Sample records for acute hemodynamic response

  1. The mechanisms of intrarenal hemodynamic changes following acute arterial occlusion.

    DOT National Transportation Integrated Search

    1963-10-01

    The hemodynamic response of the kidney to acute arterial occlusion is poorly understood. The purpose of the present study was to determine intrarenal hemodynamic changes in intact and isolated kidneys following arterial occlusion. : The relative role...

  2. The reliability of the clinical examination in predicting hemodynamic status in acute febrile illness in a tropical, resource-limited setting.

    PubMed

    Moek, Felix; Poe, Poe; Charunwatthana, Prakaykaew; Pan-Ngum, Wirichada; Wattanagoon, Yupaporn; Chierakul, Wirongrong

    2018-05-19

    The clinical examination alone is widely considered unreliable when assessing fluid responsiveness in critically ill patients. Little evidence exists on the performance of the clinical examination to predict other hemodynamic derangements or more complex hemodynamic states. Patients with acute febrile illness were assessed on admission, both clinically and per non-invasive hemodynamic measurement. Correlations between clinical signs and hemodynamics patterns were analyzed, and the predictive capacity of the clinical signs was examined. Seventy-one patients were included; the most common diagnoses were bacterial sepsis, scrub typhus and dengue infection. Correlations between clinical signs and hemodynamic parameters were only statistically significant for Cardiac Index (r=0.75, p-value <0.01), Systemic Vascular Resistance Index (r=0.79, p-value <0.01) and flow time corrected (r=0.44, p-value 0.03). When assessing the predictive accuracy of clinical signs, the model identified only 62% of hemodynamic states correctly, even less if there was more than one hemodynamic abnormality. The clinical examination is not reliable to assess a patient's hemodynamic status in acute febrile illness. Fluid responsiveness, cardiodepression and more complex hemodynamic states are particularly easily missed.

  3. Echocardiographic parameters predicting acute hemodynamically significant mitral regurgitation during transfemoral transcatheter aortic valve replacement.

    PubMed

    Ito, Asahiro; Iwata, Shinichi; Mizutani, Kazuki; Nonin, Shinichi; Nishimura, Shinsuke; Takahashi, Yosuke; Yamada, Tokuhiro; Murakami, Takashi; Shibata, Toshihiko; Yoshiyama, Minoru

    2018-03-01

    Alteration in mitral valve morphology resulting from retrograde stiff wire entanglement sometimes causes hemodynamically significant acute mitral regurgitation (MR) during transfemoral transcatheter aortic valve replacement (TAVR). Little is known about the echocardiographic parameters related to hemodynamically significant acute MR. This study population consisted of 64 consecutive patients who underwent transfemoral TAVR. We defined hemodynamically significant acute MR as changes in the severity of MR with persistent hypotension (systolic blood pressure < 80-90 mm Hg or mean arterial pressure 30 mm Hg lower than baseline). Hemodynamically significant acute MR occurred in 5 cases (7.8%). Smaller left ventricular end-systolic diameter (LVDs), larger ratios of the coiled section of stiff wire tip to LVDs (wire-width/LVDs), and higher Wilkins score were significantly associated with hemodynamically significant acute MR (P < .05), whereas the parameters of functional MR (annular area, anterior-posterior diameter, tenting area, and coaptation length) were not. Moreover, when patients were divided into 4 groups according to wire-width/LVDs and Wilkins score, the group with the larger wire-width/LVDs and higher Wilkins score improved prediction rates (P < .05). Small left ventricle or wire oversizing and calcific mitral apparatus were predictive of hemodynamically significant acute MR. These findings are important for risk stratification, and careful monitoring using intraoperative transesophageal echocardiography may improve the safety in this population. © 2017, Wiley Periodicals, Inc.

  4. Acute systemic and renal hemodynamic effects of meglumine/sodium diatrizoate 76% and iopamidol in euvolemic and dehydrated dogs.

    PubMed

    Katzberg, R W; Morris, T W; Lasser, E C; DiMarco, P L; Merguerian, P A; Ventura, J A; Pabico, R C; McKenna, B A

    1986-10-01

    We examined the acute systemic and renal hemodynamic effects of intravenous meglumine/sodium diatrizoate-76% and iopamidol in euvolemic and dehydrated dogs. The physiologic responses were compared with acute changes in the level of an endogenous heparin-like material (EHM). One of eight dehydrated dogs receiving diatrizoate (2 ml/kg) had an immediate vomiting reflex associated with a very significant decline in all measured renal hemodynamic parameters; none of eight dehydrated dogs receiving iopamidol experienced a similar reaction. EHM levels did not correspond to the magnitude of the physiologic responses following either iopamidol or diatrizoate. Significant differences between iopamidol and diatrizoate were noted when comparing the magnitude of the decrease in systemic pressure (- delta 3.8 +/- 3.02, iopamidol, n = 8; vs. - delta 19.4 +/- 7.3 mm Hg, diatrizoate, n = 8; P less than .03), increased renal plasma flow (+ delta 6.2 +/- 4.9, iopamidol, n = 8; vs. + delta 33.7 +/- 8.0 ml/min, diatrizoate, n = 8; P less than .05), and decreased filtration fraction (- delta 0.09 +/- 0.01, iopamidol, n = 8; vs. - delta 0.14 +/- 0.02, diatrizoate, n = 8; P less than .03). There was no significant difference in the decrease in glomerular filtration rate (- delta 7.4 +/- 1.0, iopamidol, n = 8; vs. - delta 9.3 +/- 1.3, diatrizoate, n = 8; P greater than .05), since the marked drop in filtration fraction occurring with diatrizoate was counterbalanced by the marked increase in renal plasma flow. Acute systemic and renal hemodynamic effects are significantly lessened when comparing iopamidol with diatrizoate.

  5. Right ventricular dysfunction as an echocardiographic prognostic factor in hemodynamically stable patients with acute pulmonary embolism: a meta-analysis.

    PubMed

    Cho, Jae Hyung; Kutti Sridharan, Gurusaravanan; Kim, Seon Ha; Kaw, Roop; Abburi, Triveni; Irfan, Affan; Kocheril, Abraham G

    2014-05-06

    We investigated whether right ventricular dysfunction (RVD) as assessed by echocardiogram can be used as a prognostic factor in hemodynamically stable patients with acute pulmonary embolism (PE). Short-term mortality has been investigated only in small studies and the results have been controversial. A PubMed search was conducted using two keywords, "pulmonary embolism" and "echocardiogram", for articles published between January 1st 1998 and December 31st 2011. Out of 991 articles, after careful review, we found 12 articles that investigated the implications of RVD as assessed by echocardiogram in predicting short-term mortality for hemodynamically stable patients with acute PE. We conducted a meta-analysis of these data to identify whether the presence of RVD increased short-term mortality. Among 3283 hemodynamically stable patients with acute PE, 1223 patients (37.3%) had RVD, as assessed by echocardiogram, while 2060 patients (62.7%) had normal right ventricular function. Short-term mortality was reported in 167 (13.7%) out of 1223 patients with RVD and in 134 (6.5%) out of 2060 patients without RVD. Hemodynamically stable patients with acute PE who had RVD as assessed by echocardiogram had a 2.29-fold increase in short-term mortality (odds ratio 2.29, 95% confidence interval 1.61-3.26) compared with patients without RVD. In hemodynamically stable patients with acute PE, RVD as assessed by echocardiogram increases short-term mortality by 2.29 times. Consideration should be given to obtaining echocardiogram to identify high-risk patients even if they are hemodynamically stable.

  6. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses.

  7. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes.

    PubMed

    Nelson, Emily S; Mulugeta, Lealem; Feola, Andrew; Raykin, Julia; Myers, Jerry G; Samuels, Brian C; Ethier, C Ross

    2017-08-01

    Exposure to microgravity causes a bulk fluid shift toward the head, with concomitant changes in blood volume/pressure, and intraocular pressure (IOP). These and other factors, such as intracranial pressure (ICP) changes, are suspected to be involved in the degradation of visual function and ocular anatomical changes exhibited by some astronauts. This is a significant health concern. Here, we describe a lumped-parameter numerical model to simulate volume/pressure alterations in the eye during gravitational changes. The model includes the effects of blood and aqueous humor dynamics, ICP, and IOP-dependent ocular compliance. It is formulated as a series of coupled differential equations and was validated against four existing data sets on parabolic flight, body inversion, and head-down tilt (HDT). The model accurately predicted acute IOP changes in parabolic flight and HDT, and was satisfactory for the more extreme case of inversion. The short-term response to the changing gravitational field was dominated by ocular blood pressures and compliance, while longer-term responses were more dependent on aqueous humor dynamics. ICP had a negligible effect on acute IOP changes. This relatively simple numerical model shows promising predictive capability. To extend the model to more chronic conditions, additional data on longer-term autoregulation of blood and aqueous humor dynamics are needed. NEW & NOTEWORTHY A significant percentage of astronauts present anatomical changes in the posterior eye tissues after spaceflight. Hypothesized increases in ocular blood volume and intracranial pressure (ICP) in space have been considered to be likely factors. In this work, we provide a novel numerical model of the eye that incorporates ocular hemodynamics, gravitational forces, and ICP changes. We find that changes in ocular hemodynamics govern the response of intraocular pressure during acute gravitational change. Copyright © 2017 the American Physiological Society.

  8. White-collar workers' hemodynamic responses during working hours.

    PubMed

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori

    2017-08-08

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers' hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers.

  9. White-collar workers’ hemodynamic responses during working hours

    PubMed Central

    LIU, Xinxin; IWAKIRI, Kazuyuki; SOTOYAMA, Midori

    2017-01-01

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers’ hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers. PMID:28428502

  10. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  11. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  12. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes.

    PubMed

    Dias, Carlos A; Neto-Neves, Evandro M; Montenegro, Marcelo F; Tanus-Santos, Jose E

    2012-02-01

    The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 ± 2 mmHg and 375 ± 20 dyn s cm⁻⁵ m⁻², respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.

  13. Evolution of Acute Kidney Injury and Its Association With Systemic Hemodynamics in Children With Fluid-Refractory Septic Shock.

    PubMed

    Deep, Akash; Sagar, Hiremath; Goonasekera, Chulananda; Karthikeyan, Palaniswamy; Brierley, Joe; Douiri, Abdel

    2018-07-01

    There are no studies in pediatrics evaluating the progression of acute kidney injury in septic shock. We investigated the evolution of sepsis-associated acute kidney injury and its association with systemic hemodynamics in children with fluid-refractory septic shock. Prospective cohort study. PICU of a tertiary care hospital. All patients with fluid-refractory septic shock (n = 61) between September 2010 and February 2014. Hemodynamic variables using noninvasive ultrasound cardiac output monitor were measured at admission and 6 hourly thereafter till 48 hours. We used the Kidney Disease: Improving Global Outcomes criteria to define and stage acute kidney injury. Associations between various hemodynamic variables and development of acute kidney injury were evaluated. Severe acute kidney injury was defined as stage 2 or 3 acute kidney injury and was compared with no acute kidney injury or stage 1 acute kidney injury. Severe acute kidney injury developed in 29.5% (n = 18) of the 61 children with fluid-refractory septic shock, whereas 43 patients (70.49%) had either no or stage 1 acute kidney injury. Most patients who developed acute kidney injury did so within the first 48 hours of PICU admission. Severe acute kidney injury conferred a three-fold increased risk of death by day 28 (hazard ratio, 3.23; 95% CI, 1.52-6.67; p = 0.002), longer ICU stay, and increased duration of mechanical ventilation. Central venous pressure at presentation was higher in severe acute kidney injury by 5 cm H2O. Highest lactate in the first 24 hours of PICU admission, low diastolic blood pressure, low systemic vascular resistance index at admission were associated with severe acute kidney injury. This model reliably predicted stage 2/3 acute kidney injury by day 3 with area under the curve equals to 94%; 95% CI, 88.3-99.99. None of the other hemodynamic variables showed any association with severe acute kidney injury. Manifestations of sepsis-associated acute kidney injury often occur

  14. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors.

    PubMed

    Ohlsson, A; Steinhaus, D; Kjellström, B; Ryden, L; Bennett, T

    2003-06-01

    Exercise testing is commonly used in patients with congestive heart failure for diagnostic and prognostic purposes. Such testing may be even more valuable if invasive hemodynamics are acquired. However, this will make the test more complex and expensive and only provides information from isolated moments. We studied serial exercise tests in heart failure patients with implanted hemodynamic monitors allowing recording of central hemodynamics. Twenty-one NYHA Class II-III heart failure patients underwent maximal exercise tests and submaximal bike or 6-min hall walk tests to quantify their hemodynamic responses and to study the feasibility of conducting exercise tests in patients with such devices. Patients were followed for 2-3 years with serial exercise tests. During maximal tests (n=70), heart rate increased by 52+/-19 bpm while S(v)O(2) decreased by 35+/-10% saturation units. RV systolic and diastolic pressure increased 29+/-11 and 11+/-6 mmHg, respectively, while pulmonary artery diastolic pressure increased 21+/-8 mmHg. Submaximal bike (n=196) and hall walk tests (n=172) resulted in S(v)O(2) changes of 80 and 91% of the maximal tests, while RV pressures ranged from 72 to 79% of maximal responses. An added potential value of implantable hemodynamic monitors in heart failure patients may be to quantitatively determine the true hemodynamic profile during standard non-invasive clinical exercise tests and to compare that to hemodynamic effects of regular exercise during daily living. It would be of interest to study whether such information could improve the ability to predict changes in a patient's clinical condition and to improve tailoring patient management.

  15. Hemodynamic and symptomatic effects of acute interventions on tilt in patients with postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Gordon, V. M.; Opfer-Gehrking, T. L.; Novak, V.; Low, P. A.

    2000-01-01

    A variety of approaches have been used to alleviate symptoms in postural tachycardia syndrome (POTS). Drugs reported to be of benefit include midodrine, propranolol, clonidine, and phenobarbital. Other measures used include volume expansion and physical countermaneuvers. These treatments may influence pathophysiologic mechanisms of POTS such as alpha-receptor dysfunction, beta-receptor supersensitivity, venous pooling, and brainstem center dysfunction. The authors prospectively studied hemodynamic indices and symptom scores in patients with POTS who were acutely treated with a variety of interventions. Twenty-one subjects who met the criteria for POTS were studied (20 women, 1 man; mean age, 28.7 +/- 6.8 y; age range, 14-39 y). Patients were studied with a 5-minute head-up tilt protocol, ECG monitoring, and noninvasive beat-to-beat blood pressure monitoring, all before and after the administration of an intervention (intravenous saline, midodrine, propranolol, clonidine, or phenobarbital). The hemodynamic indices studied were heart rate (ECG) and systolic, mean, and diastolic blood pressure. Patients used a balanced verbal scale to record any change in their symptoms between the tilts. Symptom scores improved significantly after the patients received midodrine and saline. Midodrine and propranolol reduced the resting heart rate response to tilt (p <0.005) and the immediate and 5-minute heart rate responses to tilt (p <0.002). Clonidine accentuated the immediate decrease in blood pressure on tilt up (p <0.05). It was concluded that midodrine and intravenous saline are effective in decreasing symptoms on tilt in patients with POTS when given acutely. Effects of treatments on heart rate and blood pressure responses generally reflected the known pharmacologic mechanisms of the agents.

  16. Neural and Hemodynamic Responses Elicited by Forelimb- and Photo-stimulation in Channelrhodopsin-2 Mice: Insights into the Hemodynamic Point Spread Function

    PubMed Central

    Vazquez, Alberto L.; Fukuda, Mitsuhiro; Crowley, Justin C.; Kim, Seong-Gi

    2014-01-01

    Hemodynamic responses are commonly used to map brain activity; however, their spatial limits have remained unclear because of the lack of a well-defined and malleable spatial stimulus. To examine the properties of neural activity and hemodynamic responses, multiunit activity, local field potential, cerebral blood volume (CBV)-sensitive optical imaging, and laser Doppler flowmetry were measured from the somatosensory cortex of transgenic mice expressing Channelrhodopsin-2 in cortex Layer 5 pyramidal neurons. The magnitude and extent of neural and hemodynamic responses were modulated using different photo-stimulation parameters and compared with those induced by somatosensory stimulation. Photo-stimulation-evoked spiking activity across cortical layers was similar to forelimb stimulation, although their activity originated in different layers. Hemodynamic responses induced by forelimb- and photo-stimulation were similar in magnitude and shape, although the former were slightly larger in amplitude and wider in extent. Altogether, the neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated. Hemodynamic point spread functions were estimated from the photo-stimulation data and its full-width at half-maximum ranged between 103 and 175 µm. Therefore, submillimeter functional structures separated by a few hundred micrometers may be resolved using hemodynamic methods, such as optical imaging and functional magnetic resonance imaging. PMID:23761666

  17. Xenon/remifentanil anesthesia protects against adverse effects of losartan on hemodynamic challenges induced by anesthesia and acute blood loss.

    PubMed

    Francis, Roland C E; Philippi-Höhne, Claudia; Klein, Adrian; Pickerodt, Philipp A; Reyle-Hahn, Matthias S; Boemke, Willehad

    2010-12-01

    The authors aimed to test the hypothesis that xenon anesthesia limits adverse hypotensive effects of losartan during acute hemorrhage. In six conscious unsedated Beagle dogs, the systemic and pulmonary circulation were monitored invasively, and two subsequent 60-min hypotensive challenges were performed by (a) induction (propofol) and maintenance of anesthesia with isoflurane/remifentanil or xenon/remifentanil and by (b) subsequent hemorrhage (20 mL kg⁻¹ within 5 min) from a central vein. The same amount of blood was retransfused 1 h after hemorrhage. Experiments were performed with or without acute angiotensin II receptor subtype 1 blockade by i.v. losartan (100 μg·kg⁻¹·min⁻¹) starting 45 min before induction of anesthesia. Four experiments were performed in each individual dog. Xenon/remifentanil anesthesia provided higher baseline mean arterial blood pressure (85 ± 6 mmHg) than isoflurane/remifentanil anesthesia (67 ± 3 mmHg). In losartan-treated animals, isoflurane/remifentanil caused significant hypotension (42 ± 4 mmHg for isoflurane/remifentanil vs. 71 ± 6 mmHg for xenon/remifentanil). Independent of losartan, hemorrhage did not induce any further reduction of mean arterial blood pressure or cardiac output in either group. Spontaneous hemodynamic recovery was observed in all groups before retransfusion was started. Losartan did not alter the adrenaline, noradrenaline, and vasopressin response to acute hemorrhage. Losartan potentiates hypotension induced by isoflurane/remifentanil anesthesia but does not affect the hemodynamic stability during xenon/remifentanil anesthesia. Losartan does not deteriorate the hemodynamic adaptation to hemorrhage of 20 mL kg⁻¹ during xenon/remifentanil and isoflurane/remifentanil anesthesia. Therefore, xenon/remifentanil anesthesia protects against circulatory side effects of losartan pretreatment and thus may afford safer therapeutic use of losartan during acute hemorrhage.

  18. Acute Responses of a Physical Training Session with a Nintendo Wii on Hemodynamic Variables of an Individual with Multiple Sclerosis.

    PubMed

    Monteiro Junior, Renato Sobral; Dantas, Aretha; de Souza, Cíntia Pereira; da Silva, Elirez Bezerra

    2012-12-01

    Multiple sclerosis is a neurological illness that decreases motor functions. This disease can cause weakness of cardiorespiratory muscles and impaired functional capacity and quality of life. Therefore it requires preventive treatments. This study investigated the acute responses of a virtual physical training session with the Nintendo(®) (Kyoto, Japan) Wii™ on hemodynamic variables of an individual with multiple sclerosis (relapsing-remitting). A 34-year-old man with multiple sclerosis with previous experience in aerobic, strength, and functional training (2 years) was tested. His Expanded Disability Status Scale was 2.5. We compared the heart rate, blood pressure, and double product obtained at rest and during (heart rate) and after the Nintendo Wii games "Boxing" and "Sword Play." In rest, the variables were measured in the supine position. Our results showed positive hemodynamic alterations after execution of both games. The peak of heart rate was 121 beats per minute (65% of maximal heart rate) and 104 beats per minute (56% of maximal heart rate) for "Boxing" and "Sword Play," respectively. The training session with "Boxing" was able to stimulate the heart rate to achieve the recommended values for the maintenance of physical fitness in accordance with the American College of Sports Medicine guidelines. We conclude that an exercise training program with the Nintendo Wii may improve physical fitness in people with multiple sclerosis. Moreover, these activities could improve affective status and perhaps maintain the individual engaged at treatment program.

  19. Acute hemodynamic effects of adaptive servo-ventilation in patients with heart failure.

    PubMed

    Yamada, Shiro; Sakakibara, Mamoru; Yokota, Takashi; Kamiya, Kiwamu; Asakawa, Naoya; Iwano, Hiroyuki; Yamada, Satoshi; Oba, Koji; Tsutsui, Hiroyuki

    2013-01-01

    Adaptive servo-ventilation (ASV) improves cardiac function in patients with heart failure (HF). We compared the hemodynamics of control and HF patients, and identified the predictors for acute effects of ASV in HF. We performed baseline echocardiographic measurements and hemodynamic measurements at baseline and after 15 min of ASV during cardiac catheterization in 11 control and 34 HF patients. Heart rate and blood pressure did not change after ASV in either the control or HF group. Stroke volume index (SVI) decreased from 49.3±7.6 to 41.3±7.6 ml/m2 in controls (P<0.0001) but did not change in the HF patients (from 34.8±11.5 to 32.8±8.9 ml/m2, P=0.148). In the univariate analysis, pulmonary capillary wedge pressure (PCWP), mitral regurgitation (MR)/left atrial (LA) area, E/A, E/e', and the sphericity index defined by the ratio between the short-axis and long-axis dimensions of the left ventricle significantly correlated with % change of SVI from baseline during ASV. PCWP and MR/LA area were independent predictors by multivariate analysis. Moreover, responders (15 of 34 HF patients; 44%) categorized by an increase in SVI showed significantly higher PCWP, MR, and sphericity index. Left ventricular structure and MR, as well as PCWP, could predict acute favorable effects on hemodynamics by ASV therapy in HF patients. 

  20. Rescue pulmonary vein isolation for hemodynamically unstable atrial fibrillation storm in a patient with an acute extensive myocardial infarction.

    PubMed

    Morishima, Itsuro; Sone, Takahito; Tsuboi, Hideyuki; Mukawa, Hiroaki

    2012-11-26

    New-onset atrial fibrillation in patients hospitalized for an acute myocardial infarction often leads to hemodynamic deterioration and has serious adverse prognostic implications; mortality is particularly high in patients with congestive heart failure and/or a reduced left ventricular ejection fraction. The mechanism of atrial fibrillation in the context of an acute myocardial infarction has not been well characterized and an effective treatment other than optimal medical therapy and mechanical hemodynamic support are expected. A 71 year-old male with an acute myocardial infarction due to an occlusion of the left main coronary artery was treated with percutaneous coronary intervention. He had developed severe congestive heart failure with a left ventricular ejection fraction of 34%. The systemic circulation was maintained with an intraaortic balloon pump, continuous hemodiafiltration, and mechanical ventilation until atrial fibrillation occurred on day 3 which immediately led to cardiogenic shock. Because atrial fibrillation was refractory to intravenous amiodarone, beta-blockers, and a total of 15 electrical cardioversions, the patient underwent emergent radiofrequency catheter ablation on day 4. Soon after electrical cardioversion, ectopies from the right superior pulmonary vein triggered the initiation of atrial fibrillation. The right pulmonary veins were isolated during atrial fibrillation. Again, atrial fibrillation was electrically cardioverted, then, sinus rhythm was restored. Subsequently, the left pulmonary veins were isolated. The stabilization of the hemodynamics was successfully achieved with an increase in the blood pressure and urine volume. Hemodiafiltration and amiodarone were discontinued. The patient had been free from atrial fibrillation recurrence until he suddenly died due to ventricular fibrillation on day 9. To the best of our knowledge, this is the first report of pulmonary vein isolation for a rescue purpose applied in a patient with

  1. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals.

    PubMed

    Bunsawat, Kanokwan; Ranadive, Sushant M; Lane-Cordova, Abbi D; Yan, Huimin; Kappus, Rebecca M; Fernhall, Bo; Baynard, Tracy

    2017-04-01

    Central arterial stiffness is associated with incident hypertension and negative cardiovascular outcomes. Obese individuals have higher central blood pressure (BP) and central arterial stiffness than their normal-weight counterparts, but it is unclear whether obesity also affects hemodynamics and central arterial stiffness after maximal exercise. We evaluated central hemodynamics and arterial stiffness during recovery from acute maximal aerobic exercise in obese and normal-weight individuals. Forty-six normal-weight and twenty-one obese individuals underwent measurements of central BP and central arterial stiffness at rest and 15 and 30 min following acute maximal exercise. Central BP and normalized augmentation index (AIx@75) were derived from radial artery applanation tonometry, and central arterial stiffness was obtained via carotid-femoral pulse wave velocity (cPWV) and corrected for central mean arterial pressure (cPWV/cMAP). Central arterial stiffness increased in obese individuals but decreased in normal-weight individuals following acute maximal exercise, after adjusting for fitness. Obese individuals also exhibited an overall higher central BP ( P  <   0.05), with no exercise effect. The increase in heart rate was greater in obese versus normal-weight individuals following exercise ( P  <   0.05), but there was no group differences or exercise effect for AIx@75 In conclusion, obese (but not normal-weight) individuals increased central arterial stiffness following acute maximal exercise. An assessment of arterial stiffness response to acute exercise may serve as a useful detection tool for subclinical vascular dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Hemodynamic responses to acute and gradual renal artery stenosis in pigs.

    PubMed

    Rognant, Nicolas; Rouvière, Olivier; Janier, Marc; Lê, Quoc Hung; Barthez, Paul; Laville, Maurice; Juillard, Laurent

    2010-11-01

    Reduction of renal blood flow (RBF) due to a renal artery stenosis (RAS) can lead to renal ischemia and atrophy. However in pigs, there are no data describing the relationship between the degree of RAS, the reduction of RBF, and the increase of systemic plasma renin activity (PRA). Therefore, we conducted a study in order to measure the effect of acute and gradual RAS on RBF, mean arterial pressure (MAP), and systemic PRA in pigs. RAS was induced experimentally in six pigs using an occluder placed around the renal artery downstream of an ultrasound flow probe. The vascular occluder was inflated gradually to reduce RBF. At each inflation step, percentage of RAS was measured by digital subtraction angiography (DSA) with simultaneous measurements of RBF, MAP, and PRA. Data were normalized to baseline values obtained before RAS induction. Piecewise regression analysis was performed between percentage of RAS and relative RBF, MAP, and PRA, respectively. In all pigs, the relationship between the degree of RAS and RBF was similar. RBF decreased over a threshold of 42% of RAS, with a rapid drop in RBF when RAS reached 70%. PRA increased dramatically over a threshold of 58% of RAS (+1,300% before occlusion). MAP increased slightly (+15% before occlusion) without identifiable threshold. This study emphasizes that the relation between the degree of RAS and RBF and systemic PRA is not linear and that a high degree of RAS must be reached before the occurrence of significant hemodynamic and humoral effects.

  3. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  4. Acute effects of power and resistance exercises on hemodynamic measurements of older women

    PubMed Central

    Coelho-Júnior, Hélio José; Irigoyen, Maria-Cláudia; Aguiar, Samuel da Silva; Gonçalves, Ivan de Oliveira; Câmara, Niels Olsen Saraiva; Cenedeze, Marco Antonio; Asano, Ricardo Yukio; Rodrigues, Bruno; Uchida, Marco Carlos

    2017-01-01

    Purpose The purpose of this study was to compare the acute effects of resistance training (RT) and power training (PT) on the hemodynamic parameters and nitric oxide (NO) bioavailability of older women. Materials and methods A randomized experimental design was used in this study. Twenty-one older women (age: 67.1±4.6 years; body mass index: 28.03±4.9 kg/m2; systolic blood pressure: 135.1±21.1 mmHg) were recruited to participate in this study. Volunteers were randomly allocated into PT, RT, and control session (CS) groups. The PT and RT groups underwent a single session of physical exercise equalized by training volume, characterized by 3 sets of 8–10 repetitions in 8 different exercises. However, RT group performed exercise at a higher intensity (difficult) than PT (moderate) group. On the other hand, concentric contractions were faster in PT group than in RT group. Hemodynamic parameters and saliva samples (for NO quantification) were collected before and during an hour after exercise completion. Results Results demonstrated post-exercise hypotension during 35 minutes in the PT when compared to rest period (P=0.001). In turn, RT showed decreased heart rate and double product (P<0.001) during the whole evaluation period after exercise completion compared with the rest period. NO levels increased in the PT and RT during the whole evaluation period in relation to rest period. However, there were no differences between PT, RT, and CS regarding hemodynamic and NO evaluations. Conclusion Data indicate that an acute session of power and resistance exercise can be effective to cause beneficial changes on hemodynamic parameters and NO levels in older women. PMID:28744114

  5. The effects of a multiflavonoid supplement on vascular and hemodynamic parameters following acute exercise.

    PubMed

    Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.

  6. The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    PubMed Central

    Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012

  7. Hemodynamic responses to etomidate on induction of anesthesia in pediatric patients.

    PubMed

    Sarkar, Molly; Laussen, Peter C; Zurakowski, David; Shukla, Avinash; Kussman, Barry; Odegard, Kirsten C

    2005-09-01

    Etomidate is often used for inducing anesthesia in patients who have limited hemodynamic reserve. Using invasive hemodynamic monitoring, we studied the acute effects of a bolus of etomidate during induction of anesthesia in children. Twelve children undergoing cardiac catheterization were studied (mean age, 9.2 +/- 4.8 yr; mean weight, 33.4 +/- 15.4 kg); catheterization procedures included device closure of secundum atrial septal defects (n = 7) and radiofrequency catheter ablation procedures for supraventricular tachycardia (n = 5). Using IV sedation, a balloon-tipped pulmonary artery catheter was placed to measure intracardiac and pulmonary artery pressures and oxygen saturations. Baseline measurements were recorded and then repeated after a bolus of IV etomidate (0.3 mg/kg). For the entire group, no significant changes in right atrial, aortic, or pulmonary artery pressure, oxygen saturations, calculated Qp:Qs ratio or systemic or pulmonary vascular resistance were detected after the bolus dose of etomidate. The lack of clinically significant hemodynamic changes after etomidate administration supports the clinical impression that etomidate is safe in children. Further research is needed to determine the hemodynamic profile of etomidate in neonates and in pediatric patients with severe ventricular dysfunction and pulmonary hypertension.

  8. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    PubMed

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P < 0.001). In response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Emotional, neurohormonal, and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy.

    PubMed

    Smeijers, Loes; Szabó, Balázs M; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S; Bosch, Jos A; Kop, Willem J

    2015-06-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study examined whether patients with TTC show exaggerated emotional, neurohormonal, and hemodynamic responses to mental stress. Patients with TTC (n = 18; mean age 68.3 ± 11.7, 78% women) and 2 comparison groups (healthy controls, n = 19; mean age 60.0 ± 7.6, 68% women; chronic heart failure, n = 19; mean age 68.8 ± 10.1, 68% women) performed a structured mental stress task (anger recall and mental arithmetic) and low-grade exercise with repeated assessments of negative emotions, neurohormones (catecholamines: norepinephrine, epinephrine, dopamine, hypothalamic-pituitary-adrenal axis hormones: adrenocorticotropic hormone [ACTH], cortisol), echocardiography, blood pressure, and heart rate. TTC was associated with higher norepinephrine (520.7 ± 125.5 vs 407.9 ± 155.3 pg/ml, p = 0.021) and dopamine (16.2 ± 10.3 vs 10.3 ± 3.9 pg/ml, p = 0.027) levels during mental stress and relatively low emotional arousal (p <0.05) compared with healthy controls. During exercise, norepinephrine (511.3 ± 167.1 vs 394.4 ± 124.3 pg/ml, p = 0.037) and dopamine (17.3 ± 10.0 vs 10.8 ± 4.1 pg/ml, p = 0.017) levels were also significantly higher in patients with TTC compared with healthy controls. In conclusion, catecholamine levels during mental stress and exercise were elevated in TTC compared with healthy controls. No evidence was found for a dysregulated hypothalamic-pituitary-adrenal axis or hemodynamic responses. Patients with TTC showed blunted emotional arousal to mental stress. This study suggests that catecholamine hyper-reactivity and not emotional hyper-reactivity to stress is likely to play a role in myocardial vulnerability in TTC. Copyright © 2015 Elsevier Inc. All

  10. Body position does not affect the hemodynamic response to venous air embolism in dogs

    NASA Technical Reports Server (NTRS)

    Mehlhorn, U.; Burke, E. J.; Butler, B. D.; Davis, K. L.; Katz, J.; Melamed, E.; Morris, W. P.; Allen, S. J.

    1994-01-01

    Current therapy for massive venous air embolism (VAE) includes the use of the left lateral recumbent (LLR) position. This recommendation is based on animal studies, conducted 50 yr ago, which looked primarily at survival. Little is known, however, about the concomitant hemodynamic response after VAE in various body positions. The purpose of this study was to investigate the hemodynamic and cardiovascular changes in various body positions after VAE. Twenty-two mechanically ventilated supine mongrel dogs received a venous air infusion of 2.5 mL/kg at a rate of 5 mL/s. One minute after the infusion, 100% oxygen ventilation was commenced and the body position of the dogs was changed to either the LLR (n = 6), the LLR with the head 10 degrees down (LLR-10 degrees; n = 6) or the right lateral recumbent (RLR; n = 5) position. Five dogs were maintained in the supine position (SUP; n = 5). One dog died in every group except in the SUP group, where all the dogs recovered. There were no significant differences among the various body positions in terms of heart rate, mean arterial pressure, pulmonary artery pressure, central venous pressure, left ventricular end-diastolic pressure, or cardiac output. The acute hemodynamic changes occurring during the first 5-15 min after VAE recovered to 80% of control within 60 min. Our data suggest that body repositioning does not influence the cardiovascular response to VAE. Specifically, our data do not support the recommendation of repositioning into the LLR position for the treatment of VAE.

  11. Body position does not affect the hemodynamic response to venous air embolism in dogs

    NASA Technical Reports Server (NTRS)

    Mehlhorn, Uwe; Burke, Edward J.; Butler, Bruce D.; Davis, Karen L.; Katz, Jeffrey; Melamed, Evan; Morris, William P.; Allen, Steven J.

    1993-01-01

    Current therapy for massive venous air embolism (VAE) includes the use of the left lateral recumbent (LLR) position. This recommendation is based on animal studies, conducted 50 years ago, which looked primarily at survival. Little is known, however, about the concomitant hemodynamic response after VAE in various body positions. The purpose of this study was to investigate the hemodynamic and cardiovascular changes in various body positions after VAE. Twenty-two mechanically ventilated supine mongrel dogs received a venous air infusion of 2.5 mL/kg at a rate of 5 mL/s. One minute after the infusion, 100% oxygen ventilation was commenced and the body position of the dogs was changed to either the LLR (n = 6), the LLR with the head 10 deg down (LLR-10 deg; n = 6) or the right lateral recumbent (RLR; n = 5) position. Five dogs were maintained in the supine position (SUP; n = 5). One dog died in every group except in the SUP group, where all the dogs recovered. There were no significant differences among the various body positions in terms of heart rate, mean arterial pressure, pulmonary artery pressure, central venous pressure, left ventricular end-diastolic pressure, or cardiac output. The acute hemodynamic changes occurring during the first 5-15 min after VAE recovered to 80% of control within 60 min. Our data suggest that body repositioning does not influence the cardiovascular response to VAE. Specifically, our data do not support the recommendation of repositioning into the LLR position for the treatment of VAE.

  12. Sour taste increases swallowing and prolongs hemodynamic responses in the cortical swallowing network

    PubMed Central

    Kamarunas, Erin; Ludlow, Christy L.

    2016-01-01

    Sour stimuli have been shown to upregulate swallowing in patients and in healthy volunteers. However, such changes may be dependent on taste-induced increases in salivary flow. Other mechanisms include genetic taster status (Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Weiffenbach JM. Physiol Behav 82: 109–114, 2004) and differences between sour and other tastes. We investigated the effects of taste on swallowing frequency and cortical activation in the swallowing network and whether taster status affected responses. Three-milliliter boluses of sour, sour with slow infusion, sweet, water, and water with infusion were compared on swallowing frequency and hemodynamic responses. The sour conditions increased swallowing frequency, whereas sweet and water did not. Changes in cortical oxygenated hemoglobin (hemodynamic responses) measured by functional near-infrared spectroscopy were averaged over 30 trials for each condition per participant in the right and left motor cortex, S1 and supplementary motor area for 30 s following bolus onset. Motion artifact in the hemodynamic response occurred 0–2 s after bolus onset, when the majority of swallows occurred. The peak hemodynamic response 2–7 s after bolus onset did not differ by taste, hemisphere, or cortical location. The mean hemodynamic response 17–22 s after bolus onset was highest in the motor regions of both hemispheres, and greater in the sour and infusion condition than in the water condition. Genetic taster status did not alter changes in swallowing frequency or hemodynamic response. As sour taste significantly increased swallowing and cortical activation equally with and without slow infusion, increases in the cortical swallowing were due to sour taste. PMID:27489363

  13. Sex-specific effect of endothelin in the blood pressure response to acute angiotensin II in growth-restricted rats

    PubMed Central

    Intapad, Suttira; Ojeda, Norma B.; Varney, Elliott; Royals, Thomas P.; Alexander, Barbara T.

    2015-01-01

    The renal endothelin system contributes to sex differences in blood pressure with males demonstrating greater endothelin type-A receptor-mediated responses relative to females. Intrauterine growth restriction programs hypertension and enhanced renal sensitivity to acute angiotensin II in male growth-restricted rats. Endothelin is reported to work synergistically with angiotensin II. Thus, this study tested the hypothesis that endothelin augments the blood pressure response to acute angiotensin II in male growth-restricted rats. Systemic and renal hemodynamics were determined in response to acute angiotensin II (100 nanogram/kilogram/minute for 30 minutes) with and without the endothelin type-A receptor antagonist, ABT 627(10 nanogram/kilogram/minute for 30 minutes), in rats pretreated with enalapril (250 milligram/Liter for one week) to normalize the endogenous renin angiotensin system. Endothelin type-A receptor blockade reduced angiotensin II-mediated increases in blood pressure in male control and male growth-restricted rats. Endothelin type-A receptor blockade also abolished hyper-responsiveness to acute angiotensin II in male growth-restricted rats. Yet, blood pressure remained significantly elevated above baseline following endothelin type-A receptor blockade suggesting that factors in addition to endothelin contribute to the basic angiotensin II-induced pressor response in male rats. We also determined sex-specific effects of endothelin on acute angiotensin II-mediated hemodynamic responses. Endothelin type-A receptor blockade did not reduce acute angiotensin II-mediated increases in blood pressure in female control or growth-restricted rats, intact or ovariectomized. Thus, these data suggest that endothelin type-A receptor blockade contributes to hypersensitivity to acute angiotensin II in male growth-restricted rats and further supports the sex-specific effect of endothelin on blood pressure. PMID:26459423

  14. Cerebral Hemodynamics Patterns by Transcranial Doppler in Patients With Acute Liver Failure.

    PubMed

    Abdo, A; Pérez-Bernal, J; Hinojosa, R; Porras, F; Castellanos, R; Gómez, F; Gutiérrez, J; Castellanos, A; Leal, G; Espinosa, N; Gómez-Bravo, M

    2015-11-01

    About half of patients with acute liver failure (ALF) show clinical signs of cerebral edema and intracranial hypertension. Neuroimaging diagnostics and electroencephalography have poor correlation with intracranial pressure measurement. The objective of this study was to characterize the cerebral hemodynamics patterns with transcranial Doppler (TCD) sonography in patients with ALF. We studied 21 patients diagnosed with ALF, admitted to the intensive care unit (ICU) at the Centro de Investigaciones Médico Quirúrgicas of Cuba. All of these patients had a TCD performed on arrival at ICU, evaluating the following: systolic (SV), diastolic (DV), and medium (MV) flows velocities and pulsatility index (PI) in right middle cerebral artery (RMCA) via temporal windows. The sonographic patterns of cerebral hemodynamics were as follows: low-flow, 12 patients (57.1%); high resistance, 5 patients (23.8%); and hyperemic, 4 patients (19%). Patients who died while waiting had lower MV RMCA (56.1 vs 58.1 cm/s) and higher PI (1.71 vs 1.41) than patients who could undergo transplantation (P = .800 and P = .787, respectively). In patients diagnosed with ALF admitted to the ICU the predominating cerebral hemodynamic pattern was low-flow with resistance increase. The TCD was shown to be a useful tool in the initial evaluation for prognosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.J.; Adams, J.; Gu, X.A.

    1990-10-01

    We examined the local hemodynamic response of intestinal loops during acute necrotizing enterocolitis (NEC) in anesthetized rabbits. NEC was induced in ileal loops by transmural injection of a solution containing casein (10 mg/ml) and calcium gluconate (50 mg/ml) acidified to pH 4.0 with propionic or acetic acid. Control loops received casein only (pH 5.0). Mucosal damage was quantified by the blood-to-lumen movement of (51Cr)EDTA, fluid shifts into the lumen, and histology. Mean arterial pressure and loop blood flow were steady over the 3-hr period, loop fluid volume decreased, and there was no evidence of necrosis or epithelial damage. In loopsmore » receiving acidified casein and calcium gluconate, there was an immediate dramatic increase in loop blood flow that returned to baseline by 50 min. In addition, loop fluid volume was dramatically increased, necrosis was noted in the form of blunting and loss of villi, and sevenfold increase in (51Cr)EDTA permeability was evident. Administration of CV 1808 (30 mg/kg/hr), a selective adenosine2 agonist, which maintained and elevated loop blood flow throughout the 3 hr protocol, failed to alter the changes in loop fluid volume or prevent necrosis. Histamine levels in loop fluid levels were significantly elevated 20-30 min after NEC induction when compared to saline controls, indicating an early activation of mucosal defenses with this luminal insult. Thus, this model of NEC is characterized by a transient, acute hyperemia, increased intestinal permeability, and histamine release. As mucosal damage was independent of ischemia and could not be prevented by vasodilatory therapy, this model supports the clinical findings that NEC is correlated with luminal factors related to feeding and independent of cardiovascular stress.« less

  16. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    PubMed

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  17. Central and peripheral hemodynamic responses to passive limb movement: the role of arousal

    PubMed Central

    Venturelli, Massimo; Amann, M.; McDaniel, J.; Trinity, J. D.; Fjeldstad, A. S.

    2012-01-01

    The exact role of arousal in central and peripheral hemodynamic responses to passive limb movement in humans is unclear but has been proposed as a potential contributor. Thus, we used a human model with no lower limb afferent feedback to determine the role of arousal on the hemodynamic response to passive leg movement. In nine people with a spinal cord injury, we compared central and peripheral hemodynamic and ventilatory responses to one-leg passive knee extension with and without visual feedback (M+VF and M-VF, respectively) as well as in a third trial with no movement or visual feedback but the perception of movement (F). Ventilation (V̇e), heart rate, stroke volume, cardiac output, mean arterial pressure, and leg blood flow (LBF) were evaluated during the three protocols. V̇e increased rapidly from baseline in M+VF (55 ± 11%), M-VF (63 ± 13%), and F (48 ± 12%) trials. Central hemodynamics (heart rate, stroke volume, cardiac output, and mean arterial pressure) were unchanged in all trials. LBF increased from baseline by 126 ± 18 ml/min in the M+VF protocol and 109 ± 23 ml/min in the M-VF protocol but was unchanged in the F protocol. Therefore, with the use of model that is devoid of afferent feedback from the legs, the results of this study reveal that, although arousal is invoked by passive movement or the thought of passive movement, as evidenced by the increase in V̇e, there is no central or peripheral hemodynamic impact of this increased neural activity. Additionally, this study revealed that a central hemodynamic response is not an obligatory component of movement-induced LBF. PMID:22003056

  18. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  19. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation

    PubMed Central

    Dalton, Ryan L.; Sowinski, Ryan J.; Grubic, Tyler J.; Collins, Patrick B.; Coletta, Adriana M.; Reyes, Aimee G.; Sanchez, Brittany; Koozehchian, Majid; Rasmussen, Christopher; Greenwood, Mike; Murano, Peter S.; Kreider, Richard B.

    2017-01-01

    In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA), 3 g of creatine nitrate (CNL), and 6 g of creatine nitrate (CNH) for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM). No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM) bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg) but not PLA (0.7 [−1.6, 3.0] kg or CNL (2.0 [−0.9, 4.9] kg, CNH, p = 0.01). CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: −9.3 [−13.5, −5.0], CNL: −9.3 [−13.5, −5.1], CNH: −3.9 [−6.6, −1.2] kg, p = 0.07). After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [−15.7, 43.5] or CNL (14.6 [−0.5, 29.7]). Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (−13.3 [−31.9, 5.3], but did for PLA (−30.5 [−53.4, −7.7] and CNL (−29.0 [−49.5, −8.4]). CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [−0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [−0.2, 0.3], p = 0.56), greater leg press endurance prior to supplementation on day 5 (PLA: −0.2 [−1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [−0.5, 0.9], p = 0.25) and greater leg press endurance during recovery on day 5 (PLA: −0.03 [−1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [−0.4, 1.2], p

  20. Central circulatory hemodynamics as a function of gravitational stress

    NASA Technical Reports Server (NTRS)

    Latham, Rick D.; White, C. D.; Fanton, J. W.; Owens, R. W.; Barber, J. F.; Lewkowski, B. E.; Goff, O. T.

    1991-01-01

    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity.

  1. Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation

    PubMed Central

    Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu

    2012-01-01

    Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312

  2. Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection

    PubMed Central

    Joshi, Shailendra; Singh-Moon, Rajinder; Wang, Mei; Bruce, Jeffrey N.; Bigio, Irving J.; Mayevsky, Avraham

    2014-01-01

    Disruption of blood brain barrier (BBB) is used to enhance chemotherapeutic drug delivery. The purpose of this study was to understand the time course of hemodynamic and metabolic response to intraarterial (IA) mannitol infusions in order to optimize the delivery of drugs for treating brain tumors. Principal results We compared hemodynamic response, EEG changes, and mitochondrial function as judged by relative changes in tissue NADH concentrations, after intracarotid (IC) infusion of equal volumes of normal saline and mannitol in our rabbit IC drug delivery model. We observed significantly greater, though transient, hyperemic response to IC infusion of mannitol compared to normal saline. Infusion of mannitol also resulted in a greater increase in tissue NADH concentrations relative to the baseline. These hemodynamic, and metabolic changes returned to baseline within 5 min of mannitol injection. Conclusion Significant, though transient, changes in blood flow and brain metabolism occur with IA mannitol infusion. The observed transient hyperemia would suggest that intravenous (IV) chemotherapy should be administered either just before, or concurrent with IA mannitol injections. On the other hand, IA chemotherapy should be delayed until the peak hyperemic response has subsided. PMID:24440631

  3. Biochemical and hemodynamic changes in normal subjects during acute and rigorous bed rest and ambulation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Kakurin, Vassily J.; Afonin, Victor B.; Yarullin, Vladimir L.

    2002-06-01

    Rigorous bed rest (RBR) induces significant biochemical and circulatory changes. However, little is known about acute rigorous bed rest (ARBR). Measuring biochemical and circulatory variables during ARBR and RBR the aim of this study was to establish the significance of ARBR effect. Studies were done during 3 days of a pre-bed rest (BR) period and during 7 days of ARBR and RBR period. Thirty normal male individuals aged, 24.1±6.3 years were chosen as subjects. They were divided equally into three groups: 10 subjects placed under active control conditions served as unrestricted ambulatory control subjects (UACS), 10 subjects submitted to an acute rigorous bed rest served as acute rigorous bed rested subjects (ARBRS) and 10 subjects submitted to a rigorous bed rest served as rigorous bed rested subjects (RBRS). The UACS were maintained under an average running distance of 9.7 km day -1. For the ARBR effect simulation, ARBRS were submitted abruptly to BR for 7 days. They did not have any prior knowledge of the exact date and time when they would be asked to confine to RBR. For the RBR effect simulation, RBRS were subjected to BR for 7 days on a predetermined date and time known to them right away from the start of the study. Plasma renin activity (PRA), plasma cortisol (PC), plasma aldosterone (PA), plasma and urinary sodium (Na) and potassium (K) levels, heart rate (HR), cardiac output (CO), and arterial blood pressure (ABP) increased significantly, and urinary aldosterone (UA), stroke volume (SV) and plasma volume (PV) decreased significantly ( p<0.05) in ARBRS and RBRS as compared with their pre-BR values and the values in UACS. Electrolyte, hormonal and hemodynamic responses were significantly ( p<0.05) greater and occurred significantly faster ( p<0.05) during ARBR than RBR. Parameters change insignificantly ( p>0.05) in UACS compared with pre-BR control values. It was concluded that, the more abruptly muscular activity is restricted in experimental subjects

  4. Effect of Magnesium Sulfate and Clonidine in Attenuating Hemodynamic Response to Pneumoperitoneum in Laparoscopic Cholecystectomy

    PubMed Central

    Kamble, Shruthi P.; Bevinaguddaiah, Yatish; Nagaraja, Dinesh Chillkunda; Pujar, Vinayak S.; Anandaswamy, Tejesh C.

    2017-01-01

    Background: Pneumoperitoneum in laparoscopic procedures is associated with hemodynamic response, due to the release of catecholamines and vasopressin. Magnesium and clonidine have been used to attenuate such hemodynamic responses by inhibiting release of these mediators. We conducted this randomized, double-blinded study to assess which of the two attenuates hemodynamic response better. Materials and Methods: Ninety American Society of Anesthesiologists health status Classes I and II patients posted for elective laparoscopic cholecystectomy were randomized into three groups of thirty patients each. Group C received injection clonidine 1 μg/kg diluted in 10 mL normal saline over 10 min, prior to pneumoperitoneum. Group M received injection magnesium sulfate 50 mg/kg diluted in 10 mL normal saline over 10 min, prior to pneumoperitoneum. Group NS received 10 mL normal saline intravenously over 10 min, prior to pneumoperitoneum. Hemodynamic parameters were recorded before induction (baseline values), at the end of magnesium sulfate/clonidine/saline administration and before pneumoperitoneum (P0), 5 min (P5), 10 min (P10), 20 min (P20), 30 min (P30), and 40 min (P40) after pneumoperitoneum. Results: Systolic blood pressure, diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were all significantly higher in the normal saline group compared to magnesium and clonidine. On comparing patients in Group M and Group C, DBP, MAP, and HR were significantly lower in the magnesium group. Mean extubation time and time to response to verbal commands were significantly longer in the magnesium group. Conclusions: Both magnesium and clonidine attenuated the hemodynamic response to pneumoperitoneum. However, magnesium 50 mg/kg, attenuated hemodynamic response better than clonidine 1 μg/kg. PMID:28298759

  5. Usefulness and limitation of dobutamine stress echocardiography to predict acute response to cardiac resynchronization therapy.

    PubMed

    Sénéchal, Mario; Lancellotti, Patrizio; Garceau, Patrick; Champagne, Jean; Dubois, Michelle; Magne, Julien; Blier, Louis; Molin, Frank; Philippon, François; Dumesnil, Jean G; Pierard, Luc; O'Hara, Gilles

    2010-01-01

    It has been hypothesized that a long-term response to cardiac resynchronization therapy (CRT) could correlate with myocardial viability in patients with left ventricular (LV) dysfunction. Contractile reserve and viability in the region of the pacing lead have not been investigated in regard to acute response after CRT. Fifty-one consecutive patients with advanced heart failure, LV ejection fraction 120 ms, and intraventricular asynchronism >or= 50 ms were prospectively included. The week before CRT implantation, the presence of viability was evaluated using dobutamine stress echocardiography. Acute responders were defined as a >or=15% increase in LV stroke volume. The average of viable segments was 5.8 +/- 1.9 in responders and 3.9 +/- 3 in nonresponders (P = 0.03). Viability in the region of the pacing lead had an excellent sensitivity (96%), but a low specificity (56%) to predict acute response to CRT. Mitral regurgitation (MR) was reduced in 21 patients (84%) with acute response. The presence of MR was a poor predictor of response (sensibility 93% and specificity 17%). However, combining the presence of MR and viability in the region of the pacing lead yields a sensibility (89%) and a specificity (70%) to predict acute response to CRT. Myocardial viability is an important factor influencing acute hemodynamic response to CRT. In acute responders, significant MR reduction is frequent. The combined presence of MR and viability in the region of the pacing lead predicts acute response to CRT with the best accuracy.

  6. Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.

    PubMed

    Ahmad, Tariq; Desai, Nihar; Wilson, Francis; Schulte, Phillip; Dunning, Allison; Jacoby, Daniel; Allen, Larry; Fiuzat, Mona; Rogers, Joseph; Felker, G Michael; O'Connor, Christopher; Patel, Chetan B

    2016-01-01

    Classification of acute decompensated heart failure (ADHF) is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies. To derive cluster analysis-based groupings for patients hospitalized with ADHF, and compare their prognostic performance to hemodynamic classifications derived at the bedside. We performed a cluster analysis on baseline clinical variables and PAC measurements of 172 ADHF patients from the ESCAPE trial. Employing regression techniques, we examined associations between clusters and clinically determined hemodynamic profiles (warm/cold/wet/dry). We assessed association with clinical outcomes using Cox proportional hazards models. Likelihood ratio tests were used to compare the prognostic value of cluster data to that of hemodynamic data. We identified four advanced HF clusters: 1) male Caucasians with ischemic cardiomyopathy, multiple comorbidities, lowest B-type natriuretic peptide (BNP) levels; 2) females with non-ischemic cardiomyopathy, few comorbidities, most favorable hemodynamics; 3) young African American males with non-ischemic cardiomyopathy, most adverse hemodynamics, advanced disease; and 4) older Caucasians with ischemic cardiomyopathy, concomitant renal insufficiency, highest BNP levels. There was no association between clusters and bedside-derived hemodynamic profiles (p = 0.70). For all adverse clinical outcomes, Cluster 4 had the highest risk, and Cluster 2, the lowest. Compared to Cluster 4, Clusters 1-3 had 45-70% lower risk of all-cause mortality. Clusters were significantly associated with clinical outcomes, whereas hemodynamic profiles were not. By clustering patients with similar objective variables, we identified four clinically relevant phenotypes of ADHF patients, with no discernable relationship to hemodynamic profiles, but distinct associations with adverse outcomes. Our analysis suggests that ADHF classification using simultaneous

  7. Dual implantation of a radio-telemeter and vascular access port allows repeated hemodynamic and pharmacological measures in conscious lean and obese rats.

    PubMed

    Bussey, C T; Leeuw, A E de; Cook, R F; Ashley, Z; Schofield, J; Lamberts, R R

    2014-07-01

    Expansion of physiological knowledge increasingly requires examination of processes in the normal, conscious state. The current study describes a novel approach combining surgical implantation of radio-telemeters with vascular access ports (VAPs) to allow repeated hemodynamic and pharmacological measures in conscious rats. Dual implantation was conducted on 16-week-old male lean and obese Zucker rats. Continued viability one month after surgery was observed in 67% of lean and 44% of obese animals, giving an overall 54% completion rate. Over the five-week measurement period, reliable and reproducible basal mean arterial pressure and heart rate measures were observed. VAP patency and receptor-independent vascular reactivity were confirmed by consistent hemodynamic responses to sodium nitroprusside (6.25 µg/kg). Acutely, minimal hemodynamic responses to repeated bolus administration of 0.2 mL saline indicated no significant effect of increased blood volume or administration stress, making repeated acute measures viable. Similarly, repeated administration of the β-adrenoceptor agonist dobutamine (30 µg/kg) at 10 min intervals resulted in reproducible hemodynamic changes in both lean and obese animals. Therefore, our study demonstrates that this new approach is viable for the acute and chronic assessment of hemodynamic and pharmacological responses in both lean and obese conscious rats. This technique reduces the demand for animal numbers and allows hemodynamic measures with minimal disruption to animals' welfare, while providing reliable and reproducible results over several weeks. In conclusion, dual implantation of a radio-telemeter and VAP introduces a valuable technique for undertaking comprehensive studies involving repeated pharmacological tests in conscious animals to address important physiological questions. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    PubMed Central

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  9. Acute effect of cycling intervention on carotid arterial hemodynamics: basketball athletes versus sedentary controls

    PubMed Central

    2015-01-01

    Objective To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls. Methods Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group. Results In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention. Conclusion Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification. PMID:25602805

  10. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  11. Dynamic Magnetic Resonance Angiography Provides Collateral Circulation and Hemodynamic Information in Acute Ischemic Stroke.

    PubMed

    Hernández-Pérez, María; Puig, Josep; Blasco, Gerard; Pérez de la Ossa, Natalia; Dorado, Laura; Dávalos, Antoni; Munuera, Josep

    2016-02-01

    Contrary to usual static vascular imaging techniques, contrast-enhanced dynamic magnetic resonance angiography (dMRA) enables dynamic study of cerebral vessels. We evaluated dMRA ability to assess arterial occlusion, cerebral hemodynamics, and collateral circulation in acute ischemic stroke. Twenty-five acute ischemic stroke patients with proximal anterior circulation occlusion underwent dMRA on a 3T scanner within 12 hours of symptoms onset. Diffusion weighted imaging, Tmax6 s lesion volumes and hypoperfusion intensity ratio as volume of Tmax>6 s/volume of Tmax>10 s were measured. Site and grade of occlusion (Thrombolysis in Myocardial Infarction criteria) were evaluated on time-of-flight MRA and dMRA. Leptomeningeal collaterality (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology [ASITN/SIR] Scale) and asymmetries in venous clearance were assessed exclusively on dMRA. Collateral filling was dichotomized into incomplete (ASITN/SIR 0-2) or complete (ASITN/SIR 3-4). On dMRA, site of occlusion was M1 in 21 patients, tandem internal carotid artery/M1 in 2 and tandem internal carotid artery/terminal internal carotid artery in 2 patients. Three tandem occlusions were not detected on time-of-flight-MRA. All patients had Thrombolysis in Myocardial Infarction 0 to 1 on time-of-flight-MRA, but three of them had Thrombolysis in Myocardial Infarction 2 on dMRA. Complete collateral filling (n=12, 48%) was associated with smaller diffusion weighted imaging lesion volume (P=0.039), smaller hypoperfused volume (P=0.018), and lower hypoperfusion intensity ratio (P=0.006). Patients with symmetrical clearance of transverse sinuses (52%) were more likely to have complete collateral filling (P=0.015). As a fast, direct, feasible, noninvasive, and reliable method to assess site of occlusion, collateral circulation and hemodynamic alterations, dMRA provides profound insights in acute stroke. © 2015 American Heart Association, Inc.

  12. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function.

    PubMed

    Koenig, Steven C; Litwak, Kenneth N; Giridharan, Guruprasad A; Pantalos, George M; Dowling, Robert D; Prabhu, Sumanth D; Slaughter, Mark S; Sobieski, Michael A; Spence, Paul A

    2008-01-01

    The acute hemodynamic efficacy of an implantable counterpulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation.

  13. Hemodynamic changes as a diagnostic tool in acute heart failure--a pilot study.

    PubMed

    Engineer, Rakesh S; Benoit, Justin L; Hicks, Caitlin W; Kolattukudy, Sunny J; Burkhoff, Daniel; Peacock, W Frank

    2012-01-01

    To examine whether posturally induced changes in cardiac output differentiate patients presenting with dyspnea to the emergency department (ED) with acute heart failure (AHF) from other causes. This was an observational study of patients presenting to the ED with dyspnea. Exclusion criteria included ischemic chest pain, electrocardiographic changes diagnostic of acute myocardial infarction, pericardial effusion or chest wall deformities causing dyspnea, or heart transplant. Hemodynamic variables of cardiac index (CI), total peripheral resistance index, and thoracic fluid content (TFC) were determined in upright seated and supine positions 3 minutes apart using bioreactance technology (Cheetah Medical Inc, Portland, Ore). Acute heart failure was defined as either B-type natriuretic peptide 100 to 500 pg/mL and discharge diagnosis of AHF or a B-type natriuretic peptide greater than 500 pg/mL. Of 92 patients, 25 had AHF, 23 had asthma/chronic obstructive pulmonary disease (COPD), and 44 had dyspnea related to other conditions; 41 (44.1%) were male, 56 (60.2%) were African American, and the mean age was 58 ± 15.0 years. Mean baseline TFC was higher in AHF vs asthma/COPD (59.3 ± 26.0 vs 39.7 ± 14.8 1/kW, P = .003) and trended higher compared to other patients with dyspnea (49.2 ± 22.0, P = .10). Postural changes in mean CI were lower in AHF (-0.20 ± 0.84 L min(-1) m(-2)) vs asthma/COPD (1.20 ± 1.23 L min(-1) m(-2); P = .002) and other dyspnea patients (0.82 ± 0.91 L min(-1) m(-2); P = .007). Patients with AHF have greater TFC but lower CI responses to postural changes compared to patients with asthma and COPD. Knowledge of these changes may help rapidly differentiate AHF from asthma and COPD in the ED. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  15. Multivariate analysis of correlation between electrophysiological and hemodynamic responses during cognitive processing

    PubMed Central

    Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta

    2014-01-01

    Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260

  16. Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain.

    PubMed

    Vanhatalo, S; Tallgren, P; Becker, C; Holmes, M D; Miller, J W; Kaila, K; Voipio, J

    2003-09-01

    To study whether hemodynamic changes in human brain generate scalp-EEG responses. Direct current EEG (DC-EEG) was recorded from 12 subjects during 5 non-invasive manipulations that affect intracranial hemodynamics by different mechanisms: bilateral jugular vein compression (JVC), head-up tilt (HUT), head-down tilt (HDT), Valsalva maneuver (VM), and Mueller maneuver (MM). DC shifts were compared to changes in cerebral blood volume (CBV) measured by near-infrared spectroscopy (NIRS). DC shifts were observed during all manipulations with highest amplitudes (up to 250 microV) at the midline electrodes, and the most pronounced changes (up to 15 microV/cm) in the DC voltage gradient around vertex. In spite of inter-individual variation in both amplitude and polarity, the DC shifts were consistent and reproducible for each subject and they showed a clear temporal correlation with changes in CBV. Our results indicate that hemodynamic changes in human brain are associated with marked DC shifts that cannot be accounted for by intracortical neuronal or glial currents. Instead, the data are consistent with a non-neuronal generator mechanism that is associated with the blood-brain barrier. These findings have direct implications for mechanistic interpretation of slow EEG responses in various experimental paradigms.

  17. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  18. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    NASA Astrophysics Data System (ADS)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  19. Dried-bonito aroma components enhance salivary hemodynamic responses to broth tastes detected by near-infrared spectroscopy.

    PubMed

    Matsumoto, Tomona; Saito, Kana; Nakamura, Akio; Saito, Tsukasa; Nammoku, Takashi; Ishikawa, Masashi; Mori, Kensaku

    2012-01-25

    To elucidate the effects of aroma from dried bonito (katsuo-bushi) on broth tastes caused by the central integration of flavor, optical imaging of salivary hemodynamic responses was conducted using near-infrared spectroscopy (NIRS). A reconstituted dried bonito flavored broth produced a significantly larger hemodynamic response than the odorless broth taste solutions for 5 of the 10 panelists, who felt that the combination of the aroma with the tastes was congruent. In the remaining 5 panelists who felt the combination incongruent, the flavored broth did not cause the enhancement of response. Moreover, when the odor-active smoky parts were removed from the flavoring, the reconstituted flavoring did not enhance the response in the former five panelists. These results indicate that NIRS offers a sensitive method to detect the effect of specific congruent aroma components from dried-bonito broth on the taste-related salivary hemodynamic responses, dependent on the perceptual experience of the combination of aromas and tastes.

  20. Acute Hemodynamic Efficacy of a 32-ml Subcutaneous Counterpulsation Device in a Calf Model of Diminished Cardiac Function

    PubMed Central

    Koenig, Steven C.; Litwak, Kenneth N.; Giridharan, Guruprasad A.; Pantalos, George M.; Dowling, Robert D.; Prabhu, Sumanth D.; Slaughter, Mark S.; Sobieski, Michael A.; Spence, Paul A.

    2010-01-01

    The acute hemodynamic efficacy of an implantable counter-pulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  1. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls.

    PubMed

    Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Cotter, James D

    2017-03-01

    Passive heat induces beneficial perfusion profiles, provides substantive cardiovascular strain, and reduces blood pressure, thereby holding potential for healthy and cardiovascular disease populations. The aim of this study was to assess acute responses to passive heat via lower-limb, hot-water immersion in patients with peripheral arterial disease (PAD) and healthy, elderly controls. Eleven patients with PAD (age 71 ± 6 yr, 7 male, 4 female) and 10 controls (age 72 ± 7 yr, 8 male, 2 female) underwent hot-water immersion (30-min waist-level immersion in 42.1 ± 0.6°C water). Before, during, and following immersion, brachial and popliteal artery diameter, blood flow, and shear stress were assessed using duplex ultrasound. Lower-limb perfusion was measured also using venous occlusion plethysmography and near-infrared spectroscopy. During immersion, shear rate increased ( P < 0.0001) comparably between groups in the popliteal artery (controls: +183 ± 26%; PAD: +258 ± 54%) and brachial artery (controls: +117 ± 24%; PAD: +107 ± 32%). Lower-limb blood flow increased significantly in both groups, as measured from duplex ultrasound (>200%), plethysmography (>100%), and spectroscopy, while central and peripheral pulse-wave velocity decreased in both groups. Mean arterial blood pressure was reduced by 22 ± 9 mmHg (main effect P < 0.0001, interaction P = 0.60) during immersion, and remained 7 ± 7 mmHg lower 3 h afterward. In PAD, popliteal shear profiles and claudication both compared favorably with those measured immediately following symptom-limited walking. A 30-min hot-water immersion is a practical means of delivering heat therapy to PAD patients and healthy, elderly individuals to induce appreciable systemic (chronotropic and blood pressure lowering) and hemodynamic (upper and lower-limb perfusion and shear rate increases) responses. Copyright © 2017 the American Physiological Society.

  2. Hemodynamic response of children with attention-deficit and hyperactive disorder (ADHD) to emotional facial expressions.

    PubMed

    Ichikawa, Hiroko; Nakato, Emi; Kanazawa, So; Shimamura, Keiichi; Sakuta, Yuiko; Sakuta, Ryoichi; Yamaguchi, Masami K; Kakigi, Ryusuke

    2014-10-01

    Children with attention-deficit/hyperactivity disorder (ADHD) have difficulty recognizing facial expressions. They identify angry expressions less accurately than typically developing (TD) children, yet little is known about their atypical neural basis for the recognition of facial expressions. Here, we used near-infrared spectroscopy (NIRS) to examine the distinctive cerebral hemodynamics of ADHD and TD children while they viewed happy and angry expressions. We measured the hemodynamic responses of 13 ADHD boys and 13 TD boys to happy and angry expressions at their bilateral temporal areas, which are sensitive to face processing. The ADHD children showed an increased concentration of oxy-Hb for happy faces but not for angry faces, while TD children showed increased oxy-Hb for both faces. Moreover, the individual peak latency of hemodynamic response in the right temporal area showed significantly greater variance in the ADHD group than in the TD group. Such atypical brain activity observed in ADHD boys may relate to their preserved ability to recognize a happy expression and their difficulty recognizing an angry expression. We firstly demonstrated that NIRS can be used to detect atypical hemodynamic response to facial expressions in ADHD children. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Acute hemodynamic effects of right and left ventricular lead positions during the implantation of cardiac resynchronization therapy defibrillators.

    PubMed

    Stockinger, Jochem; Staier, Klaus; Schiebeling-Römer, Jochen; Keyl, Cornelius

    2011-11-01

    To evaluate the acute hemodynamic effects of different right (RV) and left ventricular (LV) pacing sites in patients undergoing the implantation of a cardiac resynchronization therapy defibrillator (CRT-D). Stroke volume index (SVI), assessed via pulse contour analysis, and dp/dt max, obtained in the abdominal aorta, were analyzed in 21 patients with New York Heart Association class III heart failure and left bundle branch block (mean ejection fraction of 24 ± 6%), scheduled for CRT-D implantation under general anesthesia. We compared the hemodynamic effects of RV apical (A), RV septal (B), and biventricular pacing using the worst (lowest SVI; C) and best (highest SVI; D) coronary sinus lead positions. Mean arterial pressure, SVI, and dp/dt max did not differ significantly between RV apical and septal pacing. Dp/dt max and SVI increased significantly during biventricular pacing (dp/dt max: B, 588 ± 160 mmHg/s; C, 651 ± 218 mmHg/s, P = 0.03 vs B; D, 690 ± 220 mmHg/s, P = 0.02 vs C; SVI: B, 33.6 ± 5.5 mL/m², C, 34.8 ± 6.1 mL/m², P = 0.08 vs B, D 36.0 ± 6.0 mL/m², P < 0.001 vs C). The best hemodynamic response was associated with lateral or inferior lead positions in 15 patients. Other LV lead positions were most effective in six patients. The optimal LV lead position varies significantly among patients and should be individually determined during CRT-D implantation. The impact of the RV stimulation site in patients with intraventricular conduction delay, undergoing CRT-D implantation, has to be investigated in further studies.

  4. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  5. Tenascin C protects aorta from acute dissection in mice

    PubMed Central

    Kimura, Taizo; Shiraishi, Kozoh; Furusho, Aya; Ito, Sohei; Hirakata, Saki; Nishida, Norifumi; Yoshimura, Koichi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Ikeda, Yasuhiro; Miyamoto, Takanobu; Ueno, Takafumi; Hamano, Kimikazu; Hiroe, Michiaki; Aonuma, Kazutaka; Matsuzaki, Masunori; Imaizumi, Tsutomu; Aoki, Hiroki

    2014-01-01

    Acute aortic dissection (AAD) is caused by the disruption of intimomedial layer of the aortic walls, which is immediately life-threatening. Although recent studies indicate the importance of proinflammatory response in pathogenesis of AAD, the mechanism to keep the destructive inflammatory response in check is unknown. Here, we report that induction of tenascin-C (TNC) is a stress-evoked protective mechanism against the acute hemodynamic and humoral stress in aorta. Periaortic application of CaCl2 caused stiffening of abdominal aorta, which augmented the hemodynamic stress and TNC induction in suprarenal aorta by angiotensin II infusion. Deletion of Tnc gene rendered mice susceptible to AAD development upon the aortic stress, which was accompanied by impaired TGFβ signaling, insufficient induction of extracellular matrix proteins and exaggerated proinflammatory response. Thus, TNC works as a stress-evoked molecular damper to maintain the aortic integrity under the acute stress. PMID:24514259

  6. [Influence of iron nanoparticles on cardiac performance and hemodynamics in rabbits after intravenous administration in acute experiment].

    PubMed

    Doroshenko, A M

    2014-01-01

    Iron nanoparticles are possessed by high potential in the creation of effective and safe antianemic drugs due to the enhanced biological activity of metal nanoparticles. As a step of intravenous dosage form development the study of short-term effects of iron nanoparticles on the cardiovascular system is important. Dose-dependent changes of systemic hemodynamics' parameters were established in acute experiment on rabbits after several intravenous injections of zero-valent iron nanoparticles solution.

  7. Hemodynamic Instability during Dialysis: The Potential Role of Intradialytic Exercise

    PubMed Central

    Horton, Elizabeth Jane; Renshaw, Derek; Jimenez, Alofonso; Krishnan, Nithya

    2018-01-01

    Acute haemodynamic instability is a natural consequence of disordered cardiovascular physiology during haemodialysis (HD). Prevalence of intradialytic hypotension (IDH) can be as high as 20–30%, contributing to subclinical, transient myocardial ischemia. In the long term, this results in progressive, maladaptive cardiac remodeling and impairment of left ventricular function. This is thought to be a major contributor to increased cardiovascular mortality in end stage renal disease (ESRD). Medical strategies to acutely attenuate haemodynamic instability during HD are suboptimal. Whilst a programme of intradialytic exercise training appears to facilitate numerous chronic adaptations, little is known of the acute physiological response to this type of exercise. In particular, the potential for intradialytic exercise to acutely stabilise cardiovascular hemodynamics, thus preventing IDH and myocardial ischemia, has not been explored. This narrative review aims to summarise the characteristics and causes of acute haemodynamic instability during HD, with an overview of current medical therapies to treat IDH. Moreover, we discuss the acute physiological response to intradialytic exercise with a view to determining the potential for this nonmedical intervention to stabilise cardiovascular haemodynamics during HD, improve coronary perfusion, and reduce cardiovascular morbidity and mortality in ESRD. PMID:29682559

  8. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    PubMed Central

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  9. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    PubMed

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  11. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Heffernan, Kevin S; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, Bo

    2014-01-01

    African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms.

  12. Hemodynamic and arterial stiffness differences between African-Americans and Caucasians after maximal exercise

    PubMed Central

    Ranadive, Sushant M.; Heffernan, Kevin S.; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Wu, Pei-Tzu; Sun, Peng; Harvey, Idethia S.; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo

    2013-01-01

    African-American (AA) men have higher arterial stiffness and augmentation index (AIx) than Caucasian-American (CA) men. Women have greater age-associated increases in arterial stiffness and AIx than men. This study examined racial and sex differences in arterial stiffness and central hemodynamics at rest and after an acute bout of maximal exercise in young healthy individuals. One hundred young, healthy individuals (28 AA men, 24 AA women, 25 CA men, and 23 CA women) underwent measurements of aortic blood pressure (BP) and arterial stiffness at rest and 15 and 30 min after an acute bout of graded maximal aerobic exercise. Aortic BP and AIx were derived from radial artery applanation tonometry. Aortic stiffness (carotid-femoral) was measured via pulse wave velocity. Aortic stiffness was increased in AA subjects but not in CA subjects (P < 0.05) after an acute bout of maximal cycling exercise, after controlling for body mass index. Aortic BP decreased after exercise in CA subjects but not in AA subjects (P < 0.05). Women exhibited greater reductions in AIx after maximal aerobic exercise compared with men (P < 0.05). In conclusion, race and sex impact vascular and central hemodynamic responses to exercise. Young AA and CA subjects exhibited differential responses in central stiffness and central BP after acute maximal exercise. Premenopausal women had greater augmented pressure at rest and after maximal aerobic exercise than men. Future research is needed to examine the potential mechanisms. PMID:24186094

  13. Hemodynamic determinants of dyspnea improvement in acute decompensated heart failure.

    PubMed

    Solomonica, Amir; Burger, Andrew J; Aronson, Doron

    2013-01-01

    Dyspnea relief constitutes a major treatment goal and a key measure of treatment efficacy in decompensated heart failure. However, there are no data with regard to the relationship between hemodynamic measurements during treatment and dyspnea improvement. We studied 233 patients assigned to right heart catheterization in the Vasodilation in the Management of Acute Congestive Heart Failure trial. Dyspnea (assessed using a 7-point Likert scale) and hemodynamic parameters were measured simultaneously at 15 and 30 minutes and 1, 2, 3, 6, and 24 hours. Dyspnea relief was defined as moderate or marked improvement. There was a time-dependent association between the reductions in pulmonary capillary wedge pressure (PCWP; 25.4, 24.6, 24.0, 23.5, 23.4, 21.5, and 19.9 mm Hg) and the percentage of patients achieving dyspnea relief (17.7%, 24.6%, 32.2%, 36.2%, 37.8%, 47.4%, and 66.1%, in the respective time points). Multivariable logistic generalized estimating equations modeling demonstrated that reductions of both PCWP and mean pulmonary artery pressure were independently associated with dyspnea relief. Compared with the highest PCWP quartile, the adjusted odds ratios for dyspnea relief were 0.92 (95% confidence interval [CI], 0.67-1.29), 1.07 (95% CI, 0.75-1.55), and 1.80 (95% CI, 1.22-2.65) in the third, second, and first PCWP quartiles, respectively (P(trend)=0.003). Compared with the highest mean pulmonary artery pressure quartile, the adjusted odds ratios for dyspnea relief were 2.0 (95% CI, 1.41-2.82), 2.23 (95% CI, 1.52-3.27), and 2.98 (95% CI, 1.91-4.66) in the third, second, and first mean pulmonary artery pressure quartiles, respectively (P(trend)<0.0001). A clinically significant improvement in dyspnea is associated with a reduction in both PCWP and mean pulmonary artery pressure.

  14. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    NASA Astrophysics Data System (ADS)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  15. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    PubMed

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  16. Hemodynamic Responses Associated with Post-exercise Hypotension in Normotensive Black Males.

    ERIC Educational Resources Information Center

    Headley, Samuel A.; And Others

    The purpose of this study was to characterize the hemodynamic responses during recovery from moderate intensity exercise in young Black normotensive males. Nineteen normotensive men (age 24-26 years) walked continuously on a treadmill for 40 minutes at 50-60 percent heart rate reserve. Following exercise, blood pressure (by auscultation) and…

  17. Prolonged hemodynamic response during incidental facial emotion processing in inter-episode bipolar I disorder.

    PubMed

    Rosenfeld, Ethan S; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S; Nonterah, Camilla; Stevens, Michael C

    2014-03-01

    This fMRI study examined whether hemodynamic responses to affectively-salient stimuli were abnormally prolonged in remitted bipolar disorder, possibly representing a novel illness biomarker. A group of 18 DSM-IV bipolar I-diagnosed adults in remission and a demographically-matched control group performed an event-related fMRI gender-discrimination task in which face stimuli had task-irrelevant neutral, happy or angry expressions designed to elicit incidental emotional processing. Participants' brain activation was modeled using a "fully informed" SPM5 basis set. Mixed-model ANOVA tested for diagnostic group differences in BOLD response amplitude and shape within brain regions-of-interest selected from ALE meta-analysis of previous comparable fMRI studies. Bipolar-diagnosed patients had a generally longer duration and/or later-peaking hemodynamic response in amygdala and numerous prefrontal cortex brain regions. Data are consistent with existing models of bipolar limbic hyperactivity, but the prolonged frontolimbic response more precisely details abnormalities recognized in previous studies. Prolonged hemodynamic responses were unrelated to stimulus type, task performance, or degree of residual mood symptoms, suggesting an important novel trait vulnerability brain dysfunction in bipolar disorder. Bipolar patients also failed to engage pregenual cingulate and left orbitofrontal cortex-regions important to models of automatic emotion regulation-while engaging a delayed dorsolateral prefrontal cortex response not seen in controls. These results raise questions about whether there are meaningful relationships between bipolar dysfunction of specific ventromedial prefrontal cortex regions believed to automatically regulate emotional reactions and the prolonged responses in more lateral aspects of prefrontal cortex.

  18. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  20. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    PubMed Central

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  1. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  2. Hemodynamic response during aneurysm clipping surgery among experienced neurosurgeons.

    PubMed

    Bunevicius, Adomas; Bilskiene, Diana; Macas, Andrius; Tamasauskas, Arimantas

    2016-02-01

    Neurosurgery is a challenging field associated with high levels of mental stress. The goal of this study was to investigate the hemodynamic response of experienced neurosurgeons during aneurysm clipping surgery and to evaluate whether neurosurgeons' hemodynamic responses are associated with patients' clinical statuses. Four vascular neurosurgeons (all male; mean age 51 ± 10 years; post-residency experience ≥7 years) were studied during 42 aneurysm clipping procedures. Blood pressure (BP) and heart rate (HR) were assessed at rest and during seven phases of surgery: before the skin incision, after craniotomy, after dural opening, after aneurysm neck dissection, after aneurysm clipping, after dural closure and after skin closure. HR and BP were significantly greater during surgery relative to the rest situation (p ≤ 0.03). There was a statistically significant increase in neurosurgeons' HR (F [6, 41] = 10.88, p < 0.001), systolic BP (F [6, 41] = 2.97, p = 0.01), diastolic BP (F [6, 41] = 2.49, p = 0.02) and mean BP (F [6, 41] = 3.36, p = 0.003) during surgery. The greatest mean HR was after aneurysm clipping, and the greatest BP was after aneurysm neck dissection. Systolic, diastolic and mean BPs were significantly greater during surgical clipping for unruptured aneurysms compared to ruptured aneurysms across all stages of surgery (p ≤ 0.002); however, after adjusting for neurosurgeon experience, the difference in BP as a function of aneurysm rupture was not significant (p > 0.08). Aneurysm location, intraoperative aneurysm rupture, admission WFNS score, admission Glasgow Coma Scale scores and Fisher grade were not associated with neurosurgeons' intraoperative HR and BP (all p > 0.07). Aneurysm clipping surgery is associated with significant hemodynamic system activation among experienced neurosurgeons. The greatest HR and BP were after aneurysm neck dissection and clipping. Aneurysm location and patient clinical

  3. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats

    NASA Technical Reports Server (NTRS)

    Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.

    1992-01-01

    Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Exploring diazepam’s effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging

    PubMed Central

    Abookasis, David; Shochat, Ariel; Nesher, Elimelech; Pinhasov, Albert

    2014-01-01

    In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work’s major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups’ differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging. PMID:25071958

  5. Lagrangian postprocessing of computational hemodynamics.

    PubMed

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  6. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  7. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Esther, E-mail: esther.peters@radboudumc.n

    Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 minmore » infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal

  8. Investigation of the cerebral hemodynamic response function in single blood vessels by functional photoacoustic microscopy

    PubMed Central

    Liao, Lun-De; Lin, Chin-Teng; Shih, Yen-Yu I.; Lai, Hsin-Yi; Zhao, Wan-Ting; Duong, Timothy Q.; Chang, Jyh-Yeong; Chen, You-Yin

    2012-01-01

    Abstract. The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO2). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36×65-μm2 spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO2 are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals. PMID:22734740

  9. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock

    PubMed Central

    Lanspa, Michael J.; Grissom, Colin K.; Hirshberg, Eliotte L.; Jones, Jason P.; Brown, Samuel M.

    2013-01-01

    Background Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. Methods This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10 ml/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index (VCCI) and aortic velocity variation (AoVV) prior to VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index ≥ 15%. Results 14 patients received VE, 5 of which demonstrated a hemodynamic response. VCCI and SVV were predictive (Area under curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: VCCI ≥ 15% (Positive predictive value, PPV 62%, negative predictive value, NPV 100%, p = 0.03); SVV ≥ 17% (PPV 100%, NPV 82%, p = 0.03). AoVV was not predictive. Conclusions VCCI and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients. PMID:23324885

  10. Hemodynamic characterization of geometric cerebral aneurysm templates.

    PubMed

    Nair, Priya; Chong, Brian W; Indahlastari, Aprinda; Lindsay, James; DeJeu, David; Parthasarathy, Varsha; Ryan, Justin; Babiker, Haithem; Workman, Christopher; Gonzalez, L Fernando; Frakes, David

    2016-07-26

    Hemodynamics are currently considered to a lesser degree than geometry in clinical practices for evaluating cerebral aneurysm (CA) risk and planning CA treatment. This study establishes fundamental relationships between three clinically recognized CA geometric factors and four clinically relevant hemodynamic responses. The goal of the study is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Flows within eight idealized template geometries were simulated using computational fluid dynamics and measured using particle image velocimetry under both steady and pulsatile flow conditions. The geometric factor main effects were then analyzed to quantify contributions made by the geometric factors (aneurysmal dome size (DS), dome-to-neck ratio (DNR), and parent-vessel contact angle (PV-CA)) to effects on the hemodynamic responses (aneurysmal and neck-plane root-mean-square velocity magnitude (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Two anatomical aneurysm models were also examined to investigate how well the idealized findings would translate to more realistic CA geometries. DNR made the greatest contributions to effects on hemodynamics including a 75.05% contribution to aneurysmal Vrms and greater than 35% contributions to all responses. DS made the next greatest contributions, including a 43.94% contribution to CNF and greater than 20% contributions to all responses. PV-CA and several factor interactions also made contributions of greater than 10%. The anatomical aneurysm models and the most similar idealized templates demonstrated consistent hemodynamic response patterns. This study demonstrates how individual geometric factors, and combinations thereof, influence CA hemodynamics. Bridging the gap between geometry and flow in this quantitative yet practical way may have potential to improve CA evaluation and treatment criteria. Agreement among results from idealized and anatomical models further

  11. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    PubMed

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. [Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy].

    PubMed

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. The association between cognitive deficits and prefrontal hemodynamic responses during performance of working memory task in patients with schizophrenia.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi

    2016-04-01

    Schizophrenia-associated cognitive deficits are resistant to treatment and thus pose a lifelong burden. The Brief Assessment of Cognition in Schizophrenia (BACS) provides reliable and valid assessments across cognitive domains. However, because the prefrontal functional abnormalities specifically associated with the level of cognitive deficits in schizophrenia have not been examined, we explored this relationship. Patients with schizophrenia (N=87) and matched healthy controls (N=50) participated in the study. Using near-infrared spectroscopy (NIRS), we measured the hemodynamic responses in the prefrontal and superior temporal cortical surface areas during a working memory task. Correlation analyses revealed a relationship between the hemodynamics and the BACS composite and domain scores. Hemodynamic responses of the left dorsolateral prefrontal cortex (DLPFC) and left frontopolar cortex (FPC) in the higher-level-of-cognitive-function schizophrenia group were weaker than the responses of the controls but similar to those of the lower-level-of-cognitive-function schizophrenia group. However, hemodynamic responses in the right DLPFC, bilateral ventrolateral PFC (VLPFC), and right temporal regions decreased with increasing cognitive deficits. In addition, the hemodynamic response correlated positively with the level of cognitive function (BACS composite scores) in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions in schizophrenia. The correlation was driven by all BACS domains. Our results suggest that the linked functional deficits in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions may be related to BACS-measured cognitive impairments in schizophrenia and show that linking the neurocognitive deficits and brain abnormalities can increase our understanding of schizophrenia pathophysiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hemodynamic responses to single sessions of aerobic exercise and resistance exercise in pregnancy.

    PubMed

    Petrov Fieril, Karolina; Glantz, Anna; Fagevik Olsen, Monika

    2016-09-01

    Previous research on maternal hemodynamic responses to a single exercise session during pregnancy is sparse, especially considering immediate responses to resistance exercise. The aim of the study was to examine blood pressure, heart rate, body temperature, and Rating of Perceived Exertion in healthy pregnant women during single sessions of continuous submaximal exercise in pregnancy week 21. A cross-over design was used. Twenty healthy pregnant women from four prenatal clinics in Gothenburg, Sweden, were included. On day 1, the women did 30 min of aerobic exercise and on day 3 they did 30 min of resistance exercise. Blood pressure, heart rate, and Rating of Perceived Exertion were measured after 15 and 30 min of exercise. After 15 and 30 min of exercise, there was a significant increase in systolic blood pressure and heart rate (p < 0.001). Diastolic blood pressure increased slightly more after 15 and 30 min of aerobic exercise (p = 0.01) than resistance exercise (p = 0.03). Resistance exercise was perceived as more intense than aerobic exercise after 15 min (p = 0.02) and 30 min (p = 0.001) of exercise. Five minutes after completing the exercise, blood pressure quickly reverted to normal although heart rate was still increased (p = 0.001). There was no correlation between heart rate and Rating of Perceived Exertion (rs  = 0.05-0.43). Maternal hemodynamic responses were essentially the same, regardless of whether the exercise was submaximal aerobic or resistance exercise, although resistance exercise was perceived as more intense. Aerobic and resistance exercise corresponding to "somewhat hard" seems to have no adverse effect with regard to maternal hemodynamic responses in healthy pregnancy. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Comparing GlideScope Video Laryngoscope and Macintosh Laryngoscope Regarding Hemodynamic Responses During Orotracheal Intubation: A Randomized Controlled Trial

    PubMed Central

    Pournajafian, Ali Reza; Ghodraty, Mohammad Reza; Faiz, Seyed Hamid Reza; Rahimzadeh, Poupak; Goodarzynejad, Hamidreza; Dogmehchi, Enseyeh

    2014-01-01

    Background: To determine if the GlideScope® videolaryngoscope (GVL) could attenuate the hemodynamic responses to orotracheal intubation compared with conventional Macintosh laryngoscope. Objectives: The aim of this relatively large randomized trial was to compare the hemodynamic stress responses during laryngoscopy and tracheal intubation using GVL versus MCL amongst healthy adult individuals receiving general anesthesia for elective surgeries. Patients and Methods: Ninety five healthy adult patients with American Society of Anesthesiologists physical status class I or II that were scheduled for elective surgery under general anesthesia were randomly allocated to either Macintosh or GlideScope arms. All patients received a standardized protocol of general anesthesia. Hemodynamic changes associated with intubation were recorded before and at 1, 3 and 5 minutes after the intubation. The time taken to perform endotracheal intubation was also noted in both groups. Results: Immediately before laryngoscopy (pre-laryngoscopy), the values of all hemodynamic variables did not differ significantly between the two groups (All P values > 0.05). Blood pressures and HR values changed significantly over time within the groups. Time to intubation was significantly longer in the GlideScope (15.9 ± 6.7 seconds) than in the Macintosh group (7.8 ± 3.7 sec) (P< 0.001). However, there were no significant differences between the two groups in hemodynamic responses at all time points. Conclusions: The longer intubation time using GVL suggests that the benefit of GVL could become apparent if the time taken for orotracheal intubation could be decreased in GlideScope group. PMID:24910788

  16. Hemodynamic Improvement in Cardiac Resynchronization Does Not Require Improvement in Left Ventricular Rotation Mechanics

    PubMed Central

    Ashikaga, Hiroshi; Leclercq, Christophe; Wang, Jiangxia; Kass, David A.; McVeigh, Elliot R.

    2010-01-01

    Background Earlier studies have yielded conflicting evidence on whether or not cardiac resynchronization therapy (CRT) improves left ventricular (LV) rotation mechanics. Methods and Results In dogs with left bundle branch block and pacing-induced heart failure (n=7), we studied the effects of CRT on LV rotation mechanics in vivo by 3-dimensional tagged magnetic resonance imaging with a temporal resolution of 14 ms. CRT significantly improved hemodynamic parameters but did not significantly change the LV rotation or rotation rate. LV torsion, defined as LV rotation of each slice with respect to that of the most basal slice, was not significantly changed by CRT. CRT did not significantly change the LV torsion rate. There was no significant circumferential regional heterogeneity (anterior, lateral, inferior, and septal) in LV rotation mechanics in either left bundle branch block with pacing-induced heart failure or CRT, but there was significant apex-to-base regional heterogeneity. Conclusions CRT acutely improves hemodynamic parameters without improving LV rotation mechanics. There is no significant circumferential regional heterogeneity of LV rotation mechanics in the mechanically dyssynchronous heart. These results suggest that LV rotation mechanics is an index of global LV function, which requires coordination of all regions of the left ventricle, and improvement in LV rotation mechanics appears to be a specific but insensitive index of acute hemodynamic response to CRT. PMID:20478988

  17. Hemodynamic Response to Hemodialysis With Ultrafiltration Rate Profiles Either Gradually Decreasing or Gradually Increasing.

    PubMed

    Morales-Alvarez, Ricardo; Martínez-Memije, Raúl; Becerra-Luna, Brayans; García-Paz, Paola; Infante, Oscar; Palma-Ramírez, Alfredo; Caviedes-Aramburu, Amaya; Vargas-Barrón, Jesús; Lerma, Claudia; Pérez-Grovas, Héctor

    2016-07-01

    Hemodialysis (HD) is usually performed with the gradually decreasing ultrafiltration rate (UFR) profile (dUFR). The aim of the present study was to compare the hemodynamic response to HD with the dUFR to that of HD with the gradually increasing UFR profile (iUFR). The study population included 10 patients (three women, mean age: 28 ± 8 years) undergoing maintenance HD who had reached dry weight without taking antihypertensive medications. Each patient received (in random order) one HD session with the dUFR and another with the iUFR (both with 3 h total UFR = 2200 mL). Hemodynamic response was evaluated with a brachial blood pressure (BP) monitor, echocardiogram and Portapres to measure digital BP, heart rate, cardiac output, stroke volume, and peripheral resistance. Mean values were compared at each HD hour during the first 3 h of a 4-h HD session. The HD characteristics, including Kt/V, were similar for both UFR profiles. Relative blood volume decreased more gradually and linearly with the iUFR. Hemodynamic variables were not significantly different between the two profiles, but brachial BP was more stable with the iUFR. Digital diastolic BP increased with both profiles. Peripheral resistance increased with both profiles, and tended to increase more with the iUFR. Echocardiographic variables changed similarly during the HD session with both profiles. In conclusion, these two UFR profiles are similar in most hemodynamic variables. The statistical equivalence of both profiles suggests that either could be prescribed based on the clinical characteristics of the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Improved recovery of the hemodynamic response in Diffuse Optical Imaging using short optode separations and state-space modeling

    PubMed Central

    Gagnon, Louis; Perdue, Katherine; Greve, Douglas N.; Goldenholz, Daniel; Kaskhedikar, Gayatri; Boas, David A.

    2011-01-01

    Diffuse Optical Imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain activity. The signal is contaminated with systemic physiological interference which occurs in the superficial layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent development has been the use of signals from small source-detector separation (1 cm) optodes as regressors. Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those findings, we developed a dynamic estimation procedure to remove global interference using small optode separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from 6 human subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic estimator was also compared with a static estimator and the traditional adaptive filtering method. We observed a significant improvement (two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the standard GLM technique. PMID:21385616

  19. Effect of acute transdermal estrogen administration on basal, mental stress and cold pressor-induced sympathetic responses in postmenopausal women.

    PubMed

    Sofowora, Gbemiga G; Singh, Iqbal; He, Huai B; Wood, Alastair J J; Stein, C Michael

    2005-06-01

    Administration of estrogen has vascular effects through poorly defined mechanisms that may include sympathetic withdrawal. To define the effects of acute estrogen administration on sympathetic responses, nineteen healthy postmenopausal women (age 54+/-2 years) were studied after application of a placebo or estrogen patch for 36 hours, in random order. A p-value, adjusted for multiple comparisons, of <0.017 was used to determine statistical significance. Heart rate, blood pressure, and norepinephrine spillover were measured at rest, during mental stress (Stroop test), and during a cold pressor test. Estrogen did not attenuate basal or stimulated hemodynamic responses significantly. The increase in mean arterial pressure after the Stroop test (5.9+/-1.2mm/ Hg on placebo vs 6.1+/-1.6mm/Hg on estrogen, p=0.9) and after the cold pressor test (12.6+/-2.4mm/Hg on placebo vs 13.0+/-2.2 mm/Hg on estrogen, p=0.8) did not differ. Basal, mental stress and cold pressor-stimulated norepinephrine spillover were not significantly affected by short-term estrogen administration. Norepinephrine spillover tended to be higher after estrogen (1296.2+/-238 ng/min) than placebo (832.5+/-129 ng/min) (p=0.02) at baseline and after the Stroop test (1881.1+/-330 ng/min vs 1014.6+/-249 ng/min) (p=0.02). Acute transdermal estrogen administration did not attenuate norepinephrine spillover or sympathetically mediated hemodynamic responses.

  20. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    NASA Technical Reports Server (NTRS)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; hide

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  1. GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice

    PubMed Central

    Zhou, Jibin; Lal, Hind; Chen, Xiongwen; Shang, Xiying; Song, Jianliang; Li, Yingxin; Kerkela, Risto; Doble, Bradley W.; MacAulay, Katrina; DeCaul, Morgan; Koch, Walter J.; Farber, John; Woodgett, James; Gao, Erhe; Force, Thomas

    2010-01-01

    The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, α and β. Although GSK-3β has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3α in the mouse heart using gene targeting. Gsk3a–/– mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired β-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3α appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of β-adrenergic responsiveness. In the absence of GSK-3α, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of β-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3. PMID:20516643

  2. Urocortin Treatment Improves Acute Hemodynamic Instability and Reduces Myocardial Damage in Post-Cardiac Arrest Myocardial Dysfunction

    PubMed Central

    Huang, Chien-Hua; Wang, Chih-Hung; Tsai, Min-Shan; Hsu, Nai-Tan; Chiang, Chih-Yen; Wang, Tzung-Dau; Chang, Wei-Tien; Chen, Huei-Wen; Chen, Wen-Jone

    2016-01-01

    Aims Hemodynamic instability occurs following cardiac arrest and is associated with high mortality during the post-cardiac period. Urocortin is a novel peptide and a member of the corticotrophin-releasing factor family. Urocortin has the potential to improve acute cardiac dysfunction, as well as to reduce the myocardial damage sustained after ischemia reperfusion injury. The effects of urocortin in post-cardiac arrest myocardial dysfunction remain unclear. Methods and Results We developed a preclinical cardiac arrest model and investigated the effects of urocortin. After cardiac arrest induced by 6.5 min asphyxia, male Wistar rats were resuscitated and randomized to either the urocortin treatment group or the control group. Urocortin (10 μg/kg) was administrated intravenously upon onset of resuscitation in the experimental group. The rate of return of spontaneous circulation (ROSC) was similar between the urocortin group (76%) and the control group (72%) after resuscitation. The left ventricular systolic (dP/dt40) and diastolic (maximal negative dP/dt) functions, and cardiac output, were ameliorated within 4 h after ROSC in the urocortin-treated group compared to the control group (P<0.01). The neurological function of surviving animals was better at 6 h after ROSC in the urocortin-treated group (p = 0.023). The 72-h survival rate was greater in the urocortin-treated group compared to the control group (p = 0.044 by log-rank test). Cardiomyocyte apoptosis was lower in the urocortin-treated group (39.9±8.6 vs. 17.5±4.6% of TUNEL positive nuclei, P<0.05) with significantly increased Akt, ERK and STAT-3 activation and phosphorylation in the myocardium (P<0.05). Conclusions Urocortin treatment can improve acute hemodynamic instability as well as reducing myocardial damage in post-cardiac arrest myocardial dysfunction. PMID:27832152

  3. Organ-specific physiological responses to acute physical exercise and long-term training in humans.

    PubMed

    Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani

    2014-11-01

    Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.

  4. Hemodynamic Response Alterations in Sensorimotor Areas as a Function of Barbell Load Levels during Squatting: An fNIRS Study

    PubMed Central

    Kenville, Rouven; Maudrich, Tom; Carius, Daniel; Ragert, Patrick

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) serves as a promising tool to examine hemodynamic response alterations in a sports-scientific context. The present study aimed to investigate how brain activity within the human motor system changes its processing in dependency of different barbell load conditions while executing a barbell squat (BS). Additionally, we used different fNIRS probe configurations to identify and subsequently eliminate potential exercise induced systemic confounders such as increases in extracerebral blood flow. Ten healthy, male participants were enrolled in a crossover design. Participants performed a BS task with random barbell load levels (0% 1RM (1 repetition maximum), 20% 1RM and 40% 1RM for a BS) during fNIRS recordings. Initially, we observed global hemodynamic response alterations within and outside the human motor system. However, short distance channel regression of fNIRS data revealed a focalized hemodynamic response alteration within bilateral superior parietal lobe (SPL) for oxygenated hemoglobin (HbO2) and not for deoxygenated hemoglobin (HHb) when comparing different load levels. These findings indicate that the previously observed load/force-brain relationship for simple and isolated movements is also present in complex multi-joint movements such as the BS. Altogether, our results show the feasibility of fNIRS to investigate brain processing in a sports-related context. We suggest for future studies to incorporate short distance channel regression of fNIRS data to reduce the likelihood of false-positive hemodynamic response alterations during complex whole movements. PMID:28555098

  5. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited.

  6. Acute Hemodynamic Effects of Riociguat in Patients With Pulmonary Hypertension Associated With Diastolic Heart Failure (DILATE-1)

    PubMed Central

    Pretsch, Ingrid; Steringer-Mascherbauer, Regina; Jansa, Pavel; Rosenkranz, Stephan; Tufaro, Caroline; Bojic, Andja; Lam, Carolyn S. P.; Frey, Reiner; Ochan Kilama, Michael; Unger, Sigrun; Roessig, Lothar; Lang, Irene M.

    2014-01-01

    BACKGROUND: Deficient nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate signaling results from endothelial dysfunction and may underlie impaired cardiac relaxation in patients with heart failure with preserved left ventricular ejection fraction (HFpEF) and pulmonary hypertension (PH). The acute hemodynamic effects of riociguat, a novel soluble guanylate cyclase stimulator, were characterized in patients with PH and HFpEF. METHODS: Clinically stable patients receiving standard HF therapy with a left ventricular ejection fraction > 50%, mean pulmonary artery pressure (mPAP) ≥ 25 mm Hg, and pulmonary arterial wedge pressure (PAWP) > 15 mm Hg at rest were randomized to single oral doses of placebo or riociguat (0.5, 1, or 2 mg). The primary efficacy variable was the peak decrease in mPAP from baseline up to 6 h. Secondary outcomes included hemodynamic and echocardiographic parameters, safety, and pharmacokinetics. RESULTS: There was no significant change in peak decrease in mPAP with riociguat 2 mg (n = 10) vs placebo (n = 11, P = .6). However, riociguat 2 mg significantly increased stroke volume (+9 mL [95% CI, 0.4-17]; P = .04) and decreased systolic BP (−12 mm Hg [95% CI, −22 to −1]; P = .03) and right ventricular end-diastolic area (−5.6 cm2 [95% CI, −11 to −0.3]; P = .04), without significantly changing heart rate, PAWP, transpulmonary pressure gradient, or pulmonary vascular resistance. Riociguat was well tolerated. CONCLUSIONS: In patients with HFpEF and PH, riociguat was well tolerated, had no significant effect on mPAP, and improved exploratory hemodynamic and echocardiographic parameters. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01172756; URL: www.clinicaltrials.gov PMID:24991733

  7. Predicted Hemodynamic Benefits Of Counterpulsation Therapy Using A Superficial Surgical Approach

    PubMed Central

    Giridharan, Guruprasad A.; Pantalos, George M.; Litwak, Kenneth N.; Spence, Paul A.; Koenig, Steven C.

    2010-01-01

    A volume-displacement counterpulsation device (CPD) intended for chronic implantation via a superficial surgical approach is proposed. The CPD is a pneumatically driven sac that fills during native heart systole and empties during diastole through a single, valveless cannula anastomosed to the subclavian artery. Computer simulation was performed to predict and compare the physiological responses of the CPD to the intraaortic balloon pump (IABP) in a clinically relevant model of early stage heart failure. The effect of device stroke volume (0–50 ml) and control modes (timing, duration, morphology) on landmark hemodynamic parameters and the LV pressure–volume relationship were investigated. Simulation results predicted that the CPD would provide hemodynamic benefits comparable to an IABP as evidenced by up to 25% augmentation of peak diastolic aortic pressure, which increases diastolic coronary perfusion by up to 34%. The CPD may also provide up to 34% reduction in LV end-diastolic pressure and 12% reduction in peak systolic aortic pressure, lowering LV workload by up to 26% and increasing cardiac output by up to 10%. This study demonstrated that the superficial CPD technique may be used acutely to achieve similar improvements in hemodynamic function as the IABP in early stage heart failure patients. PMID:16436889

  8. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study.

    PubMed

    Aarabi, Ardalan; Osharina, Victoria; Wallois, Fabrice

    2017-07-15

    Slow and rapid event-related designs are used in fMRI and functional near-infrared spectroscopy (fNIRS) experiments to temporally characterize the brain hemodynamic response to discrete events. Conventional averaging (CA) and the deconvolution method (DM) are the two techniques commonly used to estimate the Hemodynamic Response Function (HRF) profile in event-related designs. In this study, we conducted a series of simulations using synthetic and real NIRS data to examine the effect of the main confounding factors, including event sequence timing parameters, different types of noise, signal-to-noise ratio (SNR), temporal autocorrelation and temporal filtering on the performance of these techniques in slow and rapid event-related designs. We also compared systematic errors in the estimates of the fitted HRF amplitude, latency and duration for both techniques. We further compared the performance of deconvolution methods based on Finite Impulse Response (FIR) basis functions and gamma basis sets. Our results demonstrate that DM was much less sensitive to confounding factors than CA. Event timing was the main parameter largely affecting the accuracy of CA. In slow event-related designs, deconvolution methods provided similar results to those obtained by CA. In rapid event-related designs, our results showed that DM outperformed CA for all SNR, especially above -5 dB regardless of the event sequence timing and the dynamics of background NIRS activity. Our results also show that periodic low-frequency systemic hemodynamic fluctuations as well as phase-locked noise can markedly obscure hemodynamic evoked responses. Temporal autocorrelation also affected the performance of both techniques by inducing distortions in the time profile of the estimated hemodynamic response with inflated t-statistics, especially at low SNRs. We also found that high-pass temporal filtering could substantially affect the performance of both techniques by removing the low-frequency components of

  9. Interventions to improve cardiopulmonary hemodynamics during laparoscopy in a porcine sepsis model.

    PubMed

    Grief, W M; Forse, R A

    1999-11-01

    Laparoscopy is increasingly used in severely ill and acutely septic patients. In animals undergoing laparoscopy, the hemodynamic response to sepsis is blunted. Specific interventions to augment the hemodynamic potential may make laparoscopic intervention a safer alternative in septic patients. We compared different interventions to improve hemodynamic performance during exploratory laparoscopy in a porcine endotoxic shock model. Domestic pigs (n = 12) received intravenous lipopolysaccharide injection and underwent surgical abdominal exploration using either laparoscopy or conventional laparotomy. For comparison, pigs exposed to endotoxin underwent laparoscopy with these interventions: intravenous infusions of prostacyclin (n = 5) or indomethacin (n = 4), intravenous crystalloid resuscitation (n = 5), pulmonary hyperventilation (n = 4), or abdominal insufflation with air (n = 5). Hemodynamic measurements and blood gas analyses were obtained using Swan-Ganz and arterial catheters. Septic animals treated with prostacyclin undergoing laparoscopy had a higher cardiac index (CI, p < 0.01), stroke volume (SV; p < 0.001) and oxygen delivery (p < 0.05) than the untreated group. Likewise, treatment with indomethacin was associated with a higher CI (p < 0.001), SV (p < 0.005), and oxygen delivery (p < 0.005) compared with the untreated group. These effects may be secondary to a decreased pulmonary vascular resistance, demonstrated in the animals that received either prostacyclin (p < 0.05) or indomethacin (p < 0.05). In addition, animals given aggressive fluid resuscitation had a significantly higher CI (p < 0.05) and SV (p < 0.001) than those with normal fluid resuscitation during laparoscopy. Manipulation of arterial pH by insufflation of the abdomen with air to create the pneumoperitoneum, or by aggressively hyperventilating the animals, did not improve CI. Adverse effects of laparoscopy on cardiovascular hemodynamics in the septic state may be mediated by increased

  10. Measuring the hemodynamic response to primary pharmacoprophylaxis of variceal bleeding: a cost-effectiveness analysis.

    PubMed

    Imperiale, Thomas F; Chalasani, Naga; Klein, Robert W

    2003-12-01

    The hemodynamic response to ss-blockers alone or with nitrates is highly predictive of efficacy in prevention of variceal bleeding. Hemodynamic monitoring (HDM) requires catheterization of the hepatic vein and measurement of the hepatic venous pressure gradient, the difference between wedged and free hepatic venous pressure. The aim of this study was to compare HDM with no HDM in patients considered for primary pharmacoprophylaxis of esophageal variceal bleeding. A decision model was constructed to compare HDM with no HDM in cirrhotic patients with moderate to large esophageal varices. Patients intolerant to beta-blocker therapy would undergo endoscopic variceal ligation; those with an inadequate hemodynamic response (HDR) to beta-blocker therapy could have nitrates added before ligation was considered. Variceal bleeding was treated with ligation, with transjugular intrahepatic portosystemic shunt (TIPS) reserved for refractory bleeding. Probabilities of treatment responses as well as risks of bleeding and mortality were based on published literature. Only direct costs were considered during the 5-yr time horizon. Outcomes were cost in United States dollars, survival length in life-years, and proportions of patients who experienced variceal bleeding, TIPS insertion, and mortality from any cause. In the base case analysis, HDM was either cost-saving ($2,523 US dollars /life-year gained) or cost-effective (incremental cost-effectiveness ratio of $5,200 US dollars/life-year saved) compared with no HDM, depending on whether nitrates were added to beta-blocker therapy. HDM reduced variceal bleeding by nearly 60% and had a small effect on all-cause mortality. In the sensitivity analysis, HDM was sensitive to the time horizon, as it was not cost-effective for a time horizon of <22 months and was not cost-saving before 49 months. The cost-effectiveness of HDM was not sensitive to reasonable variation in the probability of HDR to beta-blocker therapy, risk of bleeding, risk

  11. Role of parietal pericardium in acute, severe mitral regurgitation in dogs.

    PubMed

    Freeman, G L; LeWinter, M M

    1984-07-01

    Mitral regurgitation (MR) resulting from acute disruption of the mitral valve apparatus leads to serious hemodynamic sequelae. The lesion produces major elevation of left atrial (LA) and pulmonary artery pressures and decreases forward cardiac output. Clinical studies have shown hemodynamic patterns in acute MR similar to those seen in constrictive pericardial disease, suggesting that the pericardium serves to importantly limit cardiac filling in this condition. This hypothesis has not been tested in an animal model in which the intrapericardial pressure can be directly measured. In the present study intrapericardial and intracardiac pressures were measured in 8 dogs before and after the production of acute MR. After production of MR, mean LA pressure increased from 8 +/- 3 to 20 +/- 7 mm Hg (p = 0.004) and the peak LA V wave averaged 31 +/- 13 mm Hg. Mean right atrial pressure increased slightly, from 4 +/- 2 to 5 +/- 1 mm Hg (p less than 0.008). Intrapericardial pressure increased in each dog, but the increment was invariably small (1 +/- 2 to 3 +/- 2 mm Hg, p = 0.001) and there was no tendency to equalization of pressure between right- and left-sided cardiac chambers. Thus, the role of the pericardium in the immediate hemodynamic response to acute, severe MR is minor.

  12. Acute dark chocolate ingestion is beneficial for hemodynamics via enhancement of erythrocyte deformability in healthy humans.

    PubMed

    Radosinska, Jana; Horvathova, Martina; Frimmel, Karel; Muchova, Jana; Vidosovicova, Maria; Vazan, Rastislav; Bernatova, Iveta

    2017-03-01

    Erythrocyte deformability is an important property of erythrocytes that considerably affects blood flow and hemodynamics. The high content of polyphenols present in dark chocolate has been reported to play a protective role in functionality of erythrocytes. We hypothesized that chocolate might influence erythrocytes not only after repeated chronic intake, but also immediately after its ingestion. Thus, we determined the acute effect of dark chocolate and milk (with lower content of biologically active substances) chocolate intake on erythrocyte deformability. We also focused on selected factors that may affect erythrocyte deformability, specifically nitric oxide production in erythrocytes and total antioxidant capacity of plasma. We determined posttreatment changes in the mentioned parameters 2hours after consumption of chocolate compared with their levels before consumption of chocolate. In contrast to milk chocolate intake, the dark chocolate led to a significantly higher increase in erythrocyte deformability. Nitric oxide production in erythrocytes was not changed after dark chocolate intake, but significantly decreased after milk chocolate. The plasma total antioxidant capacity remained unaffected after ingestion of both chocolates. We conclude that our hypothesis was confirmed. Single ingestion of dark chocolate improved erythrocyte deformability despite unchanged nitric oxide production and antioxidant capacity of plasma. Increased deformability of erythrocytes may considerably improve rheological properties of blood and thus hemodynamics in humans, resulting in better tissue oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takahiro; Takehara, Hiroaki; Sunaga, Yoshinori; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    A self-reset pixel of 15 × 15 µm2 with high signal-to-noise ratio (effective peak SNR ≃64 dB) for an implantable image sensor has been developed for intrinsic signal detection arising from hemodynamic responses in a living mouse brain. For detecting local conversion between oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in brain tissues, an implantable imaging device was fabricated with our newly designed self-reset image sensor and orange light-emitting diodes (LEDs; λ = 605 nm). We demonstrated imaging of hemodynamic responses in the sensory cortical area accompanied by forelimb stimulation of a living mouse. The implantable imaging device for intrinsic signal detection is expected to be a powerful tool to measure brain activities in living animals used in behavioral analysis.

  14. Reduced prefrontal hemodynamic response in adult attention-deficit hyperactivity disorder as measured by near-infrared spectroscopy.

    PubMed

    Ueda, Shotaro; Ota, Toyosaku; Iida, Junzo; Yamamuro, Kazuhiko; Yoshino, Hiroki; Kishimoto, Naoko; Kishimoto, Toshifumi

    2018-06-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. In pediatric attention-deficit hyperactivity disorder (ADHD), reduced prefrontal hemodynamic responses have been observed with NIRS repeatedly. However, there are few studies of adult ADHD by multi-channel NIRS. Therefore, in this study, we used multi-channel NIRS to examine the characteristics of prefrontal hemodynamic responses during the Stroop Color-Word Task (SCWT) in adult ADHD patients and in age- and sex-matched control subjects. Twelve treatment-naïve adults with ADHD and 12 age- and sex-matched healthy control subjects participated in the present study after giving consent. We used 24-channel NIRS to measure the oxygenated hemoglobin (oxy-Hb) changes at the frontal lobes of participants during the SCWT. We compared the oxy-Hb changes between adults with ADHD and control subjects by t-tests with Bonferroni correction. During the SCWT, the oxy-Hb changes observed in the ADHD group were significantly smaller than those in the control group in channels 11, 16, 18, 21, 22, 23, and 24, corresponding to the prefrontal cortex. At channels 16, 21, 23, and 24 of the ADHD group, there were negative correlations between the symptomatic severity and the oxy-Hb changes. The present study suggests that adults with ADHD have reduced prefrontal hemodynamic response as measured by NIRS. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  15. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  16. Hemodynamic and neurohormonal responses to extreme orthostatic stress in physically fit young adults

    NASA Astrophysics Data System (ADS)

    Grasser, E. K.; Goswami, N.; Rössler, A.; Vrecko, K.; Hinghofer-Szalkay, H.

    2009-04-01

    Blood pressure stability may be jeopardized in astronauts experiencing orthostatic stress. There is disagreement about cardiovascular and endocrine stress responses that emerge when a critical (presyncopal) state is reached. We studied hemodynamic and neurohormonal changes as induced by an orthostatic stress paradigm (head-up tilt combined with lower body negative pressure) that leads to a syncopal endpoint. From supine control to presyncope, heart rate increased by 78% and thoracic impedance by 12%. There was a 49% fall in stroke volume index, 19% in mean arterial blood pressure, 14% in total peripheral resistance index and 11% in plasma volume. Plasma norepinephrine rose by 107, epinephrine by 491, plasma renin activity by 167, and cortisol by 25%. Hemodynamic and hormonal changes of clearly different magnitude emerge in presyncope as compared to supine rest. Additional studies are warranted to reveal the exact time course of orthostatic changes up to syncopal levels.

  17. Hemodynamic and neurochemical determinates of renal function in chronic heart failure.

    PubMed

    Gilbert, Cameron; Cherney, David Z I; Parker, Andrea B; Mak, Susanna; Floras, John S; Al-Hesayen, Abdul; Parker, John D

    2016-01-15

    Abnormal renal function is common in acute and chronic congestive heart failure (CHF) and is related to the severity of congestion. However, treatment of congestion often leads to worsening renal function. Our objective was to explore basal determinants of renal function and their response to hemodynamic interventions. Thirty-seven patients without CHF and 59 patients with chronic CHF (ejection fraction; 23 ± 8%) underwent right heart catheterization, measurements of glomerular filtration rate (GFR; inulin) and renal plasma flow (RPF; para-aminohippurate), and radiotracer estimates of renal sympathetic activity. A subset (26 without, 36 with CHF) underwent acute pharmacological intervention with dobutamine or nitroprusside. We explored the relationship between baseline and drug-induced hemodynamic changes and changes in renal function. In CHF, there was an inverse relationship among right atrial mean pressure (RAM) pressure, RPF, and GFR. By contrast, mean arterial pressure (MAP), cardiac index (CI), and measures of renal sympathetic activity were not significant predictors. In those with CHF there was also an inverse relationship among the drug-induced changes in RAM as well as pulmonary artery mean pressure and the change in GFR. Changes in MAP and CI did not predict the change in GFR in those with CHF. Baseline values and changes in RAM pressure did not correlate with GFR in those without CHF. In the CHF group there was a positive correlation between RAM pressure and renal sympathetic activity. There was also an inverse relationship among RAM pressure, GFR, and RPF in patients with chronic CHF. The observation that acute reductions in RAM pressure is associated with an increase in GFR in patients with CHF has important clinical implications. Copyright © 2016 the American Physiological Society.

  18. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  19. Hemodynamic effects of nitroglycerin ointment in emergency department patients.

    PubMed

    Mumma, Bryn E; Dhingra, Kapil R; Kurlinkus, Charley; Diercks, Deborah B

    2014-08-01

    Nitroglycerin ointment is commonly used in the treatment of emergency department (ED) patients with suspected acute heart failure (AHF) or suspected acute coronary syndrome (ACS), but its hemodynamic effects in this population are not well described. Our objective was to assess the effect of nitroglycerin ointment on mean arterial pressure (MAP) and systemic vascular resistance (SVR) in ED patients receiving nitroglycerin. We hypothesized that nitroglycerin ointment would result in a reduction of MAP and SVR in the acute treatment of patients. We conducted a prospective, observational pilot study in a convenience sample of adult patients from a single ED who were treated with nitroglycerin ointment. Impedance cardiography was used to measure MAP, SVR, cardiac output (CO), stroke volume (SV), and thoracic fluid content (TFC) at baseline and at 30, 60, and 120 min after application of nitroglycerin ointment. Mixed effects regression models with random slope and random intercept were used to analyze changes in hemodynamic parameters from baseline to 30, 60, and 120 min after adjusting for age, sex, and final ED diagnosis of AHF. Sixty-four subjects with mean age of 55 years (interquartile range, 48-67 years) were enrolled; 59% were male. In the adjusted analysis, MAP and TFC decreased after application of nitroglycerin ointment (p=0.001 and p=0.043, respectively). Cardiac index, CO, SVR, and SV showed no change (p=0.113, p=0.085, p=0.570, and p=0.076, respectively) over time. Among ED patients who are treated with nitroglycerin ointment, MAP and TFC decrease over time. However, other hemodynamic parameters do not change after application of nitroglycerin ointment in these patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Hemodynamic Effects of Nitroglycerin Ointment in Emergency Department Patients

    PubMed Central

    Mumma, Bryn E.; Dhingra, Kapil R.; Kurlinkus, Charley; Diercks, Deborah B.

    2014-01-01

    Background Nitroglycerin ointment is commonly used in the treatment of emergency department (ED) patients with suspected acute heart failure (AHF) or suspected acute coronary syndrome (ACS), but its hemodynamic effects in this population are not well described. Objectives Our objective was to assess effect of nitroglycerin ointment on mean arterial pressure (MAP) and systemic vascular resistance (SVR) in ED patients receiving nitroglycerin. We hypothesized that nitroglycerin ointment would result in a reduction of MAP and SVR in the acute treatment of patients. Methods We conducted a prospective, observational pilot study in a convenience sample of adult patients from a single ED who were treated with nitroglycerin ointment. Impedance cardiography was used to measure MAP, SVR, cardiac output (CO), stroke volume (SV), and thoracic fluid content (TFC) at baseline and at 30, 60, and 120 minutes following application of nitroglycerin ointment. Mixed effects regression models with random slope and random intercept were used to analyze changes in hemodynamic parameters from baseline to 30, 60, and 120 minutes after adjusting for age, sex, and final ED diagnosis of AHF. Results Sixty-four subjects with mean age 55 years (IQR 48-67) were enrolled; 59% were male. In the adjusted analysis, MAP and TFC decreased following application of nitroglycerin ointment (p=0.001 and p=0.043, respectively). CI, CO, SVR, and SV showed no change (p=0.113, p=0.085, p=0.570, and p=0.076, respectively) over time. Conclusions Among ED patients who are treated with nitroglycerin ointment, MAP and TFC decrease over time. However, other hemodynamic parameters do not change following application of nitroglycerin ointment in these patients. PMID:24698507

  1. Differential Hemodynamic Response in Affective Circuitry with Aging: An fMRI Study of Novelty, Valence, and Arousal

    PubMed Central

    Moriguchi, Yoshiya; Negreira, Alyson; Weierich, Mariann; Dautoff, Rebecca; Dickerson, Bradford C.; Wright, Christopher I.; Barrett, Lisa Feldman

    2011-01-01

    Emerging evidence indicates that stimulus novelty is affectively potent and reliably engages the amygdala and other portions of the affective workspace in the brain. Using fMRI, we examined whether novel stimuli remain affectively salient across the lifespan, and therefore, whether novelty processing—a potentially survival-relevant function—is preserved with aging. Nineteen young and 22 older healthy adults were scanned during observing novel and familiar affective pictures while estimating their own subjectively experienced aroused levels. We investigated age-related difference of magnitude of activation, hemodynamic time course, and functional connectivity of BOLD responses in the amygdala. Although there were no age-related differences in the peak response of the amygdala to novelty, older individuals showed a narrower, sharper (i.e., “peakier”) hemodynamic time course in response to novel stimuli, as well as decreased connectivity between the left amygdala and the affective areas including orbito-frontal regions. These findings have relevance for understanding age-related differences in memory and affect regulation. PMID:20521849

  2. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  3. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics.

    PubMed

    Farzam, Parisa; Johansson, Johannes; Mireles, Miguel; Jiménez-Valerio, Gabriela; Martínez-Lozano, Mar; Choe, Regine; Casanovas, Oriol; Durduran, Turgut

    2017-05-01

    The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.

  4. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor

    PubMed Central

    Ojeda, Norma B.; Royals, Thomas P.

    2013-01-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg−1·min−1) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg−1·min−1) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats. PMID:23344570

  5. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor.

    PubMed

    Ojeda, Norma B; Royals, Thomas P; Alexander, Barbara T

    2013-04-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg(-1)·min(-1)) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.

  6. Using functional hemodynamic indicators to guide fluid therapy.

    PubMed

    Bridges, Elizabeth

    2013-05-01

    Hemodynamic monitoring has traditionally relied on such static pressure measurements as pulmonary artery occlusion pressure and central venous pressure to guide fluid therapy. Over the past 15 years, however, there's been a shift toward less invasive or noninvasive monitoring methods, which use "functional" hemodynamic indicators that reflect ventilator-induced changes in preload and thereby more accurately predict fluid responsiveness. The author reviews the physiologic principles underlying functional hemodynamic indicators, describes how the indicators are calculated, and discusses when and how to use them to guide fluid resuscitation in critically ill patients.

  7. Hemodynamic responses of unfit healthy women at a training session with nintendo wii: a possible impact on the general well-being.

    PubMed

    Monteiro-Junior, Renato S; Figueiredo, Luiz F; Conceição, Isabel; Carvalho, Carolina; Lattari, Eduardo; Mura, Gioia; Machado, Sérgio; da Silva, Elirez B

    2014-01-01

    The purpose of this study was assess the effect of a training session with Nintendo Wii® on the hemodynamic responses of healthy women not involved in regular physical exercise. Twenty-five healthy unfit women aged 28 ± 6 years played for 10 minutes the game Free Run (Wii Fit Plus). The resting heart rate (RHR), systolic and diastolic blood pressures (SBP and DBP), and double (rate-pressure) product (DP) were measured before and after activity. The HR during the activity (exercise heart rate, EHR) was measured every minute. A statistically significant difference was observed between the RHR (75 ± 9 bpm) and the mean EHR (176 ± 15 bpm) (P < 0.001). The EHR remained in the target zone for aerobic exercise until the fifth minute of activity, which coincided with the upper limit of the aerobic zone (80% heart rate reserve (HRR) + RHR) from the sixth to tenth minute. The initial (110 ± 8 mmHg) and final (145 ± 17 mmHg) SBP (P < 0.01) were significantly different, as were the initial (71 ± 8 mmHg) and final (79 ± 9 mmHg) DBP (P < 0.01). A statistically significant difference was observed between the pre- (8.233 ± 1.141 bpm-mmHg) and post-activity (25.590 ± 4.117 bpm-mmHg) DP (P < 0.01). Physical exercise while playing Free Run sufficed to trigger acute hemodynamic changes in healthy women who were not engaged in regular physical exercise.

  8. [Hemodynamic changes in hypoglycemic shock].

    PubMed

    Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L

    1977-01-01

    Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.

  9. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  10. Renal hemodynamics in space.

    PubMed

    Kramer, H J; Heer, M; Cirillo, M; De Santo, N G

    2001-09-01

    Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.

  11. [Perioperative acute kidney injury and failure].

    PubMed

    Chhor, Vibol; Journois, Didier

    2014-04-01

    Perioperative period is very likely to lead to acute renal failure because of anesthesia (general or perimedullary) and/or surgery which can cause acute kidney injury. Characterization of acute renal failure is based on serum creatinine level which is imprecise during and following surgery. Studies are based on various definitions of acute renal failure with different thresholds which skewed their comparisons. The RIFLE classification (risk, injury, failure, loss, end stage kidney disease) allows clinicians to distinguish in a similar manner between different stages of acute kidney injury rather than using a unique definition of acute renal failure. Acute renal failure during the perioperative period can mainly be explained by iatrogenic, hemodynamic or surgical causes and can result in an increased morbi-mortality. Prevention of this complication requires hemodynamic optimization (venous return, cardiac output, vascular resistance), discontinuation of nephrotoxic drugs but also knowledge of the different steps of the surgery to avoid further degradation of renal perfusion. Diuretics do not prevent acute renal failure and may even push it forward especially during the perioperative period when venous retourn is already reduced. Edema or weight gain following surgery are not correlated with the vascular compartment volume, much less with renal perfusion. Treatment of perioperative acute renal failure is similar to other acute renal failure. Renal replacement therapy must be mastered to prevent any additional risk of hemodynamic instability or hydro-electrolytic imbalance. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  12. Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease.

    PubMed

    Baigorri, F; de Monte, A; Blanch, L; Fernández, R; Vallés, J; Mestre, J; Saura, P; Artigas, A

    1994-11-01

    To study the effect of positive end-expiratory pressure (PEEP) on right ventricular hemodynamics and ejection fraction in patients with chronic obstructive pulmonary disease and positive alveolar pressure throughout expiration by dynamic hyperinflation (auto-PEEP). Open, prospective, controlled trial. General intensive care unit of a community hospital. Ten patients sedated and paralyzed with an acute exacerbation of chronic obstructive pulmonary disease undergoing mechanical ventilation. Insertion of a pulmonary artery catheter modified with a rapid response thermistor and a radial arterial catheter. PEEP was then increased from 0 (PEEP 0) to auto-PEEP level (PEEP = auto-PEEP) and 5 cm H2O above that (PEEP = auto-PEEP +5). At each level of PEEP, airway pressures, flow and volume, hemodynamic variables (including right ventricular ejection fraction by thermodilution technique), and blood gas analyses were recorded. The mean auto-PEEP was 6.6 +/- 2.8 cm H2O and the total PEEP reached was 12.2 +/- 2.4 cm H2O. The degree of lung inflation induced by PEEP averaged 145 +/- 87 mL with PEEP = auto-PEEP and 495 +/- 133 mL with PEEP = auto-PEEP + 5. The PEEP = auto-PEEP caused a right ventricular end-diastolic pressure increase, but there was no other significant hemodynamic change. With PEEP = auto-PEEP + 5, there was a significant increase in intravascular pressures; this amount of PEEP reduced cardiac output (from 4.40 +/- 1.38 L/min at PEEP 0 to 4.13 +/- 1.48 L/min; p < .05). The cardiac output reduction induced by PEEP = auto-PEEP + 5 was > 10% in only five cases and this group of patients had significantly lower right ventricular volumes than the group with less cardiac output variation (right ventricular end-diastolic volume: 64 +/- 9 vs. 96 +/- 26 mL/m2; right ventricular end-systolic volume: 38 +/- 6 vs. 65 +/- 21 mL/m2; p < .05) without significant difference in the other variables that were measured. Neither right ventricular ejection fraction nor right ventricle

  13. Renal Hemodynamics and Ammoniagenesis

    PubMed Central

    Lemieux, Guy; Vinay, Patrick; Cartier, Pierre

    1974-01-01

    Renal production of ammonia by the left kidney was studied in 31 acidotic dogs (NH4Cl) after acute constriction of the renal artery. Renal ammoniagenesis fell in direct proportion with the reduction in glomerular filtration rate and renal plasma flow. The renal extraction of glutamine by the experimental kidney fell in direct proportion with the reduction in renal hemodynamics. Extracted glutamine remained greater than filtered glutamine indicating that both the luminal and antiluminal transport sites were operative. The relationship between renal extraction of glutamine and ammoniagenesis observed during control was maintained after renal artery constriction (1.7 μmol NH3 produced for each μmol of glutamine extracted). Systemic venous or renal intra-arterial infusion of glutamine during arterial constriction increased renal production of ammonia to or above control values. These observations indicate that the mechanisms responsible for glutamine extraction and ammonia production were operating normally despite reduced hemodynamics. When measured immediately after arterial clamping, the renal venous pNH3 was found to rise significantly decreasing progressively thereafter towards control values. The extracted fraction of total glutamine delivered to the kidney (31%) did not change after acute reduction of the glutamine load. Thus, the antiluminal extraction site was incapable of lowering renal venous plasma glutamine concentration below 0.33 μM/ml. In a second series of experiments, the properties of the antiluminal site of transport for glutamine were studied after complete occlusion of the left ureter in acidotic and nonacidotic animals. Under these circumstances, it was demonstrated that the antiluminal site is capable of extracting sufficient glutamine to maintain total ammonia production at 60% or more of control. In acidotic animals, changes in cellular pNH3 appeared to play a key role on the antiluminal extraction of glutamine since the significant rise in

  14. Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study

    NASA Astrophysics Data System (ADS)

    Lee, Songhyun; Kim, Jae Gwan

    2018-04-01

    Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.

  15. Which hemodynamic parameter predicts nitroglycerin-potentiated head-up tilt test response?

    PubMed

    Russo, Vincenzo; Papa, Andrea Antonio; Ciardiello, Carmine; Rago, Anna; Proietti, Riccardo; Calabrò, Paolo; Russo, Maria Giovanna; Nigro, Gerardo

    2015-04-01

    The aim of our study was to identify the early hemodynamic predictors of head-up tilt test (HUTT) outcome in healthy patients with recurrent unexplained syncope. The study involved 95 patients (mean age 38 ± 15; 42 male) who were referred for the evaluation of the syncopal episodes from October 2012 to May 2013. According to the nitroglycerin-potentiated diagnostic tilt test response, the study population was divided into two groups: HUTT+ Group (61 patients, mean age 37 ± 10; 27 male) and HUTT- Group (34 patients, mean age 38 ± 11; 15 male) with no tilt-induced syncope. Finger arterial blood pressure (BP) was recorded during tilt testing. Left ventricular stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were computed from the pressure pulsations. After nitroglycerin administration, the HUTT+ Group showed a significant increase in heart rate (92.0 ± 7.3 beats/min vs 68.9 ± 8.7 beats/min, P < 0.0001), with well-maintained systolic BP (111.6 ± 14.1 mm Hg vs 108.8 ± 11.5 mm Hg; P = 0.332) and diastolic BP (66.1 ± 8.5 mm Hg vs 63.1 ± 6.9 mm Hg; P = 0.0913); a significant decrease in SV (53.9 ± 8.0 mL vs 78.6 ± 8.2 mL; P < 0.0001) and CO (4.0 ± 0.5 L/min vs 5.8 ± 1.0 L/min; P < 0.001), and a significant increase in TPR (1.3 ± 0.3 U vs 0.9 ± 0.2 U, P < 0.0011). We tested three hemodynamic parameters (SV, CO, and TPR) as predictors of positive tilt test response with receiver-operating characteristic curve analysis. Our results show that, 2 minutes after nitroglycerin administration, a statistically significant decrease of SV values (<67 mL) strongly predicts (area under the curve, 0.985; P < 0.0001) the HUTT-positive response in healthy patients with recurrent unexplained syncope. © 2015 Wiley Periodicals, Inc.

  16. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes.

    PubMed

    Stupin, Marko; Stupin, Ana; Rasic, Lidija; Cosic, Anita; Kolar, Luka; Seric, Vatroslav; Lenasi, Helena; Izakovic, Kresimir; Drenjancevic, Ines

    2018-02-01

    The effect of acute exhaustive exercise session on skin microvascular reactivity was assessed in professional rowers and sedentary subjects. A potential involvement of altered hemodynamic parameters and/or oxidative stress level in the regulation of skin microvascular blood flow by acute exercise were determined. Anthropometric, biochemical, and hemodynamic parameters were measured in 18 young healthy sedentary men and 20 professional rowers who underwent a single acute exercise session. Post-occlusive reactive hyperemia (PORH), endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) microvascular responses were assessed by laser Doppler flowmetry in skin microcirculation before and after acute exercise. Serum lipid peroxidation products and plasma antioxidant capacity were measured using spectrophotometry. At baseline, rowers had significantly lower diastolic blood pressure (DBP) and heart rate (HR), and higher stroke volume (SV), PORH, and endothelium-dependent vasodilation than sedentary. Acute exercise caused a significant increase in systolic blood pressure, DBP, HR, and SV and a decrease in total peripheral resistance in both groups. Acute exercise induced a significant impairment in PORH and ACh-induced response in rowers, but not in sedentary, whereas the SNP-induced vasodilation was not affected by acute exercise in any group. Antioxidant capacity significantly increased only in sedentary after acute exercise. Single acute exercise session impaired microvascular reactivity and endothelial function in rowers but not in sedentary, possibly due to (1) more rowing grades and higher exercise intensity achieved by rowers; (2) a higher increase in arterial pressure in rowers than in sedentary men; and (3) a lower antioxidant capacity in rowers.

  17. Comparison of hemodynamic response to adrenaline infiltration in children undergoing cleft palate repair during general anesthesia with sevoflurane and isoflurane.

    PubMed

    Gunnam, Poojita Reddy; Durga, Padmaja; Gurajala, Indira; Kaluvala, Prasad Rao; Veerabathula, Prardhana; Ramachandran, Gopinath

    2016-01-01

    Systemic absorption of adrenaline often used for infiltration during cleft palate surgery leads to adverse hemodynamic responses. These hemodynamic responses may be attenuated by the volatile anesthetics. This study aims to compare the hemodynamic responses to adrenaline infiltration during isoflurane (ISO) and sevoflurane (SEVO) anesthesia. Sixty children aged between 9 months and 48 months, weighing between 8 kg and 20 kg, undergoing primary repair of cleft palate were randomly allocated into two groups: Group ISO - anesthesia maintained with ISO (2 minimum alveolar concentrations [MAC]) and nitrous oxide 50% and group SEVO - maintained on SEVO (2 MAC) and nitrous oxide 50%. Surgical site was infiltrated with 1 ml/kg of 1:200,000 solution of adrenaline with 0.5% lignocaine. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) were noted at the end of infiltration and every 1 min for 5 min following infiltration. The percentage change of hemodynamic responses from baseline, following infiltration were compared between the two groups. There was no significant change in HR from baseline, and the response was comparable between the agents at all times. The blood pressure (BP) increased from baseline in both the groups but the increase was greater in SEVO than ISO group at 2 and 3 min after infiltration. The maximum change in HR from baseline (group ISO median 10.9% [interquartile range (IQR) 4.5-23.0] vs. group SEVO 26.5% [11.9-44.6]) was comparable in both the groups (P = 0.169). The maximum change in SBP was significantly greater in group SEVO than group ISO (42.8% [IQR 20.0-60.9] vs. 26.0 [11.3-44.5], P = 0.04). The incidence of significant change (>20%) of SBP, DBP, and MAP from baseline was significantly greater in group SEVO after infiltration and 1 min and 2 min after infiltration. There were no arrhythmias in any of the groups. Isoflurane results in greater attenuation of rise in BP during

  18. Less or more hemodynamic monitoring in critically ill patients.

    PubMed

    Jozwiak, Mathieu; Monnet, Xavier; Teboul, Jean-Louis

    2018-06-07

    Hemodynamic investigations are required in patients with shock to identify the type of shock, to select the most appropriate treatments and to assess the patient's response to the selected therapy. We discuss how to select the most appropriate hemodynamic monitoring techniques in patients with shock as well as the future of hemodynamic monitoring. Over the last decades, the hemodynamic monitoring techniques have evolved from intermittent toward continuous and real-time measurements and from invasive toward less-invasive approaches. In patients with shock, current guidelines recommend the echocardiography as the preferred modality for the initial hemodynamic evaluation. In patients with shock nonresponsive to initial therapy and/or in the most complex patients, it is recommended to monitor the cardiac output and to use advanced hemodynamic monitoring techniques. They also provide other useful variables that are useful for managing the most complex cases. Uncalibrated and noninvasive cardiac output monitors are not reliable enough in the intensive care setting. The use of echocardiography should be initially encouraged in patients with shock to identify the type of shock and to select the most appropriate therapy. The use of more invasive hemodynamic monitoring techniques should be discussed on an individualized basis.

  19. Hemodynamic and hormonal responses to lower body negative pressure in men with varying profiles of strength and aerobic power

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.

    1993-01-01

    Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.

  20. Oxytocin modulates hemodynamic responses to monetary incentives in humans

    PubMed Central

    Mickey, Brian J.; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T.; Zubieta, Jon-Kar; Love, Tiffany M.

    2016-01-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. Here we examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin’s effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans – even in a non-social context – and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry. PMID:27614896

  1. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  2. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  3. The effects of proton pump inhibitor on hepatic vascular responsiveness and hemodynamics in cirrhotic rats.

    PubMed

    Hsin, I-Fang; Hsu, Shao-Jung; Chuang, Chiao-Lin; Huo, Teh-Ia; Huang, Hui-Chun; Lee, Fa-Yauh; Ho, Hsin-Ling; Chang, Shu-Yu; Lee, Shou-Dong

    2018-05-17

    Liver cirrhosis is associated with increased intrahepatic resistance due to hepatic fibrosis and exaggerated vasoconstriction. Recent studies have indicated that proton pump inhibitors (PPIs), in addition to acid suppression, modulate vasoactive substances and vasoresponsiveness. PPIs are frequently prescribed in patients with cirrhosis due to a higher prevalence of peptic ulcers, however other impacts are unknown. Liver cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). On the 29th day after BDL and after hemodynamic measurements, the intrahepatic vascular responsiveness to high concentrations of endothelin-1 (ET-1) was evaluated after preincubation with (1) Krebs solution (vehicle), (2) esomeprazole (30 μM), or (3) esomeprazole plus N ω -nitro l-arginine (NNA, a non-selective NO synthase (NOS) inhibitor, 10 -4  M). After perfusion, the hepatic protein expressions of endothelial NOS (eNOS), inducible NOS (iNOS), cyclooxygenase (COX)-1, COX-2, endothelin-1, DDAH-1 (dimethylarginine dimethylaminohydrolase-1, ADMA inhibitor), DDAH-2, ADMA (asymmetrical dimethyl arginine, NOS inhibitor) were evaluated. In the chronic model, the BDL rats received (1) vehicle; or (2) esomeprazole (3.6 mg/kg/day, oral gavage) from the 1st to 28th day after BDL. On the 29th day and after hemodynamic measurements, plasma liver biochemistry and liver fibrosis were evaluated. Esomeprazole did not affect hepatic ET-1 vasoresponsiveness. The hepatic protein expressions of the aforementioned factors were not significantly different among the groups. There were no significant differences in hemodynamics, liver biochemistry and hepatic fibrosis after chronic esomeprazole administration. PPIs did not affect hepatic vasoresponsiveness or the release of vasoactive substances. Furthermore, they did not influence hemodynamics, liver biochemistry or severity of hepatic fibrosis in the cirrhotic rats. Copyright © 2018. Published by Elsevier Taiwan LLC.

  4. Hemodynamic Responses of Unfit Healthy Women at a Training Session with Nintendo Wii: A Possible Impact on the General Well-Being

    PubMed Central

    Monteiro-Junior, Renato S; Figueiredo, Luiz F; Conceição, Isabel; Carvalho, Carolina; Lattari, Eduardo; Mura, Gioia; Machado, Sérgio; da Silva, Elirez B

    2014-01-01

    Aims: The purpose of this study was assess the effect of a training session with Nintendo Wii® on the hemodynamic responses of healthy women not involved in regular physical exercise. Method: Twenty-five healthy unfit women aged 28 ± 6 years played for 10 minutes the game Free Run (Wii Fit Plus). The resting heart rate (RHR), systolic and diastolic blood pressures (SBP and DBP), and double (rate-pressure) product (DP) were measured before and after activity. The HR during the activity (exercise heart rate, EHR) was measured every minute. Results: A statistically significant difference was observed between the RHR (75 ± 9 bpm) and the mean EHR (176 ± 15 bpm) (P < 0.001). The EHR remained in the target zone for aerobic exercise until the fifth minute of activity, which coincided with the upper limit of the aerobic zone (80% heart rate reserve (HRR) + RHR) from the sixth to tenth minute. The initial (110 ± 8 mmHg) and final (145 ± 17 mmHg) SBP (P < 0.01) were significantly different, as were the initial (71 ± 8 mmHg) and final (79 ± 9 mmHg) DBP (P < 0.01). A statistically significant difference was observed between the pre- (8.233 ± 1.141 bpm-mmHg) and post-activity (25.590 ± 4.117 bpm-mmHg) DP (P < 0.01). Conclusion: Physical exercise while playing Free Run sufficed to trigger acute hemodynamic changes in healthy women who were not engaged in regular physical exercise. PMID:25614754

  5. MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI*

    PubMed Central

    Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili

    2012-01-01

    In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and temporal information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR) model. PMID:24533041

  6. Hemodynamic Characteristics Including Pulmonary Hypertension at Rest and During Exercise Before and After Heart Transplantation

    PubMed Central

    Lundgren, Jakob; Rådegran, Göran

    2015-01-01

    Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230

  7. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain.

    PubMed

    Kisler, Kassandra; Lazic, Divna; Sweeney, Melanie D; Plunkett, Shane; El Khatib, Mirna; Vinogradov, Sergei A; Boas, David A; Sakadži, Sava; Zlokovic, Berislav V

    2018-06-01

    Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O 2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO 2 ) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO 2 level, which is better suited to a more experienced, postdoctoral-level researcher.

  8. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  9. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  10. Differences in the Pulsatile Component of the Skin Hemodynamic Response to Verbal Fluency Tasks in the Forehead and the Fingertip

    PubMed Central

    Takahashi, Toshimitsu; Takikawa, Yoriko; Kawagoe, Reiko

    2016-01-01

    Several studies have claimed that hemodynamic signals measured by near-infrared spectroscopy (NIRS) on the forehead exhibit different patterns during a verbal fluency task (VFT) in various psychiatric disorders, whereas many studies have noted that NIRS signals can reflect task-related changes in skin blood flow. If such a task-related skin hemodynamic response is also observed in the fingertip, a simpler biomarker may be developed. Furthermore, determining the difference in the response pattern may provide physiological insights into the condition. We found that the magnitude of the pulsatile component in skin hemodynamic signals increased on the forehead (p < 0.001 for N = 50, p = 0.073 for N = 8) but decreased on the fingertip (p < 0.001, N = 8) during the VFT, whereas the rate in both areas increased (p < 0.02, N = 8). We also did not find a repetition effect in both the rate and the magnitude on the fingertip, whereas the effect was present in the magnitude (p < 0.02, N = 8) but not in the rate on the forehead. These results suggest that the skin vasomotor system in the forehead could have a different vessel mechanism to psychological tasks compared to the fingertip. PMID:26905432

  11. Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock.

    PubMed

    Fried, Justin A; Nair, Abhinav; Takeda, Koji; Clerkin, Kevin; Topkara, Veli K; Masoumi, Amirali; Yuzefpolskaya, Melana; Takayama, Hiroo; Naka, Yoshifumi; Burkhoff, Daniel; Kirtane, Ajay; Dimitrios Karmpaliotis, S M; Moses, Jeffrey; Colombo, Paolo C; Garan, A Reshad

    2018-03-20

    The role of the intra-aortic balloon pump (IABP) in acute decompensated heart failure (HF) with cardiogenic shock (CS) is largely undefined. In this study we sought to assess the hemodynamic and clinical response to IABP in chronic HF patients with CS and identify predictors of response to this device. We retrospectively reviewed all patients undergoing IABP implantation from 2011 to 2016 at our institution to identify chronic HF patients with acute decompensation and CS (cardiac index <2.2 liters/min/m 2 and systolic blood pressure <90 mm Hg or need for vasoactive medications to maintain this level). Clinical deterioration on IABP was defined as failure to bridge to either discharge on medical therapy or durable heart replacement therapy (HRT; durable left ventricular assist device or heart transplant) with IABP alone. We identified 132 chronic HF patients with IABP placed after decompensation with hemodynamic evidence of CS. Overall 30-day survival was 84.1%, and 78.0% of patients were successfully bridged to HRT or discharge without need for escalation of device support. The complication rate during IABP support was 2.3%. Multivariable analysis identified ischemic cardiomyopathy (odds ratio [OR] 3.24, 95% confidence interval [CI] 1.16 to 9.06; p = 0.03) and pulmonary artery pulsatility index (PAPi) <2.0 (OR 5.04, 95% CI 1.86 to 13.63; p = 0.001) as predictors of clinical deterioration on IABP. Overall outcomes with IABP in acute decompensated chronic HF patients are encouraging, and IABP is a reasonable first-line device for chronic HF patients with CS. Baseline right ventricular function, as measured by PAPi, is a major predictor of outcomes with IABP in this population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.

    PubMed

    Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J

    2015-01-01

    Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.

  13. Effect of Etomidate Versus Combination of Propofol-Ketamine and Thiopental-Ketamine on Hemodynamic Response to Laryngoscopy and Intubation: A Randomized Double Blind Clinical Trial.

    PubMed

    Gholipour Baradari, Afshin; Firouzian, Abolfazl; Zamani Kiasari, Alieh; Aarabi, Mohsen; Emadi, Seyed Abdollah; Davanlou, Ali; Motamed, Nima; Yousefi Abdolmaleki, Ensieh

    2016-02-01

    Laryngoscopy and intubation frequently used for airway management during general anesthesia, is frequently associated with undesirable hemodynamic disturbances. The aim of this study was to compare the effects of etomidate, combination of propofol-ketamine and thiopental-ketamine as induction agents on hemodynamic response to laryngoscopy and intubation. In a double blind, randomized clinical trial a total of 120 adult patients of both sexes, aged 18 - 45 years, scheduled for elective surgery under general anesthesia were randomly assigned into three equally sized groups. Patients in group A received etomidate (0.3 mg/kg) plus normal saline as placebo. Patients in group B and C received propofol (1.5 mg/kg) plus ketamine (0.5 mg/kg) and thiopental sodium (3 mg/kg) plus ketamine (0.5 mg/kg), respectively for anesthesia induction. Before laryngoscopy and tracheal intubation, immediately after, and also one and three minutes after the procedures, hemodynamic values (SBP, DBP, MAP and HR) were measured. A repeated measurement ANOVA showed significant changes in mean SBP and DBP between the time points (P < 0.05). In addition, the main effect of MAP and HR were statistically significant during the course of study (P < 0.05). Furthermore, after induction of anesthesia, the three study groups had significantly different SBP, DBP and MAP changes overtime (P < 0.05). However, HR changes over time were not statistically significant (P > 0.05). Combination of propofol-ketamine had superior hemodynamic stability compared to other induction agents. Combination of propofol-ketamine may be recommended as an effective and safe induction agent for attenuating hemodynamic responses to laryngoscopy and intubation with better hemodynamic stability. Although, further well-designed randomized clinical trials to confirm the safety and efficacy of this combination, especially in critically ill patients or patients with cardiovascular disease, are warranted.

  14. Effects of pumpless extracorporeal lung assist on hemodynamics, gas exchange and inflammatory cascade response during experimental lung injury

    PubMed Central

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2018-01-01

    Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfusion require further study to be determined. After induction of acute lung injury (ALI) by oleic acid injection, pECLA was implemented in 12 anaesthetized and mechanically ventilated dogs for 48 h. Improved oxygenation [partial oxygen pressure (PaO2) and oxygen saturation (SaO2) was measured by arterial blood gas analysis, and increased by 29 and 18%, respectively] and CO2 elimination (partial CO2 pressure decreased by 43.35%) were obtained after pECLA implementation. A maximum arterio-venous shunt flow of up to 25% of the foundational CO resulted in stable hemodynamics. The pECLA procedure did not elicit any further increase in the concentration of tumor necrosis factor-α, interleukin (IL)-6, IL-8 and endothelin-1 compared with that in the group subjected to oleic acid injection only. In addition, the pECLA procedure had no effect on lactate levels and urine production. In conclusion, pECLA is an efficient and promising strategy for providing a mild to moderate oxygenation and adequate decarboxylation, while avoiding excessive inflammatory cascade response and tissue hypoperfusion in an experimental ALI model. PMID:29434789

  15. Prognostic value of noninvasive hemodynamic evaluation of the acute effect of levosimendan in advanced heart failure.

    PubMed

    Malfatto, Gabriella; Della Rosa, Francesco; Rella, Valeria; Villani, Alessandra; Branzi, Giovanna; Blengino, Simonetta; Giglio, Alessia; Facchini, Mario; Parati, Gianfranco

    2014-04-01

    Optimization of inotropic treatment in worsening heart failure sometimes requires invasive hemodynamic assessment in selected patients. Impedance cardiography (ICG) may be useful for a noninvasive hemodynamic evaluation. ICG was performed in 40 patients (69 ± 8 years; left ventricular ejection fraction 27.5 ± 5.6%; New York Heart Association 3.18 ± 0.34; Interagency Registry for Mechanically Assisted Circulatory Support 5.48 ± 0.96, before and after infusion of Levosimendan (0.1–0.2 µg/kg per min for up to 24 h). Echocardiogram, ICG [measuring cardiac index (CI), total peripheral resistances (TPRs) and thoracic fluid content (TFC)] and plasma levels of brain natriuretic peptide (BNP) were obtained; in nine patients, right heart catheterization was also carried out. When right catheterization and ICG were performed simultaneously, a significant relationship was observed between values of CI and TPR, and between TFC and pulmonary wedge pressure. ICG detected the Levosimendan-induced recovery of the hemodynamic status, associated with improved systolic and diastolic function and reduction in BNP levels. One-year mortality was 4.4%. At multivariate analysis, independent predictors of mortality were: no improvement in the severity of mitral regurgitation, a persistent restrictive filling pattern (E/E’ > 15), a reduction of BNP levels below 30% and a change below 10% in CI, TPR and TFC. When combined, absence of hemodynamic improvement at ICG could predict 1-year mortality with better sensitivity (86%) and specificity (85%) than the combination of echocardiographic and BNP criteria only (sensitivity 80% and specificity 36%). Noninvasive hemodynamic evaluation of heart failure patients during infusion of inodilator drugs is reliable and may help in their prognostic stratification.

  16. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  17. Resting-state functional MRI as a tool for evaluating brain hemodynamic responsiveness to external stimuli in rats.

    PubMed

    Paasonen, Jaakko; Salo, Raimo A; Huttunen, Joanna K; Gröhn, Olli

    2017-09-01

    Anesthesia is a major confounding factor in functional MRI (fMRI) experiments attributed to its effects on brain function. Recent evidence suggests that parameters obtained with resting-state fMRI (rs-fMRI) are coupled with anesthetic depth. Therefore, we investigated whether parameters obtained with rs-fMRI, such as functional connectivity (FC), are also directly related to blood-oxygen-level-dependent (BOLD) responses. A simple rs-fMRI protocol was implemented in a pharmacological fMRI study to evaluate the coupling between hemodynamic responses and FC under five anesthetics (α-chloralose, isoflurane, medetomidine, thiobutabarbital, and urethane). Temporal change in the FC was evaluated at 1-hour interval. Supplementary forepaw stimulation experiments were also conducted. Under thiobutabarbital anesthesia, FC was clearly coupled with nicotine-induced BOLD responses. Good correlation values were also obtained under isoflurane and medetomidine anesthesia. The observations in the thiobutabarbital group were supported by forepaw stimulation experiments. Additionally, the rs-fMRI protocol revealed significant temporal changes in the FC in the α-chloralose, thiobutabarbital, and urethane groups. Our results suggest that FC can be used to estimate brain hemodynamic responsiveness to stimuli and evaluate the level and temporal changes of anesthesia. Therefore, analysis of the fMRI baseline signal may be highly valuable tool for controlling the outcome of preclinical fMRI experiments. Magn Reson Med 78:1136-1146, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Association between percutaneous hemodynamic support device and survival from cardiac arrest in the state of Michigan.

    PubMed

    Pressman, Andrew; Sawyer, Kelly N; Devlin, William; Swor, Robert

    2018-05-01

    The role of circulatory support in the post-cardiac arrest period remains controversial. Our objective was to investigate the association between treatment with a percutaneous hemodynamic support device and outcome after admission for cardiac arrest. We performed a retrospective study of adult patients with admission diagnosis of cardiac arrest or ventricular fibrillation (VF) from the Michigan Inpatient Database, treated between July 1, 2010, and June 30, 2013. Patient demographics, clinical characteristics, treatments, and disposition were electronically abstracted based on ICD-9 codes at the hospital level. Mixed-effects logistic regression models were fit to test the effect of percutaneous hemodynamic support device defined as either percutaneous left ventricular assist device (pLVAD) or intra-aortic balloon pump (IABP) on survival. These models controlled for age, sex, VF, myocardial infarction (MI), and cardiogenic shock with hospital modeled as a random effect. A total of 103 hospitals contributed 4393 patients for analysis, predominately male (58.8%) with a mean age of 64.1years (SD 15.5). On univariate analysis, younger age, male sex, VF as the initial rhythm, acute MI, percutaneous coronary intervention, percutaneous hemodynamic support device, and absence of cardiogenic shock were associated with survival to discharge (each p<0.001). Mixed-effects logistic regressions revealed use of percutaneous hemodynamic support device was significantly associated with survival among all patients (OR 1.8 (1.28-2.54)), and especially in those with acute MI (OR 1.95 (1.31-2.93)) or cardiogenic shock (OR 1.96 (1.29-2.98)). Treatment with percutaneous hemodynamic support device in the post-arrest period may provide left ventricular support and improve outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Experimental study of acute brain swelling under acute intracranial hypertension (author's transl)].

    PubMed

    Shigemori, M; Watanabe, M; Kuramoto, S

    1976-12-01

    There are many problems about the cause, pathophysiology and treatment of acute brain swelling under intracranial hypertension frequently encountered in the neurosurgical clinics. Generally, rapid increase of the cerebral vasoparesis caused by unknown etiology is thought to be the main cause of acute brain swelling under intracranial hypertension. Moreover, disturbance of the cerebral venous circulatory system is discussed recently by many authors. But, research from the point of systemic respiration and hemodynamics is necessary for resolving these problems. This experiment was designed to study the effects of respiration and hemodynamics on the cerebral vasoparesis. Using 22 adult dogs, acute intracranial hypertension was produced by epidural balloon inflation sustained at the level of 300 - 400 mmH2O. Simultaneously with measurement of intracranial pressure at the epidural space, superior sagittal sinus pressure, respirogram, systemic blood pressure (femoral artery), central venous pressure, common carotid blood flow, EKG and bipolar lead EEG were monitored continuously. The experimental group was divided by the respiratory loading into 5 groups as follows: control (6 cases), 10% CO2 hypercapnia (4 cases), 10% O2 hypoxia (4 cases), stenosis of airway (5 cases), 100% O2-controled respiration (3 cases). 1) Cerebral vasoparesis under acute intracranial hypertension took place earlier and showed more rapid progression in groups of stenosis of airway, hypercapnia and hypoxia than control group of spontaneous respiration in room air. No occurrence of cerebral vasoparesis was found out in a group of 100% O2 controlled respiration. It is proved that increased airway resistance or asphyxia, hypercapnia and hypoxia have strictly reference to the occurrence and progression of cerebral vasoparesis and for the prevention of cerebral vasoparesis, correct 100% O2 cont rolled respiration is effective. 2) From the hemodynamic change, the progression of rapid increase of cerebral

  20. Effects of active, passive and motor imagery paradigms on cerebral and peripheral hemodynamics in older volunteers: a functional TCD study.

    PubMed

    Salinet, Angela S M; Panerai, Ronney B; Robinson, Thompson G

    2012-06-01

    This study aimed to compare the response of metabolic-induced cerebral hemodynamic changes measured using transcranial Doppler (TCD) ultrasonography during passive, active and motor imagery paradigms, and associated peripheral hemodynamic responses. Continuous recordings of bilateral cerebral blood flow velocity (CBFv), blood pressure, heart rate and end-tidal CO(2) were performed in 12 right-handed subjects (aged ≥45 y) before, during and after 60 s of active, passive and mental-imagined paradigms. The results revealed no significant difference in CBFv responses between the paradigms and, furthermore, the temporal patterns of the hemodynamic responses showed some degree of similarity. Moreover, significant changes were seen in cerebral and peripheral hemodynamic responses for all paradigms. Our results suggest that active, passive and motor imagery paradigms can be used interchangeably to assess hemodynamic responses. This will enable more detailed noninvasive assessment in patients, where voluntary movement is not possible, but where abnormalities of cerebral hemodynamic control mechanisms can be anticipated. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study

    PubMed Central

    2013-01-01

    Introduction Knowledge of the association of hemodynamics with progression of septic acute kidney injury (AKI) is limited. However, some recent data suggest that mean arterial pressure (MAP) exceeding current guidelines (60–65 mmHg) may be needed to prevent AKI. We hypothesized that higher MAP during the first 24 hours in the intensive care unit (ICU), would be associated with a lower risk of progression of AKI in patients with severe sepsis. Methods We identified 423 patients with severe sepsis and electronically recorded continuous hemodynamic data in the prospective observational FINNAKI study. The primary endpoint was progression of AKI within the first 5 days of ICU admission defined as new onset or worsening of AKI by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We evaluated the association of hemodynamic variables with this endpoint. We included 53724 10-minute medians of MAP in the analysis. We analysed the ability of time-adjusted MAP to predict progression of AKI by receiver operating characteristic (ROC) analysis. Results Of 423 patients, 153 (36.2%) had progression of AKI. Patients with progression of AKI had significantly lower time-adjusted MAP, 74.4 mmHg [68.3-80.8], than those without progression, 78.6 mmHg [72.9-85.4], P < 0.001. A cut-off value of 73 mmHg for time-adjusted MAP best predicted the progression of AKI. Chronic kidney disease, higher lactate, higher dose of furosemide, use of dobutamine and time-adjusted MAP below 73 mmHg were independent predictors of progression of AKI. Conclusions The findings of this large prospective multicenter observational study suggest that hypotensive episodes (MAP under 73 mmHg) are associated with progression of AKI in critically ill patients with severe sepsis. PMID:24330815

  2. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    PubMed

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.

  3. Physiological Effects of Early Incremental Mobilization of a Patient with Acute Intracerebral and Intraventricular Hemorrhage Requiring Dual External Ventricular Drainage.

    PubMed

    Kumble, Sowmya; Zink, Elizabeth K; Burch, Mackenzie; Deluzio, Sandra; Stevens, Robert D; Bahouth, Mona N

    2017-08-01

    Recent trials have challenged the notion that very early mobility benefits patients with acute stroke. It is unclear how cerebral autoregulatory impairments, prevalent in this population, could be affected by mobilization. The safety of mobilizing patients who have external ventricular drainage (EVD) devices for cerebrospinal fluid diversion and intracranial pressure (ICP) monitoring is another concern due to risk of device dislodgment and potential elevation in ICP. We report hemodynamic and ICP responses during progressive, device-assisted mobility interventions performed in a critically ill patient with intracerebral hemorrhage (ICH) requiring two EVDs. A 55-year-old man was admitted to the Neuroscience Critical Care Unit with an acute thalamic ICH and complex intraventricular hemorrhage requiring placement of two EVDs. Progressive mobilization was achieved using mobility technology devices. Range of motion exercises were performed initially, progressing to supine cycle ergometry followed by incremental verticalization using a tilt table. Physiological parameters were recorded before and after the interventions. All mobility interventions were completed without any adverse event or clinically detectable change in the patient's neurological state. Physiological parameters including hemodynamic variables and ICP remained within prescribed goals throughout. Progressive, device-assisted early mobilization was feasible and safe in this critically ill patient with hemorrhagic stroke when titrated by an interdisciplinary team of skilled healthcare professionals. Studies are needed to gain insight into the hemodynamic and neurophysiological responses associated with early mobility in acute stroke to identify subsets of patients who are most likely to benefit from this intervention.

  4. Droxidopa, an oral norepinephrine precursor, improves hemodynamic and renal alterations of portal hypertensive rats.

    PubMed

    Coll, Mar; Rodriguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Brull, Astrid; Augustin, Salvador; Guardia, Jaime; Esteban, Rafael; Martell, María; Genescà, Joan

    2012-11-01

    We aimed to evaluate the effects of droxidopa (an oral synthetic precursor of norepinephrine) on the hemodynamic and renal alterations of portal hypertensive rats. Sham, portal vein-ligated (PVL), and 4-week biliary duct-ligated (BDL) rats received a single oral dose of droxidopa (25-50 mg/kg) or vehicle and hemodynamic parameters were monitored for 2 hours. Two groups of BDL and cirrhotic rats induced by carbon tetrachloride (CCl(4) ) were treated for 5 days with droxidopa (15 mg/kg, twice daily, orally); hemodynamic parameters and blood and urinary parameters were assessed. The droxidopa effect on the Rho kinase (RhoK) / protein kinase B (AKT) / endothelial nitric oxide synthase (eNOS) pathways was analyzed by western blot in superior mesenteric artery (SMA). The acute administration of droxidopa in PVL and BDL rats caused a significant and maintained increase in arterial pressure and mesenteric arterial resistance, with a significant decrease of mesenteric arterial and portal blood flow, without changing portal pressure and renal blood flow. Two-hour diuresis greatly increased. Carbidopa (DOPA decarboxylase inhibitor) blunted all effects of droxidopa. Chronic droxidopa therapy in BDL rats produced the same beneficial hemodynamic effects observed in the acute study, did not alter liver function parameters, and caused a 50% increase in 24-hour diuresis volume (7.4 ± 0.9 mL/100g in BDL vehicle versus 11.8 ± 2.5 mL/100g in BDL droxidopa; P = 0.01). Droxidopa-treated rats also showed a decreased ratio of p-eNOS/eNOS and p-AKT/AKT and increased activity of RhoK in SMA. The same chronic treatment in CCl(4) rats caused similar hemodynamic effects and produced significant increases in diuresis volume and 24-hour natriuresis (0.08 ± 0.02 mmol/100g in CCl(4) vehicle versus 0.23 ± 0.03 mmol/100g in CCl(4) droxidopa; P = 0.014). Droxidopa might be an effective therapeutic agent for hemodynamic and renal alterations of liver cirrhosis and should be tested in cirrhosis

  5. Cerebral hemodynamic changes in stroke during sleep-disordered breathing.

    PubMed

    Pizza, Fabio; Biallas, Martin; Kallweit, Ulf; Wolf, Martin; Bassetti, Claudio L

    2012-07-01

    Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB. Eleven patients (7 men, age 61±13 years) with acute/subacute middle cerebral artery stroke (National Institutes of Health Stroke Scale score 10±7) and SDB (apnea-hypopnea index 32±28/hour) were assessed with nocturnal polysomnography and bilateral near-infrared spectroscopy recording. Cerebral oxygenation and hemoglobin concentration changes during obstructive and central apneas were analyzed. During SDB, near-infrared spectroscopy showed asymmetrical patterns of cerebral oxygenation and hemoglobin concentrations with changes significantly larger on the unaffected compared with the affected hemisphere. Brain tissue hypoxia was more severe during obstructive compared with central apneas. Profound cerebral deoxygenation effects of SDB occurred in acute/subacute stroke. These changes may contribute to poor outcome, arising in the possibility of a potential benefit of SDB treatment in stroke management.

  6. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    PubMed

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  7. A Revised Hemodynamic Theory of Age-Related Macular Degeneration

    PubMed Central

    Gelfand, Bradley D.; Ambati, Jayakrishna

    2016-01-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  8. The nursing perspective on monitoring hemodynamics and oxygen transport.

    PubMed

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  9. Short-term vascular hemodynamic responses to isometric exercise in young adults and in the elderly.

    PubMed

    Hartog, Renee; Bolignano, Davide; Sijbrands, Eric; Pucci, Giacomo; Mattace-Raso, Francesco

    2018-01-01

    Vascular aging is known to induce progressive stiffening of the large elastic arteries, altering vascular hemodynamics under both rest and stress conditions. In this study, we aimed to investigate changes in vascular hemodynamics in response to isometric handgrip exercise across ages. We included 62 participants, who were divided into three age categories: 20-40 (n=22), 41-60 (n=20), and 61-80 (n=20) years. Vascular hemodynamics were measured using the Mobil-o-Graph ® based on the pulsatile pressure changes in the brachial artery. One-way ANOVA test was performed to analyze the changes induced by isometric handgrip exercise. After isometric handgrip exercise, aortic pulse wave velocity (PWV) increased by 0.10 m/s in the youngest, 0.06 m/s in the middle-age, and 0.02 m/s in the oldest age category. Changes in PWV strongly correlated with those in central systolic blood pressure (cSBP) ( r =0.878, P <0.01). After isometric exercise, the mean change of systolic blood pressure (SBP) was -1.9% in the youngest, 0.6% in the middle-aged, and 8.2% in the oldest subjects. Increasing handgrip strength was associated with an increase in SBP and cSBP (1.08 and 1.37 mmHg per 1 kg increase in handgrip strength, respectively, P =0.01). Finally, PWV was significantly associated with increasing handgrip strength with an increase of 0.05 m/s per 1 kg higher handgrip strength ( P =0.01). This study found increased blood pressure levels after isometric challenge and a strong association between handgrip strength and change in blood pressure levels and aortic stiffness in elderly subjects.

  10. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  11. Hemodynamic and inflammatory responses following transumbilical and transthoracic lung wedge resection in a live canine model.

    PubMed

    Lu, Hung-Yi; Chu, Yen; Wu, Yi-Cheng; Liu, Chien-Ying; Hsieh, Ming-Ju; Chao, Yin-Kai; Wu, Ching-Yang; Yuan, Hsu-Chia; Ko, Po-Jen; Liu, Yun-Hen; Liu, Hui-Ping

    2015-04-01

    Single-port transumbilical surgery is a well-established platform for minimally invasive abdominal surgery. The aim of this study was to compare the hemodynamics and inflammatory response of a novel transumbilical technique with that of a conventional transthoracic technique in thoracic exploration and lung resection in a canine model. Sixteen dogs were randomly assigned to undergo transumbilical thoracoscopy (n = 8) or standard thoracoscopy (n = 8). Animals in the umbilical group received lung resection via a 3-cm transumbilical incision in combination with a 2.5-cm transdiaphragmatic incision. Animals in the standard thoracoscopy group underwent lung resection via a 3-cm thoracic incision. Hemodynamic parameters (e.g., mean arterial pressure, heart rate, cardiac index, systemic vascular resistance, and global end-diastolic volume index) and inflammatory parameters (e.g., neutrophil count, neutrophil 2',7' -dichlorohydrofluorescein [DCFH] expression, monocyte count, monocyte inducible nitric oxide synthase expression, total lymphocyte count, CD4+ and CD8+ lymphocyte counts, the CD4+/CD8+ratio, plasma Creactive protein level, interleukin-6 level) were evaluated before surgery, during the operation, and on postoperative days 1, 3, 7, and 14. Lung resections were successfully performed in all 16 animals. There were 2 surgery-related mortality complications (1 animal in each group). In the transumbilical group, 1 death was caused by early extubation before the animal fully recovered from the anesthesia. In the thoracoscopic group, 1 death was caused by respiratory distress and the complication of sepsis at 5 days after surgery. There was no significant difference between the two techniques with regard to the hemodynamic and immunologic impact of the surgeries. This study suggests that the hemodynamic and inflammatory changes with endoscopic lung resection performed by the transumbilical approach are comparable to those after using the conventional transthoracic

  12. Hemodynamic response to intravitreal triamcinolone in eyes with macular edema: intravitreal triamcinolone and ocular blood flow.

    PubMed

    Cekiç, Osman; Bardak, Yavuz; Tiğ, Sahin U; Demirkol, Aykut; Ekim, Mustafa M; Altintaş, Onem; Yeşildağ, Ahmet; Oyar, Orhan

    2007-10-01

    To assess ocular hemodynamic response to intravitreal triamcinolone in patients with macular edema due to diabetes or retinal vein occlusion. Forty-three patients that were injected by intravitreal triamcinolone acetonide (0.1 cc 4 mg) for unilateral macular edema due to diabetes mellitus (n = 17) and occlusion of retinal vein (n = 26) underwent ocular hemodynamic evaluation by color Doppler imaging (CDI) before and one, two and three months after injection. Non-injected fellow eyes as well as 16 healthy volunteers were also evaluated. In patients with diabetic macular edema, there was no hemodynamic difference between eyes to be injected and non-injected at baseline (P > 0.23). Compared to controls, a significant difference existed in the ophthalmic artery resistant index (P = 0.001) and end-diastolic velocity (P < 0.001) in diabetics. At one month, compared to fellow eyes, change in end diastolic velocity from baseline in treated eyes was significantly decreased in posterior ciliary arteries (0.68 +/- 0.34 cm/s [mean +/- SEM] vs. -1.04 +/- 0.81 cm/s, P = 0.012). Throughout the study period, no significant alteration from baseline in the resistant index of any artery was noted in treated diabetic eyes (P > 0.05). In eyes with retinal vein occlusion, baseline CDI evaluation demonstrated reduced posterior ciliary arteries systolic flow velocity compared to fellow and control eyes (13.24 +/- 1.04 cm/s, 16.37 +/- 0.76 cm/s and 14.33 +/- 1.41 cm/s, respectively, P = 0.007). Increased peak systolic velocity in the posterior ciliary arteries at one week (P = 0.02), one month (P = 0.005) and two months (P = 0.04), and increase in central retinal artery resistant index at one month was noted (P = 0.05). Intravitreal triamcinolone temporarily changed central retinal artery blood flow and posterior ciliary arteries' peak systolic blood velocity in eyes with retinal vein occlusion whilst no response of blood flow to triamcinolone injection but only transiently altered end

  13. Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats

    PubMed Central

    McHugh, Stephen B; Marques-Smith, Andre; Li, Jennifer; Rawlins, J N P; Lowry, John; Conway, Michael; Gilmour, Gary; Tricklebank, Mark; Bannerman, David M

    2013-01-01

    Lesion and electrophysiological studies in rodents have identified the amygdala and hippocampus (HPC) as key structures for Pavlovian fear conditioning, but human functional neuroimaging studies have not consistently found activation of these structures. This could be because hemodynamic responses cannot detect the sparse neuronal activity proposed to underlie conditioned fear. Alternatively, differences in experimental design or fear levels could account for the discrepant findings between rodents and humans. To help distinguish between these alternatives, we used tissue oxygen amperometry to record hemodynamic responses from the basolateral amygdala (BLA), dorsal HPC (dHPC) and ventral HPC (vHPC) in freely-moving rats during the acquisition and extinction of conditioned fear. To enable specific comparison with human studies we used a discriminative paradigm, with one auditory cue [conditioned stimulus (CS)+] that was always followed by footshock, and another auditory cue (CS−) that was never followed by footshock. BLA tissue oxygen signals were significantly higher during CS+ than CS− trials during training and early extinction. In contrast, they were lower during CS+ than CS− trials by the end of extinction. dHPC and vHPC tissue oxygen signals were significantly lower during CS+ than CS− trials throughout extinction. Thus, hemodynamic signals in the amygdala and HPC can detect the different patterns of neuronal activity evoked by threatening vs. neutral stimuli during fear conditioning. Discrepant neuroimaging findings may be due to differences in experimental design and/or fear levels evoked in participants. Our methodology offers a way to improve translation between rodent models and human neuroimaging. PMID:23173719

  14. Acute mobile phones exposure affects frontal cortex hemodynamics as evidenced by functional near-infrared spectroscopy.

    PubMed

    Curcio, Giuseppe; Ferrara, Michele; Limongi, Tania; Tempesta, Daniela; Di Sante, Gabriele; De Gennaro, Luigi; Quaresima, Valentina; Ferrari, Marco

    2009-05-01

    This study aimed to evaluate by functional near-infrared spectroscopy (fNIRS), the effects induced by an acute exposure (40 mins) to a GSM (Global System for Mobile Communications) signal emitted by a mobile phone (MP) on the oxygenation of the frontal cortex. Eleven healthy volunteers underwent two sessions (Real and Sham exposure) after a crossover, randomized, double-blind paradigm. The whole procedure lasted 60 mins: 10-mins baseline (Bsl), 40-mins (Exposure), and 10-mins recovery (Post-Exp). Together with frontal hemodynamics, heart rate, objective and subjective vigilance, and self-evaluation of subjective symptoms were also assessed. The fNIRS results showed a slight influence of the GSM signal on frontal cortex, with a linear increase in [HHb] as a function of time in the Real exposure condition (F(4,40)=2.67; P=0.04). No other measure showed any GSM exposure-dependent changes. These results suggest that fNIRS is a convenient tool for safely and noninvasively investigating the cortical activation in MP exposure experimental settings. Given the short-term effects observed in this study, the results should be confirmed on a larger sample size and using a multichannel instrument that allows the investigation of a wider portion of the frontal cortex.

  15. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  16. Fitter Women Did Not Have Attenuated Hemodynamic Responses to Psychological Stress Compared with Age-Matched Women with Lower Levels of Fitness

    PubMed Central

    Jayasinghe, Sisitha U.; Torres, Susan J.; Hussein, Mais; Fraser, Steve F.; Lambert, Gavin W.; Turner, Anne I.

    2017-01-01

    According to the ‘cross stressor adaptation hypothesis’, regular exercise acts as a buffer against the detrimental effects of stress. Nevertheless, evidence that higher levels of cardiorespiratory fitness moderate hemodynamic responses to acute psychological stress is inconclusive, especially in women. Women aged 30–50 years (in the mid-follicular phase of the menstrual cycle) with higher (n = 17) and lower (n = 17) levels of fitness were subjected to a Trier Social Stress Test (TSST). Continuous, non-invasive measurements were made of beat-to-beat, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), stroke volume (SV), cardiac output (CO), left ventricular ejection time (LVET), maximum slope, pulse interval (PI) and total peripheral resistance (TPR). Maximal oxygen consumption was significantly (p<0.001) higher in the ‘higher fit’ women. Lower fit women had higher fasting glucose, resting heart rate, waist to hip ratios and elevated serum triglyceride and cholesterol/ HDL ratios compared with higher fit women (p<0.05 for all). While all measured parameters (for both groups)displayed significant (p<0.001) responses to the TSST, only HR, PI and LVET differed significantly between higher and lower fit women (p<0.001 for all) with the higher fit women having the larger response in each case. It was also found that higher fit women had significantly shorter time to recovery for maximum slope compared with the lower fit women. These findings provide little support for the notion that higher levels of cardiorespiratory fitness result in lower cardiovascular responsivity to psychological stress in women but may indicate that lower fit women have blunted responses to stress. PMID:28081200

  17. Imagery use and affective responses during exercise: an examination of cerebral hemodynamics using near-infrared spectroscopy.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2013-10-01

    Imagery, as a cognitive strategy, can improve affective responses during moderate-intensity exercise. The effects of imagery at higher intensities of exercise have not been examined. Further, the effect of imagery use and activity in the frontal cortex during exercise is unknown. Using a crossover design (imagery and control), activity of the frontal cortex (reflected by changes in cerebral hemodynamics using near-infrared spectroscopy) and affective responses were measured during exercise at intensities 5% above the ventilatory threshold (VT) and the respiratory compensation point (RCP). Results indicated that imagery use influenced activity of the frontal cortex and was associated with a more positive affective response at intensities above VT, but not RCP to exhaustion (p < .05). These findings provide direct neurophysiological evidence of imagery use and activity in the frontal cortex during exercise at intensities above VT that positively impact affective responses.

  18. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  19. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    PubMed Central

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  20. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury.

    PubMed

    Peters, Esther; Ergin, Bülent; Kandil, Asli; Gurel-Gurevin, Ebru; van Elsas, Andrea; Masereeuw, Rosalinde; Pickkers, Peter; Ince, Can

    2016-12-15

    Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n=18) were subjected to renal ischemia (30min) and reperfusion (I/R), or sham-operated. In a second model, rats (n=18) received a 30min infusion of lipopolysaccharide (LPS; 2.5mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000U/kg) was administered intravenously (15min before reperfusion, or 90min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. Copyright © 2016. Published by Elsevier Inc.

  1. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  2. Randomized controlled study comparing the hemodynamic response to laryngoscopy and endotracheal intubation with McCoy, Macintosh, and C-MAC laryngoscopes in adult patients

    PubMed Central

    Buhari, Faiza Sulaiman; Selvaraj, Venkatesh

    2016-01-01

    Background and Aims: Earlier studies have shown that the type of laryngoscope blade influences the degree of hemodynamic response to endotracheal intubation. The aim of the study was to evaluate the hemodynamic response to oral endotracheal intubation with C-MAC laryngoscopy and McCoy laryngoscopy compared to that of Macintosh laryngoscopy in adult patients under general anesthesia. Material and Methods: This is a prospective randomized parallel group study. Ninety American Society of Anesthesiologists I patients were randomly allotted into three groups. Group A – Macintosh laryngoscopy (control group). Group B – laryngoscopy with McCoy laryngoscope. Group C – laryngoscopy with C-MAC video laryngoscope. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were monitored at baseline (just before induction), just before intubation (T0), 1 min (T1), 3 min (T3), 5 min (T5), and 10 min (T10) after intubation. Intergroup comparison of study parameters was done by unpaired sample t-test for normal data and Mann-Whitney U-test for skewed data. For within-group comparison, the repeated measures of ANOVA for normal data and Friedman followed by Wilcoxon signed rank test for skewed data were performed. Results: In C-MAC group, the HR was significantly higher than the Macintosh group at 3 min after intubation, whereas SBP, DBP, and MAP were significantly higher at 1 min. McCoy group showed a similar response compared to Macintosh group at all time intervals. Conclusion: C-MAC video laryngoscope has a comparatively greater hemodynamic response than Macintosh laryngoscope. PMID:28096584

  3. Cerebral Hemodynamic Effects of Acute Hyperoxia and Hyperventilation after Severe Traumatic Brain Injury

    PubMed Central

    Rangel-Castilla, Leonardo; Lara, Lucia Rivera; Gopinath, Shankar; Swank, Paul R.; Valadka, Alex

    2010-01-01

    Abstract The purpose of this study was to examine the effects of hyperventilation or hyperoxia on cerebral hemodynamic parameters over time in patients with severe traumatic brain injury (TBI). We prospectively studied 186 patients with severe TBI. CO2 and O2 reactivity tests were conducted twice a day on days 1–5 and once daily on days 6–10 after injury. During hyperventilation there was a significant decrease in intracranial pressure (ICP), mean arterial pressure (MAP), jugular venous oxygen saturation (Sjvo2), brain tissue Po2 (Pbto2), and flow velocity (FV). During hyperoxia there was an increase in Sjvo2 and Pbto2, and a small but consistent decrease in ICP, end-tidal carbon dioxide (etco2), partial arterial carbon dioxide pressure (Paco2), and FV. Brain tissue oxygen reactivity during the first 12 h after injury averaged 19.7 ± 3.0%, and slowly decreased over the next 7 days. The autoregulatory index (ARI; normal = 5.3 ± 1.3) averaged 2.2 ± 1.5 on day 1 post-injury, and gradually improved over the 10 days of monitoring. The ARI significantly improved during hyperoxia, by an average of 0.4 ± 1.8 on the left, and by 0.5 ± 1.8 on the right. However, the change in ARI with hyperoxia was much smaller than that observed with hyperventilation. Hyperventilation increased ARI by an average of 1.3 ± 1.9 on the left, and 1.5 ± 2.0 on the right. Pressure autoregulation, as assessed by dynamic testing, was impaired in these head-injured patients. Acute hyperoxia significantly improved pressure autoregulation, although the effect was smaller than that induced by hyperventilation. The very small change in Paco2 induced by hyperoxia does not appear to explain this finding. Rather, the vasoconstriction induced by acute hyperoxia may allow the cerebral vessels to respond better to transient hypotension. Further studies are needed to define the clinical significance of these observations. PMID:20684672

  4. Hemodynamic and tissue oxygenation responses to exercise and beta-adrenergic blockade in patients with hyperthyroidism.

    PubMed

    Monachini, Maristela C; Lage, Silvia G; Ran, Miguel A N; Cardoso, Rita H A; Medeiros, Caio; Caramelli, Bruno; Sposito, Andrei C; Ramires, José A F

    2004-07-01

    Exercise-induced dyspnea is a frequent feature in patients with hyperthyroidism. Data from clinical studies to elucidate the origin of this symptom are lacking. In the current study, we examined the hemodynamic and oxygenation responses to exercise and beta-adrenergic blockade in patients with hyperthyroidism and their relationship with dyspnea. Hemodynamic studies were performed under resting conditions and after isotonic exercise in 15 patients with hyperthyroidism and 11 control subjects. Exercise was applied using a bicycle ergometer, with progressive loads. In the hyperthyroid group, measurements were repeated at rest and during supine exercise after administering 15 mg of intravenous metoprolol. End-diastolic pulmonary artery pressure and cardiac index were higher in the hyperthyroid group than in controls (18.6 +/- 5.3 vs. 11.2 +/- 4.9 mmHg; p = 0.02, and 6.0 +/- 1.7 vs. 2.8 +/- 0.5 l/min/m2; p = 0.0001, respectively). After exercise, there was an increase in end-diastolic pulmonary artery pressure in the hyperthyroid group (18.6 +/- 5.3 to 25.5 +/- 9.9 mmHg; p = 0.02), revealing impaired cardiocirculatory reserve. Pulmonary arteriolar resistance increased significantly in parallel with end-diastolic pulmonary artery pressure after drug administration, suggesting an inadequate cardiovascular response after beta blockade in patients with hyperthyroidism. We observed that functional left ventricular reserve is impaired in patients with hyperthyroidism, suggesting an explanation for the frequent symptom of dyspnea and impaired exercise tolerance. Moreover, we also suggest that beta-adrenergic blockade may adversely affect cardiovascular function in patients with hyperthyroidism.

  5. Hemodynamic and metabolic effects of para- versus intraaortic counterpulsatile circulation supports.

    PubMed

    Lu, Pong-Jeu; Lin, Pao-Yen; Yang, Chi-Fu Jeffrey; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-01-01

    Despite the success of intraaortic balloon counterpulsation, data on physiologic indices and optimal inflation/deflation timing control of chronic counterpulsation devices are unclear. This study explored the acute hemodynamic and metabolic efficacy of a novel 40-ml stroke volume paraaortic blood pump (PABP) versus a standard intraaortic balloon pump (IABP). Acute porcine model was used with eight pigs randomly divided into PABP (n = 4) and IABP (n = 4) groups. Hemodynamic and metabolic measurements were obtained with and without mechanical assistance. In one pig, the inflation/deflation control was adjusted to different settings, with corresponding performance indices measured. The PABP significantly improved classical counterpulsation indices (p ≤ 0.05) and achieved an average beneficial effect on these indices 1.5-3.5 times greater than that of the IABP. Classical metabolic indices (tension time index and endocardial viability ratio [EVR]), and indices new to chronic counterpulsation research (coronary perfusion, left ventricular stroke work (SW), and a newly derived EVR) were also used in assessment. Both IABP assistance and PABP assistance improved these physiologic indices, with a trend toward PABP superiority in reducing left ventricular SW (p = 0.08). An optimal PABP deflation timing occurs during systole (25 milliseconds after the R-wave) and can minimize coronary regurgitation.

  6. White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude

    PubMed Central

    2012-01-01

    Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798

  7. Bolus versus continuous low dose of enalaprilat in congestive heart failure with acute refractory decompensation.

    PubMed

    Podbregar, M; Voga, G; Horvat, M; Zuran, I; Krivec, B; Skale, R; Pareznik, R

    1999-01-01

    The first dose of angiotensin-converting enzyme (ACE) inhibitors may trigger a considerable fall of blood pressure in chronic heart failure. The response may be dose-related. To determine hemodynamic and systemic oxygenation effects of low-dose enalaprilat, we administered intravenous enalaprilat (0.004 mg/kg) as bolus (group B) or continuous 1-hour infusion (group C) in 20 patients with congestive heart failure due to ischemic heart disease with acute decompensation refractory to inotropic, vasodilator and diuretic therapy. Hemodynamic and systemic oxygenation variables were recorded at baseline (+0 min), +30, +60, +120, +180, and +360 min after the start of intervention. Mean arterial pressure (MAP) (p < 0. 001), mean pulmonary artery pressure (MPAP) (p < 0.001), pulmonary artery occlusion pressure (PAOP) (p < 0.001), oxygen extraction ratio (ER) (p < 0.026) decreased regardless of enalaprilat application. Compared to group B, there was in group C prolonged decrease of MAP, MPAP, PAOP, ER and increase of pulmonary artery oxyhemoglobin saturation in regard to baseline values. Cardiac index, heart rate, central venous pressure and oxygen consumption index did not change. A low dose of intravenous enalaprilat (0.004 mg/kg) can be used to safely improve hemodynamics and systemic oxygenation in congestive heart failure due to ischemic heart disease with acute refractory decompensation.

  8. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    PubMed

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening

    PubMed Central

    Schock, Lisa; Dyck, Miriam; Demenescu, Liliana R.; Edgar, J. Christopher; Hertrich, Ingo; Sturm, Walter; Mathiak, Klaus

    2012-01-01

    Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing. PMID:22384105

  10. Effects of different concentrations of isoflurane pretreatment on respiratory mechanics, oxygenation and hemodynamics in LPS-induced acute respiratory distress syndrome model of juvenile piglets.

    PubMed

    Fu, Haibin; Sun, Minli; Miao, Changhong

    2015-01-01

    This study was prospectively designed to investigate the effects of different concentrations of isoflurane (ISO) pretreatment on respiratory mechanics, oxygenation, and hemodynamics in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) model of juvenile piglets. Twenty-four piglets (9-14 kg, 5-6 weeks old) were randomly assigned to four groups (n = 6): LPS group, which was injected with LPS (20 μg/kg) to induce ARDS; 0.5 ISO-LPS, 1.0 ISO-LPS, and 1.3 ISO-LPS groups, which were pretreated with 0.5, 1.0, and 1.3 minimum alveolar concentrations (MAC) ISO for 30 min before immediate LPS infusion, respectively. After establishment of ARDS, respiratory mechanism, oxygenation and hemodynamics parameters were measured at baseline, and 0, 1, 2, 3, and 4 hours after induction of ARDS. After induction of ARDS, there were increases in alveolar-arterial oxygen difference (A-aDO2), oxygenation index (OI), mean airway pressure (MAP), dead space-to-tidal volume ratio, heart rate (HR), dP/dtmax, extravascular lung water index, pulmonary vascular permeability index, and PaCO2, and decreases in PaO2/FIO2, respiratory rate (RR), dynamic lung compliance (Cdyn), mean arterial blood pressure (MABP) and systemic vascular resistance (SVR) compared with baseline (P(time) < 0.05). Pretreatment with 1.0 and 1.3 MAC ISO alleviated changes in dP/dtmax and PaCO2 at ARDS 0-2 hours, SVR at 0-3 hours, PaO2/FIO2, RR, and MABP at 1-2 hours, HR at 2-3 hours, A-aDO2 at 3-4 hours, and OI at 4 hours (P(group) < 0.05). Pretreatment with 1.0 and 1.3 MAC ISO had protective effects on respiratory mechanics, oxygenation, and hemodynamics in piglets with LPS-induced ARDS.

  11. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  12. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  13. A Near-Infrared Spectroscopy Study on Cortical Hemodynamic Responses to Normal and Whispered Speech in 3- to 7-Year-Old Children

    ERIC Educational Resources Information Center

    Remijn, Gerard B.; Kikuchi, Mitsuru; Yoshimura, Yuko; Shitamichi, Kiyomi; Ueno, Sanae; Tsubokawa, Tsunehisa; Kojima, Haruyuki; Higashida, Haruhiro; Minabe, Yoshio

    2017-01-01

    Purpose: The purpose of this study was to assess cortical hemodynamic response patterns in 3- to 7-year-old children listening to two speech modes: normally vocalized and whispered speech. Understanding whispered speech requires processing of the relatively weak, noisy signal, as well as the cognitive ability to understand the speaker's reason for…

  14. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex

    PubMed Central

    Keller, Corey J.; Cash, Sydney S.; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A.; Ulbert, Istvan; Halgren, Eric

    2009-01-01

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a “laminar optode,” a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans. PMID:19428529

  15. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex.

    PubMed

    Keller, Corey J; Cash, Sydney S; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A; Ulbert, Istvan; Halgren, Eric

    2009-05-15

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.

  16. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    NASA Astrophysics Data System (ADS)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-08-01

    This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs‧) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.

  17. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    PubMed Central

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-01-01

    Abstract. This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs′) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96. PMID:27564315

  18. Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia.

    PubMed

    Li, Yuhong; He, Rui; Ying, Xiaojiang; Hahn, Robert G

    2014-01-01

    Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. Cardiac output, stroke volume, central venous pressure and arterial pressures were measured in 111 patients before general anesthesia (baseline), after induction and stepwise after three bolus infusions of 3 ml/kg of 6% hydroxyethyl starch 130/0.4 (n=86) or Ringer's lactate (n=25). A subgroup of 30 patients who received starch were preloaded with 500 ml of Ringer's lactate. Blood volume changes were estimated from the hemoglobin concentration and dehydration was estimated from evidence of renal water conservation in urine samples. Induction of anesthesia decreased the stroke volume to 62% of baseline (mean); administration of fluids restored this value to 84% (starch) and 68% (Ringer's). The optimized stroke volume index was clustered around 35-40 ml/m2/beat. Additional fluid boluses increased the stroke volume by ≥10% (a sign of fluid responsiveness) in patients with dehydration, as suggested by a low cardiac index and central venous pressure at baseline and by high urinary osmolality, creatinine concentration and specific gravity. Preloading and the hemodynamic response to induction did not correlate with fluid responsiveness. The blood volume expanded 2.3 (starch) and 1.8 (Ringer's) times over the infused volume. Fluid volume optimization did not induce a hyperkinetic state but ameliorated the decrease in stroke volume caused by anesthesia. Dehydration, but not the hemodynamic response to the induction, was correlated with fluid responsiveness.

  19. Hemodynamic response to fluid removal during hemodialysis: categorization of causes of intradialytic hypotension.

    PubMed

    Levin, Nathan W; de Abreu, Marcia H F G; Borges, Lucas E; Tavares Filho, Helcio A; Sarwar, Rabia; Gupta, Surendra; Hafeez, Tahir; Lev, Shaul; Williams, Caroline

    2018-04-14

    Intradialytic hypotension is a clinically significant problem, however, the hemodynamics that underlie ultrafiltration and consequent hypotensive episodes has not been studied comprehensively. Intradialytic cardiac output, cardiac power and peripheral resistance changes from pretreatment measurements were evaluated using a novel regional impedance cardiographic device (NICaS, NI Medical, Peta Tikva, Israel) in 263 hemodialysis sessions in 54 patients in dialysis units in the USA and Brazil with the goal of determining the various hemodynamic trends as blood pressure decreases. Hypotensive episodes occurred in 99 (13.5%) of 736 intra- and postdialytic evaluations. The hemodynamic profiles of the episodes were categorized: (i) The cardiac power index significantly decreased in 35% of episodes by 36%, from 0.66 [95% confidence interval (CI) 0.60-0.72] to 0.43 (95% CI 0.37-0.48) [w/m2] with a small reduction in the total peripheral resistance index. (ii) The total peripheral resistance index significantly decreased in 37.4% of episodes by 33%, from 3342 (95% CI 2824-3859) to 2251 (95% CI 1900-2602) [dyn × s/cm5 × m2] with a small reduction in the cardiac power index. (iii) Both the cardiac power index and total peripheral resistance index significantly decreased in 27.3% of episodes, the cardiac power index by 25% from 0.63 (95% CI 0.57-0.70) to 0.48 (95% CI 0.42-0.53) [w/m2] and the total peripheral resistance index by 23% from 2964 (95% CI 2428-3501) to 2266 (95% CI 1891-2642). The hemodynamic profiles clearly define specific hemodynamic mechanisms of cardiac power reduction and/or vasodilatation as underlying intradialytic hypotensive episodes. A reduction in cardiac power (reduction of both blood pressure and cardiac output) could be the result of preload reduction due to a high ultrafiltration rate with not enough refilling or low target weight. A reduction in peripheral resistance (reduction in blood pressure and increase in cardiac output) could be the result

  20. Effects of Lignocaine Administered Intravenously or Intratracheally on Airway and Hemodynamic Responses during Emergence and Extubation in Patients Undergoing Elective Craniotomies in Supine Position.

    PubMed

    Shabnum, Tabasum; Ali, Zulfiqar; Naqash, Imtiaz Ahmad; Mir, Aabid Hussain; Azhar, Khan; Zahoor, Syed Amer; Mir, Abdul Waheed

    2017-01-01

    Sympathoadrenergic responses during emergence and extubation can lead to an increase in heart rate (HR) and blood pressure whereas increased airway responses may lead to coughing and laryngospasm. The aim of our study was to compare the effects of lignocaine administered intravenously (IV) or intratracheally on airway and hemodynamic responses during emergence and extubation in patients undergoing elective craniotomies. Sixty patients with physical status American Society of Anaesthesiologists Classes I and II aged 18-70 years, scheduled to undergo elective craniotomies were included. The patients were randomly divided into three groups of twenty patients; Group 1 receiving IV lignocaine and intratracheal placebo (IV group), Group 2 receiving intratracheal lignocaine and IV placebo (I/T group), and Group 3 receiving IV and intratracheal placebo (placebo group). The tolerance to the endotracheal tube was monitored, and number of episodes of cough was recorded during emergence and at the time of extubation. Hemodynamic parameters such as HR and blood pressure (systolic, diastolic, mean arterial pressure) were also recorded. There was a decrease of HR in both IV and intratracheal groups in comparison with placebo group ( P < 0.005). Rise in blood pressure (systolic blood pressure, diastolic blood pressure and mean arterial pressure) was comparable in both Groups 1 and 2 but was lower in comparison with placebo group ( P < 0.005). Cough suppression was comparable in all the three groups. Grade III cough (15%) was documented only in placebo group. Both IV and intratracheal lignocaine are effective in attenuation of hemodynamic response if given within 20 min from skull pin removal to extubation. There was comparable cough suppression through intratracheal route and IV routes than the placebo group.

  1. The acute phase response and exercise: court and field sports

    PubMed Central

    Fallon, K; Fallon, S; Boston, T

    2001-01-01

    Objective—To determine the presence or absence of an acute phase response after training for court and field sports. Participants—All members of the Australian women's soccer team (n = 18) and all members of the Australian Institute of Sport netball team (n = 14). Methods—Twelve acute phase reactants (white blood cell count, neutrophil count, platelet count, serum iron, ferritin, and transferrin, percentage transferrin saturation, α1 antitrypsin, caeruloplasmin, α2 acid glycoprotein, C reactive protein, and erythrocyte sedimentation rate) were measured during a rest period and after moderate and heavy training weeks in members of elite netball and women's soccer teams. Results—Responses consistent with an acute phase response were found in five of 24 tests in the soccer players, and in three of 24 tests in the netball players. Responses in the opposite direction were found in seven of 24 tests in the soccer players and two of 24 tests in the netballers. The most sensitive reactant measured, C reactive protein, did not respond in a manner typical of an acute phase response. Conclusion—An acute phase response does not seem to occur as a consequence of the levels of training typical of elite female netball and soccer teams. This has implications for the interpretation of biochemical variables in these groups. Key Words: acute phase response; iron; plasma proteins; inflammation PMID:11375875

  2. Symptom-Hemodynamic Mismatch and Heart Failure Event Risk

    PubMed Central

    Lee, Christopher S.; Hiatt, Shirin O.; Denfeld, Quin E.; Mudd, James O.; Chien, Christopher; Gelow, Jill M.

    2014-01-01

    Background Heart failure (HF) is a heterogeneous condition of both symptoms and hemodynamics. Objective The goal of this study was to identify distinct profiles among integrated data on physical and psychological symptoms and hemodynamics, and quantify differences in 180-day event-risk among observed profiles. Methods A secondary analysis of data collected during two prospective cohort studies by a single group of investigators was performed. Latent class mixture modeling was used to identify distinct symptom-hemodynamic profiles. Cox proportional hazards modeling was used to quantify difference in event-risk (HF emergency visit, hospitalization or death) among profiles. Results The mean age (n=291) was 57±13 years, 38% were female, and 61% had class III/IV HF. Three distinct symptom-hemodynamic profiles were identified. 17.9% of patients had concordant symptoms and hemodynamics (i.e. moderate physical and psychological symptoms matched the comparatively hemodynamic profile), 17.9% had severe symptoms and average hemodynamics, and 64.2% had poor hemodynamics and mild symptoms. Compared to those in the concordant profile, both profiles of symptom-hemodynamic mismatch were associated with a markedly increased event-risk (severe symptoms hazards ratio = 3.38, p=0.033; poor hemodynamics hazards ratio = 3.48, p=0.016). Conclusions A minority of adults with HF have concordant symptoms and hemodynamics. Either profile of symptom-hemodynamic mismatch in HF is associated with a greater risk of healthcare utilization for HF or death. PMID:24988323

  3. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    PubMed

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  4. Variability in Prefrontal Hemodynamic Response during Exposure to Repeated Self-Selected Music Excerpts, a Near-Infrared Spectroscopy Study

    PubMed Central

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes. PMID:25837268

  5. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  6. Mast Cell Dependent Vascular Changes Associated with an Acute Response to Cold Immersion in Primary Contact Urticaria

    PubMed Central

    Meyer, Joseph; Gorbach, Alexander M.; Liu, Wei-Min; Medic, Nevenka; Young, Michael; Nelson, Celeste; Arceo, Sarah; Desai, Avanti; Metcalfe, Dean D.; Komarow, Hirsh D.

    2013-01-01

    Background While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation. Objective To characterize the microcirculatory events that follow mast cell degranulation. Methodology/Principal Findings Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine. Conclusions/Significance Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention. PMID:23451084

  7. A Comparison of Dexmedetomidine and Clonidine in Attenuating the Hemodynamic Responses at Various Surgical Stages in Patients Undergoing Elective Transnasal Transsphenoidal Resection of Pituitary Tumors

    PubMed Central

    Jan, Summaira; Ali, Zulfiqar; Nisar, Yasir; Naqash, Imtiaz Ahmad; Zahoor, Syed Amer; Langoo, Shabir Ahmad; Azhar, Khan

    2017-01-01

    Background: Transsphenoidal approach to pituitary tumors is a commonly performed procedure with the advantage of a rapid midline access to the sella with minimal complications. It may be associated with wide fluctuations in hemodynamic parameters due to intense noxious stimulus at various stages of the surgery. As duration of the surgery is short and the patients have nasal packs, it is prudent to use an anesthestic technique with an early predictable recovery. Materials and Methods: A total of 60 patients of either sex between 18 and 65 years of age, belonging to the American Society of Anesthesiologists I and II who were undergoing elective transnasal transsphenoidal pituitary surgery were chosen for this study. Patients were randomly allocated into two groups, Group C (clonidine) and Group D (dexmedetomidine), with each group consisting of 30 patients. Patients in Group C received 200 μg tablet of clonidine and those in Group D received a pantoprazole tablet as placebo at the same time. Patients in the Group D received an intravenous infusion of dexmedetomidine diluted in 50 ml saline (200 μg in 50 ml saline) 10 min before induction and patients in Group C received 0.9% normal saline (50 ml) as placebo. The hemodynamic variables (heart rate, mean arterial pressure) were noted at various stages of the surgery. Statistical analysis of the data was performed. Results: A total of 60 patients were recruited. The mean age, sex, weight and duration of surgery among the two groups were comparable (P > 0.05). Both dexmedetomidine and clonidine failed to blunt the increase in hemodynamic responses (heart rate and blood pressure) during intubation, nasal packing, speculum insertion and extubation. However when the hemodynamic response was compared between the patients receiving dexmedetomidine and clonidine it was seen that patients who received dexmedetomidine had a lesser increase in heart rate and blood pressure (P < 0.05) when compared to clonidine. Conclusions: A

  8. A Comparison of Dexmedetomidine and Clonidine in Attenuating the Hemodynamic Responses at Various Surgical Stages in Patients Undergoing Elective Transnasal Transsphenoidal Resection of Pituitary Tumors.

    PubMed

    Jan, Summaira; Ali, Zulfiqar; Nisar, Yasir; Naqash, Imtiaz Ahmad; Zahoor, Syed Amer; Langoo, Shabir Ahmad; Azhar, Khan

    2017-01-01

    Transsphenoidal approach to pituitary tumors is a commonly performed procedure with the advantage of a rapid midline access to the sella with minimal complications. It may be associated with wide fluctuations in hemodynamic parameters due to intense noxious stimulus at various stages of the surgery. As duration of the surgery is short and the patients have nasal packs, it is prudent to use an anesthestic technique with an early predictable recovery. A total of 60 patients of either sex between 18 and 65 years of age, belonging to the American Society of Anesthesiologists I and II who were undergoing elective transnasal transsphenoidal pituitary surgery were chosen for this study. Patients were randomly allocated into two groups, Group C (clonidine) and Group D (dexmedetomidine), with each group consisting of 30 patients. Patients in Group C received 200 μg tablet of clonidine and those in Group D received a pantoprazole tablet as placebo at the same time. Patients in the Group D received an intravenous infusion of dexmedetomidine diluted in 50 ml saline (200 μg in 50 ml saline) 10 min before induction and patients in Group C received 0.9% normal saline (50 ml) as placebo. The hemodynamic variables (heart rate, mean arterial pressure) were noted at various stages of the surgery. Statistical analysis of the data was performed. A total of 60 patients were recruited. The mean age, sex, weight and duration of surgery among the two groups were comparable ( P > 0.05). Both dexmedetomidine and clonidine failed to blunt the increase in hemodynamic responses (heart rate and blood pressure) during intubation, nasal packing, speculum insertion and extubation. However when the hemodynamic response was compared between the patients receiving dexmedetomidine and clonidine it was seen that patients who received dexmedetomidine had a lesser increase in heart rate and blood pressure ( P < 0.05) when compared to clonidine. A continuous intravenous infusion of dexmedetomidine as

  9. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors.

    PubMed

    Mooney, Deirdre M; Fung, Erik; Doshi, Rahul N; Shavelle, David M

    2015-01-01

    Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.

  10. An efficient multistage algorithm for full calibration of the hemodynamic model from BOLD signal responses.

    PubMed

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2017-11-01

    We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model. The proposed method is used to estimate consecutively the values of the two sets of model parameters. Numerical results corresponding to both synthetic and real functional magnetic resonance imaging measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Response of the oxygen uptake efficiency slope to orthotopic heart transplantation: lack of correlation with changes in central hemodynamic parameters and resting lung function.

    PubMed

    Van Laethem, Christophe; Goethals, Marc; Verstreken, Sofie; Walravens, Maarten; Wellens, Francis; De Proft, Margot; Bartunek, Jozef; Vanderheyden, Marc

    2007-09-01

    Recently, a new linear measure of ventilatory response to exercise, the oxygen uptake efficiency slope (OUES), was proposed in the evaluation of heart failure patients. No data are available on the response of the OUES after orthotopic heart transplantation (HTx). Thirty patients who underwent HTx between 1999 and 2003 were included in the study. Data from maximal cardiopulmonary exercise test, resting pulmonary function and hemodynamic assessment were collected before the transplant at time of screening and 1 year after HTx. During the first year after HTx, OUES and normalized OUES for body weight (OUES/kg) increased significantly from 15.6 +/- 4.9 to 19.7 +/- 4.8 (p < 0.05). Changes in OUES/kg were significantly correlated with changes in peak VO2, VAT and peak VE, and inversely to changes in peak VD/VT, but not to changes in VE/VCO2 slope (all p < 0.05). Changes in OUES or OUES/kg did not correlate with any changes in measures of resting lung volumes or capacities and measures of central hemodynamic function after HTx. OUES improved significantly after HTx, but, similar to other exercise parameters, remained considerably impaired. The changes in OUES were highly correlated with the improvements in other exercise variables, but did not correlate with marked improvements in central hemodynamics or resting lung function.

  12. Effect of Aspirin Supplementation on Hemodynamics in Older Firefighters.

    PubMed

    Lane-Cordova, Abbi D; Ranadive, Sushant M; Yan, Huimin; Kappus, Rebecca M; Sun, Peng; Bunsawat, Kanokwan; Smith, Denise L; Horn, Gavin P; Ploutz-Snyder, Robert; Fernhall, B O

    2015-12-01

    Cardiovascular events are the leading cause of line-of-duty fatality for firefighters. Aspirin reduces the risk of cardiovascular events in men and may reduce fatalities in older (>40 yr) firefighters. We hypothesized that both chronic and acute aspirin supplementation would improve vascular function after live firefighting but that chronic supplementation would also improve resting hemodynamics. Twenty-four firefighters (40-60 yr) were randomly assigned to acute or chronic aspirin supplementation or placebo in a balanced, crossover design. Arterial stiffness, brachial and central blood pressures, as well as forearm vasodilatory capacity and blood flow were measured at rest and immediately after live firefighting. Total hyperemic blood flow (area under the curve (AUC)) was increased (P < 0.001) after firefighting with no effects for aspirin supplementation or acute versus chronic administration (AUC, from 107 ± 5 to 223 ± 9 in aspirin condition and from 97 ± 5 to 216 ± 7 mL·min⁻¹ per 100-mL forearm tissue for placebo; P < 0.05 for main, and P > 0.05 for interaction). Arterial stiffness/central blood pressure increased (P < 0.04) with no effect of aspirin (from 0.0811 ± 0.001 to 0.0844 ± 0.003 m·s·mm⁻¹ Hg⁻¹ in aspirin condition versus 0.0802 ± 0.002 to 0.0858 ± 0.002 m·s⁻¹·mm Hg⁻¹ in placebo condition), whereas peripheral and central systolic and pulse pressures decreased after firefighting across conditions (P < 0.05). Live firefighting resulted in increased AUC and pressure-controlled arterial stiffness and decreased blood pressure in older firefighters, but aspirin supplementation did not affect macro- or microvascular responsiveness at rest or after firefighting.

  13. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  14. [The role of the adreno-cholinergic interaction in the pulmonary hemodynamics changes following myocardial ischemia].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2014-06-01

    In acute experiments in anesthetized rabbits the pulmonary hemodynamics changes were studied following 60 s myocardial ischemia in the region of the descendent left coronary artery in control state and after the blockade of M- or N-cholinoreceptors and acetylcholine infusion. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was not changed. Following myocardial ischemia after the blockade of M-cholinoreceptors by atropine the changes of pulmonary hemodynamics were the same as in control animals, the cardiac output decreased twice as more as in control animals. Following myocardial ischemia after the blockade of N-cholinoreceptors by hexamethonium the pulmonary hemodynamics changes were the same as in the control rabbits. Following myocardial ischemia after the acetylcholine infusion the pulmonary artery flow decreased more than the cardiac output, the pulmonary vascular resistance was diminished. The disbalance of the cardiac output and pulmonary artery flow changes has revealed the significance of the adreno-cholinergic interaction in the changes of the pulmonary vessels capacitance and resistive functions following myocardial ischemia.

  15. Hemodynamic and neuro-monitoring for neurocritically ill patients: An international survey of intensivists.

    PubMed

    Sivakumar, Sanjeev; Taccone, Fabio S; Rehman, Mohammed; Hinson, Holly; Naval, Neeraj; Lazaridis, Christos

    2017-06-01

    To investigate multimodality systemic and neuro-monitoring practices in acute brain injury (ABI) and to analyze differences among "neurointensivists" (NI; clinical practice comprised >1/3 by neurocritical care), and other intensivists (OI). Anonymous 22-question Web-based survey among physician members of SCCM and ESICM. Six hundred fifty-five responded (66% completion rate); 422 (65%) were OI, and 226 (35%) were NI. More NI follow hemodynamic protocols for TBI (44.5% vs 33%, P=.007) and SAH (38% vs 21%, P<.001). For CPP optimization, NI use more arterial-waveform-analysis (AWA) (45% vs 35%, P=.019), and ultrasound (37.5% vs 28%, P=.023); NI use more PbtO 2 (28% vs 10%, P<.001). In the case scenario of raised ICP/low PbtO 2 , most employ analgesia and/or sedation (47%) and osmotherapy (38%). More NI use pressure reactivity (vasopressor use OI 23% vs NI 34.5%, P=.014). For DCI, more NI target cardiac index (CI) (35% vs 21%, P<.001), and fluid responsiveness (62.5% vs 53%, P=.03). Also, NI use more angiography (57% vs 43.5%, P=.004), TCD (56.5% vs 38%, P<.001), CTP (32% vs16%, P<.001), and PbtO 2 (18% vs 7.5%, P=.001). Intensivists with exposure to ABI patients employ more neuro- and hemodynamic monitoring. We found large heterogeneity and low overall use of advanced brain-physiology parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  17. The acute-phase response impairs host defence against Enterococcus faecium peritonitis

    PubMed Central

    Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom

    2009-01-01

    Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794

  18. [Hemodynamics in puerparas during subarachnoidal anesthesia with lidocaine].

    PubMed

    Semenikhin, A A; Kim, En Din; Khodzhaeva, A A

    2007-01-01

    Hemodynamic changes in response to subarachnoidal injection of 1.2-1.4 mg/kg of lidocaine at various concentrations were comparatively evaluated in 106 pregnant women aged 21 to 36 years (with 53 patients in each group). All the women underwent lumbar puncture at the level of L(II)-L(IV), 1.2-1.4 mg/kg of hyperbaric lidocaine solution being subarachnoidally administered. Groups 1 and 2 patients received 2 and 5% solution of the anesthetic, respectively. At the stages of anesthesia and surgery, the investigators examined central hemodynamics, recorded the duration of a complete segmental sensomotor block and the number of blocked segments (the extent of block). No significant differences were established at the time of development of a complete sensomotor block with the use of 2% (Group 1) and 5% (Group 2) lidocaine solutions. At the same time there were 16.8 +/- 0.6 and 11.9 +/- 0.5 blocked segments in Groups 1 and 2, respectively. In Group 1, severe hemodynamic disorders to be corrected were recorded in 30.2% of the women and in Group 2, subarachnoidal administration of the same doses of lidocaine did not cause any disorders.

  19. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    NASA Astrophysics Data System (ADS)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  20. SvO(2)-guided resuscitation for experimental septic shock: effects of fluid infusion and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress.

    PubMed

    Rosário, André Loureiro; Park, Marcelo; Brunialti, Milena Karina; Mendes, Marialice; Rapozo, Marjorie; Fernandes, Denise; Salomão, Reinaldo; Laurindo, Francisco Rafael; Schettino, Guilherme Paula; Azevedo, Luciano Cesar P

    2011-12-01

    The pathogenetic mechanisms associated to the beneficial effects of mixed venous oxygen saturation (SvO(2))-guided resuscitation during sepsis are unclear. Our purpose was to evaluate the effects of an algorithm of SvO(2)-driven resuscitation including fluids, norepinephrine and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress during a clinically resembling experimental model of septic shock. Eighteen anesthetized and catheterized pigs (35-45 kg) were submitted to peritonitis by fecal inoculation (0.75 g/kg). After hypotension, antibiotics were administered, and the animals were randomized to two groups: control (n = 9), with hemodynamic support aiming central venous pressure 8 to 12 mmHg, urinary output 0.5 mL/kg per hour, and mean arterial pressure greater than 65 mmHg; and SvO(2) (n = 9), with the goals above, plus SvO(2) greater than 65%. The interventions lasted 12 h, and lactated Ringer's and norepinephrine (both groups) and dobutamine (SvO(2) group) were administered. Inflammatory response was evaluated by plasma concentration of cytokines, neutrophil CD14 expression, oxidant generation, and apoptosis. Oxidative stress was evaluated by plasma and myocardial nitrate concentrations, myocardial and vascular NADP(H) oxidase activity, myocardial glutathione content, and nitrotyrosine expression. Mixed venous oxygen saturation-driven resuscitation was associated with improved systolic index, oxygen delivery, and diuresis. Sepsis induced in both groups a significant increase on IL-6 concentrations and plasma nitrate concentrations and a persistent decrease in neutrophil CD14 expression. Apoptosis rate and neutrophil oxidant generation were not different between groups. Treatment strategies did not significantly modify oxidative stress parameters. Thus, an approach aiming SvO(2) during sepsis improves hemodynamics, without any significant effect on inflammatory response and oxidative stress. The beneficial effects associated

  1. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  2. Hemodynamic responses to etomidate versus ketamine-thiopental sodium combination for anesthetic induction in coronary artery bypass graft surgery patients with low ejection fraction: a double-blind, randomized, clinical trial.

    PubMed

    Habibi, Mohammad Reza; Baradari, Afshin Gholipour; Soleimani, Aria; Emami Zeydi, Amir; Nia, Hamid Sharif; Habibi, Ali; Onagh, Naser

    2014-10-01

    During induction of anesthesia and intubation, hemodynamic changes are very important; especially in patients with coronary artery disease (CAD) and left ventricular dysfunction. A little information is available on the hemodynamic effects of a combination of ketamine-thiopental for induction of anesthesia in patients undergoing coronary artery bypass graft (CABG) surgery, with impaired ventricular function. The aim of this study was to compare the hemodynamic responses to etomidate versus ketamine-thiopental sodium combination for anesthetic induction in CABG surgery patients with low ejection fraction (EF<45%). In a double blind randomized clinical trial, a total of 100 patients, scheduled for elective CABG surgery were randomly assigned into two groups. These patients received either etomidate or ketamine-thiopental sodium combination at induction of anesthesia. Hemodynamics variable were measured and recorded at baseline, immediately before and after laryngoscopy and intubation, one, two and three minutes after intubation. Also, muscle twitching incidence among patients in two groups was evaluated. No significant differences between the two groups regarding the changes of hemodynamic variables including systolic and diastolic arterial blood pressure, mean arterial pressure and heart rate, were notice (p>0.05). Muscle twitching was not observed in the two groups. Hemodynamic stability after administration of ketamine-thiopental sodium combination for induction of anesthesia in patients undergoing CABG surgery, with impaired ventricular function, supports the clinical impression that this combination is safe in CABG surgery patients with low EF.

  3. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    USDA-ARS?s Scientific Manuscript database

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  4. Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart

    2016-11-01

    Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.

  5. High-grade traumatic torso visceral injury with hemodynamic instability: effectiveness of transarterial embolization using n-butyl cyanoacrylate.

    PubMed

    Tsurukiri, Junya; Ohta, Shoichi; Hoshiai, Akira; Sano, Hidefumi; Okumura, Eitaro; Tsubouchi, Nobuhiko; Konishi, Hiroyuki; Yukioka, Tetsuo

    2017-04-01

    Trauma patients with uncontrolled hemorrhage encountering coagulopathy are often associated with poor outcome. Recently, the concept of damage control interventional radiology, which focuses on "speedy stoppage of bleeding" by interventional radiology among trauma patients with hemodynamic instability and acute traumatic coagulopathy, was proposed as an alternative to damage control surgery. N-butyl cyanoacrylate (NBCA) has been used as a liquid embolic agent in various non-traumatic situations, where it has been shown to have a high technical success rate and low recurrent bleeding rate, especially in patients with coagulopathy. In this case, we treated a young patient with hemodynamic instability caused by a high-grade hepatic injury, who underwent arterial embolization (AE) using NBCA assisted with resuscitative endovascular balloon occlusion of the aorta and achieved successful hemostasis. A review of published works using PUBMED was carried out, and 10 published reports involving 23 trauma patients who underwent AE using NBCA were identified. Among them, only four reports involving five trauma patients with torso visceral injuries were identified. Three of five patients who were hemodynamically unstable underwent AE using NBCA, resulting in the stabilization of hemodynamics. We concluded that AE with resuscitative endovascular balloon occlusion of the aorta as a damage control interventional radiology procedure might be acceptable for the hemodynamically unstable hepatic injury, and NBCA could be one of the effective hemostatic agents for this purpose, in cases of trauma-induced coagulopathy.

  6. Baseline Hemodynamics and Response to Contrast Media During Diagnostic Cardiac Catheterization Predict Adverse Events in Heart Failure Patients.

    PubMed

    Denardo, Scott J; Vock, David M; Schmalfuss, Carsten M; Young, Gregory D; Tcheng, James E; O'Connor, Christopher M

    2016-07-01

    Contrast media administered during cardiac catheterization can affect hemodynamic variables. However, little is documented about the effects of contrast on hemodynamics in heart failure patients or the prognostic value of baseline and changes in hemodynamics for predicting subsequent adverse events. In this prospective study of 150 heart failure patients, we measured hemodynamics at baseline and after administration of iodixanol or iopamidol contrast. One-year Kaplan-Meier estimates of adverse event-free survival (death, heart failure hospitalization, and rehospitalization) were generated, grouping patients by baseline measures of pulmonary capillary wedge pressure (PCWP) and cardiac index (CI), and by changes in those measures after contrast administration. We used Cox proportional hazards modeling to assess sequentially adding baseline PCWP and change in CI to 5 validated risk models (Seattle Heart Failure Score, ESCAPE [Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness], CHARM [Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity], CORONA [Controlled Rosuvastatin Multinational Trial in Heart Failure], and MAGGIC [Meta-Analysis Global Group in Chronic Heart Failure]). Median contrast volume was 109 mL. Both contrast media caused similarly small but statistically significant changes in most hemodynamic variables. There were 39 adverse events (26.0%). Adverse event rates increased using the composite metric of baseline PCWP and change in CI (P<0.01); elevated baseline PCWP and decreased CI after contrast correlated with the poorest prognosis. Adding both baseline PCWP and change in CI to the 5 risk models universally improved their predictive value (P≤0.02). In heart failure patients, the administration of contrast causes small but significant changes in hemodynamics. Calculating baseline PCWP with change in CI after contrast predicts adverse events and increases the predictive value of

  7. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respir atory distress syndrome

    PubMed Central

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS. PMID:26261640

  8. Hemodynamic stability during laryngeal electromyography procedures.

    PubMed

    Lu, Yi-An; Pei, Yu-Cheng; Wong, Alice Mk; Chiang, Hui-Chen; Fang, Tuan-Jen

    2017-10-01

    Laryngeal electromyography (LEMG) is accepted as safe, with minimal side effects. However, patient hemodynamic stability, during these procedures, has not been reported. This study aimed to investigate the hemodynamics in patients undergoing LEMG and determine the risk factors for hemodynamic changes. We recruited 89 consecutive patients who underwent LEMG. Baseline and postprocedural changes in vital signs were analyzed. Diastolic blood pressure (DBP) increased from 75.08 ± 11.54 mmHg preprocedure to 77.4 ± 11.91 mmHg postprocedure (p = .006); pulse rate (PR) increased from 78.1 ± 13.3 beats per minute preprocedure to 80.02 ± 13.69 postprocedure (p = .027). Systolic blood pressure (SBP) and oxygen saturation were unchanged after the procedure. However, about 17% of patients experienced profound changes in vital signs of >20% above baseline during LEMG. The hemodynamic changes did not differ between sexes or between surgical and non-surgical etiologies of vocal fold paralysis. Two patients experienced profound but reversible near-syncope during the procedure. LEMG is a safe procedure with few immediate complications, though it may affect the patient's hemodynamic status by increasing DBP and PR. The hemodynamic monitoring is recommended so that timely intervention can be applied in case any warning sign occurs.

  9. Inhalation of diethylamine--acute nasal effects and subjective response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.

    1992-03-01

    Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12more » ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.« less

  10. Cardiovascular Effects of Stress During Acutely Increased Free Fatty Acids in a Randomized, Double-Blind, Cross-Over Study in Humans.

    PubMed

    Rezaei, Safoura Sheikh; Litschauer, Brigitte; Gouya, Gazaleh; Baumgartner-Parzer, Sabina; Stulnig, Thomas; Wolzt, Michael

    2018-06-01

    Increased free fatty acids stimulate sympathetic nervous system activity, impair endothelium-dependent vasodilation, and increase regional blood flow. The aim of this study was to assess if fatty acids acutely elevated by infusion of intralipid/heparin affect cardiovascular reactivity employing two stressors eliciting either a cardiac (Stroop test) or vascular (Cold Face test) dominated pressor response. Two stress tasks were performed in 20 healthy subjects (10 women, 10 men) before and during a 180-min intralipid/heparin or saline infusion as placebo on alternate trial days in a randomized crossover study design. Blood pressure, heart rate, cardiac index, and total peripheral resistance index were measured. At baseline, the Stroop test did not affect hemodynamic parameters, and the Cold Face test had an impact on hemodynamic parameters except for heart rate. Plasma fatty acids concentrations increased to 810% (t=11.0, p<0.001) of baseline and C-peptide increased by 17% (t=4.66, p<0.001) during intralipid/heparin infusion. This was paralleled by increased cardiac index (F=9.98; p<0.005 vs. saline) and reduced total peripheral resistance index (F=4.46; p<0.05 vs saline). There was no effect of intralipid/heparin or saline infusion on Stroop test or Cold Face test reactivity of hemodynamic parameters. An acute increase in free fatty acids does not affect the magnitude or pattern of stress response in healthy volunteers, but primarily alter the underlying cardiovascular tone by decreasing total peripheral resistance index and increasing cardiac index to maintain a constant blood pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Clinical and hemodynamic improvements after adding ambrisentan to background PDE5i therapy in patients with pulmonary arterial hypertension exhibiting a suboptimal therapeutic response (ATHENA-1).

    PubMed

    Shapiro, Shelley; Torres, Fernando; Feldman, Jeremy; Keogh, Anne; Allard, Martine; Blair, Christiana; Gillies, Hunter; Tislow, James; Oudiz, Ronald J

    2017-05-01

    Pulmonary arterial hypertension (PAH) is a condition which may lead to right ventricular failure and premature death. While recent data supports the initial combination of ambrisentan (a selective ERA) and tadalafil (a PDE5i) in functional class II or III patients, there is no published data describing the safety and efficacy of ambrisentan when added to patients currently receiving a PDE5i and exhibiting a suboptimal response. The ATHENA-1 study describes the safety and efficacy of the addition of ambrisentan in this patient population. PAH patients with a suboptimal response to current PDE5i monotherapy were assigned ambrisentan in an open-label fashion and evaluated for up to 48 weeks. Cardiopulmonary hemodynamics (change in PVR as primary endpoint) were evaluated at week 24 and functional parameters and biomarkers were measured through week 48. Time to clinical worsening (TTCW) and survival are also described. Thirty-three subjects were included in the analysis. At week 24, statistically significant improvements in PVR (-32%), mPAP (-11%), and CI (+25%) were observed. Hemodynamic improvements at week 24 were further supported by improvements in the secondary endpoints: 6-min walk distance (+18 m), NT-proBNP (-31%), and maintenance or improvement in WHO FC in 97% of patients. Adverse events were consistent with known effects of ambrisentan. The hemodynamic, functional, and biomarker improvements observed in the ATHENA-1 study suggests that the sequential addition of ambrisentan to patients not having a satisfactory response to established PDE5i monotherapy is a reasonable option. Published by Elsevier Ltd.

  12. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    PubMed Central

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  13. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C

    2016-12-27

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.

  14. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  15. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  16. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  17. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  18. Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal.

    PubMed

    Boorman, Luke; Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-03-18

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. Copyright © 2015 Boorman et al.

  19. Long-Latency Reductions in Gamma Power Predict Hemodynamic Changes That Underlie the Negative BOLD Signal

    PubMed Central

    Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-01-01

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30–80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. PMID:25788681

  20. Central venous pressure and shock index predict lack of hemodynamic response to volume expansion in septic shock: a prospective, observational study.

    PubMed

    Lanspa, Michael J; Brown, Samuel M; Hirshberg, Eliotte L; Jones, Jason P; Grissom, Colin K

    2012-12-01

    Volume expansion is a common therapeutic intervention in septic shock, although patient response to the intervention is difficult to predict. Central venous pressure (CVP) and shock index have been used independently to guide volume expansion, although their use is questionable. We hypothesize that a combination of these measurements will be useful. In a prospective, observational study, patients with early septic shock received 10-mL/kg volume expansion at their treating physician's discretion after brief initial resuscitation in the emergency department. Central venous pressure and shock index were measured before volume expansion interventions. Cardiac index was measured immediately before and after the volume expansion using transthoracic echocardiography. Hemodynamic response was defined as an increase in a cardiac index of 15% or greater. Thirty-four volume expansions were observed in 25 patients. A CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less individually had a good negative predictive value (83% and 88%, respectively). Of 34 volume expansions, the combination of both a high CVP and a low shock index was extremely unlikely to elicit hemodynamic response (negative predictive value, 93%; P = .02). Volume expansion in patients with early septic shock with a CVP of 8 mm Hg or greater and a shock index of 1 beat min(-1) mm Hg(-1) or less is unlikely to lead to an increase in cardiac index. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Optical monitoring of spinal cord hemodynamics, a feasibility study

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew

    2017-02-01

    Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the

  2. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    PubMed

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  3. Low-frequency oscillation amplitude elevation of prefrontal cerebral hemodynamics with driving duration during prolonged driving test

    NASA Astrophysics Data System (ADS)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    It has been observed that there is a low-frequency oscillation (LFO) around 0.1 Hz in cerebral hemodynamics related to brain activity. Since functional near-infrared spectroscopy (fNIRS) is a novel technique to monitor hemodynamic responses noninvasively, we applied it to detect LFOs of cerebral hemodynamic parameters, such as oxyhemoglobin and deoxyhemoglobin, during prolonged driving. We performed an experiment lasting for 7 hours and an experimental test was done every hour and 8 times altogether. 7 subjects were recruited and the data of 3 of them were analyzed. By means of Fourier transformation, the amplitude of the three parameters during each test at 0.1 Hz in frequency domain was extracted. The results showed an increasing trend in the 0.1 Hz amplitudes of the three hemodynamic parameters during 7 hours' simulated driving test. Our findings indicated the potential of LFOs of prefrontal cerebral hemodynamics in brain research and brain function evaluation.

  4. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  5. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  6. Cerebrospinal fluid enhancement on fluid attenuated inversion recovery images after carotid artery stenting with neuroprotective balloon occlusions: hemodynamic instability and blood-brain barrier disruption.

    PubMed

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-10-01

    A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood-brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Nineteen patients-5 acute-phase and 14 scheduled-underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  7. Hemodynamic profile of pulmonary hypertension (PH) in ARDS.

    PubMed

    Calcaianu, George; Calcaianu, Mihaela; Gschwend, Anthony; Canuet, Matthieu; Meziani, Ferhat; Kessler, Romain

    2018-01-01

    Acute respiratory distress syndrome (ARDS) is a diffuse lung injury that leads to a severe acute respiratory failure. Traditional diagnostic criteria for pulmonary hypertension (PH), in this situation, may be unreliable due to the effects of positive pressure ventilation and vasoactive agents. The aim of this study is to describe the hemodynamic characteristics of PH secondary to ARDS, in relation with respiratory parameters. We assessed the hemodynamic, respiratory function, and ventilator parameters in a cohort of 38 individuals with ARDS-associated PH defined by mean pulmonary arterial pressure (mPAP) ≥ 25 mmHg. Individual characteristics: PaO2/FiO2 = 110 ± 60 mmHg, alveolar-arterial oxygen gradient (A-aO2) = 549 ± 148.9 mmHg, positive end-expiratory pressure (PEEP) = 8.7 ± 3.5 cmH 2 O, pulmonary static compliance (Cstat) = 30 ± 12.1 L*cmH 2 O-1, mPAP = 35.4 ±6.6 mmHg, pulmonary artery wedge pressure (PAWP) = 15.6 ± 5.5 mmHg, cardiac index (CI) = 3.4 ± 1.2 L/min/m 2 , pulmonary vascular resistance (PVR) = 3.3 ± 1.6 Wood units (WU), right atrial pressure (RAP) = 13.4 ± 5.4 mmHg, diastolic pulmonary gradient (DPG) = 12.6 ± 6.5 mmHg, and trans-pulmonary gradient (TPG) = 19.7 ± 7.7 mmHg. The composite marker-DPG >7 mmHg and PVR > 3 WU-is associated with lower CI ( P = 0.016), higher mPAP ( P = 0.003), and lower pulmonary static compliance ( P = 0.028). We confirmed a poor prognosis of ARDS associated with PH, with a 50% survival rate after 17 days. We observed that the survival rate at 28 days was better in the case of improvement in the PaO2/FiO2 ratio in the first 24 h (log rank P = 0.003). ARDS associated with PH is a severe condition with a very poor survival rate. The composite marker DPG > 7 mmHg and PVR > 3 WU seemed to better describe the hemodynamic and respiratory dysfunction. The improvement in Pa

  8. Acute Hemodynamic Effects of the Braslet-M Device on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Garcia, Kathleen M.; Ebert, Douglas; Martin, David; Dulchavsky, Scott A.; Duncan, J. Michael

    2009-01-01

    The Braslet-M occlusion device is prescribed for cosmonauts as a countermeasure for early phases of spaceflight to temporarily alleviate symptoms associated with the cephalad fluid shift. Using a multipurpose ultrasound (US) device onboard, we assessed the acute hemodynamic effects of the Bracelet-M device on a long duration International Space Station (ISS) crewmember. Methods A combination of just-in-time training and real-time remote expert assistance was used to conduct the imaging procedures. An HDI-5000 imager (Philips, Bothell, WA) was used, provided by the ISS Human Research Facility. Superficial femoral artery (SFA), femoral vein (FV) flow spectra were obtained at mid-thigh level. Left ventricle was imaged through the apical 4-chamber view, with Color M-Mode to measure propagation velocity (V (p)). After 10 minutes of Bracelet-M use, data collection was repeated. All data were transmitted in DICOM format to ground for analysis. Results With Braslet-M, cardiac V(p) slope decreased (56ms to 42ms). A stagnation signature in the FV was seen suggesting impeded flow (rouleaux formation, too-low-to-measure velocity, and increase in diameter). Quadri-phasic flow in SFA was seen both before and after Braslet-M application. Velocities in the SFA decreased with Braslet-M (65cm/sec to 52cm/sec) and so did the time velocity integrals (16.97 to 12.4); the flow pattern spoke of resistivity increase in the vascular bed. Conclusion In the long duration ISS crewmember we observed effects of lower extremity venous occlusion through both central and peripheral indicators. A part of circulating volume transferred to peripheral potential vascular space. Impediment to venous outflow was demonstrated objectively, with a commensurate change in the flow pattern of the main feeding artery. Central volume reduction caused lower V(p). Additional studies are warranted to determine the time course of the changes and the dynamics in interstitial fluid sequestration, as well as the safe

  9. Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi; Kicic, Dubravko; Kotilahti, Kalle; Kajava, Timo; Kahkonen, Seppo; Nissila, Ilkka; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    Visually evoked hemodynamic responses and potentials were simultaneously measured using a 16-channel optical imaging instrument and a 60-channel electroencephalography instrument during normo-, hypo- and hypercapnia from three subjects. Flashing and pattern-reversed checkerboard stimuli were used. The study protocol included two counterbalanced measurements during both normo- and hypocapnia and normo- and hypercapnia. Hypocapnia was produced by controlled hyperventilation and hypercapnia by breathing carbon dioxide enriched air. Near-infrared imaging was also used to monitor the concentration changes of oxy- and deoxyhaemoglobin due to hypo- and hypercapnia. Hemodynamic responses and evoked potentials were successfully detected for each subject above the visual cortex. The latencies of the hemodynamic responses during hypocapnia were shorter whereas during hypercapnia they were longer when compared to the latencies during normocapnia. Hypocapnia tended to decrease the latencies of visually evoked potentials compared to those during normocapnia while hypercapnia did not show any consistent effect to the potentials. The developed measurement setup and the study protocol provide the opportunity to investigate the neurovascular coupling and the links between the baseline level of blood flow, electrical activity and hemodynamic responses in the human brain.

  10. Cerebrovascular Hemodynamics in Women.

    PubMed

    Duque, Cristina; Feske, Steven K; Sorond, Farzaneh A

    2017-12-01

    Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Cytokine responses in acute and persistent human parvovirus B19 infection

    PubMed Central

    Isa, A; Lundqvist, A; Lindblom, A; Tolfvenstam, T; Broliden, K

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-γ response. During follow-up (20–130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response correlated with the previously identified sustained CD8+ T cell response and viraemia. A cross-sectional study on patients with persistent B19 infection showed no apparent imbalance of their cytokine pattern, except for an elevated level of IFN-γ response. No general immunodeficiency was diagnosed as an explanation for the viral persistence in this later group. Neither the acutely infected nor the persistently infected patients demonstrated a Th2 cytokine response. In conclusion, the acutely infected patients demonstrated a sustained Th1 cytokine response whereas the persistently infected patients did not exhibit an apparent imbalance of their cytokine pattern except for an elevated IFN-γ response. PMID:17302890

  12. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    PubMed

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The hemodynamic response to constant dobutamine infusion: the effect of ADRB1 389 polymorphism and sex.

    PubMed

    Yogev, Dotan; Basheer, Maamoun; Perlman, Amichai; Blotnick, Simcha; Caraco, Yoseph; Muszkat, Mordechai

    2018-06-01

    Prolonged activation of the β-1 adrenergic receptor (ADRB1) is associated with receptor desensitization. This process has been suggested to have important pathophysiological and clinical implications in conditions such as congestive heart failure. The contribution of genetic factors to this process is a patient of ongoing research. We have previously shown that the ADRB1 389 polymorphism affects the response to incremental dose infusion of the ADRB agonist dobutamine. The aim of the current study was to determine whether the ADRB1 389 polymorphism affects the hemodynamic response to constant dose infusion of dobutamine in healthy patients. Healthy patients were recruited according to their ADRB1 49 and 389 genotypes [15 Arg389Arg, 10 Gly389Arg, and 10 Gly389Gly patients (all Ser49Ser), 21 men and 14 women]. Following a standardized protocol of dose increase, 6 mcg/kg/min dobutamine was infused over 2 h. Heart rate (HR), blood pressure (BP), and active plasma renin (PR) were measured. Standardized exercise (1 min) was performed at three time points during infusion. In all patients, resting systolic BP was significantly decreased during infusion [144.4±11.5 vs. 140.3±12.2 mmHg (mean±SD), P=0.007]. There was no change in HR, and PR following 120 min of dobutamine infusion. ADRB1 389 genotypes were not associated with HR, systolic BP, and PR changes during dobutamine infusion (all P>0.05, repeated measures analysis of variance). Sex was associated with response to dobutamine. Among women, but not in men, resting HR significantly increased, and diastolic blood pressure (DBP) significantly decreased during dobutamine infusion [HR: 76.0±7.3 to 86.3±17.5 beats per minute (P=0.023), and DBP 78.5±8.49 mmHg to 72.36±6.16 (P=0.041) (repeated measures analysis of variance)]. In healthy patients, the ADRB1 389 genotype was not associated with hemodynamic changes during constant dobutamine infusion. In women, but not in men, HR significantly increased and DBP

  14. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  15. Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise.

    PubMed

    Decroix, Lieselot; Tonoli, Cajsa; Soares, Danusa D; Tagougui, Semah; Heyman, Elsa; Meeusen, Romain

    2016-12-01

    Acute exercise-induced improvements in cognitive function are accompanied by increased (cerebral) blood flow and increased brain-derived neurotrophic factor (BDNF) levels. Acute cocoa flavanol (CF) intake may improve cognitive function, cerebral blood flow (in humans), and BNDF levels (in animals). This study investigated (i) the effect of CF intake in combination with exercise on cognitive function and (ii) cerebral hemodynamics and BDNF in response to CF intake and exercise. Twelve healthy men participated in this randomized, double-blind, crossover study. Participants performed a cognitive task (CT) at 100 min after acute 903-mg CF or placebo (PL) intake, followed by a 30-min time-trial. Immediately after this exercise, the same CT was performed. Prefrontal near-infrared spectroscopy was applied during CT and exercise to measure changes in oxygenated (ΔHbO 2 ), deoxygenated (ΔHHb), and total haemoglobin (ΔHb tot ) and blood samples were drawn and analyzed for BDNF. Reaction time was faster postexercise, but was not influenced by CF. ΔHbO 2 during the resting CT was increased by CF, compared with PL. ΔHbO 2 , ΔHHb, and ΔHb tot increased in response to exercise without any effect of CF. During the postexercise cognitive task, there were no hemodynamic differences between CF or PL. Serum BDNF was increased by exercise, but was not influenced by CF. In conclusion, at rest, CF intake increased cerebral oxygenation, but not BDNF concentrations, and no impact on executive function was detected. This beneficial effect of CF on cerebral oxygenation at rest was overruled by the strong exercise-induced increases in cerebral perfusion and oxygenation.

  16. Hemodynamic effects of sodium bicarbonate administration.

    PubMed

    Katheria, A C; Brown, M K; Hassan, K; Poeltler, D M; Patel, D A; Brown, V K; Sauberan, J B

    2017-05-01

    To describe the hemodynamic changes that occur with sodium bicarbonate (NaHCO 3 ) administration in premature neonates. This retrospective study included premature neonates 23 to 31+6 weeks of gestational age who underwent continuous cardiac and cerebral monitoring as participants in prospective trials at our institution, and who received NaHCO 3 infused over 30 min in the first 24 h of life. Blood pressure (BP), heart rate, cardiac output (CO), SpO 2 and cerebral oximetry (StO 2 ) were captured every 2 s. A baseline was established for all continuous data and averaged over the 10 min before NaHCO 3 administration. Baseline was compared with measurements over 10 min epochs until 80 min after administration. Arterial blood gases before and within 1 h of administration were also compared. Significance was set at P<0.05. A total of 36 subjects received NaHCO 3 (1.3±0.3 mEq kg -1 ) in the first 24 h (14±8.5 h) of life. NaHCO 3 administration increased pH (7.23 vs 7.28, P<0.01) and decreased base deficit (-8.9 vs -6.8, P<0.01) and PaCO 2 (45 vs 43 mm Hg, P<0.05). There was a transient but significant (P<0.05) decrease in systemic BP coinciding with an increase in cerebral oxygenation without an increase in oxygen extraction. CO did not change. Early postnatal NaHCO 3 administration does not acutely improve CO but does cause transient fluctuations in cerebral and cardiovascular hemodynamics in extremely premature infants.

  17. Impact of intravenous nitroglycerin in the management of acute decompensated heart failure.

    PubMed

    den Uil, Corstiaan A; Brugts, Jasper J

    2015-02-01

    Intravenous nitroglycerin is a well-known, but underused, treatment for acute decompensated heart failure. Nitroglycerin has a rapid onset of action and short half-life and there is a clear dose-response curve on both global hemodynamics and peripheral circulation. IV nitroglycerin reduces LV and RV filling pressures and afterload. In the case of acute decompensated heart failure, there is a typical decreased bioavailability of nitric oxide (NO), which needs to be supplemented by exogenous nitrates. Additionally, there is benefit on clinical endpoints, such as fast optimization of arterial oxygenation, lower rates of mechanical ventilation, and improved survival. Drawbacks of therapy include not only side effects such as headache, resistance, and development of tolerability to nitrates but also free radical production. However, nitrates in combination with diuretics remain the cornerstone of acute decompensated heart failure treatment. We propose a more aggressive use of nitrates and a more limited use of inotropes (due to ischemic demand and pro-arrhythmogenic characteristics) in normo- or hypertensive patients with acute heart failure.

  18. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation

    PubMed Central

    Tohyama, Takeshi; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Background Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Methods Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. Results In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. Conclusions LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the

  19. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    PubMed

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  20. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    PubMed Central

    Kobayashi, Goh; Hayama, Rika; Ikuta, Ryuhei; Onozouka, Minoru; Wake, Hiroyuki; Shimada, Atsushi; Shibuya, Tomoaki; Tamaki, Katsushi

    2015-01-01

    We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm). We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS) and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort. PMID:26090407

  1. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms

    PubMed Central

    Requião-Moura, Lúcio Roberto; Durão, Marcelino de Souza; de Matos, Ana Cristina Carvalho; Pacheco-Silva, Alvaro

    2015-01-01

    Ischemia and reperfusion injury is an inevitable event in renal transplantation. The most important consequences are delayed graft function, longer length of stay, higher hospital costs, high risk of acute rejection, and negative impact of long-term follow-up. Currently, many factors are involved in their pathophysiology and could be classified into two different paradigms for education purposes: hemodynamic and immune. The hemodynamic paradigm is described as the reduction of oxygen delivery due to blood flow interruption, involving many hormone systems, and oxygen-free radicals produced after reperfusion. The immune paradigm has been recently described and involves immune system cells, especially T cells, with a central role in this injury. According to these concepts, new strategies to prevent ischemia and reperfusion injury have been studied, particularly the more physiological forms of storing the kidney, such as the pump machine and the use of antilymphocyte antibody therapy before reperfusion. Pump machine perfusion reduces delayed graft function prevalence and length of stay at hospital, and increases long-term graft survival. The use of antilymphocyte antibody therapy before reperfusion, such as Thymoglobulin™, can reduce the prevalence of delayed graft function and chronic graft dysfunction. PMID:25993079

  2. Rapid Response Team activation for pediatric patients on the acute pain service.

    PubMed

    Teets, Maxwell; Tumin, Dmitry; Walia, Hina; Stevens, Jenna; Wrona, Sharon; Martin, David; Bhalla, Tarun; Tobias, Joseph D

    2017-11-01

    Untreated pain or overly aggressive pain management may lead to adverse physiologic consequences and activation of the hospital's Rapid Response Team. This study is a quality improvement initiative that attempts to identify patient demographics and patterns associated with Rapid Response Team consultations for patients on the acute pain service. A retrospective review of all patients on the acute pain service from February 2011 until June 2015 was cross-referenced with inpatients requiring consultation from the Rapid Response Team. Two independent practitioners reviewed electronic medical records to determine which events were likely associated with pain management interventions. Over a 4-year period, 4872 patients were admitted to the acute pain service of whom 135 unique patients required Rapid Response Team consults. There were 159 unique Rapid Response Team activations among 6538 unique acute pain service consults. A subset of 27 pain management-related Rapid Response Team consultations was identified. The largest percentage of patients on the acute pain service were adolescents aged 12-17 (36%). Compared to this age group, the odds of Rapid Response Team activation were higher among infants <1 year old (odds ratio = 2.85; 95% confidence interval: 1.59, 5.10; P < .001) and adults over 18 years (odds ratio = 1.68; 95% confidence interval: 1.01, 2.80; P = .046). Identifying demographics and etiologies of acute pain service patients requiring Rapid Response Team consultations may help to identify patients at risk for clinical decompensation. © 2017 John Wiley & Sons Ltd.

  3. The hemodynamic changes in the human prefrontal cortex during the Flanker and Simon tasks: a fNIRS study

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Lin, Xiaohong

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a low-cost, portable and noninvasive functional neuroimaging technique by measuring the change in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). The aim of present study is to reveal the different brain activity pattern of adult subjects during the completion of flanker and Simon tasks underlying the congruent and incongruent test conditions so as to identify the basic neural mechanism of inhibitory control in executive function. In the study, we utilized fNIRS to explore the hemodynamic changes in the prefrontal cortex and our imaging results suggested that there were notable differences for the hemodynamic responses between the flank and Simon task. A striking difference is that for the flank task, the increase in the HbO concentration during incongruent trials was larger than that during congruent trials for the channels across middle frontal cortex while for the Simon task, the hemodynamic response was stronger for the congruent condition compared to that from the incongruent one. Interestingly, the hemodynamic response exhibited similar task-related activation in the superior frontal cortex for both the congruent and incongruent conditions. Further, independent component analysis showed that different brain activation patterns were identified to accomplish different inhibitory control tasks underlying the congruent and incongruent conditions.

  4. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia

    PubMed Central

    Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036

  5. Renal Hemodynamics in AKI: In Search of New Treatment Targets.

    PubMed

    Matejovic, Martin; Ince, Can; Chawla, Lakhmir S; Blantz, Roland; Molitoris, Bruce A; Rosner, Mitchell H; Okusa, Mark D; Kellum, John A; Ronco, Claudio

    2016-01-01

    Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. Copyright © 2016 by the American Society of Nephrology.

  6. Renal Hemodynamics in AKI: In Search of New Treatment Targets

    PubMed Central

    Matejovic, Martin; Ince, Can; Chawla, Lakhmir S.; Blantz, Roland; Molitoris, Bruce A.; Okusa, Mark D.; Kellum, John A.; Ronco, Claudio

    2016-01-01

    Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies. PMID:26510884

  7. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

    PubMed

    Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R

    2017-10-01

    We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood-Brain Barrier Disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogami, Ryo, E-mail: ogami.r@mazda.co.jp; Nakahara, Toshinori; Hamasaki, Osamu

    2011-10-15

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood-brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients-5 acute-phase and 14 scheduled-underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors weremore » examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.« less

  9. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease

    PubMed Central

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  10. Hemoadsorption treatment of patients with acute infective endocarditis during surgery with cardiopulmonary bypass - a case series.

    PubMed

    Träger, Karl; Skrabal, Christian; Fischer, Guenther; Datzmann, Thomas; Schroeder, Janpeter; Fritzler, Daniel; Hartmann, Jan; Liebold, Andreas; Reinelt, Helmut

    2017-05-29

    Infective endocarditis is a serious disease condition. Depending on the causative microorganism and clinical symptoms, cardiac surgery and valve replacement may be needed, posing additional risks to patients who may simultaneously suffer from septic shock. The combination of surgery bacterial spreadout and artificial cardiopulmonary bypass (CPB) surfaces results in a release of key inflammatory mediators leading to an overshooting systemic hyperinflammatory state frequently associated with compromised hemodynamic and organ function. Hemoadsorption might represent a potential approach to control the hyperinflammatory systemic reaction associated with the procedure itself and subsequent clinical conditions by reducing a broad range of immuno-regulatory mediators. We describe 39 cardiac surgery patients with proven acute infective endocarditis obtaining valve replacement during CPB surgery in combination with intraoperative CytoSorb hemoadsorption. In comparison, we evaluated a historical group of 28 patients with infective endocarditis undergoing CPB surgery without intraoperative hemoadsorption. CytoSorb treatment was associated with a mitigated postoperative response of key cytokines and clinical metabolic parameters. Moreover, patients showed hemodynamic stability during and after the operation while the need for vasopressors was less pronounced within hours after completion of the procedure, which possibly could be attributed to the additional CytoSorb treatment. Intraoperative hemoperfusion treatment was well tolerated and safe without the occurrence of any CytoSorb device-related adverse event. Thus, this interventional approach may open up potentially promising therapeutic options for critically-ill patients with acute infective endocarditis during and after cardiac surgery, with cytokine reduction, improved hemodynamic stability and organ function as seen in our patients.

  11. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  12. Association between hemodynamic activity and motor performance in six-month-old full-term and preterm infants: a functional near-infrared spectroscopy study.

    PubMed

    de Oliveira, Suelen Rosa; de Paula Machado, Ana Carolina Cabral; de Paula, Jonas Jardim; de Moraes, Paulo Henrique Paiva; Nahin, Maria Juliana Silvério; Magalhães, Lívia de Castro; Novi, Sergio L; Mesquita, Rickson C; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez

    2018-01-01

    This study aimed to assess task-induced activation in motor cortex and its association with motor performance in full-term and preterm born infants at six months old. A cross-sectional study of 73 six-month-old infants was conducted (35 full-term and 38 preterm infants). Motor performance was assessed using the Bayley Scales of Infant Development third edition-Bayley-III. Brain hemodynamic activity during motor task was measured by functional near-infrared spectroscopy (fNIRS). Motor performance was similar in full-term and preterm infants. However, differences in hemodynamic response were identified. Full terms showed a more homogeneous unilateral and contralateral activated area, whereas in preterm-born the activation response was predominantly bilateral. The full-term group also exhibited a shorter latency for the hemodynamic response than the preterm group. Hemodynamic activity in the left sensorimotor region was positively associated with motor performance measured by Bayley-III. The results highlight the adequacy of fNIRS to assess differences in task-induced activation in sensorimotor cortex between groups. The association between motor performance and the hemodynamic activity require further investigation and suggest that fNIRS can become a suitable auxiliary tool to investigate aspects of neural basis on early development of motor abilities.

  13. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    NASA Astrophysics Data System (ADS)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  14. Cardiovascular response to acute normovolemic hemodilution in patients with coronary artery diseases: Assessment with transesophageal echocardiography.

    PubMed

    Licker, Marc; Ellenberger, Christoph; Sierra, Jorge; Christenson, Jan; Diaper, John; Morel, Denis

    2005-03-01

    Preoperative acute normovolemic hemodilution induces an increase in circulatory output that is thought to be limited in patients with cardiac diseases. Using multiple-plane transesophageal echocardiography, we investigated the mechanisms of cardiovascular adaptation during acute normovolemic hemodilution in patients with severe coronary artery disease. Prospective case-control study. Operating theater in a university hospital. Consecutive patients treated with beta-blockers, scheduled to undergo coronary artery bypass (n = 50). After anesthesia induction, blood withdrawal and isovolemic exchange with iso-oncotic starch (1:1.15 ratio) to achieve a hematocrit value of 28%. In addition to heart rate and intravascular pressures, echocardiographic recordings were obtained before and after acute normovolemic hemodilution to assess cardiac preload, afterload, and contractility. In a control group, not subjected to acute normovolemic hemodilution, hemodynamic variables remained stable during a 20-min anesthesia period. Following acute normovolemic hemodilution, increases in cardiac stroke volume (+28 +/- 4%; mean +/- sd) were correlated with increases in central venous pressure (+2.0 +/- 1.3 mm Hg; R = .56) and in left ventricular end-diastolic area (+18 +/- 5%, R = .39). The unchanged left ventricular end-systolic wall stress and preload-adjusted maximal power indicated that neither left ventricular afterload nor contractility was affected by acute normovolemic hemodilution. Diastolic left ventricular filling abnormalities (15 of 22 cases) improved in 11 patients and were stable in the remaining four patients. Despite reduction in systemic oxygen delivery (-20.5 +/- 7%, p < .05), there was no evidence for myocardial ischemia (electrocardiogram, left ventricular wall motion abnormalities). In anesthetized patients with coronary artery disease, moderate acute normovolemic hemodilution did not compromise left ventricular systolic and diastolic function. Lowering blood

  15. Early hemodynamic assessment and treatment of elderly patients in the medical ICU.

    PubMed

    Voga, Gorazd; Gabršček-Parežnik, Lucija

    2016-12-01

    The aim of this retrospective study was to analyze differences in the initial hemodynamic assessment and its impact on the treatment in patients aged 80 years or older compared to younger patients during the first 6 h after admission to the medical intensive care unit (ICU). We analyzed 615 consecutive patients admitted to the medical ICU of which 124 (20%) were aged 80 years or more. The older group had a significantly higher acute physiology and chronic health evaluation (APACHE II) score, an overall mortality in the ICU and a presence of pre-existing cardiac disease. Both groups did not differ in the presence of shock and shock types on admission. In 57% of older and in 56% of younger patients, transthoracic echocardiography was performed with a higher therapeutic impact in the older patients. Transesophageal echocardiography was performed in 3% of the patients in both groups for specific diagnostic problems. Early reassessment with transthoracic echocardiography was necessary in 5% of the older and in 6% of the younger patients and resulted in a change of the treatment in one third of the patients. Continuous invasive hemodynamic monitoring was used in 11% of the older and in 10% of the younger patients and resulted in a therapeutic change in 71% of the older and in 64% of the younger patients. Patients aged 80 years or older represent 20% of all admissions to the medical ICU. Once admitted the older patients were similarly hemodynamically assessed as the younger ones with a similar impact on the treatment.

  16. Hemodynamic profile of pulmonary hypertension (PH) in ARDS

    PubMed Central

    Calcaianu, Mihaela; Gschwend, Anthony; Canuet, Matthieu; Meziani, Ferhat; Kessler, Romain

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a diffuse lung injury that leads to a severe acute respiratory failure. Traditional diagnostic criteria for pulmonary hypertension (PH), in this situation, may be unreliable due to the effects of positive pressure ventilation and vasoactive agents. The aim of this study is to describe the hemodynamic characteristics of PH secondary to ARDS, in relation with respiratory parameters. We assessed the hemodynamic, respiratory function, and ventilator parameters in a cohort of 38 individuals with ARDS-associated PH defined by mean pulmonary arterial pressure (mPAP) ≥ 25 mmHg. Individual characteristics: PaO2/FiO2 = 110 ± 60 mmHg, alveolar-arterial oxygen gradient (A-aO2) = 549 ± 148.9 mmHg, positive end-expiratory pressure (PEEP) = 8.7 ± 3.5 cmH2O, pulmonary static compliance (Cstat) = 30 ± 12.1 L*cmH2O-1, mPAP = 35.4 ±6.6 mmHg, pulmonary artery wedge pressure (PAWP) = 15.6 ± 5.5 mmHg, cardiac index (CI) = 3.4 ± 1.2 L/min/m2, pulmonary vascular resistance (PVR) = 3.3 ± 1.6 Wood units (WU), right atrial pressure (RAP) = 13.4 ± 5.4 mmHg, diastolic pulmonary gradient (DPG) = 12.6 ± 6.5 mmHg, and trans-pulmonary gradient (TPG) = 19.7 ± 7.7 mmHg. The composite marker—DPG >7 mmHg and PVR > 3 WU—is associated with lower CI (P = 0.016), higher mPAP (P = 0.003), and lower pulmonary static compliance (P = 0.028). We confirmed a poor prognosis of ARDS associated with PH, with a 50% survival rate after 17 days. We observed that the survival rate at 28 days was better in the case of improvement in the PaO2/FiO2 ratio in the first 24 h (log rank P = 0.003). ARDS associated with PH is a severe condition with a very poor survival rate. The composite marker DPG > 7 mmHg and PVR > 3 WU seemed to better describe the hemodynamic and respiratory dysfunction. The improvement in PaO2/Fi

  17. Cardiac transcriptional response to acute and chronic angiotensin II treatments.

    PubMed

    Larkin, Jennie E; Frank, Bryan C; Gaspard, Renee M; Duka, Irena; Gavras, Haralambos; Quackenbush, John

    2004-07-08

    Exposure of experimental animals to increased angiotensin II (ANG II) induces hypertension associated with cardiac hypertrophy, inflammation, and myocardial necrosis and fibrosis. Some of the most effective antihypertensive treatments are those that antagonize ANG II. We investigated cardiac gene expression in response to acute (24 h) and chronic (14 day) infusion of ANG II in mice; 24-h treatment induces hypertension, and 14-day treatment induces hypertension and extensive cardiac hypertrophy and necrosis. For genes differentially expressed in response to ANG II treatment, we tested for significant regulation of pathways, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Microarray Pathway Profiler (GenMAPP) databases, as well as functional classes based on Gene Ontology (GO) terms. Both acute and chronic ANG II treatments resulted in decreased expression of mitochondrial metabolic genes, notably those for the electron transport chain and Krebs-TCA cycle; chronic ANG II treatment also resulted in decreased expression of genes involved in fatty acid metabolism. In contrast, genes involved in protein translation and ribosomal activity increased expression following both acute and chronic ANG II treatments. Some classes of genes showed differential response between acute and chronic ANG II treatments. Acute treatment increased expression of genes involved in oxidative stress and amino acid metabolism, whereas chronic treatments increased cytoskeletal and extracellular matrix genes, second messenger cascades responsive to ANG II, and amyloidosis genes. Although a functional linkage between Alzheimer disease, hypertension, and high cholesterol has been previously documented in studies of brain tissue, this is the first demonstration of induction of Alzheimer disease pathways by hypertension in heart tissue. This study provides the most comprehensive available survey of gene expression changes in response to acute and chronic ANG II treatment, verifying

  18. The Pentax airway scope versus the Macintosh laryngoscope: Comparison of hemodynamic responses and concentrations of plasma norepinephrine to tracheal intubation

    PubMed Central

    2013-01-01

    Background The Pentax Airway Scope (AWS) is a video laryngoscope designed to facilitate tracheal intubation with a high-resolution image. The Pentax AWS has been reported to cause less hemodynamic stress than the Macintosh laryngoscope. The aims of this study are to investigate the differences in hemodynamic responses and norepinephrine concentrations to tracheal intubation between procedures using he Pentax AWS and the Macintosh laryngoscope. Methods Forty patients (American Society of Anesthesiologists class I-II, age range: 18-60 years) were randomly assigned to be intubated with either the Pentax AWS or the Macintosh laryngoscope while under general anesthesia. Routine monitoring, including invasive arterial blood pressure and bispectral index, were applied. Thiopental (4 mg/kg), fentanyl (1 µg/kg), midazolam (0.05 mg/kg), and rocuronium (0.6 mg/kg) were administered for anesthetic induction. Systolic, diastolic, and mean blood pressures and heart rates were recorded pre-intubation, immediately post-intubation (T0), and over the following 10 minutes at one minute intervals (T1, T2, T3, T4, T5…T10). Patient blood was sampled for norepinephrine concentrations pre-intubation (baseline) and post-intubation (T1). Evidence of sore throat was evaluated 30 min and 24 hr after extubation. Data were transformed to % basal and expressed as mean ± SD. Results The systolic, diastolic, and mean blood pressure, and heart rate at T0 and T4 were significantly different between the two groups. There was no significant difference in plasma norepinephrine between the two groups. The difference in incidence of sore throat was not significant between the two groups. Conclusions Pentax-AWS for tracheal intubation has greater hemodynamic stability than the Macintosh blade laryngoscope. PMID:23646240

  19. Effect of inhaled nitric oxide on pulmonary hemodynamics after acute lung injury in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romand, J.A.; Pinsky, M.R.; Firestone, L.

    Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. The authors studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-minmore » exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial [beta]-adrenergic blockage (propanolol, 0.15 mg/kg iv) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa and calculated PVR, both of which decreased with 17 ppm NO. ALI decreased arterial Po[sub 2] and increased airway pressure, shunt, and dead space ventilation. Ppa and PVR were greater during ALI than during hyperoxia. NO inhalation had no measurable effect during ALI before or after [beta]-adrenergic blockage. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 [mu]g) induced an immediate decrease in Ppa and PVR during ALI. Short-term NO inhalation does not affect PVR or gas exchange in dogs with oleic acid-induced ALI, nor does it increase NO-Hb or MetHb. In contrast, NO can diminish hypoxia-induced elevations in pulmonary vascular tone. These data suggest that NO inhalation selectively dilates the pulmonary circulation and specifically reduces HPV but not oleic acid-induced increases in pulmonary vasomotor tone. 28 refs., 3 figs., 2 tabs.« less

  20. Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS.

    PubMed

    Peng, Ke; Nguyen, Dang Khoa; Vannasing, Phetsamone; Tremblay, Julie; Lesage, Frédéric; Pouliot, Philippe

    2016-02-01

    Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Open-lung protective ventilation with pressure control ventilation, high-frequency oscillation, and intratracheal pulmonary ventilation results in similar gas exchange, hemodynamics, and lung mechanics.

    PubMed

    Sedeek, Khaled A; Takeuchi, Muneyuki; Suchodolski, Klaudiusz; Vargas, Sara O; Shimaoka, Motomu; Schnitzer, Jay J; Kacmarek, Robert M

    2003-11-01

    Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.

  2. SYMPATHETIC NEURAL AND HEMODYNAMIC RESPONSES DURING COLD PRESSOR TEST IN ELDERLY BLACKS AND WHITES

    PubMed Central

    Okada, Yoshiyuki; Jarvis, Sara S.; Best, Stuart A.; Edwards, Jeffrey G.; Hendrix, Joseph M.; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D.; Fu, Qi

    2016-01-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Since blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate (HR), cardiac output (Qc), and muscle sympathetic nerve activity (MSNA) were measured during supine baseline, 2-min CPT, and 3-min recovery in 47 elderly [68±7 (SD) yrs] volunteers (12 blacks, 35 whites). Baseline BP, HR, Qc, or MSNA did not differ between races. Systolic and diastolic BP (DBP) and HR increased during CPT (all P<0.001) with no racial differences (all P>0.05). Qc increased during CPT and up to 30 sec of recovery in both groups, but was lower in blacks than whites. MSNA increased during CPT in both groups (both P<0.001); the increase in burst frequency was similar between groups, while the increase in total activity was smaller in blacks (P=0.030 for interaction). Peak change (Δ) in DBP was correlated with Δ total activity at 1 min into CPT in both blacks (r=0.78, P=0.003) and whites (r=0.43, P=0.009), while the slope was significantly greater in blacks (P=0.007). Thus, elderly blacks have smaller sympathetic and central hemodynamic (e.g., Qc) responses, but a greater pressor response for a given sympathetic activation during CPT than elderly whites. This response may stem from augmented sympathetic vascular transduction, greater sympathetic activation to other vascular bed(s), and/or enhanced non-adrenergically mediated vasoconstriction in elderly blacks. PMID:27021009

  3. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality

    PubMed Central

    Doi, Kent; Hu, Xuzhen; Yuen, Peter S.T.; Leelahavanichkul, Asada; Yasuda, Hideo; Kim, Soo Mi; Schnermann, Jürgen; Jonassen, Thomas E.N.; Frøkiær, Jørgen; Nielsen, Søren; Star, Robert A.

    2008-01-01

    Sepsis remains a serious problem in critically ill patients with the mortality increasing to over half when there is attendant acute kidney injury. α-Melanocyte-stimulating hormone is a potent anti-inflammatory cytokine that inhibits many forms of inflammation including that with acute kidney injury. We tested whether a new α-melanocyte-stimulating hormone analogue (AP214), which has increased binding affinity to melanocortin receptors, improves sepsis-induced kidney injury and mortality using a cecal ligation and puncture mouse model. In the lethal cecal ligation-puncture model of sepsis, severe hypotension and bradycardia resulted and AP214 attenuated acute kidney injury of the lethal model with a bell-shaped dose-response curve. An optimum AP214 dose reduced acute kidney injury even when it was administered 6 hr after surgery and it significantly improved blood pressure and heart rate. AP214 reduced serum TNF-α and IL-10 levels with a bell-shaped dose-response curve. Additionally; NF-κB activation in the kidney and spleen, and splenocyte apoptosis were decreased by the treatment. AP214 significantly improved survival in both lethal and sublethal models. We have shown that AP214 improves hemodynamic failure, acute kidney injury, mortality and splenocyte apoptosis attenuating pro- and anti-inflammatory actions due to sepsis. PMID:18354376

  4. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.

    PubMed

    Bainton, R J; Tsai, L T; Singh, C M; Moore, M S; Neckameyer, W S; Heberlein, U

    2000-02-24

    Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.

  6. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization

    PubMed Central

    2013-01-01

    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made. PMID:24472443

  7. Acute renal response to rapid onset respiratory acidosis.

    PubMed

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  8. Emergency room thoracotomy for acute traumatic cardiac tamponade caused by a blunt cardiac injury: A case report.

    PubMed

    Ishida, Kenichiro; Kinoshita, Yoshihiro; Iwasa, Nobutaka; Nakae, Masaro; Sakaki, Masayuki; Ieki, Yohei; Takahashi, Kyosuke; Shimahara, Yumiko; Sogabe, Taku; Shimono, Keiichiro; Noborio, Mitsuhiro; Sadamitsu, Daikai

    2017-01-01

    Traumatic blunt cardiac injuries have a high mortality rate, and prompt diagnosis and treatment can be lifesaving in cardiac tamponade. A 62-year-old man was transferred to the emergency department after a motor vehicle accident. He was hemodynamically unstable. A focused assessment with sonography in trauma (FAST) showed pericardial fluid with right ventricular collapse consistent with cardiac tamponade in the subxiphoid view. He collapsed despite a subxiphoid pericardiotomy. Owing to the ongoing hemodynamic instability, we performed a left anterolateral thoracotomy. Direct incision of the pericardium showed blood and clots within the pericardial space, indicating hemopericardium. The heart stroke and hemodynamic status recovered on removing the clot. Although the physical findings of cardiac tamponade are not always apparent in life-threatening acute cardiac tamponade after blunt trauma, FAST is a reliable tool for diagnosing and following cardiac tamponade. A median sternotomy is a standard approach for evaluating cardiac injury in hemodynamically stable patients with or without cardiopulmonary bypass. However, a left anterior thoracotomy was the fastest, simplest life-saving procedure considering the need for open-chest cardiac massage given our patient's life-threatening condition. A prompt diagnosis using FAST and treatment can be lifesaving in traumatic acute cardiac tamponade. A pericardiotomy via a thoracotomy is mandatory for lifesaving cardiac decompression in acute traumatic cardiac tamponade in cases of ineffective drainage due to clot formation within the pericardial space. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Hemodynamics

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  10. Acute neuroendocrine response to sexual stimulation in sexual offenders.

    PubMed

    Haake, Philip; Schedlowski, Manfred; Exton, Michael S; Giepen, Christoph; Hartmann, Uwe; Osterheider, Michael; Flesch, Martin; Janssen, Onno E; Leygraf, Norbert; Krüger, Tillmann H C

    2003-05-01

    Several pharmacotherapeutic approaches have confirmed the influence of neuroendocrine parameters on sexual desire, function, and fantasies in men; however, the relevance of acute neuroendocrine changes in mediating heightened sexual drive remains unknown. We recently demonstrated that plasma prolactin substantially increases following orgasm in healthy men, suggesting a feedback mechanism for peripheral prolactin in the control of acute sexual arousal. Because prolactin appears to play a regulatory role in acute sexual drive, we initiated this study to see whether sexual offenders with a high sexual drive have a different neuroendocrine response to sexual arousal. This study compares the prolactin response to orgasm of sexual offenders with high sexual drive and that of healthy subjects with average sexual drive. From a subject pool of 150 inpatients held because of sexual crimes, we recruited 10 volunteers, based on their high sexual drive according to an intensive, semistructured clinical interview. We defined sexual drive by a short refractory period and strong sexualization, or a high frequency of sexual stimulation. We analyzed the acute psychoneuroendocrine response to sexual arousal and orgasm continuously before, during, and after masturbation-induced orgasm in patients and control subjects. Sexual offenders demonstrated higher sexual desire (P < 0.001) and function (P < 0.001) and a more positively perceived refractory period (P < 0.05). Both groups displayed a prolonged, significant increase in prolactin plasma levels after orgasm (P < 0.001). Sexual offenders did not differ from control subjects in neuroendocrine response to sexual arousal and orgasm. These data demonstrate that sexual offenders with a high sexual drive do not differ from control subjects in the postorgasmic neuroendocrine response, particularly in prolactin release. This study confirms that factors other than peripheral hormones influence deviant sexual behaviour.

  11. Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.

    PubMed

    Tulic, Mark K; Holt, Patrick G; Sly, Peter D

    2002-10-01

    We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel

  12. Method for assessing the need for case-specific hemodynamics: application to the distribution of vascular permeability.

    PubMed

    Hazel, A L; Friedman, M H

    2000-01-01

    A common approach to understanding the role of hemodynamics in atherogenesis is to seek relationships between parameters of the hemodynamic environment, and the distribution of tissue variables thought to be indicative of early disease. An important question arising in such investigations is whether the distributions of tissue variables are sufficiently similar among cases to permit them to be described by an ensemble average distribution. If they are, the hemodynamic environment needs be determined only once, for a nominal representative geometry; if not, the hemodynamic environment must be obtained for each case. A method for classifying distributions from multiple cases to answer this question is proposed and applied to the distributions of the uptake of Evans blue dye labeled albumin by the external iliac arteries of swine in response to a step increase in flow. It is found that the uptake patterns in the proximal segment of the arteries, between the aortic trifurcation and the ostium of the circumflex iliac artery, show considerable case-to-case variability. In the distal segment, extending to the deep femoral ostium, many cases show very little spatial variation, and the patterns in those that do are similar among the cases. Thus the response of the distal segment may be understood with fewer simulations, but the proximal segment has more information to offer.

  13. Physiological responses to acute cold exposure in young lean men

    PubMed Central

    Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan

    2018-01-01

    The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360

  14. Trainability of hemodynamic parameters: A near-infrared spectroscopy based neurofeedback study.

    PubMed

    Kober, Silvia Erika; Hinterleitner, Vanessa; Bauernfeind, Günther; Neuper, Christa; Wood, Guilherme

    2018-05-18

    We investigated the trainability of the hemodynamic response as assessed with near-infrared spectroscopy (NIRS) during one neurofeedback (NF) session. Forty-eight participants were randomly assigned to four different groups that tried to either increase or decrease oxygenated (oxy-Hb) or deoxygenated hemoglobin (deoxy-Hb) over the inferior frontal gyrus during imagery of swallowing movements. Deoxy-Hb could be successfully up-regulated while oxy-Hb could be successfully down-regulated during NF. Participants were not able to down-regulate deoxy-Hb or to up-regulate oxy-Hb. These results show that the natural course of oxy- and deoxy-Hb during movement imagery can be reinforced by providing real-time feedback of the corresponding NIRS parameter since deoxy-Hb generally increases and oxy-Hb decreases during imagery of swallowing. Furthermore, signal-to-noise ratio of deoxy-Hb but not of oxy-Hb improved during training. Our results provide new insights into the trainability of the hemodynamic response as assessed with NIRS and have an impact on the application of NIRS-based real-time feedback. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hemodynamic signal changes during saliva and water swallowing: a near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Kober, Silvia Erika; Wood, Guilherme

    2018-01-01

    Here, we compared the hemodynamic response observed during swallowing of water or saliva using near-infrared spectroscopy (NIRS). Sixteen healthy adults swallowed water or saliva in a randomized order. Relative concentration changes in oxygenated and deoxygenated hemoglobin during swallowing were assessed. Both swallowing tasks led to the strongest NIRS signal change over the bilateral inferior frontal gyrus. Water swallowing led to a stronger activation over the right hemisphere while the activation focus for saliva swallowing was stronger left lateralized. The NIRS time course also differed between both swallowing tasks especially at the beginning of the tasks, which might be a sign of differences in task effort. Our results show that NIRS is a sensitive measure to reveal differences in the topographical distribution and time course of the hemodynamic response between distinct swallowing tasks and might be therefore an adequate diagnostic and therapy tool for swallowing difficulties.

  16. Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study

    PubMed Central

    Kober, Silvia Erika; Bauernfeind, Günther; Woller, Carina; Sampl, Magdalena; Grieshofer, Peter; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In the present multiple case study, we examined hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS). Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem, and two neurologically healthy control subjects actively swallowed saliva (ME) and mentally imagined to swallow saliva (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment. PMID:26217298

  17. Acute glucocorticoid effects on response inhibition in borderline personality disorder.

    PubMed

    Carvalho Fernando, Silvia; Beblo, Thomas; Schlosser, Nicole; Terfehr, Kirsten; Wolf, Oliver Tobias; Otte, Christian; Löwe, Bernd; Spitzer, Carsten; Driessen, Martin; Wingenfeld, Katja

    2013-11-01

    Growing evidence suggests inhibition dysfunctions in borderline personality disorder (BPD). Moreover, abnormalities in hypothalamic-pituitary-adrenal (HPA) axis functioning have also been found in BPD patients. In healthy individuals, response inhibition has been sensitive to acute stress, and previous research indicates that effects mediated by the HPA axis become particularly apparent when emotional stimuli are processed. This study aimed to explore the influence of acute hydrocortisone administration on response inhibition of emotional stimuli in BPD patients compared to healthy control participants. After a single administration of 10mg hydrocortisone or placebo, 32 female BPD patients and 32 healthy female participants performed an adapted emotional go/no-go paradigm to assess response inhibition for emotional face stimuli in a cross-over study. Acute cortisol elevations decreased the reaction times to target stimuli in both BPD patients and healthy controls. Patients and controls did not differ in task performance; however, BPD patients with comorbid posttraumatic stress disorder (PTSD) displayed longer reaction times than patients without PTSD. In contrast, the occurrence of comorbid eating disorder had no significant impact on go/no-go performance. No significant interaction effect between the treatment condition and the emotional valence of the face stimuli was found. Acute hydrocortisone administration enhances response inhibition of face stimuli in BPD patients and healthy controls, regardless of their emotional valence. Our results agree with the suggestion that moderate cortisol enhancement increases the inhibition of task-irrelevant distracters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. [Acute heart failure: acute cardiogenic pulmonary edema and cardiogenic shock].

    PubMed

    Sánchez Marteles, Marta; Urrutia, Agustín

    2014-03-01

    Acute cardiogenic pulmonary edema and cardiogenic shock are two of the main forms of presentation of acute heart failure. Both entities are serious, with high mortality, and require early diagnosis and prompt and aggressive management. Acute pulmonary edema is due to the passage of fluid through the alveolarcapillary membrane and is usually the result of an acute cardiac episode. Correct evaluation and clinical identification of the process is essential in the management of acute pulmonary edema. The initial aim of treatment is to ensure hemodynamic stability and to correct hypoxemia. Other measures that can be used are vasodilators such as nitroglycerin, loop diuretics and, in specific instances, opioids. Cardiogenic shock is characterized by sustained hypoperfusion, pulmonary wedge pressure > 18 mmHg and a cardiac index < 2.2l/min/m(2). The process typically presents with hypotension (systolic blood pressure < 90 mmHg or a decrease in mean arterial pressure > 30 mmHg) and absent or reduced diuresis (< 0.5 ml/kg/h). The most common cause is left ventricular failure due to acute myocardial infarction. Treatment consists of general measures to reverse acidosis and hypoxemia, as well as the use of vasopressors and inotropic drugs. Early coronary revascularization has been demonstrated to improve survival in shock associated with ischaemic heart disease. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  19. Mitochondria control acute and chronic responses to hypoxia.

    PubMed

    McElroy, G S; Chandel, N S

    2017-07-15

    There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Effect of Posture on Cheyne-Stokes Respirations and Hemodynamics in Patients with Heart Failure

    PubMed Central

    Soll, Bruce A.G.; Keong Yeo, Khung; Davis, James W.; Seto, Todd B.; Schatz, Irwin J.; Shen, Edward N.

    2009-01-01

    Study Objectives: Cheyne-Stokes respirations occur in 40% of patients with heart failure. Orthopnea is a cardinal symptom of heart failure and may affect the patient's sleeping angle. The objective of this study was to assess the respiratory and hemodynamic response to sleeping angle in a group of subjects with stable heart failure. Design: Twenty-five patients underwent overnight polysomnography with simultaneous and continuous impedance cardiographic monitoring. Sleeping polysomnographic and impedance cardiographic data were recorded. Setting: The study was conducted in a sleep center. Patients: All 25 patients had clinically stable heart failure and left ventricular ejection fractions < 40%. Interventions: The patients slept at 0°, 15°, 30°, and 45° in random order. Measurements and Results: Seventeen patients had Cheyne-Stokes apneas (index > 5/h) and 23 patients had hypopneas (index > 5/h). The hypopnea index showed no response to sleeping angle. The Cheyne-Stokes apnea index decreased with increasing sleeping angle (P < 0.001). This effect was seen only during supine sleep and non-rapid eye movement sleep and was absent in non-supine sleep, rapid eye movement sleep, and during periods of wakefulness. Thoracic fluid content index and left ventricular hemodynamics measured by impedance cardiography showed no response to sleeping angle. Conclusions: Changing the heart failure patient's sleeping angle from 0° to 45° results in a significant decrease in Cheyne-Stokes apneas. This decrease occurs on a constant base of hypopneas. The changes in Cheyne-Stokes apneas are not related to changes in lung congestion and left ventricular hemodynamics. Citation: Soll BAG; Yeo KK; Davis JW; Seto TB; Schatz IJ; Shen EN. The effect of posture on Cheyne-Stokes respirations and hemodynamics in patients with heart failure. SLEEP 2009;32(11):1499-1506. PMID:19928389

  1. Different pain responses to chronic and acute pain in various ethnic/racial groups.

    PubMed

    Rahavard, Behnoosh B; Candido, Kenneth D; Knezevic, Nebojsa Nick

    2017-09-01

    Our goal in this study was to review the similarities and differences among ethnic groups and their respective responses to acute and chronic clinically related and experimentally induced pain. In this review, the PUBMED and Google-Scholar databases were searched to analyze articles that have assessed the variations in both acute and chronic pain responses among different ethnic/racial groups. According to the results from 42 reviewed articles, significant differences exist among ethnic-racial groups for pain prevalence as well as responses to acute and chronic pain. Compared with Caucasians, other ethnic groups are more susceptible to acute pain responses to nociceptive stimulation and to the development of long-term chronic pain. These differences need to be addressed and assessed more extensively in the future in order to minimize the pain management disparities among various ethnic-racial groups and also to improve the relationship between pain management providers and their patients.

  2. Sildenafil exposure and hemodynamic effect after stage II single-ventricle surgery

    PubMed Central

    Hill, Kevin D.; Tunks, Robert D.; Barker, Piers C. A.; Benjamin, Daniel K.; Cohen-Wolkowiez, Michael; Fleming, Gregory A.; Laughon, Matthew; Li, Jennifer S.

    2013-01-01

    Objective To determine sildenafil exposure and hemodynamic effect in children after stage II single-ventricle surgery. Design Prospective, dose escalation trial. Setting Single-center, pediatric catheterization laboratory. Patients 12 children post stage II single-ventricle surgical palliation and undergoing elective cardiac catheterization: median age 1.9 years (range: 0.8, 4.0), weight 11 kg (8, 13), 9 females, and 10 with a single right ventricle. Interventions Catheterization and echocardiography performed before and immediately after single-dose intravenous sildenafil (0.125, 0.25, 0.35, or 0.45 mg/kg over 20 minutes). Measurements Peak sildenafil and des-methyl sildenafil concentration, change in hemodynamic parameters measured by cardiac catheterization and echocardiography including indexed pulmonary vascular resistance, and myocardial performance. Main Results Maximum sildenafil concentrations ranged from 92–775 ng/ml and were above the in vitro threshold needed for 77% phosphodiesterase type-5 (PDE-5) inhibition in 80% of subjects and 90% inhibition in 80% of subjects with doses ≥0.35 mg/kg. Sildenafil lowered pulmonary vascular resistance index (PVRI) in all 12 subjects (median PVRI 2.2 [range: 1.6, 7.9]; decreased to 1.7 [1.2, 5.4] WU x m2; p<0.01) with no dose-response effect. Sildenafil improved pulmonary blood flow (+8% [0, 20], p=0.04) and saturations (+2% [0, 16], p=0.04) in those with baseline PVRI ≥2 WU x m2 (n=7). Change in saturations correlated inversely with change in PVRI (r2 = 0.74 p<0.01). Sildenafil also lowered mean blood pressure (−12% [−20, +10]; p=0.04). There was no change in cardiac index and no effect on myocardial performance. There were no adverse events. Conclusions Sildenafil demonstrated non-linear exposure with high inter-individual variability but was well tolerated and effectively lowered PVRI in all subjects. Sildenafil did not acutely improve myocardial performance or increase cardiac index. PMID:23823195

  3. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    PubMed Central

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  4. The 894G>T endothelial nitric oxide synthase genetic polymorphism affects hemodynamic responses to mental stress performed before and after exercise.

    PubMed

    Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio

    2012-03-01

    Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.

  5. Pathology during acute infections: contributions of intracellular pathogens and the CTL response.

    PubMed

    Ganusov, Vitaly V; Antia, Rustom

    2005-06-22

    Previous work has shown how, in the case of cytotoxic T-lymphocyte (CTL) responses to persistent viral infections, pathology may arise as a consequence of cell destruction directly by the virus or indirectly due to the CTL response, leading to maximum pathology at intermediate efficacy of the immune response. We expand these studies to consider pathology arising during acute infections with intracellular pathogens controlled by the CTL response. We show that, in contrast to persistent infections, pathology during acute infections is minimized with increasing efficacy of the immune response. The implications of these results for vaccination are discussed.

  6. Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex.

    PubMed

    Farivar, Reza; Thompson, Benjamin; Mansouri, Behzad; Hess, Robert F

    2011-12-20

    Factors such as strabismus or anisometropia during infancy can disrupt normal visual development and result in amblyopia, characterized by reduced visual function in an otherwise healthy eye and often associated with persistent suppression of inputs from the amblyopic eye by those from the dominant eye. It has become evident from fMRI studies that the cortical response to stimulation of the amblyopic eye is also affected. We were interested to compare the hemodynamic response function (HRF) of early visual cortex to amblyopic vs. dominant eye stimulation. In the first experiment, we found that stimulation of the amblyopic eye resulted in a signal that was both attenuated and delayed in its time to peak. We postulated that this delay may be due to suppressive effects of the dominant eye and, in our second experiment, measured the cortical response of amblyopic eye stimulation under two conditions--where the dominant eye was open and seeing a static pattern (high suppression) or where the dominant eye was patched and closed (low suppression). We found that the HRF in response to amblyopic eye stimulation depended on whether the dominant eye was open. This effect was manifested as both a delayed HRF under the suppressed condition and an amplitude reduction.

  7. Acute and chronic effects of the insecticide endrin on renal function and renal hemodynamics.

    DOT National Transportation Integrated Search

    1963-10-01

    Chronic and acute effects of the insecticide endrin on renal function were studied in dogs. Animals were exposed to endrin chronically by intramuscular injection and acutely by intravenous infusion. In acute studies dogs developed systemic hypertensi...

  8. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    PubMed Central

    Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  9. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  10. Basic equipment requirements for hemodynamic monitoring.

    PubMed Central

    Morton, B C

    1979-01-01

    Hemodynamic monitoring in the critically ill patient requires the use of sophisticated electronic devices. To use this equipment one should have a general understanding of the principles involved and the requirements of a reliable system. This communication serves to explain the requirements of the various components of a hemodynamic monitoring system and to demonstrate how they interact to produce accurate and safe electronic signals from mechanical wave forms obtained from the patient. Images FIG. 5 PMID:497978

  11. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    PubMed

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Acute Mucociliary Clearance Response to Aerobic Exercise in Smokers.

    PubMed

    Ramos, Ercy M C; Vanderlei, Luiz Carlos M; Ito, Juliana T; Lima, Fabiano F; Rodrigues, Fernanda M M; Manzano, Beatriz M; Fernandes, Rômulo A; Cecílio, Michel J; Toledo-Arruda, Alessandra C; Ramos, Dionei

    2015-11-01

    Mucociliary clearance is the main defense mechanism of the respiratory system, and it is influenced by several stimuli, including aerobic exercise and cigarette smoking. We evaluated the acute response of mucociliary clearance to aerobic exercise in smokers and nonsmokers compared with that found after acute smoking and smoking combined with exercise. Also, we investigated whether there was a correlation between mucociliary clearance and the autonomic nervous system under these conditions. Twenty-one smokers were evaluated for mucociliary clearance by saccharin transit time (STT), and the response of the autonomic nervous system was evaluated by heart rate variability after aerobic exercise, after exercise followed by smoking, after acute smoking, and after rest. For comparison, 17 nonsmokers were also assessed during exercise. Repeated-measures analysis of variance with the Tukey test or the Friedman test followed by the Dunn test was used to evaluate the STT, autonomic response, and other variables to exercise and/or smoking in smokers. A paired t test or Wilcoxon test was used to analyze responses to exercise in nonsmokers. Correlations were evaluated using Pearson or Spearman coefficients. The STT was reduced after exercise in both groups, with similar responses between them. Other stimuli also reduced the STT. The STT showed a negative correlation with sympathetic activity in smokers and a positive correlation with the parasympathetic system in nonsmokers. Although impaired in smokers, mucociliary clearance responded to the stimulus of exercise, as demonstrated by similar STTs compared with nonsmokers. This response was correlated with the autonomic nervous system in both groups. In smokers, mucociliary clearance also responded to the stimuli of smoking and exercise followed by smoking. Copyright © 2015 by Daedalus Enterprises.

  13. Acute refractory hypoxemia after chest trauma reversed by high-frequency oscillatory ventilation: a case report

    PubMed Central

    2013-01-01

    Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an

  14. Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.

    PubMed

    Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J

    2018-04-01

    Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within

  15. Detecting the subtle shape differences in hemodynamic responses at the group level

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Adleman, Nancy E.; Leibenluft, Ellen; Cox, Robert W.

    2015-01-01

    The nature of the hemodynamic response (HDR) is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM) methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or undershoot). In contrast, the estimated-shape method (ESM) through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve (AUC) or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM), we showcase a hybrid approach that is validated by simulations and real data. With the whole HDR shape integrity maintained as input at the group level, the approach allows the investigator to substantiate these more nuanced effects through the unique HDR shape features. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the modeling approach to an inclusive platform that is more adaptable than the conventional GLM. With multiple effect estimates from ESM for each condition, linear mixed-effects (LME) modeling should be used at the group level when there is only one group of subjects without any other explanatory variables. Under other situations, an approximate approach through dimension reduction within the MVM framework can be adopted to achieve a practical equipoise among representation, false positive control, statistical power, and modeling flexibility. The associated program 3dMVM is publicly available as part of the

  16. Pathophysiology of pulmonary hypertension in acute lung injury

    PubMed Central

    Price, Laura C.; McAuley, Danny F.; Marino, Philip S.; Finney, Simon J.; Griffiths, Mark J.

    2012-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome are characterized by protein rich alveolar edema, reduced lung compliance, and acute severe hypoxemia. A degree of pulmonary hypertension (PH) is also characteristic, higher levels of which are associated with increased morbidity and mortality. The increase in right ventricular (RV) afterload causes RV dysfunction and failure in some patients, with associated adverse effects on oxygen delivery. Although the introduction of lung protective ventilation strategies has probably reduced the severity of PH in ALI, a recent invasive hemodynamic analysis suggests that even in the modern era, its presence remains clinically important. We therefore sought to summarize current knowledge of the pathophysiology of PH in ALI. PMID:22246001

  17. NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    Hand, B D; McCole, S D; Brown, M D; Park, J J; Ferrell, R E; Huberty, A; Douglass, L W; Hagberg, J M

    2006-12-01

    We tested whether the G894T and T-786C NOS3 polymorphisms were associated with exercise cardiovascular (CV) hemodynamics in sedentary, physically active, and endurance-trained postmenopausal women. CV hemodynamic parameters including heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures and cardiac output (Q), as determined by acetylene rebreathing, stroke volume (SV), arteriovenous oxygen difference (a-vO2 diff), and total peripheral resistance (TPR) were measured during submaximal (40, 60, 80 %) and maximal (approximately 100 % VO2max) exercise. NOS3 G894T genotype was not significantly associated, either independently or interactively with habitual physical activity (PA) level, with SBP, Q, TPR, or a-vO2 diff during submaximal or maximal exercise. However, NOS3 894T non-carriers had a higher submaximal exercise HR than NOS3 894T allele carriers (120 +/- 2 vs. 112 +/- 2 beats/min, p = 0.007). NOS3 894T allele carriers had a higher SV than 894T non-carriers (78 +/- 2 vs. 72 +/- 2 ml/beat, p = 0.03) during submaximal exercise. NOS3 894T non-carriers also had a higher maximal exercise HR averaged across habitual PA groups than T allele carrier women (165 +/- 2 vs. 158 +/- 2 beats/min, p = 0.04). NOS3 894T allele carriers also tended to have a higher SV during maximal exercise than 894T non-carriers (70 +/- 2 vs. 64 +/- 2 ml/beat, p = 0.08). NOS3 T-786C genotype was not significantly associated, either independently or interactively, with any of the CV hemodynamic measures during submaximal or maximal exercise. These results suggest an association of NOS3 G894T genotype with submaximal and maximal exercise CV hemodynamic responses, especially HR, in postmenopausal women.

  18. Leonardo da Vinci and the first hemodynamic observations.

    PubMed

    Martins e Silva, J

    2008-02-01

    Leonardo da Vinci was a genius whose accomplishments and ideas come down to us today, five centuries later, with the freshness of innovation and the fascination of discovery. This brief review begins with a summary of Leonardo's life and a description of the most important works of art that he bequeathed us, and then concentrates on his last great challenge. There was a point at which Leonardo's passion for art gave way to the study of human anatomy, not only to improve his drawing but to go beyond what had been simply a representation of form to understand the underlying functioning. Among his many interests, we focus on his study of the heart and blood vessels, which he observed carefully in animals and human autopsies, and reproduced in drawings of great quality with annotations of astonishing acuteness. The experience that he had acquired from observing the flow of water in currents and around obstacles, and the conclusions that he drew concerning hydrodynamics, were central to his interpretation of the mechanisms of the heart and of blood flow, to which he devoted much of his time between 1508 and 1513. From these studies, immortalized in drawings of great clarity, come what are acknowledged to be the first hemodynamic records, in which Leonardo demonstrates the characteristics of blood flow in the aorta and great vessels and the importance of blood reflux and the formation of eddies in the sinus in aortic valve his assiduous and careful observations, and his subsequent deductions, Leonardo put forward detailed findings on hemodynamic questions that advanced technology has only recently enabled us to confirm.

  19. [Damage control in trauma patients with hemodynamic instability].

    PubMed

    Müller, Thorben; Doll, Dietrich; Kliebe, Frank; Ruchholtz, Steffen; Kühne, Christian

    2010-10-01

    The term "Damage-control" is borrowed from naval terminology. It means the initial control of a damaged ship. Because of the lethal triad in multiple injured patients the classical concept of definitive surgically therapy in the acute phase of the injury has a high rate of complications such as exsanguination, sepsis, heart failure and multiple organ failure. The core idea of the damage control concept was to minimize the additional trauma by surgical operations in these critical patients in the first phase. This means temporary control of a hemorrhage and measures for stopping abdominal contamination. After 24 - 48 hours in the intensive care unit and correction of physiological disturbances further interventions are performed for definitively treatment of the injuries. Summarized, the damage control strategy comprises an abbreviated operation, intensive care unit resuscitation, and a return to the operating room for the definitive operation after hemodynamic stabilisation of the patient. © Georg Thieme Verlag Stuttgart · New York.

  20. Protocol for a prospective collaborative systematic review and meta-analysis of individual patient data from randomized controlled trials of vasoactive drugs in acute stroke: The Blood pressure in Acute Stroke Collaboration, stage-3.

    PubMed

    Sandset, Else Charlotte; Sanossian, Nerses; Woodhouse, Lisa J; Anderson, Craig; Berge, Eivind; Lees, Kennedy R; Potter, John F; Robinson, Thompson G; Sprigg, Nikola; Wardlaw, Joanna M; Bath, Philip M

    2018-01-01

    Rationale Despite several large clinical trials assessing blood pressure lowering in acute stroke, equipoise remains particularly for ischemic stroke. The "Blood pressure in Acute Stroke Collaboration" commenced in the mid-1990s focussing on systematic reviews and meta-analysis of blood pressure lowering in acute stroke. From the start, Blood pressure in Acute Stroke Collaboration planned to assess safety and efficacy of blood pressure lowering in acute stroke using individual patient data. Aims To determine the optimal management of blood pressure in patients with acute stroke, including both intracerebral hemorrhage and ischemic stroke. Secondary aims are to assess which clinical and therapeutic factors may alter the optimal management of high blood pressure in patients with acute stroke and to assess the effect of vasoactive treatments on hemodynamic variables. Methods and design Individual patient data from randomized controlled trials of blood pressure management in participants with ischemic stroke and/or intracerebral hemorrhage enrolled during the ultra-acute (pre-hospital), hyper-acute (<6 h), acute (<48 h), and sub-acute (<168 h) phases of stroke. Study outcomes The primary effect variable will be functional outcome defined by the ordinal distribution of the modified Rankin Scale; analyses will also be carried out in pre-specified subgroups to assess the modifying effects of stroke-related and pre-stroke patient characteristics. Key secondary variables will include clinical, hemodynamic and neuroradiological variables; safety variables will comprise death and serious adverse events. Discussion Study questions will be addressed in stages, according to the protocol, before integrating these into a final overreaching analysis. We invite eligible trials to join the collaboration.

  1. Hemodynamic effects of calcium antagonists in cardiac patients.

    PubMed

    Pozenel, H

    1982-01-01

    Hemodynamic studies were carried out after cardiac catheterization with a floatation catheter in the pulmonary artery and cannulation of the brachial artery for the calculation of cardiac output by means of the Fick principle. Continuous pressure recordings were carried out at rest and under submaximal treadmill exercise in the supine body position in 5 homogeneous groups of 12 patients, all with disorders due to coronary disease. In a control test, hemodynamic investigations were carried out at rest before medication, under stress and after recovery. Similar tests were performed after intravenous administration of either isotonic saline as placebo, tiapamil (1.1 and 1.6 mg/kg) or verapamil (0.07 and 0.14 mg/kg). It was shown that there was a marked dose-related reduction in peripheral vascular resistance with a maximum effect occurring at 2-5 min after the intravenous administration of tiapamil (1.1 and 1.6 mg/kg) reaching 23 and 39%, respectively, or verapamil (0.07 and 0.14 mg/kg) attaining 28 and 39%, respectively, at rest and, to a similar extent, under stress conditions. In patients with sinus rhythm, the mean arterial pressure was reduced. Cardiac outputs and stroke volumes were increased at rest as well as under stress. There was no evidence of a depressant action of the drug on hemodynamic variables. An interplay of simultaneous changes in preload and afterload seems to be responsible for the effects obtained. The doses used were those commonly employed in the termination of supraventricular tachyarrhythmias. However, a potential depressant effect of tiapamil in patients with markedly reduced ventricular function is not excluded by this study.

  2. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    PubMed Central

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  3. Acute effects of ingesting Java Fittrade mark energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers.

    PubMed

    Taylor, Lemuel W; Wilborn, Colin D; Harvey, Travis; Wismann, Jennifer; Willoughby, Darryn S

    2007-10-05

    The purpose of this study was to examine the effects of a functional coffee beverage containing additional caffeine, green tea extracts, niacin and garcinia cambogia to regular coffee to determine the effects on resting energy expenditure (REE) and hemodynamic variables. Subjects included five male (26 +/- 2.1 y, 97.16 +/- 10.05 kg, 183.89 +/- 6.60 cm) and five female (28.8 +/- 5.3 y, 142.2 +/- 12.6 lbs) regular coffee drinkers. Subjects fasted for 10 hours and were assessed for 1 hour prior (PRE) and 3 hours following 1.5 cups of coffee ingestion [JavaFittrade mark Energy Extreme (JF) ~400 mg total caffeine; Folgers (F) ~200 mg total caffeine] in a double-blind, crossover design. REE, resting heart rate (RHR), and systolic (SBP) and diastolic (DBP) blood pressure was assessed at PRE and 1, 2, and 3-hours post coffee ingestion. Data were analyzed by three-factor repeated measures ANOVA (p < 0.05). JF trial resulted in a significant main effect for REE (p < 0.01), SBP (p < 0.01), RER (p < 0.01), and VO2 (p < 0.01) compared to F, with no difference between trials on the RHR and DBP variables. A significant interaction for trial and time point (p < 0.05) was observed for the variable REE. The JF trial resulted in a significant overall mean increase in REE of 14.4% (males = 12.1%, females = 17.9%) over the observation period (p < 0.05), while the F trial produced an overall decrease in REE of 5.7%. SBP was significantly higher in the JF trial; however, there was no significant increase from PRE to 3-hours post. Results from this study suggest that JavaFittrade mark Energy Extreme coffee is more effective than Folgers regular caffeinated coffee at increasing REE in regular coffee drinkers for up to 3 hours following ingestion without any adverse hemodynamic effects.

  4. Nocturnal cerebral hemodynamics in snorers and in patients with obstructive sleep apnea: a near-infrared spectroscopy study.

    PubMed

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Werth, Esther; Bassetti, Claudio L

    2010-02-01

    Sleep disordered breathing (SDB) of the obstructive type causes hemodynamic consequences, leading to an increased cerebrovascular risk. The severity of SDB at which detrimental circulatory consequences appear is matter of controversy. Aim of the present study is the investigation of cerebral hemodynamics in patients with SDB of variable severity using near-infrared spectroscopy (NIRS). N/A. Sleep laboratory. Nineteen patients with SDB. N/A. Patients underwent nocturnal videopolysomnography (VPSG) coupled with cerebral NIRS. NIRS data were averaged for each patient, and a new method (integral) was applied to quantify cerebral hemodynamic alterations. Nocturnal VPSG disclosed various severities of SDB: snoring (7 patients, apnea-hypopnea index [AHI] = 2 +/- 2/h, range: 0.5-4.5); mild SDB (7 patients, AHI = 14 +/- 8/h, range: 6.3-28.6); and severe obstructive sleep apnea syndrome (5 patients, AHI = 79 +/- 20/h, range: 39.6-92.9). Relative changes of NIRS parameters were significantly larger during obstructive apneas (compared with hypopneas; mean deoxygenated hemoglobin [HHb] change of 0.72 +/- 0.23 and 0.13 +/- 0.08 micromol/L per sec, p value = 0.048) and in patients with severe SDB (as compared with patients with mild SDB and simple snorers; mean HHb change of 0.84 +/- 0.24, 0.02 +/- 0.09, and 0.2 +/- 0.08 micromol/L per sec, respectively, p value = 0.020). In this group, NIRS and concomitant changes in peripheral oxygen saturation correlated. The results of this study suggest that acute cerebral hemodynamic consequences of SDB lead to a failure of autoregulatory mechanisms with brain hypoxia only in the presence of frequent apneas (AHI > 30) and obstructive events.

  5. Predictors of in-hospital mortality in a cohort of elderly Egyptian patients with acute upper gastrointestinal bleeding.

    PubMed

    Elsebaey, Mohamed A; Elashry, Heba; Elbedewy, Tamer A; Elhadidy, Ahmed A; Esheba, Noha E; Ezat, Sherif; Negm, Manal Saad; Abo-Amer, Yousry Esam-Eldin; Abgeegy, Mohamed El; Elsergany, Heba Fadl; Mansour, Loai; Abd-Elsalam, Sherief

    2018-04-01

    Acute upper gastrointestinal bleeding (UGIB) affects large number of elderly with high rates of morbidity and mortality. Early identification and management of the factors predicting in-hospital mortality might decrease mortality. This study was conducted to identify the causes of acute UGIB and the predictors of in-hospital mortality in elderly Egyptian patients.286 elderly patients with acute UGIB were divided into: bleeding variceal group (161 patients) and bleeding nonvariceal group (125 patients). Patients' monitoring was done during hospitalization to identify the risk factors that might predict in-hospital mortality in elderly.Variceal bleeding was the most common cause of acute UGIB in elderly Egyptian patients. In-hospital mortality rate was 8.74%. Increasing age, hemodynamic instability at presentation, co-morbidities (especially liver cirrhosis associated with other co-morbidity) and failure to control bleeding were the predictors of in-hospital mortality.Increasing age, hemodynamic instability at presentation, co-morbidities (especially liver cirrhosis associated with other co-morbidity) and failure to control bleeding should be considered when triaging those patients for immediate resuscitation, close observation, and early treatment.

  6. Computational modeling of cardiac hemodynamics: Current status and future outlook

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Seo, Jung Hee; Vedula, Vijay; Choi, Young J.; Liu, Hang; Huang, H. Howie; Jain, Saurabh; Younes, Laurent; Abraham, Theodore; George, Richard T.

    2016-01-01

    The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient's hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.

  7. Symptoms of anxiety and depression are related to cardiovascular responses to active, but not passive, coping tasks.

    PubMed

    Yuenyongchaiwat, Kornanong; Baker, Ian S; Sheffield, David

    2017-01-01

    Anxiety and depression have been linked to blunted blood pressure (BP) and heart rate (HR) reactions to mental stress tests; however, most studies have not included indices of underlying hemodynamics nor multiple stress tasks. This study sought to examine the relationships of anxiety and depression with hemodynamic responses to acute active and passive coping tasks. A total of 104 participants completed the Hospital Anxiety and Depression Scales and mental arithmetic, speech, and cold pressor tasks while BP, HR, total peripheral resistance, and cardiac output (CO) were assessed. After adjustment for traditional risk factors and baseline cardiovascular activity, depression scores were negatively associated with systolic BP, HR, and CO responses to the mental arithmetic task, while anxiety scores were inversely related to the systolic BP response to mental arithmetic. High anxiety or depression scores appear to be associated with blunted cardiac reactions to mental arithmetic (an active coping task), but not to the cold pressor test or speech tasks. Future research should further examine potential mechanisms and longitudinal pathways relating depression and anxiety to cardiovascular reactivity. TCTR20160208004.

  8. Flow-Mediated Endothelial Mechanotransduction

    PubMed Central

    Davies, Peter F.

    2011-01-01

    Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed. PMID:7624393

  9. Comparison of hemodynamic effects of intravenous etomidate versus propofol during induction and intubation using entropy guided hypnosis levels.

    PubMed

    Shah, Shagun Bhatia; Chowdhury, Itee; Bhargava, Ajay Kumar; Sabbharwal, Bhawnish

    2015-01-01

    This study aimed to compare the hemodynamic responses during induction and intubation between propofol and etomidate using entropy guided hypnosis. Sixty ASA I & II patients in the age group 20-60 yrs, scheduled for modified radical mastectomy were randomly allocated in two groups based on induction agent Etomidate or Propofol. Both groups received intravenous midazolam 0.03 mg kg(-1) and fentanyl 2 μg kg(-1) as premedication. After induction with the desired agent titrated to entropy 40, vecuronium 0.1 mg kg(-1) was administered for neuromuscular blockade. Heart rate, systolic, diastolic and mean arterial pressures, response entropy [RE] and state entropy [SE] were recorded at baseline, induction and upto three minutes post intubation. Data was subject to statistical analysis SPSS (version 12.0) the paired and the unpaired Student's T-tests for equality of means. Etomidate provided hemodynamic stability without the requirement of any rescue drug in 96.6% patients whereas rescue drug ephedrine was required in 36.6% patients in propofol group. Reduced induction doses 0.15mg kg(-1) for etomidate and 0.98 mg kg(-1) for propofol, sufficed to give an adequate anaesthetic depth based on entropy. Etomidate provides more hemodynamic stability than propofol during induction and intubation. Reduced induction doses of etomidate and propofol titrated to entropy translated into increased hemodynamic stability for both drugs and sufficed to give an adequate anaesthetic depth.

  10. Nocturnal Cerebral Hemodynamics in Snorers and in Patients with Obstructive Sleep Apnea: A Near-Infrared Spectroscopy Study

    PubMed Central

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Werth, Esther; Bassetti, Claudio L.

    2010-01-01

    Study Objectives: Sleep disordered breathing (SDB) of the obstructive type causes hemodynamic consequences, leading to an increased cerebrovascular risk. The severity of SDB at which detrimental circulatory consequences appear is matter of controversy. Aim of the present study is the investigation of cerebral hemodynamics in patients with SDB of variable severity using near-infrared spectroscopy (NIRS). Design: N/A. Setting: Sleep laboratory. Patients or Participants: Nineteen patients with SDB. Interventions: N/A. Measurements and Results: Patients underwent nocturnal videopolysomnography (VPSG) coupled with cerebral NIRS. NIRS data were averaged for each patient, and a new method (integral) was applied to quantify cerebral hemodynamic alterations. Nocturnal VPSG disclosed various severities of SDB: snoring (7 patients, apnea-hypopnea index [AHI] = 2 ± 2/h, range: 0.5–4.5); mild SDB (7 patients, AHI = 14 ± 8/h, range: 6.3–28.6); and severe obstructive sleep apnea syndrome (5 patients, AHI = 79 ± 20/h, range: 39.6–92.9). Relative changes of NIRS parameters were significantly larger during obstructive apneas (compared with hypopneas; mean deoxygenated hemoglobin [HHb] change of 0.72 ± 0.23 and 0.13 ± 0.08 μmol/L per sec, p value = 0.048) and in patients with severe SDB (as compared with patients with mild SDB and simple snorers; mean HHb change of 0.84 ± 0.24, 0.02 ± 0.09, and 0.2 ± 0.08 μmol/L per sec, respectively, p value = 0.020). In this group, NIRS and concomitant changes in peripheral oxygen saturation correlated. Conclusions: The results of this study suggest that acute cerebral hemodynamic consequences of SDB lead to a failure of autoregulatory mechanisms with brain hypoxia only in the presence of frequent apneas (AHI > 30) and obstructive events. Citation: Pizza F; Biallas M; Wolf M; Werth E; Bassetti CL. Nocturnal cerebral hemodynamics in snorers and in patients with obstructive sleep apnea: a near-infrared spectroscopy study. SLEEP 2010

  11. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain.

    PubMed

    Sanganahalli, Basavaraju G; Herman, Peter; Rothman, Douglas L; Blumenfeld, Hal; Hyder, Fahmeed

    2016-10-01

    Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMR O2 ) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1 FL ) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1 FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1 FL than in VPL, similar to LFP regional differences. CBF and CMR O2 responses were both comparably larger in S1 FL and VPL. Despite different levels of CBF-CMR O2 and LFP-MUA couplings in VPL and S1 FL , the CMR O2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1 FL can have similar metabolic demands. © The Author(s) 2016.

  12. Management of Acute Hypertensive Response in Intracerebral Hemorrhage Patients After ATACH-2 Trial.

    PubMed

    Majidi, Shahram; Suarez, Jose I; Qureshi, Adnan I

    2017-10-01

    Acute hypertensive response is elevation of systolic blood pressure (SBP) in the first 24 h after symptom onset which is highly prevalent in patients with intracerebral hemorrhage (ICH). Observational studies suggested association between acute hypertensive response and hematoma expansion, peri-hematoma edema and death and disability, and possible reduction in these adverse outcomes with treatment of acute hypertensive response. Recent clinical trials have focused on determining the clinical efficacy of early intensive SBP reduction in ICH patients. The Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH-2) trial was the latest phase 3 randomized controlled multicenter clinical trial aimed to study the efficacy of early intensive reduction of SBP in ICH patients. In this review article, we summarize the results of recent clinical trials, treatment principles based on the latest guidelines, and the anticipated interpretation and incorporation of ATACH-2 trial results in clinical practice.

  13. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  14. Epsilon-aminocaproic acid improves postrecirculation hemodynamics by reducing intraliver activated protein C consumption in orthotopic liver transplantation.

    PubMed

    Kong, H Y; Wen, X H; Huang, S Q; Zhu, S M

    2014-01-01

    Activated protein C (APC) is related to regulating the inflammatory response and hemodynamic stability upon reperfusion in cardiac operations and orthotopic liver transplantation (OLT). Epsilon-aminocaproic acid (EACA) is frequently used to treat fibrinolysis during OLT. It also has inhibitory effects related to the inflammatory response. However, it remains to be determined whether EACA can attenuate intraliver APC consumption and improve hemodynamic stability after reperfusion during OLT. Fifty-nine recipients were randomized to receive either EACA (150 mg kg(-1) given intravenously prior to incision, followed by 15 mg kg(-1) h(-1) infusion until 2 h after the graft reperfusion) or the same volume of saline. Blood samples to assess plasma APC and protein C were obtained immediately before and after reperfusion from the inferior caval effluent or the portal veins for calculation of transliver differences (Δ). Hemodynamics and vasoactive medication use during the reperfusion period were observed in both groups. No transhepatic changes in protein C were found in either group. Immediately after reperfusion, a marked intraliver consumption of APC was noted in all recipients (P < 0.001), and intraliver consumption of APC in the control group was greater than that in the EACA-treated group (P < 0.05). Fewer requirements for vasoactive medication use after reperfusion and better initial graft function were noted in the EACA-treated group (P < 0.05). EACA can attenuate intraliver APC consumption and improve hemodynamic stability after reperfusion and initial graft function during OLT.

  15. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  16. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  17. Physiological responses to an acute bout of sprint interval cycling.

    PubMed

    Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J

    2013-10-01

    Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.

  18. Acute ethanol responses in Drosophila are sexually dimorphic

    PubMed Central

    Devineni, Anita V.; Heberlein, Ulrike

    2012-01-01

    In mammalian and insect models of ethanol intoxication, low doses of ethanol stimulate locomotor activity whereas high doses induce sedation. Sex differences in acute ethanol responses, which occur in humans, have not been characterized in Drosophila. In this study, we find that male flies show increased ethanol hyperactivity and greater resistance to ethanol sedation compared with females. We show that the sex determination gene transformer (tra) acts in the developing nervous system, likely through regulation of fruitless (fru), to at least partially mediate the sexual dimorphism in ethanol sedation. Although pharmacokinetic differences may contribute to the increased sedation sensitivity of females, neuronal tra expression regulates ethanol sedation independently of ethanol pharmacokinetics. We also show that acute activation of fru-expressing neurons affects ethanol sedation, further supporting a role for fru in regulating this behavior. Thus, we have characterized previously undescribed sex differences in behavioral responses to ethanol, and implicated fru in mediating a subset of these differences. PMID:23213244

  19. Milrinone use for hemodynamic instability in patent ductus arteriosus ligation.

    PubMed

    Halliday, Matthew; Kavarana, Minoo; Ebeling, Myla; Kiger, James

    2017-03-01

    Determine if prophylactic milrinone improves cardiovascular or long-term clinical outcomes in preterm neonates who receive surgical patent ductus arteriosus (PDA) ligation. Retrospective review of 45 infants over a 4-year period that received a PDA ligation at one institution. Data were collected on morbidity and mortality outcomes for all infants as well as milrinone therapy perioperatively. Of the 45 infants that were studied 15 received milrinone in the perioperative period of PDA ligation and the remaining 30 infants did not receive milrinone. The use of milrinone showed no statistically significant improvement in acute markers of hemodynamic stability. There was also no statistically significant difference in morbidity and mortality outcomes in milrinone group compared to the non-milrinone group. Prophylactic milrinone use for premature infants following PDA ligation does not show a significant cardiovascular or long-term clinical benefit.

  20. Non-invasive quantification of hemodynamics in human choriocapillaries

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Rou; An, Senyou; McDonough, James; Gelfand, Bradley; Yao, Jun

    2016-11-01

    The development of retinal disease is inextricably linked to defects in the choroidal blood supply. However, to date a description of the hemodynamics in the human choroidal circulation is lacking. Through high resolution choroidal vascular network mapped from immunofluorescent labeling and confocal microscopy of human cadaver donor eyes. We noninvasively quantify hemodynamics including velocity, pressure, and wall-shear stress (WSS) in choriocapillaries through mesoscale modeling and GPU-accelerated fast computation. This is the first-ever map of hemodynamic parameters (WSS, pressure, and velocity) in anatomically accurate human choroidal vasculature in health and disease. The pore scale simulation results are used to evaluate porous media models with the same porosity and boundary conditions. School of Medicine, Indiana University.

  1. Lack of correlation between preoperative and intraoperative liver hemodynamics: a descriptive analysis.

    PubMed

    Sánchez-Cabús, Santiago; Abraldes, Juan G; Taurá, Pilar; Calatayud, David; Fondevila, Constantino; Fuster, José; Ferrer, Joana; García-Pagán, Juan Carlos; García-Valdecasas, Juan Carlos

    2014-01-15

    Adult living-donor liver transplantation recipients undergo important hemodynamic changes during the procedure, which in turn have proven to be of the upmost importance when dealing with small grafts, to avoid the so-called "small-for-size" syndrome. Back in 2003, we started a hemodynamic monitoring protocol in adult living-donor liver transplantation recipients, which evaluated the hemodynamic status of the patient 24 hr before, during, and 3 days after transplantation. We analyzed the correlation between the same hemodynamic variables measured in the hemodynamic laboratory and those taken in the operating room. With the exception of cardiac index and indexed systemic vascular resistance, all the other hepatic and systemic hemodynamic parameters measured before and during the intervention, as well as during and after the intervention, showed a lack of correlation. The observed lack of correlation may happen due to many factors, such as the influence of vasoactive and anesthetic drugs, total muscular relaxation, or the presence of an open abdomen. As a result, a direct comparison between hemodynamic values should only be done when measured in the same conditions.

  2. Self-esteem levels and cardiovascular and inflammatory responses to acute stress.

    PubMed

    O'Donnell, Katie; Brydon, Lena; Wright, Caroline E; Steptoe, Andrew

    2008-11-01

    Acute mental stress tests have helped to clarify the pathways through which psychosocial factors are linked to disease risk. This methodology is now being used to investigate potentially protective psychosocial factors. We investigated whether global self-esteem might buffer cardiovascular and inflammatory responses to acute stress. One hundred and one students completed the Rosenberg Self-Esteem Scale. Heart rate and heart rate variability (HRV) were recorded for 5 min periods at baseline, during two mental stress tasks, (a speech and a color-word task) and 10, 25 and 40 min into a recovery period. Plasma levels of tumor-necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1Ra) were assessed at baseline, immediately post-stress and after 45 min recovery. Repeated measures analysis of variance demonstrated that heart rate levels were lower across all time points in those with high self-esteem, although heart rate reactivity to stress was not related to self-esteem. There were no differences in baseline HRV, TNF-alpha, IL-6 or IL-1Ra. Multiple linear regressions revealed that greater self-esteem was associated with a smaller reduction in heart rate variability during the speech task, but not the color-word task. Greater self-esteem was associated with smaller TNF-alpha and IL-1Ra responses immediately following acute stress and smaller IL-1Ra responses at 45 min post-stress. In conclusion, global self-esteem is associated with lower heart rate and attenuated HRV and inflammatory responses to acute stress. These responses could be processes through which self-esteem protects against the development of disease.

  3. Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms.

    PubMed

    Núñez, Julio; Miñana, Gema; Santas, Enrique; Bertomeu-González, Vicente

    2015-05-01

    Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney. Worsening renal function that occurs in patients with acute heart failure has been classified as cardiorenal syndrome type 1. In this setting, worsening renal function is a common finding and is due to complex, multifactorial, and not fully understood processes involving hemodynamic (renal arterial hypoperfusion and renal venous congestion) and nonhemodynamic factors. Traditionally, worsening renal function has been associated with worse outcomes, but recent findings have revealed mixed and heterogeneous results, perhaps suggesting that the same phenotype represents a diversity of pathophysiological and clinical situations. Interpreting the magnitude and chronology of renal changes together with baseline renal function, fluid overload status, and clinical response to therapy might help clinicians to unravel the clinical meaning of renal function changes that occur during an episode of heart failure decompensation. In this article, we critically review the contemporary evidence on the pathophysiology and clinical aspects of worsening renal function in acute heart failure. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Central and regional hemodynamics in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Shulzhenko, E. B.; Turchaninova, V. F.; Egorov, A. D.

    This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.

  5. Effects of sex and the common ADRB1 389 genetic polymorphism on the hemodynamic response to dobutamine.

    PubMed

    Yogev, Dotan; Basheer, Maamoun; Blotnick, Simcha; Caraco, Yoseph; Muszkat, Mordechai

    2015-11-01

    The ADRB1 389 polymorphism affects responses to the β-1 adrenergic receptor (β1AR) agonist in vitro. Previous studies on its effect on the response to dobutamine stress echocardiography were conflicting. In addition, sex differences in the response to dobutamine have been suggested. The aim of this study was to determine whether the ADRB1 389 polymorphism affects the hemodynamic response to dobutamine in healthy individuals including men and women. Healthy individuals were recruited according to their ADRB1 49 and 389 genotypes [15 Arg389Arg, 10 Gly389Arg, and 10 Gly389Gly individuals, (all Ser49Ser), 21 men and 14 women]. Dobutamine was infused at 2, 4, and 6 mcg/kg/min. Standardized exercise was performed during the last minute of each infusion. Resting heart rate (HR) response to 6 mcg/kg/min dobutamine (ΔHR) was 4.7-fold larger in Arg389Arg than in Gly389Gly [(mean ± SD) 12.95 ± 6.99, 2.75 ± 1.65 bpm, respectively, PANOVA=0.012]. Renin response to dobutamine (ΔRenin) was 3.9-fold greater in Arg389Arg than in Gly389Gly (PANOVA=0.032). Among Arg389Gly heterozygotes, ΔHR and ΔRenin were not significantly different from either homozygote group. In multivariate analysis for ΔHR variance, significant contributions were observed for genotype (P=0.011), baseline HR (P=0.011), and borderline effect for sex (P=0.049). In healthy individuals, HR and renin responses to dobutamine were more than three-fold greater among ADRB1 Arg389 compared with Gly389 homozygotes. Future studies on the effect of the ADRB1 389 polymorphism on dobutamine stress echocardiography should compare Arg389 and Gly389 homozygotes.

  6. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    PubMed

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  7. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome.

    PubMed

    Nava, Stefano; Schreiber, Ania; Domenighetti, Guido

    2011-10-01

    Few studies have been performed on noninvasive ventilation (NIV) to treat hypoxic acute respiratory failure in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The outcomes of these patients, for whom endotracheal intubation is not mandatory, depend on the degree of hypoxia, the presence of comorbidities and complications, and their illness severity. The use of NIV as an alternative to invasive ventilation in severely hypoxemic patients with ARDS (ie, P(aO(2))/F(IO(2)) < 200) is not generally advisable and should be limited to hemodynamically stable patients who can be closely monitored in an intensive care unit by highly skilled staff. Early NIV application may be extremely helpful in immunocompromised patients with pulmonary infiltrates, in whom intubation dramatically increases the risk of infection, pneumonia, and death. The use of NIV in patients with severe acute respiratory syndrome and other airborne diseases has generated debate, despite encouraging clinical results, mainly because of safety issues. Overall, the high rate of NIV failure suggests a cautious approach to NIV use in patients with ALI/ARDS, including early initiation, intensive monitoring, and prompt intubation if signs of NIV failure emerge.

  8. [Monitoring and Modern Hemodynamic Concepts in Cardiac Anesthesia].

    PubMed

    Heringlake, Matthias; Schmidt, Christian; Brandt, Sebastian

    2018-05-01

    Patients undergoing cardiac surgery are growing older, present with more comorbidities, and are frequently scheduled for more complex and prolonged surgical procedures. Routine application of neurological as well as extended hemodynamic monitoring combined with goal-directed perioperative hemodynamic optimization, targeting optimization of systemic and cerebral oxygen balance, show promise to reduce postoperative complications and to improve mortality in this high risk population. Expert recommendations suggest to avoid synthetic colloids for fluid optimization. Additionally, pathophysiological reasoning and results from recent trials suggest to start inotropic and vasoactive therapy primarily with non-adrenergic drugs like levosimendan and vasopressin and to add classical catecholamines like dobutamine and noradrenalin only if necessary to accomplish hemodynamic goals. Georg Thieme Verlag KG Stuttgart · New York.

  9. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    PubMed Central

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  10. Comparison of hemodynamic effects of intravenous etomidate versus propofol during induction and intubation using entropy guided hypnosis levels

    PubMed Central

    Shah, Shagun Bhatia; Chowdhury, Itee; Bhargava, Ajay Kumar; Sabbharwal, Bhawnish

    2015-01-01

    Background and Aims: This study aimed to compare the hemodynamic responses during induction and intubation between propofol and etomidate using entropy guided hypnosis. Material and Methods: Sixty ASA I & II patients in the age group 20-60 yrs, scheduled for modified radical mastectomy were randomly allocated in two groups based on induction agent Etomidate or Propofol. Both groups received intravenous midazolam 0.03 mg kg-1 and fentanyl 2 μg kg-1 as premedication. After induction with the desired agent titrated to entropy 40, vecuronium 0.1 mg kg-1 was administered for neuromuscular blockade. Heart rate, systolic, diastolic and mean arterial pressures, response entropy [RE] and state entropy [SE] were recorded at baseline, induction and upto three minutes post intubation. Data was subject to statistical analysis SPSS (version 12.0) the paired and the unpaired Student's T-tests for equality of means. Results: Etomidate provided hemodynamic stability without the requirement of any rescue drug in 96.6% patients whereas rescue drug ephedrine was required in 36.6% patients in propofol group. Reduced induction doses 0.15mg kg-1 for etomidate and 0.98 mg kg-1 for propofol, sufficed to give an adequate anaesthetic depth based on entropy. Conclusion: Etomidate provides more hemodynamic stability than propofol during induction and intubation. Reduced induction doses of etomidate and propofol titrated to entropy translated into increased hemodynamic stability for both drugs and sufficed to give an adequate anaesthetic depth. PMID:25948897

  11. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    PubMed

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  12. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings weremore » normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.« less

  13. Verification of a research prototype for hemodynamic analysis of cerebral aneurysms.

    PubMed

    Suzuki, Takashi; Ioan Nita, Cosmin; Rapaka, Saikiran; Takao, Hiroyuki; Mihalef, Viorel; Fujimura, Soichiro; Dahmani, Chihebeddine; Sharma, Puneet; Mamori, Hiroya; Ishibashi, Toshihiro; Redel, Thomas; Yamamoto, Makoto; Murayama, Yuichi

    2016-08-01

    Owing to its clinical importance, there has been a growing body of research on understanding the hemodynamics of cerebral aneurysms. Traditionally, this work has been performed using general-purpose, state-of-the-art commercial solvers. This has meant requiring engineering expertise for making appropriate choices on the geometric discretization, time-step selection, choice of boundary conditions etc. Recently, a CFD research prototype has been developed (Siemens Healthcare GmbH, Prototype - not for diagnostic use) for end-to-end analysis of aneurysm hemodynamics. This prototype enables anatomical model preparation, hemodynamic computations, advanced visualizations and quantitative analysis capabilities. In this study, we investigate the accuracy of the hemodynamic solver in the prototype against a commercially available CFD solver ANSYS CFX 16.0 (ANSYS Inc., Canonsburg, PA, www.ansys.com) retrospectively on a sample of twenty patient-derived aneurysm models, and show good agreement of hemodynamic parameters of interest.

  14. Hemodynamic adaptation to suboptimal fetal growth in patients with single ventricle physiology.

    PubMed

    Alsaied, Tarek; Tseng, Stephanie; King, Eileen; Hahn, Eunice; Divanovic, Allison; Habli, Mounira; Cnota, James

    2018-06-10

    In fetuses with structurally normal heart and suboptimal fetal growth (SFG), umbilical artery vascular resistance increases as measured by umbilical artery pulsatility index (UA-PI). The objective of this study is to compare hemodynamic responses to SFG in fetuses with single ventricle (SV) and controls with structurally normal heart. Fetal echocardiograms around 30 weeks of gestation were reviewed. UA-PI and middle cerebral artery pulsatility index (MCA-PI) were calculated. SFG was defined as a birth weight below 25th percentile for gestational age. Studies from 92 fetuses were reviewed-SV (n = 50) and controls (n = 42). The prevalence of SFG was higher in SV compared to controls (46% vs 21%, P = .02). In patients with normal heart and SFG, UAPI was significantly higher than normal controls (P = .003) suggesting increased placental vascular resistance. In SV with SFG there was no difference in UAPI compared to SV without SFG. There was no difference in MCA-PI between the groups. The hemodynamic response to SFG in SV varies from fetuses with structurally normal heart. The mechanism of SFG and the placental pathology may be distinct in SV. © 2018 Wiley Periodicals, Inc.

  15. Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers

    PubMed Central

    Collins, Heather R.; Corbly, Christine R.; Liu, Xun; Kelly, Thomas H.; Lynam, Donald; Joseph, Jane E.

    2012-01-01

    High sensation seeking is associated with strong approach behaviors and weak avoidance responses. The present study used functional magnetic resonance imaging (fMRI) to further characterize the neurobiological underpinnings of this behavioral profile using a Go/No-go task. Analysis of brain activation associated with response inhibition (No-go) versus response initiation and execution (Go) revealed the commonly reported right lateral prefrontal, insula, cingulate, and supplementary motor area network. However, right lateral activation was associated with greater No-go than Go responses only in low sensation seekers. High sensation seekers showed no differential activation in these regions but a more pronounced Go compared to No-go response in several other regions that are involved in salience detection (insula), motor initiation (anterior cingulate) and attention (inferior parietal cortex). Temporal analysis of the hemodynamic response for Go and No-go conditions revealed that the stronger response to Go than No-go trials in high sensation seekers occurred in in the earliest time window in the right middle frontal gyrus, right mid-cingulate and right precuneus. In contrast, the greater No-go than Go response in low sensation seekers occurred in the later time window in these same regions. These findings indicate that high sensation seekers more strongly attend to or process Go trials and show delayed or minimal inhibitory responses on No-go trials in regions that low sensation seekers use for response inhibition. Failure to engage such regions for response inhibition may underlie some of the risky and impulsive behaviors observed in high sensation seekers. PMID:22902769

  16. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity

    PubMed Central

    Leonard, Ellen C.; Beal, Alisa G.; Schleuter, Devin; Friedrich, Jessica

    2012-01-01

    ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg−1·min−1), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI. PMID:22442209

  17. Hemodynamics of a functional centrifugal-flow total artificial heart with functional atrial contraction in goats.

    PubMed

    Shiga, Takuya; Shiraishi, Yasuyuki; Sano, Kyosuke; Taira, Yasunori; Tsuboko, Yusuke; Yamada, Akihiro; Miura, Hidekazu; Katahira, Shintaro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2016-03-01

    Implantation of a total artificial heart (TAH) is one of the therapeutic options for the treatment of patients with end-stage biventricular heart failure. There is no report on the hemodynamics of the functional centrifugal-flow TAH with functional atrial contraction (fCFTAH). We evaluated the effects of pulsatile flow by atrial contraction in acute animal models. The goats received fCFTAH that we created from two centrifugal-flow ventricular assist devices. Some hemodynamic parameters maintained acceptable levels: heart rate 115.5 ± 26.3 bpm, aortic pressure 83.5 ± 10.1 mmHg, left atrial pressure 18.0 ± 5.9 mmHg, pulmonary pressure 28.5 ± 9.7 mmHg, right atrial pressure 13.6 ± 5.2 mmHg, pump flow 4.0 ± 1.1 L/min (left) 3.9 ± 1.1 L/min (right), and cardiac index 2.13 ± 0.14 L/min/m(2). fCFTAH with atrial contraction was able to maintain the TAH circulation by forming a pulsatile flow in acute animal experiments. Taking the left and right flow rate balance using the low internal pressure loss of the VAD pumps may be easier than by other pumps having considerable internal pressure loss. We showed that the remnant atrial contraction effected the flow rate change of the centrifugal pump, and the atrial contraction waves reflected the heart rate. These results indicate that remnant atria had the possibility to preserve autonomic function in fCFTAH. We may control fCFTAH by reflecting the autonomic function, which is estimated with the flow rate change of the centrifugal pump.

  18. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of radiation therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Shang, Yu; Li, Xingzhe; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-03-01

    Radiation therapy is a principal modality for head and neck cancers and its efficacy depends on tumor hemodynamics. Our laboratory developed a hybrid diffuse optical instrument allowing for simultaneous measurements of tumor blood flow and oxygenation. In this study, the clinically involved cervical lymph node was monitored by the hybrid instrument once a week over the treatment period of seven weeks. Based on treatment outcomes within one year, patients were classified into a complete response group (CR) and an incomplete response group (IR) with remote metastasis and/or local recurrence. A linear mixed models was used to compare tumor hemodynamic responses to the treatment between the two groups. Interestingly, we found that human papilloma virus (HPV-16) status largely affected tumor hemodynamic responses. For HPV-16 negative tumors, significant differences in blood flow index (BFI, p = 0.007) and reduced scattering coefficient (μs', p = 0.0005) were observed between the two groups; IR tumors exhibited higher μs' values and a continuous increase in BFI over the treatment period. For HPV-16 positive tumors, oxygenated hemoglobin concentration ([HbO2]) and blood oxygen saturation (StO2) were significant different (p = 0.003 and 0.01, respectively); IR group showed lower [HbO2] and StO2. Our results imply HPV-16 negative tumors with higher density of vasculature (μs') and higher blood flow show poor responses to radiotherapy and HPV-16 positive tumors with lower tissue oxygenation level (lower StO2 and [HbO2]) exhibit poor treatment outcomes. Our diffuse optical measurements show the great potential for early prediction of radiotherapy in head and neck cancers.

  19. Periodic leg movements during sleep and cerebral hemodynamic changes detected by NIRS.

    PubMed

    Pizza, Fabio; Biallas, Martin; Wolf, Martin; Valko, Philipp O; Bassetti, Claudio L

    2009-07-01

    Periodic leg movements during sleep (PLMS) have been shown to be associated with changes in autonomic and hemispheric activities. Near infrared spectroscopy (NIRS) assesses hemodynamic changes linked to hemispheric/cortical activity. We applied NIRS to test whether cerebral hemodynamic alterations accompany PLMS. Three PLMS patients underwent nocturnal polysomnography coupled with cerebral NIRS. EEG correlates of PLMS were scored and NIRS data were analysed for the identification of correspondent hemodynamic changes. PLMS were constantly associated with cerebral hemodynamic fluctuations that showed greater amplitude when associated to changes in EEG and were present also in absence of any visually detectable arousal or A phase in the EEG. This is the first study documenting cerebral hemodynamic changes linked to PLMS. The clinical relevance of these observations remains to be determined.

  20. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    PubMed

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  1. Beta-Blockers and the Kidney: Implications for Renal Function and Renin Release.

    ERIC Educational Resources Information Center

    Epstein, Murray; And Others

    1985-01-01

    Reviews and discusses current information on the human renal response as related to beta-blockers (antihypertension agents). Topic areas considered include cardioselectivity, renal hemodynamics, systemic hemodynamics, changes with acute and chronic administration, influence of dose, and others. Implications and an 11-item multiple-choice self-quiz…

  2. Discrepancy among acute guideline levels for emergency response.

    PubMed

    Oberg, Mattias; Palmen, Nicole; Johanson, Gunnar

    2010-12-15

    Acute guidance values are tools for public health risk assessment and management during planning, preparedness and response related to sudden airborne release of hazardous chemicals. The two most frequently used values, i.e. Acute Exposure Guidance Levels (AEGL) and Emergency Response Planning Guideline (ERPG), were compared in qualitative and quantitative terms. There was no significant difference between the general level of AEGL and ERPG values, suggesting the two systems are equally precautious. However, the guidance values diverged by a factor of 3 or more for almost 40% of the substances, including many of high production volume. These deviations could be explained by differences in selection of critical effect or critical study and in a few cases differences in interpretation of the same critical study. Diverging guidance values may hamper proper risk communication and risk management. Key factors for broad international acceptance of harmonized values include transparency of the decision process, agreement on definition of toxicological tiers, and a target population including sensitive groups of the general population. In addition, development of purely health based values is encouraged. Risk management issues, such as land use and emergency response planning should be treated separately, as these rely on national legislation and considerations. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  4. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  5. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  6. Fetal optimization during maternal sepsis: relevance and response of the obstetric anesthesiologist.

    PubMed

    Chau, Anthony; Tsen, Lawrence C

    2014-06-01

    In many labor and delivery units, the obstetric anesthesiologist is often responsible for managing and stabilizing the acutely septic parturient. The management of maternal sepsis has been summarized previously; this study will focus on the implications of maternal sepsis on the fetus, and ways to optimize fetal outcomes. Although the complex pathophysiology of sepsis is being better understood, the incidence of maternal severe sepsis and deaths continues to increase. The differential sensitivities of systemic and uterine vasculature to catecholamines during pregnancy and the role of fetal inflammatory responses have recently been further elucidated. Additional investigations on methods of fetal monitoring are needed to assist in early identification of the compromised fetus. Despite decades of research, management of a septic parturient and her fetus, including the most appropriate resuscitation fluids, vasopressors and hemodynamic monitoring systems to maximize maternal and fetal outcomes, remain controversial. In the setting of maternal sepsis, fetal optimization is frequently best accomplished by meeting maternal hemodynamic, oxygenization, and infection treatment goals. Understanding the circulatory and pathophysiologic changes that occur within the uteroplacental unit and fetus is essential to identifying and resolving potential conflicts between maternal and fetal management goals.

  7. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  9. Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat

    PubMed Central

    Bruder, Eric D.; Taylor, Jennifer K.; Kamer, Kimberli J.; Raff, Hershel

    2008-01-01

    Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O2 for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O2 for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response (∼3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O2 saturation (SPo2) to ∼80% and also decreased body temperature by 5–6°C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8). PMID:18703410

  10. Levosimendan for Hemodynamic Support after Cardiac Surgery.

    PubMed

    Landoni, Giovanni; Lomivorotov, Vladimir V; Alvaro, Gabriele; Lobreglio, Rosetta; Pisano, Antonio; Guarracino, Fabio; Calabrò, Maria G; Grigoryev, Evgeny V; Likhvantsev, Valery V; Salgado-Filho, Marcello F; Bianchi, Alessandro; Pasyuga, Vadim V; Baiocchi, Massimo; Pappalardo, Federico; Monaco, Fabrizio; Boboshko, Vladimir A; Abubakirov, Marat N; Amantea, Bruno; Lembo, Rosalba; Brazzi, Luca; Verniero, Luigi; Bertini, Pietro; Scandroglio, Anna M; Bove, Tiziana; Belletti, Alessandro; Michienzi, Maria G; Shukevich, Dmitriy L; Zabelina, Tatiana S; Bellomo, Rinaldo; Zangrillo, Alberto

    2017-05-25

    Acute left ventricular dysfunction is a major complication of cardiac surgery and is associated with increased mortality. Meta-analyses of small trials suggest that levosimendan may result in a higher rate of survival among patients undergoing cardiac surgery. We conducted a multicenter, randomized, double-blind, placebo-controlled trial involving patients in whom perioperative hemodynamic support was indicated after cardiac surgery, according to prespecified criteria. Patients were randomly assigned to receive levosimendan (in a continuous infusion at a dose of 0.025 to 0.2 μg per kilogram of body weight per minute) or placebo, for up to 48 hours or until discharge from the intensive care unit (ICU), in addition to standard care. The primary outcome was 30-day mortality. The trial was stopped for futility after 506 patients were enrolled. A total of 248 patients were assigned to receive levosimendan and 258 to receive placebo. There was no significant difference in 30-day mortality between the levosimendan group and the placebo group (32 patients [12.9%] and 33 patients [12.8%], respectively; absolute risk difference, 0.1 percentage points; 95% confidence interval [CI], -5.7 to 5.9; P=0.97). There were no significant differences between the levosimendan group and the placebo group in the durations of mechanical ventilation (median, 19 hours and 21 hours, respectively; median difference, -2 hours; 95% CI, -5 to 1; P=0.48), ICU stay (median, 72 hours and 84 hours, respectively; median difference, -12 hours; 95% CI, -21 to 2; P=0.09), and hospital stay (median, 14 days and 14 days, respectively; median difference, 0 days; 95% CI, -1 to 2; P=0.39). There was no significant difference between the levosimendan group and the placebo group in rates of hypotension or cardiac arrhythmias. In patients who required perioperative hemodynamic support after cardiac surgery, low-dose levosimendan in addition to standard care did not result in lower 30-day mortality than placebo

  11. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  12. Hemodynamic and electrophysiological signals of conflict processing in the Chinese-character Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study

    NASA Astrophysics Data System (ADS)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-09-01

    A dual-modality method combining continuous-wave near-infrared spectroscopy (NIRS) and event-related potentials (ERPs) was developed for the Chinese-character color-word Stroop task, which included congruent, incongruent, and neutral stimuli. Sixteen native Chinese speakers participated in this study. Hemodynamic and electrophysiological signals in the prefrontal cortex (PFC) were monitored simultaneously by NIRS and ERP. The hemodynamic signals were represented by relative changes in oxy-, deoxy-, and total hemoglobin concentration, whereas the electrophysiological signals were characterized by the parameters P450, N500, and P600. Both types of signals measured at four regions of the PFC were analyzed and compared spatially and temporally among the three different stimuli. We found that P600 signals correlated significantly with the hemodynamic parameters, suggesting that the PFC executes conflict-solving function. Additionally, we observed that the change in deoxy-Hb concentration showed higher sensitivity in response to the Stroop task than other hemodynamic signals. Correlation between NIRS and ERP signals revealed that the vascular response reflects the cumulative effect of neural activities. Taken together, our findings demonstrate that this new dual-modality method is a useful approach to obtaining more information during cognitive and physiological studies.

  13. Hemodynamic and electrophysiological signals of conflict processing in the Chinese-character Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study.

    PubMed

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-01-01

    A dual-modality method combining continuous-wave near-infrared spectroscopy (NIRS) and event-related potentials (ERPs) was developed for the Chinese-character color-word Stroop task, which included congruent, incongruent, and neutral stimuli. Sixteen native Chinese speakers participated in this study. Hemodynamic and electrophysiological signals in the prefrontal cortex (PFC) were monitored simultaneously by NIRS and ERP. The hemodynamic signals were represented by relative changes in oxy-, deoxy-, and total hemoglobin concentration, whereas the electrophysiological signals were characterized by the parameters P450, N500, and P600. Both types of signals measured at four regions of the PFC were analyzed and compared spatially and temporally among the three different stimuli. We found that P600 signals correlated significantly with the hemodynamic parameters, suggesting that the PFC executes conflict-solving function. Additionally, we observed that the change in deoxy-Hb concentration showed higher sensitivity in response to the Stroop task than other hemodynamic signals. Correlation between NIRS and ERP signals revealed that the vascular response reflects the cumulative effect of neural activities. Taken together, our findings demonstrate that this new dual-modality method is a useful approach to obtaining more information during cognitive and physiological studies.

  14. Hemodynamic coherence and the rationale for monitoring the microcirculation.

    PubMed

    Ince, Can

    2015-01-01

    This article presents a personal viewpoint of the shortcoming of conventional hemodynamic resuscitation procedures in achieving organ perfusion and tissue oxygenation following conditions of shock and cardiovascular compromise, and why it is important to monitor the microcirculation in such conditions. The article emphasizes that if resuscitation procedures are based on the correction of systemic variables, there must be coherence between the macrocirculation and microcirculation if systemic hemodynamic-driven resuscitation procedures are to be effective in correcting organ perfusion and oxygenation. However, in conditions of inflammation and infection, which often accompany states of shock, vascular regulation and compensatory mechanisms needed to sustain hemodynamic coherence are lost, and the regional circulation and microcirculation remain in shock. We identify four types of microcirculatory alterations underlying the loss of hemodynamic coherence: type 1, heterogeneous microcirculatory flow; type 2, reduced capillary density induced by hemodilution and anemia; type 3, microcirculatory flow reduction caused by vasoconstriction or tamponade; and type 4, tissue edema. These microcirculatory alterations can be observed at the bedside using direct visualization of the sublingual microcirculation with hand-held vital microscopes. Each of these alterations results in oxygen delivery limitation to the tissue cells despite the presence of normalized systemic hemodynamic variables. Based on these concepts, we propose how to optimize the volume of fluid to maximize the oxygen-carrying capacity of the microcirculation to transport oxygen to the tissues.

  15. Hemodynamics during an ambulance flight.

    PubMed

    Ehlers, Ulrike Elisabeth; Seiler, Olivier

    2012-01-01

    Transportation of patients may present challenges, especially if they need intensive care, require mechanical ventilation, or are hemodynamically unstable. In the reported case study, Picco-based measurements were used to track hemodynamic changes in a patient throughout the duration of a transfer, which included an air ambulance transport. If air medical transport is indicated, several additional physical and chemical considerations require awareness during the trip, planning, and pretransport patient preparation: first, that decreasing atmospheric pressure leads to reduced blood oxygenation, and second, that intracorporeal volume shifts may occur during takeoff and landing. To our knowledge, our findings represent the first measurements with a Picco system during interhospital patient transport that included an air medical flight. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  16. THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE

    EPA Science Inventory

    Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...

  17. Profiling the humoral immune response of acute and chronic Q fever by protein microarray.

    PubMed

    Vigil, Adam; Chen, Chen; Jain, Aarti; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Pablo, Jozelyn; Hendrix, Laura R; Samuel, James E; Felgner, Philip L

    2011-10-01

    Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.

  18. Dose-related effects of red wine and alcohol on hemodynamics, sympathetic nerve activity, and arterial diameter.

    PubMed

    Spaak, Jonas; Merlocco, Anthony C; Soleas, George J; Tomlinson, George; Morris, Beverley L; Picton, Peter; Notarius, Catherine F; Chan, Christopher T; Floras, John S

    2008-02-01

    The cardiovascular benefits of light to moderate red wine consumption often have been attributed to its polyphenol constituents. However, the acute dose-related hemodynamic, vasodilator, and sympathetic neural effects of ethanol and red wine have not been characterized and compared in the same individual. We sought to test the hypotheses that responses to one and two alcoholic drinks differ and that red wine with high polyphenol content elicits a greater effect than ethanol alone. Thirteen volunteers (24-47 yr; 7 men, 6 women) drank wine, ethanol, and water in a randomized, single-blind trial on three occasions 2 wk apart. One drink of wine and ethanol increased blood alcohol to 38 +/- 2 and 39 +/- 2 mg/dl, respectively, and two drinks to 72 +/- 4 and 83 +/- 3 mg/dl, respectively. Wine quadrupled plasma resveratrol (P < 0.001) and increased catechin (P < 0.03). No intervention affected blood pressure. One drink had no heart rate effect, but two drinks of wine increased heart rate by 5.7 +/- 1.6 beats/min; P < 0.001). Cardiac output fell 0.8 +/- 0.3 l/min after one drink of ethanol and wine (both P < 0.02) but increased after two drinks of ethanol (+0.8 +/- 0.3 l/min) and wine (+1.2 +/- 0.3 l/min) (P < 0.01). One alcoholic drink did not alter muscle sympathetic nerve activity (MSNA), while two drinks increased MSNA by 9-10 bursts/min (P < 0.001). Brachial artery diameter increased after both one and two alcoholic drinks (P < 0.001). No beverage augmented, and the second wine dose attenuated (P = 0.02), flow-mediated vasodilation. One drink of ethanol dilates the brachial artery without activating sympathetic outflow, whereas two drinks increase MSNA, heart rate, and cardiac output. These acute effects, which exhibit a narrow dose response, are not modified by red wine polyphenols.

  19. Advanced hemodynamic monitoring in intensive care medicine : A German web-based survey study.

    PubMed

    Saugel, B; Reese, P C; Wagner, J Y; Buerke, M; Huber, W; Kluge, S; Prondzinsky, R

    2018-04-01

    Advanced hemodynamic monitoring is recommended in patients with complex circulatory shock. To evaluate the current attitudes and beliefs among German intensivists, regarding advanced hemodynamic monitoring, the actual hemodynamic management in clinical practice, and the barriers to using it. Web-based survey among members of the German Society of Medical Intensive Care and Emergency Medicine. Of 284 respondents, 249 (87%) agreed that further hemodynamic assessment is needed to determine the type of circulatory shock if no clear clinical diagnosis can be made. In all, 281 (99%) agreed that echocardiography is helpful for this purpose (transpulmonary thermodilution: 225 [79%]; pulmonary artery catheterization: 126 [45%]). More than 70% of respondents agreed that blood flow variables (cardiac output, stroke volume) should be measured in patients with hemodynamic instability. The parameters most respondents agreed should be assessed in a patient with hemodynamic instability were mean arterial pressure, cardiac output, and serum lactate. Echocardiography is available in 99% of ICUs (transpulmonary thermodilution: 91%; pulmonary artery catheter: 63%). The respondents stated that, in clinical practice, invasive arterial pressure measurements and serum lactate measurements are performed in more than 90% of patients with hemodynamic instability (cardiac output monitoring in about 50%; transpulmonary thermodilution in about 40%). The respondents did not feel strong barriers to the use of advanced hemodynamic monitoring in clinical practice. This survey study shows that German intensivists deem advanced hemodynamic assessment necessary for the differential diagnosis of circulatory shock and to guide therapy with fluids, vasopressors, and inotropes in ICU patients.

  20. Where Is the “Optimal” Fontan Hemodynamics?

    PubMed Central

    2017-01-01

    Fontan circulation is generally characterized by high central venous pressure, low cardiac output, and slightly low arterial oxygen saturation, and it is quite different from normal biventricular physiology. Therefore, when a patient with congenital heart disease is selected as a candidate for this type of circulation, the ultimate goals of therapy consist of 2 components. One is a smooth adjustment to the new circulation, and the other is long-term circulatory stabilization after adjustment. When either of these goals is not achieved, the patient is categorized as having “failed” Fontan circulation, and the prognosis is dismal. For the first goal of smooth adjustment, a lot of effort has been made to establish criteria for patient selection and intensive management immediately after the Fontan operation. For the second goal of long-term circulatory stabilization, there is limited evidence of successful strategies for long-term hemodynamic stabilization. Furthermore, there have been no data on optimal hemodynamics in Fontan circulation that could be used as a reference for patient management. Although small clinical trials and case reports are available, the results cannot be generalized to the majority of Fontan survivors. We recently reported the clinical and hemodynamic characteristics of early and late failing Fontan survivors and their association with all-cause mortality. This knowledge could provide insight into the complex Fontan pathophysiology and might help establish a management strategy for long-term hemodynamic stabilization. PMID:29035429

  1. Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats

    PubMed Central

    Sugimura, Mitsutaka; Hirose, Yohsuke; Hanamoto, Hiroshi; Okada, Kenji; Boku, Aiji; Morimoto, Yoshinari; Taki, Kunitaka; Niwa, Hitoshi

    2008-01-01

    The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY. PMID:18599365

  2. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection.

    PubMed

    Vollmer-Conna, Uté; Piraino, Barbara F; Cameron, Barbara; Davenport, Tracey; Hickie, Ian; Wakefield, Denis; Lloyd, Andrew R

    2008-12-01

    Functional polymorphisms in immune response genes are increasingly recognized as important contributors to the marked individual differences in susceptibility to and outcomes of infectious disease. The acute sickness response is a stereotypical set of illness manifestations mediated by the proinflammatory cytokines induced by many different pathogens. The genetic determinants of severity of the acute sickness response have not previously been explored. We examined the impact of functional polymorphisms in cytokine genes with critical roles in the early immune response (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and interferon-gamma) on the severity and duration of illness following acute infection with Epstein-Barr virus, Coxiella burnetii (the causative agent of Q fever), or Ross River virus. We found that the interferon-gamma +874T/A and the interleukin-10 -592C/A polymorphisms significantly affected illness severity, cytokine protein levels, and the duration of illness. These cytokine genotypes acted in synergy to potentiate their influence on disease outcomes. These findings suggest that genetically determined variations in the intensity of the inflammatory response underpin the severity of the acute sickness response and predict the recovery time across varied infections.

  3. Double-blind, placebo-controlled study of intravenous prostacyclin on hemodynamics in severe Raynaud's phenomenon: the acute vasodilatory effect is not sustained.

    PubMed

    Kingma, K; Wollersheim, H; Thien, T

    1995-09-01

    In 12 patients with severe Raynaud's phenomenon (RP: ischemic ulcers or intractable pain despite use of narcotic analgetics), we studied the acute and long-term hemodynamic effects of epoprostenol on systemic and finger skin circulation. Epoprostenol was infused intravenously (i.v., initial infusion rate of 2 ng/kg/min, with a subsequent increase of 2 ng/kg/min every 30 min to the individually tolerated maximal dose of 8 ng/kg/min) in a triple, 5-h, double-blind, placebo-controlled cross-over study. During epoprostenol infusion, systolic blood pressure (SBP) remained stable, while diastolic BP (DBP) decreased (-8 mm Hg, p < 0.02), with a simultaneous increase in heart rate (HR + 14 beats/min, p < 0.001). Forearm blood flow (FBF) increased and forearm vascular resistance (FVR) decreased during epoprostenol as compared with placebo infusion (p < 0.01). Epoprostenol caused a significant increase in fingertip skin temperature (p < 0.01) as well as in laser Doppler flux (p < 0.02) before and after a standardized cooling test of the hand as compared with placebo. The increase in transcutaneous oxygen tension reached significant difference only during recovery (p < 0.02). No long-term improvement was noted during two additional cooling tests performed 1 and 6 weeks after the completed epoprostenol or placebo triple-infusion cycle. Repeated long-lasting epoprostenol infusion immediately improves the microcirculation, but these effects are not sustained after 1 week.

  4. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-02-01

    Low dietary sodium intake increases central nervous system angiotensin activity, which increases basal renal sympathetic nerve activity and shifts its arterial baroreflex control to a higher level of arterial pressure. This results in a higher level of renal sympathetic nerve activity for a given level of arterial pressure during low dietary sodium intake than during either normal or high dietary sodium intake, in which there is less central angiotensin activity. Peripheral thermal receptor stimulation overrides arterial baroreflex control and produces a pressor response, tachycardia, increased renal sympathetic nerve activity, and renal vasoconstriction. To test the hypothesis that increased central angiotensin activity would enhance the responses to peripheral thermal receptor stimulation, anesthetized normal rats in balance on low, normal, and high dietary sodium intake were subjected to acute peripheral thermal receptor stimulation. Low sodium rats had greater increases in renal sympathetic nerve activity, greater decreases in RBF, and greater increases in renal vascular resistance than high sodium rats. Responses of normal sodium rats were between those of low and high sodium rats. Arterial pressure and heart rate responses were not different among dietary groups. Spontaneously hypertensive rats, known to have increased central nervous system angiotensin activity, also had greater renal sympathoexcitatory and vasoconstrictor responses than normotensive Wistar-Kyoto rats. These results support the view that increased central nervous system angiotensin activity alters arterial baroreflex control of renal sympathetic nerve activity such that the renal sympathoexcitatory and vasoconstrictor responses to peripheral thermoreceptor stimulation are enhanced.

  5. [The adrenergic mechanisms are involved in the pulmonary hemodynamics changes following experimental myocardial ischemia in rabbits].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2012-05-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of alpha-adrenoreceptors by phentolamine or N-cholinoreceptors of autonomic ganglia by hexamethonium. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was elevated not significantly, the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of alpha-adrenoreceptors the pulmonary artery flow and cardiac output decreased in the same level and the pulmonary vascular resistance was decreased. In these conditions the pulmonary artery pressure decreased more than in control animals, meanwhile the pulmonary artery flow was decreased in the same level as in the last case. Following myocardial ischemia after the blockade of N-cholinoreceptors the pulmonary hemodynamics changes were the same as they were following myocardial ischemia in the control rabbits, the cardiac output decreased more than pulmonary artery flow. The disbalance of the cardiac output and pulmonary artery flow changes in the case of myocardial ischemia was caused by the pulmonary vessel reactions following activations of the humoral adrenergic mechanisms.

  6. A hemodynamic-directed approach to pediatric cardiopulmonary resuscitation (HD-CPR) improves survival.

    PubMed

    Morgan, Ryan W; Kilbaugh, Todd J; Shoap, Wesley; Bratinov, George; Lin, Yuxi; Hsieh, Ting-Chang; Nadkarni, Vinay M; Berg, Robert A; Sutton, Robert M

    2017-02-01

    Most pediatric in-hospital cardiac arrests (IHCAs) occur in ICUs where invasive hemodynamic monitoring is frequently available. Titrating cardiopulmonary resuscitation (CPR) to the hemodynamic response of the individual improves survival in preclinical models of adult cardiac arrest. The objective of this study was to determine if titrating CPR to systolic blood pressure (SBP) and coronary perfusion pressure (CoPP) in a pediatric porcine model of asphyxia-associated ventricular fibrillation (VF) IHCA would improve survival as compared to traditional CPR. After 7min of asphyxia followed by VF, 4-week-old piglets received either hemodynamic-directed CPR (HD-CPR; compression depth titrated to SBP of 90mmHg and vasopressor administration to maintain CoPP ≥20mmHg); or Standard Care (compression depth 1/3 of the anterior-posterior chest diameter and epinephrine every 4min). All animals received CPR for 10min prior to the first defibrillation attempt. CPR was continued for a maximum of 20min. Protocolized intensive care was provided to all surviving animals for 4h. The primary outcome was 4-h survival. Survival rate was greater with HD-CPR (12/12) than Standard Care (6/10; p=0.03). CoPP during HD-CPR was higher compared to Standard Care (point estimate +8.1mmHg, CI 95 : 0.5-15.8mmHg; p=0.04). Chest compression depth was lower with HD-CPR than Standard Care (point estimate -14.0mm, CI95: -9.6 to -18.4mm; p<0.01). Prior to the first defibrillation attempt, more vasopressor doses were administered with HD-CPR vs. Standard Care (median 5 vs. 2; p<0.01). Hemodynamic-directed CPR improves short-term survival compared to standard depth-targeted CPR in a porcine model of pediatric asphyxia-associated VF IHCA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A Hemodynamic-Directed Approach to Pediatric Cardiopulmonary Resuscitation (HD-CPR) Improves Survival

    PubMed Central

    Morgan, Ryan W.; Kilbaugh, Todd J.; Shoap, Wesley; Bratinov, George; Lin, Yuxi; Hsieh, Ting-Chang; Nadkarni, Vinay M.; Berg, Robert A.; Sutton, Robert M.

    2016-01-01

    Aim Most pediatric in-hositalcardiac arrests(IHCAs) occur in ICUs where invasive hemodynamic monitoring is frequently available. Titrating cardiopulmonary resuscitation (CPR) to the hemodynamic response of the individual improves survival in preclinical models of adult cardiac arrest. The objective of this study was to determine if titrating CPR to systolic blood pressure (SBP) and coronary perfusion pressure (CoPP) in a pediatric porcine model of asphyxia-associated ventricular fibrillation (VF) IHCA would improve survival as compared to traditional CPR. Methods After 7 minutes of asphyxia followed by VF, 4-week-old piglets received either Hemodynamic-Directed CPR (HD-CPR; compression depth titrated to SBP of 90mmHg and vasopressor administration to maintain CoPP ≥20mmHg); or Standard Care (compression depth 1/3 of the anterior-posterior chest diameter and epinephrine every 4 minutes). All animals received CPR for 10 minutes prior to the first defibrillation attempt. CPR was continued for a maximum of 20 minutes. Protocolized intensive care was provided to all surviving animals for 4 hours. The primary outcome was 4-hour survival. Results Survival rate was greater with HD-CPR (12/12) than Standard Care (6/10; p=0.03). CoPP during HD-CPR was higher compared to Standard Care (point estimate +8.1mmHg, CI95: 0.5–15.8mmHg; p=0.04). Chest compression depth was lower with HD-CPR than Standard Care (point estimate 14.0mm, CI95: 9.6–18.4mm; p<0.01). Prior to the first defibrillation attempt, more vasopressor doses were administered with HD-CPR versus Standard Care (median 5 versus 2; p<0.01). Conclusions Hemodynamic-directed CPR improves short-term survival compared to standard depth-targeted CPR in a porcine model of pediatric asphyxia-associated VF IHCA. PMID:27923692

  8. Intra-aortic balloon pumping in acute mitral regurgitation reduces aortic impedance and regurgitant fraction.

    PubMed

    Dekker, André L A J; Reesink, Koen D; van der Veen, Frederik H; van Ommen, G Vincent A; Geskes, Gijs G; Soemers, A Cecilia M; Maessen, Jos G

    2003-04-01

    Acute mitral regurgitation (MR) is present in 10% of patients presenting with cardiogenic shock. To stabilize these patients, intra-aortic balloon pumping (IABP) is recommended, but the mechanism of IABP support in these patients is unknown. This animal study was designed to describe the hemodynamic effect of intra-aortic balloon pumping during cardiogenic shock induced by acute MR. In eight calves, left ventricular pressure-volume loops, aortic and left atrial pressure, and aortic, carotid artery, and coronary blood flow were recorded. Acute MR (range 36%-79%) was created by placing a metal cage in the mitral valve. Hemodynamic data was obtained at control, during acute MR, and during acute MR with 1:1 IABP support. Acute MR caused a decrease in cardiac output (-32%, P = 0.018), blood pressure, and carotid artery flow, whereas left ventricular output (+127%, P = 0.018), end-diastolic volume, and left atrial pressure all significantly increased. Stroke work, ejection fraction, and coronary blood flow were not significantly changed, and no signs of ischemia were seen on the ECG. The IABP raised average cardiac output by 31% (P = 0.012) and significantly raised blood pressure and flow to the brain while decreasing systemic vascular resistance. Left ventricular function and mean coronary blood flow did not change, but diastolic coronary flow became more important as shown by the increase in diastolic fraction from 64% to 95%. (P = 0.028). Average MR dropped by 7.5% (P = 0.025). In conclusion, application of the IABP during acute MR lowers aortic impedance, resulting in less MR and more output toward the aorta without changing left ventricular function.

  9. [Importance of mechanical assist devices in acute circulatory arrest].

    PubMed

    Ferrari, Markus Wolfgang

    2016-03-01

    Mechanical assist devices are indicated for hemodynamic stabilization in acute circulatory arrest if conventional means of cardiopulmonary resuscitation are unable to re-establish adequate organ perfusion. Their temporary use facilitates further diagnostic and therapeutic options in selected patients, e.g. coronary angiography followed by revascularization.External thorax compression devices allow sufficient cardiac massage in case of preclinical or in-hospital circulatory arrest, especially under complex transfer conditions. These devices perform standardized thorax compressions at a rate of 80-100 per minute. Invasive mechanical support devices are used in the catheter laboratory or in the intensive care unit. Axial turbine pumps, e.g. the Impella, continuously pump blood from the left ventricle into the aortic root. The Impella can also provide right ventricle support by pumping blood from the vena cava into the pulmonary artery. So-called emergency systems or ECMO devices consist of a centrifugal pump and a membrane oxygenator allowing complete takeover of cardiac and pulmonary functions. Withdrawing blood from the right atrium and vena cava, oxygenated blood is returned to the abdominal aorta. Isolated centrifugal pumps provide left heart support without an oxygenator after transseptal insertion of a venous cannula into the left atrium.Mechanical assist devices are indicated for acute organ protection and hemodynamic stabilization for diagnostic and therapeutic measures as well as bridge to myocardial recovery. Future technical developments and better insights into the pathophysiology of mechanical circulatory support will broaden the spectrum of indications of such devices in acute circulatory arrest.

  10. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.

    PubMed

    de Gonzalo-Calvo, David; Dávalos, Alberto; Fernández-Sanjurjo, Manuel; Amado-Rodríguez, Laura; Díaz-Coto, Susana; Tomás-Zapico, Cristina; Montero, Ana; García-González, Ángela; Llorente-Cortés, Vicenta; Heras, Maria Eugenia; Boraita Pérez, Araceli; Díaz-Martínez, Ángel E; Úbeda, Natalia; Iglesias-Gutiérrez, Eduardo

    2018-08-01

    Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers. Functional enrichment analysis was performed. Pre- and post-M echocardiographic analyses were carried out. Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, "pseudo-disease" signatures were also observed. c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show "pseudo-disease" signatures in response to acute exercise. Clinical practitioners should

  11. Pulmonary hemodynamics responses to hypoxia and/or CO2 inhalation during moderate exercise in humans.

    PubMed

    Doutreleau, Stéphane; Enache, Irina; Pistea, Cristina; Geny, Bernard; Charloux, Anne

    2018-03-03

    In this study, we hypothesized that adding CO 2 to an inhaled hypoxic gas mixture will limit the rise of pulmonary artery pressure (PAP) induced by a moderate exercise. Eight 20-year-old males performed four constant-load exercise tests on cycle at 40% of maximal oxygen consumption in four conditions: ambient air, normobaric hypoxia (12.5% O 2 ), inhaled CO 2 (4.5% CO 2 ), and combination of hypoxia and inhaled CO 2 . Doppler echocardiography was used to measure systolic (s)PAP, cardiac output (CO). Total pulmonary resistance (TPR) was calculated. Arterialized blood pH was 7.40 at exercise in ambient and hypoxia conditions, whereas CO 2 inhalation and combined conditions showed acidosis. sPAP increases from rest in ambient air to exercise ranged as follows: ambient + 110%, CO 2 inhalation + 135%, combined + 184%, hypoxia + 217% (p < 0.001). CO was higher when inhaling O 2 -poor gas mixtures with or without CO 2 (~ 17 L min -1 ) than in the other conditions (~ 14 L min -1 , p < 0.001). Exercise induced a significant decrease in TPR in the four conditions (p < 0.05) but less marked in hypoxia (- 19% of the resting value in ambient air) than in ambient (- 33%) and in both CO 2 inhalation and combined condition (- 29%). We conclude that (1) acute CO 2 inhalation did not significantly modify pulmonary hemodynamics during moderate exercise. (2) CO 2 adjunction to hypoxic gas mixture did not modify CO, despite a higher CaO 2 in combined condition than in hypoxia. (3) TPR was lower in combined than in hypoxia condition, limiting sPAP increase in combined condition.

  12. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review

    PubMed Central

    Famakin, Bolanle M.

    2014-01-01

    It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490

  13. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  14. Investigation of cerebral hemodynamic changes during repeated sit-stand maneuver using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niu, Haijing; Li, Lin; Bhave, Gauri S.; Lin, Zi-jing; Tian, Fenghua; Khosrow, Behbehani; Zhang, Rong; Liu, Hanli

    2011-03-01

    The goal for this study is to examine cerebral autoregulation in response to a repeated sit-stand maneuver using both diffuse functional Near Infrared spectroscopy (fNIRS) and Transcranial Doppler sonography (TCD). While fNIRS can provide transient changes in hemodynamic response to such a physical action, TCD is a noninvasive transcranial method to detect the flow velocities in the basal or middle cerebral arteries (MCA). The initial phase of this study was to measure fNIRS signals from the forehead of subjects during the repeated sit-stand protocol and to understand the corresponding meaning of the detected signals. Also, we acquired preliminary data from simultaneous measurements of fNIRS and TCD during the sit-stand protocol so as to explore the technical difficulty of such an approach. Specifically, ten healthy adult subjects were enrolled to perform the planned protocol, and the fNIRS array probes with 4 sources and 10 detectors were placed on the subject's forehead to detect hemodynamic signal changes from the prefrontal cortex. The fNIRS results show that the oscillations of hemoglobin concentration were spatially global and temporally dynamic across the entire region of subject's forehead. The oscillation patterns in both hemoglobin concentrations and blood flow velocity seemed to follow one another; changes in oxy-hemoglobin concentration were much larger than those in deoxyhemoglobin concentration. These preliminary findings provide us with evidence that fNIRS is an appropriate means readily for studying cerebral hemodynamics and autoregulation during sit-stand maneuvers.

  15. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine

    PubMed Central

    McDaniel, John; Venturelli, Massimo; Fjeldstad, Anette S.; Ives, Stephen J.; Witman, Melissa A. H.; Barrett-O'Keefe, Zachary; Amann, Markus; Wray, D. Walter; Richardson, Russell S.

    2011-01-01

    This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min−1·mmHg−1, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine. PMID:21357514

  16. Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine.

    PubMed

    Trinity, Joel D; McDaniel, John; Venturelli, Massimo; Fjeldstad, Anette S; Ives, Stephen J; Witman, Melissa A H; Barrett-O'Keefe, Zachary; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2011-05-01

    This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min⁻¹ ·mmHg⁻¹, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine.

  17. Acute promyelocytic leukemia: new issues on pathogenesis and treatment response.

    PubMed

    Vitoux, Dominique; Nasr, Rihab; de The, Hugues

    2007-01-01

    Pathogenesis of acute promyelocytic leukemia appears to be one of the best understood among human malignancies. The ability of retinoic acid (RA) and arsenic trioxide to directly target the oncogenic promyelocytic leukemia-retinoic receptor A (PML-RARA) fusion protein also made this disease the first model for oncogene-targeted therapies. A set of recent data has significantly increased the complexity of our view of acute promyelocytic leukemia pathogenesis, as well as of therapeutic response. This review summarizes and discusses these findings, which yield novels questions and models.

  18. Hemodynamic Effects of Midodrine After Space Flight in Astronauts Without Orthostatic Hypotension

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Ziegler, Michael G.; Waters, Wendy W.; Meck, Janice V.

    2006-01-01

    Orthostatic hypotension and presyncope are common and potentially serious risks for astronauts returning from space. Susceptible subjects fail to generate an adequate adrenergic response to upright posture. The -1 adrenergic agonist, midodrine, may be an effective countermeasure. We tested the hypothesis that midodrine would have no negative hemodynamic effect on healthy astronauts returning from space. Five male astronauts participated in preflight and postflight tilt testing on a control flight as well as on the test flights, where midodrine (10 mg, orally) was administered after landing, approximately 1 hour before testing. None of these astronauts exhibited orthostatic hypotension or presyncope before or after either flight. Midodrine did not cause any untoward reactions in these subjects before or after flight, in fact a modest beneficial effect was seen on postflight tachycardia (p=0.036). These data show that midodrine protected against post-spaceflight increases in heart rate, without having any adverse hemodynamic effects on non-presyncopal, male astronauts. Among these subjects, midodrine was a safe cardiovascular countermeasure.

  19. Improved hemodynamic parameters in middle cerebral artery infarction after decompressive craniectomy.

    PubMed

    Amorim, Robson Luis; de Andrade, Almir Ferreira; Gattás, Gabriel S; Paiva, Wellingson Silva; Menezes, Marcos; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2014-05-01

    Decompressive craniectomy (DC) reduces mortality and improves functional outcome in patients with malignant middle cerebral artery infarction. However, little is known regarding the impact of DC on cerebral hemodynamics. Therefore, our goal was to study the hemodynamic changes that may occur in patients with malignant middle cerebral artery infarction after DC and to assess their relationship with outcomes. Twenty-seven patients with malignant middle cerebral artery infarction who were treated with DC were studied. The perfusion CT hemodynamic parameters, mean transit time, cerebral blood flow, and cerebral blood volume were evaluated preoperatively and within the first 24 hours after DC. There was a global trend toward improved cerebral hemodynamics after DC. Preoperative and postoperative absolute mean transit times were associated with mortality at 6 months, and the ratio of post- and preoperative cerebral blood flow was significantly higher in patients with favorable outcomes than those with unfavorable outcomes. Patients who underwent surgery 48 hours after stroke, those with midline brain shift>10 mm, and those who were >55 years showed no significant improvement in any perfusion CT parameters. DC improves cerebral hemodynamics in patients with malignant middle cerebral artery infarction, and the level of improvement is related to outcome. However, some patients did not seem to experience any additional hemodynamic benefit, suggesting that perfusion CT may play a role as a prognostic tool in patients undergoing DC after ischemic stroke.

  20. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    PubMed

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  1. Hemodynamic effects of intravenous nicardipine in severely pre-eclamptic women with a hypertensive crisis.

    PubMed

    Cornette, J; Buijs, E A B; Duvekot, J J; Herzog, E; Roos-Hesselink, J W; Rizopoulos, D; Meima, M; Steegers, E A P

    2016-01-01

    Nicardipine permits rapid control of blood pressure in women with severe pre-eclampsia (PE) and hypertensive crisis. Our objective was to investigate its maternal and fetal hemodynamic effects. Ten severely pre-eclamptic pregnant women who required intravenous nicardipine for severe hypertension were included in this prospective observational trial. Maternal macrocirculation was assessed by transthoracic echocardiography. Maternal microcirculatory perfusion was examined sublingually with the sidestream dark field imaging technique. Fetal hemodynamics were assessed by Doppler examinations of the uteroplacental and fetal circulations. Maternal cardiac output, total vascular resistance, mitral E/A ratio and capillary heterogeneity index, uterine artery pulsatility index and fetal cerebroplacental ratio were considered primary outcomes. Paired measurements, obtained before administration of nicardipine infusion and after stabilization of blood pressure, were compared. Administration of nicardipine significantly reduced the mean arterial blood pressure (median difference, 26 mmHg; P = 0.002) and total vascular resistance (median difference, 791 dynes × s/cm(5) ; P = 0.002) in all included women. This induced a reflex tachycardia with consequent increase in cardiac output of 1.55 L/min (P  =  0.004). There were no significant changes in the other determinants of maternal or fetal hemodynamic parameters. Nicardipine effectively reduces blood pressure through selective afterload reduction that triggers an increase in cardiac output, without affecting maternal diastolic function, or microcirculatory, uteroplacental or fetal perfusion. This hemodynamic response is uniform and predictable. Fetomaternal cardiovascular profiling can be achieved by combining transthoracic echocardiography with obstetric Doppler. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  2. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.

    PubMed

    Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E

    2016-05-15

    The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation.

    PubMed

    Spronk, Desirée B; De Bruijn, Ellen R A; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-11-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of impulsivity and novelty seeking. This study investigated the effects of cocaine and cannabis on behavioural and event-related potential (ERP) correlates of response inhibition in 38 healthy drug using volunteers. A double-blind placebo-controlled randomized three-way crossover design was used. All subjects completed a standard Go/NoGo task after administration of the drugs. Compared with a placebo, cocaine yielded improved accuracy, quicker reaction times and an increased prefrontal NoGo-P3 ERP. Cannabis produced opposing results; slower reaction times, impaired accuracy and a reduction in the amplitude of the prefrontal NoGo-P3. Cannabis in addition decreased the amplitude of the parietally recorded P3, while cocaine did not affect this. Neither drugs specifically affected the N2 component, suggesting that pre-motor response inhibitory processes remain unaffected. Neither trait impulsivity nor novelty seeking interacted with drug-induced effects on measures of response inhibition. We conclude that acute drug effects on response inhibition seem to be specific to the later, evaluative stages of response inhibition. The acute effects of cannabis appeared less specific to response inhibition than those of cocaine. Together, the results show that the behavioural effects on response inhibition are reflected in electrophysiological correlates. This study did not support a substantial role of vulnerability personality traits in the acute intoxication stage. © 2015 Society for the Study of Addiction.

  4. The Effect of Positive End-Expiratory Pressure on Intracranial Pressure and Cerebral Hemodynamics.

    PubMed

    Boone, Myles D; Jinadasa, Sayuri P; Mueller, Ariel; Shaefi, Shahzad; Kasper, Ekkehard M; Hanafy, Khalid A; O'Gara, Brian P; Talmor, Daniel S

    2017-04-01

    Lung protective ventilation has not been evaluated in patients with brain injury. It is unclear whether applying positive end-expiratory pressure (PEEP) adversely affects intracranial pressure (ICP) and cerebral perfusion pressure (CPP). We aimed to evaluate the effect of PEEP on ICP and CPP in a large population of patients with acute brain injury and varying categories of acute lung injury, defined by PaO 2 /FiO 2 . Retrospective data were collected from 341 patients with severe acute brain injury admitted to the ICU between 2008 and 2015. These patients experienced a total of 28,644 paired PEEP and ICP observations. Demographic, hemodynamic, physiologic, and ventilator data at the time of the paired PEEP and ICP observations were recorded. In the adjusted analysis, a statistically significant relationship between PEEP and ICP and PEEP and CPP was found only among observations occurring during periods of severe lung injury. For every centimeter H 2 O increase in PEEP, there was a 0.31 mmHg increase in ICP (p = 0.04; 95 % CI [0.07, 0.54]) and a 0.85 mmHg decrease in CPP (p = 0.02; 95 % CI [-1.48, -0.22]). Our results suggest that PEEP can be applied safely in patients with acute brain injury as it does not have a clinically significant effect on ICP or CPP. Further prospective studies are required to assess the safety of applying a lung protective ventilation strategy in brain-injured patients with lung injury.

  5. Hemodynamic and Anatomic Predictors of Renovisceral Stent-Graft Occlusion Following Chimney Endovascular Repair of Juxtarenal Aortic Aneurysms.

    PubMed

    Tricarico, Rosamaria; He, Yong; Laquian, Liza; Scali, Salvatore T; Tran-Son-Tay, Roger; Beck, Adam W; Berceli, Scott A

    2017-12-01

    To identify anatomic and hemodynamic changes associated with impending visceral chimney stent-graft occlusion after endovascular aneurysm repair (EVAR) with the chimney technique (chEVAR). A retrospective evaluation was performed of computed tomography scans from 41 patients who underwent juxtarenal chEVAR from 2008 to 2012 to identify stent-grafts demonstrating conformational changes following initial placement. Six subjects (mean age 74 years; 3 men) were selected for detailed reconstruction and computational hemodynamic analysis; 4 had at least 1 occluded chimney stent-graft. This subset of repairs was systematically analyzed to define the anatomic and hemodynamic impact of these changes and identify signature patterns associated with impending renovisceral stent-graft occlusion. Spatial and temporal analyses of cross-sectional area, centerline angle, intraluminal pressure, and wall shear stress (WSS) were performed within the superior mesenteric and renal artery chimney grafts used for repair. Conformational changes in the chimney stent-grafts and associated perturbations, in both local WSS and pressure, were responsible for the 5 occlusions in the 13 stented branches. Anatomic and hemodynamic signatures leading to occlusion were identified within 1 month postoperatively, with a lumen area <14 mm 2 (p=0.04), systolic pressure gradient >25 Pa/mm (p=0.03), and systolic WSS >45 Pa (p=0.03) associated with future chimney stent-graft occlusion. Chimney stent-grafts at increased risk for occlusion demonstrated anatomic and hemodynamic signatures within 1 month of juxtarenal chEVAR. Analysis of these parameters in the early postoperative period may be useful for identifying and remediating these high-risk stent-grafts.

  6. Mathematical Modeling of Renal Hemodynamics in Physiology and Pathophysiology

    PubMed Central

    Sgouralis, Ioannis; Layton, Anita T.

    2015-01-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. PMID:25765886

  7. Improvements in the Hemodynamic Stability of Combat Casualties During En Route Care

    DTIC Science & Technology

    2013-01-01

    IMPROVEMENTS IN THE HEMODYNAMIC STABILITY OF COMBAT CASUALTIES DURING EN ROUTE CARE Amy N. Apodaca,* Jonathan J. Morrison,†‡ Mary Ann Spott,* John J...greater clinical capability is associated with an improved hemodynamic status in critical casualties. The ideal prehospital triage should endeavor to...before out of theater medical evacuation (MEDEVAC). As SI is measure of hemodynamic stability, patients with isolated severe brain injury or

  8. Life Satisfaction and Hemodynamic Reactivity to Mental Stress.

    PubMed

    Schwerdtfeger, Andreas; Gaisbachgrabner, Kerstin; Traunmüller, Claudia

    2017-06-01

    Satisfaction with life has been considered a health-protective variable, which could impact cardiovascular morbidity and mortality. However, few studies have examined the physiological pathways involved in the potentially salutary effect of life satisfaction. It was hypothesized that life satisfaction should be associated with a cardiovascular response profile that signals challenge (i.e., higher cardiac output, lower peripheral resistance), rather than threat during a mental stress task. A sample of 75 healthy, medication-free men without clinical signs of psychological disorders who worked full-time and occupied highly demanding positions participated in this study. They performed two mental stress tasks (n-back) with varying degrees of difficulty. The tasks were embedded between a baseline and a recovery period. Cardiovascular and hemodynamic variables (heart rate, blood pressure, cardiac output, total peripheral resistance) were recorded by means of impedance cardiography. Individuals who were more satisfied with their life displayed higher cardiac output and lower peripheral resistance levels during the stress tasks, indicating a challenge rather than a threat profile. Findings were robust when controlled for physical activity, smoking, age, and depressive symptoms. Life satisfaction could be positively correlated with beneficial hemodynamic stress reactivity, indicating that individuals with higher levels of life satisfaction can more adaptively cope with stress. Increased cardiac output and decreased peripheral resistance during stress may constitute one route through which life satisfaction can benefit health.

  9. High-flow bypass and wrap-clipping for ruptured blood blister-like aneurysm of the internal carotid artery using intraoperative monitoring of cerebral hemodynamics

    PubMed Central

    Kubo, Yoshitaka; Koji, Takahiro; Yoshida, Kenji; Saito, Hideo; Ogawa, Akira; Ogasawara, Kuniaki

    2015-01-01

    Aneurysms at non-branching sites in the supraclinoid internal carotid artery (ICA) can be classified as “blood blister-like aneurysms” (BBAs), which have blood blister-like configurations and fragile walls. While surgical treatment for the BBA in the acute stage is recommended, the optimal surgical procedure remains controversial. In the study reported here, we describe the case of a 37-year-old woman with a ruptured BBA in the ophthalmic segment of the right ICA who underwent wrap-clipping with external carotid artery–internal carotid artery bypass by intraoperative estimation of the measurement of cortical cerebral blood flow (CoBF) using a thermal diffusion flow probe. Trapping of the ICA in the acute stage of subarachnoid hemorrhage may result in ischemic complications secondary to hemodynamic hypoperfusion or occlusion of the perforating artery, and/or delayed vasospasm, even with concomitant bypass surgery. We believe that it is important to perform scheduled external carotid artery–internal carotid artery bypass before trapping of the ICA in patients with a ruptured BBA in the acute stage of subarachnoid hemorrhage and to perform wrap-clipping rather than trapping. This would provide much more CoBF if a reduction of CoBF occurs after trapping occlusion of the ICA including a ruptured BBA according to intraoperative CoBF monitoring. As far as we are aware, the case reported here is the first report on high-flow bypass and wrap-clipping for a ruptured BBA of the ICA using intraoperative monitoring of cerebral hemodynamics. PMID:26082641

  10. Hemodynamics of speech production: An fNIRS investigation of children who stutter.

    PubMed

    Walsh, B; Tian, F; Tourville, J A; Yücel, M A; Kuczek, T; Bostian, A J

    2017-06-22

    Stuttering affects nearly 1% of the population worldwide and often has life-altering negative consequences, including poorer mental health and emotional well-being, and reduced educational and employment achievements. Over two decades of neuroimaging research reveals clear anatomical and physiological differences in the speech neural networks of adults who stutter. However, there have been few neurophysiological investigations of speech production in children who stutter. Using functional near-infrared spectroscopy (fNIRS), we examined hemodynamic responses over neural regions integral to fluent speech production including inferior frontal gyrus, premotor cortex, and superior temporal gyrus during a picture description task. Thirty-two children (16 stuttering and 16 controls) aged 7-11 years participated in the study. We found distinctly different speech-related hemodynamic responses in the group of children who stutter compared to the control group. Whereas controls showed significant activation over left dorsal inferior frontal gyrus and left premotor cortex, children who stutter exhibited deactivation over these left hemisphere regions. This investigation of neural activation during natural, connected speech production in children who stutter demonstrates that in childhood stuttering, atypical functional organization for speech production is present and suggests promise for the use of fNIRS during natural speech production in future research with typical and atypical child populations.

  11. Hemodynamic Parameters during Laryngoscopic Procedures in the Office and in the Operating Room.

    PubMed

    Tierney, William S; Chota, Rebecca L; Benninger, Michael S; Nowacki, Amy S; Bryson, Paul C

    2016-09-01

    Previous research has shown that office-based laryngoscopic procedures can induce hemodynamic changes, including tachycardia and severe hypertension, calling into question the safety of these procedures. However, comparison between office and operating room (OR) procedures has not been carried out. Therefore, we prospectively measured hemodynamic variables in both settings to compare hemodynamic changes between office and OR procedures. Prospective cohort study. Single academic center. Subjects undergoing office and OR laryngoscopic procedures were prospectively identified, and 92 OR and 70 office subjects were included. Heart rate and blood pressure were measured at established time points before, during, and after the procedures. Descriptive and comparative statistical analyses were conducted. Severe hemodynamic events, either tachycardia or severe hypertension (blood pressure >180 mm Hg systolic or >110 mm Hg diastolic), occurred significantly more frequently in OR than office procedures (41% vs 20%; P = .006). OR severe hemodynamic events occurred more commonly than previously reported rates in the office (41% vs 28%; P = .012). Regression analyses showed that the odds of having a severe hemodynamic event were 3.66 times higher in OR versus office procedures. Severe hemodynamic events are more likely to occur in the OR than in the office during laryngologic procedures. While larger studies will be required to establish rates of dangerous cardiovascular events in laryngoscopic procedures, hemodynamic parameters indicate that office-based procedures have a safety benefit for procedures that can be conducted in either setting. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  12. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females

    PubMed Central

    Treadway, Michael T.; Valeri, Linda; Douglas, Samuel

    2017-01-01

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response (n = 10), moderate-response (n = 21), and mild-response (n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  13. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    PubMed

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  14. Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)

    NASA Astrophysics Data System (ADS)

    Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio

    2015-03-01

    A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.

  15. Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure.

    PubMed

    Davranche, Karen; Casini, Laurence; Arnal, Pierrick J; Rupp, Thomas; Perrey, Stéphane; Verges, Samuel

    2016-10-01

    The present study aimed to assess specific cognitive processes (cognitive control and time perception) and hemodynamic correlates using functional near-infrared spectroscopy (fNIRS) during acute and prolonged high-altitude exposure. Eleven male subjects were transported via helicopter and dropped at 14 272 ft (4 350 meters) of altitude where they stayed for 4 days. Cognitive tasks, involving a conflict task and temporal bisection task, were performed at sea level the week before ascending to high altitude, the day of arrival (D0), the second (D2) and fourth (D4) day at high altitude. Cortical hemodynamic changes in the prefrontal cortex (PFC) area were monitored with fNIRS at rest and during the conflict task. Results showed that high altitude impacts information processing in terms of speed and accuracy. In the early hours of exposure (D0), participants displayed slower reaction times (RT) and decision errors were twice as high. While error rate for simple spontaneous responses remained twice that at sea level, the slow-down of RT was not detectable after 2 days at high-altitude. The larger fNIRS responses from D0 to D2 suggest that higher prefrontal activity partially counteracted cognitive performance decrements. Cognitive control, assessed through the build-up of a top-down response suppression mechanism, the early automatic response activation and the post-error adjustment were not impacted by hypoxia. However, during prolonged hypoxic exposure the temporal judgments were underestimated suggesting a slowdown of the internal clock. A decrease in cortical arousal level induced by hypoxia could consistently explain both the slowdown of the internal clock and the persistence of a higher number of errors after several days of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats.

    PubMed

    Faria, Thaís de Oliveira; Targueta, Gabriel Pelegrineti; Angeli, Jhuli Keli; Almeida, Edna Aparecida Silveira; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2010-09-01

    The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.

  17. The acute phase response of cod (Gadus morhua L.): expression of immune response genes.

    PubMed

    Audunsdottir, Sigridur S; Magnadottir, Bergljot; Gisladottir, Berglind; Jonsson, Zophonias O; Bragason, Birkir Th

    2012-02-01

    An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Central Hemodynamics Measured During 5 Repetition Maximum Free Weight Resistance Exercise.

    PubMed

    Howard, Jonathan S; McLester, Cherilyn N; Evans, Thomas W; McLester, John R; Calloway, Jimmy P

    2018-01-01

    The PhysioFlow™ is a piece of equipment that uses bioimpedance cardiography to measure central hemodynamics. The purpose of this research was to explore the novel approach of monitoring central hemodynamics during free weight resistance exercise using bioimpedance cardiography throughout a 5 repetition maximum (5RM). Thirty participants ranging from beginner to advanced lifters (16 males and 14 females) completed a 5RM for back squat, seated push press, and bicep curl while connected to the PhysioFlow™ to assess the response of heart rate (HR), stroke volume (SV), cardiac output (Q), and ejection fraction (EF). Participants were cued for form and to breathe normally throughout the lifts. The PhysioFlow™ detected an increase in HR and Q for all lifts between rest and each repetition ( p < 0.05). There was also an increase in HR and Q from repetition 1 to repetition 5 for all lifts ( p < 0.05). No changes in EF or SV were detected between resting measurements and each repetition for all lifts ( p > 0.05) and no changes in EF or SV were detected when all repetitions were compared to each other for all lifts ( p > 0.05). In conclusion, the PhysioFlow™ was able to detect changes in HR and Q during dynamic free weight resistance exercise. This novel approach may provide a mechanism for monitoring central hemodynamics during free weight resistance training. However, more research needs to be conducted as the exercise protocol for this investigation did not allow for a comparison to a reference method.

  19. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  20. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  1. [Unit of hemodynamics: the production of the knowledge].

    PubMed

    Linch, Graciele Fernanda da Costa; Guido, Laura de Azevedo; Pitthan, Luiza de Oliveira; Umann, Juliane

    2009-12-01

    This study aimed at doing an integrative review that has as objective to investigate what has been published on nursing in hemodynamic in the following data bases: Scientific Electronic Library Online (SciELO), Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and Caribbean Health Sciences (LILACS), and Nursing Database (BDENF); with the descriptors: Enfermagem and Hemodinâmica and Nursing and Hemodynamics. The data indicate that the studies in his majority were developed by nurses, and made a list to the presence of nursing, there were still boarded aspects made a list to the reprocess of catheters and health of the professionals of nursing. Nevertheless, it is noticeable that the publication of works connected with the thematic of hemodynamic is limited. However, they demonstrate the predominance of inquiries and reports making a list to the aspects of the presence of nursing in this sector which may represent the necessities and the problems that permeate the work.

  2. Levosimendan improves hemodynamic status in critically ill patients with severe aortic stenosis and left ventricular dysfunction: an interventional study.

    PubMed

    García-González, Martín J; Jorge-Pérez, Pablo; Jiménez-Sosa, Alejandro; Acea, Antonio Barragán; Lacalzada Almeida, Juan B; Ferrer Hita, Julio J

    2015-08-01

    To study the hemodynamic effect of levosimendan administration in acute heart failure patients with severe aortic stenosis (AS) and reduced left ventricular ejection fraction (LVEF). Hemodynamic response to 24 h intravenous levosimendan infusion (0.1 μg/kg/min without a loading dose) in patients with severe AS (aortic valve area ≤1 cm(2) , time-velocity integral between left ventricular out-flow tract and aortic valve <0.25), reduced LVEF (≤40%), and a depressed cardiac index (CI) <2.2 L/min/m(2) was determined in a sequential group of nine patients aged 76 ± 10 years (5 men). Baseline mean ejection fraction was 33 ± 0.7%; mean aortic valve area was 0.37 ±0.11 cm(2) /m(2) ; peak and mean gradients of 63.6 ± 20.53 and 36.7 ± 12.62 mmHg, respectively; and mean CI was 1.65 ± 0.20 L/min/m(2) . At 6 and 12 h of levosimendan therapy, mean CI had increased to 2.00 ± 0.41 L/min/m(2) (P = 0.02) and 2.17 ± 0.40 L/min/m(2) (P = 0.01), respectively. At 24 h, mean CI had increased further to 2.37 ± 0.49 L/min/m(2) (P = 0.01). A significant beneficial effect was also observed in pulmonary capillary wedge pressure, pulmonary artery mean pressure, central venous pressure, systemic vascular resistances, pulmonary vascular resistances, stroke volume index, left ventricular stroke work index. NTproBNP levels decreased at 24 h of levosimendan treatment. Levosimendan infusion was also well tolerated. Five patients subsequently underwent aortic valve surgery replacement. One died (of postoperative multiorgan failure). At 30 days, overall survival was 75%. Levosimendan administration improves hemodynamic parameters in critically ill patients with severe AS and reduced LVEF. In our study, it provides a safe and effective bridge to aortic-valve replacement or oral vasodilator therapy in surgical contraindicated patients. A controlled study is needed to confirm these preliminary findings. © 2015 John Wiley & Sons Ltd.

  3. Hemodynamic parameters in a surgical devascularization model of fulminant hepatic failure in the minipig.

    PubMed

    Kieslichová, E; Ryska, M; Pantoflícek, T; Ryska, O; Zazula, R; Skobová, J

    2005-01-01

    Animal models of fulminant hepatic failure (FHF) are important for studying the pathophysiology of this process and for evaluation of the efficacy of artificial and bioartificial liver support systems. In experiments, hemodynamic parameters were monitored in a group of minipigs with FHF induced by surgical devascularization, and compared with those in a control group. During the experiment, animals were analgosedated and were on mechanical lung ventilation. Crystalloid and colloidal solutions were administered and norepinephrine in continuous infusion was applied if mean arterial pressure (MAP) decreased below 60 mm Hg despite adequate intravascular volumes. An increase in heart rate, and decreases in MAP and systemic vascular resistance, compared with the baseline, occurred in the FHF group from 6 h after surgery. A comparison of FHF and control groups revealed no significant differences in systemic vascular resistance and MAP until after 12 h after surgery (systemic vascular resistance index: 953 FHF vs. 1658 controls; p < 0.05; MAP: 58.1 FHF vs. 76 controls; p < 0.05). No significant differences in CI were seen between the FHF group and controls. FHF animals survived for about 13 h after surgery, i.e. a period, which we consider long enough to test a support device. The parameters are believed to be quite adequate, as we were able to maintain satisfactory hemodynamic stability in all experimental animals with induced acute hepatic failure.

  4. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses.

    PubMed

    Maeda, Yoshinobu

    2013-09-01

    In addition to reduced-intensity conditioning, which has expanded the eligibility for hematopoietic cell transplantation (HCT) to older patients, increased availability of alternative donors, including HLA-mismatched unrelated donors, has increased access to allogeneic HCT for more patients. However, acute graft-versus-host disease (GVHD) remains a lethal complication, even in HLA-matched donor-recipient pairs. The pathophysiology of GVHD depends on aspects of adaptive immunity and interactions between donor T-cells and host dendritic cells (DCs). Recent work has revealed that the role of other immune cells and endothelial cells and components of the innate immune response are also important. Tissue damage caused by the conditioning regimen leads to the release of exogenous and endogenous "danger signals". Exogenous danger signals called pathogen-associated molecular patterns and endogenous noninfectious molecules known as damage-associated molecular patterns (DAMPs) are responsible for initiating or amplifying acute GVHD by enhancing DC maturation and alloreactive T-cell responses. A significant association of innate immune receptor polymorphisms with outcomes, including GVHD severity, was observed in patients receiving allogeneic HCT. Understanding of the role of innate immunity in acute GVHD might offer new therapeutic approaches.

  5. Influence of fitness and age on the endothelial response to acute inflammation.

    PubMed

    Schroeder, Elizabeth C; Lane-Cordova, Abbi D; Ranadive, Sushant M; Baynard, Tracy; Fernhall, Bo

    2018-06-01

    What is the central question of the study? What are the effects of age and fitness on the vascular response to acute inflammation in younger and older adults? What is the main finding and its importance? In older adults, cardiorespiratory fitness level has a differential impact on endothelial function after acute inflammation. Compared with older adults with low fitness, older, moderately fit adults have a greater decrease in endothelial function, similar to that of younger adults. These findings have important implications in support of the beneficial effects of higher cardiorespiratory fitness in maintaining vascular reactivity and the ability to respond to stressors. Inflammation is associated with greater risk of cardiovascular events and reduced vascular function with ageing. Higher cardiorespiratory fitness is associated with lower risk of cardiovascular events and better vascular function. We evaluated the role of fitness in the vascular response to acute inflammation in 26 younger adults (YA) and 62 older adults (OA). We used an influenza vaccine to induce acute inflammation. Blood pressure, flow-mediated dilatation (FMD), augmentation index, carotid elastic modulus and inflammatory markers were measured before and 24 h after vaccination. Peak oxygen uptake was measured via a treadmill test. 'Fit' was defined as a peak oxygen uptake greater than the age- and sex-determined 50th percentile according to the American College of Sports Medicine. An interaction effect existed for the FMD response during acute inflammation (P < 0.05). The YA (low fit, from 11.5 ± 1.8 to 9.2 ± 1.3%; moderately fit, from 11.9 ± 0.8 to 9.0 ± 0.8%) and moderately fit OA (from 7.5 ± 1.0 to 3.9 ± 0.8%) had similar reductions in FMD at 24 h (P < 0.05). Low-fit OA did not reduce FMD at 24 h (from 5.5 ± 0.4 to 5.2 ± 0.5%, P > 0.05). The reduction in FMD in YA was similar between fitness groups (P > 0.05). All groups had similar reductions in mean

  6. Acute phase response and plasma carotenoid concentrations in older women: findings from the nun study.

    PubMed

    Boosalis, M G; Snowdon, D A; Tully, C L; Gross, M D

    1996-01-01

    This cross-sectional study investigated whether the acute phase response was associated with suppressed circulating levels of antioxidants in a population of 85 Catholic sisters (nuns) ages 77-99 y. Fasting blood was drawn to determine the presence of an acute phase response, as defined by an elevation in the serum concentration of C-reactive protein. Serum concentrations of albumin, thyroxine-binding prealbumin, zinc, copper, and fibrinogen were determined as were plasma concentrations of carotenoids and alpha tocopherol. Results showed that the presence of an acute phase response was associated with (1) an expected significant decrease in the serum concentrations of albumin (p < 0.001) and thyroxine-binding prealbumin (p < 0.001); (2) an expected significant increase in copper (p < 0.001) and fibrinogen (p = 0.003); and (3) a significant decrease in the plasma concentrations of lycopene (p = 0.03), alpha carotene (p = 0.02), beta carotene (p = 0.02), and total carotenoids (p = 0.01). The acute phase response was associated with decreased plasma levels of the antioxidants lycopene, alpha carotene, and beta carotene. This decrease in circulating antioxidants may further compromise antioxidant status and increase oxidative stress and damage in elders.

  7. Hemodynamic deterioration precedes onset of ventricular tachyarrhythmia after Heartmate II implantation.

    PubMed

    Yaksh, Ameeta; Kik, Charles; Knops, Paul; Zwiers, Korinne; van Ettinger, Maarten J B; Manintveld, Olivier C; de Wijs, Marcel C J; van der Kemp, Peter; Bogers, Ad J J C; de Groot, Natasja M S

    2016-07-08

    Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia.

  8. Intraosseous anesthesia in hemodynamic studies in children with cardiopathy.

    PubMed

    Aliman, Ana Cristina; Piccioni, Marilde de Albuquerque; Piccioni, João Luiz; Oliva, José Luiz; Auler Júnior, José Otávio Costa

    2011-01-01

    Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolam, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  9. Left atrial strain predicts hemodynamic parameters in cardiovascular patients.

    PubMed

    Hewing, Bernd; Theres, Lena; Spethmann, Sebastian; Stangl, Karl; Dreger, Henryk; Knebel, Fabian

    2017-08-01

    We aimed to evaluate the predictive value of left atrial (LA) reservoir, conduit, and contractile function parameters as assessed by speckle tracking echocardiography (STE) for invasively measured hemodynamic parameters in a patient cohort with myocardial and valvular diseases. Sixty-nine patients undergoing invasive hemodynamic assessment were enrolled into the study. Invasive hemodynamic parameters were obtained by left and right heart catheterization. Transthoracic echocardiography assessment of LA reservoir, conduit, and contractile function was performed by STE. Forty-nine patients had sinus rhythm (SR) and 20 patients had permanent atrial fibrillation (AF). AF patients had significantly reduced LA reservoir function compared to SR patients. In patients with SR, LA reservoir, conduit, and contractile function inversely correlated with pulmonary capillary wedge pressure (PCWP), left ventricular end-diastolic pressure, and mean pulmonary artery pressure (PAP), and showed a moderate association with cardiac index. In AF patients, there were no significant correlations between LA reservoir function and invasively obtained hemodynamic parameters. In SR patients, LA contractile function with a cutoff value of 16.0% had the highest diagnostic accuracy (area under the curve, AUC: 0.895) to predict PCWP ≥18 mm Hg compared to the weaker diagnostic accuracy of average E/E' ratio with an AUC of 0.786 at a cutoff value of 14.3. In multivariate analysis, LA contractile function remained significantly associated with PCWP ≥18 mm Hg. In a cohort of patients with a broad spectrum of cardiovascular diseases LA strain shows a valuable prediction of hemodynamic parameters, specifically LV filling pressures, in the presence of SR. © 2017, Wiley Periodicals, Inc.

  10. Aerobic Fitness Level Affects Cardiovascular and Salivary Alpha Amylase Responses to Acute Psychosocial Stress.

    PubMed

    Wyss, Thomas; Boesch, Maria; Roos, Lilian; Tschopp, Céline; Frei, Klaus M; Annen, Hubert; La Marca, Roberto

    2016-12-01

    Good physical fitness seems to help the individual to buffer the potential harmful impact of psychosocial stress on somatic and mental health. The aim of the present study is to investigate the role of physical fitness levels on the autonomic nervous system (ANS; i.e. heart rate and salivary alpha amylase) responses to acute psychosocial stress, while controlling for established factors influencing individual stress reactions. The Trier Social Stress Test for Groups (TSST-G) was executed with 302 male recruits during their first week of Swiss Army basic training. Heart rate was measured continuously, and salivary alpha amylase was measured twice, before and after the stress intervention. In the same week, all volunteers participated in a physical fitness test and they responded to questionnaires on lifestyle factors and personal traits. A multiple linear regression analysis was conducted to determine ANS responses to acute psychosocial stress from physical fitness test performances, controlling for personal traits, behavioural factors, and socioeconomic data. Multiple linear regression revealed three variables predicting 15 % of the variance in heart rate response (area under the individual heart rate response curve during TSST-G) and four variables predicting 12 % of the variance in salivary alpha amylase response (salivary alpha amylase level immediately after the TSST-G) to acute psychosocial stress. A strong performance at the progressive endurance run (high maximal oxygen consumption) was a significant predictor of ANS response in both models: low area under the heart rate response curve during TSST-G as well as low salivary alpha amylase level after TSST-G. Further, high muscle power, non-smoking, high extraversion, and low agreeableness were predictors of a favourable ANS response in either one of the two dependent variables. Good physical fitness, especially good aerobic endurance capacity, is an important protective factor against health

  11. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  12. Ceftazidime improves hemodynamics and oxygenation in ovine smoke inhalation injury and septic shock.

    PubMed

    Maybauer, Marc O; Maybauer, Dirk M; Fraser, John F; Traber, Lillian D; Westphal, Martin; Cox, Robert A; Huda, Ruksana; Nakano, Yoshimitsu Y; Enkhbaatar, Perenlei; Hawkins, Hal K; Herndon, David N; Traber, Daniel L

    2007-07-01

    To investigate ceftazidime in acute lung injury (ALI) and sepsis. Prospective, randomized, controlled animal study in an investigational ICU at a university hospital. Eighteen female Merino sheep were prepared for chronic study and subjected to smoke inhalation and septic challenge according to an established protocol. Whereas global hemodynamics and oxygenation remained stable in sham animals (no injury, no treatment), the injury contributed to a hypotensive-hyperdynamic circulation in the control group (smoke inhalation and sepsis, no treatment), as indicated by a significant increase in cardiac index) and heart rate and a drop in mean arterial pressure. Treatment with ceftazidime (smoke inhalation and sepsis, treatment group) stabilized cardiac index and heart rate and attenuated the decrease in mean arterial pressure. The deterioration in PaO2/FiO2 ratio and pulmonary shunt fraction (Qs/Qt) was significantly delayed and blunted by ceftazidime. At 24 h after injury a significant increase in airway obstruction scores of bronchi and bronchioles in both injured groups was observed. Ceftazidime significantly reduced airway obstruction vs. control animals. Whereas plasma nitrate/nitrite levels increased similarly in the two injured groups, lung 3-nitrotyrosine content remained at the baseline level in the ceftazidime group. In ovine lung injury ceftazidime improves global hemodynamics and oxygenation not only by bacterial clearance but also via reduction in toxic nitrogen species such as 3-nitrotyrosine. Therefore ceftazidime appears as a clinically relevant adjunct in the common setting of sepsis-associated lung injury.

  13. Acute alcohol response phenotype in heavy social drinkers is robust and reproducible.

    PubMed

    Roche, Daniel J O; Palmeri, Michael D; King, Andrea C

    2014-03-01

    In 3 previously published works (Brumback et al., 2007, Drug Alcohol Depend 91:10-17; King et al., 2011a, Arch Gen Psychiatry 68:389-399; Roche and King, 2010, Psychopharmacology (Berl) 212:33-44), our group characterized acute alcohol responses in a large group of young, heavy binge drinkers (n = 104) across a variety of subjective, eye-tracking, and psychometric performance measures. The primary goal of the current study was to directly replicate prior findings of alcohol response in heavy social drinkers (HD) in a second independent cohort (n = 104) using identical methodology. A secondary goal was to examine the effects of family history (FH) of alcohol use disorders (AUD) on acute alcohol response in both samples. Participants attended 2 randomized laboratory sessions in which they consumed 0.8 g/kg alcohol or a taste-masked placebo. At pre- and post-drink time points, participants completed subjective scales, psychomotor performance and eye-movement tasks, and provided salivary samples for cortisol determination. Results showed that the second cohort of heavy drinkers exhibited a nearly identical pattern of alcohol responses to the original cohort, including sensitivity to alcohol's stimulating and hedonically rewarding effects during the rising breath alcohol content (BrAC) limb, increases in sedation during the declining BrAC limb, a lack of cortisol response, and psychomotor and eye-tracking impairment that was most evident at peak BrAC. The magnitude and temporal pattern of these acute effects of alcohol in the second cohort were similar to the first cohort across all measures, with the exception of 3 eye-movement measures: pro- and antisaccade accuracy and antisaccade velocity. FH of AUD did not affect alcohol response in the first cohort, and this was replicated in the second cohort. In sum, in 2 independent samples, we have demonstrated that HD display a consistent and reliable sensitivity to alcohol's subjective effects and impairment of eye

  14. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply

    PubMed Central

    Gould, Ian Gopal; Tsai, Philbert; Kleinfeld, David

    2016-01-01

    The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance. PMID:27780904

  15. Hemodynamic, ventilatory, and biochemical responses of panic patients and normal controls with sodium lactate infusion and spontaneous panic attacks.

    PubMed

    Gaffney, F A; Fenton, B J; Lane, L D; Lake, C R

    1988-01-01

    Hemodynamic, ventilatory, and biochemical variables were measured in ten healthy adults and ten panic patients during infusion of 0.5 mol/L of sodium lactate. Physical activity, fitness level, and ambulatory electrocardiograms were also recorded. Lactate infusion doubled cardiac output, increased blood lactate levels by sixfold, and produced hypernatremia, hypocalcemia, and decreased serum bicarbonate levels in both groups but raised arterial pressure only in the patients. The patients hyperventilated before and during the infusion. Physiological responses and somatic complaints with the infusion differed little between the groups, but emotional complaints were six times more frequent among the panic patients. Eight patients but no control subjects interpreted their symptoms as a panic attack. Heart rate increased with only 14 of 31 recorded spontaneous outpatient panic attacks. Sodium lactate infusions appear to produce panic by mimicking the physiology of spontaneous panic. Treatment with cardioactive agents is not indicated in the absence of cardiopulmonary or autonomic nervous system abnormalities.

  16. Acute transfusion-related abdominal injury in trauma patients: a case report.

    PubMed

    Michel, P; Wähnert, D; Freistühler, M; Laukoetter, M G; Rehberg, S; Raschke, M J; Garcia, P

    2016-10-19

    Secondary abdominal compartment syndrome is well known as a life-threatening complication in critically ill patients in an intensive care unit. Massive crystalloid fluid resuscitation has been identified as the most important risk factor. The time interval from hospital admittance to the development of manifest abdominal compartment syndrome is usually greater than 24 hours. In the absence of any direct abdominal trauma, we observed a rapidly evolving secondary abdominal compartment syndrome shortly after hospital admittance associated with massive transfusion of blood products and only moderate crystalloid resuscitation. We report the case of an acute secondary abdominal compartment syndrome developing within 3 to 4 hours in a 74-year-old polytraumatized white woman. Although multiple fractures of her extremities and a B-type pelvic ring fracture were diagnosed by a full body computed tomography scan, no intra-abdominal injury could be detected. Hemorrhagic shock with a drop in her hemoglobin level to 5.7 g/dl was treated by massive transfusion of blood products and high doses of catecholamines. Shortly afterwards, her pulmonary gas exchange progressively deteriorated and mechanical ventilation became almost impossible with peak airway pressures of up to 60 cmH 2 O. Her abdomen appeared rigid and tense accompanied by a progressive hemodynamic decompensation necessitating mechanic cardiopulmonary resuscitation. Although preoperative computed tomography scans showed no signs of intra-abdominal fluid, a decompressive laparotomy under cardiopulmonary resuscitation conditions was performed and 2 liters of ascites-like fluid disgorged. Her hemodynamics and pulmonary ventilation improved immediately. This case report describes for the first time acute secondary abdominal compartment syndrome in a trauma patient, evolving in a very short time period. We hypothesize that the massive transfusion of blood products along with high doses of catecholamines triggered the acute

  17. Sex-Related Differences in Mood Responses to Acute Aerobic Exercise.

    PubMed

    McDowell, Cillian P; Campbell, Mark J; Herring, Matthew P

    2016-09-01

    Although some evidence supports stronger mood improvements in response to acute exercise among women, sex-related differences remain understudied. This study aimed to quantify and compare differences in baseline mood and the magnitude of mood responses to either acute aerobic exercise or quiet rest among young adult men and women. Fifty-three young adults (27 males and 26 females) completed two counterbalanced conditions: 30 min of vigorous treadmill exercise or 30 min of quiet rest. Outcomes included state anxiety, worry symptoms, and feelings of tension, depression, vigor, fatigue, anger, and confusion. ANOVA and RM-ANOVA examined sex-related differences at baseline and across condition and time, respectively. Hedges' d (95% CI) values were calculated to quantify and compare the magnitude of change in response to exercise compared with control. Females were more likely to report scores indicative of depression (Quick Inventory of Depressive Symptoms > 5; 38.5% vs 18.5%) and high trait anxiety (≥1 SD above age- and sex-related norm on the trait subscale of the State-Trait Anxiety Inventory; 26.9% vs 3.7%). Baseline worry symptoms and trait anxiety were significantly higher among females (P < 0.02). Although repeated-measures models did not support statistically significant differences between sexes, the magnitude of improvement in mood outcomes was larger among females than males for all outcomes other than feelings of tension. Compared with quiet rest, exercise significantly improved feelings of fatigue (d = 0.59, 95% CI = 0.01-1.17), confusion (d = 0.83, 95% CI = 0.24-1.41), and energy (d = 1.67, 95% CI = 1.02-2.33), and total mood disturbance (d = 1.09, 95% CI = 0.49-1.70) and resulted in a nonsignificant, moderate-sized improvement in state anxiety (d = 0.51, 95% CI = -0.07 to 1.08) among females. Findings support potential sex-related differences in mood response to acute aerobic exercise, with larger improvements found among females. Future research should

  18. Dose-Response Head-to-Head Comparison of Inodilators Dobutamine, Milrinone, and Levosimendan in Chronic Experimental Pulmonary Hypertension.

    PubMed

    Tavares-Silva, Marta; Alaa, Mohamed; Leite, Sara; Oliveira-Pinto, José; Lopes, Lucas; Leite-Moreira, Adelino F; Lourenço, André P

    2017-09-01

    The choice of inodilator drug in the acute management of patients with pulmonary hypertension (PH) having right ventricular (RV) failure remains unsettled and challenging. Comprehensive experimental evaluations may provide further insight and fundamental translational research clues to support inodilator selection and clinical trial design. Our aim was to compare acute dose-response hemodynamic effects of inodilators dobutamine (DOB), milrinone (MIL), and levosimendan (LEV) in chronic experimental PH. Seven-week-old male Wistar rats were randomly injected with 60 mg·kg -1 monocrotaline (MCT) or vehicle (Ctrl, n = 7) and underwent systemic and pulmonary artery (PA) pressure and RV pressure-volume (PV) hemodynamic evaluation under halogenate anesthesia 24 to 30 days after injection. The MCT-injected animals (n = 7 each) randomly received dose-response infusions of DOB (1, 3, 6 and 12 μg·kg -1 ·min -1 ), MIL (MIL: 1, 3, 6 and 12 μg·kg -1 ·min -1 ), or LEV (0.3, 0.6, 1.2 and 2.4 μg·kg -1 ·min -1 ). Load-independent indexes were obtained by inferior vena cava occlusion at baseline and after the last dose. All inodilators increased RV ejection fraction, preload recruitable stroke work, and ventricular-vascular coupling without jeopardizing perfusion pressure. Dobutamine raised heart rate and PA pressure. Only LEV increased cardiac index and decreased PA elastance and pulmonary vascular resistance (PVR). Moreover, only LEV downward-shifted the end-diastolic PV relationship, thereby improving RV compliance. Adding sildenafil to LEV further decreased PVR. Levosimendan had beneficial acute systolic and diastolic functional effects in experimental chronic PH and RV afterload compared to DOB and MIL. It should be further tested in clinical trials enrolling patients with PH in the perioperative and critical care settings.

  19. Mathematical modeling of renal hemodynamics in physiology and pathophysiology.

    PubMed

    Sgouralis, Ioannis; Layton, Anita T

    2015-06-01

    In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    PubMed

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model.

    PubMed

    Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani; Scherrer, Sandra; Dewey, Stephen L; Cenci, M Angela; Eidelberg, David

    2016-12-01

    Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal. Rats with unilateral 6-OHDA or sham lesion underwent sequential 15 O-water (H 2 15 O) and 18 F-fluorodeoxyglucose (FDG) microPET to map CBF and CMR following the injection of levodopa or saline. A subset of animals was separately scanned under ketamine/xylazine and isoflurane to compare the effects of these anesthetics. Regardless of anesthetic agent, 6-OHDA animals exhibited significant dissociation of vasomotor (ΔCBF) and metabolic (ΔCMR) responses to levodopa, with stereotyped increases in CBF and reductions in CMR in the basal ganglia ipsilateral to the dopamine lesion. No significant changes were seen in sham-lesioned animals. These data faithfully recapitulate analogous dissociation effects observed previously in human PD subjects scanned sequentially during levodopa infusion. This approach may have utility in the assessment of new drugs targeting the exaggerated regional vasomotor responses seen in human PD and in experimental models of levodopa-induced dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. From acute to chronic postsurgical pain: the significance of the acute pain response.

    PubMed

    Blichfeldt-Eckhardt, Morten Rune

    2018-03-01

    The thesis comprises an overview and four papers, all published or submitted for publication in international peer-reviewed scientific journals.
 
Chronic pain after surgery is a common and debilitating complication after many types of surgery. The cause and pathology behind is still mainly uncovered, though several risk factors have been proposed. One of the strongest risk factors for persistent postsurgical pain is the intensity of the acute pain response though the mechanisms involved remain unsettled. The acute pain response consists of several different types of pain (i.e. somatic pain, visceral pain, referred pain, neuropathic pain). It's uncovered whether some components of the acute pain response are closer correlated to chronic pain than others and whether treatment of acute pain can change the risk of developing chronic pain.
 The aim of the thesis was to investigate which components of the acute pain response, was correlated to chronic postsurgical pain in patients for cholecystectomy and lobectomy.
 Furthermore, to study the type and time course of ipsilateral shoulder pain after lobectomy and whether an ultrasound-guided supraclavicular phrenic nerve block was effective in preventing acute and chronic shoulder pain after major thoracic surgery.
 Paper I is based on a prospective, observational, multicenter, cohort study, in which 100 patients for cholecystectomy was examined preoperatively, 1 week postoperatively and 3, 6, and 12 months postoperatively for pain, psychological factors and signs of hypersensitivity.
 Paper II and III are based on a prospective, observational, cohort study, in which 60 patients for lobectomy ware examined preoperatively, 4 days postoperatively and 12 months postoperatively for pain, psychological factors and signs of hypersensitivity. 
Paper IV is based on a prospective, randomized, double-blind and placebo-controlled trial, where 76 patients were randomized to receive ultrasound guided supraclavicular

  3. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  4. Hemodynamic and Electrophysiological Relationship Involved in Human Face Processing: Evidence from a Combined fMRI-ERP Study

    ERIC Educational Resources Information Center

    Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro

    2006-01-01

    Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented…

  5. Acute injury in the peripheral nervous system triggers an alternative macrophage response

    PubMed Central

    2012-01-01

    Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune

  6. Time matters - acute stress response and glucocorticoid sensitivity in early multiple sclerosis.

    PubMed

    Kern, Simone; Rohleder, Nicolas; Eisenhofer, Graeme; Lange, Jan; Ziemssen, Tjalf

    2014-10-01

    Psychosocial stress has frequently been associated with disease activity and acute exacerbations in multiple sclerosis (MS). Despite this well established finding, strikingly little is known about the acute hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) stress response in MS. Twenty-six early relapsing-remitting MS (RRMS) patients and seventeen age- and sex-matched healthy control subjects (CS) took part in the Trier Social Stress Test (TSST), a well validated psycho-social laboratory stress protocol. Repeated blood samples were analyzed for stress-related cortisol and catecholamine levels as well as for glucocorticoid sensitivity (GCS) of target immune cells. Chronic and acute stress appraisals were assessed by self-report measures. RRMS patients and CS did not differ in stress-related cortisol/catecholamine levels, GCS or stress appraisal in response to the TSST. However, cortisol release as well as GCS was strongly correlated with time since diagnosis but not with neurological disability. Patients with shorter disease duration (2-12 months) expressed a significantly higher cortisol stress response while MS patients with longer disease duration (14-36 months) showed a significantly diminished HPA response as well as lower post-stress GCS. There is evidence for a time-dependent variability in the HPA stress system with an increased cortisol stress response in the first year after diagnosis along with a more blunted HPA stress response and a diminished GCS in subsequent disease stages. Data underscore the highly dynamic nature of HPA axis regulation in the MS disease process, which could possibly relate to compensatory mechanisms within a cytokine-HPA axis feedback circuit model. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    PubMed

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  8. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  9. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress

    PubMed Central

    Papale, Ligia A.; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S.

    2016-01-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. PMID:27576189

  10. Design of a smart hemodynamic monitoring simulator.

    PubMed

    Kilty, Brennan G; Wright, Cameron H G; Barrett, Steven F; Calkins, Jerry M; Drzewiecki, Tadeusz M

    2007-01-01

    We describe the design of a medical patient status simulator developed as a proof of concept for the United States Air Force. The simulator is the precursor to a system that analyzes hemodynamic information in order to act as an intelligent assistant to a Critical Care Air Transport Team (CCATT) monitoring a critically injured casualty. The simulator displays hemodynamic information, alerts to abnormal values, offers likely diagnoses, and allows the team to review recommended therapies. The focus has been to develop a user interface and modular system architecture that allows individual modules to easily be evaluated and altered as needed. While initiated by the military, this work could also be used to aid civilian first responders.

  11. Hemodynamic response to exercise as measured by the solar IKG impedance cardiography module and correlation with metabolic variables.

    PubMed

    Ziegeler, Stephan; Grundmann, Ulrich; Fuerst, Oliver; Raddatz, Alexander; Kreuer, Sascha

    2007-02-01

    Impedance Cardiography (ICG) has been shown to be a feasible and accurate method for non-invasive measurement of cardiac index (CI). Aim of this investigation was the correlation of hemodynamic variables under exercise as measured by a specific ICG-monitor (Solar IKG-Modul, Version 3.0, GE-Healthcare, Freiburg, Germany) with metabolic variables. Ten healthy volunteers were included in the investigation doing ergometer exercise (5 min equilibration followed by 5 min each at 50, 75, 100 and 125 W). Hemodynamic parameters were obtained by ICG. Metabolic variables were assessed by indirect calorimetry with the Deltatrac II Metabolic monitor using a helmet system for spontaneous respiration. CI increased throughout exercise (baseline: 3.0 +/- 0.4 l/min/m(2); 125 W: 4.8 +/- 0.5 l/min/m(2)). Heart rate (baseline: 87.2 +/- 13.4 bpm; 125 W: 152.7 +/- 22.4 bpm) and contractility (velocity index) (baseline: 48.9 +/- 9.3/1000 s; 125 W: 70.5 +/- 10.0/1000 s) showed a continuous rise while the stroke index decreased after an initial rise (baseline: 35.0 +/- 4.6 ml/m(2); 50 W: 37.6 +/- 4.9 ml/m(2); 75 W: 41.2 +/- 5.9 ml/m(2); 125 W: 32.3 +/- 6.1 ml/m(2)). VO(2) (baseline: 335.2 +/- 84.1 ml/min; 125 W: 1298.9 +/- 282.3 ml/min) and VCO(2)(baseline: 255.4 +/- 74.5 ml/min; 125 W: 1342.5 +/- 282.5 ml/min) increased throughout exercise. There was a good correlation in the individual fits between hemodynamic and metabolic variables. CI in healthy volunteers, as measured by the Solar IKG-Modul, correlates well with O(2)-consumption and CO(2)-production in individual subjects, thus indicating the metabolic needs under exercise conditions in healthy individuals.

  12. Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice

    PubMed Central

    Olenich, Sara A; Gutierrez-Reed, Navarre; Audet, Gerald N; Olfert, I Mark

    2013-01-01

    Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2–4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12–24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180–258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise. PMID:23878369

  13. BIRC6/Apollon gene expression in childhood acute leukemia: impact on therapeutic response and prognosis.

    PubMed

    Ismail, Eman Abdel Rahman; Mahmoud, Hanan Mohamed; Tawfik, Lamis Mohamed; Habashy, Deena Mohamed; Adly, Amira Abdel Moneam; El-Sherif, Nayera Hazaa; Abdelwahab, Mahmoud Ahmed

    2012-02-01

    Although BIRC6/Apollon seems to play a critical role as an antiapoptotic regulator, its clinical relevance in acute leukemia remains largely elusive. Therefore, we aimed to investigate BIRC6 gene expression in childhood acute leukemia in relation to clinicopathological characteristics at presentation, therapeutic response, and prognosis. BIRC6 expression level was assessed in 75 children with acute leukemia; 30 patients with acute myeloblastic leukemia (AML) and 45 patients with acute lymphoblastic leukemia (ALL) using real-time quantitative reverse transcriptase-polymerase chain reaction. The median level of BIRC6 expression did not differ significantly between AML and ALL patients. BIRC6 expression level was higher in patients with AML and ALL with extramedullary involvement, white blood cell (WBC) count ≥ 10 × 10(9) /L, and unfavorable cytogenetics at diagnosis. BIRC6 gene expression was higher in patients with unfavorable response to therapy at day 14, those who developed relapse or died in both leukemic groups. The best cutoff value of BIRC6 to predict therapeutic response and disease outcome was determined. AML and ALL patients with BIRC6 overexpression had significantly shorter overall and disease free survivals. This is the first report to study BIRC6 gene in pediatric ALL. Our results suggested that BIRC6 gene expression could be considered as an adverse risk factor in childhood acute leukemia and, hence, could be used to guide therapeutic regimens. © 2012 John Wiley & Sons A/S.

  14. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference.

    PubMed

    Ono, Yumie; Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-11-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near-infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task-related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task-related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD.

  15. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference

    PubMed Central

    Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-01-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near‐infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task‐related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task‐related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD. PMID:29744159

  16. Angiotensin receptors modulate the renal hemodynamic effects of nitric oxide in conscious newborn lambs

    PubMed Central

    Vinturache, Angela E.; Smith, Francine G.

    2014-01-01

    Abstract This study aimed to elucidate the roles of both angiotensin II (ANG II) receptors – type 1 (AT1Rs) and type 2 (AT2Rs) – separately and together in influencing hemodynamic effects of endogenously produced nitric oxide (NO) during postnatal development. In conscious, chronically instrumented lambs aged ~1 week (8 ± 1 days, N = 8) and ~6 weeks (41 ± 2 days, N = 8), systolic, diastolic, and mean arterial pressure (SAP, DAP, MAP) and venous pressure (MVP), renal blood flow (RBF), and renal vascular resistance (RVR) were measured in response to the l‐arginine analog, l‐NAME after pretreatment with either the AT1R antagonist, ZD 7155, the AT2R antagonist, PD 123319, or both antagonists. The increase in SAP, DAP, and MAP by l‐NAME was not altered by either ATR antagonist in either age group. The increase in RBF after l‐NAME was, however, altered by both ATR antagonists in an age‐dependent manner, which was mediated predominantly through AT2Rs in newborn lambs. These findings reveal that there is an age‐dependent interaction between the renin–angiotensin (RAS) and the NO pathway in regulating renal but not systemic hemodynamics through both ATRs, whereas AT2Rs appear to be important in the renal hemodynamic effects of NO early in life. PMID:24872358

  17. Multi-Agent Simulations of the Immune Response to Hiv during the Acute Stage of Infection

    NASA Astrophysics Data System (ADS)

    Walshe, R.; Ruskin, H. J.; Callaghan, A.

    Results of multi-agent based simulations of the immune response to HIV during the acute phase of infection are presented here. The model successfully recreates the viral dynamics associated with the acute phase of infection, i.e., a rapid rise in viral load followed by a sharp decline to what is often referred to as a "set point", a result of T-cell response and emergence of HIV neutralizing antibodies. The results indicate that sufficient T Killer cell response is the key factor in controlling viral growth during this phase with antibody levels of critical importance only in the absence of a sufficient T Killer response.

  18. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  19. Beta2- and beta3-adrenergic receptor polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    McCole, Steve D; Shuldiner, Alan R; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M

    2004-02-01

    We sought to determine whether common genetic variations at the beta2 (beta2-AR, Gln27Glu) and beta3 (beta3-AR, Trp64Arg) adrenergic receptor gene loci were associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. CV hemodynamics were assessed in 62 healthy postmenopausal women (20 sedentary, 22 physically active, and 20 endurance athletes) during treadmill exercise at 40, 60, 80, and 100% maximal O2 uptake using acetylene rebreathing to quantify cardiac output. The beta2-AR genotype and habitual physical activity (PA) levels interacted to significantly associate with arteriovenous O2 difference (a-vDO2) during submaximal exercise (P = 0.05), with the highest submaximal exercise a-vDO2 in sedentary women homozygous for the beta2-AR Gln allele and no genotype-dependent differences in submaximal exercise a-vDO2 in physically active and athletic women. The beta2-AR genotype also was independently associated with a-vDO2 during submaximal (P = 0.004) and approximately 100% maximal O2 uptake exercise (P = 0.006), with a 1.2-2 ml/100 ml greater a-vDO2 in the Gln/Gln than in the Glu/Glu genotype women. The beta3-AR genotype, independently or interacting with habitual PA levels, was not significantly associated with any CV hemodynamic variables during submaximal or maximal exercise. Thus it appears that the beta2-AR genotype, both independently and interacting with habitual PA levels, is significantly associated with a-vDO2 during exercise in postmenopausal women, whereas the beta3-AR genotype does not appear to be associated with any maximal or submaximal exercise CV hemodynamic responses in postmenopausal women.

  20. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    PubMed Central

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  1. Venous Return and Clinical Hemodynamics: How the Body Works during Acute Hemorrhage

    ERIC Educational Resources Information Center

    Shen, Tao; Baker, Keith

    2015-01-01

    Venous return is a major determinant of cardiac output. Adjustments within the venous system are critical for maintaining venous pressure during loss in circulating volume. This article reviews two factors that are thought to enable the venous system to compensate during acute hemorrhage: 1) changes in venous elastance and 2) mobilization of…

  2. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    PubMed

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  3. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    PubMed

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  4. Acute Effects of Nasal CPAP in Patients With Hypertrophic Cardiomyopathy.

    PubMed

    Nerbass, Flávia B; Salemi, Vera M C; Pedrosa, Rodrigo P; Portilho, Natanael de P; Ferreira-Filho, Julio C A; Moriya, Henrique T; Antunes, Murillo O; Arteaga-Fernández, Edmundo; Drager, Luciano F; Lorenzi-Filho, Geraldo

    2016-11-01

    Hypertrophic cardiomyopathy (HCM) is a common genetic disease that may cause left ventricular outflow tract (LVOT) obstruction, heart failure, and sudden death. Recent studies have shown a high prevalence of OSA among patients with HCM. Because the hemodynamics in patients with LVOT obstruction are unstable and depend on the loading conditions of the heart, we evaluated the acute effects of CPAP on hemodynamics and cardiac performance in patients with HCM. We studied 26 stable patients with HCM divided into nonobstructive HCM (n = 12) and obstructive HCM (n = 14) groups (LVOT gradient pressure lower or higher than 30 mm Hg, respectively). Patients in the supine position while awake were continuously monitored with beat-to-beat BP measurements and electrocardiography. Two-dimensional echocardiography was performed at rest (baseline) and after 20 min of nasal CPAP at 1.5 cm H 2 O and 10 cm H 2 O, which was applied in a random order interposed by 10 min without CPAP. BP, cardiac output, stroke volume, heart rate, left ventricular ejection fraction, and LVOT gradient did not change during the study period in either group. CPAP at 10 cm H 2 O decreased right atrial size and right ventricular relaxation in all patients. It also decreased left atrial volume significantly and decreased right ventricular outflow acceleration time, suggesting an increase in pulmonary artery pressure in patients with obstructive HCM. The acute application of CPAP is apparently safe in patients with HCM, because CPAP does not lead to hemodynamic compromise. Long-term studies in patients with HCM and sleep apnea and nocturnal CPAP are warranted. ClinicalTrials.gov; No. NCT01631006; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  5. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  6. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Rosati, Samanta; Liboni, William; Negri, Emanuela; Mana, Ornella; Allais, Gianni; Benedetto, Chiara

    2010-12-01

    Near-infrared spectroscopy (NIRS) is a noninvasive system for the real-time monitoring of the concentration of oxygenated ([InlineEquation not available: see fulltext.]) and reduced (HHb) hemoglobin in the brain cortex. [InlineEquation not available: see fulltext.] and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls) performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20-40 mHz) and of the low frequencies (LF: 40-140 mHz). Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  7. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    PubMed

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    PubMed

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  9. Hemodynamic monitoring in the critically ill.

    PubMed

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  10. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  11. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins

  12. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Kunzevitzky, Noelia; Guttridge, Denis C; Khuri, Sawsan; Koniaris, Leonidas G; Zimmers, Teresa A

    2011-01-01

    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are

  13. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    PubMed Central

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  14. Hemodynamic instability following airway spray cryotherapy

    PubMed Central

    Pedoto, Alessia; Desiderio, Dawn; Amar, David; Downey, Robert J.

    2016-01-01

    Background Spray cryotherapy (SCT) of airway lesions is used to effectively palliate respiratory symptoms related to airway obstruction but significant intraoperative hemodynamic complications have been noted. We reviewed the experience at a single institution using SCT for the treatment of obstructive airway tumors. Methods A retrospective review of a single institution experience with intraoperative and postoperative hemodynamic complications associated with SCT was performed. Descriptive statistics were performed. Results Between June 2009 and April 2010, 34 treatment sessions were performed on 28 patients. Median age was 60 years (range, 15–88 years). Tumor characteristics were as follows: 13 primary lung cancers (43%), 11 pulmonary metastases (50%), 1 direct extension of an esophageal cancer (3%) and 2 benign pulmonary lesions (7%). Twenty-one tumors (75%) were distal to the carina; 14 (50%) were >95% occlusive. Median procedure length was 78 min (range, 15–176 min). Eleven sessions (31%) led to severe hypotension and/or bradycardia, with 2 patients requiring cardiopulmonary resuscitation. One patient died intraoperatively after cardiac arrest; a second patient was stable intra-operatively but died within 24 h of SCT. Four patients required reintubation and short-term mechanical ventilation. Conclusions Unpredictable life-threatening hemodynamic instability can follow endobronchial SCT. We propose that the most likely cause is pulmonary venous gaseous emboli entering the right heart, the coronary arteries and the systemic circulation. Although SCT may offer advantages over airway laser therapy (such as no risk of fire and rapid hemostasis), further study is needed to delineate the relative likelihood of therapeutic benefit versus catastrophic complications. PMID:27763916

  15. Suppression of Virus Specific Immune Responses by IL-10 in Acute Dengue Infection

    PubMed Central

    Malavige, Gathsaurie Neelika; Jeewandara, Chandima; Alles, K. M. Luckmaal; Salimi, Maryam; Gomes, Laksiri; Kamaladasa, Achala; Jayaratne, S. D.; Ogg, Graham Stuart

    2013-01-01

    Background Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI. Materials and methods Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides. Results Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = −0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = −014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins. Conclusion IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10. PMID:24040431

  16. Hemodynamic correlates of nutritional indexes in heart failure.

    PubMed

    Horiuchi, Yu; Tanimoto, Shuzou; Okuno, Taishi; Aoki, Jiro; Yahagi, Kazuyuki; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-06-01

    Malnutrition in heart failure (HF) is related to altered intestinal function, which could be due to hemodynamic changes. We investigated the usefulness of novel nutritional indexes in relation to hemodynamic parameters. We retrospectively analyzed 139 HF patients with reduced ejection fraction who underwent right heart catheterization. We investigated correlations between right side pressures and nutritional indexes, which include controlling nutritional (CONUT) score and geriatric nutritional risk index (GNRI). Receiver operating characteristic (ROC) curves were generated to investigate the prognostic accuracy of CONUT score and GNRI for a composite of death or HF hospitalization in 12 months. Logistic regression analysis was performed to investigate whether hemodynamic correlates were associated with malnutrition, which was defined based on CONUT sore or GNRI. Higher right side pressures were positively correlated with worse nutritional status according to CONUT score, but were negatively correlated with worse nutritional status according to GNRI. Area under ROC curve for the composite endpoint was 0.746 in CONUT score and 0.576 in GNRI. The composite endpoint occurred in 40% of CONUT score≥3 and in 11% of CONUT score<3 (p<0.001). These relationships were also investigated with GNRI (40% of GNRI<95 vs. 17% of GNRI≥95, p=0.002). In multivariate analysis, higher right atrial pressure was significantly associated with higher CONUT score, while no hemodynamic parameter was related to GNRI. CONUT score was associated with right side congestion, while no association between GNRI and right side congestion was noted. CONUT score had better predictive value than GNRI. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  17. Risk factors for acute kidney injury after partial hepatectomy

    PubMed Central

    Bredt, Luis Cesar; Peres, Luis Alberto Batista

    2017-01-01

    AIM To identify risk factors for the occurrence of acute kidney injury (AKI) in the postoperative period of partial hepatectomies. METHODS Retrospective analysis of 446 consecutive resections in 405 patients, analyzing clinical characteristics, preoperative laboratory data, intraoperative data, and postoperative laboratory data and clinical evolution. Adopting the International Club of Ascites criteria for the definition of AKI, potential predictors of AKI by logistic regression were identified. RESULTS Of the total 446 partial liver resections, postoperative AKI occurred in 80 cases (17.9%). Identified predictors of AKI were: Non-dialytic chronic kidney injury (CKI), biliary obstruction, the Model for End-Stage Liver Disease (MELD) score, the extent of hepatic resection, the occurrence of intraoperative hemodynamic instability, post-hepatectomy haemorrhage, and postoperative sepsis. CONCLUSION The MELD score, the presence of non-dialytic CKI and biliary obstruction in the preoperative period, and perioperative hemodynamics instability, bleeding, and sepsis are risk factors for the occurrence of AKI in patients that underwent partial hepatectomy. PMID:28706580

  18. ESTIMATION OF ACUTE TOXICITY BY FITTING A DOSE-TIME RESPONSE SURFACE

    EPA Science Inventory

    In acute toxicity testing, organisms are continuously exposed to progressively increasing concentrations of a chemical and deaths of test organisms are recorded at several selected times. he results of the test are traditionally summarized by a dose-response curve, and the time c...

  19. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    PubMed

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-06-01

    Leg order during sequential single-leg cycling (i.e., exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 yr) completed six 1-min double-leg intervals interspersed with 1 min of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with 1 min of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume, and power output were measured throughout each session. Oxygen consumption, heart rate, and power output were not different between sets of single-leg intervals, but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 vs 104 ± 9 mm Hg, P < 0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 vs 101 ± 10 mm Hg, P < 0.05). The increase in muscle blood volume from baseline was similar between the active single leg and the double leg (267 ± 150 vs 214 ± 169 μM·cm, P = 0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (P < 0.05) when the leg was active in the initial (-52.3% ± 111.6%) compared with second set (65.1% ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  20. Influence of body position on hemodynamics in patients with ischemic heart disease undergoing cardiac surgery.

    PubMed

    Mekis, Dusan; Kamenik, Mirt

    2010-05-01

    The cardiovascular response to decreased or increased preload in high-risk patients with ischemic heart disease enables us to understand the physiologic response to hemorrhage and its treatment. Although numerous studies have failed to show its effectiveness, the head-down position is still widely used to treat patients with hypotension and shock. The aim of our study was to evaluate the influence of body position on hemodynamics in high-risk patients undergoing coronary artery bypass graft surgery. In 16 patients with ischemic hearth disease and poor left ventricular function undergoing coronary artery bypass graft surgery, we measured cardiac output with thermodilution, arterial pressure, central venous pressure (CVP), pulmonary artery wedge pressure (PAWP) and heart rate in three different body positions: the horizontal position, 20 degrees head-up position, 20 degrees head-down position and back in the horizontal position. The measurements were made before and after cardiac surgery. Before skin incision the change from horizontal to 20 degrees head-up position led to a nonsignificant decrease in cardiac output and a significant decrease in mean arterial pressure, CVP and PAWP. The change from 20 degrees head-up to 20 degrees head-down position led to a significant increase in cardiac output, mean arterial pressure, CVP and PAWP. After skin closure the change from horizontal to 20 degrees head-up position led to a nonsignificant decrease in cardiac output and mean arterial pressure and a significant decrease CVP and PAWP. The change from 20 degrees head-up to 20 degrees head-down position led to a nonsignificant increase in cardiac output and a significant increase in mean arterial pressure, CVP and PAWP. There were no significant changes in heart rate during the changes in position before or after surgery. The results of our study showed a hemodynamic response similar to hemorrhage after placing the patients in a 20 degrees head-up position and improving

  1. Novel use of a noninvasive hemodynamic monitor in a personalized, active learning simulation.

    PubMed

    Zoller, Jonathan K; He, Jianghua; Ballew, Angela T; Orr, Walter N; Flynn, Brigid C

    2017-06-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical knowledge concerning physiology were examined with a pre-and posttest. Simply by observation of one's own hemodynamic variables, the understanding of complex physiological concepts was significantly enhanced. Copyright © 2017 the American Physiological Society.

  2. The Role of Echocardiography in Coronary Artery Disease and Acute Myocardial Infarction

    PubMed Central

    Esmaeilzadeh, Maryam; Parsaee, Mozhgan; Maleki, Majid

    2013-01-01

    Echocardiography is a non-invasive diagnostic technique which provides information regarding cardiac function and hemodynamics. It is the most frequently used cardiovascular diagnostic test after electrocardiography and chest X-ray. However, in a patient with acute chest pain, Transthoracic Echocardiography is essential both for diagnosing acute coronary syndrome, zeroing on the evaluation of ventricular function and the presence of regional wall motion abnormalities, and for ruling out other etiologies of acute chest pain or dyspnea, including aortic dissection and pericardial effusion. Echocardiography is a versatile imaging modality for the management of patients with chest pain and assessment of left ventricular systolic function, diastolic function, and even myocardial and coronary perfusion and is, therefore, useful in the diagnosis and triage of patients with acute chest pain or dyspnea. This review has focused on the current applications of echocardiography in patients with coronary artery disease and myocardial infarction. PMID:23646042

  3. Pharmacogenetics of steroid-responsive acute graft-versus-host disease.

    PubMed

    Arora, Mukta; Weisdorf, Daniel J; Shanley, Ryan M; Thyagarajan, Bharat

    2017-05-01

    Glucocorticoids are central to effective therapy of acute graft-versus-host disease (GVHD). However, only about half of the patients respond to steroids in initial therapy. Based on postulated mechanisms for anti-inflammatory effectiveness, we explored genetic variations in glucocorticoid receptor, co-chaperone proteins, membrane transporters, inflammatory mediators, and variants in the T-cell receptor complex in hematopoietic cell transplant recipients with acute GVHD requiring treatment with steroids and their donors toward response at day 28 after initiation of therapy. A total of 300 recipient and donor samples were analyzed. Twenty-three SNPs in 17 genes affecting glucocorticoid pathways were included in the analysis. In multiple regression analysis, donor SNP rs3192177 in the ZAP70 gene (O.R. 2.8, 95% CI: 1.3-6.0, P=.008) and donor SNP rs34471628 in the DUSPI gene (O.R. 0.3, 95% CI: 0.1-1.0, P=.048) were significantly associated with complete or partial response. However, after adjustment for multiple testing, these SNPs did not remain statistically significant. Our results, on this small, exploratory, hypothesis generating analysis suggest that common genetic variation in glucocorticoid pathways may help identify subjects with differential response to glucocorticoids. This needs further assessment in larger datasets and if validated could help identify subjects for alternative treatments and design targeted treatments to overcome steroid resistance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    PubMed Central

    Tomova, L.; Majdandžić, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.

    2017-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others’ pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others’ emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. PMID:27798249

  5. Prenatal stress and hemodynamics in pregnancy: a systematic review.

    PubMed

    Levine, Terri A; Alderdice, Fiona A; Grunau, Ruth E; McAuliffe, Fionnuala M

    2016-10-01

    Maternal prenatal stress is associated with preterm birth, intrauterine growth restriction, and developmental delay. However, the impact of prenatal stress on hemodynamics during pregnancy remains unclear. This systematic review was conducted in order to assess the quality of the evidence available to date regarding the relationship between prenatal stress and maternal-fetal hemodynamics. The PubMed/Medline, EMBASE, PsycINFO, Maternity and Infant Care, Trip, Cochrane Library, and CINAHL databases were searched using the search terms pregnancy; stress; fetus; blood; Doppler; ultrasound. Studies were eligible for inclusion if prenatal stress was assessed with standardized measures, hemodynamics was measured with Doppler ultrasound, and methods were adequately described. A specifically designed data extraction form was used. The methodological quality of included studies was assessed using well-accepted quality appraisal guidelines. Of 2532 studies reviewed, 12 met the criteria for inclusion. Six reported that prenatal stress significantly affects maternal or fetal hemodynamics; six found no significant association between maternal stress and circulation. Significant relationships between prenatal stress and uterine artery resistance (RI) and pulsatility (PI) indices, umbilical artery RI, PI, and systolic/diastolic ratio, fetal middle cerebral artery PI, cerebroplacental ratio, and umbilical vein volume blood flow were found. To date, there is limited evidence that prenatal stress is associated with changes in circulation. More carefully designed studies with larger sample sizes, repeated assessments across gestation, tighter control for confounding factors, and measures of pregnancy-specific stress will clarify this relationship.

  6. Effects of Nuclear Factor-E2-related factor 2/Heme Oxygenase 1 on splanchnic hemodynamics in experimental cirrhosis with portal hypertension.

    PubMed

    Qin, Jun; He, Yue; Duan, Ming; Luo, Meng

    2017-05-01

    We explored the effects of Nuclear Factor-E2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) on splanchnic hemodynamics in portal hypertensive rats. Experimental cirrhosis with portal hypertension was induced by intraperitoneal injection of carbon tetrachloride. The expression of proteins was examined by immunoblotting. Hemodynamic studies were performed by radioactive microspheres. The vascular perfusion system was used to measure the contractile response of mesentery arterioles in rats. Nrf2 expression in the nucleus and HO-1 expression in cytoplasm was significantly enhanced in portal hypertensive rats. Portal pressure, as well as regional blood flow, increased significantly in portal hypertension and can be blocked by tin protoporphyrin IX. The expression of endogenous nitric oxide synthase and vascular endothelial growth factors increased significantly compared to normal rats, while HO-1 inhibition decreased the expression of these proteins significantly. The contractile response of mesenteric arteries decreased in portal hypertension, but can be partially recovered through tin protoporphyrin IX treatment. The expression of Nrf2/HO-1 increased in mesenteric arteries of portal hypertensive rats, which was related to oxidative stress. HO-1was involved in increased portal pressure and anomaly splanchnic hemodynamics in portal hypertensive rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  8. Longitudinal hemodynamics in acute phase of treatment with labetalol in hypertensive pregnant women to predict need for vasodilatory therapy.

    PubMed

    Stott, D; Bolten, M; Paraschiv, D; Papastefanou, I; Chambers, J B; Kametas, N A

    2017-01-01

    Hypertensive pregnant women who do not respond to treatment with labetalol to control blood pressure (BP), but require vasodilatory therapy, progress rapidly to severe hypertension. This could be delayed by early recognition and individualized treatment. In this study, we sought to create prediction models from data at presentation and at 1 h and 24 h after commencement of treatment to identify patients who will not have a sustained response to labetalol and therefore need vasodilatory therapy. The study population comprised 134 women presenting with hypertension at a UK hospital. Treatment with oral labetalol was administered when BP was > 150/100 mmHg or > 140/90 mmHg with systemic disease. BP and hemodynamic parameters were recorded at presentation and at 1 h and 24 h after commencement of treatment. Labetalol doses were titrated to maintain BP around 135/85 mmHg. Women with unresponsive BP, despite labetalol dose maximization (2400 mg/day), received additional vasodilatory therapy with nifedipine. Binary logistic and longitudinal (mixed-model) data analyses were performed to create prediction models anticipating the likelihood of hypertensive women needing vasodilatory therapy. The prediction models were created from data at presentation and at 1 h and 24 h after treatment, to assess the value of central hemodynamics relative to the predictive power of BP, heart rate and demographic variables at these intervals. Twenty-two percent of our cohort required additional vasodilatory therapy antenatally. These women had higher rates of severe hypertension and delivered smaller babies at earlier gestational ages. The unresponsive women were more likely to be of black ethnicity, had higher BP and peripheral vascular resistance (PVR), and lower heart rate and cardiac output (CO) at presentation. Those who needed vasodilatory therapy showed an initial decrease in BP and PVR, which rebounded at 24 h, whereas BP and PVR in those who responded to labetalol showed a sustained

  9. CRHR1 Gene SNPs and Response to Systemic Corticosteroids in Indian Asthmatic Children During Acute Exacerbation.

    PubMed

    Awasthi, Shally; Gupta, Sarika; Agarwal, Sarita; Sharma, Neeraj

    2015-09-01

    To determine association of corticotrophin releasing hormone receptor 1 (CRHR1) gene single nucleotide polymorphisms (SNPs), rs242939 (A>G) and rs242941 (G>T) with response to systemic corticosteroids in North Indian asthmatic children during acute exacerbation. This was a hospital based cross-sectional study. Sixty-eight children aged 1 to 12 y with acute exacerbation of asthma were included in the study. The study was approved by the institutional ethics committee and written informed consent was obtained from parents/guardians of recruited children. GINA guidelines 2008, were used for classification and treatment of acute exacerbation of asthma. As per the GINA guidelines 2008, children who had good response to injectable corticosteroid were classified as "Corticosteroid Responders" (CR). Rest of the children with incomplete or poor response to injectable corticosteroid were classified as "Corticosteroid Non Responders" (CNR). Among 68 hospitalized children, 45 (66.17 %) children were CR whereas 23 (33.83 %) children were CNR. On analyzing as dominant model, children with one or two copies of mutant allele of SNP rs242941 had statistically significant better response to systemic corticosteroid (OR = 5.00; 95 %CI = 1.32-19.64; p 0.013) as compared to children with no mutant allele. Thus, CRHR1 gene SNP rs242941 polymorphism is associated with better response to systemic corticosteroid during acute exacerbation of asthma.

  10. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  11. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  12. Clinical and hemodynamic results after direct transcatheter aortic valve replacement versus pre-implantation balloon aortic valvuloplasty: A case-matched analysis.

    PubMed

    Ferrera, Carlos; Nombela-Franco, Luis; Garcia, Eulogio; Jimenez-Quevedo, Pilar; Biagioni, Corina; Gonzalo, Nieves; Nuñez-Gil, Ivan; Viana-Tejedor, Ana; Salinas, Pablo; Alberto de Agustin, Jose; Almeria, Carlos; Islas, Fabian; Perez de Isla, Leopoldo; Fernandez-Perez, Cristina; Escaned, Javier; Fernández-Ortiz, Antonio; Macaya, Carlos

    2017-11-01

    To evaluate the safety and midterm hemodynamic results of direct transcatheter aortic valve replacement (TAVR) without pre-implantation balloon aortic valvuloplasty (BAV). BAV was considered a mandatory previous step in TAVR procedures. A total of 339 consecutive patients who underwent transfemoral TAVR were prospectively selected. A 1:1 matching was conducted, pairing age, prosthesis type (self-expandable or balloon expandable) and size, and valve calcification grade (48% with moderate to severe valve calcification). Finally, 102 pairs (102 patients with previous BAV and 102 without BAV) were obtained. Direct TAVR was feasible in all patients without any crossover to BAV group. Device success was achieved in 91.2% and 90.2% of cases in direct TAVR and pre-BAV groups (P = 0.810), respectively, without any differences in balloon postdilation rate and residual aortic regurgitation. The amount of contrast agent, acute kidney injury and myocardial injury was significantly lower in the direct implantation group (P < 0.05). No differences were found in 30-day and 1-year mortality between both groups (4.9% vs. 9.8%, P = 0.177 and 14.0% vs. 23.8%, P = 0.771, respectively). Hemodynamic parameters remained stable after 1-year follow-up in both groups. Direct transfemoral TAVR without prior BAV was safe in patients with calcified severe aortic stenosis. Pre-implantation BAV could be omitted in patients undergoing TAVR, without influence in procedure success rate, and subsequent patients' clinical course and valve hemodynamic performance. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.

    PubMed

    Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey

    2017-01-01

    The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.

  14. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy.

    PubMed

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2008-04-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children.

  15. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy

    PubMed Central

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2013-01-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children. PMID:18221891

  16. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans.

    PubMed

    Marney, Annis; Kunchakarra, Siri; Byrne, Loretta; Brown, Nancy J

    2010-10-01

    Dipeptidyl peptidase-IV inhibitors improve glucose homeostasis in type 2 diabetics by inhibiting degradation of the incretin hormones. Dipeptidyl peptidase-IV inhibition also prevents the breakdown of the vasoconstrictor neuropeptide Y and, when angiotensin-converting enzyme (ACE) is inhibited, substance P. This study tested the hypothesis that dipeptidyl peptidase-IV inhibition would enhance the blood pressure response to acute ACE inhibition. Subjects with the metabolic syndrome were treated with 0 mg of enalapril (n=9), 5 mg of enalapril (n=8), or 10 mg enalapril (n=7) after treatment with sitagliptin (100 mg/day for 5 days and matching placebo for 5 days) in a randomized, cross-over fashion. Sitagliptin decreased serum dipeptidyl peptidase-IV activity (13.08±1.45 versus 30.28±1.76 nmol/mL/min during placebo; P≤0.001) and fasting blood glucose. Enalapril decreased ACE activity in a dose-dependent manner (P<0.001). Sitagliptin lowered blood pressure during enalapril (0 mg; P=0.02) and augmented the hypotensive response to 5 mg of enalapril (P=0.05). In contrast, sitagliptin attenuated the hypotensive response to 10 mg of enalapril (P=0.02). During sitagliptin, but not during placebo, 10 mg of enalapril significantly increased heart rate and plasma norepinephrine concentrations. There was no effect of 0 or 5 mg of enalapril on heart rate or norepinephrine after treatment with either sitagliptin or placebo. Sitagliptin enhanced the dose-dependent effect of enalapril on renal blood flow. In summary, sitagliptin lowers blood pressure during placebo or submaximal ACE inhibition; sitagliptin activates the sympathetic nervous system to diminish hypotension when ACE is maximally inhibited. This study provides the first evidence for an interactive hemodynamic effect of dipeptidyl peptidase-IV and ACE inhibition in humans.

  17. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.

    PubMed

    Yamauchi, H; Fukuyama, H; Nagahama, Y; Katsumi, Y; Okazawa, H

    1998-01-01

    This study investigated whether in patients with internal carotid artery occlusion the regional cerebral hematocrit correlates with cerebral hemodynamics or metabolic state and, if so, how the regional cerebral hematocrit changes in the hemodynamically compromised region. We used positron emission tomography to study seven patients with unilateral internal carotid artery occlusion and no cortical infarction in the chronic stage. The distributions of red blood cell and plasma volumes were assessed using oxygen-15-labeled carbon monoxide and copper-62-labeled human serum albumin-dithiosemicarbazone tracers, respectively. The calculated hematocrit value was compared with the hemodynamic and metabolic parameters measured with the oxygen-15 steady-state technique. In the cerebral cortex, the value of the cerebral hematocrit varied but was correlated with the hemodynamic and metabolic status. Stepwise regression analysis revealed that the large vessel hematocrit, the cerebral metabolic rate of oxygen, and the cerebral blood flow or the oxygen extraction fraction accounted for a significant proportion of variance of the cerebral hematocrit. The oxygen extraction fraction and the cerebral metabolic rate of oxygen negatively correlated with the cerebral hematocrit, whereas the cerebral blood flow correlated positively: patients with reduced blood supply relative to metabolic demand (decreased blood flow with increased oxygen extraction fraction) showed low hematocrit values. In carotid artery occlusion in the chronic stage, regional cerebral hematocrit may vary according to cerebral hemodynamics and metabolic status. Regional cerebral hematocrit may decrease with hemodynamic compromise unless oxygen metabolism concomitantly decreases.

  18. The acute autonomic stress response and amniotic fluid glucocorticoids in second-trimester pregnant women.

    PubMed

    La Marca-Ghaemmaghami, Pearl; Dainese, Sara M; La Marca, Roberto; Zimmermann, Roland; Ehlert, Ulrike

    2015-01-01

    The maternal autonomic nervous system (ANS) has received little attention in the investigation of biological mechanisms linking prenatal stress to fetal cortisol (F) excess. In vitro, norepinephrine and epinephrine inhibit placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which protects the fetus from F overexposure by inactivating it to cortisone (E). Here, we investigated the acute ANS stress response to an amniocentesis and its association with amniotic fluid F, E, and E/(E + F) as a marker of fetoplacental 11β-HSD2 activity. An aliquot of amniotic fluid was obtained from 34 healthy, second-trimester pregnant women undergoing amniocentesis. Repeated assessment of mood states served to examine the psychological stress response to amniocentesis. Saliva samples were collected to measure stress-induced changes in salivary α-amylase concentrations in response to amniocentesis. Cardiac parameters were measured continuously. Undergoing amniocentesis induced significant psychological and autonomic alterations. Low-frequency (LF)/high-frequency (HF) baseline, suggested to reflect sympathovagal balance, was negatively correlated with amniotic E/(E + F) (r=-0.53, p = .002) and positively with F (r = 0.62, p < .001). In contrast, a stronger acute LF/HF response was positively associated with E/(E + F) (r = 0.44, p = .012) and negatively with F (r=-0.40, p = .025). These findings suggest that the maternal ANS is involved in the regulation of the fetoplacental barrier to stress. Allostatic processes may have been initiated to counterbalance acute stress effects. In contrast, higher LF/HF baseline values, possibly indicative of chronic stress exposure, may have inhibited 11β-HSD2 activity in the fetoplacental unit. These results parallel animal findings of up-regulated placental 11β-HSD2 in response to acute stress but impairment under chronic stress.

  19. Optimizing the general linear model for functional near-infrared spectroscopy: an adaptive hemodynamic response function approach

    PubMed Central

    Uga, Minako; Dan, Ippeita; Sano, Toshifumi; Dan, Haruka; Watanabe, Eiju

    2014-01-01

    Abstract. An increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance imaging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM for fNIRS signals. Thus, we devised a GLM-based method utilizing an adaptive hemodynamic response function (HRF). We sought the optimum temporal parameters to best explain the observed time series data during verbal fluency and naming tasks. The peak delay of the HRF was systematically changed to achieve the best-fit model for the observed oxy- and deoxy-Hb time series data. The optimized peak delay showed different values for each Hb signal and task. When the optimized peak delays were adopted, the deoxy-Hb data yielded comparable activations with similar statistical power and spatial patterns to oxy-Hb data. The adaptive HRF method could suitably explain the behaviors of both Hb parameters during tasks with the different cognitive loads during a time course, and thus would serve as an objective method to fully utilize the temporal structures of all fNIRS data. PMID:26157973

  20. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…