Sample records for acute exercise increases

  1. Acute moderate exercise improves mnemonic discrimination in young adults.

    PubMed

    Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A; Soya, Hideaki

    2017-03-01

    Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O 2peak ) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Acute Moderate Exercise Improves Mnemonic Discrimination in Young Adults

    PubMed Central

    Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A.; Soya, Hideaki

    2018-01-01

    Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O2peak) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. PMID:27997992

  3. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes.

    PubMed

    Stupin, Marko; Stupin, Ana; Rasic, Lidija; Cosic, Anita; Kolar, Luka; Seric, Vatroslav; Lenasi, Helena; Izakovic, Kresimir; Drenjancevic, Ines

    2018-02-01

    The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined. Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry. At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise. Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.

  4. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  5. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample.

    PubMed

    Harveson, Andrew T; Hannon, James C; Brusseau, Timothy A; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H; Hall, Morgan S; Kang, Kyoung-Doo

    2016-06-01

    The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized crossover design. After each exercise intervention, participants were assessed using 2 cognitive tests. The Dot, Word, and Color elements of the Stroop Test (Victoria version) and Parts A and B of the Trail-Making Test were used to measure cognition. Acute resistance and aerobic exercise resulted in similar improvements over nonexercise in all forms of the Stroop Test. Acute aerobic exercise led to improved performance over nonexercise and resistance exercise in Part B of the Trail-Making Test. Neither exercise intervention showed significant changes in time to complete Part A of the Trail-Making Test. Boys outperformed girls on the Stroop Dot and Color Test following acute aerobic exercise, in the Stroop Dot, Word, and Color Test following acute resistance exercise, and in the Stroop Color Test and Trail-Making Test Part B following nonexercise. Both acute resistance and aerobic exercise increased measures of cognition over a nonexercise control in untrained high school youth. These findings suggest the merits of acute resistance exercise as an alternative or complement to aerobic activity for educators aiming to increase youth physical activity and cognitive function concurrently.

  6. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    PubMed

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  7. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise.

    PubMed

    Martorell, Miquel; Capó, Xavier; Sureda, Antoni; Batle, Joan M; Llompart, Isabel; Argelich, Emma; Tur, Josep A; Pons, Antoni

    2014-08-01

    The aim was to determine the effects of a diet supplemented with 1.14 g per day of docosahexaenoic acid (DHA) for eight weeks on the plasma oxidative balance and anti-inflammatory markers after training and acute exercise. Fifteen volunteer male football players were randomly assigned to placebo or experimental and supplemented groups. Blood samples were taken under resting conditions at the beginning and after eight weeks of training under resting and post-exercise conditions. The experimental beverage increased the plasma DHA availability in non-esterified fatty acids (NEFAs) and triglyceride fatty acids (TGFAs) and increased the polyunsaturated fatty acid (PUFA) fraction of NEFAs but had no effects on the biomarkers for oxidative balance in plasma. During training, plasma protein markers of oxidative damage, the haemolysis degree and the antioxidant enzyme activities increased, but did not affect lipid oxidative damage. Training season and DHA influenced the circulating levels of prostaglandin E2 (PGE2). Acute exercise did not alter the basal levels of plasma markers for oxidative and nitrosative damage of proteins and lipids, and the antioxidant enzyme activities, although DHA-diet supplementation significantly increased the PGE2 in plasma after acute exercise. In conclusion, the training season and acute exercise, but not the DHA diet supplementation, altered the pattern of plasma oxidative damage, as the antioxidant system proved sufficient to prevent the oxidative damage induced by the acute exercise in well-trained footballers. The DHA-diet supplementation increased the prostaglandin PGE2 plasma evidencing anti-inflammatory effects of DHA to control inflammation after acute exercise.

  8. Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.

    PubMed

    Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A

    1987-07-01

    Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.

  9. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle

    PubMed Central

    Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.

    2012-01-01

    Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255

  10. Irisin in response to acute and chronic whole-body vibration exercise in humans.

    PubMed

    Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S

    2014-07-01

    Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Blunted Myoglobin and Quadriceps Soreness after Electrical Stimulation during the Luteal Phase or Oral Contraception

    ERIC Educational Resources Information Center

    Anderson, Lindsey J.; Baker, Lucinda L.; Schroeder, E. Todd

    2017-01-01

    Purpose: Acute muscle damage after exercise triggers subsequent regeneration, leading to hypertrophy and increased strength after repeated exercise. It has been debated whether acute exercise-induced muscle damage is altered under various premenopausal estrogen conditions. Acute contraction-induced muscle damage was compared during exogenous (oral…

  12. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    PubMed

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  13. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  14. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise.

    PubMed

    Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.

  15. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice.

    PubMed

    Pervaiz, Nabeel; Hoffman-Goetz, Laurie

    2012-01-01

    Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.

  16. Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I

    2017-10-01

    To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.

  17. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals.

    PubMed

    Bunsawat, Kanokwan; Ranadive, Sushant M; Lane-Cordova, Abbi D; Yan, Huimin; Kappus, Rebecca M; Fernhall, Bo; Baynard, Tracy

    2017-04-01

    Central arterial stiffness is associated with incident hypertension and negative cardiovascular outcomes. Obese individuals have higher central blood pressure (BP) and central arterial stiffness than their normal-weight counterparts, but it is unclear whether obesity also affects hemodynamics and central arterial stiffness after maximal exercise. We evaluated central hemodynamics and arterial stiffness during recovery from acute maximal aerobic exercise in obese and normal-weight individuals. Forty-six normal-weight and twenty-one obese individuals underwent measurements of central BP and central arterial stiffness at rest and 15 and 30 min following acute maximal exercise. Central BP and normalized augmentation index (AIx@75) were derived from radial artery applanation tonometry, and central arterial stiffness was obtained via carotid-femoral pulse wave velocity (cPWV) and corrected for central mean arterial pressure (cPWV/cMAP). Central arterial stiffness increased in obese individuals but decreased in normal-weight individuals following acute maximal exercise, after adjusting for fitness. Obese individuals also exhibited an overall higher central BP ( P  <   0.05), with no exercise effect. The increase in heart rate was greater in obese versus normal-weight individuals following exercise ( P  <   0.05), but there was no group differences or exercise effect for AIx@75 In conclusion, obese (but not normal-weight) individuals increased central arterial stiffness following acute maximal exercise. An assessment of arterial stiffness response to acute exercise may serve as a useful detection tool for subclinical vascular dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.

    PubMed

    Ydfors, Mia; Hughes, Meghan C; Laham, Robert; Schlattner, Uwe; Norrbom, Jessica; Perry, Christopher G R

    2016-06-01

    Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Psychological Responses to Acute Aerobic, Resistance, or Combined Exercise in Healthy and Overweight Individuals: A Systematic Review

    PubMed Central

    Elkington, Thomas J; Cassar, Samantha; Nelson, André R; Levinger, Itamar

    2017-01-01

    Introduction: Psychological distress and depression are risk factors for cardiovascular disease (CVD). As such, a reduction in psychological distress and increase in positive well-being may be important to reduce the risk for future development of CVD. Exercise training may be a good strategy to prevent and assist in the management of psychological disorders. The psychological effects of the initial exercise sessions may be important to increase exercise adherence. The aims of this systematic review were (a) to examine whether acute aerobic, resistance, or a combination of the 2 exercises improves psychological well-being and reduces psychological distress in individuals with healthy weight and those who are overweight/obese but free from psychological disorders, and (b) if so, to examine which form of exercise might yield superior results. Methods: The online database PubMed was searched for articles using the PICO (patient, intervention, comparison, and outcome) framework for finding scientific journals based on key terms. Results: Forty-two exercise studies met the inclusion criteria. A total of 2187 participants were included (age: 18-64 years, body mass index [BMI]: 21-39 kg/m2). Only 6 studies included participants with a BMI in the overweight/obese classification. Thirty-seven studies included aerobic exercise, 2 included resistance exercise, 1 used a combination of aerobic and resistance, and 2 compared the effects of acute aerobic exercise versus the effects of acute resistance exercise. The main findings of the review were that acute aerobic exercise improves positive well-being and have the potential to reduce psychological distress and could help reduce the risks of future CVD. However, due to the limited number of studies, it is still unclear which form of exercise yields superior psychological benefits. Conclusions: Obese, overweight, and healthy weight individuals can exhibit psychological benefits from exercise in a single acute exercise session, and these positive benefits of exercise should be used by health professionals as a tool to increase long-term participation in exercise in these populations. PMID:28469495

  20. Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women.

    PubMed

    Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-12-01

    Brain-derived neurotrophic factor (BDNF) has recently emerged as one potential mechanism with which exercise improves mood in major depressive disorder (MDD). This study examined the relationship between changes in serum total BDNF and mood following acute exercise in MDD. It was hypothesized that acute exercise would increase BDNF in an intensity-dependent manner and that changes in BDNF would be significantly related to improvement in depressed mood post-exercise. Twenty-four women (age: 38.6±14.0years) with MDD exercised for 30min on a stationary bicycle at light, moderate and hard exercise intensities and performed a quiet rest session using a within-subjects, randomized and counter-balanced design. Before, 10 and 30min after each session, participants completed the profile of mood states (POMS). Blood was drawn before and within 10min after completion of each session and serum total BDNF (sBDNF) was measured by enzyme-linked immunosorbent assay. Acute exercise-induced changes in POMS Depression and sBDNF were analyzed via 4 session (quiet rest, light, moderate, hard) by 2 measurement (pre, post) ANOVA. Secondary analyses examined the effects of baseline mood and antidepressant usage on sBDNF. Exercise resulted in an acute improvement in depressed mood that was not intensity dependent (p>0.05), resulting in significant acute increases in sBDNF (p=0.006) that were also not intensity-dependent (p>0.05). Acute changes in sBDNF were not significantly correlated to changes in POMS depression at 10m (r=-0.171, p=0.161) or 30m (r=-0.151, p=0.215) post-exercise. The fourteen participants taking antidepressant medications exhibited lower post-exercise sBDNF (p=0.015) than the participants not currently taking antidepressants, although mood responses were similar. Acute exercise is an effective mood-enhancing stimulus, although sBDNF does not appear to play a role in this short-term response. Patients who are not currently taking antidepressant medications and those who have greater pre-exercise depression may experience a greater sBDNF response to exercise, but the clinical significance of this is currently unclear. Circulating BDNF levels are unlikely to be altered by steady-state acute exercise in a linear dose-dependent manner. This does not eliminate its potential relevance in the antidepressant response to chronic exercise training, but suggests that other mechanisms are involved in the acute affective response to exercise in depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The interaction of vasoactive substances during exercise modulates platelet aggregation in hypertension and coronary artery disease

    PubMed Central

    Petidis, Konstantinos; Douma, Stella; Doumas, Michael; Basagiannis, Ilias; Vogiatzis, Konstantinos; Zamboulis, Chrysanthos

    2008-01-01

    Background Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function. Methods Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A2, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise. Results Our results during exercise showed a) platelet activation (increased thromboxane B2, TXB2), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups). Conclusion Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB2 levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications. PMID:18505546

  2. REDD1 induction regulates the skeletal muscle gene expression signature following acute aerobic exercise.

    PubMed

    Gordon, Bradley S; Steiner, Jennifer L; Rossetti, Michael L; Qiao, Shuxi; Ellisen, Leif W; Govindarajan, Subramaniam S; Eroshkin, Alexey M; Williamson, David L; Coen, Paul M

    2017-12-01

    The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle. Copyright © 2017 the American Physiological Society.

  3. Effects of Pilates Exercise on Salivary Secretory Immunoglobulin A Levels in Older Women.

    PubMed

    Hwang, Yoonyoung; Park, Jonghoon; Lim, Kiwon

    2016-07-01

    We examined the effects of a Pilates exercise program on the mucosal immune function in older women. The study population comprised 12 older women who were divided into a Pilates group (PG, n = 6) and a control group (CG, n = 6). Saliva samples were obtained from both groups before and after the experimental period for salivary secretory immunoglobulin A level measurement. In addition, acute high-intensity exercises were performed before and after the three-month Pilates exercise program. After three months, salivary flow was significantly higher in the PG than in the CG. After the acute high-intensity exercises were performed following the three-month Pilates exercise program, the salivary flow rate was significantly higher at all time points. The S-IgA secretion rate significantly increased 30 min after acute high-intensity exercise performed following the three-month Pilates exercise program. This study suggests that regular participation in a moderate-intensity Pilates exercise program can increase salivary flow rate and S-IgA secretion in older women.

  4. Vascular Nitric Oxide-Superoxide Balance and Thrombus Formation after Acute Exercise.

    PubMed

    Przyborowski, Kamil; Proniewski, Bartosz; Czarny, Joanna; Smeda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Zoladz, Jerzy A; Chlopicki, Stefan

    2018-02-21

    An acute bout of strenuous exercise in humans results in transient impairment of NO-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of post-exercise thrombotic events. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular nitric oxide (NO)/reactive oxygen species (ROS) production, and on thrombogenicity. At different time-points (0h, 2h and 4h) after exercise and in sedentary C57BL/6 mice the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance (EPR) spin trapping and by dihydroethidium (DHE)/HPLC-based method, respectively, while collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (T-TAS). We also measured pre- and post-exercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2h after completion of exercise when compared to sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation (T10) and capillary occlusion (OT), and total thrombogenicity (AUC) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2h after exercise. Surprisingly, the reduced NO and increased O2 production did not result in increased post-exercise platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability, caused by exercise-induced oxidative stress, does not modify post-exercise thromboresistance in healthy mice.

  5. Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise.

    PubMed

    Decroix, Lieselot; Tonoli, Cajsa; Soares, Danusa D; Tagougui, Semah; Heyman, Elsa; Meeusen, Romain

    2016-12-01

    Acute exercise-induced improvements in cognitive function are accompanied by increased (cerebral) blood flow and increased brain-derived neurotrophic factor (BDNF) levels. Acute cocoa flavanol (CF) intake may improve cognitive function, cerebral blood flow (in humans), and BNDF levels (in animals). This study investigated (i) the effect of CF intake in combination with exercise on cognitive function and (ii) cerebral hemodynamics and BDNF in response to CF intake and exercise. Twelve healthy men participated in this randomized, double-blind, crossover study. Participants performed a cognitive task (CT) at 100 min after acute 903-mg CF or placebo (PL) intake, followed by a 30-min time-trial. Immediately after this exercise, the same CT was performed. Prefrontal near-infrared spectroscopy was applied during CT and exercise to measure changes in oxygenated (ΔHbO 2 ), deoxygenated (ΔHHb), and total haemoglobin (ΔHb tot ) and blood samples were drawn and analyzed for BDNF. Reaction time was faster postexercise, but was not influenced by CF. ΔHbO 2 during the resting CT was increased by CF, compared with PL. ΔHbO 2 , ΔHHb, and ΔHb tot increased in response to exercise without any effect of CF. During the postexercise cognitive task, there were no hemodynamic differences between CF or PL. Serum BDNF was increased by exercise, but was not influenced by CF. In conclusion, at rest, CF intake increased cerebral oxygenation, but not BDNF concentrations, and no impact on executive function was detected. This beneficial effect of CF on cerebral oxygenation at rest was overruled by the strong exercise-induced increases in cerebral perfusion and oxygenation.

  6. Acute effects of aerobic exercise on mood and hunger feelings in male obese adolescents: a crossover study.

    PubMed

    Lofrano-Prado, Mara Cristina; Hill, James O; Silva, Humberto José Gomes; Freitas, Camila Rodrigues Menezes; Lopes-de-Souza, Sandra; Lins, Tatiana Acioli; do Prado, Wagner Luiz

    2012-04-03

    The aim of this study was to determine the acute effects of exercise intensity on anxiety, mood states and hunger in obese adolescents. Subjects were eight male obese adolescents (age 15.44 ± 2.06 y; BMI 33.06 ± 4.78 kg/m2). Each subject underwent three experimental trials: (1) Control, seated for 30 min; (2) Low intensity exercise (LIE)--exercise at 10% below ventilatory threshold (VT); (3) High intensity exercise (HIE)--exercise at 10% above VT. Anxiety (STAI Trait/State), mood (POMS) and hunger (VAS) were assessed before and immediately after the experimental sessions. Comparisons between trials and times were assessed using Kruskal-Wallis and Wilcoxon tests, respectively. Associations between variables were described using a Spearman test. The largest increase in hunger was observed after LEI (914.22%). Both exercise sessions increased anxiety, fatigue and decreased vigor (p < 0.05). Acute exercise bouts are associated with negative changes in anxiety and mood, and with increases in hunger in obese adolescents.

  7. Protective effect of exercise and sildenafil on acute stress and cognitive function.

    PubMed

    Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur

    2015-11-01

    There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Small RNA-seq during acute maximal exercise reveal RNAs involved in vascular inflammation and cardiometabolic health: brief report.

    PubMed

    Shah, Ravi; Yeri, Ashish; Das, Avash; Courtright-Lim, Amanda; Ziegler, Olivia; Gervino, Ernest; Ocel, Jeffrey; Quintero-Pinzon, Pablo; Wooster, Luke; Bailey, Cole Shields; Tanriverdi, Kahraman; Beaulieu, Lea M; Freedman, Jane E; Ghiran, Ionita; Lewis, Gregory D; Van Keuren-Jensen, Kendall; Das, Saumya

    2017-12-01

    Exercise improves cardiometabolic and vascular function, although the mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. We performed plasma small RNA sequencing in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., Y RNAs and tRNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. We conclude that circulating ex-RNAs were altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., Y RNAs) RNAs is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health. NEW & NOTEWORTHY How exercise provides benefits to cardiometabolic health remains unclear. We performed RNA sequencing in plasma during exercise to identify the landscape of small noncoding circulating transcriptional changes. Our results suggest a link between inflammation and exercise, providing rich data on circulating noncoding RNAs for future studies by the scientific community. Copyright © 2017 the American Physiological Society.

  9. Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? A systematic review.

    PubMed

    Donnelly, Joseph E; Herrmann, Stephen D; Lambourne, Kate; Szabo, Amanda N; Honas, Jeffery J; Washburn, Richard A

    2014-01-01

    The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. TO ADDRESS THE QUESTION: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? PubMed and Embase were searched (January 1990-January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18-64 years). Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake.

  10. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue

    PubMed Central

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-01-01

    Background Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Methods Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Results Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. Conclusions These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit. PMID:28959107

  11. Lipolytic signaling in response to acute exercise is altered in female mice following ovariectomy

    PubMed Central

    Wohlers, Lindsay M.; Jackson, Kathryn C.; Spangenburg, Espen E.

    2011-01-01

    Impaired ovarian function alters lipid metabolism, ultimately resulting in increased visceral fat mass. Currently, we have a poor understanding of alterations in signaling events regulating lipolysis after ovarian function declines. The purpose of this study was to determine if cellular mechanisms regulating lipolysis are altered in mice after ovariectomy (OVX) and if OVX mice exhibit impaired lipolytic signaling when stimulated by acute exercise. SHAM and OVX mice were divided into two groups: control (SHAM cont; OVX cont) or acute treadmill exercise (SHAM ex; OVX ex). The omental/mesenteric (O/M) fat mass of all OVX mice was significantly greater than the SHAM mice. Serum glycerol and blood glucose levels were significantly elevated in OVX cont compared to SHAM cont. Treadmill exercise increased serum glycerol levels only in SHAM mice, with no exercise-induced change detected in OVX mice. NEFA levels were significantly elevated by acute exercise in the SHAM and OVX groups. In O/M fat from both OVX groups there were significant increases in cytosolic ATGL and PLIN2 in the fat cake fraction with concurrent reductions in PLIN1 in the fat cake compared to SHAM. Further, exercise induced significant increases in HSL Ser660 phosphorylation in SHAM mice, but not OVX mice. This suggests that reduced ovarian function has significant effects on critical lipolytic cell signaling mechanisms in O/M adipose tissue. PMID:21815195

  12. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    PubMed Central

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (P<0.01) lipidation of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) (∼50%) and the LC3‐II/LC3‐I ratio (∼60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3‐II/LC3‐I ratio (∼80%) in muscle of the exercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3‐I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. PMID:26614120

  13. Acute effects of physical exercise in type 2 diabetes: A review

    PubMed Central

    Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Moraes, José Fernando Vila Nova; Coelho Júnior, Hélio José; Moraes, Milton Rocha; Simões, Herbert Gustavo

    2014-01-01

    The literature has shown the efficiency of exercise in the control of type 2 diabetes (T2D), being suggested as one of the best kinds of non-pharmacological treatments for its population. Thus, the scientific production related to this phenomenon has growing exponentially. However, despite its advances, still there is a lack of studies that have carried out a review on the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in individuals with T2D, not to mention that in a related way, these themes have been very little studied today. Therefore, the aim of this study was to organize and analyze the current scientific production about the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in T2D individuals. For such, a research with the following keywords was performed: -exercise; diabetes and post-exercise hypotension; diabetes and excess post-exercise oxygen consumption; diabetes and acute effects in PUBMED, SCIELO and HIGHWIRE databases. From the analyzed studies, it is possible to conclude that, a single exercise session can promote an increase in the bioavailability of nitric oxide and elicit decreases in postexercise blood pressure. Furthermore, the metabolic stress from physical exercise can increase the oxidation of carbohydrate during the exercise and keep it, in high levels, the post exercise consumption of O², this phenomenon increases the rate of fat oxidation during recovery periods after exercise, improves glucose tolerance and insulin sensitivity and reduces glycemia between 2-72 h, which seems to be dependent on the exercise intensity and duration of the effort. PMID:25317243

  14. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

    PubMed

    Takimoto, Masaki; Hamada, Taku

    2014-05-01

    The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

  15. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children.

    PubMed

    Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan

    2016-01-01

    Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.

  16. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  17. The dose-response effects of aerobic exercise on musculoskeletal injury: a post hoc analysis of a randomized trial.

    PubMed

    Brown, Justin C; Schmitz, Kathryn H

    2017-01-01

    In a post hoc analysis, we quantified the risk of musculoskeletal injury (MSI) associated with different volumes of aerobic exercise in a randomized trial. Premenopausal women (n = 119) were randomized to one of three groups: low-dose aerobic exercise (150 min·per week), high-dose aerobic exercise (300 min·per week) or control (usual activity) for 5 months. Compared to the control group, the risk of reporting an acute MSI increased with higher volumes of aerobic exercise, with a similar pattern observed for recurrent MSI. The risk of reporting an MSI severe enough to impair activities of daily living did not increase with higher volumes of aerobic exercise. Approximately half of MSI were causally attributed to aerobic exercise. The risk of experiencing an acute or recurrent MSI increases with higher volumes of aerobic exercise; however, the risk of experiencing an MSI severe enough to impair activities of daily living does not increase with higher volumes of aerobic exercise.

  18. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure.

    PubMed

    Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M

    2010-09-01

    Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

  19. Acute exercise attenuates negative affect following repeated sad mood inductions in persons who have recovered from depression.

    PubMed

    Mata, Jutta; Hogan, Candice L; Joormann, Jutta; Waugh, Christian E; Gotlib, Ian H

    2013-02-01

    Identifying factors that may protect individuals from developing Major Depressive Disorder (MDD) in the face of stress is critical. In the current study we experimentally tested whether such a potentially protective factor, engaging in acute exercise, reduces the adverse effects of repeated sad mood inductions in individuals who have recovered from depression. We hypothesized that recovered depressed participants who engage in acute exercise report a smaller increase in negative affect (NA) and a smaller decrease in positive affect (PA) when exposed to a repeated sad mood induction (i.e., habituation), whereas participants who do not exercise show sensitization (i.e., increased NA and decreased PA in response to a repeated adverse stimulus). Forty-one women recovered from MDD and 40 healthy control women were randomly assigned to either exercise for 15 minutes or quiet rest. Afterward, participants were exposed to two sad mood inductions and reported their levels of affect throughout the study. Recovered depressed participants who had not exercised exhibited higher NA after the second sad mood induction, a finding consistent with sensitization. In contrast, both recovered depressed participants who had engaged in acute exercise and healthy control participants showed no increase in NA in response to the repeated sad mood induction. Participants who exercised reported higher PA after the exercise bout; however, our hypothesis concerning reported PA trajectories following the sad mood inductions was not supported. Results suggest that exercise can serve as a protective factor in the face of exposure to repeated emotional stressors, particularly concerning NA in individuals who have recovered from depression. 2013 APA, all rights reserved

  20. Effects of acute exercise on the diameter of the spermatic vein, and duration of reflux in patients with varicocele.

    PubMed

    Atar, Murat; Söylemez, Haluk; Oguz, Fatih; Beytur, Ali; Altunoluk, Bülent; Kahraman, Bayram; Islamoglu, Yahya; Soylu, Ahmet

    2013-06-01

    The aim of this study was to investigate the effects of acute exercise on the diameter of the spermatic vein, and on the duration of reflux in patients with varicocele. The study included 38 patients with complaints of infertility and scrotal pain between 2009 and 2010. The diagnoses were made by physical examination and colour Doppler ultrasound, with both performed before and after exercise tests. The mean age of the participants was 25.7 ± 4.9 years. During the first examination, the grades of the varicoceles detected were as follows: grade I, n = 7; II, n = 10; and III, n = 21. The diameters of veins in patients with grades I, II and III varicocele were 2.1 mm, 2.9 mm and 4.2 mm, respectively, before exercise, whereas they were 2.6 mm, 3.2 mm and 4.3 mm, respectively, after exercise. In patients with grade I varicoceles, compared with pre-exercise values, the diameter of the left spermatic vein and duration of reflux measured during Valsalva manoeuvres were increased significantly after exercise (p = 0.042 and p = 0.034, respectively); similar results were obtained for the patients with grade II varicoceles (p = 0.007 and p = 0.008, respectively). However, the minimal relative increase in cases with grade III varicoceles was not statistically significant (p > 0.05). This study demonstrates that acute exercise increases the spermatic vein diameter and reflux time in patients with varicoceles. These outcomes demonstrate that acute exercise may be an aggravating factor for varicocele, as seen in chronic exercise.

  1. Acylated Ghrelin and Circulatory Oxidative Stress Markers Responses to Acute Resistance and Aerobic Exercise in Postmenopausal Women.

    PubMed

    Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro

    2016-06-01

    Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.

  2. Acute Effects of Exercise Mode on Arterial Stiffness and Wave Reflection in Healthy Young Adults: A Systematic Review and Meta-Analysis

    PubMed Central

    Pierce, Doris R.; Doma, Kenji; Leicht, Anthony S.

    2018-01-01

    Background: This systematic review and meta-analysis quantified the effect of acute exercise mode on arterial stiffness and wave reflection measures including carotid-femoral pulse wave velocity (cf-PWV), augmentation index (AIx), and heart rate corrected AIx (AIx75). Methods: Using standardized terms, database searches from inception until 2017 identified 45 studies. Eligible studies included acute aerobic and/or resistance exercise in healthy adults, pre- and post-intervention measurements or change values, and described their study design. Data from included studies were analyzed and reported in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. Meta-analytical data were reported via forest plots using absolute differences with 95% confidence intervals with the random effects model accounting for between-study heterogeneity. Reporting bias was assessed via funnel plots and, individual studies were evaluated for bias using the Cochrane Collaboration's tool for assessing risk of bias. A modified PEDro Scale was applied to appraise methodological concerns inherent to included studies. Results: Acute aerobic exercise failed to change cf-PWV (mean difference: 0.00 ms−1 [95% confidence interval: −0.11, 0.11], p = 0.96), significantly reduced AIx (−4.54% [−7.05, −2.04], p = 0.0004) and significantly increased AIx75 (3.58% [0.56, 6.61], p = 0.02). Contrastingly, acute resistance exercise significantly increased cf-PWV (0.42 ms−1 [0.17, 0.66], p = 0.0008), did not change AIx (1.63% [−3.83, 7.09], p = 0.56), and significantly increased AIx75 (15.02% [8.71, 21.33], p < 0.00001). Significant heterogeneity was evident within all comparisons except cf-PWV following resistance exercise, and several methodological concerns including low applicability of exercise protocols and lack of control intervention were identified. Conclusions: Distinct arterial stiffness and wave reflection responses were identified following acute exercise with overall increases in both cf-PWV and AIx75 following resistance exercise potentially arising fromcardiovascular and non-cardiovascular factors that likely differ from those following aerobic exercise. Future studies should address identified methodological limitations to enhance interpretation and applicability of arterial stiffness and wave reflection indices to exercise and health. PMID:29487535

  3. Acute post-exercise energy and macronutrient intake in lean and obese youth: a systematic review and meta-analysis.

    PubMed

    Thivel, D; Rumbold, P L; King, N A; Pereira, B; Blundell, J E; Mathieu, M-E

    2016-10-01

    This review aims to determine if acute exercise affects subsequent energy and macronutrients intake in obese and non-obese children and adolescents. Databases were searched between January 2015 and December 2015 for studies reporting energy and/or macronutrients intake immediately after an acute exercise and control condition, in children and adolescents. From the initial 118 references found, 14 were included for subsequent analysis after screening representing 31 acute exercise conditions that varied in intensity, duration and modality. One study found increased energy intake after exercise, seven decreased and 23 revealed no change. The meta-analysis revealed a significant effect of acute exercise on intake in obese but not in lean youth by a mean difference of -0.430 (95% confidence interval=-0.703 to -0.157, P=0.002) displaying low heterogeneity (I 2 =0.000; Q=5.875; d f =9, P=0.752). The analysis showed that intense exercise only reduces intake in obese children (no intensity effect in lean). Unchanged macronutrients intake was reported in nine studies as opposed to three which found modified lipids, protein and/or carbohydrate intake. Although acute exercise does not affect energy intake in lean, it appears to reduced food intake in obese youth when intense, without altering the macronutrients composition of the meal.

  4. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  5. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats.

    PubMed

    Faria, Thaís de Oliveira; Targueta, Gabriel Pelegrineti; Angeli, Jhuli Keli; Almeida, Edna Aparecida Silveira; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2010-09-01

    The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.

  6. Changes in cardiovascular performance, biochemistry, gastric motility and muscle temperature induced by acute exercise on a treadmill in healthy military dogs.

    PubMed

    Queiroz, R W; Silva, V L; Rocha, D R; Costa, D S; Turco, S H N; Silva, M T B; Santos, A A; Oliveira, M B L; Pereira, A S R; Palheta-Junior, R C

    2018-02-01

    Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs. © 2016 Blackwell Verlag GmbH.

  7. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    PubMed

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Effects of Exercise on AMPK Signaling and Downstream Components to PI3K in Rat with Type 2 Diabetes

    PubMed Central

    Cao, Shicheng; Li, Bowen; Yi, Xuejie; Chang, Bo; Zhu, Beibei; Lian, Zhenzhen; Zhang, Zhaoran; Zhao, Gang; Liu, Huili; Zhang, He

    2012-01-01

    Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats. PMID:23272147

  9. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    PubMed

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  10. Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review

    PubMed Central

    Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

    2014-01-01

    Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. Conclusions We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake. PMID:24454704

  11. Acute physical exercise is safe in patients with primary antiphospholipid syndrome with exclusive venous thrombosis and under oral anticoagulation with warfarin.

    PubMed

    Garcia, Carolina Borges; Seguro, Luciana Parente Costa; Perandini, Luiz Augusto; de Sá Pinto, Ana Lúcia; Lima, Fernanda Rodrigues; Negrão, Carlos Eduardo; Bonfa, Eloisa; Borba, Eduardo Ferreira

    2014-12-01

    The purpose of present study was to evaluate the effects of maximal acute physical exercise on prothrombin time/international normalized ratio (PT/INR) in patients with primary antiphospholipid syndrome (PAPS) under oral anticoagulation with warfarin and the safety of acute exercise in regard to thrombosis and bleeding risk. Eighteen physically inactive women with PAPS (Sydney criteria) with exclusive venous events and without thrombocytopenia were included. All patients were under stable warfarin therapy (PT/INR target: 2.0-3.0). Eighteen age-matched healthy sedentary women without thrombosis/bleeding disorders were selected as controls. All subjects performed a maximal exercise test, and capillary blood samples were obtained pre-, post- and at 1-h post-exercise (recovery time) for PT/INR analysis using a portable CoaguCheck. PAPS patients and controls had similar mean age (31.50 ± 8.06 vs. 29.61 ± 7.05 years, p = 0.46) and body mass index (24.16 ± 3.67 vs. 24.66 ± 2.71 kg/m(2), p = 0.65). PAPS had a mild but significant increase in PT/INR value at 1-h post-exercise (recovery) compared with pre- (2.33 ± 0.34 vs. 2.26 ± 0.29, p = 0.001) and post-exercise (2.33 ± 0.34 vs. 2.26 ± 0.32, p = 0.001) that was observed in 61.11 % of these patients. None of the subjects had thrombotic or bleeding complications related to the acute exercise. Acute exercise in patients with PAPS with exclusive venous thrombosis was safe with a minor increase in PT/INR. This is an important step to introduce regular exercise training as a therapeutic tool in the management of these patients.

  12. Acute supplementation with keto analogues and amino acids in rats during resistance exercise.

    PubMed

    de Almeida, Rosemeire Dantas; Prado, Eduardo Seixas; Llosa, Carlos Daniel; Magalhães-Neto, Anibal; Cameron, Luiz-Claudio

    2010-11-01

    During exercise, ammonia levels are related to the appearance of both central and peripheral fatigue. Therefore, controlling the increase in ammonia levels is an important strategy in ameliorating the metabolic response to exercise and in improving athletic performance. Free amino acids can be used as substrates for ATP synthesis that produces ammonia as a side product. Keto analogues act in an opposite way, being used to synthesise amino acids whilst decreasing free ammonia in the blood. Adult male rats were divided into four groups based on receiving either keto analogues associated with amino acids (KAAA) or a placebo and resistance exercise or no exercise. There was an approximately 40% increase in ammonaemia due to KAAA supplementation in resting animals. Exercise increased ammonia levels twofold with respect to the control, with a smaller increase (about 20%) in ammonia levels due to exercise. Exercise itself causes a significant increase in blood urea levels (17%). However, KAAA reduced blood urea levels to 75% of the pre-exercise values. Blood urate levels increased 28% in the KAAA group, independent of exercise. Supplementation increased glucose levels by 10% compared with control animals. Exercise did not change glucose levels in either the control or supplemented groups. Exercise promoted a 57% increase in lactate levels in the control group. Supplementation promoted a twofold exercise-induced increase in blood lactate levels. The present results suggest that an acute supplementation of KAAA can decrease hyperammonaemia induced by exercise.

  13. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle.

    PubMed

    Takimoto, Masaki; Takeyama, Mirei; Hamada, Taku

    2013-11-01

    The regulatory mechanisms responsible for acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in skeletal muscle remain unclear. 5'-adenosine-activated protein kinase (AMPK) is a key signaling molecule that regulates gene expression at the mRNA level. We examined whether AMPK activation is involved in acute exercise-induced expression of MCT1 and MCT4 mRNA in fast-twitch muscle. Male Sprague-Dawley rats were subjected to an acute bout of either 5min high-intensity intermittent swimming (HIS) or 6-h low-intensity prolonged swimming (LIS). The effects of acute exercise on the phosphorylation of AMPK (p-AMPK), calcium/calmodulin pendent kinase II (p-CaMKII), p38 mitogen-activated protein kinase (p-p38MAPK), and MCTs mRNA were analyzed in vivo. To observe the direct effects of AMPK activation on MCTs mRNA, the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), caffeine, and dantrolene were analyzed in vitro using an isolated muscle incubation model. The p-AMPK increased in response to both HIS and LIS, although the p-CaMKII and p-p38MAPK were increased only following HIS. Irrespective of exercise intensity, MCT1 and MCT4 mRNA was also transiently upregulated by both HIS and LIS. Direct exposure of the epitrochlearis muscle to 0.5mmol/L AICAR or 1mmol/L caffeine, which activated p-AMPK increased both MCT1 and MCT4 mRNA levels. When pAMPK was inhibited by dantrolene, neither MCT1 nor MCT4 mRNA was increased. These results suggest that acute exercise-induced increases in MCT1 and MCT4 mRNA expression may be possibly mediated by AMPK activation, at least in part in fast-twitch muscle. © 2013.

  15. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects.

    PubMed

    McMorris, Terry; Sproule, John; Turner, Anthony; Hale, Beverley J

    2011-03-01

    The purpose of this study was to compare, using meta-analytic techniques, the effect of acute, intermediate intensity exercise on the speed and accuracy of performance of working memory tasks. It was hypothesized that acute, intermediate intensity exercise would have a significant beneficial effect on response time and that effect sizes for response time and accuracy data would differ significantly. Random-effects meta-analysis showed a significant, beneficial effect size for response time, g=-1.41 (p<0.001) but a significant detrimental effect size, g=0.40 (p<0.01), for accuracy. There was a significant difference between effect sizes (Z(diff)=3.85, p<0.001). It was concluded that acute, intermediate intensity exercise has a strong beneficial effect on speed of response in working memory tasks but a low to moderate, detrimental one on accuracy. There was no support for a speed-accuracy trade-off. It was argued that exercise-induced increases in brain concentrations of catecholamines result in faster processing but increases in neural noise may negatively affect accuracy. 2010 Elsevier Inc. All rights reserved.

  16. Responses of catecholestrogen metabolism to acute graded exercise in normal menstruating women before and after training.

    PubMed

    De Crée, C; Ball, P; Seidlitz, B; Van Kranenburg, G; Geurten, P; Keizer, H A

    1997-10-01

    It has been hypothesized that exercise-related hypo-estrogenemia occurs as a consequence of increased competition of catecholestrogens (CE) for catechol-O-methyltransferase (COMT). This may result in higher norepinephrine (NE) concentrations, which could interfere with normal gonadotropin pulsatility. The present study investigates the effects of training on CE responses to acute exercise stress. Nine untrained eumenorrheic women (mean percentage of body fat +/-SD: 24.8 +/- 3.1%) volunteered for an intensive 5-day training program. Resting, submaximal, and maximal (tmax) exercise plasma CE, estrogen, and catecholamine responses were determined pre- and post training in both the follicular (FPh) and luteal phase (LPh). Acute exercise stress increased total primary estrogens (E) but had little effect on total 2-hydroxyestrogens (2-OHE) and 2-hydroxyestrogen-monomethylethers (2-MeOE) (= O-methylated CE after competition for catechol-O-methyltransferase). This pattern was not significantly changed by training. However, posttraining LPh mean (+/-SE) plasma E, 2-OHE, and 2-MeOE concentrations were significantly lower (P < 0.05) at each exercise intensity (for 2-OHE: 332 +/- 47 vs. 422 +/- 57 pg/mL at tmax; for 2-MeOE: 317 +/- 26 vs. 354 +/- 34 pg/mL at tmax). Training produced opposite effects on 2-OHE:E ratios (an estimation of CE formation) during acute exercise in the FPh (reduction) and LPh (increase). The 2-MeOE:2-OHE ratio (an estimation of CE activity) showed significantly higher values at tmax in both menstrual phases after training (FPh: +11%; LPh: +23%; P < 0.05). After training, NE values were significantly higher (P < 0.05). The major findings of this study were that: training lowers absolute concentrations of plasma estrogens and CE; the acute exercise challenge altered plasma estrogens but had little effect on CE; estimation of the formation and activity of CE suggests that formation and O-methylation of CE proportionately increases. These findings may be of importance for NE-mediated effects on gonadotropin release.

  17. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.

  18. The effect of acute aerobic and resistance exercise on working memory.

    PubMed

    Pontifex, Matthew B; Hillman, Charles H; Fernhall, Bo; Thompson, Kelli M; Valentini, Teresa A

    2009-04-01

    The goal of this investigation was to assess the influence of acute bouts of aerobic versus resistance exercise on the executive control of working memory. Twenty-one young adult participants completed a cardiorespiratory fitness test and maximal strength tests. On subsequent days, task performance measures of reaction time (RT) and accuracy were collected while participants completed a modified Sternberg working memory task before the start of, immediately after, and 30 min after an intervention consisting of 30 min of either resistance or aerobic exercise and a seated rest control. Findings indicated shorter RT immediately and 30 min after acute aerobic exercise relative to the preexercise baseline with no such effects observed after resistance exercise or seated rest. Further, in the aerobic condition, a larger reduction in RT from the baseline occurred during task conditions requiring increased working memory capacity. Again, no effect was observed in the resistance exercise or the seated rest conditions. These data extend the current knowledge base by indicating that acute exercise-induced changes in cognition are disproportionately related to executive control and may be specific to the aerobic exercise domain.

  19. The effect of acute physical exercise on cytokine levels in patients with systemic lupus erythematosus.

    PubMed

    da Silva, A E; dos Reis-Neto, E Torres; da Silva, N P; Sato, E I

    2013-12-01

    Acute exercise increases IL-6, IL-10 and TNF-α levels in healthy subjects. There is no study evaluating the effect of exercise on cytokines level in systemic lupus erythematosus (SLE) patients. Our aim was to assess IL-10, IL-6 and TNF-α levels at baseline and after acute physical exercise in patients with SLE. In total, 27 female SLE patients and 30 healthy controls were evaluated. Serum levels of IL-10, IL-6 and TNF-α at baseline and soon after the ergospirometric test were measured by ELISA test. Student's t-tests and Mann-Whitney test were used for intra- and inter-group comparisons; p values <0.05 were considered significant. Patients with SLE presented worse ergospirometric parameters compared with controls: VO2max (25.78 ± 5.51 vs. 32.74 ± 5.85 ml/kg/min, p < 0.001); maximum heart rate (174.18 ± 12.36 vs. 185.15 ± 2.07 bpm, p = 0.001); maximum ventilation (65.51 ± 15.68 vs. 80.48 ± 18.98 l/min, p = 0.001) and maximum speed (7.70 ± 1.24 vs. 9.40 ± 1.22 km/h, p < 0.001). At baseline, SLE patients presented higher levels of IL-6 (2.38 ± 1.70 vs. 1.71 ± 0.29 pg/ml, p = 0.035) and IL-10 (1.09 ± 1.55 vs. 0.30 ± 0.11 pg/ml, p = 0.037) than controls. Acute exercise in controls increased IL-6 level (1.71 ± 0.29 vs. 2.01 ± 0.27 pg/ml, p = 0.003) without change in IL-10 and TNF-α levels. However, no significant change in cytokine levels was observed in SLE patients after acute exercise. This is the first study evaluating the effect of acute exercise on cytokine levels in patients with SLE. In contrast to healthy controls, acute physical exercise did not increase the levels of IL-6 in patients with SLE, and seems to be safe in those patients with inactive or mild active disease.

  20. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    PubMed

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice

    PubMed Central

    Olenich, Sara A; Gutierrez-Reed, Navarre; Audet, Gerald N; Olfert, I Mark

    2013-01-01

    Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2–4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12–24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180–258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise. PMID:23878369

  2. Suppressed heat shock protein response in the kidney of exercise-trained diabetic rats.

    PubMed

    Lappalainen, J; Oksala, N K J; Laaksonen, D E; Khanna, S; Kokkola, T; Kaarniranta, K; Sen, C K; Atalay, M

    2018-07-01

    Impaired expression of heat shock proteins (HSPs) and increased oxidative stress may contribute to the pathophysiology of diabetes by disrupted tissue protection. Acute exercise induces oxidative stress, whereas exercise training up-regulates endogenous antioxidant defenses and HSP expression. Although diabetic nephropathy is a major contributor to diabetic morbidity, information regarding the effect of HSPs on kidney protection is limited. This study evaluated the effects of eight-week exercise training on kidney HSP expression and markers of oxidative stress at rest and after acute exercise in rats with or without streptozotocin-induced diabetes. Induction of diabetes increased DNA-binding activity of heat shock factor-1, but decreased the expression of HSP72, HSP60, and HSP90. The inflammatory markers IL-6 and TNF-alpha were increased in the kidney tissue of diabetic animals. Both exercise training and acute exercise increased HSP72 and HSP90 protein levels only in non-diabetic rats. On the other hand, exercise training appeared to reverse the diabetes-induced histological changes together with decreased expression of TGF-beta as a key inducer of glomerulosclerosis, and decreased levels of IL-6 and TNF-alpha. Notably, HSP72 and TGF-beta were negatively correlated. In conclusion, impaired HSP defense seems to contribute to kidney injury vulnerability in diabetes and exercise training does not up-regulate kidney HSP expression despite the improvements in histopathological and inflammatory markers. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Acute hormonal responses in elite junior weightlifters.

    PubMed

    Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T

    1992-02-01

    To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Acute p‐synephrine ingestion increases fat oxidation rate during exercise

    PubMed Central

    Gutiérrez‐Hellín, Jorge

    2016-01-01

    Aims p‐Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p‐synephrine on fat oxidation at rest and during exercise. Methods In a double‐blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p‐synephrine (3 mg kg−1) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. Results In comparison with the placebo, the ingestion of p‐synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min−1; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min−1; P = 0.15). However, the intake of p‐synephrine moved the fat oxidation–exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p‐synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min−1; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak; P = 0.51). Conclusions The acute ingestion of p‐synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low‐to‐moderate exercise intensities. PMID:27038225

  5. Acute p-synephrine ingestion increases fat oxidation rate during exercise.

    PubMed

    Gutiérrez-Hellín, Jorge; Del Coso, Juan

    2016-08-01

    p-Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p-synephrine on fat oxidation at rest and during exercise. In a double-blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p-synephrine (3 mg kg(-1) ) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. In comparison with the placebo, the ingestion of p-synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min(-1) ; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min(-1) ; P = 0.15). However, the intake of p-synephrine moved the fat oxidation-exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p-synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min(-1) ; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak ; P = 0.51). The acute ingestion of p-synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low-to-moderate exercise intensities. © 2016 The British Pharmacological Society.

  6. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Heffernan, Kevin S; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, Bo

    2014-01-01

    African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms.

  7. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise

    PubMed Central

    Ranadive, Sushant M.; Heffernan, Kevin S.; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S.; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo

    2013-01-01

    African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms. PMID:24186094

  8. [Clinical observation on acupuncture by stages combined with exercise therapy for treatment of Bell palsy at acute stage].

    PubMed

    Qu, Yong

    2005-08-01

    To find out a method for increasing clinical therapeutic effect on Bell palsy at acute stage. Ninety cases of Bell palsy were randomly divided into an observation group, a control group I and a control group II, 30 cases in each group. They were treated respectively with acupuncture plus exercise therapy, simple acupuncture therapy, and simple exercise therapy, and their therapeutic effects were observed. The cured rate was 66.7% in the observation group, 53.3% in the control group I and 46.70% in the control group II, the observation group being better than the two control groups (P<0.05). Acupuncture by stage combined with exercise therapy can increase the therapeutic effect on Bell palsy at acute stage, and it is a better therapy for Bell palsy.

  9. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.

  10. β-Adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans

    PubMed Central

    Hopkins, Susan R; Bogaard, Harm J; Niizeki, Kyuichi; Yamaya, Yoshiki; Ziegler, Michael G; Wagner, Peter D

    2003-01-01

    Acute hypoxia increases heart rate (HR) and cardiac output () at a given oxygen consumption () during submaximal exercise. It is widely believed that the underlying mechanism involves increased sympathetic activation and circulating catecholamines acting on cardiac β receptors. Recent evidence indicating a continued role for parasympathetic modulation of HR during moderate exercise suggests that increased parasympathetic withdrawal plays a part in the increase in HR and during hypoxic exercise. To test this, we separately blocked the β-sympathetic and parasympathetic arms of the autonomic nervous system (ANS) in six healthy subjects (five male, one female; mean ± s.e.m. age = 31.7 ± 1.6 years, normoxic maximal () = 3.1 ± 0.3 l min−1) during exercise in conditions of normoxia and acute hypoxia (inspired oxygen fraction = 0.125) to . Data were collected on different days under the following conditions: (1)control, (2) after 8.0 mg propranolol I.V. and (3) after 0.8 mg glycopyrrolate I.V. was measured using open-circuit acetylene uptake. Hypoxia increased venous [adrenaline] and [noradrenaline] but not [dopamine] at a given (P < 0.05, P < 0.01 and P = 0.2, respectively). HR/ and / increased during hypoxia in all three conditions (P < 0.05). Unexpectedly, the effects of hypoxia on HR and were not significantly different from control with either β-sympathetic or parasympathetic inhibition. These data suggest that although acute exposure to hypoxia increases circulating [catecholamines], the effects of hypoxia on HR and do not necessarily require intact cardiac muscarinic and β receptors. It may be that cardiac α receptors play a primary role in elevating HR and during hypoxic exercise, or perhaps offer an alternative mechanism when other ANS pathways are blocked. PMID:12766243

  11. Impact of acute versus prolonged exercise and dehydration on kidney function and injury.

    PubMed

    Bongers, Coen C W G; Alsady, Mohammad; Nijenhuis, Tom; Tulp, Anouk D M; Eijsvogels, Thijs M H; Deen, Peter M T; Hopman, Maria T E

    2018-06-01

    Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFR cystatin C did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m 2 , P = 0.12), whereas eGFR cystatin C was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m 2 , P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P-values < 0.05). In conclusion, acute exercise did barely impact on eGFR cystatin C and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFR cystatin C and increased biomarkers for kidney injury. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Perceived Benefits and Barriers to Exercise for Recently Treated Adults With Acute Leukemia.

    PubMed

    Leak Bryant, Ashley; Walton, AnnMarie L; Pergolotti, Mackenzi; Phillips, Brett; Bailey, Charlotte; Mayer, Deborah K; Battaglini, Claudio

    2017-07-01

    To explore perceived exercise benefits and barriers in adults with acute leukemia who recently completed an inpatient exercise intervention during induction therapy.
. Descriptive, exploratory design using semistructured interviews.
. Inpatient hematology/oncology unit at North Carolina Cancer Hospital in Chapel Hill.
. 6 adults with acute leukemia aged 35-67 years.
. Content analyses of semistructured interviews that were conducted with each participant prior to hospital discharge.
. Most participants were not meeting the recommended physical activity levels of 150 minutes of moderate-intensity exercise per week before their diagnosis. Patients were highly pleased with the exercise intervention and the overall program. Common barriers to exercise were anxiety and aches and pains.
. Overall, participants experienced physical and psychological benefits with the exercise intervention with no adverse events from exercising regularly during induction chemotherapy. Referrals for cancer rehabilitation management will lead to prolonged recovery benefits.
. Findings inform the nurses' role in encouraging and supporting adults with acute leukemia to exercise and be physically active during their hospitalization. Nurses should also be responsible for assisting patients with physical function activities to increase mobility and enhance overall health-related quality of life.

  13. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    PubMed

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis or apoptosis of cells in acute exercise settings. Recently, rapid DNA release mechanisms of activated immune-competent cells like NETosis (pathogen-induced cell death including the release of neutrophil extracellular traps [NETs]) have been discovered. cfDNA accumulations might comprise a similar kind of cell death including trap formation or an active release of cfDNA. Just like chronic diseases, chronic high-intensity resistance training protocols induced persistent increases of cfDNA levels. Chronic, strenuous exercise protocols, either long-duration endurance exercise or regular high-intensity workouts, induce chronic inflammation that might lead to a slow, constant release of DNA. This could be due to mechanisms of cell death like apoptosis or necrosis. Yet, it has neither been implicated nor proven sufficiently whether cfDNA can serve as a marker for overtraining. The relevance of cfDNA with regard to overtraining status, performance level, and the degree of physical exhaustion still remains unclear. Longitudinal studies are required that take into account standardized and controlled exercise, serial blood sampling, and large and homogeneous cohorts of different athletic achievement. Furthermore, it is important to establish standardized laboratory procedures for the measurement of genomic cfDNA concentrations by quantitative real-time polymerase chain reaction (PCR). We introduce a new hypothesis based on acute exercise and chronic exposure to stress, and rapid active and passive chronic release of cfDNA fragments into the circulation.

  14. Exercise, Appetite and Weight Control: Are There Differences between Men and Women?

    PubMed Central

    Thackray, Alice E.; Deighton, Kevin; King, James A.; Stensel, David J.

    2016-01-01

    Recent years have witnessed significant research interest surrounding the interaction among exercise, appetite and energy balance, which has important implications for health. The majority of exercise and appetite regulation studies have been conducted in males. Consequently, opportunities to examine sex-based differences have been limited, but represent an interesting avenue of inquiry considering postulations that men experience greater weight loss after exercise interventions than women. This article reviews the scientific literature relating to the acute and chronic effects of exercise on appetite control in men and women. The consensus of evidence demonstrates that appetite, appetite-regulatory hormone and energy intake responses to acute exercise do not differ between the sexes, and there is little evidence indicating compensatory changes occur after acute exercise in either sex. Limited evidence suggests women respond to the initiation of exercise training with more robust compensatory alterations in appetite-regulatory hormones than men, but whether this translates to long-term differences is unknown. Current exercise training investigations do not support sex-based differences in appetite or objectively assessed energy intake, and increasing exercise energy expenditure elicits at most a partial energy intake compensation in both sexes. Future well-controlled acute and chronic exercise studies directly comparing men and women are required to expand this evidence base. PMID:27657127

  15. Acute high-intensity interval exercise induces comparable levels of circulating cell-free DNA and Interleukin-6 in obese and normal-weight individuals.

    PubMed

    Ferrandi, Peter J; Fico, Brandon G; Whitehurst, Michael; Zourdos, Michael C; Bao, Fanchen; Dodge, Katelyn M; Rodriguez, Alexandra L; Pena, Gabriel; Huang, Chun-Jung

    2018-06-01

    Obesity is associated with lipid aggregation in adipocytes and macrophage infiltration, leading to increased oxidative stress and inflammation. Increased cell-free DNA (cfDNA) concentrations have been observed in clinical conditions of systemic inflammation. While the beneficial effects of regular physical activity on the release of circulating cfDNA still remain unknown, acute intense exercise has been shown to increase inflammatory cytokines and cfDNA concentrations in normal-weight individuals. Therefore, the primary purpose of this study was to examine the effect of acute high-intensity interval Exercise (HIIE) on plasma cfDNA and interleukin-6 (IL-6) responses in obese and normal-weight subjects. Fourteen male subjects (7 obese and 7 normal-weight) participated in an acute HIIE protocol (30 min, 4x4min @ 80% - 90% of VO 2max ) on a treadmill. Between HIIE intervals, subjects performed 3 min of active recovery at 50-60% VO 2max . Blood samples were collected prior to, immediately following exercise, and one hour into recovery for measurements of plasma cfDNA and IL-6. Our results demonstrated a significant elevation in plasma cfDNA immediately following acute HIIE in both obese and normal-weight subjects. A comparable elevation in the concentration of plasma IL-6 was also found between two groups in response to acute HIIE. Furthermore, the level of plasma cfDNA was not correlated with IL-6 either at baseline or in response to acute HIIE. These findings may support the utilization of HIIE as a time-efficient exercise protocol to understand the obesity-associated cfDNA and inflammatory responses. Published by Elsevier Inc.

  16. Exercise order in resistance training.

    PubMed

    Simão, Roberto; de Salles, Belmiro Freitas; Figueiredo, Tiago; Dias, Ingrid; Willardson, Jeffrey M

    2012-03-01

    Resistance training (RT) is now an integral component of a well rounded exercise programme. For a correct training prescription, it is of the utmost importance to understand the interaction among training variables, such as the load, volume, rest interval between sets and exercises, frequency of sessions, exercise modality, repetition velocity and, finally, exercise order. Sports medicine research has indicated that exercise order is an important variable that affects both acute responses and chronic adaptations to RT programmes. Therefore, the purpose of this review was to analyse and discuss exercise order with relevance to acute responses (e.g. repetition performance) and also the expression of chronic adaptable characteristics (e.g. maximal strength and hypertrophy). To accomplish this purpose, the Scielo, Science Citation Index, National Library of Medicine, MEDLINE, Scopus, SPORTDiscus™ and CINAHL® databases were accessed to locate previously conducted original scientific investigations. The studies reviewed examined both acute responses and chronic adaptations with exercise order as the experimental variable. Generally, with relevance to acute responses, a key finding was that exercise order affects repetition performance over multiple sets, indicating that the total repetitions, and thus the volume, is greater when an exercise is placed at the beginning of an RT session, regardless of the relative amount of muscle mass involved. The pre-exhaustion method might not be an effective technique to increase the extent of neuromuscular recruitment for larger muscle groups (e.g. pectoralis major for the bench press) when preceded by a single-joint movement (e.g. pec-deck fly). With relevance to localized muscular endurance performance, oxygen consumption and ratings of perceived exertion, the limited amount of research conducted thus far indicates that exercise order does not appear to impact the acute expression of these variables. In terms of chronic adaptations, greater strength increases were evident by untrained subjects for the first exercise of a given sequence, while strength increases were inhibited for the last exercise of a given sequence. Additionally, based on strength and hypertrophy (i.e. muscle thickness and volume) effect-size data, the research suggests that exercises be ordered based on priority of importance as dictated by the training goal of a programme, irrespective of whether the exercise involves a relatively large or small muscle group. In summary, exercise order is an important variable that should receive greater attention in RT prescription. When prescribed appropriately with other key prescriptive variables (i.e. load, volume, rest interval between sets and exercises), the exercise order can influence the efficiency, safety and ultimate effectiveness of an RT programme.

  17. Dietary nitrate supplementation in COPD: an acute, double-blind, randomized, placebo-controlled, crossover trial.

    PubMed

    Kerley, Conor P; Cahill, Kathleen; Bolger, Kenneth; McGowan, Aisling; Burke, Conor; Faul, John; Cormican, Liam

    2015-01-30

    The acute consumption of dietary nitrate has been shown to improve exercise capacity in athletes, healthy adults and subjects with peripheral vascular disease. Many COPD patients have reduced exercise capacity. We hypothesized that acute nitrate consumption might increase incremental shuttle walk test (ISWT) distance in COPD subjects. Eleven COPD subjects were randomly assigned to consume either a high nitrate or a matched, low nitrate beverage in a double-blind, randomized, placebo-controlled, crossover design. ISWT distance was measured both before and 3 h after the beverage and change was recorded. After a 7-day washout, ISWT distances were re-measured before and 3 h after the alternate beverage and changes were recorded. We observed an increase in ISWT distance after consuming the high nitrate juice (25 m) compared with a reduction after the low nitrate juice (14 m) (p < 0.01). This improvement in exercise capacity was associated with significant increases in serum nitrate (p < 0.000005) and nitrite (p < 0.01) levels and a significant lowering of resting blood pressure (<0.05). In patients with stable COPD, the acute consumption of dietary nitrate increased serum nitrate/nitrite levels and exercise capacity and was associated with a decrease in resting blood pressure. Nitrate consumption might alter exercise capacity in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Acute effects of high- and low-intensity exercise bouts on leukocyte counts.

    PubMed

    Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz

    2015-06-01

    It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p  < 0.01) and low-intensity exercise ( p  < 0.01). This effect was still present 2 hours after passive recovery ( p  < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).

  19. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  20. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease.

    PubMed

    Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco Veríssimo; Thomé, Fernando Saldanha

    2017-01-01

    Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  1. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    PubMed Central

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.

    2015-01-01

    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  2. Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury.

    PubMed

    Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N

    2012-05-01

    Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.

  3. [Cardiovascular clearance for competitive sport in aging people].

    PubMed

    Carré, François

    2013-06-01

    The regular sport practice slows the physiological deleterious effects of aging. However, during intense exercise, the hazard of acute cardiovascular event is significantly increased. Whatever their cardiovascular risk factors are, aging people are more prone to coronary acute event during intense exertion than a young one. Cardiovascular exam, with resting ECG and maximal exercise test, is needed to give clearance for competitive sport in aging people (>65 y.o.). The limited value to evaluate the individual risk of acute cardiac event during intense exercise must be clearly explained to Master athletes. They must be aware to the necessity to consult their physician in case of abnormal symptom during exercise. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage.

    PubMed

    Wilson, Jacob M; Kim, Jeong-Su; Lee, Sang-Rok; Rathmacher, John A; Dalmau, Brett; Kingsley, J Derek; Koch, Heather; Manninen, Anssi H; Saadat, Raz; Panton, Lynn B

    2009-02-04

    While chronic β-Hydroxy β-Methylbutyrate (HMB) supplementation (≥ 2 wk) lowers exercise induced muscle damage, its acute or timing effects have not been examined. The purpose of this study was to investigate the acute and timing effects of oral HMB supplementation on serum creatine kinase (CK), lactate dehydrogenase (LDH), muscle soreness, and maximal voluntary contraction (MVC). Sixteen non-resistance trained men (22 ± 2 yrs) were assigned to HMB-Pre or HMB-Post groups. In a crossover design, all subjects performed 55 maximal eccentric knee extension/flexion contractions on 2 occasions on either the right or left leg. HMB-Pre (N = 8) randomly received 3 grams of either a placebo or HMB before and a placebo after exercise. HMB-Post (N = 8) received a placebo before and either 3 grams of HMB or a placebo after exercise. Muscle damage tests were recorded before, at 8, 24, 48, and 72 hrs post exercise. There was a reduction in MVC and an increase in soreness in the quadriceps and hamstrings following exercise (p < 0.001). Although HMB-Pre approached significance in attenuating soreness for the quadriceps (p = 0.07), there was no time x group effect. Serum indices of damage increased, peaking at 48 hrs for CK (773%) (p < 0.001) and 72 hrs for LDH (180%) (p < 0.001). While there were no time x group effects of HMB on CK and LDH, post hoc analysis revealed that only HMB-Pre showed no significant increase in LDH levels following exercise. Our findings suggest no clear acute or timing effects of HMB supplementation. However, consuming HMB before exercise appeared to prevent increases in LDH.

  5. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage

    PubMed Central

    Wilson, Jacob M; Kim, Jeong-su; Lee, Sang-rok; Rathmacher, John A; Dalmau, Brett; Kingsley, J Derek; Koch, Heather; Manninen, Anssi H; Saadat, Raz; Panton, Lynn B

    2009-01-01

    Background While chronic β-Hydroxy β-Methylbutyrate (HMB) supplementation (≥ 2 wk) lowers exercise induced muscle damage, its acute or timing effects have not been examined. The purpose of this study was to investigate the acute and timing effects of oral HMB supplementation on serum creatine kinase (CK), lactate dehydrogenase (LDH), muscle soreness, and maximal voluntary contraction (MVC). Methods Sixteen non-resistance trained men (22 ± 2 yrs) were assigned to HMB-Pre or HMB-Post groups. In a crossover design, all subjects performed 55 maximal eccentric knee extension/flexion contractions on 2 occasions on either the right or left leg. HMB-Pre (N = 8) randomly received 3 grams of either a placebo or HMB before and a placebo after exercise. HMB-Post (N = 8) received a placebo before and either 3 grams of HMB or a placebo after exercise. Muscle damage tests were recorded before, at 8, 24, 48, and 72 hrs post exercise. Results There was a reduction in MVC and an increase in soreness in the quadriceps and hamstrings following exercise (p < 0.001). Although HMB-Pre approached significance in attenuating soreness for the quadriceps (p = 0.07), there was no time × group effect. Serum indices of damage increased, peaking at 48 hrs for CK (773%) (p < 0.001) and 72 hrs for LDH (180%) (p < 0.001). While there were no time × group effects of HMB on CK and LDH, post hoc analysis revealed that only HMB-Pre showed no significant increase in LDH levels following exercise. Conclusion Our findings suggest no clear acute or timing effects of HMB supplementation. However, consuming HMB before exercise appeared to prevent increases in LDH. PMID:19193206

  6. Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: A proof-of-concept RCT.

    PubMed

    Kirkham, A A; Shave, R E; Bland, K A; Bovard, J M; Eves, N D; Gelmon, K A; McKenzie, D C; Virani, S A; Stöhr, E J; Warburton, D E R; Campbell, K L

    2017-10-15

    Preclinical studies have reported that a single treadmill session performed 24h prior to doxorubicin provides cardio-protection. We aimed to characterize the acute change in cardiac function following an initial doxorubicin treatment in humans and determine whether an exercise session performed 24h prior to treatment changes this response. Breast cancer patients were randomized to either 30min of vigorous-intensity exercise 24h prior to the first doxorubicin treatment (n=13), or no vigorous exercise for 72h prior to treatment (control, n=11). Echocardiographically-derived left ventricular volumes, longitudinal strain, twist, E/A ratio, and circulating NT-proBNP, a marker of later cardiotoxicity, were measured before and 24-48h after the treatment. Following treatment in the control group, NT-proBNP, end-diastolic and stroke volumes, cardiac output, E/A ratio, strain, diastolic strain rate, twist, and untwist velocity significantly increased (all p≤0.01). Whereas systemic vascular resistance (p<0.01) decreased, and ejection fraction (p=0.02) and systolic strain rate (p<0.01) increased in the exercise group only. Relative to control, the exercise group had a significantly lower NT-proBNP (p<0.01) and a 46% risk reduction of exceeding the cut-point used to exclude acute heart failure. The first doxorubicin treatment is associated with acutely increased NT-proBNP, echocardiographic parameters of myocardial relaxation, left ventricular volume overload, and changes in longitudinal strain and twist opposite in direction to documented longer-term changes. An exercise session performed 24h prior to treatment attenuated NT-proBNP release and increased systolic function. Future investigations should verify these findings in a larger cohort and across multiple courses of doxorubicin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hormonal responses to resistance exercise during different menstrual cycle states.

    PubMed

    Nakamura, Yuki; Aizawa, Katsuji; Imai, Tomoko; Kono, Ichiro; Mesaki, Noboru

    2011-06-01

    To investigate the effect of menstrual cycle states on ovarian and anabolic hormonal responses to acute resistance exercise in young women. Eight healthy women (eumenorrhea; EM) and eight women with menstrual disorders including oligomenorrhea and amenorrhea (OAM) participated in this study. The EM group performed acute resistance exercises during the early follicular (EF) and midluteal (ML) phases, and the OAM group performed the same exercises. All subjects performed three sets each of lat pull-downs, leg curls, bench presses, leg extensions, and squats at 75%-80% of one-repetition maximum with a 1-min rest between sets. Blood samples were obtained before exercise, immediately after, 30 min after, and 60 min after the exercise. In the EM group, resting serum levels of estradiol and progesterone in the ML phase were higher than those in the EF phase and higher than those in the OAM group. Serum estradiol and progesterone in the ML phase increased after the exercise but did not change in the EF phase or in the OAM group. In contrast, resting levels of testosterone in the OAM group were higher than those in both the ML and EF phases of the EM group. After the exercise, serum growth hormone increased in both the ML and EF phases but did not change in the OAM group. The responses of anabolic hormones to acute resistance exercise are different among the menstrual cycle states in young women. Women with menstrual disturbances with low estradiol and progesterone serum levels have an attenuated anabolic hormone response to acute resistance exercise, suggesting that menstrual disorders accompanying low ovarian hormone levels may affect exercise-induced change in anabolic hormones in women.

  8. Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults.

    PubMed

    Dimitrova, Julia; Hogan, Michael; Khader, Patrick; O'Hora, Denis; Kilmartin, Liam; Walsh, Jane C; Roche, Richard; Anderson-Hanley, Cay

    2017-10-01

    Physical exercise has been shown to improve cognitive and neural functioning in older adults. The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., "exergaming") on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise.

  9. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle

    PubMed Central

    Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013

  10. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. Copyright © 2015 the American Physiological Society.

  11. Involvement of bradykinin in acute exercise-induced increase of glucose uptake and GLUT-4 translocation in skeletal muscle: studies in normal and diabetic humans and rats.

    PubMed

    Taguchi, T; Kishikawa, H; Motoshima, H; Sakai, K; Nishiyama, T; Yoshizato, K; Shirakami, A; Toyonaga, T; Shirontani, T; Araki, E; Shichiri, M

    2000-07-01

    Acute exercise induces glucose uptake in skeletal muscle in vivo, but the molecular mechanism of this phenomenon remains to be identified. In this study, we evaluated the involvement of bradykinin in exercise-induced glucose uptake in humans and rats. In human studies, plasma bradykinin concentrations increased significantly during an ergometer exercise (20 minutes) in 8 healthy normoglycemic subjects and 6 well-controlled type 2 diabetic patients (mean hemoglobin A1c [HbA1c], 6.4% +/- 0.6%), but not in 6 poorly controlled type 2 diabetics (mean HbA1c, 11.6% +/- 2.6%). In rat studies, plasma bradykinin concentrations also significantly increased after 1 hour of swimming in nondiabetic and mildly diabetic (streptozotocin [STZ] 45 mg/kg intravenously [IV]) rats, but not in rats with severe diabetes (STZ 65 mg/kg IV). Glucose influx (maximum velocity [Vmax]) and GLUT-4 translocation in skeletal muscle of nondiabetic rats significantly increased after 1 hour of swimming, but these increases were abrogated by subcutaneous infusion of bradykinin B2 receptor antagonist HOE-140 (400 microg x kg(-1) x d(-1)). Insulin-stimulated tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity in response to insulin injection (20 U/kg IV) in the portal vein were significantly attenuated in exercised rats pretreated with HOE-140 compared with saline-treated exercised rats. Our results suggest that plasma bradykinin concentrations increase in response to acute exercise and this increase is affected by blood glucose status in diabetic patients. Moreover, the exercise-induced increase in bradykinin may be involved in modulating exercise-induced glucose transport through an increase of GLUT-4 translocation, as well as enhancement of the insulin signal pathway, during the postexercise period in skeletal muscle, resulting in a decrease of blood glucose.

  12. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes

    PubMed Central

    Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.

    2007-01-01

    Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964

  13. Hemodynamic Instability during Dialysis: The Potential Role of Intradialytic Exercise

    PubMed Central

    Horton, Elizabeth Jane; Renshaw, Derek; Jimenez, Alofonso; Krishnan, Nithya

    2018-01-01

    Acute haemodynamic instability is a natural consequence of disordered cardiovascular physiology during haemodialysis (HD). Prevalence of intradialytic hypotension (IDH) can be as high as 20–30%, contributing to subclinical, transient myocardial ischemia. In the long term, this results in progressive, maladaptive cardiac remodeling and impairment of left ventricular function. This is thought to be a major contributor to increased cardiovascular mortality in end stage renal disease (ESRD). Medical strategies to acutely attenuate haemodynamic instability during HD are suboptimal. Whilst a programme of intradialytic exercise training appears to facilitate numerous chronic adaptations, little is known of the acute physiological response to this type of exercise. In particular, the potential for intradialytic exercise to acutely stabilise cardiovascular hemodynamics, thus preventing IDH and myocardial ischemia, has not been explored. This narrative review aims to summarise the characteristics and causes of acute haemodynamic instability during HD, with an overview of current medical therapies to treat IDH. Moreover, we discuss the acute physiological response to intradialytic exercise with a view to determining the potential for this nonmedical intervention to stabilise cardiovascular haemodynamics during HD, improve coronary perfusion, and reduce cardiovascular morbidity and mortality in ESRD. PMID:29682559

  14. Moderate acute exercise (70% VO2 peak) induces TGF-β, α-amylase and IgA in saliva during recovery.

    PubMed

    Rosa, L; Teixeira, Aas; Lira, Fs; Tufik, S; Mello, Mt; Santos, Rvt

    2014-03-01

    Strenuous exercise promotes changes in salivary IgA and can be associated with a high incidence of upper respiratory tract Infections. However, moderate exercise enhances immune function. The effect of exercise on salivary IgA has been well studied, but its effect on other immunological parameters is poorly studied. Thus, this study determined the effect of moderate acute exercise on immunological salivary parameters, such as the levels of cytokines (TGF-β and IL-5), IgA, α-amylase and total protein, over 24 h. Ten male adult subjects exercised for 60 min at an intensity of 70% VO2 peak. Saliva samples were collected before ('basal') and 0, 12 and 24 h after an exercise session. The total salivary protein was lower after 12 and 24 h than immediately after exercise, whereas α-amylase increased at 12 and 24 h after exercise compared with basal levels. The IgA concentration was increased at 24 h after exercise relative to immediately after exercise, and there was no difference in the IL-5 while TGF-β concentration increased in recovery. In conclusion, 70% VO2 peak exercise does not induce changes immediately after exercise, but after 24 h, it produces an increase in salivary TGF-β without changing IL-5. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory.

    PubMed

    Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix; Frenn, Mira; Lundbye-Jensen, Jesper; Roig, Marc

    2016-12-01

    A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of an acute bout of aerobic exercise on chemerin levels in obese adults

    PubMed Central

    Lloyd, Jesse W.; Evans, Kristin A.; Zerfass, Kristy M.; Holmstrup, Michael E.; Kanaley, Jill A.; Keslacy, Stefan

    2015-01-01

    AIMS Serum chemerin concentrations are elevated in obese individuals and may play a role in type 2 diabetes. Exercise improves insulin sensitivity, which may be related to changes in chemerin. This study explored how an acute bout of aerobic exercise affected chemerin levels in non-diabetic obese adults. METHODS Blood samples from 11 obese adults were obtained during two separate conditions: sedentary (SED) and exercise (EX; 60-65% VO2peak). Samples were drawn at baseline, immediately following exercise and hourly for an additional 2 hours. ANOVA was used to test for differences in chemerin between conditions. RESULTS Unadjusted analysis showed no difference in overall change (baseline to 2 hrs post) in chemerin between conditions. During the 2-hr post-exercise period, chemerin decreased to 12% below baseline, compared to a 2.5% increase above baseline during that time period on the sedentary day (p=0.06, difference in post-to-2hr change between conditions). Controlling for homeostatic model assessment of insulin resistance (HOMA-IR), a significant difference existed between EX and SED in the change in chemerin from baseline to 2-hr post (p=0.02). Stratified analyses showed a consistent exercise-induced decrease in chemerin among non-insulin resistant subjects, while chemerin increased during exercise among insulin resistant subjects, and then decreased post-exercise. CONCLUSION An acute bout of exercise in obese individuals may elicit a drop in chemerin levels during the post-exercise period, and this response may vary based on insulin resistance. PMID:26008676

  17. Acute and medium term effects of a 10-week running intervention on mood state in apprentices

    PubMed Central

    Walter, Katrin; von Haaren, Birte; Löffler, Simone; Härtel, Sascha; Jansen, Carl-Philipp; Werner, Christian; Stumpp, Jürgen; Bös, Klaus; Hey, Stefan

    2013-01-01

    Exercise and physical activity have proven benefits for physical and psychological well-being. However, it is not clear if healthy young adults can enhance mood in everyday life through regular exercise. Earlier studies mainly showed positive effects of acute exercise and exercise programs on psychological well-being in children, older people and in clinical populations. Few studies controlled participants' physical activity in daily life, performed besides the exercise program, which can impact results. In addition the transition from mood enhancement induced by acute exercise to medium or long-term effects due to regular exercise is not yet determined. The purpose of this pilot study was to examine the acute effects of an aerobic running training on mood and trends in medium term changes of mood in everyday life of young adults. We conducted a 10-week aerobic endurance training with frequent mood assessments and continuous activity monitoring. 23 apprentices, separated into experimental and control group, were monitored over 12 weeks. To control the effectiveness of the aerobic exercise program, participants completed a progressive treadmill test pre and post the intervention period. The three basic mood dimensions energetic arousal, valence and calmness were assessed via electronic diaries. Participants had to rate their mood state frequently on 3 days a week at five times of measurement within 12 weeks. Participants' physical activity was assessed with accelerometers. All mood dimensions increased immediately after acute endurance exercise but results were not significant. The highest acute mood change could be observed in valence (p = 0.07; η2 = 0.27). However, no medium term effects in mood states could be observed after a few weeks of endurance training. Future studies should focus on the interaction between acute and medium term effects of exercise training on mood. The decreasing compliance over the course of the study requires the development of strategies to maintain compliance over longer periods. PMID:23847579

  18. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men.

    PubMed

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D

    2017-05-01

    Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P < 0.01, which was correlated with V̇o 2peak , r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men. Copyright © 2017 the American Physiological Society.

  19. Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women.

    PubMed

    Devries, Michaela C; McGlory, Chris; Bolster, Douglas R; Kamil, Alison; Rahn, Maike; Harkness, Laura; Baker, Steven K; Phillips, Stuart M

    2018-06-13

    Older adults show a blunted muscle protein synthesis (MPS) response to postprandial hyperaminoacidemia relative to younger adults. Evidence suggests that this anabolic resistance can be overcome by consuming greater quantities of leucine. The purpose of this trial was to determine whether the addition of leucine to a smaller dose (10 g) of milk proteins would, when compared with a larger dose (25 g) of whey protein isolate (WPI), result in similar increases in acute (hourly) and integrated (daily) myofibrillar protein synthesis (myoPS). Healthy older (mean ± SD age: 69 ± 1 y) women (n = 11/group) were randomly assigned with the use of a single-blind, parallel-group design to twice-daily consumption of either WPI [25 g WPI (3 g l-leucine)] or leucine (LEU; 10 g milk protein with 3 g total l-leucine) for 6 d. Participants performed unilateral resistance exercise to allow assessment of the impact of the supplement alone and with resistance exercise. We determined acute (13C6-phenylanine) and integrated [using deuterated water (D2O)] rates of myoPS in the fasting (acute), basal (integrated), nonexercised, and exercised states. Acute myoPS increased in both legs in response to LEU (fed: 45%; fed+exercise: 71%; P < 0.001) and WPI (fed: 29%; fed+exercise: 47%; P < 0.001) compared with fasting; the increase was greater with LEU than with WPI in the exercised leg (46%; P = 0.04) but not in the rested leg (P = 0.07). The acute myoPS response was greater in the exercised leg than in the rested leg for both WPI (63%) and LEU (58%) (P < 0.001). Integrated myoPS increased with WPI and LEU in the exercised leg (both 9%; P < 0.001) during supplementation, and with WPI (3%; P = 0.02) but not LEU (2%, P = 0.1) in the rested leg compared with the basal state. A lower-protein (10 compared with 25 g/dose), leucine-matched beverage induced similar increases in acute and integrated myoPS in healthy older women. Lower-protein supplements with added leucine may represent an advantageous approach in older adults to maintain skeletal muscle anabolic sensitivity and attenuate muscle loss; however, further work is needed using longer-term interventions to substantiate these findings. This trial was registered at www.clinicaltrials.gov as NCT02282566.

  20. Effects of emotional exposure on state anxiety after acute exercise.

    PubMed

    Smith, J Carson

    2013-02-01

    Despite the well-known anxiolytic effect of acute exercise, it is unknown if anxiety reductions after acute exercise conditions survive in the face of a subsequently experienced arousing emotional exposure. The purpose of this study was to compare the effects of moderate-intensity cycle ergometer exercise to a seated rest control condition on state anxiety symptoms after exposure to a variety of highly arousing pleasant and unpleasant stimuli. Thirty-seven healthy and normally physically active young adults completed two conditions on separate days: 1) 30 min of seated rest and 2) 30 min of moderate-intensity cycle ergometer exercise (RPE = 13; "somewhat hard"). After each condition, participants viewed 90 arousing pleasant, unpleasant, and neutral pictures from the International Affective Picture System for 30 min. State anxiety was measured before and 15 min after each condition, and again after exposure to the affective pictures. State anxiety significantly decreased from baseline to after the exercise and seated rest conditions (P = 0.003). After the emotional picture-viewing period, state anxiety significantly increased to baseline values after the seated rest condition (P = 0.001) but remained reduced after the exercise condition. These findings suggest that the anxiolytic effects of acute exercise may be resistant to the potentially detrimental effects on mood after exposure to arousing emotional stimuli.

  1. The Role of Resistance Exercise in Weight Loss.

    ERIC Educational Resources Information Center

    Alexander, Jeffrey L.

    2002-01-01

    Explains the role of weight training in weight loss, noting how weight training contributes to the creation of a negative energy balance and explaining how resistance exercise can cause an increase in fat oxidation, both acutely and chronically. Resistance exercise has an indirect impact on weight and fat loss through increasing resting metabolic…

  2. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    PubMed

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  4. Pain trajectory and exercise-induced pain flares during 8 weeks of neuromuscular exercise in individuals with knee and hip pain.

    PubMed

    Sandal, L F; Roos, E M; Bøgesvang, S J; Thorlund, J B

    2016-04-01

    Patients considering or engaged in exercise as treatment may expect or experience transient increases in joint pain, causing fear of exercise and influencing compliance. This study investigated the pain trajectory during an 8-week neuromuscular exercise (NEMEX) program together with acute exercise-induced pain flares in persons with knee or hip pain. Individuals above 35 years self-reporting persistent knee or hip pain for the past 3 months were offered 8 weeks of supervised NEMEX, performed in groups twice weekly. The program consisted of 11 exercises focusing on joint stability and neuromuscular control. Participants self-reported joint pain on a 0-10 numerical rating scale (NRS) at baseline and 8-weeks follow-up. NRS pain ratings were also collected before and immediately after every attended exercise session. Joint pain was reduced from baseline (NRS 3.6; 95% CI 3.2-4.1) to 8-weeks follow-up (2.6; 95% CI 2.1-3.1), (P < 0.01). Pain decreased 0.04 NRS (95% CI 0.02-0.05, P < 0.01) on average per exercise session and pre- to post-exercise pain decreased 0.04 NRS (95% CI 0.03-0.05, P < 0.01) on average per session, approaching no acute exercise-induced pain in the last weeks. This study found a clear decrease in size of acute exercise-induced pain flares with increasing number of exercise sessions. In parallel, pain ratings decreased over the 8 weeks exercise period. Our findings provide helpful information for clinicians, which can be used to educate and balance patient expectation when starting supervised neuromuscular exercise. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers.

    PubMed

    Paraiso, Lara Ferreira; Gonçalves-E-Oliveira, Ana Flávia Mayrink; Cunha, Lucas Moreira; de Almeida Neto, Omar Pereira; Pacheco, Adriana Garcia; Araújo, Karinne Beatriz Gonçalves; Garrote-Filho, Mário da Silva; Bernardino Neto, Morun; Penha-Silva, Nilson

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins.

  6. Acute responses to exercise training and relationship with exercise adherence in moderate chronic obstructive pulmonary disease.

    PubMed

    Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique

    2015-11-01

    The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour. © The Author(s) 2015.

  7. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    ERIC Educational Resources Information Center

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  8. Acute effects of physical exercise on the serum insulin-like growth factor system in women with fibromyalgia.

    PubMed

    Mannerkorpi, Kaisa; Landin-Wilhelmsen, Kerstin; Larsson, Anette; Cider, Åsa; Arodell, Olivia; Bjersing, Jan L

    2017-01-25

    Increased Serum insulin-like growth factor-1 (S-IGF-1) has been noted after physical activity in healthy subjects, while the acute release of S-IGF-1 in relation to exercise has not previously been studied in women with fibromyalgia (FM). S-IGF-1 and its binding protein (S-IGFBP-3) are mediated by growth hormone and have anabolic effects on the skeletal muscle. Aim of the study was to investigate acute release of IGF-1 after aerobic exercise in women with FM. The acute effect of physical exercise on S-IGF-1 and S-IGFBP-3 were studied in 22 women with FM and in 27 healthy controls during moderate and high-intensity cycling (i.e. ratings 12-13 and 15-17, on Borg's perceived exertion scale (RPE), respectively). Self-reported pain and fatigue were recorded. Differences within and between the two groups were analyzed. After 15 min of bicycling, S-IGF-1 and S-IGFBP-3 increased both within the group with FM and in the healthy controls (p < 0.01). The increases in S-IGF-1 did not significantly differ between the women with FM and the healthy control group (mean increase 11 ± 10 vs. 11 ± 15 ng/ml and 13 ± 10 vs. 19 ± 22 ng/ml) when bicycling at moderate or high intensity, respectively. Self-reported pain and fatigue during exercise, irrespective of intensity, were higher in women with FM compared with healthy controls (p < 0.001). Fifteen minutes bicycling at moderate intensity was sufficient to acutely mobilise S-IGF-1 in women with FM similarly to healthy controls in spite of higher score of fatigue and pain in women with FM. Hence, patients with FM were able to activate their skeletal muscle metabolism during a short, moderate bout of exercise and were not resistant to training effects. The result is important for encouraging clinical rehabilitation of patients with FM who commonly exercise at a moderate, rather than at a high-intensity level. ClinicalTrials.govNCT01592916 , May 4, 2012.

  9. Exercise training - Blood pressure responses in subjects adapted to microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.

  10. Matrix metalloproteinases in exercise and obesity.

    PubMed

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  11. Effects of an acute bout of resistance exercise on fiber-type specific to GLUT4 and IGF-1R expression.

    PubMed

    Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J

    2013-05-01

    The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.

  12. [Acute physical exercise increases homocysteine concentrations in young trained male subjects].

    PubMed

    Maroto-Sánchez, Beatriz; Valtueña, Jara; Albers, Ulrike; Benito, Pedro J; González-Gross, Marcela

    2013-01-01

    High levels of homocysteine (Hcy) have been identified as a cardiovascular risk factor. Regarding physical exercise, the results are contradictory. The aim of this study was to determine the influence of maximal intensity exercise and submaximal constant exercise on total serum homocysteine concentrations (tHcy) and other related parameters. Ten physically active male subjects (mean age: 23.51 ± 1.84), performed two treadmill tests, a maximal test and a stable submaximal test at an intensity of 65% of maximal oxygen uptake (VO2max). Serum concentrations of tHcy, Folate, Vitamin B12 and creatinine were analysed before and after each test. Significant increase in serum tHcy concentrations after the maximal (p < 0.05) and submaximal (p < 0.01) tests were observed. Folate and vitamin B12 concentrations also increased significantly after both tests (p < 0.05). Creatinine levels increased only after the maximal test (p < 0.001). A statistically significant inverse relationship was found between folate and tHcy concentrations (p < 0.05) at all the measurement points. THcy levels increased significantly after acute exercise in both maximum and submaximal intensity exercises. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  13. Effect of acute moderate exercise on induced inflammation and arterial function in older adults.

    PubMed

    Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-04-01

    Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.

  14. Influence of acute exercise with and without carbohydrate replacement on postprandial lipid metabolism.

    PubMed

    Harrison, Michael; O'Gorman, Donal J; McCaffrey, Noel; Hamilton, Marc T; Zderic, Theodore W; Carson, Brian P; Moyna, Niall M

    2009-03-01

    Acute exercise, undertaken on the day before an oral fat tolerance test (OFTT), typically reduces postprandial triglycerides (TG) and increases high-density lipoprotein-cholesterol (HDL-C). However, the benefits of acute exercise may be overstated when studies do not account for compensatory changes in dietary intake. The objective of this study was to determine the influence of acute exercise, with and without carbohydrate (CHO) replacement, on postprandial lipid metabolism. Eight recreationally active young men underwent an OFTT on the morning after three experimental conditions: no exercise [control (Con)], prolonged exercise without CHO replacement (Ex-Def) and prolonged exercise with CHO replacement to restore CHO and energy balance (Ex-Bal). The exercise session in Ex-Def and Ex-Bal consisted of 90 min cycle ergometry at 70% peak oxygen uptake (Vo(2peak)) followed by 10 maximal 1-min sprints. CHO replacement was achieved using glucose solutions consumed at 0, 2, and 4 h postexercise. Muscle glycogen was 40 +/- 4% (P < 0.05) and 94 +/- 3% (P = 0.24) of Con values on the morning of the Ex-Def and Ex-Bal OFTT, respectively. Postprandial TG were 40 +/- 14% lower and postprandial HDL-C, free fatty acids, and 3-hydroxybutyrate were higher in Ex-Def compared with Con (P < 0.05). Most importantly, these exercise effects were not evident in Ex-Bal. Postprandial insulin and glucose and the homeostatic model assessment of insulin resistance (HOMA(IR)) were not significantly different across trials. There was no relation between the changes in postprandial TG and muscle glycogen across trials. In conclusion, the influence of acute exhaustive exercise on postprandial lipid metabolism is largely dependent on the associated CHO and energy deficit.

  15. An exploratory analysis of changes in mood, anxiety and craving from pre- to post-single sessions of exercise, over 12 weeks, among patients with alcohol dependence.

    PubMed

    Brown, Richard A; Prince, Mark A; Minami, Haruka; Abrantes, Ana M

    2016-10-01

    Aerobic exercise is currently being studied as a relapse prevention strategy for individuals with alcohol use disorders. Negative affect and cravings predict relapse. The acute effects of moderate-intensity exercise have been shown to improve mood and reduce craving. The current study examined the acute effects of exercise on changes in mood, anxiety, and craving from pre- to post-exercise at each week of a 12-week moderate intensity exercise intervention with sedentary alcohol dependent adults. Twenty-six participants in the exercise condition of a larger randomized clinical trial (Brown et al., 2014) exercised in small groups at moderate intensity for 20 to 40 minutes per session. Participants rated mood, anxiety, and cravings in the present moment before and after each exercise session over the course of the 12-week intervention. Data analyses focused on effect size and interval estimation. Joinpoint analysis was used to model longitudinal trends. Increases in mood and decreases in anxiety and craving were apparent at every session. Effect size estimates revealed that average change from pre- to post-exercise was in the small to medium range with some individual sessions reaching the large range. Joinpoint analyses revealed that the pre-post exercise changes in mood increased, anxiety remained stable, and craving diminished across the 12 weeks. This study provides provisional support for a change in mood, anxiety and alcohol cravings for the role of exercise in the early recovery period for alcohol dependence. Acute single bouts of moderate-intensity exercise may help individuals with alcohol dependence manage mood, anxiety, and craving thereby reducing relapse risk, but further research is needed with a more rigorous study design.

  16. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  17. Acute effect of intermittent and continuous aerobic exercise on release of cardiac troponin T in sedentary men.

    PubMed

    Ranjbar, Rouhollah; Ahmadi, Mohammad Amin; Zar, Abdossaleh; Krustrup, Peter

    2017-06-01

    Studies have shown that acute exercise can increase serum concentrations of cardiac biomarkers, including cardiac troponin T (cTnT). We investigated the acute effects of intermittent (IE) and continuous (CE) exercise at the same cardiac workload on myocardial necrosis biomarkers in sedentary men. Eleven sedentary healthy men aged 22.3±1.9years completed the study. The subjects were divided into two groups and performed, in random order, IE (intensity alternating between 50% (2min) and 80% (1min) HRreserve) or CE (60% HRreserve). The study was designed as a single-blinded randomised crossover trial performed on two distinct experimental days separated by a 1-week washout period. Each session consisted of 40min of aerobic exercise, either IE or CE, on a treadmill. Blood samples were taken before (PRE), immediately after (POST) and 1h after (POST-1) each exercise session. hs-cTnT significantly increased immediately after exercise in both protocols and remained elevated at POST-1 (P<0.05). There was no significant difference between POST and POST-1 values(P>0.05). Neither CE nor IE caused any significant change in CK-MB (P>0.05). The results also showed that HR and RPP increased significantly following both exercise protocols (P=0.001). In summary, both CE and IE results in increased serum concentrations of hs-cTnT in sedentary men. However, this increase does not seem to be caused by the irreversible death of cardiomyocytes. CE resulted in a greater hs-cTnT concentration than IE. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Acute Risks of Exercise in Apparently Healthy Adults and Relevance for Prevention of Cardiovascular Events.

    PubMed

    Goodman, Jack M; Burr, Jamie F; Banks, Laura; Thomas, Scott G

    2016-04-01

    Increased physical activity (PA) is associated with improved quality of life and reductions in cardiovascular (CV) morbidity and all-cause mortality in the general population in a dose-response manner. However, PA acutely increases the risk of adverse CV event or sudden cardiac death (SCD) above levels expected at rest. We review the likelihood of adverse CV events related to exercise in apparently healthy adults and strategies for prevention, and contextualize our understanding of the long-term risk reduction conferred from PA. A systematic review of the literature was performed using electronic databases; additional hand-picked relevant articles from reference lists and additional sources were included after the search. The incidence of adverse CV events in adults is extremely low during and immediately after PA of varying types and intensities and is significantly lower in those with long-standing PA experience. The risk of SCD and nonfatal events during and immediately after PA remains extremely low (well below 0.01 per 10,000 participant hours); increasing age and PA intensity are associated with greater risk. In most cases of exercise-related SCD, occult CV disease is present and SCD is typically the first clinical event. Exercise acutely increases the risk of adverse CV events, with greater risk associated with vigorous intensity. The risks of an adverse CV event during and immediately after exercise are outweighed by the health benefits of vigorous exercise performed regularly. A key challenge remains the identification of occult structural heart disease and inheritable conditions that increase the chances of lethal arrhythmias during exercise. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  19. Effect of acute aerobic exercise on vaccine efficacy in older adults.

    PubMed

    Ranadive, Sushant Mohan; Cook, Marc; Kappus, Rebecca Marie; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffery A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-03-01

    The most effective way of avoiding influenza is through influenza vaccination. However, the vaccine is ineffective in about 25% of the older population. Immunosenescence with advancing age results in inadequate protection from disease because of ineffective responses to vaccination. Recently, a number of strategies have been tested to improve the efficacy of a vaccine in older adults. An acute bout of moderate aerobic exercise may increase the efficacy of the vaccine in young individuals, but there are limited efficacy data in older adults who would benefit most. This study sought to evaluate whether acute moderate-intensity endurance exercise immediately before influenza vaccination would increase the efficacy of the vaccine. Fifty-nine healthy volunteers between 55 and 75 yr of age were randomly allocated to an exercise or control group. Antibody titers were measured at baseline before exercise and 4 wk after vaccination. C-reactive protein (CRP) and interleukin-6 (IL-6) were measured at 24 and 48 h after vaccination. Delta CRP and IL-6 at 24 and 48 h were significantly higher after vaccination as compared to the sham injection. There were no differences in the levels of antibody titers against the H3N2 influenza strain between groups. However, women in the exercise group had a significantly higher antibody response against the H1N1 influenza strain as compared to the men, probably because of lower prevaccine titers. There were no significant differences in seroprotection between groups. Acute moderate aerobic exercise was not immunostimulatory in healthy older men but may serve as a vaccine adjuvant in older women.

  20. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.

    PubMed

    Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu

    2018-03-22

    The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.

  1. Strength training alters MCT1-protein expression and exercise-induced translocation in erythrocytes of men with non-insulin-dependent type-2 diabetes.

    PubMed

    Opitz, David; Kreutz, Thorsten; Lenzen, Edward; Dillkofer, Benedict; Wahl, Patrick; Montiel-Garcia, Gracia; Graf, Christine; Bloch, Wilhelm; Brixius, Klara

    2014-03-01

    We investigated the cellular distribution of lactate transporter (MCT1) and its chaperone CD147 (using immunohistochemistry and fluorescence-activated cell sorting) in the erythrocytes of men with non-insulin-dependent type-2 diabetes (NIDDM, n = 11, 61 ± 8 years of age) under acute exercise (ergometer cycling test, World Health Organisation scheme) performed before and after a 3-month strength training program. Cytosolic MCT1 distribution and membraneous CD147 density did not change after acute exercise (ergometer). After the 3-month strength training, MCT1-density was increased and the reaction of MCT1 (but not that of CD147) towards acute exercise (ergometer) was altered. MCT1 localisation was shifted from the centre to the cellular membrane. This resulted in a decrease in the immunohistochemically measured cytosolic MCT1-density. We conclude that strength training alters the acute exercise reaction of MCT1 but not that of CD147 in erythrocytes in patients with NIDDM. This reaction may contribute to long-term normalisation and stabilisation of the regulation of lactate plasma concentration in NIDDM.

  2. Increases in Brain 1H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat

    PubMed Central

    Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł

    2017-01-01

    Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103

  3. The effect of acute physical and mental stress on soluble cellular adhesion molecule concentration.

    PubMed

    Crabb, E Blake; Franco, R Lee; Caslin, Heather L; Blanks, Anson M; Bowen, Mary K; Acevedo, Edmund O

    2016-07-15

    This study investigated the impact of acute physical and mental stress on serum concentrations of vascular cell adhesion molecule (VCAM)-1 and CX3CL1/fractalkine. Male volunteers (n=20; 21.3±0.55years of age) completed a graded treadmill test to exhaustion and a 20-minute mental stress task (Stroop Color-Word Test, mental arithmetic) on separate, non-consecutive days. Heart rate (HR) was measured at baseline and throughout exercise and mental stress. Blood was collected at baseline (PRE), immediately following (POST) and 30min after (POST30) exercise and mental stress. Soluble VCAM-1 and fractalkine were quantified in participant serum via enzyme-linked immunosorbent assays. Both treadmill exercise and the mental stress task significantly increased participant HR; although, exercise resulted in a substantially greater increase in participant HR compared to mental stress (197.82±11.99 vs. 38.67±3.10% [p<0.001]). VCAM-1 (815.74±139.55 vs. 738.67±131.59ng/mL [p=0.002]) and fractalkine (1.032±0.33 vs. 0.59±0.20ng/mL [p<0.001]) were significantly elevated in participant serum POST maximal exercise before returning to values similar to baseline at POST30. The acute mental stress task did not significantly alter serum VCAM-1 or fractalkine at any time point. In conclusion, maximal aerobic exercise results in a significant elevation of the soluble adhesion molecules VCAM-1 and fractalkine in the serum of adult males that does not occur following laboratory-induced mental stress. The findings of the current investigation may suggest a novel protective role for acute aerobic exercise in vascular health via exercise-induced CAM proteolysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Acute effects of a single exercise class on appetite, energy intake and mood. Is there a time of day effect?

    PubMed

    Maraki, M; Tsofliou, F; Pitsiladis, Y P; Malkova, D; Mutrie, N; Higgins, S

    2005-12-01

    This study aimed to investigate the acute effects of a single exercise class on appetite sensations, energy intake and mood, and to determine if there was a time of day effect. Twelve healthy, young, normal weight females, who were non-regular exercisers, participated in four trials: morning control, morning exercise, evening control and evening exercise. Exercise trials were a one-hour class of aerobic and muscle conditioning exercise of varying intensities, to music. Control trials were a one-hour rest. Ratings of perceived exertion were significantly greater during the warm-up and muscle conditioning parts of the morning exercise trial compared to those of the evening exercise trial. Although both exercise trials, compared to control trials, produced an increase in appetite sensations, they did not alter energy intake and produced a decrease in 'relative' energy intake. In relation to mood, both exercise trials increased positive affect and decreased negative affect. These results suggest that a single exercise class, representative of that offered by many sports centres, regardless of whether it is performed in the morning or evening produces a short-term negative energy balance and improves mood in normal weight women. However, when this type of exercise was performed in the morning it was perceived to require more effort.

  5. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  6. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    PubMed

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  7. Effects of Spinal Cord Injury in Heart Rate Variability After Acute and Chronic Exercise: A Systematic Review.

    PubMed

    Buker, Daniel Bueno; Oyarce, Cristóbal Castillo; Plaza, Raúl Smith

    2018-01-01

    Background: Spinal cord injury (SCI) above T6 is followed by a loss of sympathetic supraspinal control of the heart, disturbing the autonomic balance and increasing cardiovascular risk. Heart rate variability (HRV) is a widely used tool for assessing the cardiac autonomic nervous system and positive adaptations after regular exercise in able-bodied subjects. However, adaptations in SCI subjects are not well known. Objectives: To compare HRV between able-bodied and SCI subjects and analyze the effects of chronic and acute exercise on HRV in the SCI group. Methods: We searched MEDLINE, Embase, Web of Science, SciELO, and Google Scholar databases to July 2016. We selected English and Spanish observational or experimental studies reporting HRV after training or acute exercise in SCI patients. We also included studies comparing HRV in SCI individuals with able-bodied subjects. Animal studies and nontraumatic SCI studies were excluded. We screened 279 articles by title and abstract; of these, we fully reviewed 29 articles. Eighteen articles fulfilled criteria for inclusion in this study. Results: SCI individuals showed lower HRV values in the low frequency band compared to able-bodied subjects. Regular exercise improved HRV in SCI subjects, however time and intensity data were lacking. HRV decreases after an acute bout of exercise on SCI subjects, but recovery kinetics are unknown. Conclusion: HRV is affected following SCI. Able-bodied subjects and SCI individuals have different values of HRV. Acute bouts of exercise change HRV temporarily, and chronic exercise might improve autonomic balance in SCI.

  8. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise.

    PubMed

    Church, David D; Hoffman, Jay R; Mangine, Gerald T; Jajtner, Adam R; Townsend, Jeremy R; Beyer, Kyle S; Wang, Ran; La Monica, Michael B; Fukuda, David H; Stout, Jeffrey R

    2016-07-01

    This study compared the acute and chronic response of circulating plasma brain-derived neurotrophic factor (BDNF) to high-intensity low-volume (HI) and low-intensity high volume (HV) resistance training. Twenty experienced resistance-trained men (23.5 ± 2.6 y, 1.79 ± 0.05 m, 75.7 ± 13.8 kg) volunteered for this study. Before the resistance training program (PRE), participants performed an acute bout of exercise using either the HI [3-5 reps; 90% of one repetition maximum (1RM)] or HV (10-12 reps; 70% 1RM) training paradigm. The acute exercise protocol was repeated after 7 wk of training (POST). Blood samples were obtained at rest (BL), immediately (IP), 30 min (30P), and 60 min (60P) post exercise at PRE and POST. A three-way repeated measure ANOVA was used to analyze acute changes in BDNF concentrations during HI and HV resistance exercise and the effect of 7 wk of training. No training × time × group interaction in BDNF was noted (P = 0.994). Significant main effects for training (P = 0.050) and time (P < 0.001) in BDNF were observed. Significant elevations in BDNF concentrations were seen from BL at IP (P = 0.001), 30P (P < 0.001), and 60P (P < 0.001) in both HI and HV combined during PRE and POST. BDNF concentrations were also observed to increase from PRE to POST when collapsed across groups and time. No significant group × training interaction (P = 0.342), training (P = 0.105), or group (P = 0.238) effect were noted in the BDNF area under the curve response. Results indicate that BDNF concentrations are increased after an acute bout of resistance exercise, regardless of training paradigm, and are further increased during a 7-wk training program in experienced lifters. Copyright © 2016 the American Physiological Society.

  9. Cardiac Autonomic and Blood Pressure Responses to an Acute Bout of Kettlebell Exercise.

    PubMed

    Wong, Alexei; Nordvall, Michael; Walters-Edwards, Michelle; Lastova, Kevin; Francavillo, Gwendolyn; Summerfield, Liane; Sanchez-Gonzalez, Marcos

    2017-10-07

    Kettlebell (KB) training has become an extremely popular exercise program for improving both muscle strength and aerobic fitness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute KB exercise session are currently unknown. Understanding the impact of this exercise modality on the post-exercise autonomic modulation and BP would facilitate appropriate exercise prescription in susceptible populations. The present study evaluated the effects of an acute session of KB exercise on heart rate variability (HRV) and BP responses in healthy individuals. Seventeen (M=10, F=7) healthy subjects completed either a KB or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 3, 10 and 30 min after each trial. There were significant increases (P < 0.01) in heart rate, markers of sympathetic activity (nLF) and sympathovagal balance (nLF/nHF) for 30 min after the trial KB trial, while no changes from baseline were observed after the control trial. There were also significant decreases (P < 0.01) in markers of vagal tone (RMMSD, nHF) for 30 min as well as (P < 0.01) systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that KB exercise increases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential clinical application of KB training in populations that might benefit from post-exercise hypotension, such as hypertensives.

  10. Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.

    PubMed

    Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N

    2014-12-01

    This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.

    PubMed

    Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2016-06-01

    The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.

  12. Exercise, Stress Resistance, and Central Serotonergic Systems

    PubMed Central

    Greenwood, Benjamin N.; Fleshner, Monika

    2015-01-01

    Voluntary exercise reduces the incidence of stress-related psychiatric disorders in humans and prevents serotonin-dependent behavioral consequences of stress in rodents. Evidence reviewed herein is consistent with the hypothesis that exercise increases stress resistance by producing neuroplasticity at multiple sites of the central serotonergic system, which all help to limit the behavioral impact of acute increases in serotonin during stressor exposure. PMID:21508844

  13. Adiponectin, Resistin, and Visfatin in Childhood Obesity and Exercise.

    PubMed

    Jamurtas, Athanasios Z; Stavropoulos-Kalinoglou, Antonios; Koutsias, Stilianos; Koutedakis, Yiannis; Fatouros, Ioannis

    2015-11-01

    Childhood obesity is increasing alarmingly, and a strong association with chronic diseases has been established. Specific adipokines are released from the adipose tissue and relate with chronic diseases even in the pediatric population. Adiponectin levels are lower in obesity and increase with decreasing body weight. A few pediatric studies examining a possible relationship between resistin and obesity do not provide a clear picture. Most studies agree that visfatin levels appear elevated in childhood obesity. Exercise seems to increase adiponectin levels whereas resistin levels are reduced. The lack of data on the effects of acute and chronic exercise on visfatin levels precludes us from making safe conclusions as to what the effects of exercise (acute or chronic) would be on visfatin levels in children. Clearly, exercise has an impact on the adipose tissue and the release of adiponectin, resistin, and visfatin. However, other factors affect the secretion rate of these adipokines from the adipose tissue; these factors should also be taken into consideration when examining the effects of exercise on adipokines. Gender, age, body composition, physical activity levels, mode and intensity of exercise are some of the factors that should be looked into in future studies.

  14. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  15. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    PubMed

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-01-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  17. Altered Arterial Stiffness and Subendocardial Viability Ratio in Young Healthy Light Smokers after Acute Exercise

    PubMed Central

    Doonan, Robert J.; Scheffler, Patrick; Yu, Alice; Egiziano, Giordano; Mutter, Andrew; Bacon, Simon; Carli, Franco; Daskalopoulos, Marios E.; Daskalopoulou, Stella S.

    2011-01-01

    Background Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals. Methods/Results Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions. Conclusion Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired ‘vascular reserve’ or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular function, affecting the ability of the vascular bed to respond to increased demands. PMID:22028821

  18. The effects of acute exercise on attentional bias towards smoking-related stimuli during temporary abstinence from smoking.

    PubMed

    Van Rensburg, Kate Janse; Taylor, Adrian; Hodgson, Tim

    2009-11-01

    Attentional bias towards smoking-related cues is increased during abstinence and can predict relapse after quitting. Exercise has been found to reduce cigarette cravings and desire to smoke during temporary abstinence and attenuate increased cravings in response to smoking cues. To assess the acute effects of exercise on attentional bias to smoking-related cues during temporary abstinence from smoking. In a randomized cross-over design, on separate days regular smokers (n = 20) undertook 15 minutes of exercise (moderate intensity stationary cycling) or passive seating following 15 hours of nicotine abstinence. Attentional bias was measured at baseline and post-treatment. The percentage of dwell time and direction of initial fixation was assessed during the passive viewing of a series of paired smoking and neutral images using an Eyelink II eye-tracking system. Self-reported desire to smoke was recorded at baseline, mid- and post-treatment and post-eye-tracking task. There was a significant condition x time interaction for desire to smoke, F((1,18)) = 10.67, P = 0.004, eta(2) = 0.36, with significantly lower desire to smoke at mid- and post-treatment following the exercise condition. The percentage of dwell time and direction of initial fixations towards smoking images were also reduced significantly following the exercise condition compared with the passive control. Findings support previous research that acute exercise reduces desire to smoke. This is the first study to show that exercise appears to also influence the salience and attentional biases towards cigarettes.

  19. Non-invasive ventilation (NIV) as an aid to rehabilitation in acute respiratory disease.

    PubMed

    Dyer, Fran; Flude, Lizzie; Bazari, Farid; Jolley, Caroline; Englebretsen, Catherine; Lai, Dilys; Polkey, Michael I; Hopkinson, Nicholas S

    2011-12-16

    Non-invasive ventilation (NIV) can increase exercise tolerance, reduce exercise induced desaturation and improve the outcome of pulmonary rehabilitation in patients with chronic respiratory disease. It is not known whether it can be applied to increase exercise capacity in patients admitted with non-hypercapnic acute exacerbations of COPD (AECOPD). We investigated the acceptability and feasibility of using NIV for this purpose. On a single occasion, patients admitted with an acute exacerbation of chronic respiratory disease who were unable to cycle for five minutes at 20 watts attempted to cycle using NIV and their endurance time (T(lim)) was recorded. To determine feasibility of this approach in clinical practice patients admitted with AECOPD were screened for participation in a trial of regular NIV assisted rehabilitation during their hospital admission. In 12 patients tested on a single occasion NIV increased T(lim) from 184(65) seconds to 331(229) seconds (p = 0.04) and patients desaturated less (median difference = 3.5%, p = 0.029). In the second study, 60 patients were admitted to hospital during a three month period of whom only 18(30)% were eligible to participate and of these patients, only four (7%) consented to participate. NIV improves exercise tolerance in patients with acute exacerbations of chronic respiratory disease but the applicability of this approach in routine clinical practice may be limited. http://www.controlled-trials.com/ISRCTN35692743.

  20. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise.

    PubMed

    Davison, Glen; Callister, Robin; Williamson, Gary; Cooper, Karen A; Gleeson, Michael

    2012-02-01

    Acute antioxidant supplementation may modulate oxidative stress and some immune perturbations that typically occur following prolonged exercise. The aims of the present study were to examine the effects of acutely consuming dark chocolate (high polyphenol content) on plasma antioxidant capacity, markers of oxidative stress and immunoendocrine responses to prolonged exercise. Fourteen healthy men cycled for 2.5 h at ~60% maximal oxygen uptake 2 h after consuming 100 g dark chocolate (DC), an isomacronutrient control bar (CC) or neither (BL) in a randomised-counterbalanced design. DC enhanced pre-exercise antioxidant status (P = 0.003) and reduced by trend (P = 0.088) 1 h post-exercise plasma free [F₂-isoprostane] compared with CC (also, [F₂-isoprostane] increased post-exercise in CC and BL but not DC trials). Plasma insulin concentration was significantly higher pre-exercise (P = 0.012) and 1 h post-exercise (P = 0.026) in the DC compared with the CC trial. There was a better maintenance of plasma glucose concentration on the DC trial (2-way ANOVA trial × time interaction P = 0.001), which decreased post-exercise in all trials but was significantly higher 1 h post-exercise (P = 0.039) in the DC trial. There were no between trial differences in the temporal responses (trial × time interactions all P > 0.05) of hypothalamic-pituitary-adrenal axis stress hormones, plasma interleukin-6, the magnitude of leukocytosis and neutrophilia and changes in neutrophil function. Acute DC consumption may affect insulin, glucose, antioxidant status and oxidative stress responses, but has minimal effects on immunoendocrine responses, to prolonged exercise.

  1. Acute Effects of Aerobic Exercise on Affect and Smoking Craving in the Weeks Before and After a Cessation Attempt.

    PubMed

    Abrantes, Ana M; Farris, Samantha G; Minami, Haruka; Strong, David R; Riebe, Deborah; Brown, Richard A

    2018-04-02

    Aerobic exercise may improve smoking abstinence via reductions in craving and negative affect and increases in positive moods. Acute changes in craving and affect before and after structured exercise sessions have not been examined during the weeks prior to and following quit attempts nor has smoking status been examined in relation to these effects. Given that regular cigarette smoking can be perceived as affect enhancing and craving reducing, it is not known whether exercise could contribute additional affective benefit beyond these effects. Participants (N = 57; 68.4% women) were low-active daily smokers randomized to cessation treatments plus either group-based aerobic exercise (AE) or a health-education control (HEC). Mood, anxiety, and craving were assessed before and after each intervention session for each of the 12 weeks. Carbon monoxide (CO) breath samples ≤ 5ppm indicated smoking abstinence. During the prequit sessions, significantly greater decreases in anxiety following AE sessions relative to HEC sessions were observed. Changes in mood and craving were similar after AE and HEC sessions prior to quitting. Postquit attempt, significant reductions in craving and anxiety were observed after AE sessions but not following HEC. During the postquit period, positive mood increased following AE sessions relative to HEC only among individuals who were abstinence on that day. AE may be effective in acutely reducing anxiety prior to a quit attempt and both anxiety and craving following the quit attempt regardless of abstinence status. The mood-enhancing effects of AE may occur only in the context of smoking abstinence. The current findings underscore the importance of examining the acute effects of aerobic exercise prior to and after a cessation attempt and as a function of smoking status. Given the equivocal results from previous studies on the efficacy of exercise for smoking cessation, increasing our understanding of how aerobic exercise produces its reinforcing benefits for smokers attempting to quit could potentially inform the refinement (e.g., timing/sequencing) of exercise interventions within smoking cessation programs.

  2. Acute testosterone and cortisol responses to high power resistance exercise.

    PubMed

    Fry, A C; Lohnes, C A

    2010-01-01

    This study examined the acute hormonal responses to a single high power resistance exercise training session. Four weight trained men (X +/- SD; age [yrs] = 24.5 +/- 2.9; hgt [m] = 1.82 + 0.05; BM [kg] = 96.9 +/- 10.6; I RM barbell squat [kg] = 129.3 +/- 17.4) participated as subjects in two randomly ordered sessions. During the lifting session, serum samples were collected pre- and 5 min post-exercise, and later analyzed for testosterone (Tes), cortisol (Cort), their ratio (Tes/Cort), and lactate (HLa). The lifting protocol was 10 x 5 speed squats at 70% of system mass (1 RM +/- BW) with 2 min inter-set rest intervals. Mean power and velocity were determined for each repetition using an external dynamometer. On the control day, the procedures and times (1600-1900 hrs) were identical except the subjects did not lift. Tes and Cort were analyzed via EIA. Mean +/- SD power and velocity was 1377.1 +/- 9.6 W and 0.79 +/- 0.01 m .s-1 respectively for all repetitions, and did not decrease over the 10 sets (p < 0.05). Although not significant, post-exercise Tes exhibited a very large effect size (nmol x L-1 pre = 12.5 +/- 2.9, post = 20.0 +/- 3.9; Cohen's D = 1.27). No changes were observed for either Cort or the Tes/Cort ratio. HLa significantly increased post-exercise (mmol x L-1 ; pre = 1.00 +/- 0.09, post = 4.85 +/- 1.10). The exercise protocol resulted in no significant changes in Tes, Cort or the Tes/Cort ratio, although the Cohen's D value indicates a very large effect size for the Tes response. The acute increase for Tes is in agreement with previous reports that high power activities can elicit a Tes response. High power resistance exercise protocols such as the one used in the present study produce acute increases of Tes. These results indicate that high power resistance exercise can contribute to an anabolic hormonal response with this type of training, and may partially explain the muscle hypertrophy observed in athletes who routinely employ high power resistance exercise.

  3. Cardiac function and exercise adaptation in 8 children with LPIN1 mutations.

    PubMed

    Legendre, Antoine; Khraiche, Diala; Ou, Phalla; Mauvais, François-Xavier; Madrange, Marine; Guemann, Anne-Sophie; Jais, Jean-Philippe; Bonnet, Damien; Hamel, Yamina; de Lonlay, Pascale

    2018-03-01

    Lipin-1 deficiency is a major cause of rhabdomyolysis that are precipitated by febrile illness. The prognosis is poor, with one-third of patients dying from cardiac arrest during a crisis episode. Apart from acute rhabdomyolysis, most patients are healthy, showing normal clinical and cardiac ultrasound parameters. We report cardiac and exercise examinations of 8 children carrying two LPIN1 mutations. The examinations were performed outside of a myolysis episode, but one patient presented with fever during one examination. All but one patient displayed normal resting cardiac function, as determined by echocardiography. One patient exhibited slight left ventricular dysfunction at rest and a lack of increased stroke volume during cycle ramp exercise. During exercise, peripheral muscle adaptation was impaired in 2 patients compared to healthy controls: they presented an abnormal increase in cardiac output relative to oxygen uptake: dQ/dVO 2 =8.2 and 9.5 (>2DS of controls population). One patient underwent 2 exercise tests; during one test, the patient was febrile, leading to acute rhabdomyolysis in the following hours. He exhibited changes in recovery muscle reoxygenation parameters and an increased dQ/dVO 2 during exercise compared with that under normothermia (7.9 vs 6), which did not lead to acute rhabdomyolysis. The four patients assessed by cardiac 1 H-magnetic resonance spectroscopy exhibited signs of intracardiac steatosis. We observed abnormal haemodynamic profiles during exercise in 3/8 patients with lipin-1 deficiency, suggesting impaired muscle oxidative phosphorylation during exercise. Fever appeared to be an aggravating factor. One patient exhibited moderate cardiac dysfunction, which was possibly related to intracardiac stored lipid toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Improvement of Processing Speed in Executive Function Immediately following an Increase in Cardiovascular Activity.

    PubMed

    Tam, Nicoladie D

    2013-01-01

    This study aims to identify the acute effects of physical exercise on specific cognitive functions immediately following an increase in cardiovascular activity. Stair-climbing exercise is used to increase the cardiovascular output of human subjects. The color-naming Stroop Test was used to identify the cognitive improvements in executive function with respect to processing speed and error rate. The study compared the Stroop results before and immediately after exercise and before and after nonexercise, as a control. The results show that there is a significant increase in processing speed and a reduction in errors immediately after less than 30 min of aerobic exercise. The improvements are greater for the incongruent than for the congruent color tests. This suggests that physical exercise induces a better performance in a task that requires resolving conflict (or interference) than a task that does not. There is no significant improvement for the nonexercise control trials. This demonstrates that an increase in cardiovascular activity has significant acute effects on improving the executive function that requires conflict resolution (for the incongruent color tests) immediately following aerobic exercise more than similar executive functions that do not require conflict resolution or involve the attention-inhibition process (for the congruent color tests).

  5. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.

    PubMed

    Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A

    2015-01-01

    The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.

  6. Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children.

    PubMed

    Kilian, Yvonne; Wehmeier, Udo F; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy

    2016-01-01

    The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min(-1)·kg(-1) peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30', 60', 180') and HVT (d3, 0', 60'). RESULTS of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.

  7. Exercise and sleep in aging: emphasis on serotonin.

    PubMed

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Influence of Acute and Chronic Exercise on Glucose Uptake

    PubMed Central

    Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten

    2016-01-01

    Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930

  9. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  10. Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men.

    PubMed

    Hanson, Erik D; Danson, Eli; Nguyen-Robertson, Catriona V; Fyfe, Jackson J; Stepto, Nigel K; Bartlett, David B; Sakkal, Samy

    2017-11-01

    Mucosal associated invariant T (MAIT) cells have properties of the innate and acquired immune systems. While the response to vigorous exercise has been established for most leukocytes, MAIT cells have not been investigated. Therefore, the purpose was to determine if MAIT cell lymphocytosis occurs with acute maximal aerobic exercise and if this response is influenced by exercise duration, cardiovascular fitness, or body composition. Twenty healthy young males with moderate fitness levels performed an extended graded exercise test until volitional fatigue. Peripheral blood mononuclear cells were isolated from venous blood obtained prior and immediately after exercise and were labeled to identify specific T cell populations using flow cytometry. The percentage of MAIT cells relative to total T cells significantly increased from 3.0 to 3.8% and absolute MAIT cell counts increased by 2.2-fold following maximal exercise. MAIT cell subpopulation proportions were unchanged with exercise. Within cytotoxic T lymphocytes (CTL), MAIT cells consisted of 8% of these cells and this remained constant after exercise. MAIT cell counts and changes with exercise were not affected by body composition, VO 2peak , or exercise duration. Maximal exercise doubled MAIT cell numbers and showed preferential mobilization within total T cells but the response was not influenced by fitness levels, exercise duration, or body composition. These results suggest that acute exercise could be used to offset MAIT cell deficiencies observed with certain pathologies. MAIT cells also make up a substantial proportion of CTLs, which may have implications for cytotoxicity assays using these cells.

  11. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD.

    PubMed

    Ludyga, Sebastian; Brand, Serge; Gerber, Markus; Weber, Peter; Brotzmann, Mark; Habibifar, Fahimeh; Pühse, Uwe

    2017-12-01

    The current body of evidence suggests that an aerobic exercise session has a beneficial effect on inhibitory control, whereas the impact of coordinative exercise on this executive function has not yet been examined in children with ADHD. Therefore, the present study aims to investigate the acute effects of aerobic and coordinative exercise on behavioral performance and the allocation of attentional resources in an inhibitory control task. Using a cross-over design, children with ADHD-combined type and healthy comparisons completed a Flanker task before and after 20min moderately-intense cycling exercise, coordinative exercise and an inactive control condition. During the task, stimulus-locked event-related potentials were recorded with electroencephalography. Both groups showed an increase of P300 amplitude and decrease of reaction time after exercise compared to the control condition. Investigating the effect of exercise modality, aerobic exercise led to greater increases of P300 amplitude and reductions in reaction time than coordinative exercise in children with ADHD. The findings suggest that a single exercise bout improves inhibitory control and the allocation of attentional resources. There were some indications that an aerobic exercise session seems to be more efficient than coordinative exercise in reducing the inhibitory control deficits that persist in children with ADHD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males

    PubMed Central

    ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.

    2016-01-01

    ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216

  13. Acute Effects of Walking Exercise on Stair Negotiation in Sedentary and Physically Active Older Adults.

    PubMed

    Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2017-07-01

    In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.

  14. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    PubMed

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed in both conditions, but was not different from pre-exercise. Reactive hyperaemia was reduced after no-EIHS but increased after EIHS. Thus, normalizing FMD to the shear stimulus (FMD/SR AUC ) revealed a significant reduction in FMD after EIHS only (pre-exercise 0.15 ± 0.04 and 0.13 ± 0.02 s -1 versus postexercise, 0.13 ± 0.02 and 0.06 ± 0.02 s -1 , no-EIHS and EIHS, respectively). We conclude that moderate heat stress superimposed on moderate-intensity exercise resulted in reduced vascular endothelial function. This heat stress-induced alteration in the shear-dilatory relationship may relate to the increased risk of acute coronary events associated with activities that combine physical exertion and heat stress (i.e. firefighting). © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  15. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    PubMed

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL -1 of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in repeated exercise training. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  17. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.

  18. Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.

    PubMed

    Harrop, Bradley J; Woodruff, Sarah J

    2015-06-01

    The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women.

  19. The acute hormonal response to free weight and machine weight resistance exercise.

    PubMed

    Shaner, Aaron A; Vingren, Jakob L; Hatfield, Disa L; Budnar, Ronald G; Duplanty, Anthony A; Hill, David W

    2014-04-01

    Resistance exercise can acutely increase the concentrations of circulating neuroendocrine factors, but the effect of mode on this response is not established. The purpose of this study was to examine the effect of resistance exercise selection on the acute hormonal response using similar lower-body multijoint movement free weight and machine weight exercises. Ten resistance trained men (25 ± 3 years, 179 ± 7 cm, 84.2 ± 10.5 kg) completed 6 sets of 10 repetitions of squat or leg press at the same relative intensity separated by 1 week. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes (P30) after exercise, and analyzed for testosterone (T), growth hormone (GH), and cortisol (C) concentrations. Exercise increased (p ≤ 0.05) T and GH at IP, but the concentrations at IP were greater for the squat (T: 31.4 ± 10.3 nmol·L(-1); GH: 9.5 ± 7.3 μg·L(-1)) than for the leg press (T: 26.9 ± 7.8 nmol·L(-1); GH: 2.8 ± 3.2 μg·L(-1)). At P15 and P30, GH was greater for the squat (P15: 12.3 ± 8.9 μg·L(-1); P30: 12.0 ± 8.9 μg·L(-1)) than for the leg press (P15: 4.8 ± 3.4 μg·L(-1); P30: 5.4 ± 4.1 μg·L(-1)). C was increased after exercise and was greater for the squat than for the leg press. Although total work (external load and body mass moved) was greater for the squat than for the leg press, rating of perceived exertion did not differ between the modes. Free weight exercises seem to induce greater hormonal responses to resistance exercise than machine weight exercises using similar lower-body multijoint movements and primary movers.

  20. Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects

    PubMed Central

    Jensen, Jørgen; Tantiwong, Puntip; Stuenæs, Jorid T.; Molina-Carrion, Marjorie; DeFronzo, Ralph A.; Sakamoto, Kei

    2012-01-01

    Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of V̇o2max). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS Km for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50–70% (Ser641, Ser645, and Ser645,649,653,657), and phosphorylation of these sites remained decreased after 3.5 h; Ser7 phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased Km for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects. PMID:22510711

  1. Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects.

    PubMed

    Jensen, Jørgen; Tantiwong, Puntip; Stuenæs, Jorid T; Molina-Carrion, Marjorie; DeFronzo, Ralph A; Sakamoto, Kei; Musi, Nicolas

    2012-07-01

    Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser⁷ phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.

  2. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects.

    PubMed

    Daskalopoulou, Stella S; Cooke, Alexandra B; Gomez, Yessica-Haydee; Mutter, Andrew F; Filippaios, Andreas; Mesfum, Ertirea T; Mantzoros, Christos S

    2014-09-01

    Irisin, a recently discovered myokine, has been shown to induce browning of white adipose tissue, enhancing energy expenditure and mediating some of the beneficial effects of exercise. We aimed to estimate the time frame of changes in irisin levels after acute exercise and the effect of different exercise workloads and intensities on circulating irisin levels immediately post-exercise. In a pilot study, four healthy subjects (22.5±1.7 years) underwent maximal workload exercise (maximal oxygen consumption, VO2 max) and blood was drawn at prespecified intervals to define the time frame of pre- and post-exercise irisin changes over a 24-h period. In the main study, 35 healthy, non-smoking (23.0±3.3 years) men and women (n=20/15) underwent three exercise protocols ≥48-h apart, in random order: i) maximal workload (VO2 max); ii) relative workload (70% of VO2 max/10 min); and iii) absolute workload (75 W/10 min). Blood was drawn immediately pre-exercise and 3 min post-exercise. In the pilot study, irisin levels increased by 35% 3 min post-exercise, then dropped and remained relatively constant. In the main study, irisin levels post-exercise were significantly higher than those of pre-exercise after all workloads (all, P<0.001). Post-to-pre-exercise differences in irisin levels were significantly different between workloads (P=0.001), with the greatest increase by 34% following maximal workload (P=0.004 vs relative and absolute). Circulating irisin levels were acutely elevated in response to exercise, with a greater increase after maximal workload. These findings suggest that irisin release could be a function of muscle energy demand. Future studies need to determine the underlying mechanisms of irisin release and explore irisin's therapeutic potential. © 2014 European Society of Endocrinology.

  3. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects.

    PubMed

    Belviranli, Muaz; Okudan, Nilsel; Kabak, Banu

    2017-07-19

    The objective of the study was to determine the effects of acute high-intensity interval training (HIIT) on hematological parameters in sedentary men. Ten healthy, non-smoker, and sedentary men aged between 18 and 24 years participated in the study. All subjects performed four Wingate tests with 4 min intervals between the tests. Blood samples were collected at pre-exercise, immediately after, 3 and 6 h after the fourth Wingate test. Hematological parameters were analyzed in these samples. The results showed that hematocrit percentage, hemoglobin values, red cell count, mean cell volume, platelet count, total white cell count, and counts of the white cell subgroups increased immediately after the acute HIIT and their values began to return to resting levels 3 h after exercise, and completely returned to resting levels 6 h after exercise. In conclusion, acute HIIT causes an inflammatory response in blood.

  4. Enhanced carotid-cardiac baroreflex response and elimination of orthostatic hypotension 24 hours after acute exercise in paraplegics

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.

    1992-01-01

    To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).

  5. Functional role of AMP-activated protein kinase in the heart during exercise.

    PubMed

    Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J

    2005-04-11

    AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.

  6. Blood pressure changes following aerobic exercise in Caucasian and Chinese descendants.

    PubMed

    Sun, P; Yan, H; Ranadive, S M; Lane, A D; Kappus, R M; Bunsawat, K; Baynard, T; Li, S; Fernhall, B

    2015-03-01

    Acute aerobic exercise produces post-exercise hypotension (PEH). Chinese populations have lower prevalence of cardiovascular disease compared to Caucasians. PEH may be associated cardiovascular disease through its influence on hypertension. The purpose of this study was to compare PEH between Caucasian and Chinese subjects following acute aerobic exercise. 62 (30 Caucasian and 32 Chinese, 50% male) subjects underwent measurement of peripheral and central hemodynamics as well as arterial and cardiac evaluations, 30 min and 60 min after 45 min of treadmill exercise. Caucasians exhibited significantly higher baseline BP than the Chinese. While the reduction in brachial artery systolic BP was greater in Caucasian than in the Chinese, there was no difference in changes in carotid systolic BP between the groups. The increase in cardiac output and heart rate was greater in the Chinese than Caucasians, but total peripheral resistance and leg pulse wave velocity decreased by a similar magnitude in the Chinese and Caucasian subjects. We conclude that acute aerobic exercise produces a greater magnitude of PEH in peripheral systolic BP in Caucasian compared to Chinese subjects. The different magnitude in PEH was caused by the greater increase in cardiac output mediated by heart rate, with no change in stroke volume. It is possible that initial BP differences between races influenced the findings. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: A case-control study.

    PubMed

    Joro, Raimo; Uusitalo, Arja; DeRuisseau, Keith C; Atalay, Mustafa

    2017-12-01

    We investigated how cytokines are implicated with overtraining syndrome (OTS) in athletes during a prolonged period of recovery. Plasma IL-6, IL-10, TNF-α, IL-1β, adipokine leptin, and insulin like growth factor-1 (IGF-1) concentrations were measured in overtrained (OA: 5 men, 2 women) and healthy control athletes (CA: 5 men, 5 women) before and after exercise to volitional exhaustion. Measurements were conducted at baseline and after 6 and 12 months. Inflammatory cytokines did not differ between groups at rest. However, resting leptin concentration was lower in OA than CA at every measurement (P < 0.050) but was not affected by acute exercise. Although IL-6 and TNF-α concentrations increased with exercise in both groups (P < 0.050), pro-inflammatory IL-1β concentration increased only in OA (P < 0.050) and anti-inflammatory IL-10 was greater in CA (P < 0.001). In OA, exercise-related IL-6 and TNF-α induction was enhanced during the follow-up (P < 0.050). IGF-1 decreased with exercise in OA (P < 0.050); however, no differences in resting IGF-1 were observed. In conclusion, low leptin level at rest and a pro-inflammatory cytokine response to acute exercise may reflect a chronic maladaptation state in overtrained athletes. In contrast, the accentuation of IL-6 and TNF-α responses to acute exercise seemed to associate with the progression of recovery from overtraining.

  8. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise

    PubMed Central

    Gundermann, David M.; Fry, Christopher S.; Dickinson, Jared M.; Walker, Dillon K.; Timmerman, Kyle L.; Drummond, Micah J.; Volpi, Elena

    2012-01-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise. PMID:22362401

  9. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise.

    PubMed

    Gundermann, David M; Fry, Christopher S; Dickinson, Jared M; Walker, Dillon K; Timmerman, Kyle L; Drummond, Micah J; Volpi, Elena; Rasmussen, Blake B

    2012-05-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.

  10. High-intensity intermittent exercise increases pulmonary interstitial edema at altitude but not at simulated altitude.

    PubMed

    Edsell, Mark E; Wimalasena, Yashvi H; Malein, William L; Ashdown, Kimberly M; Gallagher, Carla A; Imray, Chris H; Wright, Alex D; Myers, Stephen D

    2014-12-01

    Ascent to high altitude leads to a reduction in ambient pressure and a subsequent fall in available oxygen. The resulting hypoxia can lead to elevated pulmonary artery (PA) pressure, capillary stress, and an increase in interstitial fluid. This fluid can be assessed on lung ultrasound (LUS) by the presence of B-lines. We undertook a chamber and field study to assess the impact of high-intensity exercise in hypoxia on the development of pulmonary interstitial edema in healthy lowlanders. Thirteen volunteers completed a high-intensity intermittent exercise (HIIE) test at sea level, in acute normobaric hypoxia (12% O2, approximately 4090 m equivalent altitude), and in hypobaric hypoxia during a field study at 4090 m after 6 days of acclimatization. Pulmonary interstitial edema was assessed by the evaluation of LUS B-lines. After HIIE, no increase in B-lines was seen in normoxia, and a small increase was seen in acute normobaric hypoxia (2 ± 2; P < .05). During the field study at 4090 m, 12 participants (92%) demonstrated 7 ± 4 B-lines at rest, which increased to 17 ± 5 immediately after the exercise test (P < .001). An increase was evident in all participants. There was a reciprocal fall in peripheral arterial oxygen saturations (Spo2) after exercise from 88% ± 4% to 80% ± 8% (P < .01). B-lines and Spo2 in all participants returned to baseline levels within 4 hours. HIIE led to an increase in B-lines at altitude after subacute exposure but not during acute exposure at equivalent simulated altitude. This may indicate pulmonary interstitial edema. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes.

    PubMed

    Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter

    2017-06-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇ O 2 , RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇ O 2 . These differences were trivial/small when V̇ O 2 was expressed as a percentage of V̇ O 2max . Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes.

  12. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    PubMed

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001) above rest 60-180 min post-exercise and 184±28% (P = 0.037) 180-360 min post exercise. Quadriceps volume increased 7.9±1.6% (-1.9-24.7%) (P<0.001) after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1-3 h (r = 0.02), 3-6 h (r = 0.16) or the aggregate 1-6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  14. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females.

    PubMed

    Glenn, Jordan M; Gray, Michelle; Wethington, Lauren N; Stone, Matthew S; Stewart, Rodger W; Moyen, Nicole E

    2017-03-01

    Citrulline malate (CM) is a nonessential amino acid that increases exercise performance in males. However, based on physiological differences between genders, these results cannot be extrapolated to females. Therefore, the purpose of this investigation was to evaluate effects of acute CM supplementation on upper- and lower-body weightlifting performance in resistance-trained females. Fifteen females (23 ± 3 years) completed two randomized, double-blind trials consuming either CM (8 g dextrose + 8 g CM) or a placebo (8 g dextrose). One hour after supplement consumption, participants performed six sets each of upper- (i.e., bench press) and lower-body (i.e., leg press) exercises to failure at 80 % of previously established one-repetition maximum. Immediately after each set, repetitions completed, heart rate and rating of perceived exertion (RPE) were recorded. Repeated-measures analysis of variance indicated that subjects completed significantly (p = .045) more repetitions throughout upper-body exercise when consuming CM versus placebo (34.1 ± 5.7 vs. 32.9 ± 6.0, respectively). When consuming CM, similar significant (p = .03) improvements in total repetitions completed were observed for lower-body exercise (66.7 ± 30.5 vs. 55.13 ± 20.64, respectively). Overall RPE score was significantly lower (p = .02) in upper-body exercise when subjects consumed CM versus placebo (7.9 ± 0.3 and 8.6 ± 0.2, respectively). The supplement consumed exhibited no significant effects on heart rate at any time point. Acute CM supplementation in females increased upper- and lower-body resistance exercise performance and decreased RPE during upper-body exercise. These data indicate that athletes competing in sports with muscular endurance-based requirements may potentially improve performance by acutely supplementing CM.

  15. Acute exercise alters skeletal muscle mitochondrial respiration and H2O2 emission in response to hyperinsulinemic-euglycemic clamp in middle-aged obese men

    PubMed Central

    Trewin, Adam J.; Levinger, Itamar; Parker, Lewan; Shaw, Christopher S.; Serpiello, Fabio R.; Anderson, Mitchell J.; McConell, Glenn K.; Hare, David L.

    2017-01-01

    Obesity, sedentary lifestyle and aging are associated with mitochondrial dysfunction and impaired insulin sensitivity. Acute exercise increases insulin sensitivity in skeletal muscle; however, whether mitochondria are involved in these processes remains unclear. The aim of this study was to investigate the effects of insulin stimulation at rest and after acute exercise on skeletal muscle mitochondrial respiratory function (JO2) and hydrogen peroxide emission (JH2O2), and the associations with insulin sensitivity in obese, sedentary men. Nine men (means ± SD: 57 ± 6 years; BMI 33 ± 5 kg.m2) underwent hyperinsulinemic-euglycemic clamps in two separate trials 1–3 weeks apart: one under resting conditions, and another 1 hour after high-intensity exercise (4x4 min cycling at 95% HRpeak). Muscle biopsies were obtained at baseline, and pre/post clamp to measure JO2 with high-resolution respirometry and JH2O2 via Amplex UltraRed from permeabilized fibers. Post-exercise, both JO2 and JH2O2 during ADP stimulated state-3/OXPHOS respiration were lower compared to baseline (P<0.05), but not after subsequent insulin stimulation. JH2O2 was lower post-exercise and after subsequent insulin stimulation compared to insulin stimulation in the rest trial during succinate supported state-4/leak respiration (P<0.05). In contrast, JH2O2 increased during complex-I supported leak respiration with insulin after exercise compared with resting conditions (P<0.05). Resting insulin sensitivity and JH2O2 during complex-I leak respiration were positively correlated (r = 0.77, P<0.05). We conclude that in obese, older and sedentary men, acute exercise modifies skeletal muscle mitochondrial respiration and H2O2 emission responses to hyperinsulinemia in a respiratory state-specific manner, which may have implications for metabolic diseases involving insulin resistance. PMID:29161316

  16. Acute Cardiovascular Response during Resistance Exercise with Whole-body Vibration in Sedentary Subjects: A Randomized Cross-over Trial.

    PubMed

    Dias, Thaisa; Polito, Marcos

    2015-01-01

    This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values ​​(P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values ​​of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.

  17. The effect of manual acupuncture on blood neutrophil counts in moderate intensity exercise

    NASA Astrophysics Data System (ADS)

    Ciang, C. Y.; Simadibrata, C.; Tobing, A.; Srilestari, A.

    2017-08-01

    Exercise, even though it has a beneficial effect, can cause muscle damage and trigger inflammatory responses, as evidenced by increased neutrophils in the blood. Acupuncture is a therapeutic modality that is expected to reduce acute inflammatory responses due to exercise. Thirty untrained men were divided randomly into two groups. The manual acupuncture group (n = 15) received stimulation at acupoints ST36 and SP6 bilateral by needle insertion, while the placebo group (n = 15) received insertion of needles on plaster without penetrating the skin. Therapy was done once for 30 minutes immediately after the subjects completed the exercise. Blood neutrophil counts were assessed before exercise and one hour after exercise ended. The results show there is a statistically significant difference in the number of neutrophils before and after exercise between the manual acupuncture group and the placebo group (0.08±0.91 and 0.97±0.70 p = 0.006). Acupuncture therapy effectively mitigates the acute inflammatory response triggered by exercise.

  18. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  19. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans.

    PubMed

    Morales-Alamo, David; Ponce-González, Jesús Gustavo; Guadalupe-Grau, Amelia; Rodríguez-García, Lorena; Santana, Alfredo; Cusso, Maria Roser; Guerrero, Mario; Guerra, Borja; Dorado, Cecilia; Calbet, José A L

    2012-09-01

    AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.

  20. In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation*

    PubMed Central

    McFarlan, Jay T.; Yoshida, Yuko; Jain, Swati S.; Han, Xioa-Xia; Snook, Laelie A.; Lally, James; Smith, Brennan K.; Glatz, Jan F. C.; Luiken, Joost J. F. P.; Sayer, Ryan A.; Tupling, A. Russell; Chabowski, Adrian; Holloway, Graham P.; Bonen, Arend

    2012-01-01

    For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO. PMID:22584574

  1. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise.

    PubMed

    Cardenia, Vladimiro; Rodriguez-Estrada, Maria Teresa; Lorenzini, Antonello; Bandini, Erika; Angeloni, Cristina; Hrelia, Silvana; Malaguti, Marco

    2017-05-01

    The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes.

    PubMed

    Aoki, Kosuke; Nakao, Atsunori; Adachi, Takako; Matsui, Yasushi; Miyakawa, Shumpei

    2012-01-01

    Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW) on oxidative stress and muscle fatigue in response to acute exercise. Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW) for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2) for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn't decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP) or creatine kinease after exercise. Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.

  3. A single-bout of one-hour spinning exercise increases troponin T in healthy subjects.

    PubMed

    Duttaroy, Smita; Thorell, Daniel; Karlsson, Lena; Börjesson, Mats

    2012-02-01

    While long-term endurance exercise is known to increase cardiac biomarkers, only a few studies on short-term exercise and these markers have been reported. The aim of this study was to investigate the acute effects of a one-hour bicycle spinning on cardiac biomarkers in healthy individuals. Serum levels of high-sensitive troponin T (TnT), creatinine kinase MB fraction (CK-MB), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatinine kinase (CK) and myoglobin were measured at baseline, 1 and 24 hour after one hour of spinning exercise in ten healthy and fit (age 31.0 ± 6.6 years) individuals. TnT doubled one hour post-exercise (All values ≤ 5 - 9.7 ± 6.0 ng/L, p < 0.001). Two individuals had TnT levels above upper reference limit, URL (20.7 and 20.2 ng/L, URL = 12 ng/L). Myoglobin levels increased 72% one hour post-exercise (38 ± 20 - 66 ± 41 mg/L, p < 0.02). TnT and myoglobin levels returned to baseline 24 hour post-exercise. Serum levels of CK-MB, NT-proBNP and CK were not significantly changed. A single-bout of one-hour bicycle spinning transiently increases TnT and myoglobin in healthy subjects. Some subjects even have TnT release above URL. Thus, recently performed exercise also of short duration should be taken into consideration in the evaluation of acute chest pain with release of cardiac TnT.

  4. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise

    PubMed Central

    Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2015-01-01

    Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778

  5. Acute abdominal rhabdomyolysis after body building exercise: is there a "rectus abdominus syndrome?".

    PubMed

    Schmitt, H P; Bersch, W; Feustel, H P

    1983-01-01

    Report of a 19-year-old man who was admitted to the hospital after vigorous exercise with signs of the "acute abdomen" syndrome. Since intestinal reasons for the complaints were excluded, a myocardial infarction was considered. However, the excessively increased serum CK levels indicated a disorder of the voluntary muscles. A biopsy taken from the rectus abdominis revealed typical features of acute rhabdomyolysis, which was obviously restricted to the rectus abdominis. Together with a somewhat later observed autopsy case of a young male with acute abdominal rhabdomyolysis, also restricted to the rectus abdominis, this case gives rise to discuss, whether there exists a "rectus abdominis syndrome" analogous to the anterior tibial syndrome.

  6. Breakfast food health and acute exercise: Effects on state body image.

    PubMed

    Hayes, Jacqueline F; Giles, Grace E; Mahoney, Caroline R; Kanarek, Robin B

    2018-05-10

    Food intake and exercise have been shown to alter body satisfaction in a state-dependent manner. One-time consumption of food perceived as unhealthy can be detrimental to body satisfaction, whereas an acute bout of moderate-intensity aerobic exercise can be beneficial. The current study examined the effect of exercise on state body image and appearance-related self-esteem following consumption of isocaloric foods perceived as healthy or unhealthy in 36 female college students (18-30 years old) in the Northeastern United States. Using a randomized-controlled design, participants attended six study sessions with breakfast conditions (healthy, unhealthy, no food) and activity (exercise, quiet rest) as within-participants factors. Body image questionnaires were completed prior to breakfast condition, between breakfast and activity conditions, and following activity condition. Results showed that consumption of an unhealthy breakfast decreased appearance self-esteem and increased body size perception, whereas consumption of a healthy breakfast did not influence appearance self-esteem but increased body size perception. Exercise did not influence state body image attitudes or perceptions following meal consumption. Study findings suggest that morning meal type, but not aerobic exercise, influence body satisfaction in college-aged females. Copyright © 2018. Published by Elsevier Ltd.

  7. The effects of a multiflavonoid supplement on vascular and hemodynamic parameters following acute exercise.

    PubMed

    Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.

  8. The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    PubMed Central

    Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012

  9. The acute effects of L-arginine on hormonal and metabolic responses during submaximal exercise in trained cyclists.

    PubMed

    Forbes, Scott C; Harber, Vicki; Bell, Gordon J

    2013-08-01

    L-arginine may enhance endurance performance mediated by two primary mechanisms including enhanced secretion of endogenous growth hormone (GH) and as a precursor of nitric oxide (NO); however, research in trained participants has been equivocal. The purpose was to investigate the effect of acute L-arginine ingestion on the hormonal and metabolic response during submaximal exercise in trained cyclists. Fifteen aerobically trained men (age: 28 ± 5 y; body mass: 77.4 ± 9.5 kg; height: 180.9 ± 7.9 cm; VO2max: 59.6 ± 5.9 ml·kg- 1·min-1) participated in a randomized, double-blind, crossover study. Subjects consumed L-arginine (ARG; 0. 075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of submaximal exercise (60 min at 80% of power output achieved at ventilatory threshold). The ARG condition significantly increased plasma L-arginine concentrations (~146%), while no change was detected in the PLA condition. There were no differences between conditions for GH, nonesterified fatty acids (NEFA), lactate, glucose, VO2, VCO2, RER, CHO oxidation, and NOx. There was reduced fat oxidation at the start of exercise (ARG: 0.36 ± 0.25 vs. PLA: 0.42 ± 0.23 g·min-1, p < .05) and an elevated plasma glycerol concentrations at the 45-min time point (ARG: 340.3 vs. PLA: 288.5 μmol·L-1, p < .05) after L-arginine consumption. In conclusion, the acute ingestion of L-arginine did not alter any hormonal, metabolic, or cardio-respiratory responses during submaximal exercise except for a small but significant increase in glycerol at the 45-min time point and a reduction in fat oxidation at the start of exercise.

  10. Effects of Aerobic Exercise on Anxiety Symptoms and Cortical Activity in Patients with Panic Disorder: A Pilot Study.

    PubMed

    Lattari, Eduardo; Budde, Henning; Paes, Flávia; Neto, Geraldo Albuquerque Maranhão; Appolinario, José Carlos; Nardi, Antônio Egídio; Murillo-Rodriguez, Eric; Machado, Sérgio

    2018-01-01

    The effects of the aerobic exercise on anxiety symptoms in patients with Panic Disorder (PD) remain unclear. Thus, the investigation of possible changes in EEG frontal asymmetry could contribute to understand the relationship among exercise, brain and anxiety. To investigate the acute effects of aerobic exercise on the symptoms of anxiety and the chronic effects of aerobic exercise on severity and symptoms related to PD, besides the changes in EEG frontal asymmetry. Ten PD patients were divided into two groups, Exercise Group (EG; n=5) and Control Group (CG; n=5), in a randomized allocation. At baseline and post-intervention, they submitted the psychological evaluation through Panic Disorder Severity Scale (PDSS), Beck Anxiety Inventory (BAI), Beck Depression Inventory-II (BDI-II), EEG frontal asymmetry, and maximal oxygen consumption (VO 2 max). On the second visit, the patients of EG being submitted to the aerobic exercise (treadmill, 25 minutes, and 50-55% of heart rate reserve) and the CG remained seated for the same period of time. Both groups submitted a psychological evaluation with Subjective Units of Distress Scale (SUDS) at baseline, immediately after (Post-0), and after 10 minutes of the rest pause (Post-10). The patients performed 12 sessions of aerobic exercise with 48-72 hours of interval between sessions. In EG, SUDS increased immediately after exercise practice and showed chronic decrease in BAI and BDI-II as well as increased in VO 2 max (Post-intervention). Aerobic exercise can promote increase in anxiety acutely and regular aerobic exercise promotes reduction in anxiety levels.

  11. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  12. Resistance exercise increases intramuscular NF-κb signaling in untrained males.

    PubMed

    Townsend, Jeremy R; Stout, Jeffrey R; Jajtner, Adam R; Church, David D; Beyer, Kyle S; Oliveira, Leonardo P; La Monica, Michael B; Riffe, Joshua J; Muddle, Tyler W D; Baker, Kayla M; Fukuda, David H; Roberts, Michael D; Hoffman, Jay R

    2016-12-01

    The NF-κB signaling pathway regulates multiple cellular processes following exercise stress. This study aims to examine the effects of an acute lower-body resistance exercise protocol and subsequent recovery on intramuscular NF-κB signaling. Twenty-eight untrained males were assigned to either a control (CON; n = 11) or exercise group (EX; n = 17) and completed a lower-body resistance exercise protocol consisting of the back squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis pre-exercise (PRE), 1-hour (1H), 5-hours (5H), and 48-hours (48H) post-resistance exercise. Multiplex signaling assay kits (EMD Millipore, Billerica, MA, USA) were used to quantify the total protein (TNFR1, c-Myc) or phosphorylation status of proteins belonging to the NF-κB signaling pathway (IKKa/b, IkBα, NF-κB) using multiplex protein assay. Repeated measures ANOVA analysis was used to determine the effects of the exercise bout on intramuscular signaling at each time point. Additionally, change scores were analyzed by magnitude based inferences to determine a mechanistic interpretation. Repeated measures ANOVA indicated a trend for a two-way interaction between the EX and CON Group (p = 0.064) for c-Myc post resistance exercise. Magnitude based inference analysis suggest a "Very Likely" increase in total c-Myc from PRE-5H and a "Likely" increase in IkBα phosphorylation from PRE-5H post-resistance exercise. Results indicated that c-Myc transcription factor is elevated following acute intense resistance exercise in untrained males. Future studies should examine the role that post-resistance exercise NF-κβ signaling plays in c-Myc induction, ribosome biogenesis and skeletal muscle regeneration.

  13. The protective effects of acute cardiovascular exercise on the interference of procedural memory.

    PubMed

    Jo, J S; Chen, J; Riechman, S; Roig, M; Wright, D L

    2018-04-10

    Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.

  14. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    PubMed

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  16. Organ-specific physiological responses to acute physical exercise and long-term training in humans.

    PubMed

    Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani

    2014-11-01

    Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.

  17. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  18. Sex differences in autonomic function following maximal exercise.

    PubMed

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2015-01-01

    Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.

  19. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway.

    PubMed

    Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron

    2013-08-01

    The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

  20. Use of concept mapping in an undergraduate introductory exercise physiology course.

    PubMed

    Henige, Kim

    2012-09-01

    Physiology is often considered a challenging course for students. It is up to teachers to structure courses and create learning opportunities that will increase the chance of student success. In an undergraduate exercise physiology course, concept maps are assigned to help students actively process and organize information into manageable and meaningful chunks and to teach them to recognize the patterns and regularities of physiology. Students are first introduced to concept mapping with a commonly relatable nonphysiology concept and are then assigned a series of maps that become more and more complex. Students map the acute response to a drop in blood pressure, the causes of the acute increase in stroke volume during cardiorespiratory exercise, and the factors contributing to an increase in maximal O(2) consumption with cardiorespiratory endurance training. In the process, students draw the integrative nature of physiology, identify causal relationships, and learn about general models and core principles of physiology.

  1. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.

  2. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation.

    PubMed

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-04-03

    Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Experimental, randomized crossover study. Laboratory at Marquette University. Thirty healthy adults (19.3±1.5 years, 15 males). Subjects underwent CPM testing before and after isometric exercise (knee extension, 30% maximum voluntary contraction for three minutes) and quiet rest in two separate experimental sessions. Pressure pain thresholds (PPTs) at the quadriceps and upper trapezius muscles were assessed before, during, and after ice water immersions. PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P < 0.05). CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0.43-0.70), and the between-session reliability was poor (ICC = 0.20-0.35). Due to the variability in the systemic exercise-induced hypoalgesia (EIH) response, participants were divided into systemic EIH responders (N = 9) and nonresponders (N = 21). EIH responders experienced attenuated CPM following exercise (P = 0.03), whereas the nonresponders showed no significant change (P > 0.05). Isometric exercise decreased CPM in individuals who reported systemic EIH, suggesting activation of shared mechanisms between CPM and systemic EIH responses. These results may improve the understanding of increased pain after exercise in patients with chronic pain and potentially attenuated CPM.

  3. Platelet activation in essential hypertension during exercise: pre- and post-treatment changes with an angiotensin II receptor blocker.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Yiannaki, Efi; Markala, Dimitra; Papadopoulos, Nikolaos; Triantafyllou, Areti; Anyfanti, Panagiota; Petidis, Konstantinos; Garypidou, Vasileia; Doumas, Michael; Ferro, Albert; Douma, Stella

    2014-04-01

    Acute exercise may exert deleterious effects on the cardiovascular system through a variety of pathophysiological mechanisms, including increased platelet activation. However, the degree of exercise-induced platelet activation in untreated hypertensive (UH) individuals as compared with normotensive (NT) individuals has yet to be established. Furthermore, the effect of antihypertensive treatment on exercise-induced platelet activation in essential hypertension (EH) remains unknown. Study 1 consisted of 30 UH and 15 NT subjects. UH subjects who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker (ARB; valsartan). Circulating monocyte-platelet aggregates (MPA) and platelet P-selectin were measured as platelet activation markers at baseline, immediately after a treadmill exercise test, and 10, 30, and 90 minutes later. Maximal platelet activation was observed at 10 minutes after peak exercise in both groups. In UH subjects, MPA levels remained increased at 30 minutes after peak exercise, despite BP fall to baseline levels. MPA levels were significantly higher in UH subjects than NT subjects at maximal exercise and at 10 and 30 minutes of recovery. Post-treatment MPA levels increased significantly only at 10 minutes into recovery and were similar to those of NT subjects. Acute high-intensity exercise exaggerates platelet activation in untreated patients with EH compared with NT individuals. Angiotensin II receptor blockade with adequate BP control greatly improves exercise-induced platelet activation in EH. Further studies are needed to clarify whether this phenomenon depends purely on BP lowering or benefits also from the pleiotropic effects of ARBs.

  4. Time kinetics of acute changes in muscle architecture in response to resistance exercise.

    PubMed

    Csapo, Robert; Alegre, Luis M; Baron, Ramon

    2011-05-01

    The study aimed to assess acute changes in muscle architecture and its recovery after exhaustive exercise. We hypothesised that repetitive leg press exercise would decrease vastus lateralis fascicle length, while increasing both muscle thickness and pennation angles. By investigating the time kinetics of recovery of these parameters, we wished to gain insight into the mechanisms responsible for muscle architectural changes during exercise. Muscle architecture was assessed in 41 male volunteers (25.2±3.7 yrs; 1.78±0.06 m; 76.4±11.7 kg) before and directly after, as well as 5, 10, 15, and 30 min after induction of fatigue by leg press exercise. Vastus lateralis muscle thickness, pennation angles and fascicle lengths were measured at rest by ultrasonography. Muscular fatigue was induced by an exhaustive series of maximum power, single leg press repetitions. Following leg press exercise vastus lateralis muscle thickness and pennation angles were increased by approximately 7 and 10%, whereas fascicle lengths decreased by 2%. Different recovery times (muscle thickness: 30 min; pennation angles: 15 min; fascicle lengths: 5 min) were observed. The differential time courses of recovery suggest that changes in muscle thickness, pennation angles, and fascicle lengths are driven by different exercise-related stimuli. Increased muscle perfusion and tendon creep are likely candidates accounting for short-term changes in muscle architecture. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis.

    PubMed

    Verburgh, Lot; Königs, Marsh; Scherder, Erik J A; Oosterlaan, Jaap

    2014-06-01

    The goal of this meta-analysis was to aggregate available empirical studies on the effects of physical exercise on executive functions in preadolescent children (6-12 years of age), adolescents (13-17 years of age) and young adults (18-35 years of age). The electronic databases PubMed, EMBASE and SPORTDiscus were searched for relevant studies reporting on the effects of physical exercise on executive functions. Nineteen studies were selected. There was a significant overall effect of acute physical exercise on executive functions (d=0.52, 95% CI 0.29 to 0.76, p<0.001). There were no significant differences between the three age groups (Q (2)=0.13, p=0.94). Furthermore, no significant overall effect of chronic physical exercise (d=0.14, 95%CI -0.04 to 0.32, p=0.19) on executive functions (Q (1)=5.08, p<0.05) was found. Meta-analytic effect sizes were calculated for the effects of acute physical exercise on the domain's inhibition/interference control (d=0.46, 95% CI 0.33 to 0.60, p<0.001) and working memory (d=0.05, 95% CI  -0.51 to 0.61, p=0.86) as well as for the effects of chronic physical exercise on planning (d=0.16, 95% CI 0.18 to 0.89, p=0.18). Results suggest that acute physical exercise enhances executive functioning. The number of studies on chronic physical exercise is limited and it should be investigated whether chronic physical exercise shows effects on executive functions comparable to acute physical exercise. This is highly relevant in preadolescent children and adolescents, given the importance of well-developed executive functions for daily life functioning and the current increase in sedentary behaviour in these age groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    PubMed Central

    Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter

    2017-01-01

    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes. Key points The manner in which each training background (endurance vs. sprint) influences the response to HIIT is not well known. Despite the identical exercise intensity in relative terms, endurance athletes are able to perform HIIT with increased reliance on aerobic metabolic pathways when compared to sprint athletes. The mean V̇O2 (% V̇O2max) and HR as well as markers of the cardiac autonomic regulation, systemic inflammation and muscle damage monitored during the early recovery phase did not demonstrate any differences between endurance and sprint trained individuals. PMID:28630575

  7. The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial.

    PubMed

    Wingfield, Hailee L; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Trexler, Eric T; Hackney, Anthony C; Weaver, Mark A; Ryan, Eric D

    2015-06-01

    The purpose of this study was to examine the effect of exercise modality and pre-exercise carbohydrate (CHO) or protein (PRO) ingestion on post-exercise resting energy expenditure (REE) and respiratory exchange ratio (RER) in women. Twenty recreationally active women (mean ± SD; age 24.6 ± 3.9 years; height 164.4 ± 6.6 cm; weight 62.7 ± 6.6 kg) participated in this randomized, crossover, double-blind study. Each participant completed six exercise sessions, consisting of three exercise modalities: aerobic endurance exercise (AEE), high-intensity interval running (HIIT), and high-intensity resistance training (HIRT); and two acute nutritional interventions: CHO and PRO. Salivary samples were collected before each exercise session to determine estradiol-β-17 and before and after to quantify cortisol. Post-exercise REE and RER were analyzed via indirect calorimetry at the following: baseline, immediately post (IP), 30 minutes (30 min) post, and 60 minutes (60 min) post exercise. A mixed effects linear regression model, controlling for estradiol, was used to compare mean longitudinal changes in REE and RER. On average, HIIT produced a greater REE than AEE and HIRT ( p < 0.001) post exercise. Effects of AEE and HIRT were not significantly different for post-exercise REE ( p = 0.1331). On average, HIIT produced lower RER compared to either AEE or HIRT after 30 min ( p < 0.001 and p = 0.0169, respectively) and compared to AEE after 60 min ( p = 0.0020). On average, pre-exercise PRO ingestion increased post-exercise REE ( p = 0.0076) and decreased post-exercise RER ( p < 0.0001) compared to pre-exercise CHO ingestion. HIIT resulted in the largest increase in REE and largest reduction in RER.

  8. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  9. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  10. Galanin Mediates Features of Neural and Behavioral Stress Resilience Afforded by Exercise

    PubMed Central

    Sciolino, N. R.; Smith, J.M.; Stranahan, A.M.; Freeman, K.G.; Edwards, G. L.; Weinshenker, D.; Holmes, P.V.

    2014-01-01

    Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels. PMID:25301278

  11. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance

    PubMed Central

    Goodall, Stuart; Twomey, Rosie; Amann, Markus

    2015-01-01

    Purpose To outline how hypoxia profoundly affects neuronal functionality and thus compromise exercise-performance. Methods Investigations using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) detecting neuronal changes at rest and those studying fatiguing effects on whole-body exercise performance in acute (AH) and chronic hypoxia (CH) were evaluated. Results At rest during very early hypoxia (<1-h), slowing of cerebral neuronal activity is evident despite no change in corticospinal excitability. As time in hypoxia progresses (3-h), increased corticospinal excitability becomes evident; however, changes in neuronal activity are unknown. Prolonged exposure (3–5 d) causes a respiratory alkalosis which modulates Na+ channels, potentially explaining reduced neuronal excitability. Locomotor exercise in AH exacerbates the development of peripheral-fatigue; as the severity of hypoxia increases, mechanisms of peripheral-fatigue become less dominant and CNS hypoxia becomes the predominant factor. The greatest central-fatigue in AH occurs when SaO2 is ≤75%, a level that coincides with increasing impairments in neuronal activity. CH does not improve the level of peripheral-fatigue observed in AH; however, it attenuates the development of central-fatigue paralleling increases in cerebral O2 availability and corticospinal excitability. Conclusions The attenuated development of central-fatigue in CH might explain, the improvements in locomotor exercise-performance commonly observed after acclimatisation to high altitude. PMID:25593787

  12. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training

    PubMed Central

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-01-01

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day−1 and 235 mg day−1, respectively), or a placebo, for 10 weeks. During this period the participants’ training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. PMID:25384788

  13. Technical note: adipose tissue blood flow in miniature swine (Sus scrofa) using the 133xenon washout technique.

    PubMed

    Moher, H E; Carey, G B

    2002-05-01

    The purpose of this study was to examine the 133xenon washout technique as a viable method for measuring adipose tissue blood flow (ATBF) in swine. Using a total of 32 female Yucatan miniature swine (Sus scrofa), the partition coefficient for 133xenon in swine subcutaneous adipose tissue was determined and ATBF was measured at rest and under various physiological conditions. These conditions included feeding, anesthesia, epinephrine infusion, and acute exercise. The effects of epinephrine and acute exercise were examined in both sedentary and exercise-trained swine. The partition coefficient value for 133xenon in swine subcutaneous adipose tissue was 9.23+/-0.26 mL/g (mean +/- SD, n = 10). The average value for resting ATBF in swine was 3.98+/-2.72 mL/(100 g tissue-min) (n = 19). Feeding increased ATBF by approximately fivefold over fasting values, and isoflurane anesthesia significantly decreased ATBF compared to rest (1.64+/-1.12 vs 3.92+/-4.22 mL/[100 g x min], n = 10). A 30-min epinephrine infusion (1 microg/[kg BW x min]) significantly increased ATBF from a resting value of 3.13+/-2.61 to 10.35+/-5.31 mL/(100 g x min) (n = 12). Epinephrine infusion into exercise-trained swine increased ATBF to the same extent as when infused into sedentary swine. An acute, 20-min bout of exercise significantly increased ATBF in swine, and the sedentary swine showed a larger increase in ATBF than their exercise-trained littermates relative to rest: 7.83 vs 2.98 mL/(100 g x min). In conclusion, the 133xenon washout technique appears to be a viable method for measuring ATBF in swine; our findings are comparable to swine ATBF values reported using the microsphere method and are consistent with values reported in animal and human studies.

  14. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle.

    PubMed

    Ulbricht, Anna; Gehlert, Sebastian; Leciejewski, Barbara; Schiffer, Thorsten; Bloch, Wilhelm; Höhfeld, Jörg

    2015-01-01

    Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately trained men. We show that strenuous resistance exercise causes an acute induction of CASA in affected muscles to degrade mechanically damaged cytoskeleton proteins. Moreover, repeated resistance exercise during 4 wk of training led to an increased expression of CASA components. In human skeletal muscle, CASA apparently acts as a central adaptation mechanism that responds to acute physical exercise and to repeated mechanical stimulation.

  15. Influence of Exercise Intensity for Improving Depressed Mood in Depression: A Dose-Response Study.

    PubMed

    Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-07-01

    Exercise effectively improves mood in major depressive disorder (MDD), but the optimal exercise stimulus to improve depressed mood is unknown. To determine the dose-response relationship of acute exercise intensity with depressed mood responses to exercise in MDD. We hypothesized that the acute response to exercise would differ between light, moderate, and hard intensity exercise with higher intensities yielding more beneficial responses. Once weekly, 24 women (age: 38.6±14.0) diagnosed with MDD underwent a 30-minute session at one of three steady-state exercise intensities (light, moderate, hard; rating of perceived exertion 11, 13 or 15) or quiet rest on a stationary bicycle. Depressed mood was evaluated with the Profile of Mood States before, 10 and 30 minutes post-exercise. Exercise reduced depressed mood 10 and 30 minutes following exercise, but this effect was not influenced by exercise intensity. Participants not currently taking antidepressants (n=10) had higher baseline depression scores, but did not demonstrate a different antidepressant response to exercise compared to those taking antidepressants. To acutely improve depressed mood, exercise of any intensity significantly improved feelings of depression with no differential effect following light, moderate, or hard exercise. Pharmacological antidepressant usage did not limit the mood-enhancing effect of acute exercise. Acute exercise should be used as a symptom management tool to improve mood in depression, with even light exercise an effective recommendation. These results need to be replicated and extended to other components of exercise prescription (e.g., duration, frequency, mode) to optimize exercise guidelines for improving depression. Copyright © 2016. Published by Elsevier Ltd.

  16. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    PubMed Central

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas; Mattijssen, Frits; Evers-van Gogh, Inkie; Schaart, Gert; Jeppesen, Jacob; Kneppers, Anita; Mensink, Marco; Voshol, Peter J.; Olivecrona, Gunilla; Tan, Nguan Soon; Hesselink, Matthijs K. C.; Berbée, Jimmy F.; Rensen, Patrick C. N.; Kalkhoven, Eric; Schrauwen, Patrick; Kersten, Sander

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise encodes angiopoietin-like 4 (ANGPTL4), an inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. Using a combination of human, animal, and in vitro data, we show that induction of ANGPTL4 in nonexercising muscle is mediated by elevated plasma free fatty acids via peroxisome proliferator-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise. PMID:24591600

  17. Experimental Effects of Acute Exercise on Prospective Memory and False Memory.

    PubMed

    Green, David; Loprinzi, Paul D

    2018-01-01

    Research demonstrates that acute exercise can enhance retrospective episodic memory performance. However, limited research has examined the effects of acute exercise on prospective memory, and no studies have examined the effects of exercise on false memory performance. This study examined the potential effects of acute exercise on prospective memory and false memory performance. A between-group randomized controlled trial was employed, with participants (college students; M age  = 20 years) randomized into an exercise group (15-minute acute bout of treadmill walking; N = 25) or a control group (15 minutes of sitting; N = 26). Prospective memory was assessed from two laboratory and two naturalistic assessments outside the lab. False memory was assessed using a word-list trial. There were no statistically significant differences in prospective memory based on group allocation (F Group×Time  = 1.17; P = 0.32; η 2  = 0.06). However, the control group recalled more false words and had a higher rate of false memory recognition (F Group×Time  = 3.15; P = 0.01; η 2  = 0.26). These findings indicate that acute moderate-intensity aerobic exercise is not associated with prospective memory performance but provides some suggestive evidence that acute exercise may reduce the rate of false memories.

  18. Effects of Aerobic Exercise on Anxiety Symptoms and Cortical Activity in Patients with Panic Disorder: A Pilot Study

    PubMed Central

    Lattari, Eduardo; Budde, Henning; Paes, Flávia; Neto, Geraldo Albuquerque Maranhão; Appolinario, José Carlos; Nardi, Antônio Egídio; Murillo-Rodriguez, Eric; Machado, Sérgio

    2018-01-01

    Background: The effects of the aerobic exercise on anxiety symptoms in patients with Panic Disorder (PD) remain unclear. Thus, the investigation of possible changes in EEG frontal asymmetry could contribute to understand the relationship among exercise, brain and anxiety. Objective: To investigate the acute effects of aerobic exercise on the symptoms of anxiety and the chronic effects of aerobic exercise on severity and symptoms related to PD, besides the changes in EEG frontal asymmetry. Methods: Ten PD patients were divided into two groups, Exercise Group (EG; n=5) and Control Group (CG; n=5), in a randomized allocation. At baseline and post-intervention, they submitted the psychological evaluation through Panic Disorder Severity Scale (PDSS), Beck Anxiety Inventory (BAI), Beck Depression Inventory-II (BDI-II), EEG frontal asymmetry, and maximal oxygen consumption (VO2max). On the second visit, the patients of EG being submitted to the aerobic exercise (treadmill, 25 minutes, and 50-55% of heart rate reserve) and the CG remained seated for the same period of time. Both groups submitted a psychological evaluation with Subjective Units of Distress Scale (SUDS) at baseline, immediately after (Post-0), and after 10 minutes of the rest pause (Post-10). The patients performed 12 sessions of aerobic exercise with 48-72 hours of interval between sessions. Results: In EG, SUDS increased immediately after exercise practice and showed chronic decrease in BAI and BDI-II as well as increased in VO2max (Post-intervention). Conclusion: Aerobic exercise can promote increase in anxiety acutely and regular aerobic exercise promotes reduction in anxiety levels. PMID:29515644

  19. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training.

    PubMed

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-09-15

    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  20. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension.

    PubMed

    Hansen, Ane H; Nyberg, Michael; Bangsbo, Jens; Saltin, Bengt; Hellsten, Ylva

    2011-11-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase, cytochrome P450 4A and 2C9, and the purinergic receptors P2X1 and P2Y2 were determined in skeletal muscle. The protein levels were compared with those of normotensive control subjects (n=12). Resting muscle dialysate thromboxane A(2) and prostacyclin concentrations were lower (P<0.05) after training compared with before training. Before training, dialysate thromboxane A(2) decreased with acute exercise, whereas after training, no changes were found. Before training, dialysate prostacyclin levels did not increase with acute exercise, whereas after training there was an 82% (P<0.05) increase from rest to exercise. The exercise-induced increase in ATP and ADP was markedly reduced after training (P<0.05). The amount of eNOS protein in the hypertensive subjects was 40% lower (P<0.05) than in the normotensive control subjects, whereas cystathionine-γ-lyase levels were 25% higher (P<0.05), potentially compensating for the lower eNOS level. We conclude that exercise training alters the balance between vasodilating and vasoconstricting compounds as evidenced by a decrease in the level of thromboxane, reduction in the exercise-induced increase in ATP and a greater exercise-induced increase in prostacyclin.

  1. Rehabilitation of the Ankle After Acute Sprain or Chronic Instability.

    PubMed

    Mattacola, Carl G; Dwyer, Maureen K

    2002-12-01

    OBJECTIVE: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. BACKGROUND: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. RECOMMENDATIONS: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed.

  2. Rehabilitation of the Ankle After Acute Sprain or Chronic Instability

    PubMed Central

    Mattacola, Carl G.; Dwyer, Maureen K.

    2002-01-01

    Objective: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. Background: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. Recommendations: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed. PMID:12937563

  3. Attitudes towards exercise in patients with chronic disease: the influence of comorbid factors on motivation and ability to exercise.

    PubMed

    Murphy, Claire-Louise; Sheane, Barry J; Cunnane, Gaye

    2011-02-01

    Exercise is an integral part of a healthy lifestyle. It has a well defined role in maintaining health in chronic illness. This study was undertaken to determine attitudes towards exercise in patients admitted to hospital with medical illnesses. A questionnaire on attitudes to and extent of exercise was devised and administered to patients admitted to an acute medical unit of a large university teaching hospital in 2008. Data were analysed using SPSS. 107 patients participated, mean age 57 years (range 20-92): 79% had at least one chronic disease, 60% were overweight, 42% did little or no exercise, while 81% did not achieve moderate physical activity. Factors associated with reduced activity included increasing age, alcohol excess, lower education level, and unemployment. Approximately 50% of the patients blamed health problems while the other half cited lack of time or motivation as reasons for not exercising. Only 3% were aware of national or international exercise recommendations. Much greater awareness of the importance of exercise and its impact on health and longevity is needed. Healthcare providers have an important role in exercise education in patients with acute and chronic disease.

  4. Self-regulation strategies may enhance the acute effect of exercise on smoking delay.

    PubMed

    Hatzigeorgiadis, Antonis; Pappa, Vassiliki; Tsiami, Anastasia; Tzatzaki, Theodora; Georgakouli, Kalliopi; Zourbanos, Nikos; Goudas, Marios; Chatzisarantis, Nikos; Theodorakis, Yannis

    2016-06-01

    The present study examined the acute effect of a moderate intensity aerobic exercise session combined with self-regulation on smoking delay in physically inactive smokers. Participants were 11 adults (5 males and 6 females) that completed three experimental conditions: control, exercise, and exercise using self-regulation strategies (SR). Following the experimental treatment smoking for the two exercise conditions delayed significantly more than for the control condition; in addition exercise SR delayed smoking marginally more that the plain exercise condition. Findings supported previous research that acute exercise reduces cravings to smoke, and suggests that the use of self-regulation strategies may strengthen exercise for smoking cessation interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-intensity interval training induces a modest systemic inflammatory response in active, young men

    PubMed Central

    Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew

    2014-01-01

    The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199

  6. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease.

    PubMed

    Costa, R J S; Snipe, R M J; Kitic, C M; Gibson, P R

    2017-08-01

    "Exercise-induced gastrointestinal syndrome" refers to disturbances of gastrointestinal integrity and function that are common features of strenuous exercise. To systematically review the literature to establish the impact of acute exercise on markers of gastrointestinal integrity and function in healthy populations and those with chronic gastrointestinal conditions. Search literature using five databases (PubMed, EBSCO, Web of Science, SPORTSdiscus, and Ovid Medline) to review publications that focused on the impact of acute exercise on markers of gastrointestinal injury, permeability, endotoxaemia, motility and malabsorption in healthy populations and populations with gastrointestinal diseases/disorders. As exercise intensity and duration increases, there is considerable evidence for increases in indices of intestinal injury, permeability and endotoxaemia, together with impairment of gastric emptying, slowing of small intestinal transit and malabsorption. The addition of heat stress and running mode appears to exacerbate these markers of gastrointestinal disturbance. Exercise stress of ≥2 hours at 60% VO 2max appears to be the threshold whereby significant gastrointestinal perturbations manifest, irrespective of fitness status. Gastrointestinal symptoms, referable to upper- and lower-gastrointestinal tract, are common and a limiting factor in prolonged strenuous exercise. While there is evidence for health benefits of moderate exercise in patients with inflammatory bowel disease or functional gastrointestinal disorders, the safety of more strenuous exercise has not been established. Strenuous exercise has a major reversible impact on gastrointestinal integrity and function of healthy populations. The safety and health implications of prolonged strenuous exercise in patients with chronic gastrointestinal diseases/disorders, while hypothetically worrying, has not been elucidated and requires further investigation. © 2017 John Wiley & Sons Ltd.

  7. Facilitation of the Cognitive Enhancing Effects of Working Memory Training Through Conjoint Voluntary Aerobic Exercise

    PubMed Central

    Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.

    2013-01-01

    Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169

  8. An acute bout of localized resistance exercise can rapidly improve inhibitory control

    PubMed Central

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2017-01-01

    The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232

  9. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes.

    PubMed

    Hoffman-Goetz, L; Pervaiz, N; Guan, J

    2009-05-01

    Acute exercise in mice induces intestinal lymphocyte (IL) apoptosis. Freewheel running reduces apoptosis and forced exercise training increases splenocyte antioxidant levels. The purpose of this study was to examine the effect of freewheel running and acute exercise on mouse IL numbers and concentrations of apoptosis and antioxidant proteins and pro-inflammatory cytokines in IL. Female C57BL/6 mice had access to in-cage running wheels (RW) or cages without wheels (NRW) for 16 weeks and were randomized at the end of training to no exercise control (TC) or to treadmill exercise with sacrifice after 90 min of running (TREAD; 30 min, 22 m min(-1); 30 min, 25 m min(-1); 30 min, 28 m min(-1); 2 degrees slope). IL were analyzed for pro-(caspase 3 and 7) and anti-(Bcl-2) apoptotic proteins, endogenous antioxidants (glutathione peroxidase: GPx; catalase: CAT) and the pro-inflammatory cytokine, TNF-alpha. RW mice had higher cytochrome oxidase (p<0.001) and citrate synthase (p<0.01) activities in plantaris and soleus muscles and higher GPx and CAT expression in IL (p<0.05) (indicative of training) compared with NRW mice. TNF-alpha expression was lower (p<0.05) and IL numbers higher (p<0.05) in RW vs. NRW mice. No training effect was observed for apoptotic protein expression, although TREAD resulted in higher caspase and lower Bcl-2. These results suggest that freewheel running in mice for 16 weeks enhances antioxidant and reduces TNF-alpha expression in IL but does not reduce pro-apoptotic protein expression after acute exercise. Results are discussed in terms of implications for inflammatory bowel diseases where apoptotic proteins and TNF-alpha levels are elevated.

  10. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    PubMed

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  11. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    PubMed

    MacKenzie, Matthew G; Hamilton, David Lee; Pepin, Mark; Patton, Amy; Baar, Keith

    2013-01-01

    Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  12. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.

    PubMed

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.

  13. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise

    PubMed Central

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109

  14. Aquatic versus land-based exercises as early functional rehabilitation for elite athletes with acute lower extremity ligament injury: a pilot study.

    PubMed

    Kim, Eunkuk; Kim, Taegyu; Kang, Hyunyong; Lee, Jongha; Childers, Martin K

    2010-08-01

    To compare outcomes between aquatic and land-based exercises during early-phase recovery from acute lower extremity ligament injuries in elite athletes. A single-blinded, covariate adaptive randomized, controlled study. National training center for elite athletes. Twenty-two athletes with isolated grade I or II ligament injury in ankles or knees were randomized into either an aquatic or land-based exercise group. Early functional rehabilitation program (ranging, strengthening, proprioceptive training, and functional exercises) was performed in both groups. All exercises were identical except for the training environment. Data were collected at baseline and at 2 and 4 weeks using a visual analog scale (VAS) for pain; static stability (overall stability index [OSI] level 5 and 3); dynamic stability (TCT), and percentage single-limb support time (%SLST). Both groups showed decreases in VAS, OSI 5 and 3, and TCT, with a concomitant increase in %SLST at 2 and 4 weeks (P < .05). No significant differences were detected between the 2 groups in any of the outcome measures. However, the line graphs for VAS, OSI 3, TCT, and %SLST in the aquatic exercise group were steeper than those in the land-based exercise group indicating significant group by time interactions (P < .05). These data indicate that the aquatic exercise group improved more rapidly than the land-based exercise group. For elite athletes with acute ligament sprains in the lower limb, aquatic exercises may provide advantages over standard land-based therapy for rapid return to athletic activities. Consequently, aquatic exercise could be recommended for the initial phase of a rehabilitation program. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1-13.

    PubMed

    Chen, Jia-Xu; Zhao, Xin; Yue, Guang-Xin; Wang, Zhu-Feng

    2007-02-01

    This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorphin A(1-13) (DYN A(1-13)). Avidin-biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min(-1) gradually increased to 35 m min(-1) with 0 degrees, 20-25 min per day duration) on the changes of NPY, L-ENK, and DYN A(1-13) in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A(1-13) in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A(1-13) in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.

  16. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  17. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  18. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  19. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes.

    PubMed

    Chow, Clara K; Jolly, Sanjit; Rao-Melacini, Purnima; Fox, Keith A A; Anand, Sonia S; Yusuf, Salim

    2010-02-16

    Although preventive drug therapy is a priority after acute coronary syndrome, less is known about adherence to behavioral recommendations. The aim of this study was to examine the influence of adherence to behavioral recommendations in the short term on risk of cardiovascular events. The study population included 18 809 patients from 41 countries enrolled in the Organization to Assess Strategies in Acute Ischemic Syndromes (OASIS) 5 randomized clinical trial. At the 30-day follow-up, patients reported adherence to diet, physical activity, and smoking cessation. Cardiovascular events (myocardial infarction, stroke, cardiovascular death) and all-cause mortality were documented to 6 months. About one third of smokers persisted in smoking. Adherence to neither diet nor exercise recommendations was reported by 28.5%, adherence to either diet or exercise by 41.6%, and adherence to both by 29.9%. In contrast, 96.1% of subjects reported antiplatelet use, 78.9% reported statin use, and 72.4% reported angiotensin-converting enzyme/angiotensin receptor blocker use. Quitting smoking was associated with a decreased risk of myocardial infarction compared with persistent smoking (odds ratio, 0.57; 95% confidence interval, 0.36 to 0.89). Diet and exercise adherence was associated with a decreased risk of myocardial infarction compared with nonadherence (odds ratio, 0.52; 95% confidence interval, 0.4 to 0.69). Patients who reported persistent smoking and nonadherence to diet and exercise had a 3.8-fold (95% confidence interval, 2.5 to 5.9) increased risk of myocardial infarction/stroke/death compared with never smokers who modified diet and exercise. Adherence to behavioral advice (diet, exercise, and smoking cessation) after acute coronary syndrome was associated with a substantially lower risk of recurrent cardiovascular events. These findings suggest that behavioral modification should be given priority similar to other preventive medications immediately after acute coronary syndrome. Clinical Trial Registration Information- URL: http://clinicaltrials.gov/ct2/show/NCT00139815. Unique identifier: NCT00139815.

  20. Spinning-induced Rhabdomyolysis and the Risk of Compartment Syndrome and Acute Kidney Injury

    PubMed Central

    DeFilippis, Ersilia M.; Kleiman, David A.; Derman, Peter B.; DiFelice, Gregory S.; Eachempati, Soumitra R.

    2014-01-01

    Exercise-induced rhabdomyolysis related to military training, marathon running, and other forms of strenuous exercise has been reported. The incidence of acute kidney injury appears to be lower in exercise-induced cases. We present 2 cases of exercise-induced rhabdomyolysis following spinning classes, one of which was further complicated by acute compartment syndrome requiring bilateral fasciotomies of the anterior thigh and acute kidney injury. With vigorous hydration and urine pH monitoring, both patients exhibited good mobility, sensation, and renal function on discharge. PMID:24982706

  1. Exercise during pregnancy and risk of cesarean delivery in nulliparous women: a large population-based cohort study.

    PubMed

    Owe, Katrine Mari; Nystad, Wenche; Stigum, Hein; Vangen, Siri; Bø, Kari

    2016-12-01

    Vaginal delivery for the first birth is of great importance for further obstetric performance for the individual woman. Given the rising cesarean delivery rates worldwide over the past decades, a search for modifiable factors that are associated with cesarean delivery is needed. Exercise may be a modifiable factor that is associated with type of delivery, but the results of previous studies are not conclusive. The purpose of this study was to investigate the association between exercise during pregnancy and cesarean delivery, both acute and elective, in nulliparous women. We conducted a population-based cohort study that involved 39,187 nulliparous women with a singleton pregnancy who were enrolled in the Norwegian Mother and Child Cohort Study between 2000 and 2009. All women answered 2 questionnaires in pregnancy weeks 17 and 30. Acute and elective cesarean delivery data were obtained from the Medical Birth Registry of Norway. Information on exercise frequency and type was assessed prospectively by questionnaires in pregnancy weeks 17 and 30. Generalized linear models estimated risk differences of acute and elective cesarean delivery for different frequencies and types of exercise during pregnancy weeks 17 and 30. We used restricted cubic splines to examine dose-response associations of exercise frequency and acute cesarean delivery. A test for nonlinearity was also conducted. The total cesarean delivery rate was 15.4% (n=6030), of which 77.8% (n=4689) was acute cesarean delivery. Exercise during pregnancy was associated with a reduced risk of cesarean delivery, particularly for acute cesarean delivery. A nonlinear association was observed for exercise frequency in weeks 17 and 30 and risk of acute cesarean delivery (test for nonlinearity, P=.003 and P=.027, respectively). The largest risk reduction was observed for acute cesarean delivery among women who exercised >5 times weekly during weeks 17 (-2.2%) and 30 (-3.6%) compared with nonexercisers (test for trend, P<.001). Reporting high impact exercises in weeks 17 and 30 was associated with the greatest reduction in risk of acute cesarean delivery (-3.0% and -3.4%, respectively). Compared with nonexercisers, regular exercise and high-impact exercises during pregnancy are associated with reduced risk of having an acute cesarean delivery in first-time mothers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance-An Experiment on Expectation-Driven Placebo Effects.

    PubMed

    Oberste, Max; Hartig, Philipp; Bloch, Wilhelm; Elsner, Benjamin; Predel, Hans-Georg; Ernst, Bernhard; Zimmer, Philipp

    2017-01-01

    Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments. Methods: Healthy individuals ( N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale. Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well. Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments.

  3. Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance–An Experiment on Expectation-Driven Placebo Effects

    PubMed Central

    Oberste, Max; Hartig, Philipp; Bloch, Wilhelm; Elsner, Benjamin; Predel, Hans-Georg; Ernst, Bernhard; Zimmer, Philipp

    2017-01-01

    Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments. Methods: Healthy individuals (N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale. Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well. Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments. PMID:29276483

  4. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!

    PubMed

    Cobley, James N; Moult, Peter R; Burniston, Jatin G; Morton, James P; Close, Graeme L

    2015-04-01

    Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).

  5. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.

    PubMed

    Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold

    2008-06-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.

  6. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs

    PubMed Central

    Jankord, Ryan; Ganjam, Venkataseshu K.; Turk, James R.; Hamilton, Marc T.; Laughlin, M. Harold

    2009-01-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo–pituitary–adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16–20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals. PMID:18461098

  7. GLUT4 translocation is not impaired after acute exercise in skeletal muscle of women with obesity and polycystic ovary syndrome.

    PubMed

    Dantas, Wagner Silva; Marcondes, José Antonio Miguel; Shinjo, Samuel Katsuyuki; Perandini, Luiz Augusto; Zambelli, Vanessa Olzon; Neves, Willian Das; Barcellos, Cristiano Roberto Grimaldi; Rocha, Michele Patrocínio; Yance, Viviane Dos Reis Vieira; Pereira, Renato Tavares Dos Santos; Murai, Igor Hisashi; Pinto, Ana Lucia De Sá; Roschel, Hamilton; Gualano, Bruno

    2015-11-01

    The aim of this study was to examine the effects of acute exercise on insulin signaling in skeletal muscle of women with polycystic ovary syndrome (PCOS) and controls (CTRL). Fifteen women with obesity and PCOS and 12 body mass index-matched CTRL participated in this study. Subjects performed a 40-min single bout of exercise. Muscle biopsies were performed before and 60 min after exercise. Selected proteins were assessed by Western blotting. CTRL, but not PCOS, showed a significant increase in PI3-k p85 and AS160 Thr 642 after a single bout of exercise (P = 0.018 and P = 0.018, respectively). Only PCOS showed an increase in Akt Thr 308 and AMPK phosphorylation after exercise (P = 0.018 and P = 0.018, respectively). Total GLUT4 expression was comparable between groups (P > 0.05). GLUT4 translocation tended to be significantly higher in both groups after exercise (PCOS: P = 0.093; CTRL: P = 0.091), with no significant difference between them (P > 0.05). A single bout of exercise elicited similar GLUT4 translocation in skeletal muscle of PCOS and CTRL, despite a slightly differential pattern of protein phosphorylation. The absence of impairment in GLUT4 translocation suggests that PCOS patients with obesity and insulin resistance may benefit from exercise training. © 2015 The Obesity Society.

  8. Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status.

    PubMed

    Thomas, Claire; Bishop, David J; Lambert, Karen; Mercier, Jacques; Brooks, George A

    2012-01-01

    Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.

  9. Acute effect of walking on energy intake in overweight/obese women

    PubMed Central

    Unick, Jessica L.; Otto, Amy D.; Goodpaster, Bret H.; Helsel, Diane L.; Pellegrini, Christine A.; Jakicic, John M.

    2013-01-01

    This study examined the acute effect of a bout of walking on hunger, energy intake, and appetite-regulating hormones [acylated ghrelin and glucagon-like peptide-1 (GLP-1)] in 19 overweight/obese women (BMI:32.5±4.3kg/m2). Subjects underwent two experimental testing sessions in a counterbalanced order: exercise and rest. Subjects walked at a moderate-intensity for approximately 40 minutes or rested for a similar duration. Subjective feelings of hunger were assessed and blood was drawn at 5 time points (pre-, post-, 30-minutes, 60-minutes, 120-minutes post-testing). Ad-libitum energy intake consumed 1–2 hours post-exercise/rest was assessed and similar between conditions (mean ± standard deviation; exercise: 551.5±245.1 kcals [2.31±1.0MJ] vs. rest: 548.7±286.9 kcals [2.29±1.2MJ]). However, when considering the energy cost of exercise, relative energy intake was significantly lower following exercise (197.8±256.5 kcals [0.83±1.1MJ]) compared to rest (504.3±290.1 kcals [2.11±1.2MJ]). GLP-1 was lower in the exercise vs. resting condition while acylated ghrelin and hunger were unaltered by exercise. None of these variables were associated with energy intake. In conclusion, hunger and energy intake were unaltered by a bout of walking suggesting that overweight/obese individuals do not acutely compensate for the energy cost of the exercise bout through increased caloric consumption. This allows for an energy deficit to persist post-exercise, having potentially favorable implications for weight control. PMID:20674640

  10. Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation.

    PubMed

    Kido, Kohei; Yokokawa, Takumi; Ato, Satoru; Sato, Koji; Fujita, Satoshi

    2017-08-01

    Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation. Copyright © 2017 the American Physiological Society.

  11. 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake.

    PubMed

    Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu; Baer, Lisa A; Arts, Peter J; May, Francis J; Lehnig, Adam C; Middelbeek, Roeland J W; Richard, Jeffrey J; So, Kawai; Chen, Emily Y; Gao, Fei; Narain, Niven R; Distefano, Giovanna; Shettigar, Vikram K; Hirshman, Michael F; Ziolo, Mark T; Kiebish, Michael A; Tseng, Yu-Hua; Coen, Paul M; Goodyear, Laurie J

    2018-05-01

    Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.

    PubMed

    Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.

  13. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle

    PubMed Central

    Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A

    2015-01-01

    Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser473) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser2448) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations. PMID:25902785

  14. Pronounced Effects of Acute Endurance Exercise on Gene Expression in Resting and Exercising Human Skeletal Muscle

    PubMed Central

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V.; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44–56 performed one hour of one-legged cycling at 50% Wmax. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle. PMID:23226462

  15. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  16. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    PubMed

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside

    PubMed Central

    Chantler, Paul D.; Nussbacher, Amit; Gerstenblith, Gary; Schulman, Steven P.; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2011-01-01

    The coupling between arterial elastance (EA; net afterload) and left ventricular elastance (ELV; pump performance), known as EA/ELV, is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in ELV versus EA. This normal exercise-induced reduction in EA/ELV decreases with advancing age. We hypothesized that sodium nitroprusside (SNP) can acutely ameliorate the age-associated deficits in EA/ELV. At rest and during graded exercise to exhaustion, EA was characterized as end-systolic pressure/stroke volume and ELV as end-systolic pressure/end-systolic volume. Resting EA/ELV did not differ between old (70 ± 8 yr, n = 15) and young (30 ± 5 yr, n = 17) subjects because of a tandem increase in EA and ELV in older subjects. During peak exercise, a blunted increase in ELV in old (7.8 ± 3.1 mmHg/ml) versus young (11.4 ± 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in EA/ELV in old (0.25 ± 0.11) versus young (0.16 ± 0.05) subjects. SNP administration to older subjects lowered resting EA/ELV by 31% via a reduction in EA (10%) and an increase in ELV (47%) and lowered peak exercise EA/ELV (36%) via an increase in ELV (68%) without a change in EA. Importantly, SNP attenuated the age-associated deficits in EA/ELV and ELV during exercise, and at peak exercise EA/ELV in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in EA/ELV, EA, and ELV, in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction. PMID:21378146

  18. The effectiveness of session rating of perceived exertion to monitor resistance training load in acute burns patients.

    PubMed

    Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W

    2017-02-01

    Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  19. A Randomized Control Intervention Investigating the Effects of Acute Exercise on Emotional Regulation.

    PubMed

    Edwards, Meghan K; Rhodes, Ryan E; Loprinzi, Paul D

    2017-09-01

    Exercise may help to cope with hectic or demanding events after a stressful situation occurs. Limited research has evaluated whether exercise, prior to a stressor, helps to facilitate subsequent emotional regulation. This pilot study addresses this novel paradigm. We employed a randomized controlled trial evaluating the effects of acute exercise on emotional regulation. Participants were randomly assigned to stretch (control group, N = 10), walk (N = 9), or jog (N = 8) for 15-minutes, after which they were exposed to a film clip intended to elicit a negative emotional response. Participants' emotions were monitored before and during exercise, as well as after the film clip. Emotional responses were evaluated using the Exercise Induced Feeling Inventory and Affective Circumplex Scale. A group x time splitplot interaction effect was significant for anger (p = .046) and anxiousness (p = .038). Follow-up analyses showed that only the stretching group (p = .048) had a significantly increased anger score from baseline to post-film clip, suggesting a protective emotional effect from walking and jogging. Exercise was effective in regulating anger and anxiousness after a stressful event. These findings provide evidence for potential preventive effects of exercise in facilitating emotional regulation.

  20. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women.

    PubMed

    Cardoso, A M; Bagatini, M D; Roth, M A; Martins, C C; Rezer, J F P; Mello, F F; Lopes, L F D; Morsch, V M; Schetinger, M R C

    2012-12-01

    The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.

  1. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women

    PubMed Central

    Cardoso, A.M.; Bagatini, M.D.; Roth, M.A.; Martins, C.C.; Rezer, J.F.P.; Mello, F.F.; Lopes, L.F.D.; Morsch, V.M.; Schetinger, M.R.C.

    2012-01-01

    The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity. PMID:23090122

  2. Short-term reliability of inflammatory mediators and response to exercise in the heat.

    PubMed

    Guy, Joshua H; Edwards, Andrew M; Miller, Catherine M; Deakin, Glen B; Pyne, David B

    2017-08-01

    Prospective application of serum cytokines, lipopolysaccharide (LPS), and heat shock proteins (eHSPs) requires reliable measurement of these biomarkers that can signify exercise-induced heat stress in hot conditions. To accomplish this, both short-term (7 day) reliability (at rest, n = 12) and the acute responsiveness of each biomarker to exercise in the heat (pre and post 60-min cycling, 34.5°C and 70% RH, n = 20) were evaluated. Serum was analysed for the concentration of C-reactive protein (CRP), interleukin-6 (IL-6), heat shock protein 72 (eHSP72), immunoglobulin M (IgM) and LPS. Test-retest reliability was determined as the coefficient of variation (CV). Biomarkers with the least short-term within-participant variation were IL-6 (19%, ±20%; CV, ±95% confidence limits (CL)) and LPS (23%, ±13%). Greater variability was observed for IgM, eHSP72 and CRP (CV range 28-38%). IL-6 exhibited the largest increase in response to acute exercise (95%, ±11%, P = < 0.001) and although CRP had a modest CV (12%, ±7%), it increased substantially post-exercise (P = 0.02, ES; 0.78). In contrast, eHSP72 and LPS exhibited trivial changes post-exercise. It appears variation of common inflammatory markers after exercise in the heat is not always discernible from short-term (weekly) variation.

  3. Combination of aerobic exercise and an arginine, alanine, and phenylalanine mixture increases fat mobilization and ketone body synthesis.

    PubMed

    Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi

    2017-07-01

    During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.

  4. Acute psychological benefits of exercise: reconsideration of the placebo effect.

    PubMed

    Szabo, Attila

    2013-10-01

    The psychological benefits of exercise are repeatedly and consistently reported in the literature. Various forms of exercise, varying in duration and intensity, yield comparably positive changes in affect, which sheds doubt on the significance of exercise characteristics in the acute mental health benefits resulting from physical activity. Based on research evidence, it is argued that the placebo effect may play a key role in the subjective exercise experience. This report is aimed at highlighting those aspects of the extant literature that call for the reconsideration of the placebo effect in the understanding of the acute mental benefits of physical activity. This narrative review focuses on research evidence demonstrating that the duration and intensity of physical activity are not mediatory factors in the mental health benefits of acute exercise. Current research evidence pointing to the roles of expectancy and conditioning in the affective benefits of exercise calls for the reconsideration of the placebo effect. The present evaluation concludes that new research effort ought to be invested in the placebo-driven affective beneficence of exercise.

  5. Creatine supplementation prevents acute strength loss induced by concurrent exercise.

    PubMed

    de Salles Painelli, Vítor; Alves, Victor Tavares; Ugrinowitsch, Carlos; Benatti, Fabiana Braga; Artioli, Guilherme Giannini; Lancha, Antonio Herbert; Gualano, Bruno; Roschel, Hamilton

    2014-08-01

    To investigate the effect of creatine (CR) supplementation on the acute interference induced by aerobic exercise on subsequent maximum dynamic strength (1RM) and strength endurance (SE, total number of repetitions) performance. Thirty-two recreationally strength-trained men were submitted to a graded exercise test to determine maximal oxygen consumption (VO2max: 41.56 ± 5.24 ml kg(-1) min(-1)), anaerobic threshold velocity (ATv: 8.3 ± 1.18 km h(-1)), and baseline performance (control) on the 1RM and SE (4 × 80 % 1RM to failure) tests. After the control tests, participants were randomly assigned to either a CR (20 g day(-1) for 7 days followed by 5 g day(-1) throughout the study) or a placebo (PL-dextrose) group, and then completed 4 experimental sessions, consisting of a 5-km run on a treadmill either continuously (90 % ATv) or intermittently (1:1 min at vVO2max) followed by either a leg- or bench-press SE/1RM test. CR was able to maintain the leg-press SE performance after the intermittent aerobic exercise when compared with C (p > 0.05). On the other hand, the PL group showed a significant decrease in leg-press SE (p ≤ 0.05). CR supplementation significantly increased bench-press SE after both aerobic exercise modes, while the bench-press SE was not affected by either mode of aerobic exercise in the PL group. Although small increases in 1RM were observed after either continuous (bench press and leg press) or intermittent (bench press) aerobic exercise in the CR group, they were within the range of variability of the measurement. The PL group only maintained their 1RM. In conclusion, the acute interference effect on strength performance observed in concurrent exercise may be counteracted by CR supplementation.

  6. The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial.

    PubMed

    Wingfield, Hailee L; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Trexler, Eric T; Hackney, Anthony C; Weaver, Mark A; Ryan, Eric D

    2015-12-01

    The purpose of this study was to examine the effect of exercise modality and pre-exercise carbohydrate (CHO) or protein (PRO) ingestion on post-exercise resting energy expenditure (REE) and respiratory exchange ratio (RER) in women. Twenty recreationally active women (mean ± SD; age 24.6 ± 3.9 years; height 164.4 ± 6.6 cm; weight 62.7 ± 6.6 kg) participated in this randomized, crossover, double-blind study. Each participant completed six exercise sessions, consisting of three exercise modalities: aerobic endurance exercise (AEE), high-intensity interval running (HIIT), and high-intensity resistance training (HIRT); and two acute nutritional interventions: CHO and PRO. Salivary samples were collected before each exercise session to determine estradiol-β-17 and before and after to quantify cortisol. Post-exercise REE and RER were analyzed via indirect calorimetry at the following: baseline, immediately post (IP), 30 minutes (30 min) post, and 60 minutes (60 min) post exercise. A mixed effects linear regression model, controlling for estradiol, was used to compare mean longitudinal changes in REE and RER. On average, HIIT produced a greater REE than AEE and HIRT (p < 0.001) post exercise. Effects of AEE and HIRT were not significantly different for post-exercise REE (p = 0.1331). On average, HIIT produced lower RER compared to either AEE or HIRT after 30 min (p < 0.001 and p = 0.0169, respectively) and compared to AEE after 60 min (p = 0.0020). On average, pre-exercise PRO ingestion increased post-exercise REE (p = 0.0076) and decreased post-exercise RER (p < 0.0001) compared to pre-exercise CHO ingestion. HIIT resulted in the largest increase in REE and largest reduction in RER.

  7. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample

    ERIC Educational Resources Information Center

    Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo

    2016-01-01

    Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…

  8. Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output.

    PubMed

    Smith, Mark A; Fronk, Gaylen E; Zhang, Huailin; Magee, Charlotte P; Robinson, Andrea M

    Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Salivary and plasma cortisol and testosterone responses to interval and tempo runs and a bodyweight-only circuit session in endurance-trained men.

    PubMed

    Tanner, Amy Vivien; Nielsen, Birthe Vejby; Allgrove, Judith

    2014-01-01

    The aim of this study was to examine the acute response to plasma and salivary cortisol and testosterone to three training protocols. Ten trained endurance athletes participated in three experimental trials, such as interval training (INT), tempo run (TEMP) and bodyweight-only circuit training (CIR), on separate days. Blood and saliva samples were collected pre- and 0, 15, 30 and 60 min post-exercise. Peak post-exercise salivary cortisol was higher than pre-exercise in all trials (P < 0.01). After INT, salivary cortisol remained elevated above pre-exercise than 60 min post-exercise. Salivary testosterone also increased post-exercise in all trials (P < 0.05). Plasma and salivary cortisol were correlated between individuals (r = 0.81, 0.73-0.88) and within individuals (r = 0.81, 0.73-0.87) (P < 0.01). Plasma and salivary testosterone was also correlated between (r = 0.57, 0.43-0.69) and within individuals (r = 0.60, 0.45-0.72), (P < 0.01). Peak cortisol and testosterone levels occurred simultaneously in plasma and saliva, but timing of post-exercise hormone peaks differed between trials and individuals. Further investigation is required to identify the mechanisms eliciting an increase in hormones in response to CIR. Furthermore, saliva is a valid alternative sampling technique for measurement of cortisol, although the complex, individual and situation dependent nature of the hormone response to acute exercise should be considered.

  10. Effect of acute and chronic exercise on plasma matrix metalloproteinase and total antioxidant levels

    PubMed Central

    Mergen-Dalyanoglu, Mukaddes; Turgut, Sebahat; Turgut, Günfer

    2017-01-01

    The relationship between acute and chronic exercise and expression of matrix metalloproteinases (MMPs) in muscles is unknown. There happen some alterations in the oxidant-antioxidant balance due to exercise. This study aimed to investigate the levels of MMP-1, tissue inhibitors of metalloproteinases (TIMP-1), hyaluronic acid (HA), total antioxidant status (TAS), and total oxidant status (TOS) following acute and chronic exercising in rats. Twenty-six Wistar Albino male rats were divided in to three groups: control, acute, and chronic groups. In acute group, treadmill exercise was performed 3 days/wk, 10 min/day for 1 week. In chronic group, exercise performed 7 days/wk, 60 min/day for 4 weeks. At the end of the experiment, plasma MMP-1, TIMP-1, HA, TAS, and TOS levels were measured. In current study, the MMP-1, TIMP-1, HA, and TOS levels not observed statistically significant difference among all groups, but in chronic group, there was a significantly difference (P<0.05) between the control and experimental groups in terms of TAS and oxidative stress index (OSI) levels. TAS, TOS, and OSI levels were significantly different between control and chronic exercise group (P<0.01, P<0.05, and P<0.01, respectively). According to these results, we can say acute and chronic exercise does not effect on plasma MMP-1, TIMP-1, and HA levels. PMID:29114524

  11. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

    PubMed Central

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-01-01

    Abstract We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. PMID:26174323

  12. Exercise effects on HRV in cancer patients.

    PubMed

    Niederer, D; Vogt, L; Thiel, C; Schmidt, K; Bernhörster, M; Lungwitz, A; Jäger, E; Banzer, W

    2013-01-01

    The present study evaluated the effects of physical exercise on heart rate variability (HRV) in cancer patients. 3 matched groups of each 15 tumour patients (60.4±8.9 years, 27 male, 18 female) were recruited: Physical exercise group 1 (acute treatment), Physical exercise group 2 (post treatment) and non-intervention group (acute treatment, no exercise). Exercise group patients received counselling for exercise and participated in a Nordic-Walking program. Short-term HRV-recordings, assessments of fatigue and quality of life (QoL) were performed prior to and 16 weeks after the exercise program initiation. MANCOVA revealed group × time differences in total power frequency domain of HRV and QoL (p<0.05). TP follow-up scores [logms(2)] differed significantly between non-intervention and intervention post treatment (2.0±0.5 vs. 2.6±0.5), but not between non-intervention and intervention during acute treatment. QoL follow-up scores differed significantly between non-intervention and intervention during acute treatment (47±15 vs. 64±18) and post treatment (47±15 vs. 69±19). Exercise enhances cardiac autonomic regulation of tumour patients during and after acute treatment. Because of the association of higher HRV-parameters and prolonged survival in cancer patients, improvement in autonomic control may be an important goal of exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Evidence for Anti-Inflammatory Effects of Exercise in CKD

    PubMed Central

    Kosmadakis, George C.; Watson, Emma L.; Bevington, Alan; Feehally, John; Bishop, Nicolette C.; Smith, Alice C.

    2014-01-01

    CKD is associated with a complex state of immune dysfunction characterized by immune depression, predisposing patients to infections, and immune activation, resulting in inflammation that associates with higher risk of cardiovascular disease. Physical exercise may enhance immune function and exert anti-inflammatory effects, but such effects are unclear in CKD. We investigated the separate effects of acute and regular moderate-intensity aerobic exercise on neutrophil degranulation (elastase release), activation of T lymphocytes (CD69 expression) and monocytes (CD86 and HLA-DR expression), and plasma inflammatory markers (IL-6, IL-10, soluble TNF-receptors, and C-reactive protein) in patients with predialysis CKD. A single 30-minute (acute) bout of walking induced a normal pattern of leukocyte mobilization and had no effect on T-lymphocyte and monocyte activation but improved neutrophil responsiveness to a bacterial challenge in the postexercise period. Furthermore, acute exercise induced a systemic anti-inflammatory environment, evidenced by a marked increase in plasma IL-10 levels (peaked at 1 hour postexercise), that was most likely mediated by increased plasma IL-6 levels (peaked immediately postexercise). Six months of regular walking exercise (30 min/d for 5 times/wk) exerted anti-inflammatory effects (reduction in the ratio of plasma IL-6 to IL-10 levels) and a downregulation of T-lymphocyte and monocyte activation, but it had no effect on circulating immune cell numbers or neutrophil degranulation responses. Renal function, proteinuria, and BP were also unaffected. These findings provide compelling evidence that walking exercise is safe with regard to immune and inflammatory responses and has the potential to be an effective anti-inflammatory therapy in predialysis CKD. PMID:24700875

  14. Circulating T-Regulatory Cells, Exercise and the Elite Adolescent Swimmer

    PubMed Central

    Wilson, Lori D.; Zaldivar, Frank P.; Schwindt, Christina D.; Wang-Rodriguez, Jessica; Cooper, Dan M.

    2014-01-01

    Brief high intensity exercise induces peripheral leukocytosis possibly leading to a higher incidence of allergic symptoms in athletes undergoing excessive training. We studied the exercise-induced alternation of circulating Tregs and FoxP3+ Tregs due to acute intense swim exercise in elite swimmers (n = 22, 12 males, age = 15.4 yrs). Twelve had prior or current rhinitis or asthma and 10 had no current or prior allergy or asthma. Circulating Tregs increased significantly (p < .001) following exercise (pre = 133 ± 11.2, post = 196 ± 17.6) as did FoxP3+ cells (pre = 44, post = 64 cells/µl). Increases in Tregs and FoxP3+ Tregs occurred to the same extent in both groups of adolescent swimmers. PMID:19827454

  15. The effect of acute and chronic exercise on cognitive function and academic performance in adolescents: A systematic review.

    PubMed

    Li, Joanna W; O'Connor, Helen; O'Dwyer, Nicholas; Orr, Rhonda

    2017-09-01

    To investigate whether exercise, proposed to enhance neuroplasticity and potentially cognitive function (CF) and academic performance (AP), may be beneficial during adolescence when important developmental changes occur. Systematic review evaluating the impact of acute or chronic exercise on CF and AP in adolescents (13-18 years). Nine databases (AMED, AusportMed, CINAHL, COCHRANE, Embase, Medline, Scopus, SPORTdiscus, Web of Science) were searched from earliest records to 31st October 2016, using keywords related to exercise, CF, AP and adolescents. Eligible studies included controlled trials examining the effect of any exercise intervention on CF, AP or both. Effect size (ES) (Hedges g) were calculated where possible. Ten papers (11 studies) were reviewed. Cognitive domains included: executive function (n=4), memory (n=4), attention/concentration (n=2), visuo-motor speed (n=1), logical sequencing (n=1) and psychometric aptitude (n=1). All papers, nine of 10 being acute studies, reported at least one parameter showing a significant effect of exercise in improving CF and AP. However, the CF parameters displayed substantial heterogeneity, with only 37% favouring acute and chronic exercise. Where ES could be calculated, 52% of the acute CF parameters favoured rest. Memory was the domain most consistently improved by exercise. Academic performance demonstrated a significant improvement with exercise in one of two acute studies and the only chronic study (p≤0.001). The evidence for the effect of exercise on CF and AP in adolescents is equivocal and limited in quantity and quality. Well-designed research is therefore warranted to determine the benefits of exercise in enhancing CF and AP and reducing sedentary behaviour. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. A Role for Exercise in Attenuating Unhealthy Food Consumption in Response to Stress

    PubMed Central

    Leow, Shina; Jackson, Ben; Alderson, Jacqueline A.; Guelfi, Kym J.; Dimmock, James A.

    2018-01-01

    It is well established that both acute and chronic stress can be detrimental to health and wellbeing by directly increasing the risk of several chronic diseases and related health problems. In addition, stress may contribute to ill-health indirectly via its downstream effects on individuals’ health-related behaviour, such as promoting the intake of unhealthy palatable foods high in fat and sugar content. This paper reviews (a) the research literature on stress-models; (b) recent research investigating stress-induced eating and (c) the potential physiological and psychological pathways contributing to stress-induced eating. Particular attention is given to (d) the role of physical exercise in attenuating acute stress, with exploration of potential mechanisms through which exercise may reduce unhealthy food and drink consumption subsequent to stressor exposure. Finally, exercise motivation is discussed as an important psychological influence over the capacity for physical exercise to attenuate unhealthy food and drink consumption after exposure to stressors. This paper aims to provide a better understanding of how physical exercise might alleviate stress-induced unhealthy food choices. PMID:29415424

  17. A Role for Exercise in Attenuating Unhealthy Food Consumption in Response to Stress.

    PubMed

    Leow, Shina; Jackson, Ben; Alderson, Jacqueline A; Guelfi, Kym J; Dimmock, James A

    2018-02-06

    It is well established that both acute and chronic stress can be detrimental to health and wellbeing by directly increasing the risk of several chronic diseases and related health problems. In addition, stress may contribute to ill-health indirectly via its downstream effects on individuals' health-related behaviour, such as promoting the intake of unhealthy palatable foods high in fat and sugar content. This paper reviews (a) the research literature on stress-models; (b) recent research investigating stress-induced eating and (c) the potential physiological and psychological pathways contributing to stress-induced eating. Particular attention is given to (d) the role of physical exercise in attenuating acute stress, with exploration of potential mechanisms through which exercise may reduce unhealthy food and drink consumption subsequent to stressor exposure. Finally, exercise motivation is discussed as an important psychological influence over the capacity for physical exercise to attenuate unhealthy food and drink consumption after exposure to stressors. This paper aims to provide a better understanding of how physical exercise might alleviate stress-induced unhealthy food choices.

  18. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice

    PubMed Central

    2012-01-01

    Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757

  19. Effects of Combined Phase III and Phase II Cardiac Exercise Therapy for Middle-aged Male Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Huang, Chien-Hui

    2013-01-01

    [Purpose] To investigate the effects of cardiac exercise therapy (CET) on exercise capacity and coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Methods] Patients who participated in an 8-week supervised, hospital-based phase II and 6-month home-based phase III CET with monthly telephone and/or home visits were defined as the exercise group (EG) (n=20), while those who did not receive phase II or phase III CET were defined as the no-exercise group (NEG) (n=10). CRFs were evaluated pre- and post-phase II and eight months after discharge. One and two-way repeated measures ANOVA were used to perform intra- and inter-group comparisons. [Results] Thirty men with AMI aged 49.3 ± 8.3 years were studied. EG increased their exercise capacity (METs) (6.8 ± 1.6 vs.10.0 ± 1.9) after phase II CET and was able to maintain it at 8-month follow-up. Both groups had significantly fewer persons who kept on smoking compared to the first examination. High density lipoprotein cholesterol (HDL-C) increased from 38.1 ± 11.0 to 43.7 ± 8.7 mg/dl at follow-up in EG while no significant difference was noted in NEG. [Conclusion] After phase III CET subjects had maintained the therapeutic effects of smoking cessation, and increasing exercise capacity obtained in phase II CET. HDL-C in EG continued to improve during phase III CET. PMID:24396201

  20. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men

    PubMed Central

    Ramel, A; Wagner, K; Elmadfa, I

    2004-01-01

    Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566

  1. Acute effect on ambulatory blood pressure from aerobic exercise: a randomised cross-over study among female cleaners.

    PubMed

    Lund Rasmussen, Charlotte; Nielsen, Line; Linander Henriksen, Marie; Søgaard, Karen; Krustrup, Peter; Holtermann, Andreas; Korshøj, Mette

    2018-02-01

    High occupational physical activity (OPA) is shown to increase the risk for elevated blood pressure, cardiovascular diseases and mortality. Conversely, aerobic exercise acutely lowers the blood pressure up to 25 h post exercise. However, it is unknown if this beneficial effect also apply for workers exposed to high levels of OPA. Cleaners constitute a relevant occupational group for this investigation because of a high prevalence of OPA and cardiovascular disease. Accordingly, the objective was to investigate the acute effects on ambulatory blood pressure from a single aerobic exercise session among female cleaners. Twenty-two female cleaners were randomised to a cross-over study with a reference and an aerobic exercise session. Differences in 24-h, work hours, leisure time, and sleep ambulatory blood pressure (ABP) were evaluated using repeated measure 2 × 2 mixed-models. After the aerobic exercise session, the 24-h systolic ambulatory blood pressure was significantly lowered by 2.4 mmHg (p < 0.01) compared to the reference session. The 24-h diastolic ABP was unaltered. During work hours, a lowered systolic ABP of 2.2 mmHg (p = 0.02) and a higher diastolic ABP of 1.5 mmHg (p = 0.03) were found after the aerobic exercise session. During leisure time, the systolic ABP was lowered by 1.7 mmHg (p = 0.04) and the diastolic ABP was unaltered. During sleep, the systolic and diastolic ABP was unaltered. A single aerobic exercise session lowered 24-h systolic ABP of 2.4 mmHg. Thus, an aerobic exercise session seems to be beneficial for lowering the risk of hypertension among cleaners.

  2. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle.

    PubMed

    Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J

    2013-07-01

    This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.

  3. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training.

    PubMed

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-12-15

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  4. [Evaluation of changes in the central and peripheral circulatory system under the influence of physical training carried out under the standard procedure of improving patients after acute coronary syndrome].

    PubMed

    Kapusta, Joanna; Kapusta, Anna; Kowalski, Jan; Irzmański, Robert

    2016-06-01

    The observed with age, atherosclerotic changes in vessels and increasing damage to the vascular endothelium, causing an increase in the occurrence of cardiovascular events. An important element in the rehabilitation of patients with coronary artery disease is a physical activity, to complement the pharmacological treatment. The aim of the study was to evaluate the influence of a controlled exercise training on changes in central and peripheral circulatory system in patients after acute coronary syndrome. Group comprising 92 patients were divided into three subgroups. The rehabilitation period ranged from 2 to 4 weeks. In group I and II performed a series of interval training on a bicycle ergometer supplemented by general conditioning exercises; in the group III training individually tailored program, consisting of breathing exercises, relaxation and small muscle groups. In all groups, before and after the training cycle test was performed impedance plethysmography of the chest, echocardiography, exercise test. After completing the program, the parameters plethysmography improved in all groups, with the largest changes were observed in the group treated to the longest training: increase PAmpl (pulse wave amplitude) of 16.7% and PSlope (systolic slope) of 17.6%, while decline in the value of CT (crest time) by 5.7% and PT (propagation time) by 6.3%. In groups, which carried out a controlled exercise training have improved as well: exercise capacity of patients, stroke volume SV, cardiac output CO and global myocardial contractility EF. Moreover, a correlation between the results plethysmography parameters and SV, CO and EF. Controlled physical training, which comes under the standard procedure rehabilitation of patients after acute coronary syndrome, leads to better blood perfusion in vessels of the legs and improve myocardial functional parameters, thereby affecting the growth of physical capacity of patients. © 2016 MEDPRESS.

  5. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.

  6. Acceptance and commitment therapy improves exercise tolerance in sedentary women.

    PubMed

    Ivanova, Elena; Jensen, Dennis; Cassoff, Jamie; Gu, Fei; Knäuper, Bärbel

    2015-06-01

    To test the efficacy of an acute intervention derived from acceptance and commitment therapy (ACT) for increasing high-intensity constant work rate (CWR) cycle exercise tolerance in a group of low-active women age 18-45 yr. The secondary goals were to examine whether ACT would reduce perceived effort and improve in-task affect during exercise and increase postexercise enjoyment. In a randomized controlled trial, 39 women were randomized to either the experimental (using ACT-based cognitive techniques and listening to music during the CWR exercise tests) or a control group (listening to music during the CWR exercise tests). Before (CWR-1) and after the intervention (CWR-2), participants completed a CWR cycle exercise test at 80% of maximal incremental work rate (Wmax) until volitional exhaustion. On average, ACT (n = 18) and control (n = 21) groups were matched for age, body mass index, weekly leisure activity scores, and Wmax (all P > 0.05). Exercise tolerance time (ETT) increased by 15% from CWR-1 to CWR-2 for the ACT group (392.05 ± 146.4 vs 459.39 ± 209.3 s; mean ± SD) and decreased by 8% (384.71 ± 120.1 vs 353.86 ± 127.9 s) for the control group (P = 0.008). RPE were lower (e.g., by 1.5 Borg 6-20 scale units at 55% of ETT, P ≤ 0.01) during CWR-2 in the ACT versus that in the control group. By contrast, ACT had no effect on in-task affect. Exercise enjoyment was higher after CWR-2 in the ACT group versus that in the control group (P < 0.001). An acute ACT intervention increased high-intensity ETT and postexercise enjoyment and reduced perceived effort in low-active women. Further investigations of ACT as an effective intervention for enhancing the established health benefits of high-intensity exercise need to be provided.

  7. Parkin is required for exercise-induced mitophagy in muscle: impact of aging.

    PubMed

    Chen, Chris Chin Wah; Erlich, Avigail T; Crilly, Matthew J; Hood, David A

    2018-05-29

    The maintenance of muscle health with advancing age is dependent on mitochondrial homeostasis. While reductions in mitochondrial biogenesis have been observed with age, less is known regarding organelle degradation. Parkin is an E3 ubiquitin ligase implicated in mitophagy, but few studies have examined Parkin's contribution to mitochondrial turnover in muscle. Wild type (WT) and Parkin knockout (KO) mice were used to delineate a role for Parkin-mediated mitochondrial degradation in aged muscle, in concurrence with exercise. Aged animals exhibited declines in muscle mass and mitochondrial content, paralleled by a nuclear environment endorsing the transcriptional repression of mitochondrial biogenesis. Mitophagic signaling was enhanced following acute endurance exercise in young WT mice, but was abolished in the absence of Parkin. Basal mitophagy flux of the autophagosomal protein LC3II was augmented in aged animals, but did not increase additionally with exercise when compared to young animals. In the absence of Parkin, exercise increased the nuclear localization of PARIS, corresponding to a decrease in nuclear PGC-1α. Remarkably, exercise enhanced mitochondrial ubiquitination in both young WT and KO animals. This suggested compensation of alternative ubiquitin ligases that were, however, unable to restore the diminished exercise-induced mitophagy in KO mice. Under basal conditions, we demonstrated that Parkin was required for mitochondrial Mfn2 ubiquitination. We also observed an abrogation of exercise-induced mitophagy in aged muscle. Our results demonstrate that acute exercise-induced mitophagy is dependent on Parkin, and attenuated with age, which likely contributes to changes in mitochondrial content and quality in aging muscle.

  8. Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.

    PubMed

    Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd

    2016-06-10

    Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16 pos monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14 pos CD16 pos monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14 pos CD16 pos monocytes and a lower basal ratio of CD16 neg /CD16 pos monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  9. Repeated bouts of exhaustive exercise increase circulating cell free nuclear and mitochondrial DNA without development of tolerance in healthy men

    PubMed Central

    Stawski, Robert; Walczak, Konrad; Kosielski, Piotr; Meissner, Pawel; Budlewski, Tomasz; Padula, Gianluca; Nowak, Dariusz

    2017-01-01

    Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body. PMID:28542490

  10. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats.

    PubMed

    Kraemer, William J; Flanagan, Shawn D; Volek, Jeff S; Nindl, Bradley C; Vingren, Jakob L; Dunn-Lewis, Courtenay; Comstock, Brett A; Hooper, David R; Szivak, Tunde K; Looney, David P; Maresh, Carl M; Hymer, Wesley C

    2013-12-01

    The anterior pituitary gland (AP) increases growth hormone (GH) secretion in response to resistance exercise (RE), but the nature of AP adaptations to RE is unknown. To that end, we examined the effects of RE on regional AP somatotroph GH release, structure, and relative quantity. Thirty-six Sprague-Dawley rats were assigned to one of four groups: 1) no training or acute exercise (NT-NEX); 2) no training with acute exercise (NT-EX); 3) resistance training without acute exercise (RT-NEX); 4) resistance training with acute exercise (RT-EX). RE incorporated 10, 1 m-weighted ladder climbs at an 85° angle. RT groups trained 3 days/wk for 7 wk, progressively. After death, trunk blood was collected, and each AP was divided into quadrants (ventral-dorsal and left-right). We measured: 1) trunk plasma GH; 2) somatotroph GH release; 3) somatotroph size; 4) somatotroph secretory content; and 5) percent of AP cells identified as somatotrophs. Trunk GH differed by group (NT-NEX, 8.9 ± 2.4 μg/l; RT-NEX, 9.2 ± 3.5 μg/l; NT-EX, 15.6 ± 3.4 μg/l; RT-EX, 23.4 ± 4.6 μg/l). RT-EX demonstrated greater somatotroph GH release than all other groups, predominantly in ventral regions (P < 0.05-0.10). Ventral somatotrophs were larger in NT-EX and RT-NEX compared with RT-EX (P < 0.05-0.10). RT-NEX exhibited significantly greater secretory granule content than all other groups but in the ventral-right region only (P < 0.05-0.10). Our findings indicate reproducible patterns of spatially distinct, functionally different somatotroph subpopulations in the rat pituitary gland. RE training appears to induce dynamic adaptations in somatotroph structure and function.

  11. The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells.

    PubMed

    Zuhl, Micah; Dokladny, Karol; Mermier, Christine; Schneider, Suzanne; Salgado, Roy; Moseley, Pope

    2015-01-01

    Chronic glutamine supplementation reduces exercise-induced intestinal permeability and inhibits the NF-κB pro-inflammatory pathway in human peripheral blood mononuclear cells. These effects were correlated with activation of HSP70. The purpose of this paper is to test if an acute dose of oral glutamine prior to exercise reduces intestinal permeability along with activation of the heat shock response leading to inhibition of pro-inflammatory markers. Physically active subjects (N = 7) completed baseline and exercise intestinal permeability tests, determined by the percent ratio of urinary lactulose (5 g) to rhamnose (2 g). Exercise included two 60-min treadmill runs at 70 % of VO2max at 30 °C after ingestion of glutamine (Gln) or placebo (Pla). Plasma levels of endotoxin and TNF-α, along with peripheral blood mononuclear cell (PBMC) protein expression of HSP70 and IκBα, were measured pre- and post-exercise and 2 and 4 h post-exercise. Permeability increased in the Pla trial compared to that at rest (0.06 ± 0.01 vs. 0.02 ± 0.018) and did not increase in the Gln trial. Plasma endotoxin was lower at the 4-h time point in the Gln vs. 4 h in the Pla (6.715 ± 0.046 pg/ml vs. 7.952 ± 1.11 pg/ml). TNF-α was lower 4 h post-exercise in the Gln vs. Pla (1.64 ± 0.09 pg/ml vs. 1.87 ± 0.12 pg/ml). PBMC expression of IkBα was higher 4 h post-exercise in the Gln vs. 4 h in the Pla (1.29 ± 0.43 vs. 0.8892 ± 0.040). HSP70 was higher pre-exercise and 2 h post-exercise in the Gln vs. Pla (1.35 ± 0.21 vs. 1.000 ± 0.000 and 1.65 ± 0.21 vs. 1.27 ± 0.40). Acute oral glutamine supplementation prevents an exercise-induced rise in intestinal permeability and suppresses NF-κB activation in peripheral blood mononuclear cells.

  12. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less

  13. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.

    PubMed

    Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie

    2017-07-01

    Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.

  14. An Acute Bout of Exercise Improves the Cognitive Performance of Older Adults.

    PubMed

    Johnson, Liam; Addamo, Patricia K; Selva Raj, Isaac; Borkoles, Erika; Wyckelsma, Victoria; Cyarto, Elizabeth; Polman, Remco C

    2016-10-01

    There is evidence that an acute bout of exercise confers cognitive benefits, but it is largely unknown what the optimal mode and duration of exercise is and how cognitive performance changes over time after exercise. We compared the cognitive performance of 31 older adults using the Stroop test before, immediately after, and at 30 and 60 min after a 10 and 30 min aerobic or resistance exercise session. Heart rate and feelings of arousal were also measured before, during, and after exercise. We found that, independent of mode or duration of exercise, the participants improved in the Stroop Inhibition task immediately postexercise. We did not find that exercise influenced the performance of the Stroop Color or Stroop Word Interference tasks. Our findings suggest that an acute bout of exercise can improve cognitive performance and, in particular, the more complex executive functioning of older adults.

  15. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    PubMed

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  16. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review

    PubMed Central

    Basso, Julia C.; Suzuki, Wendy A.

    2017-01-01

    A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853

  17. Reduced Tic Symptomatology in Tourette Syndrome After an Acute Bout of Exercise: An Observational Study.

    PubMed

    Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M

    2014-03-01

    In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications. © The Author(s) 2014.

  18. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    PubMed

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE.

  19. Acute achilles tendon repair: strength outcomes after an acute bout of exercise in recreational athletes.

    PubMed

    Porter, David A; Barnes, Adam F; Rund, Angela M; Kaz, Ari J; Tyndall, James A; Millis, Andrew A

    2014-02-01

    This is the first study to evaluate the effect of an acute bout of exercise on strength evaluation after Achilles tendon (AT) rupture and repair. Forty patients sustained an acute AT injury and met inclusion criteria for this study. At a minimum of 12 months after operative repair, patients were measured for (1) calf circumference, (2) bilateral isokinetic strength on a Cybex dynamometer before and after 30 minutes of walking at 70% maximal exertion, and (3) subjective evaluation by AAOS lower limb core and foot and ankle modules. Follow-up occurred at a mean of 32.4 ± 20.7 (range, 12-80) months after surgery, and patients were on average 44.4 ± 8.6 (range, 20-62) years old. One-tailed Student's paired t tests analyzed significance for strength and fatigue between the involved and uninvolved ankle (P < .05). The calf circumference of the involved ankle was significantly smaller than the uninvolved ankle by 1.9 cm, or 4.7%. Plantarflexion deficits of the involved ankle ranged from 12% to 18% for peak torque (P < .0001) and from 17% to 25% for work per repetition (P < .0001), but both ankles fatigued at equal proportions as measured after exercise. Dorsiflexion strength of the involved ankle increased 6% to 11% for peak torque (P = .070) and 1% to 25% for peak work (P = .386). Reported AAOS lower limb core and foot and ankle scores averaged 99.8 and 96.0, respectively. After an AT rupture with repair, patients had less plantarflexion strength, and equal dorsiflexion strength in the operative leg compared to the uninvolved, normal leg. However, subjective results indicated near normal pain and function despite mild plantarflexion strength deficits. Dorsiflexion strength was normal after repair and remained normal even after an acute bout of exercise. Plantarflexion strength ratios postexercise remained similar to pre-exercise after acute exercise bouts. Athletes reported a "flat tire" feeling while running, which suggests a probable gait adjustment as cause for long-term plantarflexion strength deficits. Level III, cohort study.

  20. Acute Effect of Upper and Lower Body Postactivation Exercises on Shot Put Performance.

    PubMed

    Kontou, Eleni I; Berberidou, Fani T; Pilianidis, Theophilos C; Mantzouranis, Nikolaos I; Methenitis, Spyridon K

    2018-04-01

    Kontou, EI, Berberidou, FT, Pilianidis, TC, Mantzouranis, NI, and Methenitis, SK. Acute effect of upper and lower body postactivation exercises on shot put performance. J Strength Cond Res 32(4): 970-982, 2018-The purpose of this study was to investigate the effect of different types of upper and lower' extremities exercises on acute increase of shot put performance, in moderate experienced throwers. Eight (n = 8) males and 9 (n = 9) female throwers participated in this study. Their bench press and squat maximum strength were measured while their shot put performance from power position was evaluated before and after 4 interventions: (a) plyometric push-ups (Plyo), (b) 6 s isometric push-ups (Iso), (c) 3 countermovement jumps (CMJs) and (d) 10 reps. of skipping (Skip). Interventions were performed in counterbalanced order with a 48-hour interval. Significant increase (p < 0.05) of shot put performances was observed after Plyo, Iso, and CMJ (range: 2.30 ± 1.82%-5.72 ± 4.32%). In addition, Iso induced the highest increase while Skip did not induce any improvement of throwing performance. The highest increases were recorded in men's performance after CMJ (5.72 ± 4.32%) while in women's performance after Iso (3.59 ± 2.7%). Javelin and discus throwers increase higher their performance after CMJs while shot putters after Iso. Significant correlations were found between training experience, maximum/relative strength, shot put performance and increase of throwing performance (%) after the interventions (r: 0.519-0.991, p < 0.05). Percentage increase of performance between Iso and Plyo have negative correlations (r: -0.569, p < 0.05) in contrast of those between Skip and CMJ (r: 0.710, p < 0.05). These results suggest that upper or lower body postactivation interventions may acutely increase the throwing performance. However, experience and strength are significant determinant of this increase.

  1. Athlete's Heart: Is the Morganroth Hypothesis Obsolete?

    PubMed

    Haykowsky, Mark J; Samuel, T Jake; Nelson, Michael D; La Gerche, Andre

    2018-05-01

    In 1975, Morganroth and colleagues reported that the increased left ventricular (LV) mass in highly trained endurance athletes versus nonathletes was primarily due to increased end-diastolic volume while the increased LV mass in resistance trained athletes was solely due to an increased LV wall thickness. Based on the divergent remodelling patterns observed, Morganroth and colleagues hypothesised that the increased "volume" load during endurance exercise may be similar to that which occurs in patients with mitral or aortic regurgitation while the "pressure" load associated with performing a Valsalva manoeuvre (VM) during resistance exercise may mimic the stress imposed on the heart by systemic hypertension or aortic stenosis. Despite widespread acceptance of the four-decade old Morganroth hypothesis in sports cardiology, some investigators have questioned whether such a divergent "athlete's heart" phenotype exists. Given this uncertainty, the purpose of this brief review is to re-evaluate the Morganroth hypothesis regarding: i) the acute effects of resistance exercise performed with a brief VM on LV wall stress, and the patterns of LV remodelling in resistance-trained athletes; ii) the acute effects of endurance exercise on biventricular wall stress, and the time course and pattern of LV and right ventricular (RV) remodelling with endurance training; and iii) the value of comparing "loading" conditions between athletes and patients with cardiac pathology. Copyright © 2018. Published by Elsevier B.V.

  2. Effect of Acute Exercise on Fatigue in People with ME/CFS/SEID: A Meta-analysis.

    PubMed

    Loy, Bryan D; O'Connor, Patrick J; Dishman, Rodney K

    2016-10-01

    A prominent symptom of myalgic encephalomyelitis, chronic fatigue syndrome, or systemic exertion intolerance disease (ME/CFS/SEID) is persistent fatigue that is worsened by physical exertion. Here the population effect of a single bout of exercise on fatigue symptoms in people with ME/CFS/SEID was estimated and effect moderators were identified. Google Scholar was systematically searched for peer-reviewed articles published between February 1991 and May 2015. Studies were included where people diagnosed with ME/CFS/SEID and matched control participants completed a single bout of exercise and fatigue self-reports were obtained before and after exercise. Fatigue means, standard deviations, and sample sizes were extracted to calculate effect sizes and the 95% confidence interval. Effects were pooled using a random-effects model and corrected for small sample bias to generate mean Δ. Multilevel regression modeling adjusted for nesting of effects within studies. Moderators identified a priori were diagnostic criteria, fibromyalgia comorbidity, exercise factors (intensity, duration, and type), and measurement factors. Seven studies examining 159 people with ME/CFS/SEID met inclusion criteria, and 47 fatigue effects were derived. The mean fatigue effect was Δ = 0.73 (95% confidence interval = 0.24-1.23). Fatigue increases were larger for people with ME/CFS/SEID when fatigue was measured 4 h or more after exercise ended rather than during or immediately after exercise ceased. This preliminary evidence indicates that acute exercise increases fatigue in people with ME/CFS/SEID more than that in control groups, but effects were heterogeneous between studies. Future studies with no-exercise control groups of people with ME/CFS/SEID are needed to obtain a more precise estimate of the effect of exercise on fatigue in this population.

  3. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis.

    PubMed

    He, Congcong; Bassik, Michael C; Moresi, Viviana; Sun, Kai; Wei, Yongjie; Zou, Zhongju; An, Zhenyi; Loh, Joy; Fisher, Jill; Sun, Qihua; Korsmeyer, Stanley; Packer, Milton; May, Herman I; Hill, Joseph A; Virgin, Herbert W; Gilpin, Christopher; Xiao, Guanghua; Bassel-Duby, Rhonda; Scherer, Philipp E; Levine, Beth

    2012-01-18

    Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.

  4. Muscle fiber type-specific response of Hsp70 expression in human quadriceps following acute isometric exercise.

    PubMed

    Tupling, A R; Bombardier, E; Stewart, R D; Vigna, C; Aqui, A E

    2007-12-01

    To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.

  5. [Exercise stress test and dobutamine stress echocardiography for the prognostic stratification after uncomplicated acute myocardial infarction].

    PubMed

    Vitiello, Nicola; Cirillo, Raffaele; Granato, Luigi; Coppola, Vincenzo; di Palma, Francesco

    2007-05-01

    Exercise stress test and dobutamine stress echocardiography are usually performed early after an uncomplicated acute myocardial infarction in the prognostic stratification of patients to define the optimal diagnostic and therapeutic procedure. The aim of this study was to evaluate if the association of an imaging test could increase exercise test capability to identify patients with residual ischemia and patients at high risk of events in the follow-up. Four hundred and forty-two consecutive patients underwent exercise stress testing and dobutamine stress echocardiography before discharge and subsequently coronary angiography within 30 days. In case of submaximal negative result at the exercise test, this was repeated 20 days after discharge. The follow-up lasted 26.8 +/- 9 months. The endpoints were death, reinfarction, and unstable angina requiring hospitalization or revascularization intervention. Both tests and their association showed a higher sensitivity in males; in females dobutamine stress echocardiography had a higher specificity. In females, the addition of dobutamine stress echocardiography increased either the negative or the positive prognostic values of exercise stress test by 31% and 5.6%, respectively. In males, the negative prognostic value increased by 15.5%, whereas the positive prognostic value decreased by 12%. A low exercise capability (<6 METs) showed an event predictive value independent of test results and any other variables. The event-free survival curves correlated with exercise capability differed shortly after the first months both in males and females. These results suggest different stratification procedures with regard to gender: in males, the exercise stress test might be sufficient at discharge, to be repeated 20 days later, if submaximal negative. In females, it seems to be useful to associate an imaging test at discharge. In any case, the exercise stress test remains the main step in the stratification procedure also for its capability to identify patients who are at high risk of events in the follow-up.

  6. Investigations into Changes in Bone Turnover with Acute, Weight-Bearing Exercise in Healthy, Young Men

    DTIC Science & Technology

    2009-10-01

    four days post-exercise and is unaffected by training status. In physically - active men, who have consumed an appropriate diet, two bouts of... physically - active men, who have consumed an appropriate diet, two bouts of moderate exercise separated by either 23 h or 3 h has no effect on bone...relative intensity would decrease with increased physical fitness. Given the results of Study IV, where β-CTX concentrations were higher, albeit

  7. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells.

    PubMed

    Hjorth, M; Pourteymour, S; Görgens, S W; Langleite, T M; Lee, S; Holen, T; Gulseth, H L; Birkeland, K I; Jensen, J; Drevon, C A; Norheim, F

    2016-05-01

    Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training

    PubMed Central

    Russell, Aaron P; Lamon, Severine; Boon, Hanneke; Wada, Shogo; Güller, Isabelle; Brown, Erin L; Chibalin, Alexander V; Zierath, Juleen R; Snow, Rod J; Stepto, Nigel; Wadley, Glenn D; Akimoto, Takayuki

    2013-01-01

    The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=−0.71; P= 0.04), miR-31 and HDAC4 protein (r =−0.87; P= 0.026) and miR-31 and NRF1 protein (r =−0.77; P= 0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3′ untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health. PMID:23798494

  9. Acute antioxidant supplementation and skeletal muscle vascular conductance in aged rats: role of exercise and fiber type.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I

    2011-04-01

    Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.

  10. Exercisers achieve greater acute exercise-induced mood enhancement than nonexercisers.

    PubMed

    Hoffman, Martin D; Hoffman, Debi Rufi

    2008-02-01

    To determine whether a single session of exercise of appropriate intensity and duration for aerobic conditioning has a different acute effect on mood for nonexercisers than regular exercisers. Repeated-measures design. Research laboratory. Adult nonexercisers, moderate exercisers, and ultramarathon runners (8 men, 8 women in each group). Treadmill exercise at self-selected speeds to induce a rating of perceived exertion (RPE) of 13 (somewhat hard) for 20 minutes, preceded and followed by 5 minutes at an RPE of 9 (very light). Profile of Mood States before and 5 minutes after exercise. Vigor increased by a mean +/- standard deviation of 8+/-7 points (95% confidence interval [CI], 5-12) among the ultramarathon runners and 5+/-4 points (95% CI, 2-9) among the moderate exercisers, with no improvement among the nonexercisers. Fatigue decreased by 5+/-6 points (95% CI, 2-8) for the ultramarathon runners and 4+/-4 points (95% CI, 1-7) for the moderate exercisers, with no improvement among the nonexercisers. Postexercise total mood disturbance decreased by a mean of 21+/-16 points (95% CI, 12-29) among the ultramarathon runners, 16+/-10 points (95% CI, 7-24) among the moderate exercisers, and 9+/-13 points (95% CI, 1-18) among the nonexercisers. A single session of moderate aerobic exercise improves vigor and decreases fatigue among regular exercisers but causes no change in these scores for nonexercisers. Although total mood disturbance improves postexercise in exercisers and nonexercisers, regular exercisers have approximately twice the effect as nonexercisers. This limited postexercise mood improvement among nonexercisers may be an important deterrent for persistence with an exercise program.

  11. Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Zhao, Min; Wu, Xueping; Chang, Yu-Kai

    2016-04-01

    The present study integrated behavioral and neuroelectric approaches for determining the dose-response relationships between exercise intensity and methamphetamine (MA) craving and between exercise intensity and inhibitory control in individuals with MA dependence. Ninety-two individuals with MA dependence were randomly assigned to an exercise group (light, moderate, or vigorous intensity) or to a reading control group. The participants then completed a craving self-report at four time points: before exercise, during exercise, immediately after exercise, and 50 min after exercise. Event-related potentials were also recorded while the participants completed a standard Go/NoGo task and an MA-related Go/NoGo task approximately 20 min after exercise cessation. The reduction in self-reported MA craving scores of the moderate and vigorous intensity groups was greater than that of the light intensity and control groups during acute exercise as well as immediately and 50 min following exercise termination. Additionally, an inverted-U-shaped relationship between exercise intensity and inhibitory control was generally observed for the behavioral and neuroelectric indices, with the moderate intensity group exhibiting shorter Go reaction times, increased NoGo accuracy, and larger NoGo-N2 amplitudes. Acute exercise may provide benefits for MA-associated craving and inhibitory control in MA-dependent individuals, as revealed by behavioral and neuroelectric measures. Moderate-intensity exercise may be associated with more positive effects, providing preliminary evidence for the establishment of an exercise prescription regarding intensity for MA dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. A randomized controlled crossover trial of the effect of ginseng consumption on the immune response to moderate exercise in healthy sedentary men.

    PubMed

    Biondo, Patricia D; Robbins, Sarah J; Walsh, Jennifer D; McCargar, Linda J; Harber, Vicki J; Field, Catherine J

    2008-10-01

    Ginseng is a popular herbal remedy that is reputed to increase resistance to stress and improve immune function. Regular exercise results in acute physiologic stress that affects the immune response. This study was conducted to investigate the effects of daily consumption of a standardized ginsenoside-containing North American ginseng (Panax quinquefolius) extract on immune function before, during, and after a moderate-exercise protocol in healthy sedentary men. Ten healthy males were randomized to receive either ginseng (1125 mg.d-1) or placebo for 35 days. After a 3 month washout period, subjects received the opposite treatment for another 35 days. An exercise test and blood collection were performed at the end of each treatment period. Immune parameters and blood hormone levels were measured before, during, and after the exercise stress protocol. Ginseng treatment reduced the peripheral blood concentration of CD8+ T cells and increased mitogen-stimulated T cell production of interleukin-2 ex vivo. Ginseng had no effect on total white blood cell counts; on concentrations of neutrophils, monocytes, or lymphocytes (CD3+, CD4+, CD16+, CD20+); on lymphocyte proliferation; or on neutrophil oxidative burst. Ginseng did not significantly affect exercise-induced changes in plasma concentrations of lactate, insulin, cortisol, or growth hormone. The consumption of ginseng for 5 weeks had a limited effect on the immune response to an acute exercise protocol.

  13. Acute Hematological and Inflammatory Responses to High-intensity Exercise Tests: Impact of Duration and Mode of Exercise.

    PubMed

    Minuzzi, Luciele G; Carvalho, Humberto M; Brunelli, Diego T; Rosado, Fatima; Cavaglieri, Cláudia R; Gonçalves, Carlos E; Gaspar, Joana M; Rama, Luís M; Teixeira, Ana M

    2017-07-01

    The purpose of this study was to investigate the hematological and inflammatory responses to 4 maximal high-intensity protocols, considering energy expenditure in each test. 9 healthy volunteers performed 4 high-intensity exercise tests of short [Wingate (WANT); Repeated-sprints (RSA)] and long durations [Continuous VO 2 test (VCONT); intermittent VO 2 test (VINT)] in a cycle-ergometer, until exhaustion. Hematological parameters and IL-6, IL-10 and creatine kinase (CK) levels were determined before (PRE), POST, 30 min, 1, 2, 12 and 24 h after the end of the protocols. Additionally, energy expenditure was determined. Leucocytes, erythrocytes and lymphocytes increased at POST and returned to PRE values at 30 min for all protocols. Lymphocytes had a second decreased at 2 h and granulocytes increased at 2 h when compared to PRE. Both variables returned to PRE values between 12-24 h into recovery. The magnitude of response for IL-6 was greater in VINT and for IL-10 in VCONT. There was no association of energy expenditure within each exercise protocol with the pattern of IL-6, IL-10 and CK responses to the exercise protocols. The present finding support that similar responses after continuous or intermittent acute protocols are observed when exercises are performed to volitional failure, regardless of the duration and mode of exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Extreme Conditioning Program Induced Acute Hypotensive Effects are Independent of the Exercise Session Intensity

    PubMed Central

    TIBANA, RAMIRES ALSAMIR; ALMEIDA, LEONARDO MESQUISTA; DE SOUSA NETO, IVO VIEIRA; DE SOUSA, NUNO MANUEL FRADE; DE ALMEIDA, JEESER ALVES; DE SALLES, BELMIRO FREITAS; BENTES, CLAUDIO MELIBEU; PRESTES, JONATO; COLLIER, SCOTT R.; VOLTARELLI, FABRICIO AZEVEDO

    2017-01-01

    The aim of the study was to determine the acute systolic (SBP) and diastolic (DBP) blood pressure, rating of perceived exertion (RPE) and heart rate (HR) responses following two intense training sessions (24 hours apart). Nine male extreme conditioning program (ECP) practitioners with more than 6 months of experience (age 26.7 ± 6.6 years; body mass 78.8 ± 13.2 kg; body fat 13.5 ± 6.2 %) completed two experimental ECP sessions. Cardiovascular variables were measured before, immediately after and every 15 min during a 45 min recovery following each experimental session. Compared with pre-exercise data, our results showed a SBP decrease at 30 min post exercise session 1 (P≤0.05) and at 45 min following exercise session 2. DBP decreased (P≤0.05) at 15 min and 30 min following exercise session 1 and at 30 min after the exercise session 2, respectively. HR remained significantly higher (P≤0.05) 45 min following the first and second exercise session compared with pre-exercise values. Exercise session 1 induced a higher increase in HR (86 ± 11% of HRmax versus 82 ± 12% of HRmax, p = 0.01) and RPE (8.8 ± 1.2 versus 8.0 ± 1.2, p = 0.02) when compared to exercise session 2. In conclusion, post-exercise hypotension occurs following strenuous exercise sessions, regardless of the session design, which may have an important role in the prevention of cardiovascular diseases. PMID:29399246

  15. Adipocytokine and ghrelin responses to acute exercise and sport training in children during growth and maturation.

    PubMed

    Jürimäe, Jaak

    2014-11-01

    Physical exercise is known to regulate energy balance. Important to this regulatory system is the existence of several peptides that communicate the status of body energy stores to the brain and are related to the body fatness including leptin, adiponectin and ghrelin. These hormones assist in regulating energy balance as well as somatic and pubertal growth in children. It appears that rather few studies have investigated the responses of leptin, adiponectin and ghrelin to acute exercise and these studies have demonstrated no changes in these peptides as a result of exercise. Leptin levels are decreased and may remain unchanged advancing from prepuberty to pubertal maturation in young male and female athletes. A limited number of studies indicate that adiponectin levels are not different between prepubertal and pubertal athletes and untrained controls. However, in certain circumstances circulating adiponectin could be increased in young athletes after onset of puberty as a result of heavily increased energy expenditure. Ghrelin levels are elevated in young sportsmen. However, pubertal onset decreases ghrelin levels in boys and girls even in the presence of chronically elevated energy expenditure as seen in young athletes. Ghrelin may also be used as an indicator of energy imbalance across the menstrual cycle in adolescent athletes. There are no studies with high-molecular-weight adiponectin and only very few studies with acylated ghrelin responses to acute exercise and chronic training have been performed in young athletes. Since these forms of adiponectin and ghrelin have been thought to be bioactive forms, further studies with these specific forms of adiponectin and ghrelin are needed. In conclusion, further studies should be conducted to investigate the response of these hormones to acute and chronic negative energy balance to better understand their role in regulating energy balance during growth and maturation in young athletes.

  16. Elective course in acute care using online learning and patient simulation.

    PubMed

    Seybert, Amy L; Kane-Gill, Sandra L

    2011-04-11

    To enhance students' knowledge of and critical-thinking skills in the management of acutely ill patients using online independent learning partnered with high-fidelity patient simulation sessions. Students enrolled in the Acute Care Simulation watched 10 weekly Web-based video presentations on various critical care and advanced cardiovascular pharmacotherapy topics. After completing each online module, all students participated in groups in patient-care simulation exercises in which they prepared a pharmacotherapeutic plan for the patient, recommended this plan to the patient's physician, and completed a debriefing session with the facilitator. Students completed a pretest and posttest before and after each simulation exercise, as well as midterm and final evaluations and a satisfaction survey. Pharmacy students significantly improved their scores on 9 of the 10 tests (p ≤ 0.05). Students' performance on the final evaluation improved compared with performance on the midterm evaluation. Overall, students were satisfied with the unique dual approach to learning and enjoyed the realistic patient-care environment that the simulation laboratory provided. Participation in an elective course that combined self-directed Web-based learning and hands-on patient simulation exercises increased pharmacy students' knowledge and critical-thinking skills in acute care.

  17. Acute impact of conventional and eccentric cycling on platelet and vascular function in patients with chronic heart failure.

    PubMed

    Haynes, Andrew; Linden, Matthew D; Chasland, Lauren C; Nosaka, Kazunori; Maiorana, Andrew; Dawson, Ellen A; Dembo, Lawrence H; Naylor, Louise H; Green, Daniel J

    2017-06-01

    Evidence-based guidelines recommend exercise therapy for patients with chronic heart failure (CHF). Such patients have increased atherothrombotic risk. Exercise can transiently increase platelet activation and reactivity and decrease vascular function in healthy participants, although data in CHF are scant. Eccentric (ECC) cycling is a novel exercise modality that may be particularly suited to patients with CHF, but the acute impacts of ECC cycling on platelet and vascular function are currently unknown. Our null hypothesis was that ECC and concentric (CON) cycling, performed at matched external workloads, would not induce changes in platelet or vascular function in patients with CHF. Eleven patients with heart failure with reduced ejection fraction (HFrEF) took part in discrete bouts of ECC and CON cycling. Before and immediately after exercise, vascular function was assessed by measuring diameter and flow-mediated dilation (FMD) of the brachial artery. Platelet function was measured by the flow cytometric determination of glycoprotein IIb/IIIa activation and granule exocytosis in the presence and absence of platelet agonists. ECC cycling increased baseline artery diameter (pre: 4.0 ± 0.8 mm vs. post: 4.2 ± 0.7 mm; P = 0.04) and decreased FMD%. When changes in baseline artery diameter were accounted for, the decrease in FMD post-ECC cycling was no longer significant. No changes were apparent after CON. Neither ECC nor CON cycling resulted in changes to any platelet-function measures (all P > 0.05). These results suggest that both ECC and CON cycling, at a moderate intensity and short duration, can be performed by patients with HFrEF without detrimental impacts on vascular or platelet function. NEW & NOTEWORTHY This is the first evidence to indicate that eccentric (ECC) cycling can be performed relatively safely by patients with chronic heart failure (CHF), as it did not result in impaired vascular or platelet function compared with conventional cycling. This is important, as acute exercise can transiently increase atherothrombotic risk, and ECC cycling is a novel exercise modality that may be particularly suited to patients with CHF. Copyright © 2017 the American Physiological Society.

  18. Acute Exercise and Academic Achievement in High School Youth

    ERIC Educational Resources Information Center

    Harveson, Andrew; Hannon, James; Brusseau, Timothy; Podlog, Les; Chase, Ben; Kang, Kyoung-doo

    2018-01-01

    The purpose of this study was to compare the acute effects of Aerobic Exercise (AE), Resistance Exercise (RE), and a nonexercise (NE) control on measures of academic achievement (AA) and cognition in 10th grade males and females. This study utilized a randomized crossover design. Tenth grade males and females performed three exercise trials (AE,…

  19. Acute effects of power and resistance exercises on hemodynamic measurements of older women

    PubMed Central

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    Purpose The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. Materials and methods A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m2; systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8–10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Conclusion Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women. PMID:28744114

  20. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia.

    PubMed

    Nounou, Howaida A; Deif, Maha M; Shalaby, Manal A

    2012-10-05

    Flaxseed has recently gained attention in the area of cardiovascular disease primarily because of its rich contents of α-linolenic acid (ALA), lignans, and fiber. Although the benefits of exercise on any single risk factor are unquestionable, the effect of exercise on overall cardiovascular risk, when combined with other lifestyle modifications such as proper nutrition, can be dramatic.This study was carried out to evaluate the protective role of flaxseed and exercise on cardiac markers, lipids profile and inflammatory markers in isoproterenol (ISO)-induced myocardial ischemia in rats. The research was conducted on 40 male albino rats, divided into 4 groups (n=10): group I served as control, group II has acute myocardial ischemia induced by isoproterenol, groups III and IV have acute myocardial ischemia induced by isoproterenol pretreated with flaxseed supplementation orally for 6 weeks, additionally group IV practiced muscular exercise through swimming. Alterations of lipid profile, cardiac and inflammatory markers (Il-1β, PTX 3 and TNF- α) were observed in myocardial ischemia group. Flaxseed supplementation combined with exercise training showed significant increase of HDL and PON 1, on the other hand cardiac troponin, Il- 1β and TNF- α levels significantly decreased as compared to myocardial ischemic group. Receiver Operating Characteristics (ROC) analysis of cTnI, PTX 3, Il-1β and TNF- α revealed a satisfactory level of sensitivity and specificity. Regular exercise enhances the improvement in plasma lipoprotein levels and cardiovascular protection that results from flaxseed supplementation by mitigating the pathophysiology of atherosclerosis. Elevation of HDL, the antioxidant PON 1 and the cardioprotective marker PTX 3 emphasizes the protective effects of flaxseed and muscular exercise mutually against the harmful effects of acute myocardial ischemia.

  1. An acute exercise session increases self-efficacy in sedentary endometrial cancer survivors and controls.

    PubMed

    Hughes, Daniel; Baum, George; Jovanovic, Jennifer; Carmack, Cindy; Greisinger, Anthony; Basen-Engquist, Karen

    2010-11-01

    Self-efficacy can be affected by mastery experiences and somatic sensations. A novel exercise experience and associated sensations may impact self-efficacy and subsequent behaviors. We investigated the effect of a single exercise session on self-efficacy for sedentary endometrial cancer survivors compared with sedentary women of a similar age, but with no cancer history. Twenty survivors and 19 controls completed an exercise session performed as a submaximal cycle ergometry test. Sensations and efficacy were measured before and after exercise. Repeated measures analysis of variance (ANOVA) was performed. Regression models were used to determine predictors of self-efficacy and subsequent exercise. Self-efficacy increased for both survivors and controls, but survivors had a higher rate of increase, and the change predicted subsequent exercise. The association between exercise-related somatic sensations and self-efficacy differed between the 2 groups. A novel exercise experience had a larger effect on self-efficacy and subsequent exercise activity for endometrial cancer survivors than controls. Somatic sensations experienced during exercise may differ for survivors, which may be related to the experience of having cancer. Understanding factors affecting confidence in novel exercise experiences for populations with specific cancer histories is of the utmost importance in the adoption of exercise behaviors.

  2. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  3. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice.

    PubMed

    Yi, Xuejie; Gao, Haining; Chen, Dequan; Tang, Donghui; Huang, Wanting; Li, Tao; Ma, Tie; Chang, Bo

    2017-04-01

    To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P -450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P -450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function. Copyright © 2017 the American Physiological Society.

  4. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons

    PubMed Central

    Mika, Agnieszka; Bouchet, Courtney A.; Bunker, Preston; Hellwinkel, Justin E.; Spence, Katie G.; Day, Heidi E.W.; Campeau, Serge; Fleshner, Monika

    2015-01-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male, F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1 week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID:26454156

  5. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    PubMed

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside.

    PubMed

    Chantler, Paul D; Nussbacher, Amit; Gerstenblith, Gary; Schulman, Steven P; Becker, Lewis C; Ferrucci, Luigi; Fleg, Jerome L; Lakatta, Edward G; Najjar, Samer S

    2011-05-01

    The coupling between arterial elastance (E(A); net afterload) and left ventricular elastance (E(LV); pump performance), known as E(A)/E(LV), is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in E(LV) versus E(A). This normal exercise-induced reduction in E(A)/E(LV) decreases with advancing age. We hypothesized that sodium nitroprusside (SNP) can acutely ameliorate the age-associated deficits in E(A)/E(LV). At rest and during graded exercise to exhaustion, E(A) was characterized as end-systolic pressure/stroke volume and E(LV) as end-systolic pressure/end-systolic volume. Resting E(A)/E(LV) did not differ between old (70 ± 8 yr, n = 15) and young (30 ± 5 yr, n = 17) subjects because of a tandem increase in E(A) and E(LV) in older subjects. During peak exercise, a blunted increase in E(LV) in old (7.8 ± 3.1 mmHg/ml) versus young (11.4 ± 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in E(A)/E(LV) in old (0.25 ± 0.11) versus young (0.16 ± 0.05) subjects. SNP administration to older subjects lowered resting E(A)/E(LV) by 31% via a reduction in E(A) (10%) and an increase in E(LV) (47%) and lowered peak exercise E(A)/E(LV) (36%) via an increase in E(LV) (68%) without a change in E(A). Importantly, SNP attenuated the age-associated deficits in E(A)/E(LV) and E(LV) during exercise, and at peak exercise E(A)/E(LV) in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in E(A)/E(LV), E(A), and E(LV), in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction.

  7. Endothelium-dependent vasodilatation and exercise hyperaemia in ageing humans: impact of acute ascorbic acid administration

    PubMed Central

    Kirby, Brett S; Voyles, Wyatt F; Simpson, Carrie B; Carlson, Rick E; Schrage, William G; Dinenno, Frank A

    2009-01-01

    Age-related increases in oxidative stress impair endothelium-dependent vasodilatation in humans, leading to the speculation that endothelial dysfunction contributes to impaired muscle blood flow and vascular control during exercise in older adults. We directly tested this hypothesis in 14 young (22 ± 1 years) and 14 healthy older men and women (65 ± 2 years). We measured forearm blood flow (FBF; Doppler ultrasound) and calculated vascular conductance (FVC) responses to single muscle contractions at 10, 20 and 40% maximum voluntary contraction (MVC) before and during ascorbic acid (AA) infusion, and we also determined the effects of AA on muscle blood flow during mild (10% MVC) continuous rhythmic handgrip exercise. For single contractions, the peak rapid hyperaemic responses to all contraction intensities were impaired ∼45% in the older adults (all P < 0.05), and AA infusion did not impact the responses in either age group. For the rhythmic exercise trial, FBF (∼28%) and FVC (∼31%) were lower (P= 0.06 and 0.05) in older versus young adults after 5 min of steady-state exercise with saline. Subsequently, AA was infused via brachial artery catheter for 10 min during continued exercise. AA administration did not significantly influence FBF or FVC in young adults (1–3%; P= 0.24–0.59), whereas FBF increased 34 ± 7% in older adults at end-exercise, and this was due to an increase in FVC (32 ± 7%; both P < 0.05). This increase in FBF and FVC during exercise in older adults was associated with improvements in vasodilator responses to acetylcholine (ACh; endothelium dependent) but not sodium nitroprusside (SNP; endothelium independent). AA had no effect on ACh or SNP responses in the young. We conclude that acute AA administration does not impact the observed age-related impairment in the rapid hyperaemic response to brief muscle contractions in humans; however, it does significantly increase muscle blood flow during continuous dynamic exercise in older adults, and this is probably due (in part) to an improvement in endothelium-dependent vasodilatation. PMID:19307300

  8. Substantive hemodynamic and thermal strain upon completing lower-limb hot-water immersion; comparisons with treadmill running.

    PubMed

    Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Gray, Andrew R; Cotter, James D

    2016-01-01

    Exercise induces arterial flow patterns that promote functional and structural adaptations, improving functional capacity and reducing cardiovascular risk. While heat is produced by exercise, local and whole-body passive heating have recently been shown to generate favorable flow profiles and associated vascular adaptations in the upper limb. Flow responses to acute heating in the lower limbs have not yet been assessed, or directly compared to exercise, and other cardiovascular effects of lower-limb heating have not been fully characterized. Lower-limb heating by hot-water immersion (30 min at 42°C, to the waist) was compared to matched-duration treadmill running (65-75% age-predicted heart rate maximum) in 10 healthy, young adult volunteers. Superficial femoral artery shear rate assessed immediately upon completion was increased to a greater extent following immersion (mean ± SD: immersion +252 ± 137% vs. exercise +155 ± 69%, interaction: p = 0.032), while superficial femoral artery flow-mediated dilation was unchanged in either intervention. Immersion increased heart rate to a lower peak than during exercise (immersion +38 ± 3 beats·min -1 vs. exercise +87 ± 3 beats·min -1 , interaction: p < 0.001), whereas only immersion reduced mean arterial pressure after exposure (-8 ± 3 mmHg, p = 0.012). Core temperature increased twice as much during immersion as exercise (+1.3 ± 0.4°C vs. +0.6 ± 0.4°C, p < 0.001). These data indicate that acute lower-limb hot-water immersion has potential to induce favorable shear stress patterns and cardiovascular responses within vessels prone to atherosclerosis. Whether repetition of lower-limb heating has long-term beneficial effects in such vasculature remains unexplored.

  9. Evaluating attentional and affective changes following an acute exercise bout using a modified dot-probe protocol

    PubMed Central

    BARNES, ROBERT T.; COOMBES, STEPHEN A.; ARMSTRONG, NICOLE B.; HIGGINS, TORRANCE J.; JANELLE, CHRISTOPHER M.

    2011-01-01

    A large body of literature advocates exercise as a successful intervention for increasing positive affect while also reducing negative affect and anxiety. Questions concerning the mechanisms driving these effects remain unanswered, particularly considering theorized attentional adaptations that may be elicited by acute exercise bouts. We investigated pre- and post-exercise attentional bias to examine possible attentional explanations that may account for these reported changes in affect. On separate visits to the laboratory, 30 high trait anxious participants completed 30 min of exercise on a cycle ergometer at 70% of their heart rate reserve, or completed a 30-min quiet rest protocol. During each intervention, pre-test and post-test modified dot-probe assessments of attentional bias were completed, as were a series of self-report anxiety and affect questionnaires. Attentional bias scores and reaction times were calculated. Post-exercise dot probe performance did not vary significantly as a function of the affective valence of presented stimuli. As hypothesized, however, positive affect and reaction time improved significantly following exercise compared with the pre- and post-rest conditions and the pre-exercise condition, suggesting that exercise facilitates a broadening of attentional scope. Implications of these findings and future directions are discussed within the context of traditional and contemporary theories of dispositional affect and state-specific emotional responses. PMID:20686994

  10. Rectus sheath haematoma following exercise testing: a case report

    PubMed Central

    2009-01-01

    Introduction Exercise testing is a safe diagnostic procedure which is widely used in the evaluation of patients suspected of having coronary heart disease or for the assessment of the prognosis in patients with established disease. Its complications are mainly cardiac disorders. Here, we report a rectus sheath haematoma as a complication of this procedure in a patient with acute coronary syndrome. To our knowledge, this is the first case report of rectus sheath haematoma in association with exercise testing. Case presentation A 72-year-old Caucasian woman was admitted for acute coronary syndrome. She received conservative treatment including low molecular weight heparin and anti-platelet agents. On the fifth day of her hospital stay, she underwent an exercise test, where no ischaemic response occurred. Several hours later, she experienced pain in the left side of her abdomen. Subsequent investigations revealed a rectus sheath haematoma. The patient underwent surgical haematoma evacuation. A few days later, re-operation was performed for recurrent bleeding in the abdominal wall. The patient had several characteristics known to increase the risk of bleeding during treatment for acute coronary syndrome. Conclusion Awareness of this possible consequence of exercise testing is important for preventing and treating it correctly. For prevention, an assessment of the bleeding risk of the individual patient is necessary before the test, and excessive anticoagulation must be avoided. PMID:20338023

  11. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    PubMed Central

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  12. Exercise following Mental Work Prevented Overeating.

    PubMed

    Neumeier, William H; Goodner, Emily; Biasini, Fred; Dhurandhar, Emily J; Menear, Kristi S; Turan, Bulent; Hunter, Gary R

    2016-09-01

    Mental work may promote caloric intake, whereas exercise may offset positive energy balance by decreasing energy intake and increasing energy expenditure. This study aimed to replicate previous findings that mental work increases caloric intake compared with a rest condition and assess whether exercise after mental work can offset this effect. Thirty-eight male and female university students were randomly assigned to mental work + rest (MW + R) or mental work + exercise (MW + E). Participants also completed a baseline rest (BR) visit consisting of no mental work or exercise. Visit order was counterbalanced. During the MW + R or MW + E visit, participants completed a 20-min mental task and either a 15-min rest (MW + R) or a 15-min interval exercise (MW + E). Each visit ended with an ad libitum pizza lunch. A two-way repeated-measures ANOVA was used to compare eating behavior between groups. Participants in the MW + R condition consumed an average of 100 more kilocalories compared with BR (633.3 ± 72.9 and 533.9 ± 67.7, respectively, P = 0.02), and participants in MW + E consumed an average of 25 kcal less compared with BR (432.3 ± 69.2 and 456.5 ± 64.2, respectively, P > 0.05). When including the estimated energy expenditure of exercise in the MW + E conditions, participants were in negative energy balance by an average of 98.5 ± 41.5 kcal, resulting in a significant difference in energy balance between the two groups (P = 0.001). An acute bout of interval exercise after mental work resulted in significantly decreased food consumption compared with a nonexercise condition. These results suggest that an acute bout of exercise may be used to offset positive energy balance induced by mental tasks.

  13. [Variations of plasma concentrations of h-FABP during a muscular exercise].

    PubMed

    Delacour, H; Nervale, A; Servonnet, A; Pagliano, B; Dehan, C; Gardet, V

    2007-01-01

    To test whether heart-Fatty Acid Binding Protein (h-FABP) is a useful plasma marker for the detection of acute coronary syndrome during muscular exercise. Plasma concentrations of h-FABP were measured in 42 volunteers before and after muscular exercise (military aptitude test). Myoglobin and troponin Ic were measured for comparison. Significant increase were found in plasma myoglobin (mean = 195,9 microg/L) and h-FABP (mean = 5,71 microg/L). Myoglobin and h-FABP concentrations were already significantly elevated (p < 10(-6)) at 60 minutes after exercise and h-FABP concentrations were superior to baseline values in 15 volunteers. Whereas h-FABP decreased to normal levels within 24 hours, myoglobin remained elevated in 12 volunteers. The myoglobin to h-FABP ratio in plasma is between 8,0 and 57,0 which is different from the reported plasma ratio after myocardial injury (<6). h-FABP can be used to exclude an acute coronary syndrome during exercise. The myoglobin to h-FABP ratio seems to be useful to identify the type of muscle injured. New studies are necessary to evaluate its diagnostic accuracy.

  14. Exercise-induced pulse wave velocity changes in untreated patients with essential hypertension: the effect of an angiotensin receptor antagonist.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Nikolaidou, Barbara; Triantafyllou, George; Douma, Stella

    2014-07-01

    This study investigates arterial stiffness changes after acute exercise in young patients with untreated, recently diagnosed grade I essential hypertension (UH) compared with normotensive (NT) individuals and the effect of antihypertensive treatment on this phenomenon. Study 1 consisted of 25 UH and 15 NT patients. UH patients who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker. Aortic pulse wave velocity (PWV) was assessed at baseline, at maximal exercise, and at 10, 30, and 60 minutes later. In UH patients, PWV increased significantly at maximal exercise and 10 and 30 minutes of recovery, despite blood pressure fall to baseline levels. No significant PWV changes were observed in NT patients. Post-treatment PWV levels were significantly decreased and similar to those of NT patients. Arterial stiffness is impaired following high-intensity acute exercise even in the early stages of hypertension. Antihypertensive treatment ameliorates these effects. ©2014 Wiley Periodicals, Inc.

  15. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    PubMed

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  16. Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor

    PubMed Central

    Ferreira-Santos, Larissa; Martinez, Daniel G.; Nicolau, José Carlos; Moreira, Humberto G.; Alves, Maria Janieire; Pereira, Alexandre C.; Trombetta, Ivani C.; Negrão, Carlos Eduardo

    2017-01-01

    Background Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. Methods and results Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. Conclusion The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS. PMID:28235084

  17. Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor.

    PubMed

    Ferreira-Santos, Larissa; Martinez, Daniel G; Nicolau, José Carlos; Moreira, Humberto G; Alves, Maria Janieire; Pereira, Alexandre C; Trombetta, Ivani C; Negrão, Carlos Eduardo; Rondon, Maria Urbana P B

    2017-01-01

    Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS.

  18. Muscle performance following an acute bout of plyometric training combined with low or high intensity weight exercise.

    PubMed

    Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias

    2013-01-01

    To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.

  19. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  20. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  1. Single swim sessions in C. elegans induce key features of mammalian exercise.

    PubMed

    Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica

    2017-04-10

    Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.

  2. Dose-Response Effects of Exercise Duration and Recovery on Cognitive Functioning.

    PubMed

    Crush, Elizabeth A; Loprinzi, Paul D

    2017-12-01

    We examined the effects of different acute exercise durations and recovery periods on cognitive function in a counterbalanced, cross-over randomized controlled experiment. We placed 352 participants, aged 18 to 35 years into one of 16 experimental groups. Each participant visited the laboratory twice, separated by a 1-week washout period. Either Visit 1 or 2 consisted of an acute bout of moderate-intensity treadmill exercise (10, 20, 30, 45, or 60 minutes) followed by a period of rest (5, 15, or 30 minutes) before taking a set of five cognitive tests; the other visit consisted only of completing the cognitive tests (no exercise). Cognitive tests sampled multiple cognitive parameters, including reasoning, concentration, memory, attention, and planning. We found that a short recovery period (i.e., 5 minutes) may have a less favorable effect on planning ability but may be beneficial for memory. In addition, for various exercise durations and recovery periods, a Group × Time × Resting (nonexercise) A cognitive interaction effect was observed such that for both memory and inhibitory cognitive ability, acute exercise (vs. no exercise) had an enhancement effect for those with lower resting cognitive functioning. The length of the acute exercise recovery period and resting cognitive ability most influenced the association between exercise and cognitive function.

  3. Feasibility and Initial Effectiveness of Home Exercise During Maintenance Therapy for Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Esbenshade, Adam J.; Friedman, Debra L.; Smith, Webb A.; Jeha, Sima; Pui, Ching-Hon; Robison, Leslie L.; Ness, Kirsten K.

    2014-01-01

    Purpose Children with acute lymphoblastic leukemia (ALL) are at increased risk of obesity and deconditioning from cancer therapy. This pilot study assessed feasibility/initial efficacy of an exercise intervention for ALL patients undergoing maintenance therapy. Methods Participants were children with ALL, age 5-10 years, receiving maintenance therapy, in first remission. A 6-month home-based intervention, with written and video instruction, was supervised with weekly calls from an exercise coach. Pre- and post-study testing evaluated strength, flexibility, fitness and motor function. Results Seventeen patients enrolled (participation 63%). Twelve (71%) finished the intervention, completing 81.7±7.2% of prescribed sessions. Improvements ≥5% occurred in 67% for knee and 75% for grip strength, 58% for hamstring/low-back and 83% for ankle flexibility, 75% for the 6-minute-walk-test, and 33% for performance on the Bruininks-Oseretsky Test of Motor Proficiency Version 2. Conclusions This pilot study demonstrated that exercise intervention during ALL therapy is feasible and has promise for efficacy. PMID:24979081

  4. Influence of Exercise Modality on Cerebral-Ocular Hemodynamics and Pressures

    NASA Technical Reports Server (NTRS)

    Scott, J.; Martin, D.; Crowell, B.; Goetchius, E.; Seponski, C.; Gonzales, R.; Matz, T.; Ploutz-Snyder, R.; Stenger, M.; Ploutz-Snyder, L.

    2016-01-01

    Background: Moderate and high intensity aerobic or resistance exercise has clearly identified benefits for cardiac, muscle, and bone health. However, the impact of such exercise - either as a mitigating or an exacerbating factor - on the development of the visual impairment and intracranial pressure syndrome (VIIP) is unknown. Accordingly, our aim was to characterize the effect of an acute bout of resistance (RE), moderate-intensity continuous (CE), and high-intensity interval exercise (IE) during a cephalad fluid shift on cerebral-ocular hemodynamics and pressures. Methods: 10 male subjects (36 plus or minus 9 years) completed 4 testing days in a 15 degree head-down tilt (HDT): (1) assessment of maximum volume of O (sub 2), (2) RE session (4 sets of 12 repetition maximum leg press exercise), (3) CE session (30 minutes of cycling at 60 percent maximum volume of O (sub 2)), and (4) IE session (4 by 4-minute intervals of exercise at 85 percent maximum volume of O (sub 2) with 3-minute active rest periods). During each session, blood flow (Vivid-e, GE Healthcare) in extracranial arteries (common carotid artery, CCA; internal carotid artery, ICA; external carotid artery, ECA and vertebral artery, VA), and mean blood flow velocity in middle cerebral artery (MCA), internal jugular pressure (IJP; VeinPress), and intraocular pressure (IOP; Icare PRO) were measured at rest, at the end of each resistance or interval set, and every 5 minutes during continuous exercise. Translaminar pressure gradient (TLPG) was estimated by subtracting IJP from IOP. Results: There were no differences across days in pre-exercise resting blood flows or pressures. IOP decreased slightly from HDT rest (20.2 plus or minus 2.3 millimeters of mercury) to exercise (RE: 19.2 plus or minus 2.8 millimeters of mercury; CE: 18.9 plus or minus 3.2 millimeters of mercury; IE: 20.1 plus or minus 2.8 millimeters of mercury), while IJP decreased during CE (31.6 plus or minus 9.5 millimeters of mercury) and RE (32.0 plus or minus 8.1 millimeters of mercury), and increased during IE (35.1 plus or minus 9.5 millimeters of mercury) from HDT rest (33.3 plus or minus 6.5 millimeters of mercury). Estimated TLPG was increased during IE only. Compared to RE and CE, IE resulted in the greatest increase in MCA blood flow velocity and extracranial artery blood flow. Conclusions: These preliminary results suggest that high-intensity IE acutely increases cerebral blood flow, IJP, and TLPG. Alterations in TLPG is one mechanism that may contribute to optic nerve sheath edema in astronauts. Accordingly, acutely raising IOP and/or orbital pressure during exercise could optimize cerebral-ocular pressures during spaceflight.

  5. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  6. Treatment of dyslipidemia with statins and physical exercises: recent findings of skeletal muscle responses.

    PubMed

    Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz

    2015-04-01

    Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords "statin" AND "exercise" AND "muscle", restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.

  7. Metabolic consequences of resistive-type exercise

    NASA Technical Reports Server (NTRS)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  8. Early rehabilitation exercise program for inpatients during an acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial.

    PubMed

    Tang, Clarice Y; Blackstock, Felicity C; Clarence, Michael; Taylor, Nicholas F

    2012-01-01

    To determine whether an early rehabilitation program was safe and feasible for patients during an acute exacerbation of chronic obstructive pulmonary disease (COPD). In this phase 1 randomized controlled trial, patients with an acute exacerbation of COPD admitted to the hospital were randomly allocated to a low-intensity exercise group, a moderate- to high-intensity exercise group, or a control group, who received routine physical therapy. In addition to routine physical therapy, patients in the exercise group had to participate in an exercise program. The program consisted of twice-daily aerobic and resistance exercise sessions. Primary outcomes were the number and classification of adverse events and program adherence. In 174 exercise sessions, there was 1 serious adverse event of arrhythmia in the low-intensity exercise group that resolved within 1 hour. There were 12 other minor adverse events involving 5 patients with no significant differences between groups. Patients completed an average of 80% of their scheduled sessions with no significant between-group differences. The exercise groups improved significantly in walking distance; however, no significant between-group differences were observed. There was preliminary evidence that it was safe and feasible to implement an exercise program for patients during an acute exacerbation of COPD. Additional studies with larger sample sizes are required to accurately evaluate program effectiveness.

  9. Acute effects of aerobic exercise on cognitive function in individuals with Parkinson's disease.

    PubMed

    Silveira, Carolina R A; Roy, Eric A; Almeida, Quincy J

    2018-04-03

    Deficits in executive functions are highly prevalent in Parkinson's disease (PD). Although chronic physical exercise has been shown to improve executive functions in PD, evidence of acute exercise effects is limited. This study aimed to evaluate the effects of an acute bout of exercise on cognitive processes underlying executive functions in PD. Twenty individuals with PD were assessed in both a Control and an Exercise conditions. In each condition, individuals started performing a simple and a choice reaction time (RT) task. Subsequently, participants were asked to sit on a cycle ergometer (Control) or cycle (Exercise) for 20 min in counterbalanced order. Participants were asked to repeat both reaction time tasks after 15-min rest period in both conditions. While no differences were found in simple RT, participants showed faster choice RT post Exercise as well as Control conditions (p = .012). Participants had slower choice RT for target stimulus compared to non-target stimuli irrespective of time or experimental condition (p < .001). There was no change in accuracy following experimental conditions. Results suggest that individuals with PD may not respond behaviourally to a single bout of exercise. The lack of selective effects of exercise on cognition suggests that practice effects may have influenced previous research. Future studies should assess whether neurophysiological changes might occur after an acute bout of exercise in PD. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Self-selected music-induced reduction of perceived exertion during moderate-intensity exercise does not interfere with post-exercise improvements in inhibitory control.

    PubMed

    Tanaka, Daichi; Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2018-05-26

    Acute aerobic exercise improves inhibitory control (IC). This improvement is often associated with increases in perceived exertion during exercise. However, listening to music during aerobic exercise mitigates an exercise-induced increase in perceived exertion. Thus, it is hypothesized that such effects of music may interfere with exercise-induced improvements in IC. To test this hypothesis, we examined the effect of music on post-exercise IC improvements that were induced by moderate-intensity exercise. Fifteen healthy young men performed cycle ergometer exercise with music or non-music. The exercise was performed using a moderate-intensity of 60% of VO 2 peak for 30 min. The music condition was performed while listening to self-selected music. The non-music condition involved no music. To evaluate IC, the Stroop task was administered before exercise, immediately after exercise, and during the 30-min post-exercise recovery period. The rate of perceived exertion immediately before moderate-intensity exercise completed was significantly lower in music condition than in non-music condition. The IC significantly improved immediately after exercise and during the post-exercise recovery period compared to before exercise in both music and non-music conditions. The post-exercise IC improvements did not significantly differ between the two conditions. These findings indicate that self-selected music-induced mitigation of the increase in perceived exertion during moderate-intensity exercise dose not interfere with exercise-induced improvements in IC. Therefore, we suggest that listening to music may be a beneficial strategy in mitigating the increase in perceived exertion during aerobic exercise without decreasing the positive effects on IC. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    PubMed

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    PubMed Central

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic swimming exercise, without affecting the oxidative stress and the morphology of ileum smooth muscle. PMID:27047389

  13. Circulating androgens in women: exercise-induced changes.

    PubMed

    Enea, Carina; Boisseau, Nathalie; Fargeas-Gluck, Marie Agnès; Diaz, Véronique; Dugué, Benoit

    2011-01-01

    Physical exercise is known to strongly stimulate the endocrine system in both sexes. Among these hormones, androgens (e.g. testosterone, androstenedione, dehydroepiandrosterone) play key roles in the reproductive system, muscle growth and the prevention of bone loss. In female athletes, excessive physical exercise may lead to disorders, including delay in the onset of puberty, amenorrhoea and premature osteoporosis. The free and total fractions of circulating androgens vary in response to acute and chronic exercise/training (depending on the type), but the physiological role of these changes is not completely understood. Although it is commonly accepted that only the free fraction of steroids has a biological action, this hypothesis has recently been challenged. Indeed, a change in the total fraction of androgen concentration may have a significant impact on cells (inducing genomic or non-genomic signalling). The purpose of this review, therefore, is to visit the exercise-induced changes in androgen concentrations and emphasize their potential effects on female physiology. Despite some discrepancies in the published studies (generally due to differences in the types and intensities of the exercises studied, in the hormonal status of the group of women investigated and in the methods for androgen determination), exercise is globally able to induce an increase in circulating androgens. This can be observed after both resistance and endurance acute exercises. For chronic exercise/training, the picture is definitely less clear and there are even circumstances where exercise leads to a decrease of circulating androgens. We suggest that those changes have significant impact on female physiology and physical performance.

  14. Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients.

    PubMed

    Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallarés, Jesús G; Mora-Rodriguez, Ricardo

    2017-07-01

    The purpose of this study was to compare the magnitude of post-exercise hypotension (PEH) after a bout of cycling exercise using high-intensity interval training (HIIT) in comparison to a bout of traditional moderate-intensity continuous exercise (CE). After supine rest 14 obese (31±1 kg·m -2 ) middle-age (57±2 y) metabolic syndrome patients (50% hypertensive) underwent a bout of HIIT or a bout of CE in a random order and then returned to supine recovery for another 45 min. Exercise trials were isocaloric and compared to a no-exercise trial (CONT) of supine rest for a total of 160 min. Before and after exercise we assessed blood pressure (BP), heart rate (HR), cardiac output (Q), systemic vascular resistance (SVR), intestinal temperature (T INT ), forearm skin blood flow (S K BF) and percent dehydration. HIIT produced a larger post-exercise reduction in systolic blood pressure than CE in the hypertensive group (-20±6 vs. -5±3 mmHg) and in the normotensive group (-8±3 vs. -3±2 mmHg) while HIIT reduced SVR below CE (P<0.05). Percent dehydration was larger after HIIT, and post-exercise T INT and S K BF increased only after HIIT (all P<0.05). Our findings suggest that HIIT is a superior exercise method to CE to acutely reduce blood pressure in MSyn subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Exercise and cognition in multiple sclerosis: The importance of acute exercise for developing better interventions.

    PubMed

    Sandroff, Brian M

    2015-12-01

    Cognitive dysfunction is highly prevalent, disabling, and poorly-managed in persons with multiple sclerosis (MS). Exercise training represents a promising approach for managing this clinical symptom of the disease. However, results from early randomized controlled trials of exercise on cognition in MS are equivocal, perhaps due to methodological concerns. This underscores the importance of considering the well-established literature in the general population that documents robust, beneficial effects of exercise training on cognition across the lifespan. The development of such successful interventions is based on examinations of fitness, physical activity, and acute exercise effects on cognition. Applying such an evidence-based approach in MS serves as a way of better informing exercise training interventions for improving cognition in this population. To that end, this paper provides a focused, updated review on the evidence describing exercise effects on cognition in MS, and develops a rationale and framework for examining acute exercise on cognitive outcomes in this population. This will provide keen insight for better developing exercise interventions for managing cognitive impairment in MS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Brain reactivity to visual food stimuli after moderate-intensity exercise in children.

    PubMed

    Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; Larson, Michael J; Keller, Kathleen L; Fearnbach, S Nicole; Evans, Alyssa; LeCheminant, James D

    2017-09-19

    Exercise may play a role in moderating eating behaviors. The purpose of this study was to examine the effect of an acute bout of exercise on neural responses to visual food stimuli in children ages 8-11 years. We hypothesized that acute exercise would result in reduced activity in reward areas of the brain. Using a randomized cross-over design, 26 healthy weight children completed two separate laboratory conditions (exercise; sedentary). During the exercise condition, each participant completed a 30-min bout of exercise at moderate-intensity (~ 67% HR maximum) on a motor-driven treadmill. During the sedentary session, participants sat continuously for 30 min. Neural responses to high- and low-calorie pictures of food were determined immediately following each condition using functional magnetic resonance imaging. There was a significant exercise condition*stimulus-type (high- vs. low-calorie pictures) interaction in the left hippocampus and right medial temporal lobe (p < 0.05). Main effects of exercise condition were observed in the left posterior central gyrus (reduced activation after exercise) (p < 0.05) and the right anterior insula (greater activation after exercise) (p < 0.05). The left hippocampus, right medial temporal lobe, left posterior central gyrus, and right anterior insula appear to be activated by visual food stimuli differently following an acute bout of exercise compared to a non-exercise sedentary session in 8-11 year-old children. Specifically, an acute bout of exercise results in greater activation to high-calorie and reduced activation to low-calorie pictures of food in both the left hippocampus and right medial temporal lobe. This study shows that response to external food cues can be altered by exercise and understanding this mechanism will inform the development of future interventions aimed at altering energy intake in children.

  17. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study

    PubMed Central

    Tschakert, Gerhard; Kroepfl, Julia M.; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter

    2016-01-01

    Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn’t show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key points High-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak despite higher peak workload intensities and identical mean load. No significant difference for any physiological parameter was found between short HIIE and CE. Between short HIIE, long HIIE, and CE, no significant difference was found in the increase (or decrease, respectively,) of health related markers such as cardiovascular biomarkers, catecholamines, or inflammatory parameters during exercise. During all exercise modes, all risk markers remained in a normal range except for NT-proBNP which was, however, already elevated at baseline. Short HIIE, long HIIE, and CE were safely performed by patients with CHD or myocarditis in cardiac rehabilitation by using our methodological approach to exercise prescription. This approach included the prescription of exercise intensities with respect to LTP1, LTP2, and Pmax as well as a conscious setting of Pmean at a moderate level (80 % of PLTP2). Importantly, all exercise modes were matched for Pmean and exercise duration in order to enable a comparison of the three protocols. PMID:26957930

  18. Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players.

    PubMed

    Jówko, Ewa; Sacharuk, Jaroslaw; Balasinska, Bozena; Wilczak, Jacek; Charmas, Malgorzata; Ostaszewski, Piotr; Charmas, Robert

    2012-12-01

    To evaluate the effect of acute ingestion of green tea polyphenols (GTP) on blood markers of oxidative stress and muscle damage in soccer players exposed to intense exercise. This randomized, double-blinded study was conducted on 16 players during a general preparation period, when all athletes participated in a strength-training program focused on the development of strength endurance. After ingestion of a single dose of GTP (640 mg) or placebo, all athletes performed an intense muscle-endurance test consisting of 3 sets of 2 strength exercises (bench press, back squat) performed to exhaustion, with a load at 60% 1-repetition maximum and 1-min rests between sets. Blood samples were collected preexercise, 5 min after the muscle-endurance test, and after 24 hr of recovery. Blood plasma was analyzed for the concentrations of thiobarbituric acid-reacting substances (TBARS), uric acid (UA), total catechins, total antioxidant status (TAS), and activity of creatine kinase (CK); at the same time, erythrocytes were assayed for the activity of superoxide dismutase (SOD). In both groups, plasma TBARS, UA, and TAS increased significantly postexercise and remained elevated after a 24-hr recovery period. SOD activity in erythrocytes did not change significantly in response to the muscle-endurance test, whereas in both groups plasma CK activity increased significantly after 24 hr of recovery. Acute intake of GTP cased a slight but significant increase in total plasma catechins. However, GTP was found not to exert a significant effect on measured parameters. Acute ingestion of GTP (640 mg) does not attenuate exercise-induced oxidative stress and muscle damage.

  19. Prior Acute Mental Exertion in Exercise and Sport

    PubMed Central

    Silva-Júnior, Fernando Lopes e; Emanuel, Patrick; Sousa, Jordan; Silva, Matheus; Teixeira, Silmar; Pires, Flávio Oliveira; Machado, Sérgio; Arias-Carrion, Oscar

    2016-01-01

    Introduction: Mental exertion is a psychophysiological state caused by sustained and prolonged cognitive activity. The understanding of the possible effects of acute mental exertion on physical performance, and their physiological and psychological responses are of great importance for the performance of different occupations, such as military, construction workers, athletes (professional or recreational) or simply practicing regular exercise, since these occupations often combine physical and mental tasks while performing their activities. However, the effects of implementation of a cognitive task on responses to aerobic exercise and sports are poorly understood. Our narrative review aims to provide information on the current research related to the effects of prior acute mental fatigue on physical performance and their physiological and psychological responses associated with exercise and sports. Methods: The literature search was conducted using the databases PubMed, ISI Web of Knowledge and PsycInfo using the following terms and their combinations: “mental exertion”, “mental fatigue”, “mental fatigue and performance”, “mental exertion and sports” “mental exertion and exercise”. Results: We concluded that prior acute mental exertion affects effectively the physiological and psychophysiological responses during the cognitive task, and performance in exercise. Conclusion: Additional studies involving prior acute mental exertion, exercise/sports and physical performance still need to be carried out in order to analyze the physiological, psychophysiological and neurophysiological responses subsequently to acute mental exertion in order to identify cardiovascular factors, psychological, neuropsychological associates. PMID:27867415

  20. Do diabetes and obesity affect the metabolic response to exercise?

    PubMed

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  1. Medical psychology in exercise and sport.

    PubMed

    Dishman, R K

    1985-01-01

    Several psychological outcomes that accompany acute and chronic exercise have medical significance. Transient reductions in somatic tension and subjective anxiety appear most reliable. Symptom abatement in moderate depression can occur with chronic exercise in a manner comparable to psychotherapy and may offer a better prognosis in some instances. Other cognitive, behavioral, and perceptual events associated with exercise may assist in managing mental health, and exercise has been successfully used as a therapeutic adjunct in a variety of psychiatric disorders. Regular exercise may also complement treatments designed to manage aspects of coronary-prone behavior and psychoendocrine responsivity to mental stress. The lack of strict experimental control or effective placebo contrasts in most exercise studies precludes a convincing argument that exercise causes the psychological outcomes observed. Rather, expectancy of benefits, generalized treatment or attention effects, social reinforcement, and past history or selection bias represent likely alternatives. These competing explanations do not discount, however, that many individuals benefit in a clinically significant way. Exercise offers a low-cost alternative or adjunct with side effects that appear largely health-related. Although the effective psychological dosage or modality has not been quantified, current physiologic guidelines of the American College of Sports Medicine (large muscle rhythmic activity, for 20 to 60 minutes, 3 to 5 days per week at 60 to 80 per cent age-adjusted maximal heart rate), or a weekly caloric cost of 2000 kcal, should be effective with little medical risk. However, no evidence confirms that an increase in metabolic or psychoendocrine tolerance to exercise is necessary or sufficient for psychological outcomes to occur. Although biologic adaptations are known to follow exercise training and subside with diminished activity, there is currently no objective evidence that habitual exercise leads to dependence. If exercise has use in managing subjective or somatic symptoms, these may return during periods of exercise abstinence. Moreover, despite popular hypotheses concerning endorphins and biogenic amines, no direct relationships have yet been shown between exercise-induced mood swings and peripheral biochemical events. A proportion of habitual runners have reported acute episodes of euphoria-like states during or following exercise, but this remains a subjective and unpredictable event that may be related to psychophysiologic relaxation or acute changes in self-esteem.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Alterations in selected measures of mood with a single bout of dynamic Taekwondo exercise in college-age students.

    PubMed

    Toskovic, N N

    2001-06-01

    This study was designed to investigate and to compare the acute alterations in selected measures of mood profile in novice Taekwondo practitioners while evaluating whether dynamic Taekwondo practice was an appropriate exercise modality for enhancing six psychological state dimensions: Vigor, Anxiety, Depression, Anger, Fatigue, and Confusion. 20 male and female college-age students enrolled in Taekwondo activity class and an additional 20 students enrolled in the lecture-con trol class (ages 18 to 21 years) completed the Profile of Mood States (POMS) inven tory prior to and immediately following one 75-min. session of dynamic Taekwondo or lecture. To examine the exercise effect, a series of 2 x 2 analysis of covariance were performed on mean posttest scores, using pretest scores as the covariate. Analysis indicated that Taekwondo participants reported a significant improvement (p<.007) with respect to the control group in scores on Tension, Depression, Anger, Fatigue, Confusion, and Vigor. Also, Total Mood Disturbance significantly improved after the dynamic Taekwondo session. The selected affective benefits of an acute Taekwondo exercise in this study were independent of sex. Unlike the exercising subjects. the control subjects reported no such benefits and, indeed, increased their scores for negative mood states. These results suggest that a dynamic version of Taekwondo achieves the necessary activity parameters that begin to induce positive mood state changes and that extensive Taekwondo skill is not necessary to elicit some beneficial change in affect. This study also supports the findings of several earlier studies indicating that acute exercise may elicit positive changes in affective states and that prolonged exercise is not necessary to produce immediate beneficial alterations of mood.

  3. Music enhances performance and perceived enjoyment of sprint interval exercise.

    PubMed

    Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A

    2015-05-01

    Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.

  4. Dietary Nitrate Supplementation Improves Exercise Performance and Decreases Blood Pressure in COPD Patients

    PubMed Central

    Berry, Michael J.; Justus, Nicholas W.; Hauser, Jordan I.; Case, Ashlee H.; Helms, Christine C.; Basu, Swati; Rogers, Zachary; Lewis, Marc T.; Miller, Gary D.

    2014-01-01

    Dietary nitrate (NO3−) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3− ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient’s maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3− and nitrite (NO2−) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3− by 938% and NO2− by 379%. Median (+ interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 sec., respectively). Compared to placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3− supplementation can elevate plasma NO3− and NO2− concentrations, improve exercise performance, and reduce blood pressure in COPD patients. PMID:25445634

  5. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients.

    PubMed

    Berry, Michael J; Justus, Nicholas W; Hauser, Jordan I; Case, Ashlee H; Helms, Christine C; Basu, Swati; Rogers, Zachary; Lewis, Marc T; Miller, Gary D

    2015-08-01

    Dietary nitrate (NO3(-)) supplementation via beetroot juice has been shown to increase the exercise capacity of younger and older adults. The purpose of this study was to investigate the effects of acute NO3(-) ingestion on the submaximal constant work rate exercise capacity of COPD patients. Fifteen patients were assigned in a randomized, single-blind, crossover design to receive one of two treatments (beetroot juice then placebo or placebo then beetroot juice). Submaximal constant work rate exercise time at 75% of the patient's maximal work capacity was the primary outcome. Secondary outcomes included plasma NO3(-) and nitrite (NO2(-)) levels, blood pressure, heart rate, oxygen consumption (VO2), dynamic hyperinflation, dyspnea and leg discomfort. Relative to placebo, beetroot ingestion increased plasma NO3(-) by 938% and NO2(-) by 379%. Median (+interquartile range) exercise time was significantly longer (p = 0.031) following the ingestion of beetroot versus placebo (375.0 + 257.0 vs. 346.2 + 148.0 s, respectively). Compared with placebo, beetroot ingestion significantly reduced iso-time (p = 0.001) and end exercise (p = 0.008) diastolic blood pressures by 6.4 and 5.6 mmHg, respectively. Resting systolic blood pressure was significantly reduced (p = 0.019) by 8.2 mmHg for the beetroot versus the placebo trial. No other variables were significantly different between the beetroot and placebo trials. These results indicate that acute dietary NO3(-) supplementation can elevate plasma NO3(-) and NO2(-) concentrations, improve exercise performance, and reduce blood pressure in COPD patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Immediate effect of exercise on achilles tendon properties: systematic review.

    PubMed

    Obst, Steven J; Barrett, Rod S; Newsham-West, Richard

    2013-08-01

    Understanding the mechanical and morphological adaptation of the Achilles tendon (AT) in response to acute exercise could have important implications for athletic performance, injury prevention, and rehabilitation. The purpose of this study was to conduct a systematic review and critical evaluation of the literature to determine the immediate effect of a single bout of exercise on the mechanical and morphological properties of the AT in vivo. Five electronic research databases were systematically searched for intervention-based studies reporting mechanical and morphological properties of the AT after a single bout of exercise. Searches revealed 3292 possible articles; 21 met the inclusion criteria. There is evidence that maximal isometric contractions and prolonged static stretching (>5 min) of the triceps surae complex cause an immediate decrease in AT stiffness, whereas prolonged running and hopping have minimal effect. Limited but consistent evidence exists, indicating that AT hysteresis is reduced after prolonged static stretching. Consistent evidence supports a reduction in free AT diameter (anterior-posterior) after dynamic ankle exercise, and this change appears most pronounced in the healthy tendon and after eccentric exercise. The mechanical and morphological properties of the AT in vivo are affected by acute exercise in a mode- and dose-dependent manner. Transient changes in AT stiffness, hysteresis, and diameter after unaccustomed exercise modes and doses may expose the tendon to increased risk of strain injury and impact on the mechanical function of the triceps surae muscle-tendon unit.

  7. Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.

    PubMed

    Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J

    2018-04-01

    Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within-subject variability over time.

  8. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men.

    PubMed

    Hanssen, Henner; Nussbaumer, Monique; Moor, Christoph; Cordes, Mareike; Schindler, Christian; Schmidt-Trucksäss, Arno

    2015-02-01

    Our aim was to investigate the acute and 24-hour (h) effects of high-intensity interval training (HIIT) and moderate continuous training (MCT) on arterial pulse wave reflection, an established marker of arterial stiffness and cardiovascular risk. In a randomized cross-over design, 21 young healthy male participants performed a HIIT or a MCT on separate visits. Before and 5 (t5), 20 (t20), 35 (t35), and 50 (t50) minutes after the acute exercise bouts, the crude augmentation index (AIx) and the AIx at a set heart rate (AIx@75) were analysed by applanation tonometry. Starting 1 h post-exercise, both indices were captured over 24-h with an oscillometric monitoring device. AIx did not change significantly after MCT but declined progressively after HIIT, reaching significantly lower values compared to MCT at t35 (P = 0.045) and t50 (P = 0.008). AIx@75 increased after both acute exercise types but was higher after HIIT at t5 (P < 0.001), t20 (P < 0.001) and t35 (P = 0.009) compared to MCT. The 24-h follow-up revealed a significant decline in AIx@75 after HIIT (P = 0.007) but not after MCT (P = 0.813). Exercise intensity affects pulse wave reflection, with different time courses for AIx and AIx@75 post-exercise. Although initially higher after HIIT, AIx@75 declines in the 24-h recovery period indicating more favourable effects on pulse wave reflection compared to MCT. This may result in substantial positive chronic training effects on arterial stiffness in health and cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed.

    PubMed

    Cochrane, Darryl

    2013-01-01

    Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in conjunction with other conventional training methods.

  10. Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise.

    PubMed

    Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas

    2018-01-01

    The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.

  11. The effect of exercise on affective and self-efficacy responses in older and younger women.

    PubMed

    Barnett, Fiona

    2013-01-01

    This study examined the self-efficacy and affective responses to an acute exercise bout in sedentary older and younger women to determine whether aging has an effect on affective states. Twenty-five sedentary younger (mean age = 19.9 yrs) and 25 older (mean age = 55.7 yrs) women completed an acute bout of exercise. Affective responses were measured before, during, and immediately following exercise. Self-efficacy responses were measured before and immediately following exercise. Positive engagement, revitalization, tranquility, Felt Arousal and Feeling Scale responses, and self-efficacy were all higher immediately following compared with before or during exercise for both groups of women. In addition, older women experienced higher overall positive engagement and lower physical exhaustion compared with younger women as well as higher tranquility and Feeling Scale responses immediately following exercise. This investigation found that an acute bout of moderate-intensity exercise produced more positive and fewer negative affective states in both younger and older women.

  12. The Effect of Acute Exercise on Affect and Arousal in Inpatient Mental Health Consumers.

    PubMed

    Stanton, Robert; Reaburn, Peter; Happell, Brenda

    2016-09-01

    Acute exercise performed at a self-selected intensity improves affect and may improve long-term adherence. Similarly, in people with severe depression, acute aerobic exercise performed at self-selected intensity improves affect and arousal. However, the relationship between changes in affect and arousal and perceived exercise intensity in people with mental illness has not been evaluated. Affect and arousal were assessed immediately prior to, and immediately following, a group exercise program performed at a self-selected intensity in 40 inpatient mental health consumers who received a diagnosis of anxiety or bipolar or depressive disorders. Exercise intensity was assessed immediately after exercise. Postexercise affect was significantly improved for people with bipolar and depressive disorders but not for people with anxiety disorders. For the group as a whole, results showed a significant curvilinear relationship between ratings of perceived exertion and postexercise affect. These data will inform the development and delivery of future exercise interventions for inpatient mental health consumers.

  13. Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation

    PubMed Central

    Gahreman, Daniel; Wang, Rose; Boutcher, Yati; Boutcher, Stephen

    2015-01-01

    Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo. PMID:26184298

  14. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women.

    PubMed

    Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y

    2017-12-01

    Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause. © 2017 International Society on Thrombosis and Haemostasis.

  15. A putative low-carbohydrate ketogenic diet elicits mild nutritional ketosis but does not impair the acute or chronic hypertrophic responses to resistance exercise in rodents.

    PubMed

    Roberts, Michael D; Holland, A Maleah; Kephart, Wesley C; Mobley, C Brooks; Mumford, Petey W; Lowery, Ryan P; Fox, Carlton D; McCloskey, Anna E; Shake, Joshua J; Mesquita, Paulo; Patel, Romil K; Martin, Jeffrey S; Young, Kaelin C; Kavazis, Andreas N; Wilson, Jacob M

    2016-05-15

    We examined whether acute and/or chronic skeletal muscle anabolism is impaired with a low-carbohydrate diet formulated to elicit ketosis (LCKD) vs. a mixed macronutrient Western diet (WD). Male Sprague-Dawley rats (9-10 wk of age, 300-325 g) were provided isoenergetic amounts of a LCKD or a WD for 6 wk. In AIM 1, basal serum and gastrocnemius assessments were performed. In AIM 2, rats were resistance exercised for one bout and were euthanized 90-270 min following exercise for gastrocnemius analyses. In AIM 3, rats voluntarily exercised daily with resistance-loaded running wheels, and hind limb muscles were analyzed for hypertrophy markers at the end of the 6-wk protocol. In AIM 1, basal levels of gastrocnemius phosphorylated (p)-rps6, p-4EBP1, and p-AMPKα were similar between diets, although serum insulin (P < 0.01), serum glucose (P < 0.001), and several essential amino acid levels (P < 0.05) were lower in LCKD-fed rats. In AIM 2, LCKD- and WD-fed rats exhibited increased postexercise muscle protein synthesis levels (P < 0.0125), but no diet effect was observed (P = 0.59). In AIM 3, chronically exercise-trained LCKD- and WD-fed rats presented similar increases in relative hind limb muscle masses compared with their sedentary counterparts (12-24%, P < 0.05), but there was no between-diet effects. Importantly, the LCKD induced "mild" nutritional ketosis, as the LCKD-fed rats in AIM 2 exhibited ∼1.5-fold greater serum β-hydroxybutyrate levels relative to WD-fed rats (diet effect P = 0.003). This study demonstrates that the tested LCKD in rodents, while only eliciting mild nutritional ketosis, does not impair the acute or chronic skeletal muscle hypertrophic responses to resistance exercise. Copyright © 2016 the American Physiological Society.

  16. Firefighter Work Duration Influences the Extent of Acute Kidney Injury.

    PubMed

    Schlader, Zachary J; Chapman, Christopher L; Sarker, Suman; Russo, Lindsey; Rideout, Todd C; Parker, Mark D; Johnson, Blair D; Hostler, David

    2017-08-01

    We tested the hypothesis that elevations in biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and dehydration elicited by two common firefighter work durations. Twenty-nine healthy adults (10 females) wearing firefighter protective clothing completed two randomized trials where they walked at 4.8 km·h, 5% grade in a 38°C, 50% RH environment. In the short trial, subjects completed two 20-min exercise bouts. In the long trial (LONG), subjects completed three 20-min exercise bouts. Each exercise bout was separated by 10 min of standing rest in an ~20°C environment. Venous blood samples were obtained before and immediately after exercise, and after 1 h recovery. Dependent variables included changes in core temperature, body weight, plasma volume, serum creatinine, and plasma neutrophil gelatinase-associated lipocalin, a marker of renal tubule injury. Changes in core temperature (+2.0°C ± 0.7°C vs +1.1°C ± 0.4°C, P < 0.01), body weight (-0.9% ± 0.6% vs -0.5% ± 0.5%, P < 0.01), and plasma volume (-11% ± 5% vs -8% ± 6%, P < 0.01) during exercise were greater in LONG. Increases in creatinine were higher in LONG postexercise (0.18 ± 0.15 vs 0.08 ± 0.07 mg·dL, P < 0.01) and after recovery (0.21 ± 0.16 vs 0.14 ± 0.10 mg·dL, P < 0.01). Increases in neutrophil gelatinase-associated lipocalin were greater in LONG postexercise (27.0 ± 20.5 vs 12.7 ± 18.0 ng·mL, P = 0.01) and after recovery (16.9 ± 15.6 vs 1.5 ± 15.1 ng·mL, P = 0.02). Biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and hypovolemia elicited by exercise in the heat.

  17. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    PubMed

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p < 0.01). Exercise decreased peripheral (- 8 ± 7 mmHg) and central (- 7 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 5 mmHg) and central (- 4 ± 7 mmHg) diastolic BP (p < 0.01). In comparison to measurements during CPT pre-exercise, there was a significant reduction in aPWV (- 0.19 ± 0.3 m / sec), peripheral (- 6 ± 10 mmHg) and central (- 5 ± 8 mmHg) systolic BP as well as peripheral (- 3 ± 6 mmHg) and central (- 3 ± 6 mmHg) diastolic BP during CPT after exercise (p < 0.01). The present study suggests that acute endurance exercise leads not only to decreased BP but even more reduces aPWV as a measure of AS even after 60 minutes of recovery. In particular, the investigation provides evidence that acute moderate-intensity exercise has a favorable effect on BP and aPWV during stress testing.

  18. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    PubMed

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  19. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.

    PubMed

    Chan, Huan Hao; Burns, Stephen Francis

    2013-02-01

    This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.

  20. The effects of low-intensity cycling on cognitive performance following sleep deprivation.

    PubMed

    Slutsky, Alexis B; Diekfuss, Jed A; Janssen, James A; Berry, Nate T; Shih, Chia-Hao; Raisbeck, Louisa D; Wideman, Laurie; Etnier, Jennifer L

    2017-10-15

    This study examined the effect of 24h of sleep deprivation on cognitive performance and assessed the effect of acute exercise on cognitive performance following sleep deprivation. Young, active, healthy adults (n=24, 14 males) were randomized to control (age=24.7±3.7years, BMI=27.2±7.0) or exercise (age=25.3±3.3years, BMI=25.6±5.1) groups. Cognitive testing included a 5-min psychomotor vigilance task (PVT), three memory tasks with increasing cognitive load, and performance of the PVT a second time. On morning one, cognitive testing followed a typical night's sleep. Following 24-h of sustained wakefulness, cognitive testing was conducted again prior to and after the acute intervention. Participants in the exercise condition performed low-intensity cycling (∼40%HRR) for 15-min and those in the control condition sat quietly on the bike for 15-min. t-Tests revealed sleep deprivation negatively affected performance on the PVT, but did not affect memory performance. Following the acute intervention, there were no cognitive performance differences between the exercise and rested conditions. We provide support for previous literature suggesting that during simple tasks, sleep deprivation has negative effects on cognitive performance. Importantly, in contrast to previous literature which has shown multiple bouts of exercise adding to cognitive detriment when combined with sleep deprivation, our results did not reveal any further detriments to cognitive performance from a single-bout of exercise following sleep deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Acute Exercise and Appetite-Regulating Hormones in Overweight and Obese Individuals: A Meta-Analysis

    PubMed Central

    Deighton, Kevin; Atkinson, Jan Maria; Sari-Sarraf, Vahid; Atkinson, Greg

    2016-01-01

    In lean individuals, acute aerobic exercise is reported to transiently suppress sensations of appetite, suppress blood concentrations of acylated ghrelin (AG), and increase glucagon-like peptide-1 (GLP-1) and peptide-YY (PYY). Findings in overweight/obese individuals have yet to be synthesised. In this systematic review and meta-analysis, we quantified the effects that acute exercise has on AG and total PYY and GLP-1 in overweight/obese individuals. The potential for body mass index (BMI) to act as a moderator for AG was also explored. Six published studies (73 participants, 78% male, mean BMI: 30.6 kg·m−2) met the inclusion criteria. Standardised mean differences (SMDs) and standard errors were extracted for AG and total PYY and GLP-1 concentrations in control and exercise trials and synthesised using a random effects meta-analysis model. BMI was the predictor in metaregression for AG. Exercise moderately suppressed AG area-under-the-curve concentrations (pooled SMD: −0.34, 95% CI: −0.53 to −0.15). The magnitude of this reduction was greater for higher mean BMIs (pooled metaregression slope: −0.04 SMD/kg·m−2 (95% CI: −0.07 to 0.00)). Trivial SMDs were obtained for total PYY (0.10, 95% CI: −0.13 to 0.31) and GLP-1 (−0.03, 95% CI: −0.18 to 0.13). This indicates that exercise in overweight/obese individuals moderately alters AG in a direction that could be associated with decreased hunger and energy intake. This trial is registered with PROSPERO: CRD42014006265. PMID:28116150

  2. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    PubMed

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of increasing maximal aerobic exercise on serum muscles enzymes in professional field hockey players.

    PubMed

    Hazar, Muhsin; Otag, Aynur; Otag, Ilhan; Sezen, Mehmet; Sever, Ozan

    2014-11-04

    Exercise results in oxidative enzyme increase and micro-injuries in skeletal muscles. The aim of this study was to investigate the effect of maximal aerobic exercise on serum muscle enzymes in professional field hockey players. This study aims to determine the effect of increasing maximal aerobic exercise on creatine kinase (CK), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels. 31 young professional field hockey players (13 female and 18 male players) volunteered for this study. All participants underwent the shuttle run test. Blood samples were taken from each participant before the shuttle run test. Post test blood samples were taken immediately after exercise and one hour after respectively. Pre and post test CK, CK-MB, AST and ALT values were measured by means of auto analyzer using original kits. The acute post test measure of the CK level increased in male (p=0.002) and female (p=0.00) sportsmen. CK-MB values obtained one hour after the exercise was lower than those before the exercise in males (p=0.02). In females (p=0.017) and males (p=0.05) AST activity significantly increased immediately after exercise and decreased to resting activity 1 h recovery. ALT significantly increased immediately after exercise in female (p=0.03) and male (p=0.00) athletes and after 1 h recovery ALT activities decreased below resting values. The timing and severity of exercise used in our study increased CK values, decreased CK-MB values and AST, ALT values increased in female and male field hockey players.

  4. Acute exercise and periodized training in different environments affect histone deacetylase activity and interleukin-10 levels in peripheral blood of patients with type 2 diabetes.

    PubMed

    Korb, Arthiese; Bertoldi, Karine; Agustini Lovatel, Gisele; Sudatti Dellevatti, Rodrigo; Rostirola Elsner, Viviane; Carolina Ferreira Meireles, Louisiana; Fernando Martins Kruel, Luiz; Rodrigues Siqueira, Ionara

    2018-05-02

    Our purpose was to investigate the effects of aerobic periodized training in aquatic and land environments on plasma histone deacetylase (HDAC) activity and cytokines levels in peripheral blood of diabetes mellitus type 2 (T2DM) patients. The patients underwent 12 weeks of periodized training programs that including walking or running in a swimming pool (aquatic group) or in a track (dry land group). Blood samples were collected immediately before and after both first and last sessions. Plasma cytokine levels and HDAC activity in peripheral blood mononuclear cell (PBMC) was measured. The exercise performed in both environments similarly modulated the evaluated acetylation mark, global HDAC activity. However, a differential profile depending on the evaluated moments was detected, since exercise increased acutely HDAC activity in sedentary and after 12 weeks of training period, while a reduced HDAC activity was observed following periodized training (samples collected before the last session). Additionally, the 12 weeks of periodized exercise in both environments increased IL-10 levels. Our data support the hypothesis that the modulation of HDAC activity and inflammatory status might be at least partially related to the effects of exercise effects on T2DM. The periodized training performed in both aquatic and land environments impacts similarly epigenetic and inflammatory status. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Early Exercise Rehabilitation of Muscle Weakness in Acute Respiratory Failure Patients

    PubMed Central

    Berry, Michael J.; Morris, Peter E.

    2013-01-01

    Acute Respiratory Failure patients experience significant muscle weakness which contributes to prolonged hospitalization and functional impairments post-hospital discharge. Based on our previous work, we hypothesize that an exercise intervention initiated early in the intensive care unit aimed at improving skeletal muscle strength could decrease hospital stay and attenuate the deconditioning and skeletal muscle weakness experienced by these patients. Summary Early exercise has the potential to decrease hospital length of stay and improve function in Acute Respiratory Failure patients. PMID:23873130

  6. Cardiopulmonary Effects of Acute Stressful Exercise at Altitude of Individuals with Sickle Cell Trait (SCT)

    DTIC Science & Technology

    1989-06-01

    Annual Symposium on Blood. Stuttgart Germany: FK Schattauer Verlag, 1973; 91-94. Home M: Sickle cell anemia as a rheologic disease. Am J Med 1981; 70...AD___ AD-A222 948 CARDIOPULMONARY EFFECTS OF ACUTE STRESSFUL EXERCISE AT ALTITUDE OF INDIVIDUALS WITH SICKLE CELL TRAIT (SCT) FINAL REPORT Idelle M...Clawi’katiornj (U) Cardiopulmonlary Effects to Acute Stressful Exercise at Altitude of Individuals with - sickle Cell Trait (I1bAS) 12. PERSONAL. AUTHOR

  7. Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children

    ERIC Educational Resources Information Center

    Tine, Michele T.; Butler, Allison G.

    2012-01-01

    Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…

  8. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  9. Exercise and the heart--the harm of too little and too much.

    PubMed

    Lavie, Carl J; O'Keefe, James H; Sallis, Robert E

    2015-01-01

    Physical activity and exercise training are underutilized by much of Westernized society, and physical inactivity may be the greatest threat to health in the 21st century. Many studies have shown a linear relationship between one's activity level and heart health, leading to the conclusion that "if some exercise is good, more must be better." However, there is evolving evidence that high levels of exercise may produce similar or less overall cardiovascular (CV) benefits compared with those produced by lower doses of exercise. Very high doses of exercise may be associated with increased risk of atrial fibrillation, coronary artery disease, and malignant ventricular arrhythmias. These acute bouts of excessive exercise may lead to cardiac dilatation, cardiac dysfunction, and release of troponin and brain natriuretic peptide. The effects of too little and too much exercise on the heart are reviewed in this article, along with recommendations to optimize the dose of exercise to achieve heart health.

  10. The effect of preseason training on mucosal immunity in male basketball players.

    PubMed

    Azarbayjani, M; Nikbakht, H; Rasaee, M J

    2011-12-01

    This study examined the effects of pre season training on restring level and acute response of mucosal immunity in male basketball players. Twenty male basketball players performed 8 weeks progressive exercise training, consisting of interval and continuous parts. Five mL un-stimulated saliva was collected from each subject before, immediately and one hour after the end of one bout of exercise to exhaustion on treadmill at the beginning of the first week and end of 8 weeks to determine the acute responses. At the beginning of each 2 weeks (resting state) induced changes in basal mucosal immunity was evaluated. The concentration of sIgA and total protein was measured by the ELISA and Bradford methods respectively. One bout exercise training at beginning of first week decreased significantly sIgA level but not at the end of 8th week. Total protein did not change significantly at 1st week after exercise, but at eight week significantly increased and remained at high level until one hour after exercise. sIgA to total protein ratio at first week significantly decreased and remained constant one hour after exercise. At the eight week sIgA decreased significantly immediately after exercise and remained low until one hour after exercise. The comparison of sIgA and total protein levels indicates significant decrease after eight weeks training. These results suggest that repetition of single bout of exercise training have a cumulative effect on the mucosal immune system.

  11. Cell-derived microparticles promote coagulation after moderate exercise.

    PubMed

    Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang

    2011-07-01

    Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.

  12. High-volume plasma exchange in a patient with acute liver failure due to non-exertional heat stroke in a sauna.

    PubMed

    Chen, Kuan-Jung; Chen, Tso-Hsiao; Sue, Yuh-Mou; Chen, Tzay-Jinn; Cheng, Chung-Yi

    2014-10-01

    Heat stroke is a life-threatening condition characterized by an increased core body temperature (over 40°C) and a systemic inflammatory response, which may lead to a syndrome of multiple organ dysfunction. Heat stroke may be due to either strenuous exercise or non-exercise-induced exposure to a high environmental temperature. Current management of heat stroke is mostly supportive, with an emphasis on cooling the core body temperature and preventing the development of multiple organ dysfunction. Prognosis of heat stroke depends on the severity of organ involvement. Here, we report a rare case of non-exercise-induced heat stroke in a 73-year-old male patient who was suffering from acute liver failure after prolonged exposure in a hot sauna room. We successfully managed this patient by administering high-volume plasma exchange, and the patient recovered completely after treatment. © 2014 Wiley Periodicals, Inc.

  13. Changes in executive function after acute bouts of passive cycling in Parkinson's disease.

    PubMed

    Ridgel, Angela L; Kim, Chul-Ho; Fickes, Emily J; Muller, Matthew D; Alberts, Jay L

    2011-04-01

    Individuals with Parkinson's disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

  14. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions.

    PubMed

    Prado, Eduardo Seixas; de Rezende Neto, José Melquiades; de Almeida, Rosemeire Dantas; Dória de Melo, Marcelia Garcez; Cameron, Luiz-Claudio

    2011-06-28

    Hyperammonaemia is related to both central and peripheral fatigue during exercise. Hyperammonaemia in response to exercise can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA). In the present study, we determined the effect of short-term KAAA supplementation on ammonia production in subjects eating a low-carbohydrate diet who exercise. A total of thirteen male cyclists eating a ketogenic diet for 3 d were divided into two groups receiving either KAAA (KEx) or lactose (control group; LEx) supplements. Athletes cycled indoors for 2 h, and blood samples were obtained at rest, during exercise and over the course of 1 h during the recovery period. Exercise-induced ammonaemia increased to a maximum of 35 % in the control group, but no significant increase was observed in the supplemented group. Both groups had a significant increase (approximately 35 %) in uraemia in response to exercise. The resting urate levels of the two groups were equivalent and remained statistically unchanged in the KEx group after 90 min of exercise; an earlier increase was observed in the LEx group. Glucose levels did not change, either during the trial time or between the groups. An increase in lactate levels was observed during the first 30 min of exercise in both groups, but there was no difference between the groups. The present results suggest that the acute use of KAAA diminishes exercise-induced hyperammonaemia.

  15. Exercise-induced changes in enzymatic O-methylation of catecholestrogens by erythrocytes of eumenorrheic women.

    PubMed

    De Crée, C; Van Kranenburg, G; Geurten, P; Fujimura, Y; Keizer, H A

    1997-12-01

    The present study was designed to assess the effects of acute exercise and short-term intensive training on catechol-O-methyltransferase (COMT) activity. COMT inactivates catecholamines and converts primary catecholestrogens (CE) into their O-methylated form yielding the 2- (2-MeOE) and 4-methoxyestrogens (4-MeOE). Blood samples were obtained from 15 previously untrained eumenorrheic women (mean +/- SE, VO2max: 43.8 mL x kg-1 x min-1 +/- 0.6) before and after a 5-d intensive training period, at rest and during incremental exercise. COMT activity was determined in the erythrocytes (RBC-COMT) after incubation of blood lysate with primary CE. The formation of both 2- and 4-MeOE was significantly higher (P < 0.05) during the luteal (LPh) than during the follicular phase (FPh). The amount of 2-MeOE formed (FPh: 4.2 +/- 0.2%; LPh: 4.9 +/- 0.2%) was significantly greater than the produced amount of 4-MeOE (FPh: 1.4 +/- 0.1%; LPh: 1.5 +/- 0.1%) (P < 0.05). Both before and after training, incremental exercise did not significantly alter RBC-COMT activity although we observed a trend for RBC-COMT activity increasing proportionally with the exercise intensity. After a brief period of exhaustive training, during rest the formation of 2-MeOE (FPh: +16.7%, LPh: +15.7%) and 4-MeOE (FPh: +28.6%; LPh: +40%) was significantly (P < 0.05) increased. The results of the present study are consistent with earlier findings reporting increased plasma concentrations of O-methylated CE following training. It is concluded that RBC-COMT activity is increased by brief intensive training, but not by acute exercise. We speculate that an increase in COMT-catalyzed O-methylation of CE may indicate that less COMT is available to deactivate norepinephrine.

  16. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction.

    PubMed

    Ferguson, Richard A; Hunt, Julie E A; Lewis, Mark P; Martin, Neil R W; Player, Darren J; Stangier, Carolin; Taylor, Conor W; Turner, Mark C

    2018-04-01

    This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.

  17. Effect of Swimming on the Production of Aldosterone in Rats

    PubMed Central

    Wang, Paulus S.; Jian, Cai-Yun; Yeh, Yung-Hsing; Chen, Yi-An; Wang, Kai-Lee; Lin, Yi-Chun; Chang, Ling-Ling; Wang, Guei-Jane; Wang, Shyi-Wu

    2014-01-01

    It has been demonstrated that exercise is one of the stresses known to increase the aldosterone secretion. Both potassium and angiotensin II (Ang II) levels are shown to be correlated with aldosterone production during exercise, but the mechanism is still unclear. In an in vivo study, male rats were catheterized via right jugular vein (RJV), and divided into four groups namely water immersion, swimming, lactate infusion (13 mg/kg/min) and pyruvate infusion (13 mg/kg/min) groups. Each group was treated for 10 min. Blood samples were collected at 0, 10, 15, 30, 60 and 120 min from RJV after administration. In an in vitro study, rat zona glomerulosa (ZG) cells were challenged by lactate (1–10 mM) in the presence or absence of Ang II (10−8 M) for 60 min. The levels of aldosterone in plasma and medium were measured by radioimmunoassay. Cell lysates were analyzed by immunoblotting assay. After exercise and lactate infusion, plasma levels of aldosterone and lactate were significantly higher than those in the control group. Swimming for 10 min significantly increased the plasma Ang II levels in male rats. Administration of lactate plus Ang II significantly increased aldosterone production and enhanced protein expression of steroidogenic acute regulatory protein (StAR) in ZG cells. These results demonstrated that acute exercise led to the increase of both aldosterone and Ang II secretion, which is associated with lactate action on ZG cells and might be dependent on the activity of renin-angiotensin system. PMID:25289701

  18. Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide.

    PubMed

    Lizardo, J H F; Silveira, E A A; Vassallo, D V; Oliveira, E M

    2008-07-01

    1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.

  19. Treatment of Dyslipidemia with Statins and Physical Exercises: Recent Findings of Skeletal Muscle Responses

    PubMed Central

    Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz

    2015-01-01

    Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords “statin” AND “exercise” AND “muscle”, restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible. PMID:25993596

  20. Pyridostigmine bromide does not alter thermoregulation during exercise in cold air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.E.; Sawka, M.N.; Young, A.J.

    1994-12-31

    This study examined the effects of acute and chronic pyridostigmine bromide (PB) administration on thermoregulatory and metabolic responses to exercise in cold air (5 C). Seven healthy men completed two 7-day trials in a double-blind, crossover experimental design: during one trial they received PB (30 mg three times daily) and during the other trial they received placebo. For each trial, subjects attempted four (3 h) exercise tests: low-intensity exercise (25% Vo2max) and moderate- intensity exercise (-50% Vo2max), on days 2 and 3 and again on days 6 and 7. Metabolic rate, body temperatures, and venous blood samples were obtained beforemore » and during exercise. Red blood cell acerylcholinesterase inhibition induced by PB increased (p < 0.05) from 34% on day I to 43% on days 3-7 Metabolic rate, body temperatures, and regional heat conductance responses were not different between trials. Plasma glucose, glycerol, free fatty acid, lactate, sodium, and potassium concentrations were not different between trials. In addition. differences were not found between acute and chronic experiments for any thermoregulatory or metabolic responses. These findings demonstrate that the PB dosage used by military personnel, as a pharmacological defense against nerve-agent poisoning. should not cause any adverse thermoregulatory or metabolic effects during moderate activity in cold climates.« less

  1. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle.

    PubMed

    Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming

    2016-05-01

    Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Does a single session of high-intensity interval training provoke a transient elevated risk of falling in seniors and adults?

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Hanssen, Henner; Schmidt-Trucksäss, Arno; Zahner, Lukas; Faude, Oliver

    2015-01-01

    Balance and strength training can reduce seniors' fall risk up to 50%. Available evidence suggests that acute bouts of neuromuscular and endurance exercise deteriorate postural control. High-intensity endurance training has been successfully applied in different populations. Thus, it seemed valuable to examine the acute effects of high-intensity interval training (HIIT) on neuromuscular performance in seniors and young adults. The acute impact of a HIIT session on balance performance and muscle activity after exercise cessation and during post-exercise recovery was examined in young and old adults. We intended to investigate whether a transient exercise-induced fall-risk may occur in both groups. 20 healthy seniors (age 70 (SD 4) years) and young adults (age 27 (SD 3) years) were examined on 3 days. After exhaustive ramp-like treadmill testing in order to determine maximal heart rate (HRmax) on the first day, either a 4 × 4 min HIIT at 90% of HRmax or a control condition (CON) was randomly performed on the second and third day, respectively. Balance performance (postural sway) was assessed during single limb stance with open eyes (SLEO) and double limb stance with closed eyes (DLEC). EMG was recorded for the soleus (SOL), anterior tibialis (TIB), gastrocnemius (GM) and peroneus longus (PL) muscles at the dominant leg. All measures were collected before, immediately as well as 10, 30 and 45 min after HIIT and CON, respectively. Compared to CON, HIIT induced significant increases of postural sway immediately after exercise cessation during SLEO in both groups (adults: p < 0.001, Δ = +25% sway; seniors: p = 0.007, Δ = +15% sway). Increased sway during DLEC was only found for seniors immediately and 10 min after HIIT (post: p = 0.003, Δ = +14% sway, 10 min post: p = 0.004, Δ = +18% sway). Muscle activity was increased during SLEO for TIB until 10 min post in seniors (0.008 < p < 0.03) and immediately after HIIT in adults (p < 0.001). HIIT training may cause an acute 'open-fall-window' with a transient impairment of balance performance for at least 10 min after exercise cessation in both groups. Occluded vision in seniors seems to prolong this period up to 30 min. Thus, the advantage of HIIT with regard to time efficiency seems debatable when considering transient HIIT-induced impairments of neuromuscular function. © 2014 S. Karger AG, Basel.

  3. The effect of acute exercise on pulsatile release of luteinizing hormone in women runners.

    PubMed

    Cumming, D C; Vickovic, M M; Wall, S R; Fluker, M R; Belcastro, A N

    1985-11-01

    Endurance exercise has been associated with reproductive dysfunction. We have previously suggested that pulsatile release of luteinizing hormone is impaired at rest in normal menstruating runners compared with sedentary women. To determine whether acute exercise had any effect on pulsatile release of luteinizing hormone we investigated serum luteinizing hormone levels in six normal menstruating runners at rest and after 60 minutes of running exercise. Exercise induced an increment in circulating luteinizing hormone levels greater than the change in hematocrit. The luteinizing hormone pulse frequency, calculated as the number of luteinizing hormone pulses per 6 hours, was reduced after exercise compared with values obtained at rest. There was no significant difference in pulse amplitude or area under the 6-hour curve between resting and postexercise situations. These data suggest that acute exercise has an inhibitory effect on luteinizing hormone pulsatile release at the hypothalamic level in eumenorrheic runners that is in addition to the previously described effect of training.

  4. The effect of exercise mode on the acute response of satellite cells in old men.

    PubMed

    Nederveen, J P; Joanisse, S; Séguin, C M L; Bell, K E; Baker, S K; Phillips, S M; Parise, G

    2015-12-01

    A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults. Sedentary older men (n = 22; 67 ± 4 years; 27 ± 2.6 kg*m(-2) ) were randomly assigned to complete an acute bout of either resistance exercise, high-intensity interval exercise on a cycle ergometer or moderate-intensity aerobic exercise. Muscle biopsies were obtained before, 24 and 48 h following each exercise bout. The satellite cell response was analysed using immunofluorescent microscopy of muscle cross sections. Satellite cell expansion associated with type I fibres was observed 24 and 48 h following resistance exercise only (P ˂ 0.05), while no expansion of type II-associated satellite cells was observed in any group. There was a greater number of activated satellite cells 24 h following resistance exercise (pre: 1.3 ± 0.1, 24 h: 4.8 ± 0.5 Pax7 + /MyoD+cells/100 fibres) and high-intensity interval exercise (pre: 0.7 ± 0.3, 24 h: 3.1 ± 0.3 Pax7 + /MyoD+cells/100 fibres) (P ˂ 0.05). The percentage of type I-associated SC co-expressing MSTN was reduced only in the RE group 24 h following exercise (pre: 87 ± 4, 24 h: 57 ± 5%MSTN+ type I SC) (P < 0.001). Although resistance exercise is the most potent exercise type to induce satellite cell pool expansion, high-intensity interval exercise was also more potent than moderate-intensity aerobic exercise in inducing satellite cell activity. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Affective Responses to Acute Exercise in Elderly Impaired Males: The Moderating Effects of Self-Efficacy and Age.

    ERIC Educational Resources Information Center

    McAuley, Edward; And Others

    1995-01-01

    Examined relationships between perceptions of personal efficacy and affective responsibility to acute exercise in elderly male inpatients and outpatients at a Veterans Administration Medical Center. A significant change in feelings of fatigue was revealed over time but exercise effects on affect were shown to be moderated by perceptions of…

  6. Bleeding frequency and characteristics among hematologic malignancy inpatient rehabilitation patients with severe thrombocytopenia.

    PubMed

    Fu, Jack B; Tennison, Jegy M; Rutzen-Lopez, Isabel M; Silver, Julie K; Morishita, Shinichiro; Dibaj, Seyedeh S; Bruera, Eduardo

    2018-03-28

    To identify the frequency and characteristics of bleeding complications during acute inpatient rehabilitation of hematologic malignancy patients with severe thrombocytopenia. Retrospective descriptive analysis. Comprehensive cancer center acute inpatient rehabilitation unit. Consecutive hematologic malignancy patients with a platelet count of less than or equal to 20,000/microliter (μL) on the day of acute inpatient rehabilitation admission from 1/1/2005 through 8/31/2016. Medical records were retrospectively analyzed for demographic, laboratory, and medical data. Patients were rehabilitated using the institutional exercise guidelines for thrombocytopenic patients. Bleeding events noted in the medical record. Out of 135 acute inpatient rehabilitation admissions, 133 unique patients were analyzed with a total of 851 inpatient rehabilitation days. The mean platelet count was 14,000/μL on the day of admission and 22,000/μL over the course of the rehabilitation admission. There were 252 days of inpatient rehabilitation where patients had less than 10,000/μL platelets. A total of 97 bleeding events were documented in 77/135 (57%) admissions. Of the 97 bleeding events, 72 (74%), 14 (14%), and 11 (11%) were considered to be of low, medium, and high severity, respectively. There were 4/97 (4%) bleeding events that were highly likely attributable to physical activity but only 1/4 was considered high severity. Bleeding rates were .09, .08, .17, and .37 for > 20,000, 15-20,000, 10-15,000, and < 10,000/μL mean platelet counts respectively (p = .003). Forty-four percent of patients were transferred back to the primary acute care service with infection being the most common reason for transfer. This study is the first to examine exercise-related bleeding complications during acute inpatient rehabilitation in severely thrombocytopenic hematologic cancer patients. Bleeding rates increased with lower platelet counts. However, using the exercise guidelines for severely thrombocytopenic patients, the risk of severe exercise-related bleeding events was low.

  7. Effects of Acute Endurance Exercise Performed in the Morning and Evening on Inflammatory Cytokine and Metabolic Hormone Responses

    PubMed Central

    Kim, Hyeon-Ki; Konishi, Masayuki; Takahashi, Masaki; Tabata, Hiroki; Endo, Naoya; Numao, Shigeharu; Lee, Sun-Kyoung; Kim, Young-Hak; Suzuki, Katsuhiko; Sakamoto, Shizuo

    2015-01-01

    Purpose To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men. Methods Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error) performed endurance exercise in the morning (0900–1000 h) on one day and then in the evening (1700–1800 h) on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (V·O2max) on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise. Results Plasma interleukin (IL)-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both). Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05). Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01). Conclusions These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning. PMID:26352938

  8. Moderate endurance exercise in patients with sickle cell anaemia: effects on oxidative stress and endothelial activation.

    PubMed

    Faes, Camille; Balayssac-Siransy, Edwige; Connes, Philippe; Hivert, Ludovic; Danho, Clotaire; Bogui, Pascal; Martin, Cyril; Pialoux, Vincent

    2014-01-01

    Very few studies have investigated the effects of exercise on the biological parameters involved in vaso-occlusive events in sickle cell anaemia (SCA). The aim of this study was to test how a mild-moderate endurance exercise modulates oxidative stress, nitric oxide bioavailability and endothelial activation in SCA patients and healthy individuals. Eleven patients with SCA and 15 healthy subjects completed a 20-min duration submaximal cycling exercise at ≈45 Watts. Plasma markers of oxidative stress, antioxidant activity, endothelial activation and nitric oxide bioavailability were investigated before and after the exercise. Nitric oxide levels, anti-oxidant capacity, soluble (s)E-selectin and sP-selectin did not change in response to this exercise. Except for the malondialdehyde levels, which increased in the two groups, the other markers of oxidative stress remained unchanged in both groups in response to exercise. Soluble vascular cell adhesion molecule 1 levels were increased at the end of exercise in both groups. sL-selectin decreased and soluble intercellular adhesion molecule 1 increased with exercise in SCA patients only. The present data suggest that patients with SCA may undertake mild-moderate physical activities without any acute clinical complications, but care should be taken because oxidative stress and endothelial activation significantly increased in some patients. © 2013 John Wiley & Sons Ltd.

  9. Exercise immunology: practical applications.

    PubMed

    Nieman, D C

    1997-03-01

    During the last 95 years, 629 papers (60% in the 1990s) dealing specifically with exercise and immunology have been published. Major findings of practical importance in terms of public health and athletic endeavor include: (a) In response to acute exercise (the most frequently studied area of exercise immunology), a rapid interchange of immune cells between peripheral lymphoid tissues and the circulation occurs. The response depends on many factors, including the intensity, duration, and mode of exercise, concentrations of hormones and cytokines, change in body temperature, blood flow, hydration status, and body position. Of all immune cells, natural killer (NK) cells, neutrophils, and macrophages (of the innate immune system) appear to be most responsive to the effects of acute exercise, both in terms of numbers and function. In general, acute exercise bouts of moderate duration (< 60 min) and intensity (< 60% VO2max) are associated with fewer perturbations and less stress to the immune system than are prolonged, high-intensity sessions. (b) In response to long-term exercise training, the only finding to date reported with some congruity between investigators is a significant elevation in NK cell activity. Changes in the function of neutrophils, macrophages, and T and B cells in response to training have been reported inconsistently, but there is some indication that neutrophil function is suppressed during periods of heavy training. (c) Limited data suggest that unusually heavy acute or chronic exercise may increase the risk of upper respiratory tract infection (URTI), while regular moderate physical activity may reduce URTI symptomatology. (d) Work performance tends to diminish with most systemic infectious, and clinical case studies and animal data suggest that infection severity, relapse, and myocarditis may result when patients exercise vigorously. (e) Although regular exercise has many benefits for HIV-infected individuals, helper T cell counts and other immune measures are not enhanced significantly. (f) Data suggest that the incidence and mortality rates for certain types of cancer are lower among active subjects. The role of the immune system may be limited, however, depending on the sensitivity of the specific tumor to cytolysis, the stage of cancer, the type of exercise program, and many other complex factors. (g) As individuals age, they experience a decline in most cell- mediated and humoral immune responses. Two human studies suggest that immune function is superior in highly conditioned versus sedentary elderly subjects. (h) Mental stress, undernourishment, quick weight loss, and improper hygiene have each been associated with impaired immunity. Athletes who are undergoing heavy training regimens should realize that each of these factors has the potential to compound the effect that exercise stress is having on their immune systems.

  10. Physical and psychological benefits of once-a-week Pilates exercises in young sedentary women: A 10-week longitudinal study.

    PubMed

    Tolnai, Nóra; Szabó, Zsófia; Köteles, Ferenc; Szabo, Attila

    2016-09-01

    Pilates exercises have several demonstrated physical and psychological benefits. To date, most research in this context was conducted with symptomatic or elderly people with few dependent measures. The current study examined the chronic or longitudinal effects of very low frequency, once a week, Pilates training on several physical and psychological measures, over a 10-week intervention, in young, healthy, and sedentary women. Further, the study gauged the acute effects of Pilates exercises on positive- and negative affect in 10 exercise sessions. Compared to a control group, the Pilates group exhibited significant improvements in skeletal muscle mass, flexibility, balance, core- and abdominal muscle strength, body awareness, and negative affect. This group also showed favorable changes in positive (22.5% increase) and negative affect (12.2% decrease) in nine out of ten exercise sessions. This work clearly demonstrates the acute and chronic benefits of Pilates training on both physical and psychological measures. It also reveals that even only once a week Pilates training is enough to trigger detectable benefits in young sedentary women. While this frequency is below the required levels of exercise for health, it may overcome the 'lack of time' excuse for not exercising and subsequently its tangible benefits may positively influence one's engagement in more physical activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation.

    PubMed

    Kappus, Rebecca M; Bunsawat, Kanokwan; Rosenberg, Alexander J; Fernhall, Bo

    2017-03-01

    This study investigated the effects of acute antioxidant supplementation on endothelial function, exercise blood flow and oxidative stress biomarkers in 9 young African American compared to 10 Caucasian males (25.7±1.2 years). We hypothesized that African American males would have lower exercise blood flow and endothelial responsiveness compared to Caucasian males, and these responses would be improved following antioxidant supplementation. Ultrasonography was used to measure blood flow during handgrip exercise. Endothelial function was assessed using flow-mediated dilation, and lipid peroxidation was assessed by measuring levels of malondialdehyde-thiobarbituric acid reactive substances. African American males exhibited lower endothelial function than Caucasians at baseline (8.3±1.7 vs. 12.2±1.7%) and the difference was ameliorated with antioxidant supplementation (10.7±1.9% vs. 10.8±1.8%), but the interaction was not significant (p=0.10). There were no significant changes in malondialdehyde-thiobarbituric acid reactive substances following antioxidant supplementation. There was a significant increase in brachial blood flow and forearm vascular conductance with exercise but no differences with antioxidant supplementation. There were no group differences in exercise responses and no differences with antioxidant supplementation, suggesting a lack of influence of oxidative stress during exercise in this cohort. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    PubMed

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.

  13. The Effects of Acute Interval Exercise and Strawberry Intake on Postprandial Lipemia.

    PubMed

    O'Doherty, Alasdair F; Jones, Huw S; Sathyapalan, Thozhukat; Ingle, Lee; Carroll, Sean

    2017-11-01

    Raised postprandial triglycerides (TAG) and related oxidative stresses are strongly associated with increased cardiovascular disease risk. Acute exercise and strawberry ingestion independently ameliorate postprandial lipid excursions and oxidative stress. However, the combined effects of these lifestyle interventions are unknown. We investigated whether acute exercise and strawberry consumption improved postprandial responses to an oral fat tolerance test (OFTT) in overweight/obese males. Overweight/obese adult males underwent four separate OFTT (73 g fat, 33 g carbohydrate) with blood sampled at baseline and hourly for 4 h after OFTT. Two OFTT contained 25 g freeze-dried strawberries and two contained strawberry flavoring (placebo). Participants performed 40 min of submaximal high-intensity interval cycling exercise 16 h before one strawberry and one placebo OFTT and rested before the remaining two OFTT. Serum TAG was analyzed, and TAG area under the curve (AUC) and incremental AUC (iAUC) were calculated. Oxidative stress markers were measured at baseline and 4 h. Differences between conditions (strawberry/placebo and exercise/rest) were assessed using repeated-measures ANOVA. Ten males (age = 31.5, interquartile range = 17.8 yr, body mass index = 29.9 ± 1.8 kg·m) completed the study. TAG AUC was 1.5 mmol per 4 h·L lower for the exercise conditions compared with the rest conditions (95% confidence interval [CI] = -2.3 to -0.8 mmol per 4 h·L, P = 0.001). TAG AUC was not different between strawberry and placebo conditions (95% CI = -1.3 to 0.6 mmol per 4 h·L, P = 0.475). TAG iAUC was 0.5 mmol per 4 h·L greater for the strawberry compared with the placebo conditions (95% CI = 0.1 to 1.0 mmol per 4 h·L, P = 0.021). There were no changes in markers of lipid related oxidative stress (P > 0.05). Acute submaximal high-intensity interval cycling exercise appears effective in reducing postprandial lipemia in overweight/obese adult males. However, strawberry ingestion did not improve postprandial TAG.

  14. Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    PubMed Central

    Clark, Timothy D.; Donaldson, Michael R.; Pieperhoff, Sebastian; Drenner, S. Matthew; Lotto, Andrew; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time. PMID:22720035

  15. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training.

    PubMed

    West, Daniel W D; Phillips, Stuart M

    2012-07-01

    The purpose of this study was to investigate associations between acute exercise-induced hormone responses and adaptations to high intensity resistance training in a large cohort (n = 56) of young men. Acute post-exercise serum growth hormone (GH), free testosterone (fT), insulin-like growth factor (IGF-1) and cortisol responses were determined following an acute intense leg resistance exercise routine at the midpoint of a 12-week resistance exercise training study. Acute hormonal responses were correlated with gains in lean body mass (LBM), muscle fibre cross-sectional area (CSA) and leg press strength. There were no significant correlations between the exercise-induced elevations (area under the curve-AUC) of GH, fT and IGF-1 and gains in LBM or leg press strength. Significant correlations were found for cortisol, usually assumed to be a hormone indicative of catabolic drive, AUC with change in LBM (r = 0.29, P < 0.05) and type II fibre CSA (r = 0.35, P < 0.01) as well as GH AUC and gain in fibre area (type I: r = 0.36, P = 0.006; type II: r = 0.28, P = 0.04, but not lean mass). No correlations with strength were observed. We report that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.

  16. Acute Mucociliary Clearance Response to Aerobic Exercise in Smokers.

    PubMed

    Ramos, Ercy M C; Vanderlei, Luiz Carlos M; Ito, Juliana T; Lima, Fabiano F; Rodrigues, Fernanda M M; Manzano, Beatriz M; Fernandes, Rômulo A; Cecílio, Michel J; Toledo-Arruda, Alessandra C; Ramos, Dionei

    2015-11-01

    Mucociliary clearance is the main defense mechanism of the respiratory system, and it is influenced by several stimuli, including aerobic exercise and cigarette smoking. We evaluated the acute response of mucociliary clearance to aerobic exercise in smokers and nonsmokers compared with that found after acute smoking and smoking combined with exercise. Also, we investigated whether there was a correlation between mucociliary clearance and the autonomic nervous system under these conditions. Twenty-one smokers were evaluated for mucociliary clearance by saccharin transit time (STT), and the response of the autonomic nervous system was evaluated by heart rate variability after aerobic exercise, after exercise followed by smoking, after acute smoking, and after rest. For comparison, 17 nonsmokers were also assessed during exercise. Repeated-measures analysis of variance with the Tukey test or the Friedman test followed by the Dunn test was used to evaluate the STT, autonomic response, and other variables to exercise and/or smoking in smokers. A paired t test or Wilcoxon test was used to analyze responses to exercise in nonsmokers. Correlations were evaluated using Pearson or Spearman coefficients. The STT was reduced after exercise in both groups, with similar responses between them. Other stimuli also reduced the STT. The STT showed a negative correlation with sympathetic activity in smokers and a positive correlation with the parasympathetic system in nonsmokers. Although impaired in smokers, mucociliary clearance responded to the stimulus of exercise, as demonstrated by similar STTs compared with nonsmokers. This response was correlated with the autonomic nervous system in both groups. In smokers, mucociliary clearance also responded to the stimuli of smoking and exercise followed by smoking. Copyright © 2015 by Daedalus Enterprises.

  17. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  18. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women.

    PubMed

    Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A

    2015-06-01

    Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.

  19. Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.

    PubMed

    Lee, Minchul; Soya, Hideaki

    2017-12-31

    Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition

  20. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness

    PubMed Central

    Windsor, Mark T.; Bailey, Tom G.; Perissiou, Maria; Meital, Lara; Golledge, Jonathan; Russell, Fraser D.; Askew, Christopher D.

    2018-01-01

    Markers of chronic inflammation increase with aging, and are associated with cardiovascular disease prevalence and mortality. Increases in fitness with exercise training have been associated with lower circulating concentrations of cytokines known to have pro-inflammatory actions (such as interleukin-6 [IL-6]) and higher circulating concentrations of anti-inflammatory cytokines (interleukin-10 [IL-10]). However, the effect of cardiorespiratory fitness on acute cytokine responses to a single bout of exercise in healthy older individuals is unknown. We compared the response of plasma cytokines IL-6, tumor necrosis factor-alpha (TNF-α) and IL-10 to a bout of moderate-intensity continuous and higher-intensity interval exercise between older individuals with higher and lower levels of cardiorespiratory fitness. Sixteen lower-fit (VO2peak: 22.6±2.8 mL.kg−1.min−1) and fourteen higher-fit participants (VO2peak: 37.4±5.9 mL.kg−1.min−1) completed three 24 min experimental protocols in a randomized order: (1) moderate-intensity continuous exercise (40% of peak power output [PPO]); (2) higher-intensity interval exercise (12 × 1 min intervals at 70% PPO separated by 1 min periods at 10% PPO); or (3) non-exercise control. Plasma cytokines were measured at rest, immediately after, and during 90 min of recovery following exercise or control. Plasma IL-6 concentrations at baseline were greater in the higher-fit compared to the lower-fit group (P = 0.02), with no difference in plasma IL-10 or TNF-α concentrations at baseline between groups. Plasma IL-6 and IL-10 concentrations in both groups increased immediately after all protocols (IL-6: P = 0.02, IL-10: P < 0.01). However, there was no difference in the IL-6 and IL-10 response between the exercise and non-exercise (control) protocols. After all protocols, no changes in plasma TNF-α concentrations were observed in either the higher- or lower-fit groups. In this study, basal concentrations of circulating IL-6 were elevated in older individuals with higher levels of cardiorespiratory fitness. However, changes in plasma cytokine concentrations after exercise were not different to changes after non-exercise control in both the lower- and higher-fit groups. PMID:29599722

  1. Acute Positive Effects of Exercise on Center-of-Pressure Fluctuations During Quiet Standing in Middle-Aged and Elderly Women.

    PubMed

    Fukusaki, Chiho; Masani, Kei; Miyasaka, Maya; Nakazawa, Kimitaka

    2016-01-01

    Acute effects of exercise on postural stability have been studied with a focus on fatigue. This study investigated the acute effects of moderate-intensity exercise on center-of-pressure (COP) fluctuation measures in middle-aged and elderly women. Thirty-five healthy women volunteered: 18 women performed a moderate aquatic exercise session for 80 minutes and 17 remained calm in a sitting position for the same duration. Center-of-pressure fluctuations during quiet standing were recorded for 60 seconds with eyes open and closed before and after the exercise and sitting tasks. The time- and frequency-domain measures of the COP time series were calculated. The frequency-domain measures were also calculated for the COP velocity time series. According to 2-way analysis of variance and paired t-tests with a Bonferroni's correction, mean velocity of COP fluctuations, mean velocity of COP fluctuations in the medial-lateral (ML) direction, and total power of the COP velocity time series in the ML direction exhibited significant reductions after 1 session of exercise. These results indicated that a moderate-intensity aquatic exercise decreased COP velocity, counteracting age-related and fatigue-inducing postural deterioration. Therefore, we concluded that a single session of moderate-intensity aquatic exercise has acute positive effects on postural stability in middle-aged and elderly women.

  2. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations.

    PubMed

    De Souza, Eduardo O; Lowery, Ryan P; Wilson, Jacob M; Sharp, Matthew H; Mobley, Christopher Brooks; Fox, Carlton D; Lopez, Hector L; Shields, Kevin A; Rauch, Jacob T; Healy, James C; Thompson, Richard M; Ormes, Jacob A; Joy, Jordan M; Roberts, Michael D

    2016-01-01

    The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.

  4. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  5. Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females.

    PubMed

    Córdova, C; Silva, V C; Moraes, C F; Simões, H G; Nóbrega, O T

    2009-05-01

    The objective of the present study was to compare the effect of acute exercise performed at different intensities in relation to the anaerobic threshold (AT) on abilities requiring control of executive functions or alertness in physically active elderly females. Forty-eight physically active elderly females (63.8 +/- 4.6 years old) were assigned to one of four groups by drawing lots: control group without exercise or trial groups with exercise performed at 60, 90, or 110% of AT (watts) and submitted to 5 cognitive tests before and after exercise. Following cognitive pretesting, an incremental cycle ergometer test was conducted to determine AT using a fixed blood lactate concentration of 3.5 mmol/L as cutoff. Acute exercise executed at 90% of AT resulted in significant (P < 0.05, ANOVA) improvement in the performance of executive functions when compared to control in 3 of 5 tests (verbal fluency, Tower of Hanoi test (number of movements), and Trail Making test B). Exercising at 60% of AT did not improve results of any tests for executive functions, whereas exercise executed at 110% of AT only improved the performance in one of these tests (verbal fluency) compared to control. Women from all trial groups exhibited a remarkable reduction in the Simple Response Time (alertness) test (P = 0.001). Thus, physical exercise performed close to AT is more effective to improve cognitive processing of older women even if conducted acutely, and using a customized exercise prescription based on the anaerobic threshold should optimize the beneficial effects.

  6. Effects of endotoxin induced lung injury and exercise in goats/sheep. Final report, 1 February 1992-2 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundie, T.G.

    This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.... Acute lung injury, Maximal exercise, Endotoxin.

  7. Upper-body resistance exercise augments vastus lateralis androgen receptor-DNA binding and canonical Wnt/β-catenin signaling compared to lower-body resistance exercise in resistance-trained men without an acute increase in serum testosterone.

    PubMed

    Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S

    2015-06-01

    The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Supervised exercises for adults with acute lateral ankle sprain: a randomised controlled trial

    PubMed Central

    van Rijn, Rogier M; van Os, Anton G; Kleinrensink, Gert-Jan; Bernsen, Roos MD; Verhaar, Jan AN; Koes, Bart W; Bierma-Zeinstra, Sita MA

    2007-01-01

    Background During the recovery period after acute ankle sprain, it is unclear whether conventional treatment should be supported by supervised exercise. Aim To evaluate the short- and long-term effectiveness of conventional treatment combined with supervised exercises compared with conventional treatment alone in patients with an acute ankle sprain. Design Randomised controlled clinical trial. Setting A total of 32 Dutch general practices and the hospital emergency department. Method Adults with an acute lateral ankle sprain consulting general practices or the hospital emergency department were allocated to either conventional treatment combined with supervised exercises or conventional treatment alone. Primary outcomes were subjective recovery (0–10 point scale) and the occurrence of a re-sprain. Measurements were carried out at intake, 4 weeks, 8 weeks, 3 months, and 1 year after injury. Data were analysed using intention-to-treat analyses. Results A total of 102 patients were enrolled and randomised to either conventional treatment alone or conventional treatment combined with supervised exercise. There was no significant difference between treatment groups concerning subjective recovery or occurrence of re-sprains after 3 months and 1-year of follow-up. Conclusion Conventional treatment combined with supervised exercises compared to conventional treatment alone during the first year after an acute lateral ankle sprain does not lead to differences in the occurrence of re-sprains or in subjective recovery. PMID:17925136

  9. The effect of aerobic exercise on treatment-related acute toxicity in men receiving radical external beam radiotherapy for localised prostate cancer.

    PubMed

    Kapur, G; Windsor, P M; McCowan, C

    2010-09-01

    We retrospectively analysed acute radiation toxicity data for patients who had participated in a randomised controlled study in our centre in order to assess the impact of aerobic exercise on acute rectal and bladder morbidity during treatment. Data from 65 of 66 patients were analysed: 33 allocated into a control group (standard advice) and 33 into an exercise group (aerobic walking for 30 min at least three times per week) during 4 weeks of external beam radiotherapy; one patient in the exercise group withdrew after randomisation before starting radiotherapy. There was a trend towards less severe acute rectal toxicity in the exercise group with a statistically significant difference in mean toxicity scores over the 4 weeks of radiotherapy (P=0.004), with no significant difference in bladder toxicity scores between the two groups (P=0.123). The lack of an association for severity of bladder toxicity could be attributed to the confounding effect of lower urinary tract symptoms from their prostate cancer. Keeping active and being asked to adhere to a well-defined exercise schedule appears to reduce the severity of rectal toxicity during radiotherapy to the prostate.

  10. Acute aerobic exercise hastens emotional recovery from a subsequent stressor.

    PubMed

    Bernstein, Emily E; McNally, Richard J

    2017-06-01

    Despite findings that regular exercise is broadly associated with emotional well-being, more basic research is needed to deepen our understanding of the exercise and emotion connection. This paper examines how acute aerobic exercise in particular influences subjective emotional recovery from a subsequent stressor. Potential mediators and moderators, including level of physical fitness, attentional control, and perseverative negative thinking were explored. All of the participants (n = 95) completed 3 laboratory visits, each including 1 of 3 activities (i.e., cycling, resting, stretching), tests of working memory and attentional control, and an experimental stressor. Self-reported rumination after the stressor and the experience of positive and negative emotions throughout the study were recorded. In this within-subjects paradigm, as expected, higher rumination in response to the stressor predicted more persistent negative emotion afterward; this effect was attenuated only by prior acute aerobic exercise, in this case, cycling, both 5 min and 15 min poststressor. This effect was unrelated to physical fitness or cognitive performance. Physical fitness level did predict greater attentional control and the capacity to update working memory. Acute aerobic exercise may facilitate subjective emotional recovery from a subsequent stressor and improve emotional flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. [Acute and remote biochemical and physiological effects of exhaustive weightlifting exercise].

    PubMed

    Minigalin, A D; Shumakov, A R; Baranova, T I; Danilova, M A; Kalinskiĭ, M I; Morozov, V I

    2011-01-01

    The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.

  12. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    PubMed

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the combination of dynamic exercises and WBV could be used as a potential warm-up procedure before resistance exercise.

  13. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle.

    PubMed

    Philp, Andrew; MacKenzie, Matthew G; Belew, Micah Y; Towler, Mhairi C; Corstorphine, Alan; Papalamprou, Angela; Hardie, D Grahame; Baar, Keith

    2013-01-01

    Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.

  14. Glycogen Content Regulates Peroxisome Proliferator Activated Receptor-∂ (PPAR-∂) Activity in Rat Skeletal Muscle

    PubMed Central

    Philp, Andrew; MacKenzie, Matthew G.; Belew, Micah Y.; Towler, Mhairi C.; Corstorphine, Alan; Papalamprou, Angela; Hardie, D. Grahame; Baar, Keith

    2013-01-01

    Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise. PMID:24146969

  15. THE ANTIHYPERTENSIVE EFFECTS OF AEROBIC VERSUS ISOMETRIC HANDGRIP RESISTANCE EXERCISE

    PubMed Central

    ASH, Garrett I.; TAYLOR, Beth A.; THOMPSON, Paul D.; MACDONALD, Hayley V.; LAMBERTI, Lauren; CHEN, Ming-Hui; FARINATTI, Paulo; KRAEMER, William J.; PANZA, Gregory A.; ZALESKI, Amanda L.; DESHPANDE, Ved; BALLARD, Kevin D.; MUJTABA, Mohammadtokir; WHITE, C. Michael; PESCATELLO, Linda S.

    2017-01-01

    Aerobic exercise reduces blood pressure (BP) on average 5 to 7 mmHg among those with hypertension; limited evidence suggests similar or even greater BP benefits may result from isometric handgrip (IHG) resistance exercise. We conducted a randomized controlled trial investigating the antihypertensive effects of an acute bout of aerobic compared to IHG exercise in the same individuals. Middle-aged adults (n=27) with prehypertension and obesity randomly completed three experiments: aerobic [60% peak oxygen uptake, 30 minutes]; IHG [30% maximum voluntary contraction, 4x2 minutes bilateral]; and non-exercise control. Subjects were assessed for carotid-femoral pulse wave velocity (PWV) pre and post exercise, and left the laboratory wearing an ambulatory BP monitor. Systolic and diastolic BP (SBP/DBP) were lower after aerobic versus IHG (4.8±1.8/3.1±1.3mmHg, p=0.01/0.04) and control (5.6±1.8/3.6±1.3mmHg, p=0.02/0.04) over the awake hours, with no difference between IHG versus control (p=0.80/0.83). PWV changes following acute exercise did not differ by modality (aerobic increased 0.01±0.21m•s−1, IHG decreased 0.06±0.15m•s−1, control increased 0.25±0.17m•s−1, p>0.05). A subset of participants then completed either 8 weeks of aerobic or IHG training. Awake SBP was lower after versus before aerobic training (7.6±3.1mmHg, p=0.02), while sleep DBP was higher after IHG training (7.7±2.3mmHg, p=0.02). Our findings did not support IHG as antihypertensive therapy but that aerobic exercise should continue to be recommended as the primary exercise modality for its immediate and sustained BP benefits. PMID:27861249

  16. Arterial Stiffness and Autonomic Modulation After Free-Weight Resistance Exercises in Resistance Trained Individuals.

    PubMed

    Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis

    2016-12-01

    Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.

  17. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials.

    PubMed

    Jones, Matthew D; Taylor, Janet L; Booth, John; Barry, Benjamin K

    2016-01-01

    Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1-SEPs; Experiment 2-LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = -0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = -0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = -0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = -0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.

  18. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children.

    PubMed

    Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Tsiokanos, Athanasios; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-01-01

    Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults ( n = 14) and children ( n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation ( p < 0.01). In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  19. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder

    PubMed Central

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-01-01

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD. PMID:27187236

  20. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  1. Individual variability in compensatory eating following acute exercise in overweight and obese women.

    PubMed

    Hopkins, Mark; Blundell, John E; King, Neil A

    2014-10-01

    While compensatory eating following acute aerobic exercise is highly variable, little is known about the underlying mechanisms that contribute to the alterations in exercise-induced eating behaviour. Overweight and obese women (body mass index=29.6±4.0 kg/m(2)) performed a bout of cycling individually tailored to expend 400 kcal (EX) or a time-matched no exercise control condition in a randomised, counter-balanced order. 60 min after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. While ad libitum energy intake (EI) did not differ between EX and the control condition (666.0±203.9 vs 664.6±174.4 kcal, respectively; ns), there was a marked individual variability in compensatory EI. The difference in EI between EX and the control condition ranged from -234.3 to 278.5 kcal. Carbohydrate oxidation during exercise was positively associated with postexercise EI, accounting for 37% of the variance in EI (r=0.57; p=0.02). These data indicate that the capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain a part of the variability in acute exercise-induced compensatory eating. Postexercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder.

    PubMed

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-05-17

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD.

  3. Leptin-induced basal Akt phosphorylation and its implication in exercise-mediated improvement of insulin sensitivity.

    PubMed

    Zheng, Xianjie; Niu, Sen

    2018-01-29

    Physical exercise is an efficient therapeutical tool in the management of insulin resistance (IR) and related metabolic diseases. Leptin, the well-known obesity hormone and the absence of which leads to IR, showed controversial effects on IR as research continues. Thus, in this study, a detailed investigation of the effect of leptin on exercise-mediated improvement of insulin sensitivity and its underlying mechanism was carried out. Using a rat model of chronic or acute swimming exercise training, we found that serum leptin increased 1 h after either acute exercise or the last session of chronic exercise, when impaired insulin action was observed in previous reports. However, chronic exercise reducd basal serum leptin levels and promoted insulin sensitivity compared with sedentary controls or rats subjected to one bout of aerobic exercise. Our animal results indicated the potential linkage between leptin and insulin sensitivity, which is further investigated in the skeletal muscle L6 cells. Leptin treatment in L6 cells promoted the basal levels of insulin signaling as well as glucose uptake, while blocking JAK2 signaling with either pharmacological intervention (JAK2 inhibitor AG490) or genetic manipulation (siRNA knockdown) decreased the basal levels of insulin signaling. Furthermore, leptin treatment inhibited insulin-stimulated insulin signaling and glucose uptake, while blocking JAK2 signaling restored leptin-attenuated insulin sensitivity. Taken together, our results demonstrated that reduced serum leptin, at least in part, contributes to exercise-mediated improvement of insulin sensitivity, indicating JAK2 as a potent therapeutical target of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments

    PubMed Central

    Ji, Ling-Yu; Li, Xiao-Ling; Liu, Yang; Sun, Xiu-Wen; Wang, Hui-Fen; Chen, Long; Gao, Liang

    2017-01-01

    Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects. Objective: Investigate the time-dependent effects of acute exercise on university students’ processing speed, working memory and cognitive flexibility in temperate and cold environments. Method: Twenty male university students (age 23.5 ± 2.0 years) with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE), followed by a 45-min rest (REST), immediately after (EX) and 30 min after (POST-EX) 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C) and cold (COLD; 10°C) environments. Mean skin temperature (MST) and thermal sensation (TS) were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman’s rho was used to identify the correlations between MST, TS and cognitive performance. Results: Reaction time (RT) of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007). The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163) and COLD (p = 0.667), while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047), but not in COLD (p = 0.663). Though RT of cognitive flexibility reduced in both conditions (p = 0.003), no significance was found between EX and REST (p = 0.135). Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001) and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005), and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001). Conclusion: The results demonstrate different time-dependent effects of acute exercise on cognition in TEMP and COLD. Our study reveals facilitating effects of exercise on university students’ processing speed and working memory in both environments. However, in contrast to TEMP, effects on working memory in COLD are transient. PMID:28747896

  5. The Feasibility of performing resistance exercise with acutely ill hospitalized older adults

    PubMed Central

    Mallery, Laurie H; MacDonald, Elizabeth A; Hubley-Kozey, Cheryl L; Earl, Marie E; Rockwood, Kenneth; MacKnight, Chris

    2003-01-01

    Background For older adults, hospitalization frequently results in deterioration of mobility and function. Nevertheless, there are little data about how older adults exercise in the hospital and definitive studies are not yet available to determine what type of physical activity will prevent hospital related decline. Strengthening exercise may prevent deconditioning and Pilates exercise, which focuses on proper body mechanics and posture, may promote safety. Methods A hospital-based resistance exercise program, which incorporates principles of resistance training and Pilates exercise, was developed and administered to intervention subjects to determine whether acutely-ill older patients can perform resistance exercise while in the hospital. Exercises were designed to be reproducible and easily performed in bed. The primary outcome measures were adherence and participation. Results Thirty-nine ill patients, recently admitted to an acute care hospital, who were over age 70 [mean age of 82.0 (SD= 7.3)] and ambulatory prior to admission, were randomized to the resistance exercise group (19) or passive range of motion (ROM) group (20). For the resistance exercise group, participation was 71% (p = 0.004) and adherence was 63% (p = 0.020). Participation and adherence for ROM exercises was 96% and 95%, respectively. Conclusion Using a standardized and simple exercise regimen, selected, ill, older adults in the hospital are able to comply with resistance exercise. Further studies are needed to determine if resistance exercise can prevent or treat hospital-related deterioration in mobility and function. PMID:14531932

  6. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  7. Development of a positive psychology intervention for patients with acute cardiovascular disease

    PubMed Central

    Huffman, Jeff C.; Mastromauro, Carol A.; Boehm, Julia K.; Seabrook, Rita; Fricchione, Gregory L.; Denninger, John W.; Lyubomirsky, Sonja

    2011-01-01

    The management of depression and other negative psychological states in cardiac patients has been a focus of multiple treatment trials, though such trials have not led to substantial improvements in cardiac outcomes. In contrast, there has been minimal focus on interventions to increase positive psychological states in cardiac patients, despite the fact that optimism and other positive states have been associated with superior cardiovascular outcomes. Our objective was to develop an 8-week, phone-based positive psychology intervention for patients hospitalized with acute cardiac disease (acute coronary syndrome or decompensated heart failure). Such an intervention would consist of positive psychology exercises adapted for this specific population, and it would need to be feasible for practitioners and patients in real-world settings. By adapting exercises that were previously validated in healthy individuals, we were able to generate a positive psychology telemedicine intervention for cardiac patients that focused on optimism, kindness, and gratitude. In addition, we successfully created a companion treatment manual for subjects to enhance the educational aspects of the intervention and facilitate completion of exercises. Finally, we successfully performed a small pilot trial of this intervention, and found that the positive psychology intervention appeared to be feasible and well-accepted in a cohort of patients with acute cardiac illness. Future studies should further develop this promising intervention and examine its impact on psychological and medical outcomes in this vulnerable population of cardiac patients. PMID:23825741

  8. Development of a positive psychology intervention for patients with acute cardiovascular disease.

    PubMed

    Huffman, Jeff C; Mastromauro, Carol A; Boehm, Julia K; Seabrook, Rita; Fricchione, Gregory L; Denninger, John W; Lyubomirsky, Sonja

    2011-09-29

    The management of depression and other negative psychological states in cardiac patients has been a focus of multiple treatment trials, though such trials have not led to substantial improvements in cardiac outcomes. In contrast, there has been minimal focus on interventions to increase positive psychological states in cardiac patients, despite the fact that optimism and other positive states have been associated with superior cardiovascular outcomes. Our objective was to develop an 8-week, phone-based positive psychology intervention for patients hospitalized with acute cardiac disease (acute coronary syndrome or decompensated heart failure). Such an intervention would consist of positive psychology exercises adapted for this specific population, and it would need to be feasible for practitioners and patients in real-world settings. By adapting exercises that were previously validated in healthy individuals, we were able to generate a positive psychology telemedicine intervention for cardiac patients that focused on optimism, kindness, and gratitude. In addition, we successfully created a companion treatment manual for subjects to enhance the educational aspects of the intervention and facilitate completion of exercises. Finally, we successfully performed a small pilot trial of this intervention, and found that the positive psychology intervention appeared to be feasible and well-accepted in a cohort of patients with acute cardiac illness. Future studies should further develop this promising intervention and examine its impact on psychological and medical outcomes in this vulnerable population of cardiac patients.

  9. META-ANALYSIS OF ACUTE EXERCISE EFFECTS ON STATE ANXIETY: AN UPDATE OF RANDOMIZED CONTROLLED TRIALS OVER THE PAST 25 YEARS.

    PubMed

    Ensari, Ipek; Greenlee, Tina A; Motl, Robert W; Petruzzello, Steven J

    2015-08-01

    One prominent and well-cited meta-analysis published nearly 25 years ago reported that an acute or single bout of exercise reduced state anxiety by approximately ¼ standard deviation. We conducted a meta-analysis of randomized controlled trials (RCTs) published after that meta-analysis for updating our understanding of the acute effects of exercise on state anxiety. We searched PubMed, EBSCOHost, Medline, PsycINFO, ERIC, and ScienceDirect for RCTs of acute exercise and state anxiety as an outcome. There were 36 RCTs that met inclusion criteria and yielded data for effect size (ES) generation (Cohen's d). An overall ES was calculated using a random effects model and expressed as Hedge's g. The weighted mean ES was small (Hedge's g = 0.16, standard error (SE) = 0.06), but statistically significant (P < 0.05), and indicated that a single bout of exercise resulted in an improvement in state anxiety compared with control. The overall ES was heterogeneous and post hoc, exploratory analyses using both random- and fixed-effects models identified several variables as moderators including sample age, sex and health status, baseline activity levels, exercise intensity, modality and control condition, randomization, overall study quality, and the anxiety measure (P < 0.05). The cumulative evidence from high quality studies indicates that acute bouts of exercise can yield a small reduction in state anxiety. The research is still plagued by floor effects associated with recruiting persons with normal or lower levels of state anxiety, and this should be overcome in subsequent trials. © 2015 Wiley Periodicals, Inc.

  10. The Acute Effects of Aerobic Exercise on Cognitive Flexibility and Task-Related Heart Rate Variability in Children With ADHD and Healthy Controls.

    PubMed

    Ludyga, Sebastian; Gerber, Markus; Mücke, Manuel; Brand, Serge; Weber, Peter; Brotzmann, Mark; Pühse, Uwe

    2018-02-01

    To investigate cognitive flexibility and task-related heart rate variability following moderately intense aerobic exercise and after watching a video in both children with ADHD and healthy controls. Using a cross-over design, participants completed cognitive assessments following exercise and a physically inactive control condition. Behavioral performance was assessed using the Alternate Uses task. Heart rate variability was recorded via electrocardiography during the cognitive task. The statistical analysis revealed that in comparison with the control condition, both groups showed higher cognitive flexibility following aerobic exercise. Moreover, decreased low frequency and high frequency power was observed in the exercise condition. The findings suggest that exercise elicits similar benefits for cognitive flexibility in children with ADHD and healthy controls, partly due to an increase in arousal induced by parasympathetic withdrawal.

  11. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

  12. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists.

    PubMed

    Nyakayiru, Jean M; Jonvik, Kristin L; Pinckaers, Philippe J M; Senden, Joan; van Loon, Luc J C; Verdijk, Lex B

    2017-02-01

    While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O 2 ) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O 2peak 65 ± 4 ml·kg -1 ·min -1 , W max 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% W max and 30 min at 65% W max on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O 2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O 2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

  13. A randomized trial of exercise therapy in patients with acute low back pain. Efficacy on sickness absence.

    PubMed

    Faas, A; van Eijk, J T; Chavannes, A W; Gubbels, J W

    1995-04-15

    A randomized, placebo-controlled trial in which patients received either usual care by a general practitioner (information and analgesics), or placebo physiotherapy given by a physiotherapist, or exercise therapy given by a physiotherapist. To assess the efficacy of exercise therapy on sickness absence from work in patients with acute low back pain. Exercise therapy during the nonchronic phase of back pain is considered to reduce sickness absence, but this opinion is controversial. Patients with acute nonspecific low back pain and a paid job were included for analysis. Sickness absence (number of days) was checked monthly during the 1-year follow-up period and compliance was also assessed. From 40 general practices 363 patients who were gainfully employed were included. In the exercise therapy group the percentage of patients with sickness absence was higher and the duration of absence was longer than in the placebo and usual care groups, but these differences were not significant. Indications of more absence in the exercise therapy group appeared to be based largely on a greater number of patients with absences during the first 3 months. Patients in the exercise group who had not reported sick at entry had more sickness absences during the follow-up year than patients in the usual care and placebo group. Good compliance did not affect the results. Exercise therapy for patients with acute low back pain does not reduce sickness absence.

  14. The effect of different volumes of acute resistance exercise on elderly individuals with treated hypertension.

    PubMed

    Scher, Luria M L; Ferriolli, Eduardo; Moriguti, Julio C; Scher, Ricardo; Lima, Nereida K C

    2011-04-01

    Acute resistance exercise can reduce the blood pressure (BP) of hypertensive subjects. The aim of this study was to evaluate the effect of different volumes of acute low-intensity resistance exercise over the magnitude and the extent of BP changes in treated hypertensive elderly individuals. Sixteen participants (7 men, 9 women), with mean age of 68 ± 5 years, performed 3 independent randomized sessions: Control (C: 40 minutes of rest), Exercise 1 (E1: 20 minutes, 1 lap in the circuit), and Exercise 2 (E2: 40 minutes, 2 laps in the circuit) with the intensity of 40% of 1 repetition maximum. Blood pressure was measured before (during 20 minutes) and after each session (every 5 minutes during 60 minutes) using both a mercury sphygmomanometer and a semiautomatic device (Omrom-HEM-431). After that, 24-hour ambulatory blood pressure monitoring was performed (Dyna-MAPA). Blood pressure decreased during the first 60 minutes (systolic: p < 0.01, diastolic: p < 0.05) after all exercise sessions. Only the highest volume session promoted a reduction of mean systolic 24-hour BP and awake BP (p < 0.05) after exercise, with higher diastolic BP during sleep (p < 0.05). Diastolic 24-hour BP and both systolic and diastolic BP during sleep were higher after E1 (p < 0.05). Concluding, acute resistive exercise sessions in a circuit with different volumes reduced BP during the first 60 minutes after exercise in elderly individuals with treated hypertension. However, only the highest volume promoted a reduction of mean 24-hour and awake systolic BP.

  15. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control.

    PubMed

    Stensel, David

    2010-01-01

    Knowledge about the relationship between exercise and appetite is important both for athletes wishing to optimise performance and for those interested in maintaining a healthy body weight. A variety of hormones are involved in appetite regulation including both episodic hormones, which are responsive to episodes of feeding, and tonic hormones, which are important regulators of energy storage over the longer term (e.g. insulin and leptin). Notable among the episodic appetite-regulating hormones is ghrelin, which plays a unique role in stimulating appetite and energy intake. Many studies have demonstrated that acute bouts of moderately vigorous exercise transiently suppress appetite and this has been termed 'exercise-induced anorexia'. The mechanisms by which acute exercise suppresses appetite are not fully understood but may involve lowered concentrations of ghrelin and increased concentrations of satiety hormones, notably peptide YY and glucagon-like peptide 1. Evidence suggests that chronic exercise training typically causes a partial but incomplete compensation in energy intake perhaps due to beneficial changes in appetite-regulating hormones. The lack of a full compensatory response of appetite to exercise may facilitate the development of a negative energy balance and weight loss although there is individual variability in the response to exercise. From a practical standpoint athletes should not feel concerned that exercise will cause overeating as there is limited evidence to support this. For those desiring weight loss there may be some merit in performing exercise in the postprandial period as a means of enhancing the satiating effect of a meal but additional evidence is required to confirm the effectiveness of this strategy. Copyright © 2011 S. Karger AG, Basel.

  16. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency.

    PubMed

    Gutmann, B; Zimmer, P; Hülsdünker, T; Lefebvre, J; Binnebößel, S; Oberste, M; Bloch, W; Strüder, H K; Mierau, A

    2018-03-06

    Acute physical exercise (APE) induces an increase in the individual alpha peak frequency (iAPF), a cortical parameter associated with neural information processing speed. The aim of this study was to further scrutinize the influence of different APE intensities on post-exercise iAPF as well as its time course after exercise cessation. 95 healthy young (18-35 years) subjects participated in two randomized controlled experiments (EX1 and EX2). In EX1, all participants completed a graded exercise test (GXT) until exhaustion and were randomly allocated into different delay groups (immediately 0, 30, 60 and 90 min after GXT). The iAPF was determined before, immediately after as well as after the group-specific delay following the GXT. In EX2, participants exercised for 35 min at either 45-50%, 65-70% or 85-90% of their maximum heart rate (HR max ). The iAPF was determined before, immediately after as well as 20 min after exercise cessation. In EX1, the iAPF was significantly increased immediately after the GXT in all groups. This effect was not any more detectable after 30 min following exercise cessation. In EX2, a significant increase of the iAPF was found only after high-intensity (85-90% HR max ) exercise. The results indicate intense or exhaustive physical exercise is required to induce a transient increase in the iAPF that persists about 30 min following exercise cessation. Based on these findings, further research will have to scrutinize the behavioral implications associated with iAPF modulations following exercise. Copyright © 2018. Published by Elsevier B.V.

  17. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    PubMed Central

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  18. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians

    PubMed Central

    Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo

    2017-01-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. PMID:27979988

  19. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. Copyright © 2017 the American Physiological Society.

  20. High intensity interval exercise decreases IL-8 and enhances the immunomodulatory cytokine interleukin-10 in lean and overweight-obese individuals.

    PubMed

    Dorneles, Gilson P; Haddad, Desirée O; Fagundes, Viviane O; Vargas, Bruna K; Kloecker, Alana; Romão, Pedro R T; Peres, Alessandra

    2016-01-01

    To compare the effects of two interval exercises with different intensities on acute inflammatory response in lean and overweight-obese subjects. Ten lean (BMI<24.9kg/m(2)) and 12 overweight-obese (BMI 25 to <34.9kg/m(2)) males performed two conditions in randomly assigned: (1) high intensity interval exercise (HIIE) 10×60s (85-90%PMax)/75s (50%PMax); (2) moderate intensity interval exercise (MIIE) 10×60s (70-75%PMax)/60s (50%PMax), with blood collections at pre, immediately and 30min post each exercise bouts to evaluate total and differential leukocyte counts, serum creatine kinase (CK), lactate dehydrogenase (LDH) and systemic levels of IL-1ra, IL-6, IL-8, IL-10, IL-17a and CCL2. In lean group, HIIE induced a significant increase in total leukocytes and monocyte, while MIIE session did not change the number of leukocytes. Overweight-obese group presented similar increase in leukocytes, monocytes and lymphocytes in both HIIE and MIIE sessions. At baseline, overweight-obese group showed high levels of CK, IL-8, IL-6 and CCL2 and lower concentrations of IL-10 compared to lean group. The MIIE did not alter the cytokine concentrations in both groups, independently of the time analysis. The HIIE induced significant decrease in IL-8 levels 30min post session in both the groups, and a progressive elevation in IL-10 levels immediately and 30min post in lean and overweight-obese. Regarding IL-6, overweight-obese subjects presented progressive increase either immediately and 30min after HIIE, while lean individuals presented significant increase only 30min after exercise. The acute inflammatory response to interval exercise is intensity-dependent. Although obesity influences the basal concentrations of several cytokines, only HIIE induced important alterations in IL-8 and IL-10 levels, which may have important implications in the control of chronic low-grade inflammation in obesity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The impact of obesity on pentraxin 3 and inflammatory milieu to acute aerobic exercise.

    PubMed

    Slusher, Aaron L; Mock, J Thomas; Whitehurst, Michael; Maharaj, Arun; Huang, Chun-Jung

    2015-02-01

    Pentraxin 3 (PTX3) has recently been linked to obesity-associated inflammation, serving as a cardioprotective modulator against cardiovascular disease (CVD). Aerobic exercise has been shown to enhance plasma PTX3 levels; however, the impact of obesity on PTX3 response to exercise remains unknown. Therefore, this study sought to examine whether obese subjects would have an attenuated plasma PTX3 response compared to normal-weight subjects following acute aerobic exercise. The relationship of plasma PTX3 with pro-inflammatory cytokines (IL-6 and TNF-α) was also examined. Twenty healthy subjects (10 obese [4 males and 6 females] and 10 normal-weight [4 males, 6 females]) performed 30min of continuous submaximal aerobic exercise. At baseline, obese subjects exhibited approximately 40% lower plasma PTX3 and a 7-fold greater IL-6 concentration compared to normal-weight subjects. In response to exercise, no difference was observed in PTX3 or IL-6 as indicated by area-under-the-curve "with respect to increase" (AUCi) analyses. Furthermore, PTX3 AUCi was positively correlated with cardiorespiratory fitness levels (VO(2max)) (r=0.594, p=0.006), even after controlling for body mass index. These findings suggest that in addition to obesity-associated complications, low cardiorespiratory fitness levels could impact exercise-induced PTX3 elevations, thereby potentially diminishing PTX3's effects of anti-inflammation and/or cardioprotection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Skeletal muscle strength and endurance are maintained during moderate dehydration.

    PubMed

    Périard, J D; Tammam, A H; Thompson, M W

    2012-08-01

    This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Resistance exercise load does not determine training-mediated hypertrophic gains in young men

    PubMed Central

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; West, Daniel W. D.; Burd, Nicholas A.; Breen, Leigh; Baker, Steven K.

    2012-01-01

    We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 repetition maximum)] or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1, and 80%-3. Subjects trained each leg with their assigned regime for a period of 10 wk, 3 times/wk. We made pre- and posttraining measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and posttraining biopsies of the vastus lateralis, and a single postexercise (1 h) biopsy following the first bout of exercise, to measure signaling proteins. Training-induced increases in MR-measured muscle volume were significant (P < 0.01), with no difference between groups: 30%-3 = 6.8 ± 1.8%, 80%-1 = 3.2 ± 0.8%, and 80%-3= 7.2 ± 1.9%, P = 0.18. Isotonic maximal strength gains were not different between 80%-1 and 80%-3, but were greater than 30%-3 (P = 0.04), whereas training-induced isometric strength gains were significant but not different between conditions (P = 0.92). Biopsies taken 1 h following the initial resistance exercise bout showed increased phosphorylation (P < 0.05) of p70S6K only in the 80%-1 and 80%-3 conditions. There was no correlation between phosphorylation of any signaling protein and hypertrophy. In accordance with our previous acute measurements of muscle protein synthetic rates a lower load lifted to failure resulted in similar hypertrophy as a heavy load lifted to failure. PMID:22518835

  4. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women

    PubMed Central

    Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick

    2015-01-01

    Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686

  5. Effect of zinc supplementation on lipid peroxidation and lactate levels in rats with diabetes induced by streptozotocin and subjected to acute swimming exercise.

    PubMed

    Bicer, M; Gunay, M; Baltaci, A K; Uney, K; Mogulkoc, R; Akil, M

    2012-01-01

    The present study aims to explore the effect of zinc supplementation on lipid peroxidation and lactate levels in rats having diabetes induced by streptozotocin and subjected to acute swimming exercise. A total of 80 adult male rats of Sprague-Dawley type were equally allocated to 8 groups: Group 1, general control. Group 2, zinc-supplemented group. Group 3, zinc-supplemented, diabetic group. Group 4, swimming control group. Group 5, zinc-supplemented swimming group. Group 6, zinc-supplemented diabetic swimming group. Group 7, diabetic swimming group. Group 8, diabetic group. At the end of the 4-week study, blood samples were collected to determine MDA, GSH, GPx, SOD, lactate and zinc levels. The highest MDA values were found in group 7 and 8 (p<0.001). GSH values in groups 5 and 6 were higher (p<0.001). The highest GPx values were established in groups 2, 5 and 6 (p<0.001). SOD values were the highest in groups 5 and 6 (p<0.001) and lowest in groups 2, 3 and 8 (p<0.001). The highest plasma lactate levels were found in group 7 (p<0.001). The highest zinc levels were obtained in groups 1, 2 and 5 (p<0.001), and the lowest zinc levels were found in groups 7 and 8 (p<0.001). Results of the study reveal that zinc supplementation prevents the increase of free radical formation, suppression of antioxidant activity and muscle exhaustion, all of which result from diabetes and acute exercise. Zinc supplementation may contribute to health performance in diabetes and acute exercise (Tab. 2, Fig. 1 Ref. 47). Full Text in PDF www.elis.sk.

  6. Acute whiplash-associated disorders (WAD): the effects of early mobilization and prognostic factors in long-term symptomatology.

    PubMed

    Söderlund, A; Olerud, C; Lindberg, P

    2000-10-01

    To compare two different home exercise programmes for patients with acute whiplash-associated disorders (WAD). A further aim was to describe the initial prognostic variables related to self-reported pain at six months follow-up. A randomized treatment study with a follow-up period of six months. The study was undertaken in an orthopaedic clinic at a university hospital. A total of 59 symptomatic (neck pain, stiffness, etc.) patients with acute whiplash injury. Patients were randomized to a regular treatment group (RT group) and an additional-exercise treatment group (AT group). Pain Disability Index (PDI), Self-Efficacy Scale (SES), Coping Strategies Questionnaire (CSQ), neck range of motion (ROM), head posture, kinaesthetic sensibility, visual analogue scale (VAS). Patients given an additional exercise did not improve more than patients with regular treatment. Only one CSQ item, 'Ability to decrease pain', showed a significant difference between the groups in its pattern of change over time: the AT group had a significant increase between three and six months whilst values in the RT group decreased. Nonsymptomatic patients at six months follow-up were characterized by initially better self-efficacy, lower disability and significantly different patterns in the use of 'behavioural coping strategies' when compared with symptomatic patients. The nonsymptomatic patients also reported more frequent training than symptomatic patients, i.e. they complied better with the treatment regime. This home exercise programme, including training of neck and shoulder ROM, relaxation and general advice seems to be sufficient treatment for acute WAD patients when used on a daily basis. Additionally, patients reporting low self-efficacy and high disability levels may profit from more attention initially, as these psychological factors are significant predictors of pain at long-term follow-up.

  7. Blood Flow After Exercise-Induced Muscle Damage

    PubMed Central

    Selkow, Noelle M.; Herman, Daniel C.; Liu, Zhenqi; Hertel, Jay; Hart, Joseph M.; Saliba, Susan A.

    2015-01-01

    Context: The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. Objective: To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). Intervention(s): To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. Main Outcome Measure(s): Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. Results: We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. Conclusions: Whereas eccentric muscle damage resulted in increased blood flow, ice did not decrease muscle perfusion 48 hours after exercise. Therefore, ice does not seem to decrease muscle perfusion when blood flow is elevated, as it would be during inflammation. PMID:25658816

  8. Increase of electrodermal activity of heart meridian during physical exercise: the significance of electrical values in acupuncture and diagnostic importance.

    PubMed

    Pontarollo, Francesco; Rapacioli, Giuliana; Bellavite, Paolo

    2010-08-01

    Electric field measurements of skin potential and electrical currents are physiological indicators of electrodermal activity (EDA) and have been associated with a variety of sensory, cognitive and emotional stimuli. The aim of this study was to investigate the EDA at some hand acupoints before, during and after a physical exercise. EDA of eight points located at the corner of fingernails of hands was measured in 10 healthy young volunteers before, during and after a 14-min acute exercise in a bicycle ergometer. In pre-exercise resting state the parameters were stable and similar between the 8 different tested points, while during exercise a significant increase of current (from 1000-2000 to 4000-8000 nA) was observed, with the maximal values related to the point located on the ulnar side of the little finger, at the base of the nail, corresponding to the Shao chong (HT9) of heart meridian. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. The effect of histamine on changes in mental energy and fatigue after a single bout of exercise.

    PubMed

    Loy, Bryan D; O'Connor, Patrick J

    2016-01-01

    The purpose of this research was to determine if histamine, acting on brain H1 receptors, influences changes in feelings of energy and fatigue or cognitive test performance after acute exercise. Women (n=20) with low vigor and high fatigue were administered the H1 antagonist drug doxepin hydrocholoride (6 mg) in tomato juice and tomato juice alone (placebo) in a randomized, double-blinded, cross-over experiment before performing 30 min of light intensity cycling exercise and completing energy, fatigue, sleepiness, and motivation scales, and cognitive tasks. After exercise, mental fatigue increased for the doxepin condition (p=0.014) but not placebo (p=0.700), while mental energy decreased for both PLA and DOX (p<0.001) and cognitive task performance was unaffected. It is inferred that histamine binding to H1 receptors in the brain has a role in exercise-induced reductions in mental fatigue, but not increases in energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664

  11. Acute psychological benefits of exercise performed at self-selected workloads: implications for theory and practice.

    PubMed

    Szabo, Attila

    2003-09-01

    Given that most studies to date examined the connection between exercise and affect without considering the participants' preferred exercise workload, in this research the affective-benefits of jogging or running at a participant-selected pace were investigated in a pilot field and a laboratory experiment. Ninety-six male and female students (19.5 yrs) took part in the pilot field experiment whereas 32 women (20.3 yrs) completed the laboratory experiment. In both experiments, the participants ran/jogged for 20 minutes at a self-selected pace. They completed an abbreviated version of a 'right now form' of the Profile of Mood States (POMS - Grove and Prapavessis, 1992) inventory before and after exercise. In both experiments all dependent measures changed significantly from pre- to post-exercise, except 'fatigue' and 'vigor' that did not change in the laboratory. Total mood disturbance (TMD) decreased significantly in both experiments (68% and 89%). No significant correlations were found between exercise intensity (expressed as percent (%) of maximal heart rate reserve) and the magnitude of changes seen in the dependent measures. It is concluded that exercising at a self-selected workload yields positive changes in affect that are unrelated to exercise intensity. These results suggest that the physiological theories linking exercise with positive changes in affect, in which exercise intensity is instrumental, could not account for the acute affective benefits of exercise. It is proposed that a 'cognitive appraisal hypothesis' may be more appropriate in explaining the acute affective benefits of exercise.

  12. Acute nutritional ketosis: implications for exercise performance and metabolism

    PubMed Central

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  13. Acute effects of different dynamic exercises on hamstring strain risk factors.

    PubMed

    Chen, Che Hsiu; Xin, Ye; Lee, Kuang Wu; Lin, Ming Ju; Lin, Jiu Jenq

    2018-01-01

    The purpose of the study was to examine the acute effects of different dynamic exercise interventions on hamstring muscle performance. Thirty-six young men with poor hamstring flexibility were randomly assigned to three intervention groups: jogging combined with dynamic open kinetic chain stretching (DS), jogging combined with dynamic closed kinetic chain stretching (lunge with eccentric hamstring windmills, LEC), and jogging only (CON) groups. Hamstring flexibility, muscle stiffness (area under the curve, AUC), joint position sense (JPS), maximal eccentric strength (ECC), and angle of peak torque (APT) were recorded before and immediately after the exercise interventions. The results showed that the hamstring flexibility increased in DS (p < 0.001); muscle stiffness decreased in DS and was lower than jogging (p < 0.001). Moreover, ECC increased in LEC and was higher than jogging and DS (p < 0.001). APT was different among 3 groups (p < 0.001). Decreased accuracy of JPS was found in DS and jogging (p < 0.001). In conclusion, the dynamic closed kinetic chain stretching (LEC) as compared to open kinetic chain stretching (DS) or jogging group, may be an effective technique to enhance muscle performance during the pre-competition warm-up routine.

  14. Acute effects of different dynamic exercises on hamstring strain risk factors

    PubMed Central

    Xin, Ye; Lee, Kuang Wu; Lin, Ming Ju

    2018-01-01

    The purpose of the study was to examine the acute effects of different dynamic exercise interventions on hamstring muscle performance. Thirty-six young men with poor hamstring flexibility were randomly assigned to three intervention groups: jogging combined with dynamic open kinetic chain stretching (DS), jogging combined with dynamic closed kinetic chain stretching (lunge with eccentric hamstring windmills, LEC), and jogging only (CON) groups. Hamstring flexibility, muscle stiffness (area under the curve, AUC), joint position sense (JPS), maximal eccentric strength (ECC), and angle of peak torque (APT) were recorded before and immediately after the exercise interventions. The results showed that the hamstring flexibility increased in DS (p < 0.001); muscle stiffness decreased in DS and was lower than jogging (p < 0.001). Moreover, ECC increased in LEC and was higher than jogging and DS (p < 0.001). APT was different among 3 groups (p < 0.001). Decreased accuracy of JPS was found in DS and jogging (p < 0.001). In conclusion, the dynamic closed kinetic chain stretching (LEC) as compared to open kinetic chain stretching (DS) or jogging group, may be an effective technique to enhance muscle performance during the pre-competition warm-up routine. PMID:29390001

  15. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science.

    PubMed

    Papacosta, Elena; Nassis, George P

    2011-09-01

    This paper discusses the use of saliva analysis as a tool for monitoring steroid, peptide, and immune markers of sports training. Salivary gland physiology, regarding the regulation and stimulation of saliva secretion, as well as methodological issues including saliva collection, storage and analysis are addressed in this paper. The effects of exercise on saliva composition are then considered. Exercise elicits changes in salivary levels of steroid hormones, immunoglobulins, antimicrobial proteins and enzymes. Cortisol, testosterone and dehydroepiandrosterone can be assessed in saliva, providing a non-invasive option to assess the catabolic and anabolic effects of exercise. Validation studies using blood and salivary measures of steroid hormones are addressed in this paper. Effects of acute exercise and training on salivary immunoglobulins (SIgA, SIgM, SIgG) and salivary antimicrobial proteins, including α-amylase, lysozyme and lactoferrin, are also discussed. Analysis of cortisol and testosterone in saliva may help detect the onset of non-functional overreaching and subsequently may help to prevent the development of overtraining syndrome. Assessment of salivary immunoglobulins and antimicrobial proteins has been shown to successfully represent the effects of exercise on mucosal immunity. Increases in SIgA and antimicrobial proteins concentration and/or secretion rate are associated with acute exercise whereas conversely, decreases have been reported in athletes over a training season leaving the athlete susceptible for upper respiratory tract infections. The measurement of physiological biomarkers in whole saliva can provide a significant tool for assessing the immunological and endocrinological status associated with exercise and training. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Myocardial infarction is a frequent cause of exercise-related resuscitated out-of-hospital cardiac arrest in a general non-athletic population.

    PubMed

    Søholm, Helle; Kjaergaard, Jesper; Thomsen, Jakob Hartvig; Bro-Jeppesen, John; Lippert, Freddy K; Køber, Lars; Wanscher, Michael; Hassager, Christian

    2014-11-01

    Performing exercise is shown to prevent cardiovascular disease, but the risk of an out-of-hospital cardiac arrest (OHCA) is temporarily increased during strenuous activity. We examined the etiology and outcome after successfully resuscitated OHCA during exercise in a general non-athletic population. Consecutive patients with OHCA were admitted with return of spontaneous circulation (ROSC) or on-going resuscitation at hospital arrival (2002-2011). Patient charts were reviewed for post-resuscitation data. Exercise was defined as moderate/vigorous physical activity. A total of 1393 OHCA-patients were included with 91(7%) arrests occurring during exercise. Exercise-related OHCA-patients were younger (60 ± 13 vs. 65 ± 15, p<0.001) and predominantly male (96% vs. 69%, p<0.001). The arrest was more frequently witnessed (94% vs. 86%, p=0.02), bystander CPR was more often performed (88% vs. 54%, p<0.001), time to ROSC was shorter (12 min (IQR: 5-19) vs. 15 (9-22), p=0.007) and the primary rhythm was more frequently shock-able (91% vs. 49%, p<0.001) compared to non-exercise patients. Cardiac etiology was the predominant cause of OHCA in both exercise and non-exercise patients (97% vs. 80%, p<0.001) and acute coronary syndrome was more frequent among exercise patients (59% vs. 38%, p<0.001). One-year mortality was 25% vs. 65% (p<0.001), and exercise was even after adjustment associated with a significantly lower mortality (HR=0.40 (95%CI: 0.23-0.72), p=0.002). OHCA occurring during exercise was associated with a significantly lower mortality in successfully resuscitated patients even after adjusting for confounding factors. Acute coronary syndrome was more common among exercise-related cardiac arrest patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Role of metabolic stress for enhancing muscle adaptations: Practical applications

    PubMed Central

    de Freitas, Marcelo Conrado; Gerosa-Neto, Jose; Zanchi, Nelo Eidy; Lira, Fabio Santos; Rossi, Fabrício Eduardo

    2017-01-01

    Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations. PMID:28706859

  18. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle.

    PubMed

    Ludlow, Andrew T; Gratidão, Laila; Ludlow, Lindsay W; Spangenburg, Espen E; Roth, Stephen M

    2017-04-01

    What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. Importance of exercise immunology in health promotion.

    PubMed

    Neto, J C Rosa; Lira, F S; de Mello, M T; Santos, Ronaldo Vagner T

    2011-11-01

    Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.

  20. Exercise dependence of N-terminal pro-brain natriuretic peptide in patients with precapillary pulmonary hypertension.

    PubMed

    Grachtrup, Sabine; Brügel, Mathias; Pankau, Hans; Halank, Michael; Wirtz, Hubert; Seyfarth, Hans-Jürgen

    2012-01-01

    N-terminal pro-brain natriuretic peptide (NT-proBNP) is secreted by cardiac ventricular myocytes upon pressure and volume overload and is a prognostic marker to monitor the severity of precapillary pulmonary hypertension and the extent of right heart failure. The impact of physical exercise on NT-proBNP levels in patients with left heart disease was demonstrated previously. No data regarding patients with isolated right heart failure and the influence of acute exercise on NT-proBNP serum levels exist. Twenty patients with precapillary pulmonary hypertension were examined. Hemodynamic parameters were measured during right heart catheterization. Serum NT-proBNP of patients was measured at rest, after a 6-min walking test, during ergospirometry and during recovery, all within 7 h. Significant differences in sequential NT-proBNP values, relative changes compared to values at rest and the correlation between NT-proBNP and obtained parameters were assessed. At rest, the mean serum level of NT-proBNP was 1,278 ± 998 pg/ml. The mean level of NT-proBNP at maximal exercise was increased (1,592 ± 1,219 pg/ml), whereas serum levels decreased slightly during recovery (1,518 ± 1,170 pg/ml). The relative increase of serum NT-proBNP during exercise correlated with pulmonary vascular resistance (r = 0.45; p = 0.026) and cardiac output (r = -0.5; p = 0.015). In this study, we demonstrated acute changes in NT-proBNP levels due to physical exercise in a small group of patients with precapillary pulmonary hypertension. Our results also confirm the predominant usefulness of NT-proBNP as an intraindividual parameter of right heart load. Copyright © 2012 S. Karger AG, Basel.

  1. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats.

    PubMed

    Galdino, Giovane; Romero, Thiago; Silva, José Felippe Pinho da; Aguiar, Daniele; Paula, Ana Maria de; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-09-01

    Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.

  2. Sex differences in creatine kinase after acute heavy resistance exercise on circulating granulocyte estradiol receptors.

    PubMed

    Wolf, Megan R; Fragala, Maren S; Volek, Jeff S; Denegar, Craig R; Anderson, Jeffrey M; Comstock, Brett A; Dunn-Lewis, Courtenay; Hooper, David R; Szivak, Tunde K; Luk, Hui-Ying; Maresh, Carl M; Häkkinen, Keijo; Kraemer, William J

    2012-09-01

    Previous research has shown reduced tissue disruption and inflammatory responses in women as compared to men following acute strenuous exercise. While the mechanism of this action is not known, estrogen may reduce the inflammatory response through its interaction with granulocytes. The purpose of this study was to determine if estrogen receptor β expression on granulocytes is related to sex differences in tissue disruption in response to an acute heavy resistance exercise protocol. Seven healthy, resistance-trained, eumenorrheic women (23 ± 3 years, 169 ± 9.1 cm, 66.4 ± 10.5 kg) and 8 healthy, resistance-trained men (25 ± 5 years, 178 ± 6.7 cm, 82.3 ± 9.33 kg) volunteered to participate in the study. Subjects performed an acute resistance exercise test consisting of six sets of five squats at 90% of the subject's one repetition maximum. Blood samples were obtained pre-, mid-, post-, and 1-, 6-, and 24-h postexercise. Blood samples were analyzed for 17-β-estradiol by ELISA, creatine kinase by colorimetric enzyme immunoassay, and estradiol receptors on circulating granulocytes through flow cytometry. Men had higher CK concentrations than women at baseline/control. Men had significantly higher CK concentrations at 24-h postexercise than women. No significant changes in estradiol β receptors were expressed on granulocytes after exercise or between sexes. While sex differences occur in CK activity in response to strenuous eccentric exercise, they may not be related to estradiol receptor β expression on granulocytes. Thus, although there are sex differences in CK expression following acute resistance exercise, the differences may not be attributable to estrogen receptor β expression on granulocytes.

  3. Exercise induced asthma and endogenous opioids.

    PubMed Central

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  4. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  5. Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise.

    PubMed

    Borges, Juliana Pereira; da Silva Verdoorn, Karine

    2017-01-01

    Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.

  6. Effects of acute exercise on postprandial triglyceride response after a high fat meal in overweight black and white adolescents

    PubMed Central

    Lee, SoJung; Burns, Stephen F.; White, David; Kuk, Jennifer L.; Arslanian, Silva

    2014-01-01

    Objective We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high fat meal in overweight black vs. white adolescents. Design and Subjects Twenty-one black and 17 white adolescents (12-18 yrs, BMI >85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60 min exercise (50% VO2peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 hrs postprandially. Results There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG-area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs. control trial. Including Tanner stage, gender, total fat (kg) and VAT as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC explaining 56% and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC independent of trial. Conclusion A single bout of aerobic exercise preceding a high fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity. PMID:23507997

  7. Effects of acute exercise on postprandial triglyceride response after a high-fat meal in overweight black and white adolescents.

    PubMed

    Lee, S; Burns, S F; White, D; Kuk, J L; Arslanian, S

    2013-07-01

    We examined the effects of acute exercise on postprandial triglyceride (TG) metabolism following a high-fat meal in overweight black vs white adolescents. Twenty-one black and 17 white adolescents (12-18 yrs, body mass index 85th percentile) were evaluated twice, during control versus exercise trials, 1-4 weeks apart, in a counterbalanced randomized design. In the control trial, participants performed no exercise on day 1. In the exercise trial, participants performed a single bout of 60-min exercise (50% VO2 peak) on a cycle ergometer on day 1. On day 2 of both trials, participants consumed a high-fat breakfast (70% calories from fat) and blood was sampled for TG concentration in the fasted state and for 6 h postprandially. There was a significant main effect of condition on postprandial peak TG concentration (P=0.01) and TG area under the curve (AUC) (P=0.003), suggesting that independent of race, peak TG and TG-AUC was lower in the exercise trial vs control trial. Including Tanner stage, gender, total fat (kg) and visceral adipose tissue (VAT) as independent variables, stepwise multiple regression analyses revealed that in whites, VAT was the strongest (P<0.05) predictor of postprandial TG-AUC, explaining 56 and 25% of the variances in TG-AUC in the control and exercise trials, respectively. In blacks, VAT was not associated with postprandial TG-AUC, independent of trial. A single bout of aerobic exercise preceding a high-fat meal is beneficial to reduce postprandial TG concentrations in overweight white adolescents to a greater extent than black adolescents, particularly those with increased visceral adiposity.

  8. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion.

    PubMed

    Limberg, Jacqueline K; Kellawan, J Mikhail; Harrell, John W; Johansson, Rebecca E; Eldridge, Marlowe W; Proctor, Lester T; Sebranek, Joshua J; Schrage, William G

    2014-09-15

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise - rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = -0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. Copyright © 2014 the American Physiological Society.

  9. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    PubMed Central

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise − rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = −0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. PMID:25038148

  10. Sport therapy for hypertension: why, how, and how much?

    PubMed

    Manfredini, Fabio; Malagoni, Anna M; Mandini, Simona; Boari, Benedetta; Felisatti, Michele; Zamboni, Paolo; Manfredini, Roberto

    2009-01-01

    Exercise may prevent or reduce the effects of metabolic and cardiovascular diseases, including arterial hypertension. Both acute and chronic exercise, alone or combined with lifestyle modifications, decrease blood pressure and avoid or reduce the need for pharmacologic therapy in patients with hypertension. The hypotensive effect of exercise is observed in a large percentage of subjects, with differences due to age, sex, race, health conditions, parental history, and genetic factors. Exercise regulates autonomic nervous system activity, increases shear stress, improves nitric oxide production in endothelial cells and its bioavailability for vascular smooth muscle, up-regulates antioxidant enzymes. Endurance training is primarily effective, and resistance training can be combined with it. Low-to-moderate intensity training in sedentary patients with hypertension is necessary, and tailored programs make exercise safe and effective also in special populations. Supervised or home-based exercise programs allow a nonpharmacological reduction of hypertension and reduce risk factors, with possible beneficial effects on cardiovascular morbidity.

  11. Excessive Exercise in Endurance Athletes: Is Atrial Fibrillation a Possible Consequence?

    PubMed

    Goodman, Jack M; Banks, Laura; Connelly, Kim A; Yan, Andrew; Backx, Peter H; Dorian, Paul

    2018-05-29

    Moderate physical activity levels are associated with increased longevity and lower risk of atrial fibrillation (AF). However, the relative risk of lone AF is 3-5 fold higher in intensive endurance-trained athletes compared to healthy adults. There is growing concern that 'excessive' endurance exercise may promote cardiac remodeling leading to long-term adverse consequences. The pathogenesis of exercise-induced AF is thought to arise from an interplay of multiple acute and chronic factors, including atrial enlargement, pro-fibrotic tendency, high vagal tone, and genotypic profile, which collectively promote adverse atrial remodeling. Clinical management of athletes with AF, while challenging, can be achieved using various strategies that may allow continued, safe exercise. Based on the overall risk-benefit evidence, it is premature to suggest 'excessive' exercise is unsafe or should be curtailed. Evidence-based assessment and treatment guidelines are required to ensure optimal and safe exercise among the growing number of endurance athletes with AF.

  12. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise

    PubMed Central

    Jankord, Ryan; McAllister, Richard M.; Ganjam, Venkataseshu K.; Laughlin, M. Harold

    2009-01-01

    Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NOx levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress. PMID:19144752

  13. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise.

    PubMed

    Jankord, Ryan; McAllister, Richard M; Ganjam, Venkataseshu K; Laughlin, M Harold

    2009-03-01

    Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.

  14. THE ACUTE EFFECTS OF CONCENTRIC VERSUS ECCENTRIC MUSCLE FATIGUE ON SHOULDER ACTIVE REPOSITIONING SENSE

    PubMed Central

    2017-01-01

    Purpose/Background Shoulder proprioception is essential in the activities of daily living as well as in sports. Acute muscle fatigue is believed to cause a deterioration of proprioception, increasing the risk of injury. The purpose of this study was to evaluate if fatigue of the shoulder external rotators during eccentric versus concentric activity affects shoulder joint proprioception as determined by active reproduction of position. Study design Quasi-experimental trial. Methods Twenty-two healthy subjects with no recent history of shoulder pathology were randomly allocated to either a concentric or an eccentric exercise group for fatiguing the shoulder external rotators. Proprioception was assessed before and after the fatiguing protocol using an isokinetic dynamometer, by measuring active reproduction of position at 30 ° of shoulder external rotation, reported as absolute angular error. The fatiguing protocol consisted of sets of fifteen consecutive external rotator muscle contractions in either the concentric or eccentric action. The subjects were exercised until there was a 30% decline from the peak torque of the subjects’ maximal voluntary contraction over three consecutive muscle contractions. Results A one-way analysis of variance test revealed no statistical difference in absolute angular error (p > 0.05) between concentric and eccentric groups. Moreover, no statistical difference (p > 0.05) was found in absolute angular error between pre- and post-fatigue in either group. Conclusions Eccentric exercise does not seem to acutely affect shoulder proprioception to a larger extent than concentric exercise. Level of evidence 2b PMID:28515976

  15. Effects of Nordic walking training on exercise capacity and fitness in men participating in early, short-term inpatient cardiac rehabilitation after an acute coronary syndrome--a controlled trial.

    PubMed

    Kocur, Piotr; Deskur-Smielecka, Ewa; Wilk, Malgorzata; Dylewicz, Piotr

    2009-11-01

    To investigate the effects of Nordic Walking training supplemental to a standard, early rehabilitation programme on exercise capacity and physical fitness in men after an acute coronary syndrome. A controlled trial. Cardiac rehabilitation service of a provincial hospital. Eighty men 2-3 weeks after an acute coronary syndrome, with good exercise tolerance. Three-week, inpatient cardiac rehabilitation programme (control group) supplemented with Nordic Walking (Nordic Walking group), or with traditional walking training (walking training group). Exercise capacity was assessed as peak energy cost (in metabolic equivalents) in symptom-limited treadmill exercise test, and physical fitness with the Fullerton Functional Fitness Test. Exercise capacity after the rehabilitation programme was higher in the Nordic Walking group than in the control group (10.8 +/- 1.8 versus 9.2 +/- 2.2 metabolic equivalents, P =0.025). The improvement in exercise capacity in the Nordic Walking group was higher than in the control group (1.8 +/- 1.5 versus 0.7 +/- 1.4 metabolic equivalents, P =0.002). In contrast to the control group, the results of all components of the Fullerton test improved in the Nordic Walking and walking training groups. After the programme, lower body endurance, and dynamic balance were significantly better in the Nordic Walking group in comparison with the walking training and control groups, and upper body endurance was significantly better in the Nordic Walking and walking training groups than in the control group. Nordic Walking may improve exercise capacity, lower body endurance and coordination of movements in patients with good exercise tolerance participating in early, short-term rehabilitation after an acute coronary syndrome.

  16. Favourable effects of exercise training on N-terminal pro-brain natriuretic peptide plasma levels in elderly patients after acute myocardial infarction.

    PubMed

    Giallauria, Francesco; Lucci, Rosa; De Lorenzo, Anna; D'Agostino, Mariantonietta; Del Forno, Domenico; Vigorito, Carlo

    2006-11-01

    regional or global impairment of left ventricular (LV) systolic or diastolic function leading to increased LV wall stress results in increased circulating levels of N-terminal pro-brain natriuretic peptide (NT-pro-BNP). this study aims at evaluating the effect of exercise training (ET) on NT-pro-BNP plasma levels in older patients recovering from acute myocardial infarction (AMI). prospective randomised study. Academic Medical Centre. forty older patients (33 males and 7 females) who experienced AMI. patients were randomised into two groups, each composed of 20 patients: Group A were enrolled in a 3-month exercise-based cardiac rehabilitation (CR) programme and Group B were discharged home with generic instructions to continue physical activity. NT-pro-BNP, cardiopulmonary and Doppler-echocardiographic parameters were measured at baseline and at 3-month follow-up. in Group A, ET reduced NT-pro-BNP levels (from 1446 +/- 475 to 435 +/- 251 pg/ml, P<0.001) and increased maximal exercise parameters; there was also an inverse correlation between changes in NT-pro-BNP levels and in VO(2peak) (r = -0.67, P<0.01), E-wave (r = -0.42, P<0.01) and E/A ratio (r = -0.60, P<0.01). In Group B, after 3 months, no changes were observed in NT-pro-BNP levels, exercise and echocardiographic parameters. LV volumes and left ventricular ejection fraction (LVEF) were unchanged after 3 months in both groups. three months ET in older patients after AMI was associated with a reduction in NT-pro-BNP levels and an overall improvement of exercise capacity, without negative LV remodelling and with improvement in early LV filling. Further investigation is required to evaluate whether in these patients the reduction of NT-pro-BNP levels at 3 months could be useful as a surrogate marker of favourable LV remodelling at a later follow-up.

  17. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.

    PubMed

    DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W

    2014-10-01

    The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.

  18. Absolute and relative reliability of acute effects of aerobic exercise on executive function in seniors.

    PubMed

    Donath, Lars; Ludyga, Sebastian; Hammes, Daniel; Rossmeissl, Anja; Andergassen, Nadin; Zahner, Lukas; Faude, Oliver

    2017-10-25

    Aging is accompanied by a decline of executive function. Aerobic exercise training induces moderate improvements of cognitive domains (i.e., attention, processing, executive function, memory) in seniors. Most conclusive data are obtained from studies with dementia or cognitive impairment. Confident detection of exercise training effects requires adequate between-day reliability and low day-to-day variability obtained from acute studies, respectively. These absolute and relative reliability measures have not yet been examined for a single aerobic training session in seniors. Twenty-two healthy and physically active seniors (age: 69 ± 3 y, BMI: 24.8 ± 2.2, VO 2peak : 32 ± 6 mL/kg/bodyweight) were enrolled in this randomized controlled cross-over study. A repeated between-day comparison [i.e., day 1 (habituation) vs. day 2 & day 2 vs. day 3] of executive function testing (Eriksen-Flanker-Test, Stroop-Color-Test, Digit-Span, Five-Point-Test) before and after aerobic cycling exercise at 70% of the heart rate reserve [0.7 × (HR max - HR rest )] was conducted. Reliability measures were calculated for pre, post and change scores. Large between-day differences between day 1 and 2 were found for reaction times (Flanker- and Stroop Color testing) and completed figures (Five-Point test) at pre and post testing (0.002 < p < 0.05, 0.16 < ɳ p 2  < 0.38). These differences notably declined when comparing day 2 and 3. Absolute between days variability (CoV) dropped from 10 to 5% when comparing day 2 vs. day 3 instead of day 1 vs. day 2. Also ICC ranges increased from day 1 vs. day 2 (0.65 < ICC < 0.87) to day 2 vs. day 3 (0.40 < ICC < 0.93). Interestingly, reliability measures for pre-post change scores were low (0.02 < ICC < 0.71). These data did not improve when comparing day 2 with day 3. During inhibition tests, reaction times showed excellent reliability values compared to the poor to fair reliability of accuracy. Notable habituation to the whole testing procedure should be considered as it increased the reliability of different executive function tests. Change scores of executive function after acute aerobic exercise cannot be detected reliably. Large intra- and inter-individual of responses to acute aerobic exercise in seniors can be presumed.

  19. Mental health consequences of exercise withdrawal: A systematic review.

    PubMed

    Weinstein, Ali A; Koehmstedt, Christine; Kop, Willem J

    2017-11-01

    A sedentary lifestyle has been associated with mental health disorders. Many medical conditions result in the cessation of exercise, which may increase the risk of developing mental health problems. The purpose of this article is to systematically review the literature examining the effects of exercise withdrawal on mental health. Literature was searched using PubMed, PsycINFO, and SPORTdiscus for studies that experimentally manipulated the withdrawal of exercise and included mental health as outcome measure. A total of 19 studies met inclusion criteria (total N=689 with 385 individuals participating in an exercise withdrawal condition). Exercise withdrawal consistently resulted in increases in depressive symptoms and anxiety. Other mental health outcomes were investigated infrequently. Severe mental health issues requiring clinical intervention after experimentally controlled exercise withdrawal was rare. Heterogeneity in methods and outcomes was observed, especially in terms of the duration of exercise withdrawal (range 1 to 42days, median=7days), with stronger effects if exercise withdrawal exceeded 2weeks. Experimentally controlled exercise withdrawal has adverse consequences for mental health. These observations in healthy individuals may help to understand the onset of mental health problems in response to acute and chronic medical conditions associated with reduced physical activity. Future research is needed to investigate potential mechanisms explaining the adverse mental health consequences of cessation of exercise that will provide new targets for clinical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of exercise intensity on circulating microparticles in men and women.

    PubMed

    Shill, Daniel D; Lansford, Kasey A; Hempel, Hannah K; Call, Jarrod A; Murrow, Jonathan R; Jenkins, Nathan T

    2018-05-01

    What is the central question of this study? What is the effect of exercise intensity on circulating microparticle populations in young, healthy men and women? What is the main finding and its importance? Acute, moderate-intensity continuous exercise and high-intensity interval exercise altered distinct microparticle populations during and after exercise in addition to a sex-specific response in CD62E + microparticles. The microparticles studied contribute to cardiovascular disease progression, regulate vascular function and facilitate new blood vessel formation. Thus, characterizing the impact of intensity on exercise-induced microparticle responses advances our understanding of potential mechanisms underlying the beneficial vascular adaptations to exercise. Circulating microparticles (MPs) are biological vectors of information within the cardiovascular system that elicit both deleterious and beneficial effects on the vasculature. Acute exercise has been shown to alter MP concentrations, probably through a shear stress-dependent mechanism, but evidence is limited. Therefore, we investigated the effect of exercise intensity on plasma levels of CD34 + and CD62E + MPs in young, healthy men and women. Blood samples were collected before, during and after two energy-matched bouts of acute treadmill exercise: interval exercise (10 × 1 min intervals at ∼95% of maximal oxygen uptake V̇O2max) and continuous exercise (65% V̇O2max). Continuous exercise, but not interval exercise, reduced CD62E + MP concentrations in men and women by 18% immediately after exercise (from 914.5 ± 589.6 to 754.4 ± 390.5 MPs μl -1 ; P < 0.05), suggesting that mechanisms underlying exercise-induced CD62E + MP dynamics are intensity dependent. Furthermore, continuous exercise reduced CD62E + MPs in women by 19% (from 1030.6 ± 688.1 to 829.9 ± 435.4 MPs μl -1 ; P < 0.05), but not in men. Although interval exercise did not alter CD62E + MPs per se, the concentrations after interval exercise were higher than those observed after continuous exercise (P < 0.05). Conversely, CD34 + MPs did not fluctuate in response to short-duration acute continuous or interval exercise in men or women. Our results suggest that exercise-induced MP alterations are intensity dependent and sex specific and impact MP populations differentially. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

Top