayed an attenuated enhancement in the AER group compared with WT mice. The translocation of peroxisome proliferator-activated receptor-γ coactivator-1 α to the nucleus was diminished and only observed in the AER group, and the subsequent increase in messenger RNA transcripts related to mitochondrial biogenesis with exercise and recovery was absent in the p53 KO animals. Whole-muscle autophagic and lysosomal markers did not respond to exercise, irrespective of the genotype of the exercised mice, with the exception of increased ubiquitination observed in KO mice with exercise. Markers of mitophagy were elevated in response to AE and AER conditions in both WT and p53 KO runners. The data suggest that p53 is important for the exercise-induced activation of mitochondrial synthesis and is integral in regulating autophagy during control conditions but not in response to exercise.

  15. Vocal exercise may attenuate acute vocal fold inflammation

    PubMed Central

    Abbott, Katherine Verdolini; Li, Nicole Y.K.; Branski, Ryan C.; Rosen, Clark A.; Grillo, Elizabeth; Steinhauer, Kimberly; Hebda, Patricia A.

    2012-01-01

    Objectives/Hypotheses The objective was to assess the utility of selected “resonant voice” exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact exercises associated with resonant voice would reduce inflammation more than spontaneous speech and possibly more than voice rest. Study Design The study design was prospective, randomized, double-blind. Methods Nine vocally healthy adults underwent a 1-hr vocal loading procedure, followed by randomization to (a) a spontaneous speech condition, (b) a vocal rest condition, or (c) a resonant voice exercise condition. Treatments were monitored in clinic for 4 hr, and continued extra-clinically until the next morning. At baseline, immediately following loading, after the 4-hr in-clinic treatment, and 24 hr post baseline, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay (ELISA) to estimate concentrations of key markers of tissue injury and inflammation: IL-1β, IL-6, IL-8, TNF-α, MMP-8, and IL-10. Results Complete data sets were obtained for 3 markers -- IL-1β, IL-6, and MMP-8 -- for one subject in each treatment condition. For those markers, results were poorest at 24-hr follow-up in the spontaneous speech condition, sharply improved in the voice rest condition, and best in the resonant voice condition. Average results for all markers, for all responsive subjects with normal baseline mediator concentrations, revealed an almost identical pattern. Conclusions Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation. PMID:23177745

  16. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    PubMed

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE.

  17. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    PubMed

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  18. Impact of acute exercise on brachial artery flow-mediated dilatation in young healthy people

    PubMed Central

    2012-01-01

    Background Although chronic effects of exercise on endothelial function are established, the impact of acute exercise on flow-mediated dilatation (FMD) of brachial artery has not been elucidated yet. Methods Eighty-six young healthy volunteers were prospectively enrolled from January 2011 to December 2011. The subjects completed FMD tests at rest and immediately after treadmill exercise test. Primary outcome was the impact of acute exercise on FMD, measured by the difference of FMD before and after exercise. Secondary outcomes were the relationship of gender and exercise habit with FMD. Results Seventy-four subjects who met the eligibility criteria were included for analysis. Thirty-five (47.3%) were male, and the mean age was 22.7±2.7 years. FMD was reduced after exercise (8.98±4.69 to 7.51±4.03%; P=0.017) and the reduction was found in female group (10.36±5.26 to 7.62±3.71%; P=0.002) but not in male group. Post-exercise FMD was significantly impaired in subjects who did not exercise regularly (6.92±3.13% versus 8.95±5.33%; P=0.003). The decrease of FMD after exercise was greater in female group (−2.75±5.28% versus 0.27±3.24%; P=0.003) and was associated with exercise habit (β=2.532; P=0.027). Conclusions In healthy young subjects, FMD was reduced after a bout of acute exercise. The impact of acute exercise showed significant differences according to gender and exercise habit. FMD impairment after acute exercise was observed in females and subjects without regular exercise. PMID:23031621

  19. Enhancing Employability of Exercise Science Students

    ERIC Educational Resources Information Center

    Reddan, Gregory

    2017-01-01

    The notion of employability is gaining importance as an essential outcome of many degrees in institutions of higher education throughout Australia. This paper aims to determine the effects of an Exercise Science course, which includes elements of both career development learning and work-integrated learning, on six dimensions of employability -…

  20. Enhancing the Group Experience: Creative Writing Exercises.

    ERIC Educational Resources Information Center

    Wenz, Kathie; McWhirter, J. Jeffries

    1990-01-01

    Reviews the literature surrounding the use of personal/creative writing as an adjunct to group therapy. Several writing exercises, including a stain glass poem, personal logo, and epigram, as well as client responses, are discussed. The article concludes with suggestions for using writing with groups. (Author/TE)

  1. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.

    PubMed

    Tsai, Chia-Liang; Chen, Fu-Chen; Pan, Chien-Yu; Wang, Chun-Hao; Huang, Tsang-Hai; Chen, Tzu-Chi

    2014-03-01

    The purpose of the current study was to explore various behavioral and neuroelectric indices after acute aerobic exercise in young adults with different cardiorespiratory fitness levels when performing a cognitive task, and also to gain a mechanistic understanding of the effects of such exercise using the brain-derived neurotrophic factor (BDNF) biochemical index. Sixty young adults were separated into one non-exercise-intervention and two exercise intervention (EI) (i.e., EIH: higher-fit and EIL: lower-fit) groups according to their maximal oxygen consumption. The participants' cognitive performances (i.e., behavioral and neuroelectric indices via an endogenous visuospatial attention task test) and serum BDNF levels were measured at baseline and after either an acute bout of 30min of moderate intensity aerobic exercise or a control period. Analyses of the results revealed that although acute aerobic exercise decreased reaction times (RTs) and increased the central Contingent Negative Variation (CNV) area in both EI groups, only the EIH group showed larger P3 amplitude and increased frontal CNV area after acute exercise. Elevated BDNF levels were shown after acute exercise for both EI groups, but this was not significantly correlated with changes in behavioral and neuroelectric performances for either group. These results suggest that both EI groups could gain response-related (i.e., RT and central CNV) benefits following a bout of moderate acute aerobic exercise. However, only higher-fit individuals could obtain particular cognition-process-related efficiency with regard to attentional resource allocation (i.e., P3 amplitude) and cognitive preparation processes (i.e., frontal CNV) after acute exercise, implying that the mechanisms underlying the effects of such exercise on neural functioning may be fitness dependent. However, the facilitating effects found in this work could not be attributed to the transient change in BDNF levels after acute exercise.

  2. Acute Exercise Modulates Feature-selective Responses in Human Cortex.

    PubMed

    Bullock, Tom; Elliott, James C; Serences, John T; Giesbrecht, Barry

    2017-04-01

    An organism's current behavioral state influences ongoing brain activity. Nonhuman mammalian and invertebrate brains exhibit large increases in the gain of feature-selective neural responses in sensory cortex during locomotion, suggesting that the visual system becomes more sensitive when actively exploring the environment. This raises the possibility that human vision is also more sensitive during active movement. To investigate this possibility, we used an inverted encoding model technique to estimate feature-selective neural response profiles from EEG data acquired from participants performing an orientation discrimination task. Participants (n = 18) fixated at the center of a flickering (15 Hz) circular grating presented at one of nine different orientations and monitored for a brief shift in orientation that occurred on every trial. Participants completed the task while seated on a stationary exercise bike at rest and during low- and high-intensity cycling. We found evidence for inverted-U effects; such that the peak of the reconstructed feature-selective tuning profiles was highest during low-intensity exercise compared with those estimated during rest and high-intensity exercise. When modeled, these effects were driven by changes in the gain of the tuning curve and in the profile bandwidth during low-intensity exercise relative to rest. Thus, despite profound differences in visual pathways across species, these data show that sensitivity in human visual cortex is also enhanced during locomotive behavior. Our results reveal the nature of exercise-induced gain on feature-selective coding in human sensory cortex and provide valuable evidence linking the neural mechanisms of behavior state across species.

  3. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed.

  4. Acute effects of postprandial aerobic exercise on glucose and lipoprotein metabolism in healthy young women.

    PubMed

    Hashimoto, Sayuki; Hayashi, Sanae; Yoshida, Akihiro; Naito, Michitaka

    2013-01-01

    To investigate the acute effects of postprandial exercise on glucose and lipoprotein metabolism after the intake of glucose with or without fat cream in healthy but sedentary young women. Healthy young Japanese women with a sedentary lifestyle, normal weight (18.5≤BMI<25), normal ovarian cycle, and apolipoprotein (apo) E3/3 were enrolled as participants. They ingested 1 g/kg body weight of glucose only or glucose supplemented with 1 g/kg oral fat tolerance test (OFTT) cream 4 (0.35 g/kg as fat) with or without postprandial walking exercise on a motorized treadmill (ca. 50%V(·)o(2)max for 30 min) 20 min after intake of the beverage. Each subject performed 4 trials in a randomized, cross-over design. Venous blood was drawn before (0 h), and 20 min, 1, 2, 4, and 6 h after ingestion. Postprandial exercise alleviated the sharp rise of serum glucose and insulin, and transiently mitigated the decrease of free fatty acids (FFA) after ingestion of the glucose-only beverage. Although no fat was contained in the glucose beverage, transient apoB48 secretion was observed without the rise of serum triglyceride (TG) and remnant-like particle (RLP)-TG, suggesting that apoB48-containing lipoprotein particles with little TG were released by the exercise. Serum apoB48 concentrations at 6 h had decreased to levels lower than the baseline (0 h, after 12-h overnight fast) with or without exercise, suggesting that the 12-h overnight fast may not have been a 'true' fast. Similarly, postprandial exercise suppressed the sharp rise of serum glucose and insulin, and transiently mitigated the decrease of FFA after the ingestion of glucose with OFTT cream. Postprandial exercise stimulated the transient secretion of apoB48-containing TG-rich lipoproteins (TRL) with a rapid rise of serum apoB48, TG, and RLP-TG; however, the subsequent course of lipemia was not significantly changed. Serum apoB48 and RLP-TG values did not return to the baseline even after 6 h, suggesting that postprandial

  5. Effects of Acute Aerobic Exercise on Executive Function in Older Women.

    PubMed

    Peiffer, Roseann; Darby, Lynn A; Fullenkamp, Adam; Morgan, Amy L

    2015-09-01

    Acute aerobic exercise may increase cognitive processing speed among tasks demanding a substantial degree of executive function. Few studies have investigated executive function after acute exercise in older adults across various exercise intensities. Healthy females 60-75 years of age (n = 11) who were not on medications completed 20-min exercise sessions at a moderate (50%VO2max) exercise intensity and a vigorous (75%VO2max) exercise intensity. Modified flanker tasks (reaction times) and d2 tests of sustained and selective attention (components of executive function) were completed before, immediately after, and 30-min post-exercise. Results indicated that older adult females had improved scores on the modified flanker task reaction times (RTT, RTI, RTC) and d2 tests immediately after both moderate and vigorous intensity aerobic exercise. Some of these effects were maintained 30 min post-exercise. These findings suggest that an acute bout of exercise, regardless of intensity, can improve performance on tests of executive function in older women. Key pointsFew studies have investigated the effects of the intensity of exercise on executive function in older womenExecutive function improved after 20-min of aerobic exercise regardless of exercise intensity in older womenFindings from the study were not confounded by prescribed medications; all participants who were older women were not taking any medications.

  6. Effects of Acute Aerobic Exercise on Executive Function in Older Women

    PubMed Central

    Peiffer, Roseann; Darby, Lynn A.; Fullenkamp, Adam; Morgan, Amy L.

    2015-01-01

    Acute aerobic exercise may increase cognitive processing speed among tasks demanding a substantial degree of executive function. Few studies have investigated executive function after acute exercise in older adults across various exercise intensities. Healthy females 60-75 years of age (n = 11) who were not on medications completed 20-min exercise sessions at a moderate (50%VO2max) exercise intensity and a vigorous (75%VO2max) exercise intensity. Modified flanker tasks (reaction times) and d2 tests of sustained and selective attention (components of executive function) were completed before, immediately after, and 30-min post-exercise. Results indicated that older adult females had improved scores on the modified flanker task reaction times (RTT, RTI, RTC) and d2 tests immediately after both moderate and vigorous intensity aerobic exercise. Some of these effects were maintained 30 min post-exercise. These findings suggest that an acute bout of exercise, regardless of intensity, can improve performance on tests of executive function in older women. Key points Few studies have investigated the effects of the intensity of exercise on executive function in older women Executive function improved after 20-min of aerobic exercise regardless of exercise intensity in older women Findings from the study were not confounded by prescribed medications; all participants who were older women were not taking any medications PMID:26336345

  7. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments.

    PubMed

    West, Daniel W D; Lee-Barthel, Ann; McIntyre, Todd; Shamim, Baubak; Lee, Cassandra A; Baar, Keith

    2015-10-15

    Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.

  8. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise.

    PubMed

    Fukuda, Taira; Maegawa, Taketeru; Matsumoto, Akihiro; Komatsu, Yutaka; Nakajima, Toshiaki; Nagai, Ryozo; Kawahara, Takashi

    2010-05-01

    It has been unclear how acute hypoxia at moderate altitude affects stroke volume (SV), an index of cardiac function, during exercise. The present study was conducted to reveal whether acute normobaric hypoxia might alter SV during exercise.Nine healthy male subjects performed maximal exercise testing under normobaric normoxic, and normobaric hypoxic conditions (O(2): 14.4%) in a randomized order. A novel thoracic impedance method was used to continuously measure SV and cardiac output (CO) during exercise. Acute hypoxia decreased maximal work rate (hypoxia; 247 + or - 6 [SE] versus normoxia; 267 + or - 8 W, P < 0.005) and VO(2) max (hypoxia; 2761 + or - 99 versus normoxia; 3039 + or - 133 mL/min, P < 0.005). Under hypoxic conditions, SV and CO at maximal exercise decreased (SV: hypoxia; 145 + or - 11 versus normoxia; 163 + or - 11 mL, P < 0.05, CO: hypoxia; 26.7 + or - 2.1 versus normoxia; 30.2 + or - 1.8 L/min, P < 0.05). In acute hypoxia, SV during submaximal exercise at identical work rate decreased. Furthermore, in hypoxia, 4 of 9 subjects attained their highest SV at maximal exercise, while in normoxia, 8 of 9 subjects did.Acute normobaric hypoxia attenuated the increment of SV and CO during exercise, and SV reached a plateau earlier under hypoxia than in normoxia. Cardiac function during exercise at this level of acute normobaric hypoxia might be attenuated.

  9. High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise.

    PubMed

    Croft, Louise; Bartlett, Jonathan D; MacLaren, Don P M; Reilly, Thomas; Evans, Louise; Mattey, Derek L; Nixon, Nicola B; Drust, Barry; Morton, James P

    2009-12-01

    This aims of this study were to investigate the effects of carbohydrate availability during endurance training on the plasma interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-alpha response to a subsequent acute bout of high-intensity interval exercise. Three groups of recreationally active males performed 6 weeks of high-intensity interval running. Groups 1 (LOW+GLU) and 2 (LOW+PLA) trained twice per day, 2 days per week, and consumed a 6.4% glucose or placebo solution, respectively, before every second training session and at regular intervals throughout exercise. Group 3 (NORM) trained once per day, 4 days per week, and consumed no beverage during training. Each group performed 50 min of high-intensity interval running at the same absolute workloads before and after training. Muscle glycogen utilization in the gastrocnemius muscle during acute exercise was reduced (p < 0.05) in all groups following training, although this was not affected by training condition. Plasma IL-6 concentration increased (p < 0.05) after acute exercise in all groups before and after training. Furthermore, the magnitude of increase was reduced (p < 0.05) following training. This training-induced attenuation in plasma IL-6 increase was similar among groups. Plasma IL-8 concentration increased (p < 0.05) after acute exercise in all groups, although the magnitude of increase was not affected (p > 0.05) by training. Acute exercise did not increase (p > 0.05) plasma TNF-alpha when undertaken before or after training. Data demonstrate that the exercise-induced increase in plasma IL-6 concentration in response to customary exercise is attenuated by previous exercise training, and that this attenuation appears to occur independent of carbohydrate availability during training.

  10. A study on macronutrient self-selection after acute aerobic exercise in college females

    PubMed Central

    Kim, Tae-Young; Kim, Min-Jeong; Cho, Ik-Rae; Won, Yu-Mi; Han, Mi-Kyung; Jung, Kon-Nym; Lee, Sang-Ho; Lee, Jae-Hee; Chin, Ji-Hyoung; Roh, Jae-Hun; Min, Seung-Hi; Lee, Taek-Kyun; Park, Hyo-Joo; Jang, Kwon; Kwon, Se-Jeong; Kang, Suh-Jung; Shin, Mi-Ae; Kim, Hu-Nyun; Hong, Jae-Seung; Choi, Eun-Hi; An, Nam-Il; Kim, Ji-Hyuk; Kim, Mi-Suk

    2016-01-01

    [Purpose] This study was conducted to determine whether acute aerobic exercise (climbing) is associated with changes in the dietary intake pattern. [Subjects and Methods] Food intake and physical activity data for 15 female college students were sampled for 3 days and categorized according to routine activity or high-intensity activity such as hiking. Nutrient intake based on the data was analyzed using a nutrition program. [Results] Carbohydrate and protein intake was significantly decreased after exercise compared to before acute aerobic exercise, but lipid intake showed no significant difference. Calorie intake was significantly decreased after exercise compared to before exercise; however, calorie consumption was significantly increased after exercise. [Conclusion] Aerobic exercise causes a decrease in total calories by inducing reduction in carbohydrate and protein intake. Therefore, aerobic exercise is very important for weight (body fat) control since it causes positive changes in the food intake pattern in female students. PMID:27799693

  11. An Acute Bout of Exercise Improves the Cognitive Performance of Older Adults.

    PubMed

    Johnson, Liam; Addamo, Patricia K; Selva Raj, Isaac; Borkoles, Erika; Wyckelsma, Victoria; Cyarto, Elizabeth; Polman, Remco C

    2016-10-01

    There is evidence that an acute bout of exercise confers cognitive benefits, but it is largely unknown what the optimal mode and duration of exercise is and how cognitive performance changes over time after exercise. We compared the cognitive performance of 31 older adults using the Stroop test before, immediately after, and at 30 and 60 min after a 10 and 30 min aerobic or resistance exercise session. Heart rate and feelings of arousal were also measured before, during, and after exercise. We found that, independent of mode or duration of exercise, the participants improved in the Stroop Inhibition task immediately postexercise. We did not find that exercise influenced the performance of the Stroop Color or Stroop Word Interference tasks. Our findings suggest that an acute bout of exercise can improve cognitive performance and, in particular, the more complex executive functioning of older adults.

  12. Acute effects of aerobic exercise on cognitive function in older adults.

    PubMed

    Kamijo, Keita; Hayashi, Yoichi; Sakai, Tomoaki; Yahiro, Tatsuhisa; Tanaka, Kiyoji; Nishihira, Yoshiaki

    2009-05-01

    The present study investigated the effects of acute aerobic exercise on cognitive brain functions of older adults. Twenty-four males (12 older and 12 younger adults) performed a modified flanker task during a baseline session (no exercise) and after light and moderate cycling exercise in counterbalanced order on different days while measures of task performance and the P3 component of an event-related brain potential were collected. The results indicated that, for both age groups, reaction time following moderate exercise was shorter relative to the other sessions, and P3 latencies following both light and moderate exercise were shorter compared with the baseline session. In contrast, P3 amplitude increased only following moderate exercise in younger adults. These findings suggest that light and moderate exercises improve cognitive function across the adult lifespan, although the mechanisms underlying the effects of observed acute aerobic exercise on cognitive function may be age dependent.

  13. Musical feedback during exercise machine workout enhances mood.

    PubMed

    Fritz, Thomas H; Halfpaap, Johanna; Grahl, Sophia; Kirkland, Ambika; Villringer, Arno

    2013-01-01

    Music making has a number of beneficial effects for motor tasks compared to passive music listening. Given that recent research suggests that high energy musical activities elevate positive affect more strongly than low energy musical activities, we here investigated a recent method that combined music making with systematically increasing physiological arousal by exercise machine workout. We compared mood and anxiety after two exercise conditions on non-cyclical exercise machines, one with passive music listening and the other with musical feedback (where participants could make music with the exercise machines). The results showed that agency during exercise machine workout (an activity we previously labeled jymmin - a cross between jammin and gym) had an enhancing effect on mood compared to workout with passive music listening. Furthermore, the order in which the conditions were presented mediated the effect of musical agency for this subscale when participants first listened passively, the difference in mood between the two conditions was greater, suggesting that a stronger increase in hormone levels (e.g., endorphins) during the active condition may have caused the observed effect. Given an enhanced mood after training with musical feedback compared to passively listening to the same type of music during workout, the results suggest that exercise machine workout with musical feedback (jymmin) makes the act of exercise machine training more desirable.

  14. Exercise-Induced growth hormone during acute sleep deprivation.

    PubMed

    Ritsche, Kevin; Nindl, Bradly C; Wideman, Laurie

    2014-10-01

    The effect of acute (24-h) sleep deprivation on exercise-induced growth hormone (GH) and insulin-like growth factor-1 (IGF-1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24-h sessions including a brief, high-intensity exercise bout following either a night of sleep (SLEEP) or (24-h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30-sec Wingate sprints on a cycle ergometer. Self-reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P = 0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P = 0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise-induced peak GH concentration (TTP), or free IGF-1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P < 0.01), exercise-induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P < 0.01) and ΔGH (peak GH - resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P < 0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise-induced GH response was significantly augmented in sleep-deprived individuals.

  15. Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms.

    PubMed

    Fritz, Kathryn M; O'Connor, Patrick J

    2016-06-01

    Little is known about whether acute exercise affects signs or symptoms of attention deficit/hyperactivity disorder (ADHD) in adults. This experiment sought to determine the effects of a single bout of moderate-intensity leg cycling exercise on measures of attention, hyperactivity, mood, and motivation to complete mental work in adult men reporting elevated ADHD symptoms. A repeated-measures crossover experiment was conducted with 32 adult men (18-33 yr) with symptoms consistent with adult ADHD assessed by the Adult Self-Report Scale V1.1. Measures of attention (continuous performance task and Bakan vigilance task), motivation to perform the mental work (visual analog scale), lower leg physical activity (accelerometry), and mood (Profile of Mood States and Addiction Research Center Inventory amphetamine scale) were measured before and twice after a 20-min seated rest control or exercise condition involving cycling at 65% V˙O2peak. Condition (exercise vs rest) × time (baseline, post 1, and post 2) ANOVA was used to test the hypothesized exercise-induced improvements in all outcomes. Statistically significant condition-time interactions were observed for vigor (P < 0.001), amphetamine (P < 0.001), motivation (P = 0.027), and Profile of Mood States depression (P = 0.027), fatigue (P = 0.030), and confusion (P = 0.046) scales. No significant interaction effects were observed for leg hyperactivity, simple reaction time, or vigilance task performance (accuracy, errors, or reaction time). In young men reporting elevated symptoms of ADHD, a 20-min bout of moderate-intensity cycle exercise transiently enhances motivation for cognitive tasks, increases feelings of energy, and reduces feelings of confusion, fatigue, and depression, but this has no effect on the behavioral measures of attention or hyperactivity used.

  16. Acute achilles tendon repair: strength outcomes after an acute bout of exercise in recreational athletes.

    PubMed

    Porter, David A; Barnes, Adam F; Rund, Angela M; Kaz, Ari J; Tyndall, James A; Millis, Andrew A

    2014-02-01

    This is the first study to evaluate the effect of an acute bout of exercise on strength evaluation after Achilles tendon (AT) rupture and repair. Forty patients sustained an acute AT injury and met inclusion criteria for this study. At a minimum of 12 months after operative repair, patients were measured for (1) calf circumference, (2) bilateral isokinetic strength on a Cybex dynamometer before and after 30 minutes of walking at 70% maximal exertion, and (3) subjective evaluation by AAOS lower limb core and foot and ankle modules. Follow-up occurred at a mean of 32.4 ± 20.7 (range, 12-80) months after surgery, and patients were on average 44.4 ± 8.6 (range, 20-62) years old. One-tailed Student's paired t tests analyzed significance for strength and fatigue between the involved and uninvolved ankle (P < .05). The calf circumference of the involved ankle was significantly smaller than the uninvolved ankle by 1.9 cm, or 4.7%. Plantarflexion deficits of the involved ankle ranged from 12% to 18% for peak torque (P < .0001) and from 17% to 25% for work per repetition (P < .0001), but both ankles fatigued at equal proportions as measured after exercise. Dorsiflexion strength of the involved ankle increased 6% to 11% for peak torque (P = .070) and 1% to 25% for peak work (P = .386). Reported AAOS lower limb core and foot and ankle scores averaged 99.8 and 96.0, respectively. After an AT rupture with repair, patients had less plantarflexion strength, and equal dorsiflexion strength in the operative leg compared to the uninvolved, normal leg. However, subjective results indicated near normal pain and function despite mild plantarflexion strength deficits. Dorsiflexion strength was normal after repair and remained normal even after an acute bout of exercise. Plantarflexion strength ratios postexercise remained similar to pre-exercise after acute exercise bouts. Athletes reported a "flat tire" feeling while running, which suggests a probable gait adjustment as cause for long

  17. The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents.

    PubMed

    Hogan, Michael; Kiefer, Markus; Kubesch, Sabine; Collins, Peter; Kilmartin, Liam; Brosnan, Méadhbh

    2013-08-01

    The current study examined the effects of physical fitness and aerobic exercise on cognitive functioning and coherence of the electroencephalogram in 30 adolescents between the ages of 13 and 14 years. Participants were first classified as fit or unfit and then performed a modified Eriksen flanker task after a bout of acute exercise and after a period of relaxation. Analysis of behavioural differences between the fit and unfit groups revealed an interaction between fitness levels and acute physical exercise. Specifically, fit participants had significantly faster reaction times in the exercise condition in comparison with the rest condition; unfit, but not fit, participants had higher error rates for NoGo relative to Go trials in the rest condition. Furthermore, unfit participants had higher levels of lower alpha, upper alpha, and beta coherence in the resting condition for NoGo trials, possibly indicating a greater allocation of cognitive resources to the task demands. The higher levels of alpha coherence are of particular interest in light of its reported role in inhibition and effortful attention. The results suggest that physical fitness and acute exercise may enhance cognition by increasing the efficacy of the attentional system.

  18. Sildenafil does not Improve Exercise Capacity under Acute Hypoxia Exposure.

    PubMed

    Toro-Salinas, A H; Fort, N; Torrella, J R; Pagès, T; Javierre, C; Viscor, G

    2016-09-01

    The increase in pulmonary arterial pressure (PAP) due to hypoxic pulmonary vasoconstriction (HPV) could be a limiting factor for physical performance during hypoxic exposure. Sildenafil has been shown to reduce PAP in situations of moderate or severe hypoxia, and consequently its role as an ergogenic aid and even a possible doping substance must be considered. We performed a double-blind crossover study to determine the effects of sildenafil on cardiovascular, respiratory and metabolic parameters in normoxia and during acute exposure to hypobaric hypoxia (4 000 m) at rest and during maximal and submaximal (60% VO2 max) exercise tests. One hour before testing started, sildenafil (100 mg) or a placebo was orally administered to 11 volunteers. In normoxic conditions, sildenafil did not affect performance. Similarly, no significant differences were found in cardiovascular and respiratory parameters in hypoxic conditions at rest or during exercise. The use of sildenafil to improve physical performance in non-acclimatized subjects is not supported by our data. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle.

    PubMed

    Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming

    2016-05-01

    Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results

  20. Acute complicated pyelonephritis: contrast-enhanced ultrasound.

    PubMed

    Fontanilla, Teresa; Minaya, Javier; Cortés, Cristina; Hernando, Concepción González; Arangüena, Rafael Pérez; Arriaga, Jesús; Carmona, Maria Soledad; Alcolado, Ana

    2012-08-01

    Imaging is required if complication is suspected in acute pyelonephritis to assess the nature and extent of the lesions, and to detect underlying causes. The current imaging modality of choice in clinical practice is computed tomography. Because of associated radiation and potential nephrotoxicity, CEUS is an alternative that has been proven to be equally accurate in the detection of acute pyelonephritis renal lesions. The aims of this study of 48 patients are to describe in detail the CEUS findings in acute pyelonephritis, and to determine if abscess and focal pyelonephritis may be distinguished. Very characteristic morphologic and temporal patterns of enhancement are described. These allow differentiation of focal pyelonephritis from renal abscess, and detection of tiny suppurative foci within focal pyelonephritis. The detection of abscesses is important because follow-up in 25 patients revealed a longer clinical course. Typical pyelonephritis CEUS features permit distinction from other renal lesions. As a whole, CEUS is an excellent tool in the work-up of complicated acute pyelonephritis, so it may be considered as the imaging technique of choice in the evaluation and follow-up of these patients who frequently are very young, so as to minimise radiation exposure.

  1. Acute and training effects of resistance exercise on heart rate variability.

    PubMed

    Kingsley, J Derek; Figueroa, Arturo

    2016-05-01

    Heart rate variability (HRV) has been used as a non-invasive method to evaluate heart rate (HR) regulation by the parasympathetic and sympathetic divisions of the autonomic nervous system. In this review, we discuss the effect of resistance exercise both acutely and after training on HRV in healthy individuals and in those with diseases characterized by autonomic dysfunction, such as hypertension and fibromyalgia. HR recovery after exercise is influenced by parasympathetic reactivation and sympathetic recovery to resting levels. Therefore, examination of HRV in response to acute exercise yields valuable insight into autonomic cardiovascular modulation and possible underlying risk for disease. Acute resistance exercise has shown to decrease cardiac parasympathetic modulation more than aerobic exercise in young healthy adults suggesting an increased risk for cardiovascular dysfunction after resistance exercise. Resistance exercise training appears to have no effect on resting HRV in healthy young adults, while it may improve parasympathetic modulation in middle-aged adults with autonomic dysfunction. Acute resistance exercise appears to decrease parasympathetic activity regardless of age. This review examines the acute and chronic effects of resistance exercise on HRV in young and older adults. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Sleep patterns and acute physical exercise: the effects of gender, sleep disturbances, type and time of physical exercise.

    PubMed

    Maculano Esteves, A; Ackel-D'Elia, C; Tufik, S; De Mello, M T

    2014-12-01

    Aim of the study was to determine which factors influence sleep patterns after a single session of physical exercise. Adult sedentary volunteers (N.=221; 104 men and 117 women) aged 31.40±9.40 were randomised into groups with three different types of physical exercise (resistance, aerobic and interval). After the exercise protocol was explained, each volunteer was given the first polysomnographic (PSG) and performed the acute session of physical exercise (resistance: based on a 1RM test; aerobic: based on a maximum effort test (MET) and interval: 10 series with 4-minute intervals between series). The second PSG was performed the day after the acute session of physical exercise. A negative correlation was found between sleep latency and the acute physical exercise session practiced in the evening, and a positive correlation was found between the total sleep time and female gender. The REM sleep stage (%) was positively correlated with the control, obstructive sleep apnea (OSA) and periodic leg movement (PLM) groups and the acute physical exercise session practiced in the morning. Positive correlations were observed in the arousal index and the PLM group and female gender; the PLM index and the control and OSA groups; minimum oxygen saturation and the OSA and PLM groups. Therefore, these results suggested that such factors as gender, the presence of sleep disturbance (PLM and/or OSA), type of physical exercise (aerobic, resistance or interval) and the time that it was practiced (morning, afternoon or evening) can influence sleep patterns after a single session of physical exercise. However, the gender seems to be the most important factor to influence sleep pattern in the situation studied.

  3. Mechanisms for independent and combined effects of calorie restriction and acute exercise on insulin-stimulated glucose uptake by skeletal muscle of old rats.

    PubMed

    Sharma, Naveen; Wang, Haiyan; Arias, Edward B; Castorena, Carlos M; Cartee, Gregory D

    2015-04-01

    Either calorie restriction [CR; consuming 60-65% of ad libitum (AL) intake] or acute exercise can independently improve insulin sensitivity in old age, but their combined effects on muscle insulin signaling and glucose uptake have previously been unknown. Accordingly, we assessed the independent and combined effects of CR (beginning at 14 wk old) and acute exercise (3-4 h postexercise) on insulin signaling and glucose uptake in insulin-stimulated epitrochlearis muscles from 30-mo-old rats. Either CR alone or exercise alone vs. AL sedentary controls induced greater insulin-stimulated glucose uptake. Combined CR and exercise vs. either treatment alone caused an additional increase in insulin-stimulated glucose uptake. Either CR or exercise alone vs. AL sedentary controls increased Akt Ser(473) and Akt Thr(308) phosphorylation. Combined CR and exercise further elevated Akt phosphorylation on both sites. CR alone, but not exercise alone, vs. AL sedentary controls significantly increased Akt substrate of 160 kDa (AS160) Ser(588) and Thr(642) phosphorylation. Combined CR and exercise did not further enhance AS160 phosphorylation. Exercise alone, but not CR alone, modestly increased GLUT4 abundance. Combined CR and exercise did not further elevate GLUT4 content. These results suggest that CR or acute exercise independently increases insulin-stimulated glucose uptake via overlapping (greater Akt phosphorylation) and distinct (greater AS160 phosphorylation for CR, greater GLUT4 for exercise) mechanisms. Our working hypothesis is that greater insulin-stimulated glucose uptake in the combined CR and exercise group vs. CR or exercise alone relies on greater Akt activation, leading to greater phosphorylation of one or more Akt substrates other than AS160.

  4. The Effect of Acute Exercise on Affect and Arousal in Inpatient Mental Health Consumers.

    PubMed

    Stanton, Robert; Reaburn, Peter; Happell, Brenda

    2016-09-01

    Acute exercise performed at a self-selected intensity improves affect and may improve long-term adherence. Similarly, in people with severe depression, acute aerobic exercise performed at self-selected intensity improves affect and arousal. However, the relationship between changes in affect and arousal and perceived exercise intensity in people with mental illness has not been evaluated. Affect and arousal were assessed immediately prior to, and immediately following, a group exercise program performed at a self-selected intensity in 40 inpatient mental health consumers who received a diagnosis of anxiety or bipolar or depressive disorders. Exercise intensity was assessed immediately after exercise. Postexercise affect was significantly improved for people with bipolar and depressive disorders but not for people with anxiety disorders. For the group as a whole, results showed a significant curvilinear relationship between ratings of perceived exertion and postexercise affect. These data will inform the development and delivery of future exercise interventions for inpatient mental health consumers.

  5. Acute Exercise in Vietnam Veterans is Associated with Positive Subjective Experiences.

    PubMed

    Sealey, Rebecca M

    A person's subjective experience to their first exercise session is likely to influence their long-term adherence to regular exercise. The aim of the current pilot study therefore is to quantify the subjective exercise experience of previously sedentary Vietnam War Veterans undertaking an initial bout of one of three different exercise interventions. Thirty-two Vietnam Veterans presenting with one or more chronic diseases/conditions participated in one of three acute exercise bouts: 1) lower-body vibration, upper-body resistance and stretching (WBVT); 2) lower-body vibration, upper-body resistance, aerobic exercise and stretching (WBVT+CV); and 3) full-body resistance, aerobic exercise and stretching (R+CV). Pre and post acute exercise measures of positive well being, psychological distress and fatigue were assessed with the Subjective Exercise Experiences Scale (SEES). A 3(conditions) × 2(time) repeated measures ANOVA with post-hoc Tukey HSD was used to identify any significant differences in SEES between exercise groups and pre and post-exercise. All interventions increased positive well being, with WBVT and R+CV reporting improvements across all areas of the SEES. The WBVT+CV group reported slightly increased psychological distress and the greatest increase in fatigue. An acute bout of exercise increases positive well-being in previously sedentary War Veterans however a longer-duration exercise bout containing multiple exercise modes may be too demanding for this population. Exercise professionals should consider commencing with a simple program to minimise psychological distress and fatigue as this may negatively impact on exercise adherence.

  6. The effects of cardiorespiratory fitness and acute aerobic exercise on executive functioning and EEG entropy in adolescents

    PubMed Central

    Hogan, Michael J.; O’Hora, Denis; Kiefer, Markus; Kubesch, Sabine; Kilmartin, Liam; Collins, Peter; Dimitrova, Julia

    2015-01-01

    The current study examined the effects of cardiorespiratory fitness, identified with a continuous graded cycle ergometry, and aerobic exercise on cognitive functioning and entropy of the electroencephalogram (EEG) in 30 adolescents between the ages of 13 and 14 years. Higher and lower fit participants performed an executive function task after a bout of acute exercise and after rest while watching a film. EEG entropy, using the sample entropy measure, was repeatedly measured during the 1500 ms post-stimulus interval to evaluate changes in entropy over time. Analysis of the behavioral data for lower and higher fit groups revealed an interaction between fitness levels and acute physical exercise. Notably, lower fit, but not higher fit, participants had higher error rates (ER) for No Go relative to Go trials in the rest condition, whereas in the acute exercise condition there were no differences in ER between groups; higher fit participants also had significantly faster reaction times in the exercise condition in comparison with the rest condition. Analysis of EEG data revealed that higher fit participants demonstrated lower entropy post-stimulus than lower fit participants in the left frontal hemisphere, possibly indicating increased efficiency of early stage stimulus processing and more efficient allocation of cognitive resources to the task demands. The results suggest that EEG entropy is sensitive to stimulus processing demands and varies as a function of physical fitness levels, but not acute exercise. Physical fitness, in turn, may enhance cognition in adolescence by facilitating higher functionality of the attentional system in the context of lower levels of frontal EEG entropy. PMID:26539093

  7. Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects.

    PubMed

    Loprinzi, Paul D; Kane, Christy J

    2015-04-01

    To simultaneously examine the effects of acute exercise intensity and free-living physical activity and sedentary behavior on cognitive function in young, healthy adults. Using a counterbalanced, crossover, randomized controlled design, 87 young adults (mean age, 21.4 years) completed various cognitive assessments with and without an acute bout of exercise preceding the assessment. Participants were randomized into 1 of 4 groups to complete a 30-minute bout of acute exercise: control (no exercise), light intensity (40%-50% of predicted maximum heart rate [HR(max)]), moderate intensity (51%-70% of predicted HR(max)), or vigorous intensity (71%-85% of predicted HR(max)). Subjectively and objectively determined (accelerometry) physical activity and sedentary behavior were assessed to examine the association between these free-living behaviors and cognitive function. The study duration was August 26, 2013, to September 11, 2014. Concentration-related cognition (mean ± SD Feature Match test score) was significantly higher after a 30-minute acute bout of moderate-intensity exercise (145.1±26.9) compared with cognitive assessment without exercise (121.3±19.2; P=.004). Furthermore, questionnaire-determined sedentary behavior was inversely associated with visual attention and task switching (Trail Making Test A score) (β=-0.23; P=.04). Last, estimated cardiorespiratory fitness (volume of maximum oxygen consumption) was positively associated with reasoning-related cognitive function (Odd One Out test score) (β=0.49; P=.05); when adding metabolic equivalent of task minutes per week to this model, the results were not significant (β=0.47; P=.07). These findings provide some support for acute moderate-intensity exercise, sedentary behavior, and cardiorespiratory fitness being associated with executive functioning-related cognitive function in young, healthy adults. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights

  8. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: evidence for β-adrenoceptor mediated enhanced coupling during exercise testing

    PubMed Central

    del Rio, Carlos L.; Clymer, Bradley D.; Billman, George E.

    2015-01-01

    Introduction: Autonomic neural activation during cardiac stress testing is an established risk-stratification tool in post-myocardial infarction (MI) patients. However, autonomic activation can also modulate myocardial electrotonic coupling, a known factor to contribute to the genesis of arrhythmias. The present study tested the hypothesis that exercise-induced autonomic neural activation modulates electrotonic coupling (as measured by myocardial electrical impedance, MEI) in post-MI animals shown to be susceptible or resistant to ventricular fibrillation (VF). Methods: Dogs (n = 25) with healed MI instrumented for MEI measurements were trained to run on a treadmill and classified based on their susceptibility to VF (12 susceptible, 9 resistant). MEI and ECGs were recorded during 6-stage exercise tests (18 min/test; peak: 6.4 km/h @ 16%) performed under control conditions, and following complete β-adrenoceptor (β-AR) blockade (propranolol); MEI was also measured at rest during escalating β-AR stimulation (isoproterenol) or overdrive-pacing. Results: Exercise progressively increased heart rate (HR) and reduced heart rate variability (HRV). In parallel, MEI decreased gradually (enhanced electrotonic coupling) with exercise; at peak exercise, MEI was reduced by 5.3 ± 0.4% (or -23 ± 1.8Ω, P < 0.001). Notably, exercise-mediated electrotonic changes were linearly predicted by the degree of autonomic activation, as indicated by changes in either HR or in HRV (P < 0.001). Indeed, β-AR blockade attenuated the MEI response to exercise while direct β-AR stimulation (at rest) triggered MEI decreases comparable to those observed during exercise; ventricular pacing had no significant effects on MEI. Finally, animals prone to VF had a significantly larger MEI response to exercise. Conclusions: These data suggest that β-AR activation during exercise can acutely enhance electrotonic coupling in the myocardium, particularly in dogs susceptible to ischemia-induced VF. PMID

  9. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue.

    PubMed

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-09-01

    Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit.

  10. Effect of a Pre-Workout Energy Supplement on Acute Multi-Joint Resistance Exercise

    PubMed Central

    Gonzalez, Adam M.; Walsh, Allyson L.; Ratamess, Nicholas A.; Kang, Jie; Hoffman, Jay R.

    2011-01-01

    The effect of a pre-workout energy supplement on acute multi- joint resistance exercise was examined in eight resistance-trained college-age men. Subjects were randomly provided either a placebo (P) or a supplement (S: containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and the amino acids; leucine, isoleucine, valine, glutamine and arginine) 10 minutes prior to resistance exercise. Subjects performed 4 sets of no more than 10 repetitions of either barbell squat or bench press at 80% of their pre-determined 1 repetition- maximum (1RM) with 90 seconds of rest between sets. Dietary intake 24 hours prior to each of the two training trials was kept constant. Results indicate that consuming the pre-workout energy drink 10 minutes prior to resistance exercise enhances performance by significantly increasing the number of repetitions successfully performed (p = 0.022) in S (26.3 ± 9.2) compared to P (23.5 ± 9.4). In addition, the average peak and mean power performance for all four sets was significantly greater in S compared to P (p < 0.001 and p < 0.001, respectively). No differences were observed between trials in subjective feelings of energy during either pre (p = 0.660) or post (p = 0.179) meaures. Similary, no differences between groups, in either pre or post assessments, were observed in subjective feelings of focus (p = 0.465 and p = 0.063, respectively), or fatigue (p = 0.204 and p = 0.518, respectively). Results suggest that acute ingestion of a high-energy supplement 10 minutes prior to the onset of a multi-joint resistance training session can augment training volume and increase power performance during the workout. Key points Consumption of a pre-workout energy supplement containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and amino acids consumed 10 minutes prior to a bout of resistance exercise enhances the total number of repetitions performed during the exercise bout. Power outputs for each repetition during the

  11. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise.

    PubMed

    Gonzalez, Adam M; Walsh, Allyson L; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2011-01-01

    The effect of a pre-workout energy supplement on acute multi- joint resistance exercise was examined in eight resistance-trained college-age men. Subjects were randomly provided either a placebo (P) or a supplement (S: containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and the amino acids; leucine, isoleucine, valine, glutamine and arginine) 10 minutes prior to resistance exercise. Subjects performed 4 sets of no more than 10 repetitions of either barbell squat or bench press at 80% of their pre-determined 1 repetition- maximum (1RM) with 90 seconds of rest between sets. Dietary intake 24 hours prior to each of the two training trials was kept constant. Results indicate that consuming the pre-workout energy drink 10 minutes prior to resistance exercise enhances performance by significantly increasing the number of repetitions successfully performed (p = 0.022) in S (26.3 ± 9.2) compared to P (23.5 ± 9.4). In addition, the average peak and mean power performance for all four sets was significantly greater in S compared to P (p < 0.001 and p < 0.001, respectively). No differences were observed between trials in subjective feelings of energy during either pre (p = 0.660) or post (p = 0.179) meaures. Similary, no differences between groups, in either pre or post assessments, were observed in subjective feelings of focus (p = 0.465 and p = 0.063, respectively), or fatigue (p = 0.204 and p = 0.518, respectively). Results suggest that acute ingestion of a high-energy supplement 10 minutes prior to the onset of a multi-joint resistance training session can augment training volume and increase power performance during the workout. Key pointsConsumption of a pre-workout energy supplement containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and amino acids consumed 10 minutes prior to a bout of resistance exercise enhances the total number of repetitions performed during the exercise bout.Power outputs for each repetition during the

  12. Acute endurance exercise lowers serum fibroblast growth factor 21 levels in Japanese men.

    PubMed

    Taniguchi, Hirokazu; Tanisawa, Kumpei; Sun, Xiaomin; Higuchi, Mitsuru

    2016-12-01

    The independent effects of acute endurance exercise on FGF21 metabolism are poorly understood. Therefore, the purpose of this study was to determine whether acute endurance exercise modulates serum postprandial FGF21 levels in an age-dependent manner. Exercise intervention trial. Twenty-eight subjects participated in the experiment, of whom 13 were excluded mainly because of a serum FGF21 level below the limit of detection. Thus, data from seven young (age: 18-22 years) and eight elderly male subjects (age: 62-69 years) were analysed. Participants were asked to perform a cycling exercise for 30 min at 70% maximal oxygen uptake, following carbohydrate intake. Blood samples were collected pre-exercise and 0 min, 30 min, 1 h, 3 h and 24 h after the cessation of exercise. Serum FGF21 levels were measured by an enzyme-linked immunosorbent assay. Higher serum FGF21 was observed in the elderly subjects group throughout the experiment (P < 0·05). There was no significant increase in serum FGF21 levels after the cessation of exercise, whereas serum FGF21 levels were significantly lower 24 h after the exercise compared with those pre-exercise, 0 min, 30 min and 1 h after the cessation of exercise in both groups (P < 0·01). The response did not differ between the two groups because of no significant group × time interaction. Acute endurance exercise lowers serum FGF21 levels 24 h following exercise. The results suggest that acute endurance exercise modulates postprandial FGF21 metabolism regardless of age. © 2016 John Wiley & Sons Ltd.

  13. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity.

    PubMed

    Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Jamurtas, Athanasios Z; Carlos Barbero, Jose; Tsoukas, Dimitrios; Theodorou, Apostolos Spyridon; Margonis, Konstantinos; Michailidis, Yannis; Avloniti, Alexandra; Theodorou, Anastasios; Kambas, Antonis; Fatouros, Ioannis

    2013-01-01

    The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8-10 repetitions/set, 65-70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4-6 repetitions/set, 85-90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.

  14. Fatiguing exercise enhances hyperalgesia to muscle inflammation.

    PubMed

    Sluka, Kathleen A; Rasmussen, Lynn A

    2010-02-01

    Since many people with chronic fatigue present with pain and many people with chronic pain present with fatigue, we tested if fatigue would enhance the response to pain in male and female mice. We further tested for the activation of brainstem nuclei by the fatigue task using c-fos as a marker. Fatigue was induced by having mice spontaneously run in running wheel for 2h. Carrageenan (0.03%) was injected into the gastrocnemius muscle either 2h before or 2h after the fatigue task. The mechanical sensitivity of the paw (von Frey filaments), muscle (tweezers), grip force and running wheel activity was assessed before and 24h after injection of carrageenan. Both male and female mice that performed the fatigue task, either before or after intramuscular injection of carrageenan, showed an enhanced mechanical sensitivity of the paw, but not the muscle. Ovariectomized mice showed a similar response to male mice. There was a decrease in running wheel activity after carrageenan injection, but no change in grip force suggesting that mice had no deficit in motor performance induced by the carrageenan. C-fos expression was observed in the nucleus raphe pallidus, obscurus, and magnus after the fatigue task suggesting an increased activity in the raphe nuclei in response to the fatigue task. Therefore, widespread hyperalgesia is enhanced by the fatigue response but not hyperalgesia at the site of insult. We suggest that this effect is sex-dependent and involves mechanisms in the brainstem to result in an enhanced hyperalgesia.

  15. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice.

    PubMed

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α.

  16. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution

    PubMed Central

    Thacker, Jonathan S.; Middleton, Laura E.; McIlroy, William E.; Staines, W. Richard

    2014-01-01

    Abstract Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement‐related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self‐paced wrist extension movements before and after a 20‐min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time‐locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement. PMID:25355852

  17. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution.

    PubMed

    Thacker, Jonathan S; Middleton, Laura E; McIlroy, William E; Staines, W Richard

    2014-10-01

    Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement-related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self-paced wrist extension movements before and after a 20-min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time-locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement.

  18. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise

    PubMed Central

    Ledeganck, Kristien J.; Van Ackeren, Katrijn; Jürgens, Angelika; Hoymans, Vicky Y.; Fransen, Erik; Adams, Volker; De Winter, Benedicte Y.; Verpooten, Gert A.; Vrints, Christiaan J.; Couttenye, Marie M.; Van Craenenbroeck, Emeline M.

    2015-01-01

    Exercise training is an effective way to improve exercise capacity in chronic kidney disease (CKD), but the underlying mechanisms are only partly understood. In healthy subjects (HS), microRNA (miRNA or miR) are dynamically regulated following exercise and have, therefore, been suggested as regulators of cardiovascular adaptation to exercise. However, these effects were not studied in CKD before. The effect of acute exercise (i.e., an acute exercise bout) was assessed in 32 patients with CKD and 12 age- and sex-matched HS (study 1). miRNA expression in response to chronic exercise (i.e., a 3-mo exercise training program) was evaluated in 40 CKD patients (study 2). In a subgroup of study 2, the acute-exercise induced effect was evaluated at baseline and at follow-up. Plasma levels of a preselected panel miRNA, involved in exercise adaptation processes such as angiogenesis (miR-126, miR-210), inflammation (miR-21, miR-146a), hypoxia/ischemia (miR-21, miR-210), and progenitor cells (miR-150), were quantified by RT-PCR. Additionally, seven miRNA involved in similar biological processes were quantified in the subgroup of study 2. Baseline, studied miRNA were comparable in CKD and HS. Following acute exercise, miR-150 levels increased in both CKD (fold change 2.12 ± 0.39, P = 0.002; and HS: fold change 2.41 ± 0.48 P = 0.018, P for interaction > 0.05). miR-146a acutely decreased in CKD (fold change 0.92 ± 0.13, P = 0.024), whereas it remained unchanged in HS. Levels of miR-21, miR-126, and miR-210 remained unaltered. Chronic exercise did not elicit a significant change in the studied miRNA levels. However, an acute exercise-induced decrease in miR-210 was observed in CKD patients, only after training (fold change 0.76 ± 0.15). The differential expression in circulating miRNA in response to acute and chronic exercise may point toward a physiological role in cardiovascular adaptation to exercise, also in CKD. PMID:26475583

  19. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise.

    PubMed

    Van Craenenbroeck, Amaryllis H; Ledeganck, Kristien J; Van Ackeren, Katrijn; Jürgens, Angelika; Hoymans, Vicky Y; Fransen, Erik; Adams, Volker; De Winter, Benedicte Y; Verpooten, Gert A; Vrints, Christiaan J; Couttenye, Marie M; Van Craenenbroeck, Emeline M

    2015-12-15

    Exercise training is an effective way to improve exercise capacity in chronic kidney disease (CKD), but the underlying mechanisms are only partly understood. In healthy subjects (HS), microRNA (miRNA or miR) are dynamically regulated following exercise and have, therefore, been suggested as regulators of cardiovascular adaptation to exercise. However, these effects were not studied in CKD before. The effect of acute exercise (i.e., an acute exercise bout) was assessed in 32 patients with CKD and 12 age- and sex-matched HS (study 1). miRNA expression in response to chronic exercise (i.e., a 3-mo exercise training program) was evaluated in 40 CKD patients (study 2). In a subgroup of study 2, the acute-exercise induced effect was evaluated at baseline and at follow-up. Plasma levels of a preselected panel miRNA, involved in exercise adaptation processes such as angiogenesis (miR-126, miR-210), inflammation (miR-21, miR-146a), hypoxia/ischemia (miR-21, miR-210), and progenitor cells (miR-150), were quantified by RT-PCR. Additionally, seven miRNA involved in similar biological processes were quantified in the subgroup of study 2. Baseline, studied miRNA were comparable in CKD and HS. Following acute exercise, miR-150 levels increased in both CKD (fold change 2.12 ± 0.39, P = 0.002; and HS: fold change 2.41 ± 0.48 P = 0.018, P for interaction > 0.05). miR-146a acutely decreased in CKD (fold change 0.92 ± 0.13, P = 0.024), whereas it remained unchanged in HS. Levels of miR-21, miR-126, and miR-210 remained unaltered. Chronic exercise did not elicit a significant change in the studied miRNA levels. However, an acute exercise-induced decrease in miR-210 was observed in CKD patients, only after training (fold change 0.76 ± 0.15). The differential expression in circulating miRNA in response to acute and chronic exercise may point toward a physiological role in cardiovascular adaptation to exercise, also in CKD.

  20. Acute Exercise Decreases Tribbles Homolog 3 Protein Levels in the Hypothalamus of Obese Rats.

    PubMed

    Rodrigues, Barbara De Almeira; Pauli, Luciana Santos Souza; DE Souza, Claudio Teodoro; DA Silva, Adelino Sanchez Ramos; Cintra, Dennys Esper Correa; Marinho, Rodolfo; DE Moura, Leandro Pereira; Ropelle, Eloize Cristina Chiarreotto; Botezelli, José Diego; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2015-08-01

    This study aims to evaluate the effects of acute exercise on tribbles homolog 3 (TRB3) protein levels and on the interaction between TRB3 and Akt proteins in the hypothalamus of obese rats. In addition, we evaluated the relationship between TRB3 and endoplasmic reticulum (ER) stress and verified whether an acute exercise session influences them. In the first part of the study, the rats were divided into three groups: control (lean), fed standard rodent chow; DIO, fed a high-fat diet; and DIO-EXE, fed a high-fat diet and submitted to a swimming acute exercise protocol. In the second part of the study, we used three other groups: control (lean) group receiving an intracerebroventricular (i.c.v.) infusion of vehicle, lean group receiving an i.c.v. infusion of thapsigargin, and lean group receiving an i.c.v. infusion of thapsigargin and performing an acute exercise session. Four hours after the exercise session, food intake was measured, and the hypothalamus was dissected and separated for subsequent protein analysis by immunoblotting and real-time polymerase chain reaction. The acute exercise session reduced TRB3 protein levels, disrupted the interaction between TRB3 and Akt proteins, increased the phosphorylation of Foxo1, and restored the anorexigenic effects of insulin on the hypothalamus of DIO rats. Interestingly, the suppressive effects of acute exercise on TRB3 protein levels may be related, at least in part, to decreased ER stress (evaluated though pancreatic ER kinase phosphorylation and C/EBP homologous protein levels) in the hypothalamus. Exercise-mediated reduction of hypothalamic TRB3 protein levels may be associated with reduction of ER stress. These data provide a new mechanism by which an acute exercise session improves insulin sensitivity in the hypothalamus and restores food intake control in obesity.

  1. Moderate acute exercise (70% VO2 peak) induces TGF-β, α-amylase and IgA in saliva during recovery.

    PubMed

    Rosa, L; Teixeira, Aas; Lira, Fs; Tufik, S; Mello, Mt; Santos, Rvt

    2014-03-01

    Strenuous exercise promotes changes in salivary IgA and can be associated with a high incidence of upper respiratory tract Infections. However, moderate exercise enhances immune function. The effect of exercise on salivary IgA has been well studied, but its effect on other immunological parameters is poorly studied. Thus, this study determined the effect of moderate acute exercise on immunological salivary parameters, such as the levels of cytokines (TGF-β and IL-5), IgA, α-amylase and total protein, over 24 h. Ten male adult subjects exercised for 60 min at an intensity of 70% VO2 peak. Saliva samples were collected before ('basal') and 0, 12 and 24 h after an exercise session. The total salivary protein was lower after 12 and 24 h than immediately after exercise, whereas α-amylase increased at 12 and 24 h after exercise compared with basal levels. The IgA concentration was increased at 24 h after exercise relative to immediately after exercise, and there was no difference in the IL-5 while TGF-β concentration increased in recovery. In conclusion, 70% VO2 peak exercise does not induce changes immediately after exercise, but after 24 h, it produces an increase in salivary TGF-β without changing IL-5. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Dose-Response and Time Course Effects of Acute Resistance Exercise on Executive Function.

    PubMed

    Brush, Christopher J; Olson, Ryan L; Ehmann, Peter J; Osovsky, Steven; Alderman, Brandon L

    2016-08-01

    The purpose of this study was to examine possible dose-response and time course effects of an acute bout of resistance exercise on the core executive functions of inhibition, working memory, and cognitive flexibility. Twenty-eight participants (14 female; Mage = 20.5 ± 2.1 years) completed a control condition and resistance exercise bouts performed at 40%, 70%, and 100% of their individual 10-repetition maximum. An executive function test battery was administered at 15 min and 180 min postexercise to assess immediate and delayed effects of exercise on executive functioning. At 15 min postexercise, high-intensity exercise resulted in less interference and improved reaction time (RT) for the Stroop task, while at 180 min low- and moderate-intensity exercise resulted in improved performance on plus-minus and Simon tasks, respectively. These findings suggest a limited and task-specific influence of acute resistance exercise on executive function in healthy young adults.

  3. Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: An ERP study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Chang, Yu-Kai

    2015-08-01

    This study aimed to determine the effect of acute exercise in the potential context of non-pharmacological intervention for methamphetamine (MA)-related craving; we additionally determine its effect on the inhibitory control induced by standard and MA-related tasks according to behavioral and neuroelectric measurements among MA-dependent individuals. The present study employed a within-subjects, counterbalanced design. A total of 24 participants who met the DSM-IV criteria for MA dependence were recruited. The craving level, reaction time, and response accuracy, as well as the event-related potential (ERP) components N2 and P3, were measured following exercise and the control treatment in a counterbalanced order. The exercise session consisted of an acute stationary cycle exercise at a moderate intensity, whereas the control treatment consisted of an active reading session. The self-reported MA craving was significantly attenuated during, immediately following, and 50min after the exercise session compared with the pre-exercise ratings, whereas the craving scores at these time points following exercise were lower than those for the reading control session. Acute exercise also facilitated inhibitory performance in both the standard and MA-related Go/Nogo tasks. A larger N2 amplitude, but not a larger P3 amplitude, was observed during both tasks in the exercise session and the Nogo condition compared with the reading control session and the Go condition. This is the first empirical study to demonstrate these beneficial effects of acute aerobic exercise at a moderate intensity on MA-related craving and inhibitory control in MA-dependent individuals. These results suggest a potential role for acute aerobic exercise in treating this specific type of substance abuse.

  4. Irisin in response to acute and chronic whole-body vibration exercise in humans.

    PubMed

    Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S

    2014-07-01

    Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children

    ERIC Educational Resources Information Center

    Tine, Michele T.; Butler, Allison G.

    2012-01-01

    Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…

  6. Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children

    ERIC Educational Resources Information Center

    Tine, Michele T.; Butler, Allison G.

    2012-01-01

    Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…

  7. Acute supplementation with keto analogues and amino acids in rats during resistance exercise.

    PubMed

    de Almeida, Rosemeire Dantas; Prado, Eduardo Seixas; Llosa, Carlos Daniel; Magalhães-Neto, Anibal; Cameron, Luiz-Claudio

    2010-11-01

    During exercise, ammonia levels are related to the appearance of both central and peripheral fatigue. Therefore, controlling the increase in ammonia levels is an important strategy in ameliorating the metabolic response to exercise and in improving athletic performance. Free amino acids can be used as substrates for ATP synthesis that produces ammonia as a side product. Keto analogues act in an opposite way, being used to synthesise amino acids whilst decreasing free ammonia in the blood. Adult male rats were divided into four groups based on receiving either keto analogues associated with amino acids (KAAA) or a placebo and resistance exercise or no exercise. There was an approximately 40% increase in ammonaemia due to KAAA supplementation in resting animals. Exercise increased ammonia levels twofold with respect to the control, with a smaller increase (about 20%) in ammonia levels due to exercise. Exercise itself causes a significant increase in blood urea levels (17%). However, KAAA reduced blood urea levels to 75% of the pre-exercise values. Blood urate levels increased 28% in the KAAA group, independent of exercise. Supplementation increased glucose levels by 10% compared with control animals. Exercise did not change glucose levels in either the control or supplemented groups. Exercise promoted a 57% increase in lactate levels in the control group. Supplementation promoted a twofold exercise-induced increase in blood lactate levels. The present results suggest that an acute supplementation of KAAA can decrease hyperammonaemia induced by exercise.

  8. Influence of acute eccentric exercise on the H:Q ratio.

    PubMed

    Thompson, B J; Smith, D B; Sobolewski, E J; Fiddler, R E; Everett, L; Klufa, J L; Ryan, E D

    2011-12-01

    The purpose of the present study was to examine the effects of an acute bout of eccentric exercise on maximal isokinetic concentric peak torque (PT) of the leg flexors and extensors and the hamstrings-to-quadriceps (H:Q) strength ratio. Sixteen male (mean±SD: age=20.9±2 years; stature=177.0±4.4 cm; mass=76.8±10.0 kg) volunteers performed maximal, concentric isokinetic leg extension and flexion muscle actions at 60°·sec - 1 before and after (24-72 h) a bout of eccentric exercise. The eccentric exercise protocol consisted of 4 sets of 10 repetitions for the leg press, leg extension, and leg curl exercises at 120% of the concentric one repetition maximum (1-RM). The results indicated that the acute eccentric exercise protocol resulted in a significant (P<0.05) decrease in isokinetic leg flexion (13-19%) and leg extension (11-16%) PT 24-72 h post-exercise. However, the H:Q ratios were unaltered by the eccentric exercise protocol. These findings suggest that an acute bout of eccentric exercise utilizing both multi - and single - joint dynamic constant external resistance (DCER) exercises results in similar decreases in maximal isokinetic strength of the leg flexors and extensors, but does not alter the H:Q ratio. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Enhancement of vasorelaxation in hypertension following high-intensity exercise.

    PubMed

    Yang, Ai-Lun; Lo, Chia-Wen; Lee, Jen-Ting; Su, Chia-Ting

    2011-04-30

    Exercise can ameliorate vascular dysfunction in hypertension, but its underlying mechanism has not been explored thoroughly. We aimed to investigate whether the high-intensity exercise could enhance vasorelaxation mediated by insulin and insulin-like growth factor-1 (IGF-1) in hypertension. Sixteen-week-old spontaneously hypertensive rats were randomly divided into non-exercise sedentary (SHR) and high-intensity exercise (SHR+Ex) groups conducted by treadmill running at a speed of 30 m/ min until exhaustion. Age-matched Wistar-Kyoto rats (WKY) were used as the normotensive control group. Immediately after exercise, the agonist-induced vasorelaxation of aortas was evaluated in organ baths with or without endothelial denudation. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3K) in the vasorelaxation. By adding superoxide dismutase (SOD), a superoxide scavenger, the role of superoxide production in the vasorelaxation was also clarified. We found that, the high-intensity exercise significantly (P < 0.05) induced higher vasorelaxant responses to insulin and IGF-1 in the SHR+Ex group than that in the SHR group; after endothelial denudation and pre-treatment of the PI3K inhibitor, NOS inhibitor, or SOD, vasorelaxant responses to insulin and IGF-1 became similar among three groups; the protein expression of insulin receptor, IGF-1 receptor, and endothelial NOS (eNOS) was significantly (P < 0.05) increased in the SHR+Ex group compared with the SHR group;] the relaxation to sodium nitroprusside, a NO donor, was not different among three groups. Our findings suggested that the high-intensity exercise ameliorated the insulin- and IGF-1-mediated vasorelaxation through the endothelium-dependent pathway, which was associated with the reduced level of superoxide production.

  10. Exercise echocardiography and multidetector computed tomography for the evaluation of acute chest pain.

    PubMed

    Mas-Stachurska, Aleksandra; Miró, Oscar; Sitges, Marta; de Caralt, Teresa M; Perea, Rosario J; López, Beatriz; Sánchez, Miquel; Paré, Carles; Bosch, Xavier; Ortiz-Pérez, José T

    2015-01-01

    Up to 4% of patients with acute chest pain, normal electrocardiogram, and negative troponins present major adverse cardiac events as a result of undiagnosed acute coronary syndrome. Our aim was to compare the diagnostic performance of multidetector computed tomography and exercise echocardiography in patients with a low-to-intermediate probability of coronary artery disease. We prospectively included 69 patients with acute chest pain, normal electrocardiogram, and negative troponins who underwent coronary tomography angiography and exercise echocardiography. Patients with coronary stenosis ≥ 50% or Agatston calcium score ≥ 400 on coronary tomography angiography or positive exercise echocardiography, or with inconclusive results, were admitted to rule out acute coronary syndrome. An acute coronary syndrome was confirmed in 17 patients (24.6%). This was lower than the suspected 42% based on coronary tomography angiography (P<.05) and not significantly different than the suspected 29% based on the results of exercise echocardiography (P=.56). Exercise echocardiography was normal in up to 37% of patients with pathological findings on coronary tomography angiography. The latter technique provided a higher sensitivity (100% vs 82.3%; P=.21) but lower specificity (76.9% vs 88.4%; P=.12) than exercise echocardiography for the diagnosis of acute coronary syndrome, although without reaching statistical significance. Increasing the stenosis cutoff point to 70% increased the specificity of coronary tomography angiography to 88.4%, while maintaining high sensitivity. Coronary tomography angiography offers a valid alternative to exercise echocardiography for the diagnosis of acute coronary syndrome among patients with low-to-intermediate probability of coronary artery disease. A combination of both techniques could improve the diagnosis of acute coronary syndrome. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  11. Acute Effect of High-Intensity Eccentric Exercise on Vascular Endothelial Function in Young Men.

    PubMed

    Choi, Youngju; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Ra, Song-Gyu; Shiraki, Hitoshi; Ajisaka, Ryuichi; Maeda, Seiji

    2016-08-01

    Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and β-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in β-stiffness index and change in FMD (r = -0.891; p < 0.01) with eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction.

  12. Acute effects of different stretching exercises on muscular endurance.

    PubMed

    Franco, Bruno L; Signorelli, Gabriel R; Trajano, Gabriel S; de Oliveira, Carlos G

    2008-11-01

    This study aims to evaluate the acute effects of different stretching exercises on muscular endurance in men, in terms of the number of sets, set duration, and type of stretching. Two experiments were conducted; in the first one (E1), the subjects (n = 19) were evaluated to test the effect on the number of sets, and, in the second one (E2), the subjects (n = 15) were tested for the effect of set duration and type of stretching. After a warm-up of 10-15 repetitions of a bench press (BP) with submaximal effort, a one-repetition maximum (1RM) test was applied. For E1, BP endurance was evaluated after static stretching comprising one set of 20 seconds (1 x 20), two sets of 20 seconds (2 x 20), and three sets of 20 seconds (3 x 20). For E2, BP endurance was evaluated after static stretching comprising one set of 20 seconds (1 x 20), one set of 40 seconds (1 x 40), and proprioceptive neuromuscular facilitation (PNF) stretching. All tests were performed 48-72 hours apart, at which time the muscular endurance was assessed through the maximal number of repetitions (NR) of BP at 85% of 1RM until fatigue. The NR and the overload volume (OV) were compared among tests through repeated-measures analysis of variance. No significant effect of the number of sets on muscular endurance was observed because no statistically significant difference was found when comparing all stretching exercises of E1 in terms of NS (p = 0.5377) and OV (p = 0.5723). However, significant reductions were obtained in the set duration and PNF on NR (p < 0.0001) and OV (p < 0.0001), as observed in E2. The results suggest that a stretching protocol can influence BP endurance, whereas a decrease in endurance is suggested to be attributable to set duration and PNF. On the other hand, a low volume of static stretching does not seem to have a significant effect on muscular endurance.

  13. Acute and Chronic Effects of Aerobic and Resistance Exercise on Ambulatory Blood Pressure

    PubMed Central

    Cardoso, Crivaldo Gomes; Gomides, Ricardo Saraceni; Queiroz, Andréia Cristiane Carrenho; Pinto, Luiz Gustavo; da Silveira Lobo, Fernando; Tinucci, Tais; Mion, Décio; de Moraes Forjaz, Claudia Lucia

    2010-01-01

    Hypertension is a ubiquitous and serious disease. Regular exercise has been recommended as a strategy for the prevention and treatment of hypertension because of its effects in reducing clinical blood pressure; however, ambulatory blood pressure is a better predictor of target-organ damage than clinical blood pressure, and therefore studying the effects of exercise on ambulatory blood pressure is important as well. Moreover, different kinds of exercise might produce distinct effects that might differ between normotensive and hypertensive subjects. The aim of this study was to review the current literature on the acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure in normotensive and hypertensive subjects. It has been conclusively shown that a single episode of aerobic exercise reduces ambulatory blood pressure in hypertensive patients. Similarly, regular aerobic training also decreases ambulatory blood pressure in hypertensive individuals. In contrast, data on the effects of resistance exercise is both scarce and controversial. Nevertheless, studies suggest that resistance exercise might acutely decrease ambulatory blood pressure after exercise, and that this effect seems to be greater after low-intensity exercise and in patients receiving anti-hypertensive drugs. On the other hand, only two studies investigating resistance training in hypertensive patients have been conducted, and neither has demonstrated any hypotensive effect. Thus, based on current knowledge, aerobic training should be recommended to decrease ambulatory blood pressure in hypertensive individuals, while resistance exercise could be prescribed as a complementary strategy. PMID:20360924

  14. Acute exercise ameliorates differences in insulin resistance between physically active and sedentary overweight adults.

    PubMed

    Nelson, Rachael K; Horowitz, Jeffrey F

    2014-07-01

    Although regular exercise is associated with reduced cardiometabolic disease risk among overweight adults, it remains unclear whether much of the health benefits of exercise are derived from the most recent session(s) of exercise or if they are the result of adaptations stemming from weeks, months, or even years of training. The purpose of this study was to compare the effects of habitual and acute exercise on key markers of cardiometabolic disease risk in overweight adults. We compared insulin sensitivity index (ISI) using an oral glucose tolerance test, blood pressure (BP), blood lipids, and systemic inflammatory cytokines in 12 overweight to mildly obese adults (BMI: 27-34 kg/m(2)) who exercise regularly (EX; >2.5 h exercise per week) with a well-matched cohort of 12 nonexercisers (Non-EX). Baseline measurements in EX were performed exactly 3 days after exercise, whereas Non-EX remained sedentary. We repeated these measurements the day after a session of exercise in both groups. At baseline, ISI was significantly greater in EX versus Non-EX (3.1 ± 0.2 vs. 2.3 ± 0.2; p = 0.02), but BP, blood lipids, and plasma concentration of the systemic inflammatory cytokines we measured were not different between groups. Acute exercise increased ISI the next morning in Non-EX (2.3 ± 0.2 vs. 2.8 ± 0.3; p = 0.03) but not EX. As a result, ISI was similar between groups the morning after exercise. In summary, exercising regularly was accompanied by a persistent improvement in insulin sensitivity that lasted at least 3 days after exercise in overweight adults, but just one session of exercise increased insulin sensitivity among sedentary overweight adults to levels equivalent to the regular exercisers.

  15. Acute exercise ameliorates differences in insulin resistance between physically active and sedentary overweight adults

    PubMed Central

    Nelson, Rachael K.; Horowitz, Jeffrey F.

    2014-01-01

    Although regular exercise is associated with reduced cardiometabolic disease risk among overweight adults, it remains unclear whether much of the health benefits of exercise are derived from the most recent session(s) of exercise or if they are the result of adaptations stemming from weeks, months, or even years of training. The purpose of this study was to compare the effects of habitual and acute exercise on key markers of cardiometabolic disease risk in overweight adults. We compared insulin sensitivity index (ISI) using an oral glucose tolerance test, blood pressure (BP), blood lipids, and systemic inflammatory cytokines in 12 overweight to mildly obese adults (BMI: 27–34 kg/m2) who exercise regularly (EX; >2.5 h exercise per week) with a well-matched cohort of 12 nonexercisers (Non-EX). Baseline measurements in EX were performed exactly 3 days after exercise, whereas Non-EX remained sedentary. We repeated these measurements the day after a session of exercise in both groups. At baseline, ISI was significantly greater in EX versus Non-EX (3.1 ± 0.2 vs. 2.3 ± 0.2; p = 0.02), but BP, blood lipids, and plasma concentration of the systemic inflammatory cytokines we measured were not different between groups. Acute exercise increased ISI the next morning in Non-EX (2.3 ± 0.2 vs. 2.8 ± 0.3; p = 0.03) but not EX. As a result, ISI was similar between groups the morning after exercise. In summary, exercising regularly was accompanied by a persistent improvement in insulin sensitivity that lasted at least 3 days after exercise in overweight adults, but just one session of exercise increased insulin sensitivity among sedentary overweight adults to levels equivalent to the regular exercisers. PMID:24773370

  16. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    PubMed

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  17. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    PubMed

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  18. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed

    Eijsvogels, Thijs M H; Fernandez, Antonio B; Thompson, Paul D

    2016-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including "myocardial" creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination.

  19. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  20. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children.

    PubMed

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-08-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5-8 Hz), alpha (8-12 Hz), sensory motor rhythm (12-16 Hz), and beta (16-25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children.

  1. The effect of acute swimming exercise on plasma melatonin levels in rats.

    PubMed

    Uzun, A; Baltaci, A K; Kilic, M; Mogulkoc, R

    2012-01-01

    This study aims to determine the changes in plasma melatonin levels of rats performing acute swimming exercise, immediately following the exercise and after 24 and 48 hours. The study included 40 Spraque Dawley species adult male rats divided in to 4 groups as follows: group 1: general control group, group 2: swimming group A, the animals were decapitated after performing 30-minute acute swimming exercise, group 3: Swimming group B, the animals were decapitated 24 hours after performing 30-minute acute swimming exercise and group 4: swimming group C, the animals were decapitated 48 hours after performing 30-minute acute swimming exercise. Blood samples were collected from all experimental animals by decapitation method and plasma melatonin levels were determined according to RIA method. The comparison of plasma melatonin levels among groups revealed that group 3 had the highest plasma melatonin levels (p<0.01). The levels in group 1 (control) and group 4 were not different. The lowest plasma melatonin levels were found in group 2 (p<0.01). The results of our study demonstrate that plasma melatonin levels that decrease immediately after acute swimming exercise increase significantly after 24 hours and restore to resting levels after 48 hours (Tab. 1, Ref. 15).

  2. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress.

  3. Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly.

    PubMed

    Tabara, Yasuharu; Yuasa, Toshiaki; Oshiumi, Akira; Kobayashi, Tatsuya; Miyawaki, Yoshinori; Miki, Tetsuro; Kohara, Katsuhiko

    2007-10-01

    Arterial stiffness is an important factor for cardiovascular performance and a predictor of cardiovascular risk. We evaluated the effects of both acute and long-term aerobic exercise on arterial stiffness in community-dwelling healthy elderly subjects. In addition, we evaluated the relationship between the effects of long-term exercise and those of acute exercise. The study subjects were participants in the Shimanami Health Promoting Program study (J-SHIPP), which was designed to investigate factors relating to cardiovascular disease, dementia, and death (67+/-6 years). They performed mild-to-moderate aerobic exercise lasting for 30 min twice a week for 6 months. Arterial stiffness was assessed before and after the first 30-min acute exercise (n=99) and long-term 6-month aerobic training (n=40). The radial arterial augmentation index (AI) obtained from the radial pulse waveform by the tonometry method was used as a parameter of arterial stiffness. Both systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly decreased after 30-min of aerobic exercise, however no significant change in AI was observed. On the other hand, there were significant decreases in AI (from 87 to 84%, p<0.01), SBP (from 136 to 129 mmHg, p<0.01), and DBP (from 75 to 70 mmHg, p<0.01) after the 6-month exercise period. Long-term exercise-induced changes in AI were significantly and inversely correlated with the pre-exercise AI (r=-0.40, p<0.01). In addition, AI changes after the 6-month exercise period were significantly related to those observed after first 30-min exercise (r=0.48, p<0.01). These findings indicate that apparently healthy and sedentary elderly subjects with higher AI may benefit from mild-to-moderate aerobic exercise to improve arterial stiffness.

  4. Acute effects of physical exercise in type 2 diabetes: A review

    PubMed Central

    Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Moraes, José Fernando Vila Nova; Coelho Júnior, Hélio José; Moraes, Milton Rocha; Simões, Herbert Gustavo

    2014-01-01

    The literature has shown the efficiency of exercise in the control of type 2 diabetes (T2D), being suggested as one of the best kinds of non-pharmacological treatments for its population. Thus, the scientific production related to this phenomenon has growing exponentially. However, despite its advances, still there is a lack of studies that have carried out a review on the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in individuals with T2D, not to mention that in a related way, these themes have been very little studied today. Therefore, the aim of this study was to organize and analyze the current scientific production about the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in T2D individuals. For such, a research with the following keywords was performed: -exercise; diabetes and post-exercise hypotension; diabetes and excess post-exercise oxygen consumption; diabetes and acute effects in PUBMED, SCIELO and HIGHWIRE databases. From the analyzed studies, it is possible to conclude that, a single exercise session can promote an increase in the bioavailability of nitric oxide and elicit decreases in postexercise blood pressure. Furthermore, the metabolic stress from physical exercise can increase the oxidation of carbohydrate during the exercise and keep it, in high levels, the post exercise consumption of O², this phenomenon increases the rate of fat oxidation during recovery periods after exercise, improves glucose tolerance and insulin sensitivity and reduces glycemia between 2-72 h, which seems to be dependent on the exercise intensity and duration of the effort. PMID:25317243

  5. Ameliorative effect of chronic moderate exercise in smoke exposed or nicotine applied rats from acute stress.

    PubMed

    Kuru, Pinar; Bilgin, Seyda; Mentese, Semih Tiber; Tazegul, Gokhan; Ozgur, Sevinc; Cilingir, Ozlem T; Akakin, Dilek; Yarat, Aysen; Kasimay, Ozgur

    2015-05-01

    Physical activity has been found to be related with many health benefits. Our aim was to investigate the effect of chronic moderate exercise from acute stress on nicotine and cigarette smoke exposed rats. Male Sprague Dawley rats (200-250g, n = 48) were divided into 6 groups as non-exercised, exercised, smoke exposed, smoke exposed and exercised, nicotine applied, and nicotine applied and exercised. Nicotine bitartarate was applied intraperitoneally (0.1mg/kg/day) for 5 weeks, and cigarette smoke was exposed in a ventilated chamber. After 1 week of nicotine application or smoke exposure, moderate exercise training protocol was applied to exercise groups. At the end of the experiments, acute stress induction was made to all groups by electric foot shock. Holeboard tests were performed before and after the experiments. Biochemical and histological analyses were performed in lung, liver, colon, stomach, and gastrocnemius tissues. Malondialdehyde levels were increased in all tissues of smoke exposed group (p < .05-.01) except gastrocnemius tissue compared to non-exercised group and were decreased with exercise (p < .05-.001). Myeloperoxidase levels were increased in lung, liver and colon tissues of smoke exposed group (p < .05-.001) and liver and colon tissues of nicotine applied rats (p < .01-.001) and decrease with exercise in liver and colon tissues of both smoke exposed or nicotine applied groups (p < .05-.01). In all tissue samples, increased histological injury scores (p < .05-.001) decreased significantly with exercise (p < .01-.001). Biochemical parameters and histological scoring indicated increased tissue injury due to nicotine application and cigarette smoke exposure and exercise training ameliorated these effects in most of the tissues of acute stress induced rats. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Acute effects of moderate intensity aerobic exercise on affective withdrawal symptoms and cravings among women smokers.

    PubMed

    Williams, David M; Dunsiger, Shira; Whiteley, Jessica A; Ussher, Michael H; Ciccolo, Joseph T; Jennings, Ernestine G

    2011-08-01

    A growing number of laboratory studies have shown that acute bouts of aerobic exercise favorably impact affect and cravings among smokers. However, randomized trials have generally shown exercise to have no favorable effect on smoking cessation or withdrawal symptoms during quit attempts. The purpose of the present study was to explore this apparent contradiction by assessing acute changes in affect and cravings immediately prior to and following each exercise and contact control session during an eight-week smoking cessation trial. Sixty previously low-active, healthy, female smokers were randomized to an eight-week program consisting of brief baseline smoking cessation counseling and the nicotine patch plus either three sessions/week of moderate intensity aerobic exercise or contact control. Findings revealed a favorable impact of exercise on acute changes in positive activated affect (i.e., energy), negative deactivated affect (i.e., tiredness), and cigarette cravings relative to contact control. However, effects dissipated from session to session. Results suggest that aerobic exercise has potential as a smoking cessation treatment, but that it must be engaged in frequently and consistently over time in order to derive benefits. Thus, it is not surprising that previous randomized controlled trials-in which adherence to exercise programs has generally been poor-have been unsuccessful in showing effects of aerobic exercise on smoking cessation outcomes.

  7. Maximizing acute fat utilization: effects of exercise, food, and individual characteristics.

    PubMed

    Bennard, Patrick; Imbeault, Pascal; Doucet, Eric

    2005-08-01

    In discussion of the physiological mechanisms that regulate fat metabolism, and with consideration of the metabolic stimuli that modulate substrate metabolism, the issue of how an acute state of negative lipid balance can be maximized is addressed. The regulation of lipolysis by catecholamines and insulin is reviewed, and the mechanisms of fatty acid mobilization and uptake by muscle are also briefly discussed. The implications of substrate availability and the hormonal response during physiological states such as fasting, exercise, and after food intake are also addressed, with particular regard to the influences on fatty acid mobilization and/or oxidation from eliciting these stimuli conjointly. Finally, a brief discussion is given of both the nature of exercise and the exercising individual, and how these factors influence fat metabolism during exercise. It is also a primary thrust of this paper to underline gaps in the existing literature with regard to exercise timing concerning food ingestion for maximizing acute lipid utilization.

  8. Inflammation and exercise: Inhibition of monocytic intracellular TNF production by acute exercise via β2-adrenergic activation.

    PubMed

    Dimitrov, Stoyan; Hulteng, Elaine; Hong, Suzi

    2017-03-01

    Regular exercise is shown to exert anti-inflammatory effects, yet the effects of acute exercise on cellular inflammatory responses and its mechanisms remain unclear. We tested the hypothesis that sympathoadrenergic activation during a single bout of exercise has a suppressive effect on monocytic cytokine production mediated by β2 adrenergic receptors (AR). We investigated the effects of 20-min moderate (65-70% VO2 peak) exercise-induced catecholamine production on LPS-stimulated TNF production by monocytes in 47 healthy volunteers and determined AR subtypes involved. We also examined the effects of β-agonist isoproterenol and endogenous β- and α-agonists epinephrine and norepinephrine, and receptor-subtype-specific β- and α-antagonists on TNF production in a series of in vitro investigations. LPS-stimulated TNF production by peripheral blood monocytes was determined intracellularly by flow cytometry, using an intracellular protein transport inhibitor. Percent TNF-producing monocytes and per-cell TNF production with and without LPS was suppressed by exercise with moderate to large effects, which was reversed by a β2-AR antagonist in spite that plasma TNF levels did not change. This inhibitory response in TNF production by exercise was mirrored by β-AR agonists in an agonist-specific and dose-dependent manner in vitro: similar isoproterenol (EC50=2.1-4.7×10(-10)M) and epinephrine (EC50=4.4-10×10(-10)M) potency and higher norepinephrine concentrations (EC50=2.6-4.3×10(-8)M) needed for the effects. Importantly, epinephrine levels observed during acute exercise in vivo significantly inhibited TNF production in vitro. The inhibitory effect of the AR agonists was abolished by β2-, but not by β1- or α-AR blockers. We conclude that the downregulation of monocytic TNF production during acute exercise is mediated by elevated epinephrine levels through β2-ARs. Decreased inflammatory responses during acute exercise may protect against chronic conditions with low

  9. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-01-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  10. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  11. Effect of acute maximal exercise on lymphocyte subgroups in type 1 diabetes.

    PubMed

    Salman, F; Erten, G; Unal, M; Kiran, B; Salman, S; Deniz, G; Yilmaz, M T; Kayserilioglu, A; Dinccag, N

    2008-03-01

    The essential therapy of diabetes mellitus includes medical nutrition therapy (MNT), exercise and medical therapy. Exercise, besides its metabolic effects, has positive influence on the immune system, but some forms of exercise may cause trauma for muscle and skeletal systems, they may also support negative effects on the immune system. Nineteen type 1 diabetic patients (mean age 22.1 +/- 2.8 yrs), followed by Diabetes Outpatient Clinic and twenty age matched male control subjects were included into the study, to demonstrate the effects of maximal, acute exercise on the immune system. The exercise test was performed according to Bruce protocol on treadmill. In diabetic subjects, increased CD19 and CD23 expressions were observed before exercise. In both groups (diabetic/control) CD3, CD4 expressions and CD4/CD8 ratio were decreased following the exercise, however expression of natural killer (NK) cells increased. Compared to type 1 diabetic patients healthy subjects had longer acute exercise that caused the increased level of CD8 expression, however type 1 diabetic patients did not show any difference. These results indicate that submaximal aerobic exercise might be recommended for type 1 diabetics without any complications because of its positive reflection on metabolic control and no negative effects on the immune system.

  12. Acute exercise improves cognition in the depressed elderly: the effect of dual-tasks.

    PubMed

    Vasques, Paulo Eduardo; Moraes, Helena; Silveira, Heitor; Deslandes, Andrea Camaz; Laks, Jerson

    2011-01-01

    The goal of this study was to assess the acute effect of physical exercise on the cognitive function of depressed elderly patients in a dual-task experiment. Physical exercise has a positive effect on the brain and may even act as a treatment for major depressive disorder. However, the effects of acute cardiovascular exercise on cognitive function during and after one session of aerobic training in elderly depressive patients are not known. Ten elderly subjects diagnosed with major depressive disorder performed neuropsychological tests during and after a moderate physical exercise session (65-75%HR(max)). A Digit Span Test (Forward and Backward) and a Stroop Color-Word Test were used to assess cognitive function. The elderly participants walked on an electric treadmill for 30 minutes and underwent the same cognitive testing before, during, immediately after, and 15 minutes after the exercise session. In the control session, the same cognitive testing was conducted, but without exercise training. The results of the Digit Span Test did not change between the control and the exercise sessions. The results of the Stroop Color-Word Test improved after physical exercise, indicating a positive effect of exercise on cognition. These data suggest that the cognitive functions of depressed elderly persons, especially attention and inhibitory control, are not impaired during and after an acute session of physical exercise. In contrast, the effect of dual-tasks showed beneficial results for these subjects, mainly after exercise. The dual-task may be a safe and useful tool for assessing cognitive function.

  13. Acute exercise does not decrease liver fat in men with overweight or NAFLD

    PubMed Central

    Bilet, L.; Brouwers, B.; van Ewijk, P. A.; Hesselink, M. K. C.; Kooi, M. E.; Schrauwen, P.; Schrauwen-Hinderling, V. B.

    2015-01-01

    Elevated hepatic lipid content (IntraHepatic Lipid, IHL) increases the risk of metabolic complications. Although prolonged exercise training lowers IHL, it is unknown if acute exercise has the same effect. Furthermore, hepatic ATP content may be related to insulin resistance and IHL. We aimed to investigate if acute exercise leads to changes in IHL and whether this is accompanied by changes in hepatic ATP. Twenty-one men (age 54.8 ± 7.2 years, BMI 29.7 ± 2.2 kg/m2) performed a 2 h cycling protocol, once while staying fasted and once while ingesting glucose. IHL was determined at baseline, 30 min post-exercise and 4 h post-exercise. Additionally ATP/Total P ratio was measured at baseline and 4 h post-exercise. Compared with baseline values we did not observe any statistically significant changes in IHL within 30 min post-exercise in neither the fasted nor the glucose-supplemented condition. However, IHL was elevated 4 h post-exercise compared with baseline in the fasted condition (from 8.3 ± 1.8 to 8.7 ± 1.8%, p = 0.010), an effect that was blunted by glucose supplementation (from 8.3 ± 1.9 to 8.3 ± 1.9%, p = 0.789). Acute exercise does not decrease liver fat in overweight middle-aged men. Moreover, IHL increased 4 h post-exercise in the fasted condition, an increase that was absent in the glucose-supplemented condition. These data suggest that a single bout of exercise may not be able to lower IHL. PMID:25866366

  14. Acute exercise improves cognition in the depressed elderly: the effect of dual-tasks

    PubMed Central

    Vasques, Paulo Eduardo; Moraes, Helena; Silveira, Heitor; Deslandes, Andrea Camaz; Laks, Jerson

    2011-01-01

    OBJECTIVE: The goal of this study was to assess the acute effect of physical exercise on the cognitive function of depressed elderly patients in a dual-task experiment. INTRODUCTION: Physical exercise has a positive effect on the brain and may even act as a treatment for major depressive disorder. However, the effects of acute cardiovascular exercise on cognitive function during and after one session of aerobic training in elderly depressive patients are not known. METHODS: Ten elderly subjects diagnosed with major depressive disorder performed neuropsychological tests during and after a moderate physical exercise session (65-75%HRmax). A Digit Span Test (Forward and Backward) and a Stroop Color-Word Test were used to assess cognitive function. The elderly participants walked on an electric treadmill for 30 minutes and underwent the same cognitive testing before, during, immediately after, and 15 minutes after the exercise session. In the control session, the same cognitive testing was conducted, but without exercise training. RESULTS: The results of the Digit Span Test did not change between the control and the exercise sessions. The results of the Stroop Color-Word Test improved after physical exercise, indicating a positive effect of exercise on cognition. CONCLUSIONS: These data suggest that the cognitive functions of depressed elderly persons, especially attention and inhibitory control, are not impaired during and after an acute session of physical exercise. In contrast, the effect of dual-tasks showed beneficial results for these subjects, mainly after exercise. The dual-task may be a safe and useful tool for assessing cognitive function. PMID:22179158

  15. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO2max, Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  16. Triphasic multinutrient supplementation during acute resistance exercise improves session volume load and reduces muscle damage in strength-trained athletes.

    PubMed

    Bird, Stephen P; Mabon, Tom; Pryde, Mitchell; Feebrey, Sarah; Cannon, Jack

    2013-05-01

    We hypothesized that triphasic multinutrient supplementation during acute resistance exercise would enhance muscular performance, produce a more favorable anabolic profile, and reduce biochemical markers of muscle damage in strength-trained athletes. Fifteen male strength-trained athletes completed two acute lower-body resistance exercise sessions to fatigue 7 days apart. After a 4-hour fast, participants consumed either a multinutrient supplement (Musashi 1-2-3 Step System, Notting Hill, Australia) (SUPP) or placebo (PLA) beverage preexercise (PRE), during (DUR), and immediately postexercise (IP). Session volume loads were calculated as kilograms × repetitions. Lower-body peak power was measured using unloaded repeated countermovement jumps, and blood samples were collected to assess biochemistry, serum hormones, and muscle damage markers at PRE, DUR, IP, 30 minutes postexercise (P30), and 24 hours postexercise (P24h). The SUPP demonstrated increased glucose concentrations at DUR and IP compared with at PRE (P < .01), whereas PLA demonstrated higher glucose at P30 compared with at PRE (P < .001). Session volume load was higher for SUPP compared with PLA (P < .05). Cortisol increased at DUR, IP, and P30 compared with at PRE in both treatments (P < .05); however, SUPP also displayed lower cortisol at P24h compared with at PRE and PLA (P < .01). The total testosterone response to exercise was higher for PLA compared with SUPP (P < .01); however, total creatine kinase and C-reactive protein responses to exercise were lower for SUPP compared with PLA (P < .05). These data indicate that although triphasic multinutrient supplementation did not produce a more favorable anabolic profile, it improved acute resistance exercise performance while attenuating muscle damage in strength-trained athletes.

  17. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  18. Regular Exercise Enhances Task-Based Industriousness in Laboratory Rats

    PubMed Central

    Laurence, Nicholas C.; Labuschagne, Lisa G.; Lura, Brent G.; Hillman, Kristin L.

    2015-01-01

    Individuals vary greatly in their willingness to select and persist in effortful tasks, even when high-effort will knowingly result in high-reward. Individuals who select and successively complete effortful, goal-directed tasks can be described as industrious. Trying to increase one’s industriousness is desirable from a productivity standpoint, yet intrinsically challenging given that effort expenditure is generally aversive. Here we show that in laboratory rats, a basic physical exercise regimen (20 min/day, five days/week) is sufficient to increase industriousness across a battery of subsequent testing tasks. Exercised rats outperformed their non-exercised counterparts in tasks designed to tax effort expenditure, strategic decision-making, problem solving and persistence. These increases in performance led to quicker reward obtainment and greater reward gain over time, and could not be accounted for simply by increased locomotor activity. Our results suggest that a basic exercise regimen can enhance effortful goal-directed behaviour in goal-directed tasks, which highlights a potential productivity benefit of staying physically active. PMID:26083255

  19. Regular Exercise Enhances Task-Based Industriousness in Laboratory Rats.

    PubMed

    Laurence, Nicholas C; Labuschagne, Lisa G; Lura, Brent G; Hillman, Kristin L

    2015-01-01

    Individuals vary greatly in their willingness to select and persist in effortful tasks, even when high-effort will knowingly result in high-reward. Individuals who select and successively complete effortful, goal-directed tasks can be described as industrious. Trying to increase one's industriousness is desirable from a productivity standpoint, yet intrinsically challenging given that effort expenditure is generally aversive. Here we show that in laboratory rats, a basic physical exercise regimen (20 min/day, five days/week) is sufficient to increase industriousness across a battery of subsequent testing tasks. Exercised rats outperformed their non-exercised counterparts in tasks designed to tax effort expenditure, strategic decision-making, problem solving and persistence. These increases in performance led to quicker reward obtainment and greater reward gain over time, and could not be accounted for simply by increased locomotor activity. Our results suggest that a basic exercise regimen can enhance effortful goal-directed behaviour in goal-directed tasks, which highlights a potential productivity benefit of staying physically active.

  20. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  1. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study.

    PubMed

    West, Daniel W D; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R

    2017-07-11

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [(15)N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of

  2. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

    PubMed

    Cui, Shu F; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J; Zhang, Chen Y; Chen, Xi; Ma, Ji Z

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  3. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    PubMed Central

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile; Barrès, Romain

    2016-01-01

    Exercise training triggers numerous positive adaptations through the regulation of genes controlling muscle structure and function. Epigenetic modifications, including DNA methylation, participate in transcriptional activation by allowing the recruitment of the transcription machinery to gene promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest fold-expression increase after acute exercise. We then refined an electrical pulse stimulation (EPS) protocol that could induce expression of the Nr4a3 gene in C2C12 myotubes. Using targeted bisulfite sequencing, we found that in response to EPS, a region of the Nr4a3 promoter is rapidly demethylated at 60 min and re-methylated at 120 min. Of interest, hydroxymethylation of the differentially methylated region of Nr4a3 promoter after EPS was elevated immediately after EPS, with lowest levels reached at 60 min after EPS. In conclusion, we have established a cell culture-based protocol to mimic the acute transcriptional responses to exercise. Furthermore, we provide insight into the mechanism by which the exercise-responsive gene Nr4a3 is demethylated after muscle

  4. Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution

    PubMed Central

    Berse, Timo; Rolfes, Kathrin; Barenberg, Jonathan; Dutke, Stephan; Kuhlenbäumer, Gregor; Völker, Klaus; Winter, Bernward; Wittig, Michael; Knecht, Stefan

    2015-01-01

    The executive function of shifting between mental sets demands cognitive flexibility. Based on evidence that physical exercise fostered cognition, we tested whether acute physical exercise can improve shifting in an unselected sample of adolescents. Genetic polymorphisms were analyzed to gain more insight into possibly contributing neurophysiological processes. We examined 297 students aged between 13 and 17 years in their schools. Physical exercise was manipulated by an intense incremental exercise condition using bicycle ergometers and a control condition which involved watching an infotainment cartoon while sitting calm. The order of conditions was counterbalanced between participants. Shifting was assessed by a switching task after both conditions. Acute intense physical exercise significantly improved shifting as indicated by reduced switch costs. Exercise-induced performance gains in switch costs were predicted by a single nucleotide polymorphism (SNP) targeting the Dopamine Transporter (DAT1/SLCA6A3) gene suggesting that the brain dopamine system contributed to the effect. The results demonstrate the potential of acute physical exercise to improve cognitive flexibility in adolescents. The field conditions of the present approach suggest applications in schools. PMID:26283937

  5. Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution.

    PubMed

    Berse, Timo; Rolfes, Kathrin; Barenberg, Jonathan; Dutke, Stephan; Kuhlenbäumer, Gregor; Völker, Klaus; Winter, Bernward; Wittig, Michael; Knecht, Stefan

    2015-01-01

    The executive function of shifting between mental sets demands cognitive flexibility. Based on evidence that physical exercise fostered cognition, we tested whether acute physical exercise can improve shifting in an unselected sample of adolescents. Genetic polymorphisms were analyzed to gain more insight into possibly contributing neurophysiological processes. We examined 297 students aged between 13 and 17 years in their schools. Physical exercise was manipulated by an intense incremental exercise condition using bicycle ergometers and a control condition which involved watching an infotainment cartoon while sitting calm. The order of conditions was counterbalanced between participants. Shifting was assessed by a switching task after both conditions. Acute intense physical exercise significantly improved shifting as indicated by reduced switch costs. Exercise-induced performance gains in switch costs were predicted by a single nucleotide polymorphism (SNP) targeting the Dopamine Transporter (DAT1/SLCA6A3) gene suggesting that the brain dopamine system contributed to the effect. The results demonstrate the potential of acute physical exercise to improve cognitive flexibility in adolescents. The field conditions of the present approach suggest applications in schools.

  6. Acute Effect of Static Stretching Exercise on Arterial Stiffness in Healthy Young Adults.

    PubMed

    Yamato, Yosuke; Hasegawa, Natsuki; Sato, Koji; Hamaoka, Takafumi; Ogoh, Shigehiko; Iemitsu, Motoyuki

    2016-10-01

    Habitual stretching exercise increases carotid arterial compliance, and acute stretching exercise increases arterial compliance in patients with myocardial infarction. However, it is not known whether this arterial adaptation is sustained after exercise. The aim of this study was to examine the effect of a single bout of stretching exercise on the time course of systemic, central, and peripheral arterial stiffness in healthy young subjects. Twenty-six healthy young men performed static stretching exercise involving the entire body (trunk, upper limb, and lower limb) for 40 mins. Pulse-wave velocity (PWV; an index of arterial stiffness), blood pressure, and heart rate were measured before and 0, 15, 30, and 60 mins after stretching exercise. Femoral-ankle PWV and brachial-ankle PWV were reduced relative to baseline 15 and 30 mins after acute stretching (P < 0.05); however, these arterial responses were not sustained for longer periods, and both PWV values returned to the baseline levels within 60 mins. By contrast, carotid-femoral PWV was unchanged. These results suggest that chronic and sufficient repetition of muscle stretch stimulation may result in chronic high arterial compliance, although a single bout of stretch exercise acutely affects arterial compliance.

  7. The effect of acute exercise session on thyroid hormone economy in rats.

    PubMed

    Fortunato, Rodrigo Soares; Ignácio, Daniele Leão; Padron, Alvaro Souto; Peçanha, Ramon; Marassi, Michelle Porto; Rosenthal, Doris; Werneck-de-Castro, João Pedro Saar; Carvalho, Denise P

    2008-08-01

    The hypothalamic-pituitary-thyroid axis is affected by acute exercise, but the mechanisms underlying thyroid function changes after exercise remain to be defined. The aim of this study was to elucidate the effects of a session of acute exercise on the treadmill at 75% of maximum oxygen consumption on thyroid function of rats. Male Wistar rats were divided into five groups: control (without exercise), and killed immediately after (0 min) or 30, 60, and 120 min after the end of the exercise session. A significant increase in serum tri-iodothyronine (T(3)) occurred immediately after the exercise, with a gradual decrease thereafter, so that 120 min after the end of the exercise, serum T(3) was significantly lower than that in controls. Total thyroxine (T(4)) increased progressively reaching values significantly higher than that in the control group at 120 min. T(3)/T(4) ratio was significantly decreased 60 and 120 min after the exercise, indicating impaired T(4)-to-T(3) conversion. Liver type 1 deiodinase activity (D1) significantly decreased at 60 and 120 min, while pituitary D1 increased progressively from 30 to 120 min after the exercise, and thyroid D1 was increased only immediately after the end of the exercise. Brown adipose tissue (BAT) type 2 deiodinase activity (D2) was significantly lower at 30 min, but pituitary D2 remained unchanged. No change in serum thyrotropin was detected, while serum corticosterone was significantly higher 30 min after the exercise. Our results demonstrate that decreased liver D1 and BAT D2 might be involved in the decreased T(4)-to-T(3) conversion detected after an exercise session on the treadmill.

  8. Acute effects of marihuana smoking on maximal exercise performance.

    PubMed

    Renaud, A M; Cormier, Y

    1986-12-01

    To evaluate the effects of marihuana smoking on exercise performance, 12 healthy young subjects did progressive exercise testing on an ergocycle to exhaustion under two conditions: non-smoking (control) and 10 min after smoking a marihuana cigarette (containing 1.7% of delta-9-tetra-hydro-cannabinol) of 7 mg X kg-1 body weight. Heart rate, arterial blood pressure, minute ventilation (VE), breathing rate (fb), oxygen uptake (VO2), and carbon dioxide output (VCO2) were measured before, during, and for 4 min after the exercise. Tidal volume was calculated from VE X fb-1. The exercise duration was also measured. Forced expiratory volume (FEV1) was measured: before smoking (rest); before exercise (10 min after smoking); and after exercise. Carboxyhemoglobin levels were measured before and 10 min after smoking in four subjects. Marihuana smoking reduced exercise duration (16.1 +/- 4.0 to 15.1 +/- 3.3 min, P less than 0.05). At peak exercise performance, there were no differences in VO2, VCO2, heart rate, and VE between the two experimental conditions. Marihuana induced tachycardia at preexercise (94.3 +/- 13.3 beats X min-1 to 119.0 +/- 18.0, P less than 0.01) that was sustained up to 80% of maximum effort and during the recovery period. After marihuana, VE, VO2 and VCO2 were increased above control from 50% of maximum effort to the end of the test. Marihuana induced a bronchodilation (FEV1 from 4.28 +/- 1.00 to 4.43 +/- 1.031, P less than 0.0) that was still present after exercise. Exercise induced a bronchodilation in the control condition but not in the marihuana smoking condition.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Collaborative effects of diet and exercise on cognitive enhancement.

    PubMed

    Gomez-Pinilla, Fernando

    2011-01-01

    Certain dietary factors, such as omega-3 fatty acids and curcumin, are reviewed in their context of stimulating molecular systems that serve synaptic function, while diets rich in saturated fats do the opposite. In turn, exercise, using similar mechanisms as healthy diets, displays healing effects on the brain such as counteracting the mental decline associated with age and facilitating functional recovery resulting from brain injury and disease. Diet and exercise are two noninvasive approaches that used together may enhance neural repair. Omega 3 fatty acids and curcumin elevate levels of molecules important for synaptic plasticity such as brain-derived neurotrophic factor (BDNF), thus benefiting normal brain function and recovery events following brain insults.

  10. Transient Increase in Homocysteine but Not Hyperhomocysteinemia during Acute Exercise at Different Intensities in Sedentary Individuals

    PubMed Central

    Iglesias-Gutiérrez, Eduardo; Egan, Brendan; Díaz-Martínez, Ángel Enrique; Peñalvo, José Luis; González-Medina, Antonio; Martínez-Camblor, Pablo; O’Gorman, Donal J.; Úbeda, Natalia

    2012-01-01

    Considering that hyperhomocysteinemia is an independent risk factor for cardiovascular disease, the purpose of this study was to determine the kinetics of serum homocysteine (tHcy) and the vitamins involved in its metabolism (folates, B12, and B6) in response to acute exercise at different intensities. Eight sedentary males (18–27 yr) took part in the study. Subjects were required to complete two isocaloric (400 kcal) acute exercise trials on separate occasions at 40% (low intensity, LI) and 80% VO2peak (high intensity, HI). Blood samples were drawn at different points before (pre4 and pre0 h), during (exer10, exer20, exer30, exer45, and exer60 min), and after exercise (post0, post3, and post19 h). Dietary, genetic, and lifestyle factors were controlled. Maximum tHcy occurred during exercise, both at LI (8.6 (8.0–10.1) µmol/L, 9.3% increase from pre0) and HI (9.4 (8.2–10.6) µmol/L, 25.7% increase from pre0), coinciding with an accumulated energy expenditure independent of the exercise intensity. From this point onwards tHcy declined until the cessation of exercise and continued descending. At post19, tHcy was not different from pre-exercise values. No values of hyperhomocysteinemia were observed at any sampling point and intensity. In conclusion, acute exercise in sedentary individuals, even at HI, shows no negative effect on tHcy when at least 400 kcal are spent during exercise and the nutritional status for folate, B12, and B6 is adequate, since no hyperhomocysteinemia has been observed and basal concentrations were recovered in less than 24 h. This could be relevant for further informing healthy exercise recommendations. PMID:23236449

  11. Effects of acute aerobic exercise on leukocyte inflammatory gene expression in systemic lupus erythematosus.

    PubMed

    Perandini, L A; Sales-de-Oliveira, D; Almeida, D C; Azevedo, H; Moreira-Filho, C A; Cenedeze, M A; Benatti, F B; Lima, F R; Borba, E; Bonfa, E; Sa-Pinto, A L; Roschel, H; Camara, N O S; Gualano, B

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with a persistent systemic inflammation. Exercise induced inflammatory response in SLE remains to be fully elucidated. The aim of this study was to assess the effects of acuteexercise on leukocyte gene expression in active (SLEACTIVE) and inactive SLE (SLEINACTIVE) patients and healthy controls(HC). All subjects (n = 4 per group) performed a 30-min single bout of acute aerobic exercise (~70% of VO2peak) on a treadmill, and blood samples were collected for RNA extraction from circulating leukocyte at baseline, at the end of exercise, and after three hours of recovery. The expression of a panel of immune-related genes was evaluated by a quantitative PCR array assay. Moreover, network-based analyses were performed to interpret transcriptional changes occurring after the exercise challenge. In all groups, a single bout of acute exercise led to the down-regulation of the gene expression of innate and adaptive immunity at the end of exercise (e.g., TLR3, IFNG, GATA3, FOXP3, STAT4) with a subsequent up-regulation occurring upon recovery. Exercise regulated the expression of inflammatory genes in the blood leukocytes of the SLE patients and HC, although the SLE groups exhibited fewer modulated genes and less densely connected networks (number of nodes: 29, 40 and 58; number of edges: 29, 60 and 195; network density: 0.07, 0.08 and 0.12, for SLEACTIVE, SLEINACTIVE and HC, respectively). The leukocytes from the SLE patients, irrespective of disease activity, showed a down-regulated inflammatory geneexpression immediately after acute aerobic exercise, followed by an up-regulation at recovery. Furthermore, less organized gene networks were observed in the SLE patients, suggesting that they may be deficient in triggering a normal exercised-induced immune transcriptional response. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  12. Individual variability in compensatory eating following acute exercise in overweight and obese women.

    PubMed

    Hopkins, Mark; Blundell, John E; King, Neil A

    2014-10-01

    While compensatory eating following acute aerobic exercise is highly variable, little is known about the underlying mechanisms that contribute to the alterations in exercise-induced eating behaviour. Overweight and obese women (body mass index=29.6±4.0 kg/m(2)) performed a bout of cycling individually tailored to expend 400 kcal (EX) or a time-matched no exercise control condition in a randomised, counter-balanced order. 60 min after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. While ad libitum energy intake (EI) did not differ between EX and the control condition (666.0±203.9 vs 664.6±174.4 kcal, respectively; ns), there was a marked individual variability in compensatory EI. The difference in EI between EX and the control condition ranged from -234.3 to 278.5 kcal. Carbohydrate oxidation during exercise was positively associated with postexercise EI, accounting for 37% of the variance in EI (r=0.57; p=0.02). These data indicate that the capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain a part of the variability in acute exercise-induced compensatory eating. Postexercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Effect of acute exercise on clinically measured reaction time in collegiate athletes.

    PubMed

    Reddy, Shailesh; Eckner, James T; Kutcher, Jeffrey S

    2014-03-01

    We have developed a reliable and valid clinical test of reaction time (RTclin) that is sensitive to the acute effects of concussion. If RTclin is to be used as a sideline concussion assessment tool then the acute effects of exercise on RTclin may need to be controlled for. The purpose of this study was therefore to determine the effect of exercise on RTclin. A gender-balanced group of 42 collegiate athletes were assigned to an exercise (n = 28) and a control (n = 14) group using 2:1 block randomization. The exercise group completed a graded four-stage exercise protocol on a stationary bicycle (100 W × 5 min; 150 W × 5 min; 200 W × 5 min; sprint × 2 min), whereas the control group was tested at identical periods without exercising. Mean RTclin was calculated for eight trials as the fall time of a vertically suspended rigid shaft after its release by the examiner before being caught by the athlete. RTclin was measured at baseline and after each of the four stages. As both HR and RPE significantly increased for the four stages in the exercise group (P < 0.001), mean RTclin showed a significant overall decline during repeated test administration (P < 0.008). However, there were no significant group (exercise vs control, P = 0.822) or group-by-stage interaction (P = 0.169) effects on RTclin as assessed by repeated-measures analysis of variance. Exercise did not appear to affect RTclin performance in this study. This suggests that RTclin measured during a sideline concussion assessment does not need to be adjusted to account for the acute effects of exercise.

  14. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  15. Exploring the variability in acute glycemic responses to exercise in type 2 diabetes.

    PubMed

    Terada, Tasuku; Friesen, Alanna; Chahal, Baljot S; Bell, Gordon J; McCargar, Linda J; Boulé, Normand G

    2013-01-01

    To explore the factors associated with exercise-induced acute capillary glucose (CapBG) changes in individuals with type 2 diabetes (T2D). Fifteen individuals with T2D were randomly assigned to energy-matched high intensity interval exercise (HI-IE) and moderate intensity continuous exercise (MI-CE) interventions and performed a designated exercise protocol 5 days per week for 12 weeks. The duration of exercise progressed from 30 to 60 minutes. CapBG was measured immediately before and after each exercise session. Timing of food and antihyperglycemic medication intake prior to exercise was recorded. Overall, the mean CapBG was lowered by 1.9 mmol/L (P < 0.001) with the change ranging from -8.9 to +2.7 mmol/L. Preexercise CapBG (44%; P < 0.001), medication (5%; P < 0.001), food intake (4%; P = 0.043), exercise duration (5%; P < 0.001), and exercise intensity (1%; P = 0.007) were all associated with CapBG changes, explaining 59% of the variability. The greater reduction in CapBG seen in individuals with higher preexercise CapBG may suggest the importance of exercise in the population with elevated glycemia. Lower blood glucose can be achieved with moderate intensity exercise, but prolonging exercise duration and/or including brief bouts of intense exercise accentuate the reduction, which can further be magnified by performing exercise after meals and antihyperglycemic medication. This trial is registered with ClinicalTrial.gov NCT01144078.

  16. Acute Exercise Improves Physical Sexual Arousal in Women Taking Antidepressants

    PubMed Central

    Lorenz, Tierney A.; Meston, Cindy M.

    2012-01-01

    Background Antidepressants can impair sexual arousal. Exercise increases genital arousal in healthy women, likely due to increasing sympathetic nervous system (SNS) activity. Purpose Test if exercise increases genital arousal in women taking antidepressants, including selective serotonin reuptake inhibitors (SSRIs), which suppress SNS activity, and selective serotonin and norepinephrine reuptake inhibitors (SNRIs), which suppress the SNS less. Method Women reporting antidepressant-related sexual arousal problems (N=47) participated in three counterbalanced sessions where they watched an erotic film while we recorded genital and SNS arousal. In two sessions, women exercised for 20 min, either 5 or 15 min prior to the films. Results During the no-exercise condition, women taking SSRIs showed significantly less genital response than women taking SNRIs. Exercise prior to sexual stimuli increased genital arousal in both groups. Women reporting greater sexual dysfunction had larger increases in genital arousal post-exercise. For women taking SSRIs, genital arousal was linked to SNS activity. Conclusions Exercise may improve antidepressant-related genital arousal problems. PMID:22403029

  17. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  18. Media images of the "ideal" female body: can acute exercise moderate their psychological impact?

    PubMed

    Fallon, Elizabeth A; Hausenblas, Heather A

    2005-03-01

    Exposure to the media's "ideal" physique increases mood and body image disturbance, especially for at-risk women. Because exercise decreases mood and body image disturbance, we examined the ability of acute aerobic exercise to moderate the negative psychological impact of exposure to media pictures of the "ideal" female body. Women reporting high drive for thinness and media internalization viewed pictures of either nonphysique or "ideal" physique pictures after engaging in 30min of either aerobic exercise or quiet rest. Compared to the nonphysique pictures, viewing the physique pictures resulted in increased depression and body dissatisfaction. Acute aerobic exercise, however, did not moderate the negative mood states elicited by the media images. Implications of our results and future directions for research are discussed.

  19. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.

  20. Training and acute exercise modulates mitochondrial dynamics in football players' blood mononuclear cells.

    PubMed

    Busquets-Cortés, Carla; Capó, Xavier; Martorell, Miquel; Tur, Josep A; Sureda, Antoni; Pons, Antoni

    2017-07-26

    Regular physical activity induces oxidative stress but also causes adaptations in antioxidant defences including the nuclear factor κB (NF-κB) pathway, which activates target genes related to antioxidant defences such as uncoupling proteins (UCPs), and mitochondrial biogenesis mediated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The aim of the study was to determine the effect of long-term training and acute exercise on oxidant/antioxidant status and the expression of mitochondrial biogenesis genes in peripheral blood mononuclear cells (PBMCs). Twelve professional football players performed an 8-week exercise programme comprising a daily 2-h football training session. Blood samples were taken before and after the training season. The results reported a significant increase in antioxidant protein levels and in mitochondrial proteins in resting conditions after the 8-week training period. PGC1α, UCP-2 and mitofusin 2 protein levels also increased after acute exercise compared to pre-exercise levels. After the training, the expression of PGC1α, cytochrome c oxidase subunit IV and mitochondrial NADH dehydrogenase subunit 5 messenger RNA (mRNA) significantly augmented after the acute physical activity compared to pre-exercise levels; while no changes occurred in these mRNA in basal conditions. NF-κB activation and ROS production reported a significant increase after acute exercise. Training increases the levels of proteins related to mitochondrial biogenesis and improves the antioxidant capabilities of mitochondria in PBMCs among well-trained football players. Acute exercise may act as an inducer of mitochondrial biogenesis through NF-κB activation and PGC1α gene expression.

  1. Physiological and cytokine response to acute exercise under hypoxic conditions: a pilot study.

    PubMed

    Lira, Fábio S; Lemos, Valdir A; Bittar, Irene G; Caris, Aline V; Dos Santos, Ronaldo V; Tufik, Sergio; Zagatto, Alessandro M; de Souza, Claudio T; Pimentel, Gustavo D; De Mello, Marco T

    2017-04-01

    Studies have demonstrated that exercise in hypoxia situations induces a cytotoxicity effects. However, the cytokines participation in this condition is remaining unknown. Thus, the aim the present study was to evaluate physiological parameters and inflammatory profiles in response to acute exercise after five hours of hypoxic conditions. Fourteen healthy men were distributed randomly into two groups: normoxic exercise (N.=7) and hypoxic exercise (N.=7). All volunteers were blinded to the protocol. Initially, all subjects were submitted to chamber normobaric in a room fitted for altitude simulations of up to 4500 m, equivalent to a barometric pressure of 433 mmHg. All analyses began at 7:00 a.m. and was maintained for 5 hours; the fraction of inspired oxygen (FiO2) was 13.5%. The groups began a 60-minute session of physical exercise starting at 11:00 a.m., at 50% of peak VO2 (50% VO2peak). Blood was collected for cytokine analysis in the morning upon waking, before the 60-minute exercise session and immediately thereafter. The heart rate during 60 minutes' exercise training was significantly increased in both exercise groups (P<0.05), and the oxygen saturation was reduced under hypoxic conditions during exercise (P<0.05). After exercise, significant increases were found for IL-1ra and IL-10 under hypoxic conditions (P<0.05) and for IL-6 for both groups (P<0.05). TNF-α was not altered under either environmental condition. Our data demonstrate that acute exercise performance in hypoxic conditions can promotes early inflammatory response, leads for immunosuppression state.

  2. Early myogenic responses to acute exercise before and after resistance training in young men

    PubMed Central

    Caldow, Marissa K; Thomas, Emily E; Dale, Michael J; Tomkinson, Grant R; Buckley, Jonathan D; Cameron-Smith, David

    2015-01-01

    To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70–85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training. PMID:26359239

  3. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth.

    PubMed

    Lambiase, Maya J; Dorn, Joan; Roemmich, James N

    2013-03-01

    Studies in youth show an association between systolic blood pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). Submaximal exercise produces similar cardiovascular responses as acute psychological stress and may be a valuable tool to assess SBP reactivity in youth. However, it has not yet been determined whether SBP reactivity during submaximal exercise in youth is associated with CIMT, as it is during psychological stress. Fifty-four adolescents aged 13-16 years completed 3 visits. On one visit, adolescents completed three, 4-minute stages of increasing intensity on a treadmill. On another visit, adolescents completed measures of acute psychological stress reactivity (star tracing, speech preparation, speech). On a third visit, adolescents completed an ultrasound scan to measure CIMT. SBP reactivity during lower- (β = 0.29, P = 0.03) and higher-intensity (β = 0.31, P = 0.02) submaximal exercise was associated with greater CIMT. SBP reactivity during higher-intensity submaximal exercise was positively associated with SBP reactivity during star tracing (β = 0.34, P = 0.01), speech preparation (β = 0.37, P = 0.007), and speech (β = 0.41, P = 0.003). Greater SBP reactivity during submaximal exercise in healthy adolescents was associated with greater CIMT, similar to SBP reactivity during acute psychological stress. Adolescents who had greater SBP reactivity during exercise also demonstrated greater SBP reactivity during the psychological stress tasks. Given that exercise testing can be standardized for comparison across studies, submaximal exercise tests may be a valuable tool to assess SBP reactivity in youth.

  4. Systolic Blood Pressure Reactivity During Submaximal Exercise and Acute Psychological Stress in Youth

    PubMed Central

    Dorn, Joan; Roemmich, James N.

    2013-01-01

    BACKGROUND Studies in youth show an association between systolic blood pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). Submaximal exercise produces similar cardiovascular responses as acute psychological stress and may be a valuable tool to assess SBP reactivity in youth. However, it has not yet been determined whether SBP reactivity during submaximal exercise in youth is associated with CIMT, as it is during psychological stress. METHODS Fifty-four adolescents aged 13–16 years completed 3 visits. On one visit, adolescents completed three, 4-minute stages of increasing intensity on a treadmill. On another visit, adolescents completed measures of acute psychological stress reactivity (star tracing, speech preparation, speech). On a third visit, adolescents completed an ultrasound scan to measure CIMT. RESULTS SBP reactivity during lower- (β = 0.29, P = 0.03) and higher-intensity (β = 0.31, P = 0.02) submaximal exercise was associated with greater CIMT. SBP reactivity during higher-intensity submaximal exercise was positively associated with SBP reactivity during star tracing (β = 0.34, P = 0.01), speech preparation (β = 0.37, P = 0.007), and speech (β = 0.41, P = 0.003). CONCLUSIONS Greater SBP reactivity during submaximal exercise in healthy adolescents was associated with greater CIMT, similar to SBP reactivity during acute psychological stress. Adolescents who had greater SBP reactivity during exercise also demonstrated greater SBP reactivity during the psychological stress tasks. Given that exercise testing can be standardized for comparison across studies, submaximal exercise tests may be a valuable tool to assess SBP reactivity in youth. PMID:23382492

  5. THE POTENTIAL OF USING EXERCISE IN NATURE AS AN INTERVENTION TO ENHANCE EXERCISE BEHAVIOR: RESULTS FROM A PILOT STUDY.

    PubMed

    Calogiuri, Giovanna; Nordtug, Hildegunn; Weydahl, Andi

    2015-10-01

    According to attention-restoration theory (ART), natural environments can provide restorative experiences. In this pilot study, a mixed-methods approach was used to examine the potential of using exercise in a natural environment to enhance exercise behaviors. The study included an assessment study and an intervention study (overall n = 19). The participants underwent a standardized exercise program including biking and circuit strength training, either indoors or outdoors in nature. Measurements included connectedness to nature, perceived exertion, perceived environmental restorativeness, enjoyment, affect, future exercise intention, and self-reported exercise behavior. The participants also wrote a brief text describing the way in which the environment influenced their feelings while exercising. Quantitative data were analyzed using the Spearman rank correlation and linear mixed-effects modeling. The qualitative information was analyzed thematically. The integrated results indicated that, in accordance with ART, exercising in nature was associated with a greater potential for restoration and affective responses, which in some participants led to enhanced intention to exercise and increased exercise behavior. However, some perceived that the indoor exercise provided a more effective workout. Further studies on larger samples are needed.

  6. Delayed voluntary exercise does not enhance cognitive performance after hippocampal injury: an investigation of differentially distributed exercise protocols

    PubMed Central

    Wogensen, Elise; Gram, Marie Gajhede; Sommer, Jens Bak; Vilsen, Christina Rytter; Mogensen, Jesper; Malá, Hana

    2016-01-01

    Voluntary exercise has previously been shown to enhance cognitive recovery after acquired brain injury (ABI). The present study evaluated effects of two differentially distributed protocols of delayed, voluntary exercise on cognitive recovery using an allocentric place learning task in an 8-arm radial maze. Fifty-four Wistar rats were subjected to either bilateral transection of the fimbria-fornix (FF) or to sham surgery. Twenty-one days postinjury, the animals started exercising in running wheels either for 14 consecutive days (FF/exercise daily [ExD], sham/ExD) or every other day for 14 days (FF/exercise every second day [ExS], sham/ExS). Additional groups were given no exercise treatment (FF/not exercise [NE], sham/NE). Regardless of how exercise was distributed, we found no cognitively enhancing effects of exercise in the brain injured animals. Design and protocol factors possibly affecting the efficacy of post-ABI exercise are discussed. PMID:27807517

  7. DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex.

    PubMed

    Heaney, Jennifer L J; Carroll, Douglas; Phillips, Anna C

    2013-04-01

    The aim of the present study was to investigate resting measures of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulphate (DHEA-S) and cortisol, and the response and recovery of these hormones to acute exercise, in male and female older adults of different exercise training status. Participants were 49 community-dwelling older adults (23 females) aged between 60 and 77 years who were either sedentary (n=14), moderately active (n=14) or endurance trained (n=21). Participants undertook an acute bout of exercise in the form of an incremental submaximal treadmill test. The exercise lasted on average 23 min 49 s (SD=2 min 8 s) and participants reached 76.5% (SD=5.44) of the predicted maximal heart rate. Blood samples were collected prior to exercise, immediately, and 1 h post-exercise. DHEA levels significantly increased immediately post-exercise; however, DHEA-S levels only significantly increased in females. Cortisol significantly decreased immediately post-exercise and 1 h post-exercise compared to pre-exercise. There were no significant differences in resting hormone levels or hormonal responses to exercise between training status groups. The findings suggest that exercise can stimulate DHEA production in older adults and that hormonal responses to exercise differ between male and female older adults.

  8. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy.

    PubMed

    Nader, G A; von Walden, F; Liu, C; Lindvall, J; Gutmann, L; Pistilli, E E; Gordon, P M

    2014-03-15

    We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program (training+acute). The dominant arm was either unexercised (control) or subjected to the same acute exercise bout as the trained arm (acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations.

  9. Meditation or Exercise May Help Acute Respiratory Infections

    MedlinePlus

    ... from hand-washing, no acute respiratory infection prevention strategies have previously been proven. The researchers concluded that future studies are needed to confirm these findings. Reference Barrett ...

  10. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    PubMed Central

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  11. Case Report: Exercise in a Patient with Acute Decompensated Heart Failure Receiving Positive Inotropic Therapy

    PubMed Central

    Camarda, Robert; Foley, Laura Little; Givertz, Michael M; Cahalin, Lawrence P

    2011-01-01

    Background and Purpose: The projected increase in persons with advanced heart failure and associated costs warrant the examination of exercise in patients receiving inotropic therapy. Literature supports the use of exercise and inotropic therapy in the treatment of patients with advanced heart failure. The purposes of this paper are to illustrate the use of exercise prescription and outcomes assessment with a 6-minute walk test in a patient with acute decompensated heart failure receiving tailored therapy with dobutamine and to discuss potential relationships resulting in observed improvements. Case Description: A 67-year old man was admitted to an acute care hospital with acute decompensated heart failure for tailored medical therapy including dobutamine. The patient received 14 days of tailored medical therapy, of which 12 days included exercise training by a physical therapist. Outcomes: Functional outcomes showed a clinically significant improvement in distance walked and improvement in the cardiorespiratory response. The improvement in estimated peak oxygen consumption was 7% greater than that predicted to be from tailored medical therapy. Discussion: Exercise was safely provided to a patient hospitalized with advanced heart failure on continuous inotropic therapy. The 6-minute walk test was effectively used to prescribe exercise and examine patient outcomes. PMID:21637393

  12. Effect of acute nitrate ingestion on V̇O2 response at different exercise intensity domains.

    PubMed

    Ghiarone, Thaysa; Ataide-Silva, Thays; Bertuzzi, Romulo; McConell, Glenn Kevin; Lima-Silva, Adriano Eduardo

    2017-06-28

    While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg(-1) body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min(-1) vs. placebo: 1.13 ± 0.59 L·min(-1), p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min(-1)·W(-1) vs. placebo: 7.09 ± 3.67 mL·min(-1)·W(-1), p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.

  13. Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.

    PubMed

    Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D

    2013-03-01

    To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published

  14. Self-control training leads to enhanced cardiovascular exercise performance.

    PubMed

    Bray, Steven R; Graham, Jeffrey D; Saville, Paul D

    2015-01-01

    The purpose of the study was to investigate the effects of two weeks of self-control strength training on maximum cardiovascular exercise performance. Forty-one participants completed a cognitive self-control depletion task (Stroop task) followed by a maximal graded cycling test and were randomized to training (maximal endurance contractions of spring handgrip trainers, twice daily) or no-treatment control groups. At follow-up (2 weeks), half of each group completed either a time-matched or trial-matched Stroop task followed by another maximal graded cycling test. Results showed a significant 2-way (training X time) interaction (P < 0.001), and a trend for the 3-way (training X time X cognitive task) interaction (P = 0.07). Decomposition of the interactions revealed that across sessions cycling performance increased in both training groups, did not change in the trial-matched cognitive task control group, and declined in the time-matched control group. We conclude that isometric handgrip training leads to self-control strength adaptations that enhance maximal cardiovascular exercise performance or tolerance of exercise at maximal levels of effort.

  15. Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients.

    PubMed

    Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallarés, Jesús G; Mora-Rodriguez, Ricardo

    2017-07-01

    The purpose of this study was to compare the magnitude of post-exercise hypotension (PEH) after a bout of cycling exercise using high-intensity interval training (HIIT) in comparison to a bout of traditional moderate-intensity continuous exercise (CE). After supine rest 14 obese (31±1 kg·m(-2)) middle-age (57±2 y) metabolic syndrome patients (50% hypertensive) underwent a bout of HIIT or a bout of CE in a random order and then returned to supine recovery for another 45 min. Exercise trials were isocaloric and compared to a no-exercise trial (CONT) of supine rest for a total of 160 min. Before and after exercise we assessed blood pressure (BP), heart rate (HR), cardiac output (Q), systemic vascular resistance (SVR), intestinal temperature (TINT), forearm skin blood flow (SKBF) and percent dehydration. HIIT produced a larger post-exercise reduction in systolic blood pressure than CE in the hypertensive group (-20±6 vs. -5±3 mmHg) and in the normotensive group (-8±3 vs. -3±2 mmHg) while HIIT reduced SVR below CE (P<0.05). Percent dehydration was larger after HIIT, and post-exercise TINT and SKBF increased only after HIIT (all P<0.05). Our findings suggest that HIIT is a superior exercise method to CE to acutely reduce blood pressure in MSyn subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Lack of effect of exercise time of day on acute energy intake in healthy men.

    PubMed

    O'Donoghue K, J M; Fournier, Paul A; Guelfi, Kym J

    2010-08-01

    Although the manipulation of exercise and dietary intake to achieve successful weight loss has been extensively studied, it is unclear how the time of day that exercise is performed may affect subsequent energy intake. The purpose of the current study was to investigate the effect of an acute bout of exercise performed in the morning compared with an equivalent bout of exercise performed in the afternoon on short-term energy intake. Nine healthy male participants completed 3 trials: morning exercise (AM), afternoon exercise (PM), or control (no exercise; CON) in a randomized counterbalanced design. Exercise consisted of 45 min of treadmill running at 75% VO(2peak). Energy intake was assessed over a 26-hr period with the participants eating ad libitum from a standard assortment of food items of known quantity and composition. There was no significant difference in overall energy intake (M ± SD; CON 23,505 ± 6,938 kJ, AM 24,957 ± 5,607 kJ, PM 24,560 ± 5,988 kJ; p = .590) or macronutrient preferences during the 26-hr period examined between trials. Likewise, no differences in energy intake or macronutrient preferences were observed at any of the specific individual meal periods examined (i.e., breakfast, lunch, dinner) between trials. These results suggest that the time of day that exercise is performed does not significantly affect short-term energy intake in healthy men.

  17. Acute Effects of Aerobic Exercise on Feelings of Energy in Relation to Age and Sex.

    PubMed

    Legrand, Fabien D; Bertucci, William M; Hudson, Joanne

    2016-01-01

    A crossover experiment was performed to determine whether age and sex, or their interaction, affect the impact of acute aerobic exercise on vigor-activity (VA). We also tested whether changes in VA mediated exercise effects on performance on various cognitive tasks. Sixty-eight physically inactive volunteers participated in exercise and TV-watching control conditions. They completed the VA subscale of the Profile of Mood States immediately before and 2 min after the intervention in each condition. They also performed the Trail Making Test 3 min after the intervention in each condition. Statistical analyses produced a condition . age . sex interaction characterized by a higher mean VA gain value in the exercise condition (compared with the VA gain value in the TV-watching condition) for young female participants only. In addition, the mediational analyses revealed that changes in VA fully mediated the effects of exercise on TMT-Part A performance.

  18. Acute Hematological and Inflammatory Responses to High-intensity Exercise Tests: Impact of Duration and Mode of Exercise.

    PubMed

    Minuzzi, Luciele G; Carvalho, Humberto M; Brunelli, Diego T; Rosado, Fatima; Cavaglieri, Cláudia R; Gonçalves, Carlos E; Gaspar, Joana M; Rama, Luís M; Teixeira, Ana M

    2017-07-01

    The purpose of this study was to investigate the hematological and inflammatory responses to 4 maximal high-intensity protocols, considering energy expenditure in each test. 9 healthy volunteers performed 4 high-intensity exercise tests of short [Wingate (WANT); Repeated-sprints (RSA)] and long durations [Continuous VO2 test (VCONT); intermittent VO2 test (VINT)] in a cycle-ergometer, until exhaustion. Hematological parameters and IL-6, IL-10 and creatine kinase (CK) levels were determined before (PRE), POST, 30 min, 1, 2, 12 and 24 h after the end of the protocols. Additionally, energy expenditure was determined. Leucocytes, erythrocytes and lymphocytes increased at POST and returned to PRE values at 30 min for all protocols. Lymphocytes had a second decreased at 2 h and granulocytes increased at 2 h when compared to PRE. Both variables returned to PRE values between 12-24 h into recovery. The magnitude of response for IL-6 was greater in VINT and for IL-10 in VCONT. There was no association of energy expenditure within each exercise protocol with the pattern of IL-6, IL-10 and CK responses to the exercise protocols. The present finding support that similar responses after continuous or intermittent acute protocols are observed when exercises are performed to volitional failure, regardless of the duration and mode of exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  19. The effects of acute or chronic ingestion of propranolol or metoprolol on the metabolic and hormonal responses to prolonged, submaximal exercise in hypertensive men.

    PubMed Central

    Macdonald, I A; Bennett, T; Brown, A M; Wilcox, R G; Skene, A M

    1984-01-01

    We have studied the effects of single oral doses of, and of 28 days treatment with, placebo, propranolol or metoprolol, on the metabolic and hormonal responses to prolonged exercise in hypertensive men. Blood glucose levels fell during exercise on all occasions. No additional effects of the beta-adrenoceptor antagonists, compared to placebo, were observed. The exercise-induced increase in plasma potassium was enhanced after a single dose of propranolol or metoprolol, and also after chronic treatment with propranolol. Chronic treatment with either drug led to an increase in plasma potassium levels at rest. The growth hormone response to exercise was potentiated by a single dose of metoprolol or propranolol, and after chronic treatment with the drugs. A single dose of propranolol (but not metoprolol) was associated with a marked increase in plasma cortisol and adrenaline levels during exercise. After chronic treatment no such increase occurred. In both the acute and chronic phases of the study, blood lactate levels were higher during exercise in the presence of either propranolol or metoprolol compared to placebo, whereas non-esterified fatty acid levels were lower. A single dose of metoprolol produced a significantly greater reduction in blood glycerol levels during exercise than a single dose of propranolol. After chronic treatment, both propranolol and metoprolol produced similar reductions in blood glycerol levels during exercise. After a single dose, both drugs significantly augmented the increase in plasma noradrenaline levels during exercise. A similar effect was seen after chronic treatment. PMID:6370283

  20. Effect of exercise and food restriction on selected markers of the acute phase response in hamsters.

    PubMed

    Conn, C A; Kozak, W E; Tooten, P C; Niewold, T A; Borer, K T; Kluger, M J

    1995-02-01

    Acute aerobic exercise has been shown to elicit physiological changes characteristic of the acute phase response (APR), a nonspecific host defense response. Regular evocation of these changes may prime the immune system to improve resistance to disease. Because food deprivation is associated with an impaired APR, food restriction may prevent these beneficial changes. We tested the hypotheses that voluntary exercise elicits an APR and that food restriction modifies this response in four groups of hamsters: ad libitum-fed sedentary, ad libitum-fed exercised, food-restricted sedentary, and food-restricted exercised. Five variables altered during an APR were examined: core temperature, serum iron, serum interleukin-6, serum amyloid A, and serum glucocorticoids measured by biotelemetry, colorimetric analysis, B-9 cell growth assay, indirect enzyme-linked immunosorbent assay, and radioimmunoassay, respectively. Blood was drawn during the hamsters' inactive period after 19-20 days of access to running wheels. Resting core temperature was elevated by exercise and depressed by food restriction (P < 0.01). Iron was depressed by food restriction (P < 0.01). Cortisol, but not corticosterone, was elevated by food restriction (P < 0.001). There were no significant differences among groups in interleukin-6 (P > 0.49) or serum amyloid A (P > 0.29). We conclude that there is little evidence that voluntary exercise or exercise combined with food restriction causes an APR in hamsters.

  1. [Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents].

    PubMed

    Browne, Rodrigo Alberto Vieira; Costa, Eduardo Caldas; Sales, Marcelo Magalhães; Fonteles, André Igor; Moraes, José Fernando Vila Nova de; Barros, Jônatas de França

    2016-06-01

    To assess the acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Controlled, randomized study with crossover design. Twenty pubertal individuals underwent two 30-minute sessions: 1) aerobic exercise session performed between 65%-75% of heart rate reserve, divided into 5minutes of warm-up, 20minutes at the target intensity and 5minutes of cool down; and 2) control session watching a cartoon. Before and after the sessions, the computerized Stroop test-Testinpacs™ was applied to evaluate the inhibitory control. Reaction time (ms) and errors (n) were recorded. The control session reaction time showed no significant difference. On the other hand, the reaction time of the exercise session decreased after the intervention (p<0.001). The number of errors made at the exercise session were lower than in the control session (p=0.011). Additionally, there was a positive association between reaction time (Δ) of the exercise session and age (r(2)=0.404, p=0.003). Vigorous aerobic exercise seems to promote acute improvement in the inhibitory control in adolescents. The effect of exercise on the inhibitory control performance was associated with age, showing that it was reduced at older age ranges. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Efficacy of a respiratory rehabilitation exercise training package in hospitalized elderly patients with acute exacerbation of COPD: a randomized control trial.

    PubMed

    Liao, Lin-Yu; Chen, Kuei-Min; Chung, Wei-Sheng; Chien, Jung-Yien

    2015-01-01

    NCT02329873. Acute exacerbation (AE) of COPD is characterized by a sudden worsening of COPD symptoms. Previous studies have explored the effectiveness of respiratory rehabilitation for patients with COPD; however, no training program specific to acute exacerbation in elderly patients or unstable periods during hospitalization has been developed. To evaluate the effects of a respiratory rehabilitation exercise training package on dyspnea, cough, exercise tolerance, and sputum expectoration among hospitalized elderly patients with AECOPD. A randomized control trial was conducted. Pretest and posttest evaluations of 61 elderly inpatients with AECOPD (experimental group n=30; control group n=31) were performed. The experimental group received respiratory rehabilitation exercise training twice a day, 10-30 minutes per session for 4 days. The clinical parameters (dyspnea, cough, exercise tolerance, and sputum expectoration) were assessed at the baseline and at the end of the fourth day. All participants (median age =70 years, male =60.70%, and peak expiratory flow 140 L) completed the study. In the patients of the experimental group, dyspnea and cough decreased and exercise tolerance and sputum expectoration increased significantly compared with those of the patients in the control group (all P<0.05). Within-group comparisons revealed that the dyspnea, cough, and exercise tolerance significantly improved in the experimental group by the end of the fourth day (all P<0.05). Results of this study suggest that the respiratory rehabilitation exercise training package reduced symptoms and enhanced the effectiveness of the care of elderly inpatients with AECOPD.

  3. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle.

  4. Effects of acute exercise on endothelial function in abdominal aortic aneurysm patients.

    PubMed

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Schulze, Karl; Nam, Michael; Magee, Rebecca; Leicht, Anthony S; Green, Daniel J; Greaves, Kim; Golledge, Jonathan; Askew, Christopher D

    2017-09-22

    Endothelial dysfunction is observed in patients with abdominal aortic aneurysm (AAA), who have increased risk of cardiovascular events and mortality. This study aimed to assess the acute effects of moderate and higher-intensity exercise on endothelial function, as assessed by flow-mediated-dilation (FMD), in AAA patients (n=22; 74±6 y) and healthy adults (n=22; 72±5y). Participants undertook three randomised visits, including moderate-intensity continuous exercise (40% peak power output, PPO), higher-intensity interval exercise (70% PPO), and a no-exercise control. Brachial artery FMD was assessed at baseline, 10- and 60-min after each condition. Baseline FMD was lower in AAA patients compared to healthy adults [by 1.10%, (95% CI, 0.72 to 1.81), P=0.044]. There were no group differences in the FMD responses after each condition (P=0.397). FMD did not change after the control condition, but increased by 1.21% (95% CI, 0.69 to 1.73, P<0.001) 10 min after moderate-intensity continuous exercise in both groups, and returned to baseline levels after 60-min. Conversely, FMD decreased by 0.93% (95% CI, 0.41 to 1.44, P<0.001) 10-min after higher-intensity interval exercise in both groups, and remained decreased after 60 min. This study found that the acute response of endothelial function to exercise is intensity-dependent and similar between AAA patients and healthy adults. This provides evidence that regular exercise may improve vascular function in AAA, as it does in healthy adults. Improved FMD following moderate-intensity exercise may provide short-term benefit. Whether the decrease in FMD following higher-intensity exercise represents additional risk and/or a greater stimulus for vascular adaptation remains to be elucidated. Copyright © 2017, American Journal of Physiology-Heart and Circulatory Physiology.

  5. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction.

    PubMed

    Wernbom, Mathias; Paulsen, Gøran; Nilsen, Tormod S; Hisdal, Jonny; Raastad, Truls

    2012-06-01

    Conflicting findings have been reported regarding muscle damage with low-intensity resistance exercise with blood flow restriction (BFR) by pressure cuffs. This study investigated muscle function and muscle fibre morphology after a single bout of low-intensity resistance exercise with and without BFR. Twelve physically active subjects performed unilateral knee extensions at 30% of their one repetition maximum (1RM), with partial BFR on one leg and the other leg without occlusion. With the BFR leg, five sets were performed to concentric torque failure, and the free-flow leg repeated the exact same number of repetitions and sets. Biopsies were obtained from vastus lateralis before and 1, 24 and 48 h after exercise. Maximum isometric torque (MVC) and resting tension were measured before and after exercise and at 4, 24, 48, 72, 96 and 168 h post-exercise. The results demonstrated significant decrements in MVC (lasting ≥48 h) and delayed onset muscle soreness in both legs, and increased resting tension for the occluded leg both acutely and at 24 h post-exercise. The percentage of muscle fibres showing elevated intracellular staining of the plasma protein tetranectin, a marker for sarcolemmal permeability, was significantly increased from 9% before exercise to 27-38% at 1, 24 and 48 h post-exercise for the BFR leg. The changes in the free-flow leg were significant only at 24 h (19%). We conclude that an acute bout of low-load resistance exercise with BFR resulted in changes suggesting muscle damage, which may have implications both for safety aspects and for the training stimulus with BFR exercise.

  6. Acute exercise adjustments of cardiovascular autonomic control in diabetic rats.

    PubMed

    Da Pureza, Demilto Yamagushi; Jorge, Luciana; Sanches, Iris Callado; Irigoyen, Maria-Cláudia; De Souza, Romeu Rodrigues; De Angelis, Kátia

    2012-07-01

    We evaluated the role of cardiovascular autonomic changes in hemodynamics at rest and in response to exercise in streptozotocin-induced diabetic rats. Male Wistar rats were divided into nondiabetic (ND, n = 8) and diabetic (D, n = 8) groups. Arterial pressure signals were recorded in the basal state and after atropine or propranolol injections at rest, during exercise and during recovery. At rest, vagal tonus was reduced in D (37 ± 3 bpm) in comparison with the ND group (61 ± 9 bpm). Heart rate during exercise was lower in D in relation to ND rats associated with reduced vagal withdrawal in the D group. The D rats had an increase in vagal tonus in the recovery period (49 ± 6 bpm). Exercise-induced hemodynamic adjustment impairment in diabetic rats was associated with reduced cardiac vagal control. The vagal dysfunction was attenuated after aerobic exercise, reinforcing the positive role of this approach in the management of cardiovascular risk in diabetics. Copyright © 2012 Wiley Periodicals, Inc.

  7. The effect of acute exercise on GLUT4 levels in peripheral blood mononuclear cells of sled dogs.

    PubMed

    Schnurr, Theresia M; Reynolds, Arleigh J; Komac, Alyssa M; Duffy, Lawrence K; Dunlap, Kriya L

    2015-07-01

    Using sled dogs as exercise model, our objectives of this study were to 1) assess the effects of one acute bout of high-intensity exercise on surface GLUT4 concentrations on easily accessible peripheral blood mononuclear cells (PBMC) and 2) compare our findings with published research on exercise induced GLUT4 in skeletal muscle. During the exercise bout, dogs ran 5 miles at approximately 90% of VO2 max. PMBC were collected before exercise (baseline), immediately after exercise and after 24h recovery.GLUT4 was measured via ELISA. Acute exercise resulted in a significant increase on surface GLUT4 content on PBMC. GLUT4 was increased significantly immediately after exercise (~ 50%; p<0.05) and reduced slightly by 24h post-exercise as compared to baseline (~ 22%; p>0.05). An effect of acute exercise on GLUT4 levels translocated to the cell membrane was observed, with GLUT4 levels not yet returned to baseline after 24h post-exercise. In conclusion, the present investigation demonstrated that acute high-intensity exercise increased GLUT4 content at the surface of PBMC of sled dogs as it has been reported in skeletal muscle in other species. Our findings underline the potential use of peripheral blood mononuclear cell GLUT4 protein content as minimally invasive proxy to investigate relationships between insulin sensitivity, insulin resistance, GLUT4 expression and glucose metabolism.

  8. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review.

    PubMed

    McLellan, Tom M; Pasiakos, Stefan M; Lieberman, Harris R

    2014-04-01

    Protein supplements are consumed frequently by athletes and recreationally active adults for various reasons, including improved exercise performance and recovery after exercise. Yet, far too often, the decision to purchase and consume protein supplements is based on marketing claims rather than available evidence-based research. The purpose of this review was to provide a systematic and comprehensive analysis of the literature that tested the hypothesis that protein supplements, when combined with carbohydrate, directly enhance endurance performance by sparing muscle glycogen during exercise and increasing the rate of glycogen restoration during recovery. The analysis was used to create evidence statements based on an accepted strength of recommendation taxonomy. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition, and muscle, alone or in combination as keywords. Additional articles were retrieved from reference lists found in these papers. Inclusion criteria specified recruiting healthy active adults less than 50 years of age and evaluating the effects of protein supplements in combination with carbohydrate on endurance performance metrics such as time-to-exhaustion, time-trial, or total power output during sprint intervals. The literature search identified 28 articles, of which 26 incorporated test metrics that permitted exclusive categorization into one of the following sections: ingestion during an acute bout of exercise (n = 11) and ingestion during and after exercise to affect subsequent endurance performance (n = 15). The remaining two articles contained performance metrics that spanned both categories. All papers were read in detail and searched for experimental design confounders such as energy content of the supplements, dietary control, use of trained or untrained participants, number of subjects recruited, direct measures of muscle glycogen utilization and

  9. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.

  10. The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise.

    PubMed

    Scott, Jonathan P R; Sale, Craig; Greeves, Julie P; Casey, Anna; Dutton, John; Fraser, William D

    2011-02-01

    We compared the effects of exercise intensity (EI) on bone metabolism during and for 4 days after acute, weight-bearing endurance exercise. Ten males [mean ± SD maximum oxygen uptake (Vo(2max)): 56.2 ± 8.1 ml·min(-1)·kg(-1)] completed three counterbalanced 8-day trials. Following three control days, on day 4, subjects completed 60 min of running at 55%, 65%, and 75% Vo(2max). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH(2)-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone-alkaline phosphatase (ALP)], osteoprotegerin (OPG), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate (PO(4)), and cortisol were measured during and for 3 h after exercise and on four follow-up days (FU1-FU4). At 75% Vo(2max), β-CTX was not significantly increased from baseline by exercise but was higher compared with 55% (17-19%, P < 0.01) and 65% (11-13%, P < 0.05) Vo(2max) in the first hour postexercise. Concentrations were decreased from baseline in all three groups by 39-42% (P < 0.001) at 3 h postexercise but not thereafter. P1NP increased (P < 0.001) during exercise only, while bone-ALP was increased (P < 0.01) at FU3 and FU4, but neither were affected by EI. PTH and cortisol increased (P < 0.001) with exercise at 75% Vo(2max) only and were higher (P < 0.05) than at 55% and 65% Vo(2max) during and immediately after exercise. The increases (P < 0.001) in OPG, ACa, and PO(4) with exercise were not affected by EI. Increasing EI from 55% to 75% Vo(2max) during 60 min of running resulted in higher β-CTX concentrations in the first hour postexercise but had no effect on bone formation markers. Increased bone-ALP concentrations at 3 and 4 days postexercise suggest a beneficial effect of this type of exercise on bone mineralization. The increase in OPG was not influenced by exercise intensity, whereas PTH was increased at 75% Vo(2max) only, which cannot be fully explained by changes in

  11. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P < 0.001). These findings suggest that acute exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  12. Carbohydrate Supplementation and Immune Responses After Acute Exhaustive Resistance Exercise

    DTIC Science & Technology

    2008-01-01

    beverage contained aspartame, citric acid, food coloring, and acesulfame potassium (a high-intensity sweetener to make the product more palatable). On...in Sports and Exercise, 32, S369–S376. Miles, M.P., Leach, S.K., Kraemer, W.J., Dohi, K ., Bush, J.A., & Mastro, A.M. (1998). Leukocyte adhesion...Medicine, 18(Suppl.1), S2–S7. Pedersen, B.K., Rohde, T., & Ostrowski, K . (1998). Recovery of the immune system after exercise. Acta Physiologica

  13. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells.

    PubMed

    Brunelli, Andrea; Dimauro, Ivan; Sgrò, Paolo; Emerenziani, Gian Pietro; Magi, Fiorenza; Baldari, Carlo; Guidetti, Laura; Di Luigi, Luigi; Parisi, Paolo; Caporossi, Daniela

    2012-10-01

    Although several studies have shown that immune cells stimulated by in vitro stress are capable to produce neurotrophins, there is still no evidence whether physiological stress, such as exercise, can modulate the in vivo levels of brain-derived neurotrophic factor (BDNF) in peripheral blood mononuclear cells (PBMCs). This work investigated whether acute exercise modulates the expression of BDNF, pro-BDNF, and p75(NTR) in the PBMCs of 10 healthy young men who performed a cycling incremental test to exhaustion (MAX) or exercised at individual anaerobic threshold (IAT). The PBMC expression of stress response proteins and the level of circulating BDNF, vascular endothelial growth growth factor, platelet-derived growth factor subunit B, basic fibroblast growth factor pro-inflammatory, and anti-inflammatory cytokines were analyzed as well. A major finding is that both sessions of acute exercise regulated the content of BDNF isoforms within PBMCs in a manner related to the physiological stress exerted. Although the pro-BDNF increased after both MAX and IAT protocols, BDNF showed a kinetics dependent on exercise type: MAX induced a 54% protein increase immediately after exercise, followed by a significant drop 60 min after its conclusion (38% lower than the baseline). Differently, in the IAT, BDNF increased significantly up to 75% from the baseline throughout the recovery phase. All physiological parameters, as well as the p75(NTR) receptor and the stress-inducible proteins, were also differently regulated by the two exercise conditions. These data supported the hypothesis that PBMCs might produce and secrete BDNF isoforms, as well as modulate the proteins p75(NTR) , Bcl-xL, hsp90, hsp27, and αB-crystallin, as part of the physiological stress response induced by acute exercise, offering a novel example of bidirectional interaction between nervous and immune systems.

  14. Role of alpha- and beta-adrenoreceptors in rat monocyte/macrophage function at rest and acute exercise.

    PubMed

    da Silva Rossato, Juliane; Krause, Mauricio; Fernandes, Augustus Joli Martins; Fernandes, João Roberto; Seibt, Isis Lenhard; Rech, Anderson; Homem de Bittencourt, Paulo Ivo

    2014-06-01

    Previous studies from our laboratory have demonstrated that a single bout of moderate exercise stimulates macrophage function, increasing phagocytic capacity, and production of hydrogen peroxide and nitric oxide (NO˙) through nuclear factor kappa B activation. In this work, we investigated the role of α- and β-adrenoreceptors on the function of monocyte/macrophages during rest and exercise. Adult male Wistar rats were i.p. administered (100 μL/100 g) with specific adrenergic antagonists before an acute moderate exercise bout: prazosin (α1-specific antagonist 2 mg/kg), propranolol (unspecific β1/β2 antagonist 10 mg/kg), double blockade (α1 and β1/β2), or phosphate-buffered saline (control). Acute exercise consisted in a single swimming session of moderate intensity (5% body weight overload on the chest) for 60 min. Control groups (rest) received the same antagonists and were killed 60 min after drug administration. Exercise increased phagocytic capacity (1.7-fold, p < 0.05), NO˙ production (5.24 fold, p < 0.001), and inducible nitric oxide synthase (NOS2) expression (by 58.1%), thus suggesting macrophage activation. The β-adrenoreceptor blockade did not change this behavior. In resting animals, α1 antagonist, as well as the double (α1/β) blockade, however, further increased phagocytic capacity (by up to 261%, p < 0.001), NO˙ production (by up to 328%, p < 0.001), and the expressions of NOS2 (by 182%, p < 0.001) and HSP70 (by 42.5%, p < 0.01) suggesting a tonic inhibitory effect of α1 stimulation on macrophage activation. In exercised animals, α1-blockade showed similar enhancing effect on phagocytic indices and expressions of NOS and HSP70, particularly in double-blocked groups, although NO˙ production was found to be reduced in exercised animals submitted to both α- and β-blockade. Redox (glutathione) status and lipoperoxidation were evaluated in all test groups and approximately paralleled macrophage NO˙ production. We

  15. Exercise four hour redistribution thallium-201 single photon emission computed tomography and exercise induced ST segment elevation in detecting the viable myocardium in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1999-01-01

    Objective—To investigate the specificity and sensitivity of the combination of redistribution in exercise thallium-201 single photon emission computed tomography (SPECT) and exercise induced ST elevation for detecting the viable myocardium in patients with acute myocardial infarction.
Design—37 patients were studied within seven weeks of onset of Q wave myocardial infarction (anterior in 22, inferior in 15). All patients underwent exercise four hour redistribution thallium-201 SPECT and positron emission tomography using fluorine-18-fluorodeoxyglucose (FDG) and nitrogen-13 ammonia under fasting conditions.
Results—Sixteen patients showed exercise induced ST elevation ⩾ 1.5 mm, and 15 of these had increased FDG uptake in the infarct region. Eleven of 16 patients (10 of 11 patients with anterior infarctions) with irreversible thallium-201 defects and increased FDG uptake showed exercise induced ST elevation. The sensitivity, specificity, and predictive accuracy of redistribution, exercise induced ST segment elevation, or both for detecting increased FDG uptake were 82%, 75%, and 67% (94%, 75%, and 91% for anterior infarctions), respectively. 
Conclusions—In patients with acute Q wave myocardial infarction, the combination of redistribution in exercise thallium-201 SPECT and exercise induced ST elevation can detect the viable myocardium in the infarct region with high sensitivity and specificity, especially in patients with anterior infarctions.

 Keywords: acute myocardial infarction;  viability;  exercise induced ST elevation;  exercise thallium-201 SPECT PMID:10220539

  16. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    PubMed

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  17. Effects of an acute bout of exercise on serum soluble leptin receptor (sOB-R) levels.

    PubMed

    Yang, Chung Bing; Chuang, Chung-Chief; Kuo, Chung Sen; Hsu, Chin Hsing; Tsao, Te Hung

    2014-01-01

    We investigated the effects of an acute bout of exercise on serum soluble leptin receptor (sOB-R) concentrations. Eighteen male participants completed two different exercise sessions with intensities of 25% and 65% maximal aerobic capacity (VO2max). In addition to the energy expenditure during exercise sessions being measured, blood samples were collected before exercise, and immediately, at 24 h, and at 48 h post-exercise to analyse sOB-R, leptin and insulin levels. At 24 h post-exercise, sOB-R and leptin concentrations at the 65% VO2max were significantly different from those at the 25% VO2max. Leptin levels at 48 h post-exercise were also significantly lower for the 65% VO2max than for the 25% VO2max (P < 0.01). In the 65% VO2max session, the energy expenditure during exercise was significantly associated with leptin concentrations at 24 h and 48 h and sOB-R concentrations at 24 h post-exercise. However, no correlations were found between sOB-R and leptin at the three post-exercise time points. In conclusion, an acute bout of exercise with 920 kcal of output resulted in an increase in sOB-R levels at 24 h post-exercise. However, the changes in sOB-R levels due to an acute bout of exercise might not contribute to the delayed decrease observed for leptin.

  18. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  19. Exercise after acute hyperbaric oxygenation: is there an ergogenic effect?

    PubMed

    Webster, A L; Syrotuik, D G; Bell, G J; Jones, R L; Bhambhani, Y; Young, M

    1998-01-01

    The purpose of this study was to determine the effects of a 1-h exposure to 2.0 atm abs (202.6 kPa) and 100% oxygen on subsequent maximal O2 consumption (VO2max), ventilation threshold (VT), lactate threshold (LT), and muscle oxygenation (%Mox) during incremental exercise to maximum on a cycle ergometer. Two baseline exercise tests (T1 and T2) were performed on separate occasions without prior exposure to hyperbaric oxygen (HBO2) and a third test (T3-HBO2) was performed after (22.5 +/- 5.6 min) HBO2 Near infared spectroscopy was used to monitor oxygenation of the left vastus lateralis muscle during T2 and T3-HBO2. No significant differences were observed between VO2max VT, or LT among any of the exercise tests. There was no significant difference in %Mox between T2 and T3-HBO2 except at 235 W where there was a significant elevation in %Mox during T3-HBO2 relative to T2. These results suggest that prior exposure to HBO2 (100% O2 at 2 atm abs for 1 h) has no ergogenic effect on subsequent incremental exercise performance.

  20. The Effects Combining Cryocompression Therapy following an Acute Bout of Resistance Exercise on Performance and Recovery

    PubMed Central

    DuPont, William H.; Meuris, Brek J.; Hardesty, Vincent H.; Barnhart, Emily C.; Tompkins, Landon H.; Golden, Morricia J.P.; Usher, Clayton J.; Spence, Paul A.; Caldwell, Lydia K.; Post, Emily M.; Beeler, Matthew K.; Kraemer, William J.

    2017-01-01

    Compression and cold therapy used separately have shown to reduce negative effects of tissue damage. The combining compression and cold therapy (cryocompression) as a single recovery modality has yet to be fully examined. To examine the effects of cryocompression on recovery following a bout of heavy resistance exercise, recreationally resistance trained men (n =16) were recruited, matched, and randomly assigned to either a cryocompression group (CRC) or control group (CON). Testing was performed before and then immediately after exercise, 60 minutes, 24 hours, and 48 hours after a heavy resistance exercise workout (barbell back squats for 4 sets of 6 reps at 80% 1RM, 90 sec rest between sets, stiff legged deadlifts for 4 sets of 8 reps at 1.0 X body mass with 60 sec rest between sets, 4 sets of 10 eccentric Nordic hamstring curls, 45 sec rest between sets). The CRC group used the CRC system for 20-mins of cryocompression treatment immediately after exercise, 24 hours, and 48 hours after exercise. CON sat quietly for 20-mins at the same time points. Muscle damage [creatine kinase], soreness (visual analog scale, 0-100), pain (McGill Pain Q, 0-5), fatigue, sleep quality, and jump power were significantly (p < 0.05) improved for CRC compared to CON at 24 and 48 hours after exercise. Pain was also significantly lower for CRC compared to CON at 60-mins post exercise. These findings show that cryocompression can enhance recovery and performance following a heavy resistance exercise workout. Key points The combination of circulatory cooling and compression technology enhances recovery from heavy resistance exercise. Sleep quality is enhanced following the use of cyo-compression when compared to typical no intervention control conditions following heavy resistance exercise. Muscle damage markers, pain and soreness markers are improved with cryocompression when compared to no interventional control conditions following heavy resistance exercise. PMID:28912650

  1. Acute exercise increases resistance to oxidative stress in young but not older adults.

    PubMed

    Nordin, Trevor C; Done, Aaron J; Traustadóttir, Tinna

    2014-01-01

    A single bout of acute exercise increases oxidative stress and stimulates a transient increase in antioxidant enzymes. We asked whether this response would induce protection from a subsequent oxidative challenge, different from that of exercise, and whether the effects were affected by aging. We compared young (20 ± 1 years, n = 8) and older (58 ± 6 years, n = 9) healthy men and women. Resistance to oxidative stress was measured by the F2-isoprostane response to forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial twice, in random order; once after performing 45 min of cycling on the preceding day (IRX) and a control trial without any physical activity (IRC). Baseline F2-isoprostane levels were significantly lower at IRX compared to IRC (P < 0.05) and not different between groups. F2-isoprostane response to IRX was significantly lower compared to IRC in young (P < 0.05) but not different in the older group. Superoxide dismutase activity in response to acute exercise was significantly higher in young compared to older adults (P < 0.05). These data suggest that signal transduction of acute exercise may be impaired with aging. Repeated bouts of transient reactive oxygen species production as seen with regular exercise may be needed to increase resistance to oxidative stress in older individuals.

  2. Lymphocyte distribution in mouse submandibular lymph nodes in response to acute treadmill exercise.

    PubMed

    Quadrilatero, J; Boudreau, J; Hoffman-Goetz, L

    2003-10-01

    The submandibular lymph nodes (LN), part of the nasal-associated lymphoid tissue (NALT), are involved in local immune responses in the eye, upper respiratory tract (URT), and oral mucosa. Although athletes have been reported to be at increased risk for URT and ocular infections, little is known about the impact of exercise on LN included in the NALT. The purpose of this study was to examine the impact of intense acute exercise on submandibular lymphocyte distribution. Female C57BL/6 mice were randomly assigned to a nonexercised control condition or a single session of treadmill exercise (32 m.min-1, 8 degrees grade for 90 min) and sacrificed immediately, 2, and 24 h after exercise. Running resulted in a significant increase in plasma corticosterone immediately following exercise compared with other times (p < 0.001). Percentages and total numbers of CD3+ and CD4+CD8- T lymphocytes in submandibular LN were significantly lower 24 h after exercise compared with controls. The percentage of pan-NK and CD19+ B cells increased immediately and 24 h after exercise, respectively, but the total numbers were not affected. The results suggest that decreased percentages and absolute numbers of T cells in submandibular LN following a single session of intense exercise may be partially mediated by increased corticosterone concentrations and may have consequences for ocular health among athletes.

  3. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    PubMed

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL(-1) of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.

    PubMed

    Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre

    2015-05-01

    The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Voluntary aerobic exercise increases the cognitive enhancing effects of working memory training.

    PubMed

    Smith, Andrew M; Spiegler, Kevin M; Sauce, Bruno; Wass, Christopher D; Sturzoiu, Tudor; Matzel, Louis D

    2013-11-01

    Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. Here, we explored whether physical exercise might induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact cognitive performance. Mice received either exercise treatment (6 weeks of voluntary running wheel access), working memory training (in a dual radial-arm maze), both treatments, or various control treatments. After this period of exercise, working memory training was initiated (alternating with days of exercise), and continued for several weeks. Upon completion of these treatments, animals were assessed (2-4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance.

  6. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback.

    PubMed

    Zschucke, Elisabeth; Renneberg, Babette; Dimeo, Fernando; Wüstenberg, Torsten; Ströhle, Andreas

    2015-01-01

    According to the cross-stressor adaptation hypothesis, physically trained individuals show lower physiological and psychological responses to stressors other than exercise, e.g. psychosocial stress. Reduced stress reactivity may constitute a mechanism of action for the beneficial effects of exercise in maintaining mental health. With regard to neural and psychoneuroendocrine stress responses, the acute stress-buffering effects of exercise have not been investigated yet. A sample of highly trained (HT) and sedentary (SED) young men was randomized to either exercise on a treadmill at moderate intensity (60-70% VO2max; AER) for 30 min, or to perform 30 min of "placebo" exercise (PLAC). 90 min later, an fMRI experiment was conducted using an adapted version of the Montreal Imaging Stress Task (MIST). The subjective and psychoneuroendocrine (cortisol and α-amylase) changes induced by the exercise intervention and the MIST were assessed, as well as neural activations during the MIST. Finally, associations between the different stress responses were analysed. Participants of the AER group showed a significantly reduced cortisol response to the MIST, which was inversely related to the previous exercise-induced α-amylase and cortisol fluctuations. With regard to the sustained BOLD signal, we found higher bilateral hippocampus (Hipp) activity and lower prefrontal cortex (PFC) activity in the AER group. Participants with a higher aerobic fitness showed lower cortisol responses to the MIST. As the Hipp and PFC are brain structures prominently involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, these findings indicate that the acute stress-buffering effect of exercise relies on negative feedback mechanisms. Positive affective changes after exercise appear as important moderators largely accounting for the effects related to physical fitness.

  7. Favorable responses to acute and chronic exercise in McArdle patients.

    PubMed

    Maté-Muñoz, José L; Moran, Maria; Pérez, Margarita; Chamorro-Viña, Carolina; Gómez-Gallego, Félix; Santiago, Catalina; Chicharro, Luis; Foster, Carl; Nogales-Gadea, Gisela; Rubio, Juan C; Andreu, Antoni L; Martín, Miguel A; Arenas, Joaquín; Lucia, Alejandro

    2007-07-01

    This study reports acute exercise responses in a large (N = 46) series of patients with McArdle disease and responses to exercise training in a smaller (n = 9) set of patients. Patients were studied during both incremental and steady-state cycle ergometer exercise, using cardiopulmonary testing, and the patients were compared with age- and gender-matched controls. The study was performed in a university setting (clinical exercise physiology laboratory). The 46 patients showed common features of McArdle disease. They were definitively diagnosed by histochemistry, biochemistry, and/or molecular genetic analysis. The 46 controls were healthy, sedentary individuals. Nine patients were studied before and after an 8-month supervised aerobic exercise training program (including five weekly sessions of walking and/or cycling exercise with a duration no greater than 60 minutes). The main indicators of exercise capacity that we measured were peak power output, peak oxygen uptake (VO2peak), and ventilatory threshold (VT). Exercise capacity (peak power output, 35% control; VO2peak, 44% control; VT, 66% control) was markedly depressed in the patients. The patients who trained improved peak power output (25%), VO2peak (44%), and VT (27%), with no evidence of negative outcomes from training. Although not achieving normal values, the response to training put the patients into the lower limit of normal controls. Under carefully controlled conditions, patients with McArdle disease may perform acute exercise safely, and they may respond favorably to training. This may offer an additional therapeutic option to help normalize the lifestyles of these patients.

  8. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  9. State/Trait Anxiety and Anxiolytic Effects of Acute Physical Exercises

    ERIC Educational Resources Information Center

    Guszkowska, Monika

    2009-01-01

    Study aim: To determine anxiolytic effects of acute physical exertions in relation to the initial anxiety state and trait in women. Material and methods: A group of 163 women aged 16-56 years, attending fitness clubs in Warsaw, participated in the study. They selected a single exercise to perform--strength, aerobic or mixed, lasting 30 to over 60…

  10. The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.

    ERIC Educational Resources Information Center

    Roitman, J. L.; Brewer, J. P.

    This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…

  11. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  12. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    USDA-ARS?s Scientific Manuscript database

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  13. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing.

    PubMed

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen; Korsgaard Johnsen, Line; Geertsen, Svend Sparre; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation.

  14. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    PubMed Central

    Christiansen, Lasse; Roig, Marc

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  15. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers.

    PubMed

    Sapp, Ryan M; Shill, Daniel D; Roth, Stephen M; Hagberg, James M

    2017-03-01

    MicroRNAs (miRNAs) are short, noncoding RNAs that influence biological processes by regulating gene expression after transcription. It was recently discovered that miRNAs are released into the circulation (ci-miRNAs) where they are highly stable and can act as intercellular messengers to affect physiological processes. This review provides a comprehensive summary of the studies to date that have investigated the effects of acute exercise and exercise training on ci-miRNAs in humans. Findings indicate that specific ci-miRNAs are altered in response to different protocols of acute and chronic exercise in both healthy and diseased populations. In some cases, altered ci-miRNAs correlate with fitness and health parameters, suggesting causal mechanisms by which ci-miRNAs may facilitate adaptations to exercise training. However, strong data supporting such mechanisms are lacking. Thus, a purpose of this review is to guide future studies by discussing current and novel proposed roles for ci-miRNAs in adaptations to exercise training. In addition, substantial, fundamental gaps in the field need to be addressed. The ultimate goal of this research is that an understanding of the roles of ci-miRNAs in physiological adaptations to exercise training will one day translate to therapeutic interventions. Copyright © 2017 the American Physiological Society.

  16. Acute interval exercise intensity does not affect appetite and nutrient preferences in overweight and obese males.

    PubMed

    Alkahtani, Shaea A; Byrne, Nuala M; Hills, Andrew P; King, Neil A

    2014-01-01

    This study investigated the influence of two different intensities of acute interval exercise on food preferences and appetite sensations in overweight and obese men. Twelve overweight/obese males (age=29.0±4.1 years; BMI =29.1±2.4 kg/m2) completed three exercise sessions: an initial graded exercise test, and two interval cycling sessions: moderate-(MIIT) and high-intensity (HIIT) interval exercise sessions on separate days in a counterbalanced order. The MIIT session involved cycling for 5-minute repetitions of alternate workloads 20% below and 20% above maximal fat oxidation. The HIIT session consisted of cycling for alternate bouts of 15 seconds at 85% VO2max and 15 seconds unloaded recovery. Appetite sensations and food preferences were measured immediately before and after the exercise sessions using the Visual Analogue Scale and the Liking & Wanting experimental procedure. Results indicated that liking significantly increased and wanting significantly decreased in all food categories after both MIIT and HIIT. There were no differences between MIIT and HIIT on the effect on appetite sensations and Liking & Wanting. In conclusion, manipulating the intensity of acute interval exercise did not affect appetite and nutrient preferences.

  17. α7β1 Integrin regulation of gene transcription in skeletal muscle following an acute bout of eccentric exercise.

    PubMed

    Mahmassani, Ziad S; Son, Kook; Pincu, Yair; Munroe, Michael; Drnevich, Jenny; Chen, Jie; Boppart, Marni D

    2017-05-01

    The α7β1 integrin is concentrated at the costameres of skeletal muscle and provides a critical link between the actin cytoskeleton and laminin in the basement membrane. We previously demonstrated that expression of the α7BX2 integrin subunit (MCK:α7BX2) preserves muscle integrity and enhances myofiber cross-sectional area following eccentric exercise. The purpose of this study was to utilize gene expression profiling to reveal potential mechanisms by which the α7BX2-integrin contributes to improvements in muscle growth after exercise. A microarray analysis was performed using RNA extracted from skeletal muscle of wild-type or transgenic mice under sedentary conditions and 3 h following an acute bout of downhill running. Genes with false discovery rate probability values below the cutoff of P < 0.05 (n = 73) were found to be regulated by either exercise or transgene expression. KEGG pathway analysis detected upregulation of genes involved in endoplasmic reticulum protein processing with integrin overexpression. Targeted analyses verified increased transcription of Rpl13a, Nosip, Ang, Scl7a5, Gys1, Ndrg2, Hspa5, and Hsp40 as a result of integrin overexpression alone or in combination with exercise (P < 0.05). A significant increase in HSPA5 protein and a decrease in CAAT-enhancer-binding protein homologous protein (CHOP) were detected in transgenic muscle (P < 0.05). In vitro knockdown experiments verified integrin-mediated regulation of Scl7a5 The results from this study suggest that the α7β1 integrin initiates transcription of genes that allow for protection from stress, including activation of a beneficial unfolded protein response and modulation of protein synthesis, both which may contribute to positive adaptations in skeletal muscle as a result of engagement in eccentric exercise. Copyright © 2017 the American Physiological Society.

  18. Nutrition programs enhance exercise effects on body composition and resting blood pressure.

    PubMed

    Westcott, Wayne L; Apovian, Caroline M; Puhala, Kimberly; Corina, Laura; Larosa Loud, Rita; Whitehead, Scott; Blum, Kenneth; DiNubile, Nicholas

    2013-09-01

    The purpose of our study was to examine the effects of exercise alone and exercise combined with specific nutrition programs on body composition and resting blood pressure rate. Adult participants (99 women, 22 men; aged 20-86 years) completed a combined strength and endurance exercise program (Exercise Only), or in conjunction with 1 of 2 nutrition plans (Exercise/Protein; Exercise/Protein/Diet). The Exercise-Only group performed 1 set of 9 resistance machines regimens interspersed with 3 bouts of recumbent cycling (5 minutes each). The Exercise/Protein group performed the same exercise program as Exercise-Only group, plus consumed 1.5 g of protein per kg of ideal body weight on a daily basis. The Exercise/Protein/Diet group followed an identical Exercise/Protein protocol along with a restricted daily caloric intake (1200-1500 cals/day for women; 1500-1800 cals/day for men). After 10 weeks of training, the Exercise/Protein group attained greater increases (P < 0.05) in lean weight and greater decreases (P < 0.05) in diastolic blood pressure (DBP) rate than the Exercise-Only group. The Exercise/Protein/Diet group experienced greater reductions (P < 0.05) in body weight, body mass index (BMI), percent fat, fat weight, waist circumference (WC), systolic blood pressure (SBP) rate, and DBP rate than the Exercise-Only group, as well as greater reductions (P < 0.05) in body weight, BMI, percent fat, fat weight, and WC than the Exercise/Protein group. Our findings suggest that a higher protein nutrition plan may enhance the effects of exercise for increasing subject lean weight and decreasing DBP rate. The findings further indicate that a higher protein and lower calorie nutrition plan may enhance the effects of exercise for decreasing subject body weight, BMI, percent fat, fat weight, WC, SBP rate, and DBP rate, while attaining similar gains in lean body mass.

  19. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults

    PubMed Central

    Richards, Jennifer C.; Crecelius, Anne R.; Larson, Dennis G.

    2015-01-01

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼20%); however, vasoconstriction to reflex increases in sympathetic activity during −40 mmHg lower-body negative pressure at rest (ΔFVC: −16 ± 3 vs. −16 ± 2%) or during 15% MVC (ΔFVC: −12 ± 2 vs. −11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation. PMID:25980023

  20. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A

    2015-07-15

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation.

  1. Differential effects of acute and regular physical exercise on cognition and affect.

    PubMed

    Hopkins, M E; Davis, F C; Vantieghem, M R; Whalen, P J; Bucci, D J

    2012-07-26

    The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either (a) a 4-week exercise program, with exercise on the final test day, (b) a 4-week exercise program, without exercise on the final test day, (c) a single bout of exercise on the final test day, or (d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for 4 weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans.

  2. Differential Effects of Acute and Regular Physical Exercise on Cognition and Affect

    PubMed Central

    Hopkins, Michael E.; Davis, F. Caroline; VanTieghem, Michelle R.; Whalen, Paul J.; Bucci, David J.

    2012-01-01

    The effects of regular exercise versus a single bout of exercise on cognition, anxiety, and mood were systematically examined in healthy, sedentary young adults who were genotyped to determine brain-derived neurotrophic factor (BDNF) allelic status (i.e., Val-Val or Val66Met polymorphism). Participants were evaluated on novel object recognition (NOR) memory and a battery of mental health surveys before and after engaging in either a) a four-week exercise program, with exercise on the final test day, b) a four-week exercise program, without exercise on the final test day, c) a single bout of exercise on the final test day, or d) remaining sedentary between test days. Exercise enhanced object recognition memory and produced a beneficial decrease in perceived stress, but only in participants who exercised for four weeks including the final day of testing. In contrast, a single bout of exercise did not affect recognition memory and resulted in increased perceived stress levels. An additional novel finding was that the improvements on the NOR task were observed exclusively in participants who were homozygous for the BDNF Val allele, indicating that altered activity-dependent release of BDNF in Met allele carriers may attenuate the cognitive benefits of exercise. Importantly, exercise-induced changes in cognition were not correlated with changes in mood/anxiety, suggesting that separate neural systems mediate these effects. These data in humans mirror recent data from our group in rodents. Taken together, these current findings provide new insights into the behavioral and neural mechanisms that mediate the effects of physical exercise on memory and mental health in humans. PMID:22554780

  3. Bioactivity of food peptides: biological response of rats to bovine milk whey peptides following acute exercise

    PubMed Central

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-01-01

    ABSTRACT Background: Several physiologically beneficial effects of consuming a whey protein hydrolysate (WPH) have been attributed to the greater availability of bioactive peptides. Aims: The aim was to investigate the effect of four branched-chain amino acid- (BCAA-)containing dipeptides, present in WPH, on immune modulation, stimulation of HSP expression, muscle protein synthesis, glycogen content, satiety signals and the impact of these peptides on the plasma free amino acid profiles. Methods: The animals were divided in groups: control (rest, without gavage), vehicle (water), L-isoleucyl-L-leucine (lle-Leu), L-leucyl-L-isoleucine (Leu-lle), L-valyl-Lleucine (Val-Leu), L-leucyl-L-valine (Leu-Val) and WPH. All animals were submitted to acute exercise, except for control. Results: lle-Leu stimulated immune response, hepatic and muscle glycogen and HSP60 expression, whereas Leu-Val enhanced HSP90 expression. All dipeptides reduced glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, no changes were observed on leptin. All peptides inhibited NF-kB expression. The plasma amino acid time-course showed peptide-specific and isomer-specific metabolic features, including increases of the BCAAs. Conclusion: The data indicate that lle-Leu was effective to attenuate immune-suppression exercise-induced, promoted glycogen content and stimulated anti-stress effect (HSP). Furthermore, Leu-Val increased HSP90, p-4EBP1, p-mTOR and p-AMPK expression. The data suggest the involvement of these peptides in various beneficial functions of WPH consumption. PMID:28326005

  4. Human Monocyte Heat Shock Protein 72 Responses to Acute Hypoxic Exercise after 3 Days of Exercise Heat Acclimation

    PubMed Central

    Lee, Ben J.; Mackenzie, Richard W. A.; Cox, Valerie; James, Rob S.; Thake, Charles D.

    2015-01-01

    The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V˙O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72. PMID:25874231

  5. Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure.

    PubMed

    Gayda, Mathieu; Normandin, Eve; Meyer, Philippe; Juneau, Martin; Haykowsky, Mark; Nigam, Anil

    2012-12-01

    The aim of this study was to compare the acute hemodynamic responses during high-intensity intermittent exercise (HIIE) session compared with moderate-intensity continuous exercise (MICE) session in patients with heart failure and reduced ejection fraction (HFREF). Thirteen patients with HFREF (age, 59 ± 6 years; left ventricular ejection fraction, 27% ± 6%; New York Heart Association class I to III) were randomly assigned to a single session of HIIE (2 × 8 min) corresponding to 30 s at 100% of peak power output (PPO) and 30 s passive recovery intervals or to a MICE (22 min) at 60% of PPO. Gas exchange and central hemodynamic parameters (cardiac bioimpedance) were measured continuously during exercise. Oxygen uptake, stroke volume (SV), cardiac output (CO), and arterio-venous difference (C(a-v)O(2)) were compared. Mean oxygen uptake and ventilation were lower during HIIE vs. MICE. CO, SV, and C(a-v)O(2)) were not different between MICE and HIIE. Optimized HIIE was well tolerated (similar perceived exertion) and no significant ventricular arrhythmias and (or) abnormal blood pressure responses occurred during HIEE session. Compared with MICE, optimized HIIE elicited similar central hemodynamic and C(a-v)O(2) responses in HFREF patients with lower oxygen uptake and ventilation. HIIE may be an efficient exercise training modality in patients with HFREF.

  6. Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation.

    PubMed

    Lee, Ben J; Mackenzie, Richard W A; Cox, Valerie; James, Rob S; Thake, Charles D

    2015-01-01

    The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.

  7. Sex differences in creatine kinase after acute heavy resistance exercise on circulating granulocyte estradiol receptors.

    PubMed

    Wolf, Megan R; Fragala, Maren S; Volek, Jeff S; Denegar, Craig R; Anderson, Jeffrey M; Comstock, Brett A; Dunn-Lewis, Courtenay; Hooper, David R; Szivak, Tunde K; Luk, Hui-Ying; Maresh, Carl M; Häkkinen, Keijo; Kraemer, William J

    2012-09-01

    Previous research has shown reduced tissue disruption and inflammatory responses in women as compared to men following acute strenuous exercise. While the mechanism of this action is not known, estrogen may reduce the inflammatory response through its interaction with granulocytes. The purpose of this study was to determine if estrogen receptor β expression on granulocytes is related to sex differences in tissue disruption in response to an acute heavy resistance exercise protocol. Seven healthy, resistance-trained, eumenorrheic women (23 ± 3 years, 169 ± 9.1 cm, 66.4 ± 10.5 kg) and 8 healthy, resistance-trained men (25 ± 5 years, 178 ± 6.7 cm, 82.3 ± 9.33 kg) volunteered to participate in the study. Subjects performed an acute resistance exercise test consisting of six sets of five squats at 90% of the subject's one repetition maximum. Blood samples were obtained pre-, mid-, post-, and 1-, 6-, and 24-h postexercise. Blood samples were analyzed for 17-β-estradiol by ELISA, creatine kinase by colorimetric enzyme immunoassay, and estradiol receptors on circulating granulocytes through flow cytometry. Men had higher CK concentrations than women at baseline/control. Men had significantly higher CK concentrations at 24-h postexercise than women. No significant changes in estradiol β receptors were expressed on granulocytes after exercise or between sexes. While sex differences occur in CK activity in response to strenuous eccentric exercise, they may not be related to estradiol receptor β expression on granulocytes. Thus, although there are sex differences in CK expression following acute resistance exercise, the differences may not be attributable to estrogen receptor β expression on granulocytes.

  8. Effects of exercise and hypoxia on heart rate variability and acute mountain sickness.

    PubMed

    Mairer, K; Wille, M; Grander, W; Burtscher, M

    2013-08-01

    Acute mountain sickness (AMS) is a common condition among non-acclimatized individuals ascending to high altitude. Exercise, a characteristic feature of hiking and mountaineering, has been suggested to exacerbate AMS prevalence and to cause modifications of the autonomic nervous system. A reduction of the heart rate variability (HRV) is a common finding during acute hypoxia, however characteristics of HRV during exercise in subjects suffering from AMS are unknown. Therefore, the aim of the present study was to investigate the effects of acute normobaric hypoxia (FiO2=11.0% ≙ 5 500 m) at rest (PHE) and during exercise (AHE) on the cardiac autonomic function and the development of AMS in 20 healthy, male individuals. HRV recordings were performed during normoxia and after 2, 4, 6 and 8 h in hypoxia during PHE and AHE, respectively. AMS was assessed using the Lake Louise Score. During PHE 50% of participants developed AMS and 70% during AHE (p=0.22). The analysis of HRV data showed a significant reduction of total power (TP), high frequency (HF) and low frequency (LF) components and an increase of the LF:HF ratio during PHE, however without further modification during AHE. Exercise did not increase AMS prevalence or severity, but increased "non-gastrointestinal" symptoms including headache, fatigue and dizziness. HRV indices were not related to the overall incidence of AMS or the development of "non-gastrointestinal" symptoms but we detected significant correlations between gastrointestinal complaints and HRV components. Thus, we suggest that the cardiac autonomic modulation during acute normobaric hypoxia does not play an important role in the development of AMS, but seems to be related to gastrointestinal complaints at high altitude. However, the influence of moderate exercise on HRV and AMS is minor, only "non-GI" symptoms seem to be exacerbated when exercise is applied. © Georg Thieme Verlag KG Stuttgart · New York.

  9. No effect of acute L-arginine supplementation on O₂ cost or exercise tolerance.

    PubMed

    Vanhatalo, Anni; Bailey, Stephen J; DiMenna, Fred J; Blackwell, Jamie R; Wallis, Gareth A; Jones, Andrew M

    2013-07-01

    The extent to which dietary supplementation with the nitric oxide synthase (NOS) substrate, L-arginine (ARG), impacts on NO production and NO-mediated physiological responses is controversial. This randomised, double blinded, cross-over study investigated the effects of acute ARG supplementation on NO biomarkers, O₂ cost of exercise and exercise tolerance in humans. In one experiment, 15 subjects completed moderate- and severe-intensity running bouts after acute supplementation with 6 g ARG or placebo (PLA). In another experiment, eight subjects completed moderate- and severe-intensity cycling bouts after acute supplementation with 6 g ARG plus 25 g of carbohydrate (ARG + CHO) or an energy-matched dose of carbohydrate alone (CHO). The plasma nitrite concentration was not different after ARG (Pre: 204 ± 79; Post: 241 ± 114 nM; P > 0.05) or ARG + CHO consumption (Pre: 304 ± 57; Post: 335 ± 116 nM; P > 0.05). During moderate-intensity exercise, the steady-state pulmonary VO₂ was not different, relative to the respective placebo conditions, after ARG (PLA: 2,407 ± 318, ARG: 2,422 ± 333 mL min(-1)) or ARG + CHO (CHO: 1,695 ± 304, ARG + CHO: 1,712 ± 312 mL min(-1)) ingestion (P > 0.05). The tolerable duration of severe exercise was also not significantly different (P > 0.05) after ingesting ARG (PLA: 551 ± 140, ARG: 552 ± 150 s) or ARG + CHO (CHO: 457 ± 182, ARG + CHO: 441 ± 221 s). In conclusion, acute dietary supplementation with ARG or ARG + CHO did not alter biomarkers of NO synthesis, O₂ cost of exercise or exercise tolerance in healthy subjects.

  10. Saliva cortisol in school children after acute physical exercise.

    PubMed

    Budde, Henning; Windisch, Claudia; Kudielka, Brigitte M; Voelcker-Rehage, Claudia

    2010-10-08

    We investigated if 12 min of high-intensity exercise performed within a regular school break lead to an increase in cortisol levels in primary school students. 53 students of a 4th grade (9-10 years of age) were randomly assigned to an experimental (EG) and a control group (CG). Saliva collection took place after a normal school lesson (pre-test) and after 12 min of intensive exercise in a defined heart rate (HR) interval (EG, n=32) and control condition (movie watching) (CG, n=21), respectively (post-test). Saliva was analyzed for cortisol. We observed a significant group by test interaction indicating a different pre-to-post-test development for EG as compared to CG. The interaction effect, however, was caused by an attenuated cortisol concentration in the control group. We argue that the control condition, in which the students watched a joyful movie, acted as a distractor, which led to a reduction of general school stress.

  11. Submaximal exercise intensity modulates acute post-exercise heart rate variability.

    PubMed

    Michael, Scott; Jay, Ollie; Halaki, Mark; Graham, Kenneth; Davis, Glen M

    2016-04-01

    This study investigated whether short-term heart rate variability (HRV) can be used to differentiate between the immediate recovery periods following three different intensities of preceding exercise. 12 males cycled for 8 min at three intensities: LOW (40-45 %), MOD (75-80 %) and HIGH (90-95 %) of heart rate (HR) reserve. HRV was assessed during exercise and throughout 10-min seated recovery. 1-min HR recovery was reduced following greater exercise intensities when expressed as R-R interval (RRI, ms) (p < 0.001), but not b min(-1) (p = 0.217). During exercise, the natural logarithm of root mean square of successive differences (Ln-RMSSD) was higher during LOW (1.66 ± 0.47 ms) relative to MOD (1.14 ± 0.32 ms) and HIGH (1.30 ± 0.25 ms) (p ≤ 0.037). Similar results were observed for high-frequency spectra (Ln-HF-LOW: 2.9 ± 1.0; MOD: 1.6 ± 0.6; HIGH: 1.6 ± 0.3 ms(2), p < 0.001). By 1-min recovery, higher preceding exercise intensities resulted in lower HRV amongst all three intensities for Ln-RMSSD (LOW: 3.45 ± 0.58; MOD: 2.34 ± 0.81; HIGH: 1.66 ± 0.78 ms, p < 0.001) and Ln-HF (LOW: 6.0 ± 1.0; MOD: 4.3 ± 1.4; HIGH: 2.8 ± 1.4 ms(2), p < 0.001). Similarly, by 1-min recovery 'HR-corrected' HRV (Ln-RMSSD: RRI × 10(3)) was different amongst all three intensities (LOW: 3.64 ± 0.49; MOD: 2.90 ± 0.65; HIGH: 2.40 ± 0.67, p < 0.001). These differences were maintained throughout 10-min recovery (p ≤ 0.027). Preceding exercise intensity has a graded effect on recovery HRV measures reflecting cardiac vagal activity, even after correcting for the underlying HR. The immediate recovery following exercise is a potentially useful period to investigate autonomic activity, as multiple levels of autonomic activity can be clearly differentiated between using HRV. When investigating post-exercise HRV it is critical to account for the relative exercise intensity.

  12. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss

    PubMed Central

    Quarta, Marco; Cromie, Melinda; Chacon, Robert; Blonigan, Justin; Garcia, Victor; Akimenko, Igor; Hamer, Mark; Paine, Patrick; Stok, Merel; Shrager, Joseph B.; Rando, Thomas A.

    2017-01-01

    Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML. PMID:28631758

  13. The effect of acute physical exercise on cytokine levels in patients with systemic lupus erythematosus.

    PubMed

    da Silva, A E; dos Reis-Neto, E Torres; da Silva, N P; Sato, E I

    2013-12-01

    Acute exercise increases IL-6, IL-10 and TNF-α levels in healthy subjects. There is no study evaluating the effect of exercise on cytokines level in systemic lupus erythematosus (SLE) patients. Our aim was to assess IL-10, IL-6 and TNF-α levels at baseline and after acute physical exercise in patients with SLE. In total, 27 female SLE patients and 30 healthy controls were evaluated. Serum levels of IL-10, IL-6 and TNF-α at baseline and soon after the ergospirometric test were measured by ELISA test. Student's t-tests and Mann-Whitney test were used for intra- and inter-group comparisons; p values <0.05 were considered significant. Patients with SLE presented worse ergospirometric parameters compared with controls: VO2max (25.78 ± 5.51 vs. 32.74 ± 5.85 ml/kg/min, p < 0.001); maximum heart rate (174.18 ± 12.36 vs. 185.15 ± 2.07 bpm, p = 0.001); maximum ventilation (65.51 ± 15.68 vs. 80.48 ± 18.98 l/min, p = 0.001) and maximum speed (7.70 ± 1.24 vs. 9.40 ± 1.22 km/h, p < 0.001). At baseline, SLE patients presented higher levels of IL-6 (2.38 ± 1.70 vs. 1.71 ± 0.29 pg/ml, p = 0.035) and IL-10 (1.09 ± 1.55 vs. 0.30 ± 0.11 pg/ml, p = 0.037) than controls. Acute exercise in controls increased IL-6 level (1.71 ± 0.29 vs. 2.01 ± 0.27 pg/ml, p = 0.003) without change in IL-10 and TNF-α levels. However, no significant change in cytokine levels was observed in SLE patients after acute exercise. This is the first study evaluating the effect of acute exercise on cytokine levels in patients with SLE. In contrast to healthy controls, acute physical exercise did not increase the levels of IL-6 in patients with SLE, and seems to be safe in those patients with inactive or mild active disease.

  14. Exercise Lowers Plasma Angiopoietin-Like 2 in Men with Post-Acute Coronary Syndrome

    PubMed Central

    Thorin-Trescases, Nathalie; Hayami, Doug; Yu, Carol; Luo, Xiaoyan; Nguyen, Albert; Larouche, Jean-François; Lalongé, Julie; Henri, Christine; Arsenault, André; Gayda, Mathieu; Juneau, Martin; Lambert, Jean

    2016-01-01

    Pro-inflammatory angiopoietin-like 2 (angptl2) promotes endothelial dysfunction in mice and circulating angptl2 is higher in patients with cardiovascular diseases. We previously reported that a single bout of physical exercise was able to reduce angptl2 levels in coronary patients. We hypothesized that chronic exercise would reduce angptl2 in patients with post-acute coronary syndrome (ACS) and endothelial dysfunction. Post-ACS patients (n = 40, 10 women) were enrolled in a 3-month exercise-based prevention program. Plasma angptl2, hs-CRP, and endothelial function assessed by scintigraphic forearm blood flow, were measured before and at the end of the study. Exercise increased VO2peak by 10% (p<0.05), but did not significantly affect endothelial function, in both men and women. In contrast, exercise reduced angptl2 levels only in men (-26±7%, p<0.05), but unexpectedly not in women (+30±16%), despite similar initial levels in both groups. Exercise reduced hs-CRP levels in men but not in women. In men, levels of angptl2, but not of hs-CRP, reached at the end of the training program were negatively correlated with VO2peak (r = -0.462, p = 0.012) and with endothelial function (r = -0.419, p = 0.033) measured at baseline: better initial cardiopulmonary fitness and endothelial function correlated with lower angptl2 levels after exercise. Pre-exercise angptl2 levels were lower if left ventricular ejection time was long (p<0.05) and the drop in angptl2 induced by exercise was greater if the cardiac output was high (p<0.05). In conclusion, in post-ACS men, angptl2 levels are sensitive to chronic exercise training. Low circulating angptl2 reached after training may reflect good endothelial and cardiopulmonary functions. PMID:27736966

  15. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation

    PubMed Central

    Carpio-Rivera, Elizabeth; Moncada-Jiménez, José; Salazar-Rojas, Walter; Solera-Herrera, Andrea

    2016-01-01

    Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication. PMID:27168471

  16. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation.

    PubMed

    Carpio-Rivera, Elizabeth; Moncada-Jiménez, José; Salazar-Rojas, Walter; Solera-Herrera, Andrea

    2016-05-01

    Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication.

  17. Effect of acute intradialytic strength physical exercise on oxidative stress and inflammatory responses in hemodialysis patients

    PubMed Central

    Esgalhado, Marta; Stockler-Pinto, Milena Barcza; de França Cardozo, Ludmila Ferreira Medeiros; Costa, Cinthia; Barboza, Jorge Eduardo; Mafra, Denise

    2015-01-01

    Background Oxidative stress and inflammation are common findings in chronic kidney disease (CKD) patients, and they are directly related to the increased risk of developing cardiovascular disease, which is the major cause of death in these patients, particularly for those undergoing hemodialysis (HD). Strength physical exercise is a new therapeutic approach to reduce these complications in CKD patients. Following this, the purpose of this study was to assess the effect of acute intradialytic strength physical exercise on oxidative stress and inflammatory responses in HD patients. Methods Sixteen HD patients were studied (11 women; 44.4±14.6 years; body mass index 23.3±4.9 kg/m2; 61.6±43.1 months of dialysis) and served as their own controls. Acute (single session) intradialytic physical exercise were performed at 60% of the one-repetition maximum test for three sets of 10 repetitions for four exercise categories in both lower limbs during 30 minutes. Blood samples were collected on two different days at exactly the same time (30 minutes and 60 minutes after initiating the dialysis—with and without exercise). Antioxidant enzymes activity [superoxide dismutase (SOD), catalase, and glutathione peroxidase], lipid peroxidation marker levels (malondialdehyde), and inflammatory marker levels (high-sensitivity C-reactive protein) were determined. Results SOD plasma levels were significantly reduced after acute physical exercise from 244.8±40.7 U/mL to 222.4±28.9 U/mL (P=0.03) and, by contrast, increased on the day without exercise (218.2±26.5 U/mL to 239.4±38.6 U/mL, P=0.02). There was no alteration in plasma catalase, glutathione peroxidase, malondialdehyde, or high-sensitivity C-reactive protein levels in on either day (with or without exercise). Additionally, there was no association between these markers and clinical, anthropometric, or biochemical parameters. Conclusion These data suggest that acute intradialytic strength physical exercise was unable to

  18. Acute Mountain Sickness, Hypoxia, Hypobaria and Exercise Duration each Affect Heart Rate.

    PubMed

    DiPasquale, D M; Strangman, G E; Harris, N S; Muza, S R

    2015-07-01

    In this study, we quantified the changes in post-exercise resting heart rate (HRrst) associated with acute mountain sickness (AMS), and compared the effects of hypobaric hypoxia (HH) and normobaric hypoxia (NH) on HRrst. We also examined the modulating roles of exercise duration and exposure time on HRrst. Each subject participated in 2 of 6 conditions: normobaric normoxia (NN), NH, or HH (4 400 m altitude equivalent) combined with either 10 or 60 min of moderate cycling at the beginning of an 8-h exposure. AMS was associated with a 2 bpm higher HRrst than when not sick, after taking into account the ambient environment, exercise duration, and SpO2. In addition, HRrst was elevated in both NH and HH compared to NN with HRrst being 50% higher in HH than in NH. Participating in long duration exercise led to elevated resting HRs (0.8-1.4 bpm higher) compared with short exercise, while short exercise caused a progressive increase in HRrst over the exposure period in both NH and HH (0.77-1.2 bpm/h of exposure). This data suggests that AMS, NH, HH, exercise duration, time of exposure, and SpO2 have independent effects on HRrst. It further suggests that hypobaria exerts its own effect on HRrst in hypoxia. Thus NH and HH may not be interchangeable environments. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  20. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.

  1. mVps34 is activated by an acute bout of resistance exercise.

    PubMed

    Mackenzie, M G; Hamilton, D L; Murray, J T; Baar, K

    2007-11-01

    Resistance-exercise training results in a progressive increase in muscle mass and force production. Following an acute bout of resistance exercise, the rate of protein synthesis increases proportionally with the increase in protein degradation, correlating at 3 h in the starved state. Amino acids taken immediately before or immediately after exercise increase the post-exercise rate of protein synthesis. Therefore a protein that controls protein degradation and amino acid-sensitivity would be a potential candidate for controlling the activation of protein synthesis following resistance exercise. One such candidate is the class III PI3K (phosphoinositide 3-kinase) Vps34 (vacuolar protein sorting mutant 34). Vps34 controls both autophagy and amino acid signalling to mTOR (mammalian target of rapamycin) and its downstream target p70 S6K1 (S6 kinase 1). We have identified a significant increase in mVps34 (mammalian Vps34) activity 3 h after resistance exercise, continuing for at least 6 h, and propose a mechanism whereby mVps34 could act as an internal amino acid sensor to mTOR after resistance exercise.

  2. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  3. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  4. An acute bout of aerobic exercise can protect immediate offline motor sequence gains.

    PubMed

    Rhee, Joohyun; Chen, Jing; Riechman, Steven M; Handa, Atul; Bhatia, Sanjeev; Wright, David L

    2016-07-01

    The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise.

  5. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder.

    PubMed

    Ströhle, Andreas; Stoy, Meline; Graetz, Barbara; Scheel, Michael; Wittmann, André; Gallinat, Jürgen; Lang, Undine E; Dimeo, Fernando; Hellweg, Rainer

    2010-04-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in depression and anxiety. Antidepressants and exercise increase BDNF expression, and both have an antidepressant and anxiolytic activity. To further characterize the association of anxiety, BDNF and exercise, we studied panic disorder patients (n=12) and individually matched healthy control subjects (n=12) in a standardized exercise paradigm. Serum samples for BDNF analyses were taken before and after 30min of exercise (70 VO(2max)) or quiet rest. The two conditions were separated by 1 week and the order was randomized. Non-parametric statistical analyses were performed. There was a negative correlation of BDNF concentrations and subjective arousal at baseline (r=-0.42, p=0.006). Compared to healthy control subjects, patients with panic disorder had significantly reduced BDNF concentrations at baseline and 30min of exercise significantly increased BDNF concentrations only in these patients. Our results suggest that acute exercise ameliorates reduced BDNF concentrations in panic disorder patients and raise the question whether this is also found after long-term exercise training and if it is related to the therapeutic outcome.

  6. Creating an acute energy deficit without stimulating compensatory increases in appetite: is there an optimal exercise protocol?

    PubMed

    Deighton, Kevin; Stensel, David J

    2014-05-01

    Recent years have witnessed significant interest from both the scientific community and the media regarding the influence of exercise on subsequent appetite and energy intake responses. This review demonstrates a consensus among the majority of scientific investigations that an acute bout of land-based endurance exercise does not stimulate any compensatory increases in appetite and energy intake on the day of exercise. Alternatively, preliminary evidence suggests that low volume, supramaximal exercise may stimulate an increase in appetite perceptions during the subsequent hours. In accordance with the apparent insensitivity of energy intake to exercise in the short term, the daily energy balance response to exercise appears to be primarily determined by the energy cost of exercise. This finding supports the conclusions of recent training studies that the energy expenditure of exercise is the strongest predictor of fat loss during an exercise programme.

  7. Acylated Ghrelin and Circulatory Oxidative Stress Markers Responses to Acute Resistance and Aerobic Exercise in Postmenopausal Women.

    PubMed

    Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro

    2016-06-01

    Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.

  8. Association of calprotectin with leukocyte chemotactic and inflammatory mediators following acute aerobic exercise.

    PubMed

    Maharaj, Arun; Slusher, Aaron L; Zourdos, Michael C; Whitehurst, Michael; Fico, Brandon G; Huang, Chun-Jung

    2016-01-01

    The objective of this study was to examine whether acute aerobic exercise-mediated calprotectin in plasma would be associated with monocyte chemotactic protein-1 (MCP-1), myeloperoxidase (MPO), and interleukin-6 (IL-6) in healthy individuals. Eleven healthy participants, aged 18 to 30 years, were recruited to perform a 30-min bout of aerobic exercise at 75% maximal oxygen uptake. Acute aerobic exercise elicited a significant elevation across time in plasma calprotectin, MCP-1, MPO, and IL-6. Body mass index (BMI) was positively correlated with calprotectin area-under-the-curve with "respect to increase" (AUCi) and IL-6 AUCi. Furthermore, calprotectin AUCi was positively correlated with IL-6 AUCi and MPO AUCi, even after controlling for BMI. Although MPO AUCi was positively correlated with IL-6 AUCi, this relationship no longer existed after controlling for BMI. These results suggest that acute aerobic exercise could mediate innate immune response associated with calprotectin and its related leukocyte chemotactic and inflammatory mediators, especially in individuals with elevated BMI.

  9. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men.

    PubMed

    Nakhostin-Roohi, Babak; Barmaki, Sarah; Khoshkhahesh, Faegheh; Bohlooli, Shahab

    2011-10-01

    This study was conducted to assess the effects of chronic daily methylsulfonylmethane (MSM) supplementation on known markers of oxidative stress following acute bouts of exercise in untrained healthy young men. Eighteen untrained men volunteered for this study. Participants were randomized in a double-blind placebo-controlled fashion into two groups: MSM (n = 9) and placebo (n = 9). The participants took supplementation or placebo daily for 10 days before running. Participants ran 14 km. The MSM supplementation was prepared in water at 50 mg/kg body weight. The placebo group received water. Serum malondialdehyde (MDA), protein carbonyl (PC) and plasma oxidized glutathione (GSSG) were measured as markers of oxidative stress. The plasma-reduced glutathione (GSH) level and the GSH/GSSG ratio were determined as markers of plasma antioxidant capacity. Acute exercise led to elevated levels of serum MDA, PC and plasma GSSG. MSM supplementation maintained PC, MDA and GSSG at lower levels after exercise than the placebo. The plasma level of GSH and the ratio of GSH/GSSG were significantly higher in the MSM supplemented group. These results suggest that chronic daily oral supplementation of MSM has alleviating effects on known markers of oxidative stress following acute bouts of exercise in healthy young men. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  10. Acute Effects of Walking Exercise on Stair Negotiation in Sedentary and Physically Active Older Adults.

    PubMed

    Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2017-07-01

    In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.

  11. Ghrelin response to acute aerobic exercise in boys at different stages of puberty.

    PubMed

    Pomerants, T; Tillmann, V; Karelson, K; Jürimäe, J; Jürimäe, T

    2006-11-01

    The aim of this study was to investigate the changes in serum ghrelin and leptin concentrations during acute aerobic cycle ergometer test in 60 boys at different pubertal stages. Boys were divided according to their pubertal status as group I (Tanner stage 1, n=20), group II (Tanner stages 2 and 3, n=20) and group 3 (Tanner stages 4 and 5, n=20). Maximal oxygen consumption and individual ventilatory threshold of the subjects were measured directly using stepwise increasing loads on cycle ergometer. Second exercise test consisted of a 30 minute constant load exercise on the same ergometer at the level of approximately 95% of the individual ventilatory threshold. Venous blood samples were obtained before, immediately after and after 30 minutes of recovery for the measurement of serum ghrelin, leptin, testosterone and insulin. At baseline, prepubertal children had significantly higher values for serum ghrelin compared to the groups II and III. Acute exercise altered significantly only insulin concentration. In all the groups, the maximal oxygen consumption/kg correlated positively with basal levels of testosterone (r=0.60, p<0.001) and insulin (r=0.34), and negatively to ghrelin (r=-0.35) and leptin (r=-0.32) (p<0.05). We conclude that moderate acute aerobic exercise does not change serum ghrelin or leptin level in boys at different pubertal stages.

  12. Acute, Low-dose CO Inhalation does not Alter Energy Expenditure during Submaximal Exercise.

    PubMed

    Kane, L A; Ryan, B J; Schmidt, W; Byrnes, W C

    2016-01-01

    Carbon monoxide, a gas known most widely for its toxic effects at high doses, is receiving increased attention for its role as a physiological signaling molecule and potential therapeutic agent when administered in low doses. We sought to quantify any changes to oxygen consumption and energy expenditure during submaximal exercise after low-dose CO inhalation. 9 active individuals completed 4 graded submaximal exercise tests, with each test occurring during a separate visit. For their first exercise test, subjects inhaled CO or room air (1.2 mL·kg(-1) body mass) in a randomized, subject-blind fashion. A second test was repeated 24 h later when the inhaled gas should have cleared the system. Subjects repeated study procedures with the alternate dose after a washout period of at least 2 days. Low-dose CO administration did not affect oxygen consumption or energy expenditure during submaximal exercise immediately or 24 h following its administration. Increases in heart rate, blood [lactate], and perceived exertion were observed following acute CO inhalation but these effects were absent after 24 h. The results of this study suggest that low-dose CO administration does not influence the energetics of submaximal exercise, but it acutely increases the relative intensity associated with absolute workloads below the lactate threshold. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Acute and chronic effects of exercise on markers of mucosal immunity.

    PubMed

    Bishop, Nicolette C; Gleeson, Michael

    2009-01-01

    Decreased secretion rate of salivary markers of mucosal immunity, and in particular salivary immunoglobulin A (s-IgA), have been implicated as risk factors for subsequent episodes of respiratory infection in athletes. IgA is the predominant Ig in mucosal secretions and acts with innate mucosal defences to provide the 'first line of defence' against pathogens and antigens presented at the mucosa. As well as summarising the evidence concerning the effects of acute exercise and longer-term intensive training on these markers of mucosal immunity, this review explores the factors that impact upon salivary responses to exercise, such as method of saliva collection, stimulation of saliva collection and the method of reporting s-IgA data. The influence of adequate hydration and nutritional supplementation during exercise as well as exercising in extreme environmental conditions on salivary responses is also explored. Finally, the possible mechanisms underlying the acute and longer-term of effects of exercise on salivary responses are examined, with particular emphasis on the potential role of the sympathetic nervous system and the expression and mobilisation of the polymeric Ig receptor.

  14. Salivary SIgA responses to acute moderate-vigorous exercise in monophasic oral contraceptive users.

    PubMed

    Hayashida, Harumi; Dolan, Nicola J; Hounsome, Charlotte; Alajmi, Nawal; Bishop, Nicolette C

    2015-09-01

    The purpose of this study was to examine the effect of oral contraceptive (OC) use on salivary secretory immunoglobulin A (SIgA) levels at rest and in response to an acute bout of moderate-vigorous exercise during 2 phases of the 4-week OC cycle corresponding to different phases of the synthetic menstrual cycle. Ten healthy active females completed a cycling at 70% peak oxygen uptake for 45 min at 2 time points of an OC cycle: during the equivalent in time to the mid-follicular phase (day 8 ± 2) and the mid-luteal phase (day 20 ± 2). Timed unstimulated saliva samples were obtained before, immediately postexercise, and 1 h postexercise and analyzed for salivary SIgA. Salivary SIgA secretion rate was 26% (95% confidence limits (CI) 6-46) lower at postexercise compared with pre-exercise during the synthetic follicular phase (p = 0.019) but no differences were observed during the synthetic luteal trial. Saliva flow rate was 11% (95% CI, 8-30) lower at postexercise compared with pre-exercise (main effect for time; p = 0.025). In conclusion, the pattern of salivary SIgA secretion rate response to moderate-vigorous exercise varies across the early and late phases of a monophasic OC cycle, with a transient reduction in salivary SIgA responses during the synthetic follicular phase. These findings indicate that monophasic OC use should be considered when assessing mucosal immune responses to acute exercise.

  15. Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.

    PubMed

    Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N

    2014-12-01

    This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE.

  16. Effects of acute and chronic exercise in patients with essential hypertension: benefits and risks.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Douma, Stella

    2015-04-01

    The importance of regular physical activity in essential hypertension has been extensively investigated over the last decades and has emerged as a major modifiable factor contributing to optimal blood pressure control. Aerobic exercise exerts its beneficial effects on the cardiovascular system by promoting traditional cardiovascular risk factor regulation, as well as by favorably regulating sympathetic nervous system (SNS) activity, molecular effects, cardiac, and vascular function. Benefits of resistance exercise need further validation. On the other hand, acute exercise is now an established trigger of acute cardiac events. A number of possible pathophysiological links have been proposed, including SNS, vascular function, coagulation, fibrinolysis, and platelet function. In order to fully interpret this knowledge into clinical practice, we need to better understand the role of exercise intensity and duration in this pathophysiological cascade and in special populations. Further studies in hypertensive patients are also warranted in order to clarify the possibly favorable effect of antihypertensive treatment on exercise-induced effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome.

    PubMed

    Emmons, Russell; Niemiro, Grace M; Owolabi, Olatomide; De Lisio, Michael

    2016-03-15

    Transplantation of hematopoietic stem and progenitor cells (HSPC), collected from peripheral blood, is the primary treatment for many hematological malignancies; however, variable collection efficacy with current protocols merits further examination into factors responsible for HSPC mobilization. HSPCs primarily reside within the bone marrow and are regulated by mesenchymal stromal cells (MSC). Exercise potently and transiently mobilizes HSPCs from the bone marrow into peripheral circulation. Thus the purpose of the present study was to evaluate potential factors in the bone marrow responsible for HSPC mobilization, investigate potential sites of HSPC homing, and assess changes in bone marrow cell populations following exercise. An acute exercise bout increased circulating HSPCs at 15 min (88%, P < 0.001) that returned to baseline at 60 min. Gene expression for HSPC homing factors (CXCL12, vascular endothelial growth factor-a, and angiopoietin-1) were increased at 15 min in skeletal muscle and HSPC content was increased in the spleen 48 h postexercise (45%, P < 0.01). Acute exercise did not alter HSPCs or MSCs quantity in the bone marrow; however, proliferation of HSPCs (40%, P < 0.001), multipotent progenitors (40%, P < 0.001), short-term hematopoietic stem cells (61%, P < 0.001), long-term hematopoietic stem cells (55%, P = 0.002), and MSCs (20%, P = 0.01) increased postexercise. Acute exercise increased the content of the mobilization agent granulocyte-colony stimulating factor, as well as stem cell factor, interleukin-3, and thrombopoeitin in conditioned media collected from bone marrow stromal cells 15 min postexercise. These findings suggest that the MSC secretome is responsible for HSPC mobilization and proliferation; concurrently, HSPCs are homing to extramedullary sites following exercise. Copyright © 2016 the American Physiological Society.

  18. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  19. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.

    PubMed

    Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A

    2015-01-01

    The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.

  20. Effect of acute aerobic exercise on vaccine efficacy in older adults.

    PubMed

    Ranadive, Sushant Mohan; Cook, Marc; Kappus, Rebecca Marie; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffery A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-03-01

    The most effective way of avoiding influenza is through influenza vaccination. However, the vaccine is ineffective in about 25% of the older population. Immunosenescence with advancing age results in inadequate protection from disease because of ineffective responses to vaccination. Recently, a number of strategies have been tested to improve the efficacy of a vaccine in older adults. An acute bout of moderate aerobic exercise may increase the efficacy of the vaccine in young individuals, but there are limited efficacy data in older adults who would benefit most. This study sought to evaluate whether acute moderate-intensity endurance exercise immediately before influenza vaccination would increase the efficacy of the vaccine. Fifty-nine healthy volunteers between 55 and 75 yr of age were randomly allocated to an exercise or control group. Antibody titers were measured at baseline before exercise and 4 wk after vaccination. C-reactive protein (CRP) and interleukin-6 (IL-6) were measured at 24 and 48 h after vaccination. Delta CRP and IL-6 at 24 and 48 h were significantly higher after vaccination as compared to the sham injection. There were no differences in the levels of antibody titers against the H3N2 influenza strain between groups. However, women in the exercise group had a significantly higher antibody response against the H1N1 influenza strain as compared to the men, probably because of lower prevaccine titers. There were no significant differences in seroprotection between groups. Acute moderate aerobic exercise was not immunostimulatory in healthy older men but may serve as a vaccine adjuvant in older women.

  1. Effect of acute and chronic exercise on ghrelin and adipocytokines during pubertal development.

    PubMed

    Kraemer, Robert R; Castracane, V Daniel

    2010-01-01

    It is important to understand the factors that regulate the development of obesity during adolescence due to the increased risk of adult obesity, metabolic syndrome and the deleterious health effects of early puberty which may increase the risk of breast cancer later in life. Leptin, ghrelin, and adiponectin are peptides that affect energy homeostasis and insulin action. Similar to findings in adults, steady-state exercise does not change leptin concentrations and aerobic training without a change in body weight. A small amount of available data suggest that acute exercise does not increase circulating adiponectin concentrations in adolescents; however, it is very possible that more rigorous exercise protocols could acutely affect circulating adiponectin levels. Training studies indicate that shorter lengths of exercise training have a stronger effect on increases in adiponectin concentrations in male than female adolescents. It appears that if training is extended, increases in adiponectin levels will accompany improvements in insulin sensitivity. There are no studies of acute or chronic exercise on high-molecular weight adiponectin in adolescents and since this is thought to be the bioactive form of adiponectin, these studies are definitely needed. Investigations have demonstrated that exercise training increases total ghrelin levels in adolescents and that ghrelin is sensitive to reductions in body fat or increases in energy expenditure in this population. These findings are similar to those in adults. Moreover, there is evidence that luteinizing hormone is a predictor of total ghrelin levels in girls and suggests that ghrelin is a biomarker of energy imbalance across the menstrual cycle. Copyright © 2010 S. Karger AG, Basel.

  2. Does Sport-Drink Use During Exercise Promote an Acute Positive Energy Balance?

    PubMed

    Dragusin, Iulian B; Horswill, Craig A

    2016-10-01

    Sports drinks have been implicated in contributing to obesity and chronic diseases by providing surplus calories and excess sugars. Using existing literature we compared energy intake from sports drinks consumed during exercise with the exercise-induced calorie expenditure to determine whether sports drink use might eliminate the energy deficit and jeopardize conditions for improved metabolic fitness. We identified 11 published studies that compared sport drink consumption to placebo during exercise with a primary focused on the effect of sport drinks or total carbohydrate content on enhancing physical performance. Energy expenditure (EE) was calculated using VO2, RER, and exercise duration for the exercise protocol. Energy ingestion (EI) was determined using the carbohydrate dosing regimen administered before and during the exercise protocol. A two-tailed t test was used to test whether the energy balance (EI-EE) was different from zero (alpha level = 0.05). Sport drink consumption during aerobic exercise of sufficient duration (≥ 60 min) did not abolish the energy deficit (p < .001). Mean ± SD were EE, 1600 ± 639 Cal; EI, 394 ± 289 Cal; and EI-EE,-1206+594 Cal; VO2, 3.05 ± 0.55 L/min; RER, 0.91 ± 0.04; exercise duration 110 ± 42 min. Ingesting sports drinks to enhance performance did not abolish the caloric deficit of aerobic exercise. Sports drinks can be used in accordance with research protocols that typically provide 30-60 g of carbohydrate per hour when exercising at adequate durations for moderate to high intensity and still maintain a substantive caloric deficit.

  3. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Klei, Samantha; Dougherty, Brian M; Kang, Jie; Smith, Charles R; Ross, Ryan E; Faigenbaum, Avery D

    2015-01-01

    The purpose of this study was to quantify and compare the acute metabolic responses to resistance exercise protocols comprising free-weight, body-weight, and battling rope (BR) exercises. Ten resistance-trained men (age = 20.6 ± 1.3 years) performed 13 resistance exercise protocols on separate days in random order consisting of only one exercise per session. For free-weight exercise protocols, subjects performed 3 sets of up to 10 repetitions with 75% of their 1 repetition maximum. For the push-up (PU) and push-up on a BOSU ball protocols, subjects performed 3 sets of 20 repetitions. For the burpee and PU with lateral crawl protocols, subjects performed 3 sets of 10 repetitions. For the plank and BR circuit protocols, subjects performed 3 sets of 30-second bouts. A standard 2-minute rest interval (RI) was used in between all sets for each exercise. Data were averaged for the entire protocol including work and RIs. Mean oxygen consumption was significantly greatest during the BR (24.6 ± 2.6 ml·kg·min) and burpee (22.9 ± 2.1 ml·kg·min) protocols. For the free-weight exercises, highest mean values were seen in the squat (19.6 ± 1.8 ml·kg·min), deadlift (18.9 ± 3.0 ml·kg·min), and lunge (17.3 ± 2.6 ml·kg·min). No differences were observed between PUs performed on the floor vs. on a BOSU ball. However, adding a lateral crawl to the PU significantly increased mean oxygen consumption (19.5 ± 2.9 ml·kg·min). The lowest mean value was seen during the plank exercise (7.9 ± 0.7 ml·kg·min). These data indicate performance of exercises with BRs and a body-weight burpee exercise elicit relatively higher acute metabolic demands than traditional resistance exercises performed with moderately heavy loading.

  4. Acute Exercise-Induced Response of Monocyte Subtypes in Chronic Heart and Renal Failure

    PubMed Central

    Van Craenenbroeck, Amaryllis H.; Hoymans, Vicky Y.; Verpooten, Gert A.; Vrints, Christiaan J.; Couttenye, Marie M.; Van Craenenbroeck, Emeline M.

    2014-01-01

    Purpose. Monocytes (Mon1-2-3) play a substantial role in low-grade inflammation associated with high cardiovascular morbidity and mortality of patients with chronic kidney disease (CKD) and chronic heart failure (CHF). The effect of an acute exercise bout on monocyte subsets in the setting of systemic inflammation is currently unknown. This study aims (1) to evaluate baseline distribution of monocyte subsets in CHF and CKD versus healthy subjects (HS) and (2) to evaluate the effect of an acute exercise bout. Exercise-induced IL-6 and MCP-1 release are related to the Mon1-2-3 response. Methods. Twenty CHF patients, 20 CKD patients, and 15 HS were included. Before and after a maximal cardiopulmonary exercise test, monocyte subsets were quantified by flow cytometry: CD14++CD16−CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2), and CD14+CD16++CCR2− (Mon3). Serum levels of IL-6 and MCP-1 were determined by ELISA. Results. Baseline distribution of Mon1-2-3 was comparable between the 3 groups. Following acute exercise, %Mon2 and %Mon3 increased significantly at the expense of a decrease in %Mon1 in HS and in CKD. This response was significantly attenuated in CHF (P < 0.05). In HS only, MCP-1 levels increased following exercise; IL-6 levels were unchanged. Circulatory power was a strong and independent predictor of the changes in Mon1 (β = −0.461, P < 0.001) and Mon3 (β = 0.449, P < 0.001); and baseline LVEF of the change in Mon2 (β = 0.441, P < 0.001). Conclusion. The response of monocytes to acute exercise is characterized by an increase in proangiogenic and proinflammatory Mon2 and Mon3 at the expense of phagocytic Mon1. This exercise-induced monocyte subset response is mainly driven by hemodynamic changes and not by preexistent low-grade inflammation. PMID:25587208

  5. Exercise capacity in patients 3 days after acute, uncomplicated myocardial infarction

    SciTech Connect

    Burek, K.A.; Kirscht, J.; Topol, E.J. )

    1989-11-01

    In a randomized, controlled trial of early hospital discharge after acute myocardial infarction (MI), a heart rate, symptom-limited exercise thallium test was performed after the onset of MI. Patients' exercise capacity was evaluated by the exercise treadmill with accompanying thallium scintigraphy. Of 507 consecutive patients screened, the condition of 179 was classified as uncomplicated, which is defined as the absence of angina, heart failure, or serious arrhythmias at 72 hours from admission. Of the patients with uncomplicated conditions, 126 had an exercise test on day 3 and 53 did not exercise on day 3. Of the 126 patients who exercised on day 3, 36 had a positive test and 90 had a negative test for ischemia. The 36 patients with a positive test result exercised a mean time of 6.71 +/- 2.8 minutes, achieved a mean peak heart rate of 120.9 +/- 21.4 beats/min, reached a peak systolic blood pressure of 144.7 +/- 33.3 mm Hg, and achieved a double product (rate-pressure product) of 183.4 +/- 67.6. The 90 patients with a negative test result for ischemia exercised 9.45 +/- 12.7 minutes, achieved a peak heart rate of 130.2 +/- 14.4 beats/min, reached a mean systolic blood pressure of 155.5 +/- 29.4 mm Hg, and achieved a rate-pressure product of 210.5 +/- 44.0. Of the 90 patients with uncomplicated conditions who had a negative exercise test for ischemia, 85 patients received reperfusion therapy, which included thrombolysis or coronary angioplasty or both.

  6. Effects of acute exercise, exercise training, and diabetes on the expression of lymphangiogenic growth factors and lymphatic vessels in skeletal muscle.

    PubMed

    Kivelä, Riikka; Silvennoinen, Mika; Lehti, Maarit; Kainulainen, Heikki; Vihko, Veikko

    2007-10-01

    Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. We studied lymphatic vessel density and expression of the main lymphangiogenic growth factors VEGF-C and VEGF-D and their receptor VEGFR-3 in response to acute running exercise and endurance exercise training in the skeletal muscle of healthy and diabetic mice. VEGF-C mRNA expression increased after the acute exercise bout (P < 0.05) in healthy muscles, but there was no change in diabetic muscles. VEGF-C levels were not changed either in healthy or in diabetic muscle after the exercise training. Neither acute exercise nor exercise training had an effect on the mRNA expression of VEGF-D or VEGFR-3 in healthy or diabetic muscles. Lymphatic vessel density was similar in sedentary and trained mice and was >10-fold smaller than blood capillary density. Diabetes increased the mRNA expression of VEGF-D (P < 0.01). Increased immunohistochemical staining of VEGF-D was found in degenerative muscle fibers in the diabetic mice. In conclusion, the results suggest that acute exercise or exercise training does not significantly affect lymphangiogenesis in skeletal muscle. Diabetes increased the expression of VEGF-D in skeletal muscle, and this increase may be related to muscle fiber damage.

  7. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension.

    PubMed

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2007-11-01

    The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p < 0.05) greater than that after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.

  8. Value associated with mindfulness meditation and moderate exercise intervention in acute respiratory infection: the MEPARI Study.

    PubMed

    Rakel, David; Mundt, Marlon; Ewers, Tola; Fortney, Luke; Zgierska, Aleksandra; Gassman, Michele; Barrett, Bruce

    2013-08-01

    Acute respiratory infection (ARI) is among the most common, debilitating and expensive human illnesses. The purpose of this study was to assess ARI-related costs and determine if mindfulness meditation or exercise can add value. One hundred and fifty-four adults ≥50 years from Madison, WI for the 2009-10 cold/flu season were randomized to (i) wait-list control (ii) meditation or (iii) moderate intensity exercise. ARI-related costs were assessed through self-reported medication use, number of missed work days and medical visits. Costs per subject were based on cost of generic medications, missed work days ($126.20) and clinic visits ($78.70). Monte Carlo bootstrap methods evaluated reduced costs of ARI episodes. The total cost per subject for the control group was $214 (95% CI: $105-$358), exercise $136 (95% CI: $64-$232) and meditation $65 (95% CI: $34-$104). The majority of cost savings was through a reduction in missed days of work. Exercise had the highest medication costs at $16.60 compared with $5.90 for meditation (P = 0.004) and $7.20 for control (P = 0.046). Combining these cost benefits with the improved outcomes in incidence, duration and severity seen with the Meditation or Exercise for Preventing Acute Respiratory Infection study, meditation and exercise add value for ARI. Compared with control, meditation had the greatest cost benefit. This savings is offset by the cost of the intervention ($450/subject) that would negate the short-term but perhaps not long-term savings. Meditation and exercise add value to ARI-associated health-related costs with improved outcomes. Further research is needed to confirm results and inform policies on adding value to medical spending.

  9. Acute effects of power and resistance exercises on hemodynamic measurements of older women

    PubMed Central

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    Purpose The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. Materials and methods A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m2; systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8–10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Conclusion Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women. PMID:28744114

  10. Acute effects of power and resistance exercises on hemodynamic measurements of older women.

    PubMed

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m(2); systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8-10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women.

  11. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women.

    PubMed

    Hagobian, Todd Alan; Yamashiro, Megan; Hinkel-Lipsker, Jake; Streder, Katherine; Evero, Nero; Hackney, Terry

    2013-01-01

    Acute exercise suppresses relative energy intake; however, it remains unclear whether this occurs in both men and women exposed to the same relative exercise treatment. Eleven healthy men (22 ± 2 years; 16% ± 6% body fat (BF); 26 ± 4 body mass index (BMI); 42.9 ± 6.5 mL·kg(-1)·min(-1) peak oxygen consumption ([Formula: see text]O(2peak))) and 10 healthy women (21 ± 2 years; 24 ± 2 BMI; 23% ± 3% BF; 39.9 ± 5.5 mL·kg(-1)·min(-1) [Formula: see text]O(2peak)) rested for 60 min or exercised on a cycle ergometer at 70% [Formula: see text]O(2peak) until 30% of total daily energy expenditure was expended (men, expenditure = 975 ± 195 kcal in 82 ± 13 min; women, expenditure = 713 ± 86 kcal in 84 ± 17 min) in a counterbalanced, crossover fashion. Appetite hormones and appetite ratings were assessed in response to each condition. Forty minutes after both conditions, ad libitum total and relative energy intake (energy intake minus energy cost of exercise) were assessed at a buffet meal. There was no significant sex or condition effect in appetite hormones (PYY(3-36), acylated ghrelin, insulin) and appetite ratings (hunger, satisfaction, fullness). Total energy intake in men was significantly higher (P < 0.05) in exercise and rest conditions (1648 ± 950, 1216 ± 633 kcal, respectively) compared with women (591 ± 183, 590 ± 231 kcal, respectively). Relative energy intake was significantly lower (P < 0.05) after exercise compared with rest in men (672 ± 827, 1133 ± 619 kcal, respectively) and women (-121 ± 243, 530 ± 233 kcal, respectively). These data highlight the effectiveness of acute exercise to suppress relative energy intake regardless of sex.

  12. Value associated with mindfulness meditation and moderate exercise intervention in acute respiratory infection: The MEPARI Study

    PubMed Central

    2013-01-01

    Background and objectives. Acute respiratory infection (ARI) is among the most common, debilitating and expensive human illnesses. The purpose of this study was to assess ARI-related costs and determine if mindfulness meditation or exercise can add value. Methods. One hundred and fifty-four adults ≥50 years from Madison, WI for the 2009–10 cold/flu season were randomized to (i) wait-list control (ii) meditation or (iii) moderate intensity exercise. ARI-related costs were assessed through self-reported medication use, number of missed work days and medical visits. Costs per subject were based on cost of generic medications, missed work days ($126.20) and clinic visits ($78.70). Monte Carlo bootstrap methods evaluated reduced costs of ARI episodes. Results. The total cost per subject for the control group was $214 (95% CI: $105–$358), exercise $136 (95% CI: $64–$232) and meditation $65 (95% CI: $34–$104). The majority of cost savings was through a reduction in missed days of work. Exercise had the highest medication costs at $16.60 compared with $5.90 for meditation (P = 0.004) and $7.20 for control (P = 0.046). Combining these cost benefits with the improved outcomes in incidence, duration and severity seen with the Meditation or Exercise for Preventing Acute Respiratory Infection study, meditation and exercise add value for ARI. Compared with control, meditation had the greatest cost benefit. This savings is offset by the cost of the intervention ($450/subject) that would negate the short-term but perhaps not long-term savings. Conclusions. Meditation and exercise add value to ARI-associated health-related costs with improved outcomes. Further research is needed to confirm results and inform policies on adding value to medical spending. PMID:23515373

  13. How to Regulate the Acute Physiological Response to “Aerobic” High-Intensity Interval Exercise

    PubMed Central

    Tschakert, Gerhard; Kroepfl, Julia; Mueller, Alexander; Moser, Othmar; Groeschl, Werner; Hofmann, Peter

    2015-01-01

    The acute physiological processes during “aerobic” high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min-1) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l-1), peak La (7.14 ± 2.48 mmol·l-1), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min-1) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l-1; Lapeak: 12.37 ± 4.17 mmol·l-1, HRpeak: 187.67 ± 5.72 b·min-1). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during “aerobic” short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key points High-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak

  14. How to regulate the acute physiological response to "aerobic" high-intensity interval exercise.

    PubMed

    Tschakert, Gerhard; Kroepfl, Julia; Mueller, Alexander; Moser, Othmar; Groeschl, Werner; Hofmann, Peter

    2015-03-01

    The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l(-1)), peak La (7.14 ± 2.48 mmol·l(-1)), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min(-1)) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l(-1); Lapeak: 12.37 ± 4.17 mmol·l(-1), HRpeak: 187.67 ± 5.72 b·min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key pointsHigh-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak

  15. The Effects Combining Cryocompression Therapy following an Acute Bout of Resistance Exercise on Performance and Recovery.

    PubMed

    DuPont, William H; Meuris, Brek J; Hardesty, Vincent H; Barnhart, Emily C; Tompkins, Landon H; Golden, Morricia J P; Usher, Clayton J; Spence, Paul A; Caldwell, Lydia K; Post, Emily M; Beeler, Matthew K; Kraemer, William J

    2017-09-01

    Compression and cold therapy used separately have shown to reduce negative effects of tissue damage. The combining compression and cold therapy (cryocompression) as a single recovery modality has yet to be fully examined. To examine the effects of cryocompression on recovery following a bout of heavy resistance exercise, recreationally resistance trained men (n =16) were recruited, matched, and randomly assigned to either a cryocompression group (CRC) or control group (CON). Testing was performed before and then immediately after exercise, 60 minutes, 24 hours, and 48 hours after a heavy resistance exercise workout (barbell back squats for 4 sets of 6 reps at 80% 1RM, 90 sec rest between sets, stiff legged deadlifts for 4 sets of 8 reps at 1.0 X body mass with 60 sec rest between sets, 4 sets of 10 eccentric Nordic hamstring curls, 45 sec rest between sets). The CRC group used the CRC system for 20-mins of cryocompression treatment immediately after exercise, 24 hours, and 48 hours after exercise. CON sat quietly for 20-mins at the same time points. Muscle damage [creatine kinase], soreness (visual analog scale, 0-100), pain (McGill Pain Q, 0-5), fatigue, sleep quality, and jump power were significantly (p < 0.05) improved for CRC compared to CON at 24 and 48 hours after exercise. Pain was also significantly lower for CRC compared to CON at 60-mins post exercise. These findings show that cryocompression can enhance recovery and performance following a heavy resistance exercise workout.

  16. Exercise to enhance neurocognitive function after traumatic brain injury.

    PubMed

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  17. Enhanced Exercise Therapy in Parkinson’s disease: A comparative effectiveness trial

    PubMed Central

    Ridgel, Angela L.; Walter, Benjamin L.; Tatsuoka, Curtis; Walter, Ellen M.; Colón-Zimmermann, Kari; Welter, Elisabeth; Sajatovic, Martha

    2015-01-01

    Objectives Exercise can improve motor function in people with Parkinson’s disease but depression reduces the motivation to participate in regular exercise. The aim of this study was to develop a novel Enhanced Exercise Therapy program that uses manual-driven guided exercise and peer-facilitated psychoeducation for individuals with Parkinson’s disease and depression. Design 24 week randomized controlled design. Methods Thirty individuals were randomized to Enhanced Exercise Therapy or self-guided therapy, and evaluated at baseline, 12-weeks and at 24-weeks. Enhanced Exercise Therapy included group exercise and group psychoeducation for 12 weeks. Between 13–24 weeks, individuals had access to the fitness facility but group sessions were not held. Self-guided therapy included written guidelines for a self-paced exercise program and psychoeducation. Primary outcome measures included the number of exercise sessions and International Physical Activity Questionnaire score. Secondary measures included resting heart rate, supine blood pressure, estimated VO2max and incidence of orthostatic hypotension. Results Twenty four individuals completed the study (80% retention) and both groups attended similar number of exercise sessions. There were no significant changes in cardiovascular fitness measures but there was a significant increase in the amount of physical activity in the Enhanced Exercise Therapy group and a decrease in the self-guided therapy group during the post-intervention period. Conclusions Enhanced exercise therapy appears to promote engagement in an exercise program and more physical activity, even after group sessions were concluded in individuals with Parkinson’s disease and depression. PMID:25709055

  18. The use of exercises to enhance and assess interlocal collaboration in preparedness: A qualitative analysis.

    PubMed

    Errett, Nicole A; Frattaroli, Shannon; Barnett, Daniel J; Resnick, Beth A; Rutkow, Lainie

    2015-01-01

    Interlocal collaboration, or collaboration among neighboring independent municipalities, has been generally accepted as an emergency preparedness strategy. In the absence of large-scale disasters, emergency preparedness exercises may serve to test the effectiveness of interlocal collaboration on emergency preparedness. However, the use of emergency preparedness exercises to enhance or assess interlocal collaboration, or its impact on preparedness, requires additional empirical exploration. This exploratory study aims to understand the perspectives of key informants (KIs) with broad knowledge of the history, goals, and implementation of the Urban Area Security Initiative (UASI) program, as well as knowledge of interlocal collaboration exercises conducted as part of the UASI program, about the role of exercises in improving and assessing interlocal collaboration for emergency preparedness. In early 2014, 28 KIs were interviewed during 24 semistructured interviews. Interviews were recorded and analyzed to identify key themes related to emergency preparedness exercises and the enhancement and assessment of interlocal collaboration. KIs perceived exercises to enhance interlocal collaboration in preparedness by promoting regional, interlocal: risk assessment; emergency plan testing and operationalization; relationship development; support for regional plans and operational structures; capability delivery practice; best practice sharing across interlocal collaborations; and engagement of elected or senior leadership in interlocal preparedness endeavors. Exercise participants, scenarios, administration, formats, and assessment strategies to promote interlocal collaboration were identified. Seven distinct mechanisms by which exercises can enhance interlocal collaboration that can be used to guide future research and policy development were identified. The format, scenario, participation, and administration of emergency preparedness exercises can be tailored to enhance

  19. Acute Dietary Nitrate Supplementation and Exercise Performance in COPD: A Double-Blind, Placebo-Controlled, Randomised Controlled Pilot Study

    PubMed Central

    Curtis, Katrina J.; O’Brien, Katie A.; Tanner, Rebecca J.; Polkey, Juliet I.; Minnion, Magdalena; Feelisch, Martin; Polkey, Michael I.; Edwards, Lindsay M.; Hopkinson, Nicholas S.

    2015-01-01

    Background Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD. Methods We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage. Results 21 subjects successfully completed the study (age 68±7years; BMI 25.2±5.5kg/m2; FEV1 percentage predicted 50.1±21.6%; peak VO2 18.0±5.9ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7±8mmHg nitrate vs. -1±8mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90–10.40) minutes vs. placebo 6.40 (4.01–9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6±6.0ml/min/kg nitrate vs. 17.2±6.0ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve. Conclusions Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype. Trial Registration ISRCTN Registry ISRCTN66099139 PMID:26698120

  20. Exercise augments the acute anabolic effects of intradialytic parenteral nutrition in chronic hemodialysis patients.

    PubMed

    Pupim, Lara B; Flakoll, Paul J; Levenhagen, Deanna K; Ikizler, T Alp

    2004-04-01

    Decreased dietary protein intake and hemodialysis (HD)-associated protein catabolism are among several factors that predispose chronic hemodialysis (CHD) patients to uremic malnutrition and associated muscle wasting. Intradialytic parenteral nutrition (IDPN) acutely reverses the net negative whole body and forearm muscle protein balances observed during the HD procedure. Exercise has been shown to improve muscle protein homeostasis, especially if performed with adequately available intramuscular amino acids. We hypothesized that exercise performance would provide additive anabolic effects to the beneficial effects of IDPN. We studied six CHD patients at two separate HD sessions: 1) IDPN administration only and 2) IDPN + exercise. Patients were studied 2 h before, during, and 2 h after an HD session by use of a primed constant infusion of l-[1-(13)C]leucine and l-[ring-(2)H(5)] phenylalanine. Exercise combined with IDPN promoted additive twofold increases in forearm muscle essential amino acid uptake (455 +/- 105 vs. 229 +/- 38 nmol.100 ml(-1).min(-1), P < 0.05) and net muscle protein accretion (125 +/- 37 vs. 56 +/- 30 microg.100 ml(-1).min(-1), P < 0.05) during HD compared with IDPN alone. Measurements of whole body protein homeostasis and energy expenditure were not altered by exercise treatment. In conclusion, exercise in the presence of adequate nutritional supplementation has potential as a therapeutic intervention to blunt the loss of muscle mass in CHD patients.

  1. Impact of diabetes, chronic heart failure, congenital heart disease and chronic obstructive pulmonary disease on acute and chronic exercise responses

    PubMed Central

    Brassard, Patrice; Ferland, Annie; Marquis, Karine; Maltais, François; Jobin, Jean; Poirier, Paul

    2007-01-01

    Several chronic diseases are known to negatively affect the ability of an individual to perform exercise. However, the altered exercise capacity observed in these patients is not solely associated with the heart and lungs dysfunction. Exercise has also been shown to play an important role in the management of several pathologies encountered in the fields of cardiology and pneumology. Studies conducted in our institution regarding the influence of diabetes, chronic heart failure, congenital heart disease and chronic pulmonary obstructive disease on the acute and chronic exercise responses, along with the beneficial effects of exercise training in these populations, are reviewed. PMID:17932595

  2. Diastolic function in healthy humans: non-invasive assessment and the impact of acute and chronic exercise.

    PubMed

    George, Keith P; Naylor, Louise H; Whyte, Greg P; Shave, Rob E; Oxborough, David; Green, Daniel J

    2010-01-01

    Left ventricular (LV) diastolic function is important because the enhanced systolic function that underpins high levels of cardio-respiratory fitness has to be matched by changes in LV filling, and LV diastolic dysfunction plays a key early role in the development and progression of a myriad of cardiovascular diseases. This review serves to detail knowledge in relation to: (1) the definition of diastole and the mechanical processes that occur during the diastolic period, (2) the quantitative assessment of diastolic function, predominantly focusing on non-invasive echocardiographic imaging modes such as tissue Doppler imaging and deformation analysis, (3) the impact of acute aerobic exercise on diastolic function, from the augmentation of function necessary to meet the demand for an increased cardiac output at exercise onset, to current concerns related to the impact of prolonged or ultra-endurance activity on diastolic function during recovery, (4) the adaptation in diastolic function observed with chronic aerobic exercise training in athletes and sedentary individuals who undergo training programmes, and (5) directions for future research.

  3. Time course of endothelial adaptation after acute and chronic exercise in patients with metabolic syndrome.

    PubMed

    Tjønna, Arnt E; Rognmo, Øivind; Bye, Anja; Stølen, Tomas O; Wisløff, Ulrik

    2011-09-01

    Clustering of cardiovascular risk factors may lead to endothelial dysfunction. Physical exercise is an important factor in prevention and treatment of endothelial dysfunction. We wanted to determine the time course of adaptation to a single bout of exercise at either high or moderate intensity upon endothelial function both before and after a 16-week fitness program in patients with metabolic syndrome. Twenty-eight patients with metabolic syndrome participated in the study and were randomized and stratified (according to age and sex) into an aerobic interval exercise training group (AIT, n = 11), a continuously moderate-intensity exercise training group (CME, n = 8) or to a control group (n = 9). Flow-mediated dilatation (FMD) was determined at baseline, immediately, 24, 48, and 72 hours after 1 bout of exercise and repeated after 16 weeks of exercise. In the untrained state, FMD improved from 5 to 11% (p = 0.003) immediately after a single bout of aerobic interval training (AIT), an effect lasting 72 hours postexercise. In comparison, continuous moderate exercise (CME) improved FMD immediately after a single bout of exercise from 5 to 8% (p = 0.02), an effect lasting 24 hours postexercise (group difference, p < 0.001). In the trained state, a single bout of AIT resulted in a 2% (p = 0.007) acute increase of FMD lasting 48 hours postexercise. The CME increased FMD by 3% (p < 0.01), an effect lasting 24 hours postexercise (group difference p = 0.0012). Blood glucose level decreased after 1 single bout of AIT in the untrained state (p < 0.05), and the effect lasted at least 72 hours postexercise (p < 0.01). Acute CME decreased blood glucose with normalization of the values 24 hours postexercise (p < 0.01). A single bout of exercise in the trained state reduced fasting blood glucose by 10% (p < 0.05) after both AIT and CME. Exercise training, especially high intensity, thus appears to be highly beneficial in reducing blood glucose and improving endothelial function.

  4. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle.

    PubMed

    Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A

    2015-04-01

    Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser(473)) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser(2448)) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations.

  5. Different effects of physical exercise on cold pain sensitivity in fighter pilots with and without the history of acute in-flight neck pain attacks.

    PubMed

    Kemppainen, P; Hämäläinen, O; Könönen, M

    1998-04-01

    The cold pain sensitivity in fighter pilots was studied by using a cold pressor test. The pilots were divided into two groups: one group consisting of eight pilots (N = 8) who had experienced several acute in-flight neck pain attacks, and the control group (N = 8) who had not experienced these pain conditions under similar work and environment conditions. In each pilot cold pain thresholds and pain and unpleasantness responses to suprathreshold cold stimulations were recorded during repeated tests. The ratings of pain and unpleasantness responses to cold stimulations were evaluated by visual analog scales (VAS). The effect of exercise on cold pain sensitivity was tested in a separate experiment. Exercise was performed on a cycle ergometer at different workload levels (50-200 W). In the control conditions (resting measures) of this study during repeated cold pressor tests, the average pain thresholds and pain or unpleasantness responses to suprathreshold cold stimulation were not different between groups. Physical exercise increased pain thresholds (P < 0.001) in pilots with a history of neck pain attacks but not in control group. Exercise induced a significant decrease in pain responses and unpleasantness responses to suprathreshold stimulation in both groups. This exercise effect was more marked both in pain intensity (P < 0.05) and unpleasantness responses (P < 0.01) in pilots with a history of neck pain attacks. Moreover, exercise more markedly (P < 0.05) decreased unpleasantness than pain intensity responses in both groups of pilots. The results suggest that exercise stress-related analgesia mechanisms may be enhanced in pilots with a history of acute in-flight neck pain attacks. Moreover, sensory and nonsensory aspects of pain experience may be differentially influenced by exercise stress.

  6. The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    PubMed Central

    Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012

  7. Acute chest pain after bench press exercise in a healthy young adult

    PubMed Central

    Smereck, Janet A; Papafilippaki, Argyro; Sudarshan, Sawali

    2016-01-01

    Bench press exercise, which involves repetitive lifting of weights to full arm extension while lying supine on a narrow bench, has been associated with complications ranging in acuity from simple pectoral muscle strain, to aortic and coronary artery dissection. A 39-year-old man, physically fit and previously asymptomatic, presented with acute chest pain following bench press exercise. Diagnostic evaluation led to the discovery of critical multivessel coronary occlusive disease, and subsequently, highly elevated levels of lipoprotein (a). Judicious use of ancillary testing may identify the presence of “high-risk” conditions in a seemingly “low-risk” patient. Emergency department evaluation of the young adult with acute chest pain must take into consideration an extended spectrum of potential etiologies, so as to best guide appropriate management. PMID:27703399

  8. Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise

    PubMed Central

    Hankinson, Paul B.; Simpson, Craig A.; Little, Jonathan P.; Graham, Ryan B.; Gurd, Brendon J.

    2013-01-01

    Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n  = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05). PMID:23951207

  9. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    PubMed Central

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise − rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = −0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. PMID:25038148

  10. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion.

    PubMed

    Limberg, Jacqueline K; Kellawan, J Mikhail; Harrell, John W; Johansson, Rebecca E; Eldridge, Marlowe W; Proctor, Lester T; Sebranek, Joshua J; Schrage, William G

    2014-09-15

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise - rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = -0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. Copyright © 2014 the American Physiological Society.

  11. Psychological responses to acute resistance exercise in men and women who are obese.

    PubMed

    Levinger, Itamar; Goodman, Craig; Hare, David L; Jerums, George; Morris, Tony; Selig, Steve

    2009-08-01

    The purpose of the study was to investigate the psychological response to the very first session of resistance exercise on positive well-being (PWB), psychological distress (PD), and perception of fatigue in untrained men and women who are obese. Forty-five (male = 22, female = 23) untrained, middle-aged volunteers (mean +/- SEM, 51.0 +/- 1.0; range, 40-69 years) participated in the study. Participants were divided into 4 groups according to sex and obesity level (i.e., men who are obese, men who are nonobese, women who are obese, women who are nonobese). The threshold for obesity was defined as waist circumference >or=94 cm for men and 80 cm for women. Measures included body composition, aerobic power, muscle strength, and quality of life (Short Form 36, SF-36). Before and after resistance exercise, participants completed the Subjective Exercise Experience Scale (SEES). Paired sample t-tests were used to assess changes in SEES scores within group pre- and post-exercise and repeated-measures analysis of variance were used to assess changes in SEES scores between groups. Exercise increased the perception of PWB in both women who are obese and nonobese, without changes in PD or fatigue. In women, the change in PWB after exercise was negatively correlated with most scales of the SF-36, particularly with the mental health dimension (r = -0.55, p < 0.01). No significant changes in PWB, PD, or fatigue were found in men who are obese. Acute resistance exercise improved PWB in women who are obese and nonobese and those with lower self-perceived quality of life scores at the start improved the most. In addition, resistance exercise did not increase feelings of distress in either women or men who are obese.

  12. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-01-01

    This study investigated the effects of acute moderate alcohol intake on muscular performance during recovery from eccentric exercise-induced muscle damage. Eleven healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed a beverage containing 1g/kg bodyweight ethanol (as vodka and orange juice) (ALC). On another occasion they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed an isocaloric quantity of orange juice (OJ). Measurement of maximal isokinetic (concentric and eccentric) and isometric torque produced across the knee, plasma creatine kinase (CK) concentrations and muscle soreness were made before and at 36 and 60h following each exercise bout. All measures of muscle performance were significantly reduced at 36 and 60h post-exercise compared to pre-exercise measures (all p<0.05). The greatest decreases in peak strength were observed at 36h with losses of 12%, 28% and 19% occurring for OJ isometric, concentric, and eccentric contractions, respectively. However, peak strength loss was significantly greater in ALC with the same performance measures decreasing by 34%, 40% and 34%, respectively. Post-exercise plasma creatine kinase activity and ratings of muscle soreness were not different between conditions (both p>0.05). These results indicate that consumption of even moderate amounts of alcohol following eccentric-based exercise magnifies the normally observed losses in dynamic and static strength. Therefore, to minimise exercise related losses in muscle function and expedite recovery, participants in sports involving eccentric muscle work should avoid alcohol-containing beverages in the post-event period.

  13. Energy intake and appetite-related hormones following acute aerobic and resistance exercise.

    PubMed

    Balaguera-Cortes, Liliana; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J

    2011-12-01

    Previous research has shown that resistance and aerobic exercise have differing effects on perceived hunger and circulating levels of appetite-related hormones. However, the effect of resistance and aerobic exercise on actual energy intake has never been compared. This study investigated the effect of an acute bout of resistance exercise, compared with aerobic exercise, on subsequent energy intake and appetite-regulating hormones. Ten active men completed 3 trials in a counterbalanced design: 45 min of resistance exercise (RES; free and machine weights), aerobic exercise (AER; running), or a resting control trial (CON). Following exercise or CON, participants had access to a buffet-style array of breakfast foods and drinks to consume ad libitum. Plasma concentrations of a range of appetite-regulating hormones were measured throughout each trial. Despite significantly higher energy expenditure with AER compared with RES (p < 0.05), there was no difference in total energy intake from the postexercise meal between trials (p = 0.779). Pancreatic polypeptide was significantly higher prior to the meal after both RES and AER compared with CON. In contrast, active ghrelin was lower following RES compared with both CON and AER (p ≤ 0.05), while insulin was higher following RES compared with CON (p = 0.013). In summary, the differential response of appetite-regulating hormones to AER and RES does not appear to influence energy intake in the postexercise meal. However, given the greater energy expenditure associated with AER compared with RES, AER modes of exercise may be preferable for achieving short-term negative energy balance.

  14. Acute effects of moderate intensity resistance exercise on bone cell activity.

    PubMed

    Whipple, T J; Le, B H; Demers, L M; Chinchilli, V M; Petit, M A; Sharkey, N; Williams, N I

    2004-10-01

    Resistance exercise has positive effects on bone mass, but little is known about the mechanisms by which this occurs. The purpose of this study was to determine if a single bout of moderate intensity resistance exercise alters biochemical markers of bone cell activity. Indices of bone turnover were measured in nine healthy, untrained men (21.9 +/- 1.2 yrs old), before and following a single 45 minute session of resistance exercise, and during a control trial. A cross-over design was used so that all participants performed both trials in random order. Blood samples were collected immediately before, immediately after, and at 1, 8, 24, and 48 hours post exercise and analyzed for bone-specific alkaline phosphatase (BAP), type I collagen propeptide (PICP), and type I collagen N-telopeptide (sNTX). Urine from the second morning void was collected over four days (day before, day of, and two days following exercise) and analyzed for type I collagen N-telopeptide (uNTX). Exercise resulted in a significant increase (p < 0.05) in the ratio of biochemical markers of bone formation to bone resorption eight hours post exercise, largely due to a decrease in sNTX. Markers return to baseline within 24 hrs. These data suggest that moderate intensity resistance training acutely reduces bone resorption, leading to a favorable change in overall bone turnover, for at least 8 hours post exercise in untrained young men. Further work is needed to determine if long-term benefits to bone strength follow with persistent training.

  15. The acute transverse strain response of the patellar tendon to quadriceps exercise.

    PubMed

    Wearing, Scott C; Hooper, Sue L; Purdam, Craig; Cook, Jill; Grigg, Nicole; Locke, Simon; Smeathers, James E

    2013-04-01

    The human patellar tendon is highly adaptive to changes in habitual loading, but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Twelve healthy adult males (mean age, 34.0 ± 12.1 yr; height, 1.75 ± 0.09 m; and weight, 76.7 ± 12.3 kg) free of knee pain participated in the research. A 10- to 5-MHz linear array transducer was used to acquire standardized sagittal sonograms of the right patellar tendon immediately before and after 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar, and transverse Hencky strain was calculated as the natural log of the ratio of post- to preexercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent grayscale profiles. Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P < 0.05), equating to a transverse strain of -22.5% ± 3.4% and was accompanied by increased tendon echogenicity (P < 0.05) and decreased entropy (P < 0.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P < 0.05) and entropy after exercise (r = 0.73, P < 0.05), whereas older age was associated with greater entropy of the patellar tendon before exercise (r = 0.79, P < 0.05) and a reduced transverse strain response (r = 0.61, P < 0.05) after exercise. This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifested by changes in echotexture and transverse strain in the patellar tendon.

  16. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers

    PubMed Central

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins. PMID:28151958

  17. Investigations into Changes in Bone Turnover with Acute, Weight-Bearing Exercise in Healthy, Young Men

    DTIC Science & Technology

    2009-10-01

    and cardiovascular mortality [31]. 4.3 The effect of acute exercise on calcium metabolism and its role in changes in bone turnover These studies have...initial UK military training, cause considerable morbidity to recruits and contribute significantly to the high attrition from training. Rationale...bone-associated factors (parathyroid hormone – PTH, calcium , phosphate and osteoprotegerin – OPG) were measured before, during and up to four days

  18. Cardiopulmonary Effects of Acute Stressful Exercise at Altitude of Individuals with Sickle Cell Trait (SCT)

    DTIC Science & Technology

    1989-06-01

    AD___ AD-A222 948 CARDIOPULMONARY EFFECTS OF ACUTE STRESSFUL EXERCISE AT ALTITUDE OF INDIVIDUALS WITH SICKLE CELL TRAIT (SCT) FINAL REPORT Idelle M...DAMD17-86-G-6015 National Jewish Center for Immunology and Respiratory Medicine 1400 Jackson Street Denver, Colorado 80206 Approved for public release...8217Jewishi Center for (if applica ble) Immuoloy & Respiratory Medicinj 6r. ADDRESS trlty, State, and LIP Code) 7b, ADORESS(CIty, State, and ZIP Code) 1400

  19. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers.

    PubMed

    Paraiso, Lara Ferreira; Gonçalves-E-Oliveira, Ana Flávia Mayrink; Cunha, Lucas Moreira; de Almeida Neto, Omar Pereira; Pacheco, Adriana Garcia; Araújo, Karinne Beatriz Gonçalves; Garrote-Filho, Mário da Silva; Bernardino Neto, Morun; Penha-Silva, Nilson

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins.

  20. Small RNA-seq during acute maximal exercise reveal RNAs involved in vascular inflammation and cardiometabolic health.

    PubMed

    Shah, Ravi; Yeri, Ashish S; Das, Avash; Courtright-Lim, Amanda; Ziegler, Olivia; Gervino, Ernest; Ocel, Jeffrey; Quintero Pinzon, Pablo; Wooster, Luke; Shields Bailey, Cole; Tanriverdi, Kahraman; Beaulieu, Lea; Freedman, Jane E; Ghiran, Ionita; Lewis, Gregory D; Van Keuren-Jensen, Kendall; Das, Saumya

    2017-09-15

    Exercise improves cardiometabolic and vascular function, though mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. Approach and Results: We performed plasma small RNA sequencing (RNA-seq) in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., y-RNAs, t-RNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. Circulating ex-RNAs altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., y-RNAs) is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health. Copyright © 2017, American Journal of Physiology-Heart and Circulatory Physiology.

  1. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  2. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase.

    PubMed

    Nyberg, Michael; Egelund, Jon; Mandrup, Camilla M; Andersen, Caroline B; Hansen, Karen M B E; Hergel, Ida-Marie F; Valbak-Andersen, Nicholai; Frikke-Schmidt, Ruth; Stallknecht, Bente; Bangsbo, Jens; Hellsten, Ylva

    2017-02-23

    Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1) years of age were included. Before training, leg blood flow, O2 delivery, O2 uptake, and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P < 0.05) leg blood flow, O2 delivery, O2 uptake, lactate release, blood pressure and heart rate during the same absolute workloads in the postmenopausal women. These effects were not detected in the premenopausal women. Quadriceps muscle protein contents of mitochondrial complex II, III, and IV, endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX.1), COX-2, and oestrogen related receptor α (ERRα) were increased (P < 0.05) with training in the postmenopausal women whereas only the levels of mitochondrial complex V, eNOS, and COX-2 were increased (P < 0.05) in the premenopausal women. These findings demonstrate that vascular and skeletal muscle mitochondrial adaptations to aerobic high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase. This article is protected by copyright. All rights reserved.

  3. TNF-α and TNFR1 responses to recovery therapies following acute resistance exercise

    PubMed Central

    Townsend, Jeremy R.; Hoffman, Jay R.; Fragala, Maren S.; Jajtner, Adam R.; Gonzalez, Adam M.; Wells, Adam J.; Mangine, Gerald T.; Fukuda, David H.; Stout, Jeffrey R.

    2015-01-01

    The purpose of this investigation was to compare the effect of two commonly used therapeutic modalities (a) neuromuscular electrical stimulation (NMES) and (b) cold water immersion (CWI) on circulating tumor necrosis factor alpha (TNF-α) and monocyte TNF-α receptor (TNFR1) expression following intense acute resistance exercise and subsequent recovery. Thirty (n = 30) resistance trained men (22.5 ± 2.7 y) performed an acute heavy resistance exercise protocol on three consecutive days followed by one of three recovery methods (CON, NMES, and CWI). Circulating TNF-α levels were assayed and TNFR1 expression on CD14+ monocytes was measured by flow cytometry measured PRE, immediately post (IP), 30-min post (30M), 24 h post (24H), and 48 h post (48H) exercise. Circulating TNF-α was elevated at IP (p = 0.001) and 30M (p = 0.005) and decreased at 24H and 48H recovery from IP in CON (p = 0.015) and CWI (p = 0.011). TNF-α did not significantly decrease from IP during recovery in NMES. TNFR1 expression was elevated (p < 0.001) at 30M compared to PRE and all other time points. No significant differences between groups were observed in TNFR1 expression. During recovery (24H, 48H) from muscle damaging exercise, NMES treatment appears to prevent the decline in circulating TNF-α observed during recovery in those receiving no treatment or CWI. PMID:25741287

  4. The acute muscular response to blood flow-restricted exercise with very low relative pressure.

    PubMed

    Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Mouser, J Grant; Counts, Brittany R; Dankel, Scott J; Laurentino, Gilberto C; Loenneke, Jeremy P

    2017-03-02

    To investigate the acute responses to blood flow-restricted (BFR) exercise across low, moderate and high relative pressures. Muscle thickness, maximal voluntary contraction (MVC) and electromyography (EMG) amplitude were assessed following exercise with six different BFR pressures: 0%, 10%, 20%, 30%, 50% and 90% of arterial occlusion pressure (AOP). There were differences between each time point within each condition for muscle thickness, which increased postexercise [+0·47 (0·40, 0·54) cm] and then trended towards baseline. For MVC, higher pressures resulted in greater decrements than lower pressures [e.g. 10% AOP: -20·7 (-15·5, -25·8) Nm versus 90% AOP: -24 (-19·1, -28·9) Nm] postexercise. EMG amplitude increased from the first three repetitions to the last three repetitions within each set. When using a common BFR protocol with 30% 1RM, applying BFR does not seem to augment acute responses over that of exercise alone when exercise is taken to failure. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Antioxidant status in haemoglobin E carriers after acute and chronic strenuous exercises.

    PubMed

    Palasuwan, Attakorn; Soogarun, Suphan; Suksom, Daroonwan; Pitaksathienkul, Chatchadaporn; Rousseau, Anne-Sophie

    2015-01-01

    Haemoglobin E (HbE), an unstable haemoglobin, is highly susceptible to oxidative damages. We examined how acute or chronic physiological challenge induced by exercise affects antioxidant response in HbE carriers. Two independent studies were conducted in individuals with HbE trait and paired normal Hb. In study 1, sedentary participants were tested in a graded maximal exercise and blood samples were collected before, immediately after, and 45 minutes after an acute exercise. Our data showed that erythrocyte glutathione peroxidase (GPx) activity failed to recover in HbE carriers after 45 minutes of rest. In study 2, athletes were trained in a 10-week strenuous training and blood samples were collected before and after training period. We found that athletes with HbE carriers showed a larger increase in plasma GPx activity compared to those with normal Hb. These data suggest that HbE carriers could cope with exercise-induced oxidative stress by adjusting endogenous antioxidant markers.

  6. Exercise pressor reflex function following acute hemi-section of the spinal cord in cats

    PubMed Central

    Murphy, Megan N.; Ichiyama, Ronaldo M.; Iwamoto, Gary A.; Mitchell, Jere H.; Smith, Scott A.

    2013-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality in patients post spinal cord injury (SCI). The prescription of exercise as a therapeutic modality for disease prevention in this population is promising. It is logical to suggest that the sooner an exercise program can begin the more benefit the patient will receive from the therapy. However, the time point after injury at which the requisite circulatory responses needed to support exercise are viable remains largely unknown. The skeletal muscle exercise pressor reflex (EPR) significantly contributes to cardiovascular control during exercise in healthy individuals. Experiments in patients with a chronic lateral hemi-section of the spinal cord (Brown-Séquard syndrome) suggest that the EPR, although blunted, is operational when examined months to years post injury. However, whether this critically important reflex remains functional immediately after lateral SCI or, in contrast, experiences a period of reduced capacity due to spinal shock has not been established. This study was designed to assess EPR function after acute lateral transection of the spinal cord. The EPR was selectively activated in seven decerebrate cats via electrically stimulated static contraction of the triceps surae muscles of each hindlimb before and after lateral hemi-section of the T13–L2 region of the spinal cord. Compared to responses prior to injury, increases in mean arterial pressure (MAP) were significantly decreased when contracting the hindlimb either ipsilateral to the lesion (MAP = 17 ± 3 mmHg before and 9 ± 2 mmHg after) or contralateral to the lesion (MAP = 22 ± 5 mmHg before and 12 ± 4 mmHg after). The heart rate (HR) response to stimulation of the EPR was largely unaffected by induction of acute SCI. The findings suggest that the EPR maintains the ability to importantly contribute to cardiovascular regulation during exercise immediately following a Brown-Séquard-like injury. PMID:23403764

  7. The Simon task and aging: does acute moderate exercise influence cognitive control?

    PubMed

    Joyce, Jennifer; Smyth, Patrick J; Donnelly, Alan E; Davranche, Karen

    2014-03-01

    This study aimed to investigate the influence of an acute bout of moderate exercise and examine the potential lasting improvements over time in young and old adults within the same experimental paradigm over a 2-h testing period. The study was designed to assess the efficiency of selective control and the propensity to make fast impulsive reactions through the analyses of the percentage of correct responses (CAF) and the magnitude of the interference effect (delta curve) as a function of the latency of the response. Twelve young (23 ± 2 yr) and 12 old (63 ± 2 yr) volunteers performed the Simon task while cycling (30 min of cycling at 65% of age-predicted HRmax) and after exercise cessation (post 5 min, post 35 min, and post 65 min). Results showed that exercise did not alter cognitive control. The benefit on reaction time performance was evident for both age groups and persisted after cessation for 15-20 min. Distributional analyses showed that younger people have a higher propensity to commit impulsive errors during exercise, which was not evident in older adults. Older adults adopted more cautious strategies, especially when the risk to commit an error was elevated. Despite the larger mean interference effect compared to younger adults, the pattern of the delta curves attests to the existence of an efficient cognitive control in older people. This study illustrates the effectiveness of distributional analyses and supports the idea that