Science.gov

Sample records for acute hippocampal slices

  1. Neuroprotection against diisopropylfluorophosphate in acute hippocampal slices

    PubMed Central

    Ferchmin, P. A.; Pérez, Dinely; Cuadrado, Brenda L.; Carrasco, Marimée; Martins, Antonio H.; Eterović, Vesna A.

    2015-01-01

    Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase (AChE) and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase 9 inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5–10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices. PMID:26438150

  2. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents

    PubMed Central

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  3. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents.

    PubMed

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-09-04

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.

  4. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-06-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording.

  5. Long-Term Potentiation by Theta-Burst Stimulation using Extracellular Field Potential Recordings in Acute Hippocampal Slices

    PubMed Central

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J.; Sjöström, P. Jesper

    2017-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  6. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures.

    PubMed

    Miller, Anna P; Shah, Alok S; Aperi, Brandy V; Kurpad, Shekar N; Stemper, Brian D; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  7. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures

    PubMed Central

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  8. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  9. Nuclear shrinkage in live mouse hippocampal slices.

    PubMed

    Kasischke, K; Büchner, M; Ludolph, A C; Riepe, M W

    2001-05-01

    Brain slices are used extensively for biochemical, electrophysiological and molecular investigations. However, only the time frame for electrophysiological and biochemical investigations has as yet been defined. The goal of the present study was to investigate the time course of nuclear structure in live brain slices. Hippocampal slices (300 microm) were prepared from male CD1 mice (25-30 g), stained with Hoechst 33342 (10 microM), calcein-AM (2 microM) and ethidium homodimer (4 microM), and imaged with single- and dual-photon microscopy. The volume of CA1 pyramidal cell nuclei decreased from 759+/-229 microm3 in 40-50 microm depth 25 min after preparation to 453+/-169 microm3 (P<0.001) after 60 min, 315+/-112 microm3 (P<0.001) after 120 min and 128+/-71 microm3 (P<0.001) after 8 h. Similar results were obtained on a prolonged time scale in 70-80 microm depth and with an accelerated time scale in 20-30 microm depth. Live-dead staining showed that cell damage is progressing from the surface to deeper layers of the slices in a time-dependent fashion. We conclude that nuclei of CA1 hippocampal pyramidal cells show a time- and depth-dependent shrinkage converging 8 h after slice preparation to a volume of 90-130 microm; in any depth between 20 and 80 microm. The nucleus in the superficial 80 microm of each side appears dysfunctional even at times suitable for electrophysiological and biochemical experimentation in hippocampal slices. Molecular analysis of cell regulation in brain slices may, therefore, be time-dependently distorted by progressing cell death in at least half of the tissue under investigation.

  10. Spontaneous recurrent network activity in organotypic rat hippocampal slices.

    PubMed

    Mohajerani, Majid H; Cherubini, Enrico

    2005-07-01

    Organotypic hippocampal slices were prepared from postnatal day 4 rats and maintained in culture for >6 weeks. Cultured slices exhibited from 12 days in vitro spontaneous events which closely resembled giant depolarizing potentials (GDPs) recorded in neonatal hippocampal slices. GDP-like events occurred over the entire hippocampus with a delay of 30-60 ms between two adjacent regions as demonstrated by pair recordings from CA3-CA3, CA3-CA1 and interneurone-CA3 pyramidal cells. As in acute slices, spontaneous recurrent events were generated by the interplay of GABA and glutamate acting on AMPA receptors as they were reversibly blocked by bicuculline and 6,7-dinitroquinoxaline-2,3-dione but not by dl-2-amino-5-phosphonopentaoic acid. The equilibrium potentials for GABA measured in whole cell and gramicidin-perforated patch from interconnected interneurones-CA3 pyramidal cells were -70 and -56 mV, respectively. The resting membrane potential estimated from the reversal of N-methyl-D-aspartate-induced single-channel currents in cell-attach experiments was -75 mV. In spite of its depolarizing action, in the majority of cases GABA was still inhibitory as it blocked the firing of principal cells. The increased level of glutamatergic connectivity certainly contributed to network synchronization and to the development of interictal discharges after prolonged exposure to bicuculline. In spite of its inhibitory action, in a minority of cells GABA was still depolarizing and excitatory as it was able to bring principal cells to fire, suggesting that a certain degree of immaturity is still present in cultured slices. This was in line with the transient bicuculline-induced block of GDPs and with the isoguvacine-induced increase of GDP frequency.

  11. Unstable periodic orbits in human epileptic hippocampal slices.

    PubMed

    Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.

  12. The Characteristics of LTP Induced in Hippocampal Slices Are Dependent on Slice-Recovery Conditions

    ERIC Educational Resources Information Center

    Godaux, Emile; Ris, Laurence; Capron, Brigitte; Sindic, Christian

    2006-01-01

    In area CA1 of hippocampal slices which are allowed to recover from slicing "in interface" and where recordings are carried out in interface, a single 1-sec train of 100-Hz stimulation triggers a short-lasting long-term potentiation (S-LTP), which lasts 1-2 h, whereas multiple 1-sec trains induce a long-lasting LTP (L-LTP), which lasts several…

  13. Stochastic neural network model for spontaneous bursting in hippocampal slices.

    PubMed

    Biswal, B; Dasgupta, C

    2002-11-01

    A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a low-activity (normal) state and a high-activity (epileptic) state is studied by computer simulation. Brief excursions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajectories that resemble the behavior expected near unstable periodic orbits (UPOs) of systems exhibiting deterministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol to the network model yield results that are qualitatively similar to those obtained in experiments on hippocampal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to results that resemble those of similar analysis of data obtained from slice experiments and human epileptic activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifestation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reliability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos in experimental time-series data.

  14. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    NASA Astrophysics Data System (ADS)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  15. Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices

    PubMed Central

    Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina

    2010-01-01

    Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable

  16. Measurement of Inositol Triphosphate Levels from Rat Hippocampal Slices

    PubMed Central

    Tabatadze, Nino; Woolley, Catherine

    2016-01-01

    Inositol triphosphate (IP3) is an important second messenger that participates in signal transduction pathways in diverse cell types including hippocampal neurons. Stimulation of phospholipase C in response to various stimuli (hormones, growth factors, neurotransmitters, neurotrophins, neuromodulators, odorants, light, etc) results in hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, and leads to the production of IP3 and diacylglycerol. Binding of IP3 to the IP3 receptor (IP3R) induces Ca2+ release from intracellular stores and enables the initiation of intracellular Ca2+-dependent signaling. Here we describe a procedure for the measurement of cellular IP3 levels in tissue homogenates prepared from rat hippocampal slices. PMID:27468425

  17. 5-HT4-Receptors Modulate Induction of Long-Term Depression but Not Potentiation at Hippocampal Output Synapses in Acute Rat Brain Slices

    PubMed Central

    Wawra, Matthias; Fidzinski, Pawel; Heinemann, Uwe; Mody, Istvan; Behr, Joachim

    2014-01-01

    The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP) whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD). In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4) receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1), 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output. PMID:24505387

  18. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices

    PubMed Central

    Sasaki, Takuya; Ishikawa, Tomoe; Abe, Reimi; Nakayama, Ryota; Asada, Akiko; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Astrocytes are thought to detect neuronal activity in the form of intracellular calcium elevations; thereby, astrocytes can regulate neuronal excitability and synaptic transmission. Little is known, however, about how the astrocyte calcium signal regulates the activity of neuronal populations. In this study, we addressed this issue using functional multineuron calcium imaging in hippocampal slice cultures. Under normal conditions, CA3 neuronal networks exhibited temporally correlated activity patterns, occasionally generating large synchronization among a subset of cells. The synchronized neuronal activity was correlated with astrocyte calcium events. Calcium buffering by an intracellular injection of a calcium chelator into multiple astrocytes reduced the synaptic strength of unitary transmission between pairs of surrounding pyramidal cells and caused desynchronization of the neuronal networks. Uncaging the calcium in the astrocytes increased the frequency of neuronal synchronization. These data suggest an essential role of the astrocyte calcium signal in the maintenance of basal neuronal function at the circuit level. PMID:24710057

  19. Delivery of recombinant alphavirus into hippocampal slice tissue culture.

    PubMed

    Lundstrom, Kenneth

    2012-08-01

    The alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in <2 d. The broad host range of alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have shown reduced cytotoxicity and prolonged expression. This protocol describes gene delivery of recombinant alphavirus to hippocampal slice cultures. Organotypic slices are covered by a layer of glial cells that impedes the penetration of viral particles to the neurons. Thus, viral particles should be injected manually into the extracellular space of the tissue.

  20. Temperature effects on evoked potentials of hippocampal slices from euthermic chipmunks, hamsters and rats

    NASA Technical Reports Server (NTRS)

    Hooper, D. C.; Martin, S. M.; Horowitz, J. M.

    1985-01-01

    1. Neural activity was recorded in hippocampal slices from euthermic chipmunks, hamsters and rats. 2. While recording the evoked potentials, the temperature of the Ringer's solution bathing the slice was varied by controlling the temperature of an outer chamber jacketing the recording chamber. 3. The temperature just below that at which a population spike could be evoked, Tt, was 10.4 +/- 0.3 degrees C (mean +/- SEM) for chipmunk slices, 14.1 +/- 0.4 degrees C for rat slices and 14.8 +/- 0.4 degrees C for hamster slices. Tt was significantly lower in the chipmunk slices (P<0.01) than in the rat and hamster slices. 4. Data were interpreted as consistent with the hypothesis that chipmunk hippocampal neurons are intrinsically cold resistant.

  1. Acetylcholinesterase inhibition reveals endogenous nicotinic modulation of glutamate inputs to CA1 stratum radiatum interneurons in hippocampal slices.

    PubMed

    Alkondon, Manickavasagom; Albuquerque, Edson X; Pereira, Edna F R

    2013-05-01

    The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20-100ms) inter-event intervals. Donepezil's effects were suppressed significantly in presence of 10μM mecamylamine or 10nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman.

  2. Effects of Relative Hypoglycemia on LTP and NADH Imaging in Rat Hippocampal Slices

    PubMed Central

    Sadgrove, Matthew P.; Beaver, Christopher J.; Turner, Dennis A.

    2007-01-01

    Cognitive and neuronal impairment in diabetes may be associated with iatrogenic hypoglycemia, particularly at low serum glucose levels (< 3 mM). To evaluate cellular impairment, we assessed acute hippocampal slice functioning during decreased ambient glucose, by monitoring evoked field excitatory post-synaptic potentials (fEPSP), and slice nicotinamide adenine dinucleotide (NADH) fluorescence. The effects of lowered glucose levels (60 min) were analyzed by examining the induction and maintenance of long-term potentiation (LTP), and NADH metabolic imaging in the CA1 region. The basal fEPSP response was reduced by lowered ambient glucose, an effect that was reversible in 2.5 mM glucose, partially reversible in 1.25 mM glucose and irreversible in 0 mM glucose, after 25 min recovery. LTP induction and maintenance declined during glucose restriction, demonstrating reversibly failed maintenance in 5 mM and 2.5 mM ambient glucose, and absent induction in 1.25 mM glucose. Peak NADH levels observed during train-induced biphasic transients were significantly reduced during 1.25 mM and 2.5 mM glucose. Significant functional compromise in our slice model occurred at 2.5 mM ambient glucose, equivalent to <1mM tissue glucose in the slice center, due to diffusion limitations and active glucose utilization. This tissue glucose level correlates with human observations of a serum threshold of <3mM for cognitive impairment, since brain tissue glucose is approximately one third of serum levels. The physiological effects of hypoglycemia in our slice model, assessed through fEPSP, LTP, and NADH responses, replicate closely the in vivo situation, confirming the usefulness of this model in assessing consequences of relative hypoglycemia. PMID:17651706

  3. Neuroprotective effects of mild hypoxia in organotypic hippocampal slice cultures

    PubMed Central

    Kim, Seh Hyun; Lee, Woo Soon; Lee, Na Mi; Yun, Sin Weon

    2015-01-01

    Purpose The aim of this study was to investigate the potential effects of mild hypoxia in the mature and immature brain. Methods We prepared organotypic slice cultures of the hippocampus and used hippocampal tissue cultures at 7 and 14 days in vitro (DIV) to represent the immature and mature brain, respectively. Tissue cultures were exposed to 10% oxygen for 60 minutes. Twenty-four hours after this hypoxic insult, propidium iodide fluorescence images were obtained, and the damaged areas in the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG) were measured using image analysis. Results In the 7-DIV group compared to control tissue, hypoxia-exposed tissue showed decreased damage in two regions (CA1: 5.59%±2.99% vs. 4.80%±1.37%, P=0.900; DG: 33.88%±12.53% vs. 15.98%±2.37%, P=0.166), but this decrease was not statistically significant. In the 14-DIV group, hypoxia-exposed tissue showed decreased damage compared to control tissues; this decrease was not significant in the CA3 (24.51%±6.05% vs. 18.31%±3.28%, P=0.373) or DG (15.72%±3.47% vs. 9.91%±2.11%, P=0.134), but was significant in the CA1 (50.91%±5.90% vs. 32.30%±3.34%, P=0.004). Conclusion Although only CA1 tissues cultured for 14 DIV showed significantly less damage after exposure to hypoxia, the other tissues examined in this study showed a tendency towards less damage after hypoxic exposure. Therefore, mild hypoxia might play a protective role in the brain. PMID:25932036

  4. SCH 58261 differentially influences quinolinic acid-induced effects in striatal and in hippocampal slices.

    PubMed

    Tebano, Maria Teresa; Domenici, Maria Rosaria; Popoli, Patrizia

    2002-08-30

    The influence of the adenosine A(2A) receptor antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine) (50, 200 nM, 1 microM) on quinolinic acid effects has been studied in rat striatal and hippocampal slices. Quinolinic acid induced disappearance of field potentials at concentrations of 500 microM and 2 mM in hippocampal and corticostriatal slices, respectively. We found that 1 microM SCH 58261 prevented quinolinic acid-induced field potential disappearance in corticostriatal but not in hippocampal slices. This finding demonstrates that the peculiar binding profile of SCH 58261 and the predominance in the hippocampus of "atypical" adenosine A(2A) receptor population (not recognized by SCH 58261) could have a functional relevance in the occurrence of region-specific neuroprotective effects.

  5. Effects of Acetylcholinesterase Inhibition on Cholinergic Transmission in the Hippocampal Slice.

    DTIC Science & Technology

    1985-02-08

    examined using a completely different experimental paradigm involving the biochemical measurement of sodium fluxes in slices of hippocampus . All of the...Sum OR. Acetylcholinesterase, long-term effects, hippocampus IS. A AC 4rCO.hImaw so M if weem’y andid Wit Ufy ft 61W& awmwrr is research program is...physiological response has been identified in ,the in vitro hippocampal slice, (2) the response of the hippocampus to repeated applications of cholTnerg-g

  6. An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges

    PubMed Central

    Ziobro, Julie M.; Deshpande, Laxmikant S.; DeLorenzo, Robert J.

    2011-01-01

    Stroke is the major cause of acquired epilepsy in the adult population. The mechanisms of ischemia-induced epileptogenesis are not completely understood, but glutamate is associated with both ischemia-induced injury and epileptogenesis. The objective of this study was to develop an in vitro model of epileptogenesis induced by glutamate injury in organotypic hippocampal slice cultures (OHSCs), as observed in stroke-induced acquired epilepsy. OHSCs were prepared from 1-week old Sprague-Dawley rat pups. They were exposed to 3.5 mM glutamate for 35 minutes at 21 days in vitro. Field potential recordings and whole-cell current clamp electrophysiology were used to monitor the development of in vitro seizure events up to 19 days after injury. Propidium iodide uptake assays were used to examine acute cell death following injury. Glutamate exposure produced a subset of hippocampal neurons that died acutely and a larger population of injured but surviving neurons. These surviving neurons manifested spontaneous, recurrent epileptiform discharges in neural networks, characterized by paroxysmal depolarizing shifts and high frequency spiking in both field potential and intracellular recordings. This model also exhibited anticonvulsant sensitivity similar to in vivo models. Our study is the first demonstration of a chronic model of acquired epilepsy in OHSCs following a glutamate injury. This in vitro model of glutamate injury–induced epileptogenesis may help develop therapeutic strategies to prevent epileptogenesis after stroke and elucidate some of the mechanisms that underlie stroke-induced epilepsy in a more anatomically in-tact system. PMID:21111720

  7. Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging

    PubMed Central

    Calfa, Gaston; Hablitz, John J.

    2011-01-01

    Dysfunctions of neuronal and network excitability have emerged as common features in disorders associated with intellectual disabilities, autism, and seizure activity, all common clinical manifestations of Rett syndrome (RTT), a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Here, we evaluated the consequences of Mecp2 mutation on hippocampal network excitability, as well as synapse structure and function using a combination of imaging and electrophysiological approaches in acute slices. Imaging the amplitude and spatiotemporal spread of neuronal depolarizations with voltage-sensitive dyes (VSD) revealed that the CA1 and CA3 regions of hippocampal slices from symptomatic male Mecp2 mutant mice are highly hyperexcitable. However, only the density of docked synaptic vesicles and the rate of release from the readily releasable pool are impaired in Mecp2 mutant mice, while synapse density and morphology are unaffected. The differences in network excitability were not observed in surgically isolated CA1 minislices, and blockade of GABAergic inhibition enhanced VSD signals to the same extent in Mecp2 mutant and wild-type mice, suggesting that network excitability originates in area CA3. Indeed, extracellular multiunit recordings revealed a higher level of spontaneous firing of CA3 pyramidal neurons in slices from symptomatic Mecp2 mutant mice. The neuromodulator adenosine reduced the amplitude and spatiotemporal spread of VSD signals evoked in CA1 of Mecp2 mutant slices to wild-type levels, suggesting its potential use as an anticonvulsant in RTT individuals. The present results suggest that hyperactive CA3 pyramidal neurons contribute to hippocampal dysfunction and possibly to limbic seizures observed in Mecp2 mutant mice and RTT individuals. PMID:21307327

  8. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices.

    PubMed

    Molteni, Raffaella; Rossetti, Andrea C; Savino, Elisa; Racagni, Giorgio; Calabrese, Francesca

    2016-01-01

    Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.

  9. Thermal dependence of neural activity in the hamster hippocampal slice preparation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Thomas, M. P.; Eckerman, P.

    1987-01-01

    1. Neural activity was recorded in an in vitro hamster hippocampal slice preparation while the temperature of the Ringer's solution bathing in the slice was controlled at selected levels. 2. The amplitude of the population spike (action potentials from a group of pyramidal cells) was measured as bath temperature was lowered from 35 degrees C to temperatures where a response could not be evoked. 3. Plots of population spike amplitude versus temperature have bell-shaped curves. The population spikes increased in amplitude as temperature was lowered from 35 degrees C, reached a peak amplitude between 25 and 20 degrees C, and then decreased until a response could not be evoked when temperature was further lowered. 4. These in vitro results obtained in the slice preparation are related to in vivo hippocampal studies. Results are interpreted as consistent with the proposal reviewed here that neural activity in the hippocampus plays a role at specific stages of entrance into and arousal from hibernation.

  10. Pertussis toxin prevents neomycin-induced calcium-dependent electrophysiological effects in rat hippocampal slices.

    PubMed

    Frank, C; Longo, R; Sagratella, S

    1994-09-01

    1. The influence of pertussis toxin has been studied on the effects of neomycin on CA1 field potentials in rat hippocampal slices in order to determine a role played by G protein in the modulation of synaptic transmission by the drug. 2. Neomycin (500 microM), within 30 min significantly (P < 0.01) decreased the magnitude of the somatic CA1 excitatory postsynaptic potentials (EPSP) and population spike (PS) in control hippocampal slices. 3. Neomycin (500 microM), within 30 min failed to significantly affect the magnitude of the somatic CA1 EPSP and PS in slices obtained from animals treated intracerebroventricularly (ICV) with 1-2 micrograms of pertussis toxin 3 days before. 4. The results demonstrated that pertussis toxin prevents some electrophysiological effects of neomycin, suggesting a role of G protein in the modulation of the aminoglycoside antibiotic on central synaptic transmission.

  11. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis

    SciTech Connect

    Dosemeci, Ayse . E-mail: dosemeca@mail.nih.gov; Tao-Cheng, J.-H.; Vinade, Lucia; Jaffe, Howard

    2006-01-13

    Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The 'micro PSD fraction' obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10 {mu}g total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.

  12. Isolation of CA1 nuclear enriched fractions from hippocampal slices to study activity-dependent nuclear import of synapto-nuclear messenger proteins.

    PubMed

    Yuanxiang, Pingan; Bera, Sujoy; Karpova, Anna; Kreutz, Michael R; Mikhaylova, Marina

    2014-08-10

    Studying activity dependent protein expression, subcellular translocation, or phosphorylation is essential to understand the underlying cellular mechanisms of synaptic plasticity. Long-term potentiation (LTP) and long-term depression (LTD) induced in acute hippocampal slices are widely accepted as cellular models of learning and memory. There are numerous studies that use live cell imaging or immunohistochemistry approaches to visualize activity dependent protein dynamics. However these methods rely on the suitability of antibodies for immunocytochemistry or overexpression of fluorescence-tagged proteins in single neurons. Immunoblotting of proteins is an alternative method providing independent confirmation of the findings. The first limiting factor in preparation of subcellular fractions from individual tetanized hippocampal slices is the low amount of material. Second, the handling procedure is crucial because even very short and minor manipulations of living slices might induce activation of certain signaling cascades. Here we describe an optimized workflow in order to obtain sufficient quantity of nuclear enriched fraction of sufficient purity from the CA1 region of acute hippocampal slices from rat brain. As a representative example we show that the ERK1/2 phosphorylated form of the synapto-nuclear protein messenger Jacob actively translocates to the nucleus upon induction of LTP and can be detected in a nuclear enriched fraction from CA1 neurons.

  13. Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices.

    PubMed

    Wang, Ze-Jian; Liang, Cui-Ling; Li, Guang-Mei; Yu, Cai-Yi; Yin, Ming

    2006-11-07

    Arachidonic acid (AA), 5,8,11,14-eicosateraenoic acid is abundant, active and necessary in the human body. In the present study, we reported the neuroprotective effects and mechanism of arachidonic acid on hippocampal slices insulted by glutamate, NaN(3) or H(2)O(2)in vitro. Different types of models of brain injury in vitro were developed by 1mM glutamate, 10mM NaN(3) or 2mM H(2)O(2). After 30 min of preincubation with arachidonic acid or linoleic acid, hippocampal slices were subjected to glutamate, NaN(3) or H(2)O(2), then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. Endogenous antioxidant enzymes activities (SOD, GSH-PX and catalase) in hippocampal slices were evaluated during the course of incubation. MK886 (5 microM; a noncompetitive inhibitor of proliferator-activated receptor [PPAR]alpha), BADGE (bisphenol A diglycidyl ether; 100 microM; an antagonist of PPARgamma) and cycloheximide (CHX; 30 microM; an inhibitor of protein synthesis) were tested for their effects on the neuroprotection afforded by arachidonic acid. Population spikes were recorded in randomly selected hippocapal slices. Arachidonic acid (1-10 microM) dose dependently protected hippocampal slices from glutamate and H(2)O(2) injury (P<0.01), and arachidonic acid (10 microM) can significantly improve the activities of Cu/Zn-SOD in hippocampal slices after 1h incubation. In addition, 10 microM arachidonic acid significantly increased the activity of Mn-SOD and catalase, and decreased the activities of Cu/Zn-SOD to control value after 3h incubation. These secondary changes of SOD during incubation can be reversed by indomethacine (10 microM; a nonspecific cyclooxygenase inhibitor) or AA 861 (20 microM; a 5-lipoxygenase inhibitor). Its neuroprotective effect was completely abolished by BADGE and CHX. These observations reveal that arachidonic acid can defense against oxidative stress by boosting the internal antioxidant system of hippocampal slices

  14. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS.

    PubMed

    Lossi, Laura; Alasia, Silvia; Salio, Chiara; Merighi, Adalberto

    2009-08-01

    Analysis of the interplay between cell proliferation and death has been greatly advantaged by the development of CNS slice preparations. In slices, interactions between neurons and neurons and the glial cells are fundamentally preserved in a fashion close to the in vivo situation. In parallel, these preparations offer the possibility of an easy experimental manipulation. Two main types of slices are currently in use: the acute slices, which are short living preparations where the major functions of the intact brain (including neurogenesis) are maintained, and the organotypic cultures, where the maturation and plasticity of neuronal circuitries in relation to naturally occurring neuronal death and/or experimental insults can be followed over several weeks in vitro. We will discuss here the main advantages/disadvantages linked to the use of CNS slices for histological analysis of neuronal proliferation and death, as well as the main findings obtained in the most popular types of preparations, i.e. the cortical, hippocampal, cerebellar and retinal slices.

  15. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice.

    PubMed

    Kawamura, Masahito; Gachet, Christian; Inoue, Kazuhide; Kato, Fusao

    2004-12-01

    ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.

  16. Electrophysiological observations in hippocampal slices from rats treated with the ketogenic diet.

    PubMed

    Stafstrom, C E; Wang, C; Jensen, F E

    1999-11-01

    The electrophysiological effects of the high-fat, low-carbohydrate ketogenic diet (KD) were assessed in normal and epileptic [kainic-acid(KA)-treated] adult rats using hippocampal slices. In the first set of experiments, normal rats were fed the KD or a standard control diet for 6-8 weeks (beginning on postnatal day 56, P56), after which they were sacrificed for hippocampal slices. All rats on the KD became ketotic. The baseline effects of the KD were determined by comparing extracellular measures of synaptic transmission and responses to evoked stimulation, and hippocampal excitability was tested in Mg(2+)-free medium. There were no differences in EPSP slope, input/output relationship, responses to evoked stimulation or Mg(2+)-free burst frequency between slices from control and KD-fed rats. In another set of experiments, rats were made epileptic by intraperitoneal injection of kainic acid (KA) on P54, which caused status epilepticus followed by the development of spontaneous recurrent seizures (SRS) over the next few weeks. Two days after KA-induced status, rats were divided into a control-fed group and a KD-fed group. Animals on the KD had significantly fewer SRS over the ensuing 8 weeks. In hippocampal slices from KA-treated, KD-fed rats, there were fewer evoked CA1 population spikes than from slices of control-fed rats. These results suggest that the KD does not alter baseline electrophysiological parameters in normal rats. In rats made chronically epileptic by administration of KA, KD treatment was associated with fewer spontaneous seizures and reduced CA1 excitability in vitro. Therefore, at least part of the KD mechanism of action may involve long-term changes in network excitability.

  17. Dithiothreitol elicits epileptiform activity in CA1 of the guinea pig hippocampal slice

    SciTech Connect

    Tolliver, J.M.; Pellmar, T.C.

    1987-01-01

    Dithiothreitol (DTT) is a sulfhydryl reducing agent used as a radioprotectant. Exposure of hippocampal slices, for 30 min to 0.5 micromoles DTT irreversibly increased the orthodromic population spike amplitude, promoted repetitive firing and induced spontaneous epileptiform activity in the CA1 subfield. The same concentration of the oxidized form of DTT did not increase hippocampal excitability. Although the slope of the population synaptic response to afferent stimulation (popPSP) was unchanged by DTT, the duration of the popPSP was prolonged. Recurrent inhibition was unaffected. DTT probably exerts its effects through an irreversible chemical reaction with cellular components. Possible mechanisms of DTT-induced epileptiform activity are discussed.

  18. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices

    PubMed Central

    Sun, Min-Yu; Izumi, Yukitoshi; Benz, Ann; Zorumski, Charles F.

    2015-01-01

    N-methyl-d-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1−/− (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction. PMID:26745248

  19. In vitro measurements of extracellular L-glutamate level in region CA3 of mouse hippocampal slices under chemical stimulation.

    PubMed

    Chiba, Hiromi; Deguchi, Yukari; Kanazawa, Ena; Kawai, Jun; Nozawa, Keiichiro; Shoji, Atsushi; Sugawara, Masao

    2010-01-01

    The concentration level of extracellular L-glutamate released from region CA3 of mouse hippocampal slices under tetraethylammonium (TEA) chloride and KCl stimulation was measured with independent methods, i.e., a capillary-based enzyme sensor, a patch sensor, and an enzyme-based imaging method. The L-glutamate level was compared with those at regions CA1 and DG. It was found that the enhanced concentration level at CA3 by TEA stimulation is very similar to that at CA1, but it is much lower than that at DG. The order of the regional distribution of L-glutamate, i.e., DG > CA1 ≈ CA3, was the same as that obtained by K(+) stimulation. However, in the presence of an uptake inhibitor, DL-TBOA, KCl stimulation showed the strongest L-glutamate flux at CA1, while TEA stimulation exhibited the strongest flux at CA3. The usefulness of the present approach for knowing the extracellular L-glutamate level in acute hippocampal slices is discussed.

  20. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    PubMed Central

    Komolafe, Kayode; Olaleye, Tolulope M.; Seeger, Rodrigo L.; Carvalho, Fabiano B.; Boligon, Aline A.; Athayde, Margareth L.; Klimaczewski, Claudia V.; Akindahunsi, Akintunde A.; Rocha, Joao B. T.

    2014-01-01

    Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL) or catechin (1, 5, or 10 µg/mL) for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm) were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity. PMID:25177688

  1. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    PubMed Central

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  2. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.

    PubMed

    Fischer, Yacov; Wittner, Lucia; Freund, Tamas F; Gähwiler, Beat H

    2002-03-15

    Hippocampal activity in vivo is characterized by concurrent oscillations at theta (4-15 Hz) and gamma (20-80 Hz) frequencies. Here we show that cholinergic receptor activation (methacholine 10-20 nm) in hippocampal slice cultures induces an oscillatory mode of activity, in which the intrinsic network oscillator (located in the CA3 area) expresses simultaneous theta and gamma network oscillations. Pyramidal cells display synaptic theta oscillations, characterized by cycles consisting of population EPSP-IPSP sequences that are dominated by population IPSPs. These rhythmic IPSPs most probably result from theta-modulated spiking activity of several interneurons. At the same time, the majority of interneurons consistently display synaptic gamma oscillations. These oscillatory cycles consist of fast depolarizing rhythmic events that are likely to reflect excitatory input from CA3 pyramidal cells. Interneurons comprising this functional group were identified morphologically. They include four known types of interneurons (basket, O-LM, bistratified and str. lucidum-specific cells) and one new type of CA3 interneuron (multi-subfield cell). The oscillatory activity of these interneurons is only weakly correlated between neighbouring cells, and in about half of these (44 %) is modulated by depolarizing theta rhythmicity. The overall characteristics of acetylcholine-induced oscillations in slice cultures closely resemble the rhythmicity observed in hippocampal field and single cell recordings in vivo. Both rhythmicities depend on intrinsic synaptic interactions, and are expressed by different cell types. The fact that these oscillations persist in a network lacking extra-hippocampal connections emphasizes the importance of intrinsic mechanisms in determining this form of hippocampal activity.

  3. Cutting of living hippocampal slices by a highly pressurised water jet (macromingotome).

    PubMed

    Bingmann, D; Wiemann, M; Speckmann, E J; Köhling, R; Straub, H; Dunze, K; Wittkowski, W

    2000-10-15

    Living brain slices are usually cut with razor blades, which compress a ca. 50-microm-thick layer of tissue. This results in cell debris and lesioned cells which, e.g. form diffusion barriers between the bath and living neurons underneath, thereby prolonging response times of neurons to drugs in the bath saline and impeding the experimental access to intact neurons. To avoid such drawbacks, a macromingotome was developed which cuts nervous tissue with water jets. Physiological saline under pressures of 100-1800 bar was ejected through nozzles of 35-100 microm to cut 300-500-microm-thick hippocampal slices. Systematic variations of pressure and nozzle diameter revealed best results at 400-600 bar and with nozzle diameters of 60-80 microm. Under these conditions, intact CA1- and CA3-neurons as well as granule cells were detected with infrared microscopy at less than 10 microm underneath the surface of the slice. Superficial neurons with intact fine structures were also seen when the slices were studied by light-microscopy. Intra- and extracellular recordings from superficial neurons showed normal membrane- and full action potentials and the development of stable epileptiform discharges in 0 Mg(2+)-saline. These results indicate that the macromingotome offers an alternative way of cutting slices which may facilitate electrophysiological/neuropharmacological or fluorometric studies on superficial neurons.

  4. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    PubMed Central

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy. PMID:27847463

  5. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices.

    PubMed

    Kawamura, Masahito Jr; Ruskin, David N; Masino, Susan A

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet-fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  6. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures.

    PubMed Central

    Müller, M; Gähwiler, B H; Rietschin, L; Thompson, S M

    1993-01-01

    The morphological and functional consequences of epileptic activity were investigated by applying the convulsants bicuculline and/or picrotoxin to mature rat hippocampal slice cultures. After 3 days, some cells in all hippocampal subfields showed signs of degeneration, including swollen somata, vacuolation, and dendritic deformities, whereas others displayed only a massive reduction in the number of their dendritic spines. Intracellular recordings from CA3 pyramidal cells revealed a decrease in the amplitude of evoked excitatory synaptic potentials. gamma-Aminobutyric acid-releasing interneurons and inhibitory synaptic potentials were unaffected. Seven days after withdrawal of convulsants, remaining cells possessed a normal number of dendritic spines, thus demonstrating a considerable capacity for recovery. The pathological changes induced by convulsants are similar to those found in the hippocampi of human epileptics, suggesting that they are a consequence, rather than a cause, of epilepsy. Images PMID:8093558

  7. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    NASA Astrophysics Data System (ADS)

    Tass, P. A.; Silchenko, A. N.; Hauptmann, C.; Barnikol, U. B.; Speckmann, E.-J.

    2009-07-01

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with a widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.

  8. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    SciTech Connect

    Tass, P. A.; Barnikol, U. B.; Silchenko, A. N.; Hauptmann, C.; Speckmann, E.-J.

    2009-07-15

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with a widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.

  9. Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices

    PubMed Central

    Ivanov, Anton; Mukhtarov, Marat; Bregestovski, Piotr; Zilberter, Yuri

    2011-01-01

    Although numerous experimental data indicate that lactate is efficiently used for energy by the mature brain, the direct measurements of energy metabolism parameters during neuronal network activity in early postnatal development have not been performed. Therefore, the role of lactate in the energy metabolism of neurons at this age remains unclear. In this study, we monitored field potentials and contents of oxygen and NAD(P)H in correlation with oxidative metabolism during intense network activity in the CA1 hippocampal region of neonatal brain slices. We show that in the presence of glucose, lactate is effectively utilized as an energy substrate, causing an augmentation of oxidative metabolism. Moreover, in the absence of glucose lactate is fully capable of maintaining synaptic function. Therefore, during network activity in neonatal slices, lactate can be an efficient energy substrate capable of sustaining and enhancing aerobic energy metabolism. PMID:21602909

  10. Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor.

    PubMed

    Scharfman, H E

    1997-08-01

    Effects of brain-derived neurotrophic factor (BDNF) in area CA3, the dentate gyrus, and medial entorhinal cortex were examined electrophysiologically by bath application of BDNF in slices containing the hippocampus and entorhinal cortex. Bath application of 25-100 ng/ml BDNF for 30-90 min increased responses to single afferent stimuli in selective pathways in the majority of slices. In area CA3, responses to mossy fiber stimulation increased in 73% of slices and entorhinal cortex responses to white matter stimulation increased in 64% of slices. After exposure to BDNF, these areas also demonstrated evidence of hyperexcitability, because responses to repetitive stimulation (1-Hz paired pulses for several s) produced multiple population spikes in response to mossy fiber stimulation in CA3 or multiple field potentials in response to white matter stimulation in the entorhinal cortex. Repetitive field potentials persisted after repetitive stimulation ended and usually were followed by spreading depression. Enhancement of responses to single stimuli and hyperexcitability were never evoked in untreated slices or after bath application of boiled BDNF or cytochrome C. The tyrosine kinase antagonist K252a (2 microM) blocked the effects of BDNF. In area CA3, both the potentiation of responses to single stimuli and hyperexcitability showed afferent specificity, because responses to mossy fiber stimulation were affected but responses to fimbria or Schaffer collateral stimulation were not. In addition, regional specificity was demonstrated in that the dentate gyrus was much less affected. The effects of BDNF in area CA3 were similar to those produced by bath application of low doses of kainic acid, which is thought to modulate glutamate release from mossy fiber terminals by a presynaptic action. These results suggest that BDNF has acute effects on excitability in different areas of the hippocampal-entorhinal circuit. These effects appear to be greatest in areas that are highly

  11. The Analysis of Neurovascular Remodeling in Entorhino-hippocampal Organotypic Slice Cultures

    PubMed Central

    Chip, Sophorn; Zhu, Xinzhou; Kapfhammer, Josef P.

    2014-01-01

    Ischemic brain injury is among the most common and devastating conditions compromising proper brain function and often leads to persisting functional deficits in the affected patients. Despite intensive research efforts, there is still no effective treatment option available that reduces neuronal injury and protects neurons in the ischemic areas from delayed secondary death. Research in this area typically involves the use of elaborate and problematic animal models. Entorhino-hippocampal organotypic slice cultures challenged with oxygen and glucose deprivation (OGD) are established in vitro models which mimic cerebral ischemia. The novel aspect of this study is that changes of the brain blood vessels are studied in addition to neuronal changes and the reaction of both the neuronal compartment and the vascular compartment can be compared and correlated. The methods presented in this protocol substantially broaden the potential applications of the organotypic slice culture approach. The induction of OGD or hypoxia alone can be applied by rather simple means in organotypic slice cultures and leads to reliable and reproducible damage in the neural tissue. This is in stark contrast to the complicated and problematic animal experiments inducing stroke and ischemia in vivo. By broadening the analysis to include the study of the reaction of the vasculature could provide new ways on how to preserve and restore brain functions. The slice culture approach presented here might develop into an attractive and important tool for the study of ischemic brain injury and might be useful for testing potential therapeutic measures aimed at neuroprotection. PMID:25408363

  12. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures.

    PubMed

    Kristensen, B W; Noraberg, J; Thiébaud, P; Koudelka-Hep, M; Zimmer, J

    2001-03-30

    In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn) rats were grown for 4-8 weeks on the perforated silicon chips with silicon nitride surfaces and 40 microm sized holes and compared with corresponding tissue slices grown on conventional semiporous membranes. In terms of preservation of the basic cellular and connective organization, as visualized by Nissl staining, Timm sulphide silver-staining, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) immunostaining, the slice cultures grown on chips did not differ from conventionally grown slice cultures. Neither were there any signs of astrogliosis or neurodegeneration around the upper recording part of the 47-microm-high platinum-tip electrodes. Slice cultures grown on a separate set of chips with platinum instead of silicon nitride surfaces also displayed normal MAP2 and GFAP immunostaining. The width of the GFAP-rich zone (glia limitans) at the bottom surface of the slice cultures was the same ( approximately 20 microm) in cultures grown on chips with silicon nitride and platinum surfaces and on conventional insert membranes. The slice cultures grown on chips maintained a normal, subfield differentiated susceptibility to the glutamate receptor agonist N-methyl-D-aspartate (NMDA) and the neurotoxin trimethyltin (TMT), as demonstrated by the cellular uptake of propidium iodide (PI), which was used as a reproducible and quantifiable marker for neuronal degeneration. We conclude that organotypic brain slice cultures can grow on silicon-based three-dimensional microelectrode arrays and develop normally with display of normal subfield differentiated susceptibilities to known excito- and neurotoxins. From this it is anticipated that the set

  13. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy

    PubMed Central

    Wong, Shi-Bing; Cheng, Sin-Jhong; Hung, Wei-Chen; Lee, Wang-Tso; Min, Ming-Yuan

    2015-01-01

    Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE. PMID:26659605

  14. The Control of Seizure-Like Activity in the Rat Hippocampal Slice

    PubMed Central

    Khosravani, Houman; Carlen, Peter L.; Velazquez, Jose L. Perez

    2003-01-01

    The sudden and transient hypersynchrony of neuronal firing that characterizes epileptic seizures can be considered as the transitory stabilization of metastable states present within the dynamical repertoire of a neuronal network. Using an in vitro model of recurrent spontaneous seizures in the rat horizontal hippocampal slice preparation, we present an approach to characterize the dynamics of the transition to seizure, and to use this information to control the activity and avoid the occurrence of seizure-like events. The transition from the interictal activity (between seizures) to the seizure-like event is aborted by brief (20–50 s) low-frequency (0.5 Hz) periodic forcing perturbations, applied via an extracellular stimulating electrode to the mossy fibers, the axons of the dentate neurons that synapse onto the CA3 pyramidal cells. This perturbation results in the stabilization of an interictal-like low-frequency firing pattern in the hippocampal slice. The results derived from this work shed light on the dynamics of the transition to seizure and will further the development of algorithms that can be used in automated devices to stop seizure occurrence. PMID:12524321

  15. DYNAMIC AND INTERACTING PROFILES OF •NO AND O2 IN RAT HIPPOCAMPAL SLICES

    PubMed Central

    Ledo, Ana; Barbosa, Rui; Cadenas, Enrique; Laranjinha, João

    2010-01-01

    Nitric oxide (•NO) is a ubiquitous signaling molecule that participates in the neuromolecular phenomena associated with memory formation. In the hippocampus, neuronal •NO production is coupled to the activation of the NMDA-type of glutamate receptor. Although, •NO-mediated signaling has been associated with soluble guanylate cyclase activation, cytochrome oxidase is also a target for this gaseous free radical, for which •NO competes with O2. Here, we show, for the first time in a model preserving tissue cytoarchitecture (rat hippocampal slices) and at a physiological O2 concentration, that endogenous NMDA-evoked •NO production inhibits tissue O2 consumption for submicromolar concentrations. The simultaneous real-time recordings reveal a direct correlation between the profiles of •NO and O2 in the CA1 subregion of the hippocampal slice. These results, obtained in a system close to in vivo models, strongly support the current paradigm for O2 and •NO interplay in the regulation of cellular respiration. PMID:20100565

  16. Effects of positive AMPA receptor modulators on calpain-mediated spectrin degradation in cultured hippocampal slices.

    PubMed

    Jourdi, Hussam; Yanagihara, Ted; Martinez, Ulises; Bi, Xiaoning; Lynch, Gary; Baudry, Michel

    2005-01-01

    Positive modulators of AMPA receptors (AMPAr), also known as ampakines, are allosteric effectors of the receptors and have been extensively studied in past years due to their potential use as treatment for various diseases and ailments of the central nervous system such as mild cognitive impairment, schizophrenia, and Alzheimer's disease. Ampakines have been shown to improve performance on memory tasks in animals and in human subjects, an effect linked to their ability to increase agonist-mediated ion influx through AMPAr, thus leading to enhanced synaptic responses and facilitation of long-term potentiation (LTP) induction at glutamatergic synapses. As LTP is associated with calpain activation and spectrin degradation, we determined the effects of ampakine treatment of cultured hippocampal slices on spectrin degradation. Calpain activation was evaluated by determining the levels of the 145-150kDa degradation products of spectrin. Our data indicated that incubation of hippocampal slices with some, but not all positive modulators of AMPA receptors resulted in enhanced spectrin degradation, an effect that was blocked by a calpain inhibitor. In addition, an antagonist of AMPAr but not of NMDAr blocked ampakine-induced spectrin degradation. These results indicate that prolonged treatment with selected ampakines leads to spectrin degradation mediated by activation of the calcium-dependent protease calpain.

  17. Effect of the nootropic drug oxiracetam on field potentials of rat hippocampal slices.

    PubMed Central

    Pugliese, A. M.; Corradetti, R.; Ballerini, L.; Pepeu, G.

    1990-01-01

    1. The effect of the nootropic drug oxiracetam on hippocampal neurotransmission was investigated in the CA1 region of the rat hippocampal slice in vitro by use of extracellular recordings. 2. Superfusion of oxiracetam (0.1-100 microM) produced a concentration-dependent, wash-resistant (greater than 90 min), increase in initial slope and amplitude of the dendritic field excitatory postsynaptic potential (e.p.s.p.). This increase was maximal at a concentration of 1 microM (70%). 3. Input-output curves relating the initial slope to the amplitude of the afferent volley were significantly (P less than 0.05) steeper and showed a greater maximal response in the presence of 1 microM oxiracetam than in control conditions. 4. Two trains of high frequency stimulation (100 Hz, 0.4 s, 5 min apart) delivered in the stratum radiatum 30 min after washout of oxiracetam (1 microM) still elicited a long-term potentiation (LTP) of the field e.p.s.p. However, the absolute magnitude of the LTP produced did not differ from that obtained in untreated slices. 5. After induction and establishment of LTP, oxiracetam (1 microM) had a smaller (27%) and reversible effect on the evoked field e.p.s.p. 6. D-2-Amino-5-phosphonopentanoic acid (AP-5), at the same concentration (50 microM) which in our conditions prevented the induction of LTP, blocked the action of 1 microM oxiracetam and strongly depressed the effect of higher concentrations of the nootropic drug. 7. It is concluded that oxiracetam provokes an enduring increase of neurotransmission in the CA1 rat hippocampal region.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1970492

  18. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model

    PubMed Central

    Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una

    2016-01-01

    Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258

  19. Imaging cell volume changes and neuronal excitation in the hippocampal slice.

    PubMed

    Andrew, R D; MacVicar, B A

    1994-09-01

    Brain cell swelling is a consequence of seizure, ischemia or excitotoxicity. Changes in light reflectance from cortical surface are now used to monitor brain activity but these intrinsic signals are poorly understood. The objectives of this study were first, to show that changes in light transmittance were correlated with cell volume and second, to image increases in light transmittance as they related to neuronal activation. Transverse hippocampal slices from the rat were used for the study. Brief exposure (4-6 min) to hypo-osmotic artificial cerebrospinal fluid (-40 mOsm) elevated light transmittance consistently and reversibly in most regions of the slice and particularly in CA1 dendritic regions. Neither zero-Ca2+ artificial cerebrospinal fluid nor tetrodotoxin altered the transmittance increase and its subsequent reversal, suggesting that it was dependent on osmolality but independent of synaptic transmission and neuronal firing. The amplitude of the CA1 population spike evoked from Schaffer collaterals increased concomitantly with the hypo-osmotic increase in light transmittance, providing evidence that the extracellular tissue resistance increased. Hyper-osmotic artificial cerebrospinal fluid (+40 mOsm) containing impermeant mannitol consistently lowered light transmittance and the amplitude of the population spike. Glycerol (+40 mOsm), which is cell permeant, did not have an affect. Taken together these observations indicate that osmotic challenge alters light transmittance by inducing changes in cell volume. Transmittance increases induced by hypo-osmotic artificial cerebrospinal fluid or 10 microM kainate were small in the CA1 cell body region compared to dendritic regions. Similarly, orthodromic stimulation of axons terminating in stratum oriens or in stratum radiatum evoked transmittance increases only in their respective postsynaptic areas. In contrast, the cell body region and its adjacent proximal-apical dendrites (both sites of action potential

  20. Heterogeneous spatial patterns of long-term potentiation in rat hippocampal slices

    PubMed Central

    Chang, Payne Y; Jackson, Meyer B

    2006-01-01

    Although LTP (long-term potentiation) of synaptic transmission has received much attention as a model for learning and memory, its function within a neural circuit context remains poorly understood. To monitor LTP over an extensive circuit, we imaged responses in hippocampal slices using a voltage-sensitive dye. Following theta-burst stimulation, evoked optical signals showed an increase that lasted 40 min or more. Weak stimuli only potentiated the local area around the stimulating electrode, but stronger stimuli induced LTP over a wide area with a complex and non-uniform spatial pattern. The expression of LTP showed distinct peaks and valleys that depended on which axons were activated. Interestingly, the spatial distribution of LTP bore no relation to the spatial distribution of single-shock responses, but closely resembled the distribution of postsynaptic spikes evoked by theta bursts. Thus, postsynaptic spikes during induction constitute a critical determinant for the expression of LTP in intact circuits. PMID:16873414

  1. Anisomycin inhibits the late maintenance of long-term depression in rat hippocampal slices in vitro.

    PubMed

    Sajikumar, Sreedharan; Frey, Julietta U

    2003-02-27

    Studies were performed to investigate whether electrically-induced long-term depression (LTD) within rat hippocampal slices in vitro shares any common cellular features with LTD in the intact animal, with particular emphasis being placed on mechanisms required for its late maintenance. Our initial studies have led to the development of stimulation protocols which are able to reliably produce different forms of LTD. Depending on the induction protocol applied, we are able to demonstrate a transient protein synthesis-independent early-LTD with a duration of up to 3-4 h, together with a de novo protein synthesis-dependent late-LTD lasting for at least 8 h. Furthermore, we are able to show input-specific LTD within the CA1 region, with expression shown only by those synapses specifically stimulated by a low-frequency protocol. These studies are important pre-requisites to investigate mechanisms of 'synaptic tagging' and 'late-associativity' during LTD.

  2. Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices

    PubMed Central

    Latini, Serena; Bordoni, Francesca; Pedata, Felicita; Corradetti, Renato

    1999-01-01

    The application of an ischaemic insult in hippocampal slices results in the depression of synaptic transmission, mainly attributed to the activation of A1 adenosine receptors by adenosine released in the extracellular space. To estimate the concentration of endogenous adenosine acting at the receptor level during an ischaemic episode, we recorded field e.p.s.ps (fe.p.s.ps) from hippocampal slices, and evaluated the ability of the selective A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), to reverse the fe.p.s.p. depression induced by in vitro ischaemia. A relationship between the IC50 of an antagonist and the endogenous concentration of a neurotransmitter has been used for pharmacological analysis. The complete and reversible depression of fe.p.s.p. in the CA1 region induced by 5 min ischaemia was decreased in the presence of DPCPX (50–500 nM). 8-Phenyltheophylline (10 μM) abolished the depression of fe.p.s.ps during the ischaemic period, while a small (peak effect 12±4%) decrease in fe.p.s.ps was observed during the initial phase of reperfusion. In the time-interval of maximal depression of fe.p.s.ps., IC50 and adenosine concentration changed as function of time with a good degree of correlation. The maximal value of adenosine concentration was 30 μM. Our data provide an estimation of the adenosine concentration reached at the receptor level during an ischaemic episode, with a higher time discrimination (15 s) than that achieved with any biochemical approach. This estimation may be useful in order to establish appropriate concentrations of purinergic compounds to be tested for their pharmacological effects during an ischaemic episode. PMID:10401564

  3. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.

    PubMed

    Li, Chengzhang; Wang, Jiangang; Zhao, Jianhua; Wang, Yali; Liu, Zhihua; Guo, Fang Li; Wang, Xiao Fang; Vreugdenhil, Martin; Lu, Cheng Biao

    2016-09-01

    Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.

  4. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.

    PubMed

    Rolseth, Veslemøy; Rundén-Pran, Elise; Neurauter, Christine Gran; Yndestad, Arne; Luna, Luisa; Aukrust, Pål; Ottersen, Ole Petter; Bjørås, Magnar

    2008-06-01

    The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.

  5. Active decay of composite excitatory postsynaptic potentials in hippocampal slices from young rats.

    PubMed

    Dozmorov, Mikhail; Niu, Yin-Ping; Xu, Hui-Ping; Xiao, Min-Yi; Li, Rui; Sandberg, Mats; Wigström, Holger

    2003-05-23

    NMDA receptor dependent synaptic plasticity was examined in hippocampal slices using a novel pharmacological pairing procedure. Field excitatory postsynaptic potentials (EPSPs) were recorded from the CA1 area of slices maintained in a low Mg(2+) solution using a stimulus rate of 0.1-0.2 Hz. The NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP5) was initially included in the perfusion solution to establish baseline recording of isolated AMPA EPSPs. Washing out AP5 led to the expression of composite EPSPs, containing both AMPA and NMDA receptor mediated components. Following an initial, transient potentiation of the AMPA component, the composite responses gradually decayed for several hours, involving AMPA and NMDA components to a similar extent. This decay was input specific and could be terminated at any stage by reapplication of AP5. Subsequent long-term potentiation (LTP) reversed the effect to an extent inversely related to the degree of depression. Experiments to test the interaction with long-term depression (LTD) revealed a significant but incomplete overlap between the two depression processes. In conclusion, pairing synaptic activation at test stimulus frequency with pharmacological unblocking of NMDA receptors allows for expression of composite EPSPs that decay substantially, due to an active mechanism. The underlying process appears to be at least partly distinct from those involved in homosynaptic LTP and LTD.

  6. Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices

    SciTech Connect

    Zhou Wei; Ge Wooping; Zeng Shaoqun; Duan Shumin; Luo Qingming . E-mail: qluo@mail.hust.edu.cn

    2007-01-19

    Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance.

  7. Desflurane impairs outcome of organotypic hippocampal slices in an in vitro model of traumatic brain injury

    PubMed Central

    Krings, Matthias; Höllig, Anke; Liu, Jingjin; Grüsser, Linda; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Decreased mortality and disability after traumatic brain injury is a significant medical challenge. Desflurane, a widely used volatile anesthetic has proven to be neuroprotective in a variety of in vitro and in vivo models of ischemic brain injury. The aim of this study was to investigate whether desflurane exhibits neuroprotective properties in an in vitro model of traumatic brain injury. Organotypic hippocampal slice cultures were prepared from brains of 5–7-day-old C57/BL6 mouse pups. After 14 days of culture, the slices were subjected to a focal mechanical trauma and thereafter incubated with three different concentrations of desflurane (2, 4 and 6%) for 2, 24 and 72 hours. Cell injury was assessed with propodium iodide uptake. Our results showed that after 2 hours of desflurane exposure, no significant change in trauma intensity was observed. However, 2% and 4% desflurane could reduce the trauma intensity significantly in the no trauma group than in the no desflurane and trauma group. Incubation with 4% desflurane for 24 hours doubled the trauma intensity in comparison to the trauma control group and the trauma intensity further increased after 72 hours of incubation. Furthermore, a dose-dependent increase of trauma intensity after 24 hours exposure was observed. Our results suggest that a general neuroprotective attribute of desflurane in an in vitro model of traumatic brain injury was not observed. PMID:27826417

  8. Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models.

    PubMed

    Motamedi, Gholam K; Salazar, Patricia; Smith, Eric L; Lesser, Ronald P; Webber, William R S; Ortinski, Pavel I; Vicini, Stefano; Rogawski, Michael A

    2006-08-01

    Cooling has been shown to terminate experimentally induced epileptiform activity in models of epilepsy without causing injury to the cooled brain, suggesting that cooling could represent an approach to seizure control in intractable focal epilepsies. Here we sought to determine the most effective way to apply cooling to abort spontaneous epileptiform discharges in in vitro brain slice models. We induced spontaneous epileptiform activity in rat brain slices by exposure to 4-aminopyridine (4-AP), 4-AP plus bicuculline, and Mg(2+)-free artificial CSF (aCSF) at 28-34 degrees C. Extracellular field recordings were made at hippocampal or neocortical sites. Slice temperature was reduced by perfusion with cold aCSF. Rapid cooling at rates of 2-5 degrees C/s was compared to cooling at slower rates of 0.1-1 degrees C/s. Cooling at both rates reversibly aborted epileptiform discharges in all three models and at all recording sites. With rapid cooling, small temperature drops were highly effective in terminating discharges, an effect that was sustained for as long as the reduced temperature level was maintained. In contrast, slow cooling required much larger temperature drops to inhibit discharges. With slow cooling, absolute temperature drops to 21-22 degrees C caused a 90% reduction in event frequency, but cooling to 14-15 degrees C was required to terminate discharges. We conclude that rapid cooling as effectively aborts discharges in in vitro epilepsy models as does slow cooling, but the magnitude of the temperature change required is less. Practical devices to inhibit seizure activity may only need to induce small temperature drops, if the cooling can be applied sufficiently rapidly.

  9. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.

    PubMed

    Hochman, D W; Schwartzkroin, P A

    2000-01-01

    Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl(-)](o) medium led to cessation of spontaneous synchronized bursting in CA1 >/=5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl(-)](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl(-)](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4-aminopyridine (4-AP) treatment showed that prolonged low-[Cl(-)](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl(-)](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the

  10. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices.

    PubMed

    Khazipov, R; Leinekugel, X; Khalilov, I; Gaiarsa, J L; Ben-Ari, Y

    1997-02-01

    1. Cell-attached and whole-cell recordings from interneurons localized in the stratum radiatum of the CA3 subfield (SR-CA3) of neonatal (postnatal days 2-5) rat hippocampal slices were performed to study their activity during the generation of GABAergic giant depolarizing potentials (GDPs) in CA3 pyramidal cells. 2. Dual recordings revealed that during the generation of GDPs in CA3 pyramidal cells, the interneurons fire bursts of spikes, on average 4.5 +/- 1.4 spikes per burst (cell-attached mode). There bursts were induced by periodical large inward currents (interneuronal GDPs) recorded in whole-cell mode. 3. Interneuronal GDPs revealed typical features of polysynaptic neuronal network-driven events: they were blocked by TTX and by high divalent cation medium and they could be evoked in an all-or-none manner by electrical stimulation in different regions of the hippocampus. The network elements required for the generation of GDPs are present in local CA3 circuits since spontaneous GDPs were present in the isolated CA3 subfield of the hippocampal slice. 4. Interneuronal GDPs were mediated by GABAA and glutamate receptors, since: (i) their reversal potential strongly depended on [Cl-]i; (ii) at the reversal potential of GABAA postsynaptic currents an inward component of GDPs was composed of events with the same kinetics as alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated EPSCs; and (iii) once GABAA receptors were blocked intracellularly by dialysis with F(-)-MgATP-free solution, the remaining component of interneuronal GDPs reversed near 0 mV and rectified at membrane potentials more negative than -20 mV, suggesting an important contribution of NMDA receptors in addition to AMPA receptors. 5. In cell-attached recordings from interneurons, electrical stimulation in the stratum radiatum evoked a burst of spikes that corresponded to evoked GDPs. Pharmacological study of this response revealed that excitation of SR-CA3 interneurons during

  11. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices.

    PubMed Central

    Khazipov, R; Leinekugel, X; Khalilov, I; Gaiarsa, J L; Ben-Ari, Y

    1997-01-01

    1. Cell-attached and whole-cell recordings from interneurons localized in the stratum radiatum of the CA3 subfield (SR-CA3) of neonatal (postnatal days 2-5) rat hippocampal slices were performed to study their activity during the generation of GABAergic giant depolarizing potentials (GDPs) in CA3 pyramidal cells. 2. Dual recordings revealed that during the generation of GDPs in CA3 pyramidal cells, the interneurons fire bursts of spikes, on average 4.5 +/- 1.4 spikes per burst (cell-attached mode). There bursts were induced by periodical large inward currents (interneuronal GDPs) recorded in whole-cell mode. 3. Interneuronal GDPs revealed typical features of polysynaptic neuronal network-driven events: they were blocked by TTX and by high divalent cation medium and they could be evoked in an all-or-none manner by electrical stimulation in different regions of the hippocampus. The network elements required for the generation of GDPs are present in local CA3 circuits since spontaneous GDPs were present in the isolated CA3 subfield of the hippocampal slice. 4. Interneuronal GDPs were mediated by GABAA and glutamate receptors, since: (i) their reversal potential strongly depended on [Cl-]i; (ii) at the reversal potential of GABAA postsynaptic currents an inward component of GDPs was composed of events with the same kinetics as alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated EPSCs; and (iii) once GABAA receptors were blocked intracellularly by dialysis with F(-)-MgATP-free solution, the remaining component of interneuronal GDPs reversed near 0 mV and rectified at membrane potentials more negative than -20 mV, suggesting an important contribution of NMDA receptors in addition to AMPA receptors. 5. In cell-attached recordings from interneurons, electrical stimulation in the stratum radiatum evoked a burst of spikes that corresponded to evoked GDPs. Pharmacological study of this response revealed that excitation of SR-CA3 interneurons during

  12. Fiber Tract Stimulation Can Reduce Epileptiform Activity in an in-vitro Bilateral Hippocampal Slice Preparation

    PubMed Central

    Toprani, Sheela; Durand, Dominique

    2012-01-01

    Mesial temporal lobe epilepsy (MTLE) is a common medically refractory neurological disease that has been treated with electrical stimulation of gray matter with limited success. However, stimulation of a white matter tract connecting the hippocampi could maximize treatment efficacy and extent. We tested low-frequency stimulation (LFS) of a novel target that enables simultaneous targeting of bilateral hippocampi: the ventral hippocampal commissure (VHC) with a novel in-vitro slice preparation containing bilateral hippocampi connected by the VHC. The goal of this study is to understand the role of hippocampal interplay in seizure propagation and reduction by commissural fiber tract stimulation. LFS is applied to the VHC as extracellular and intracellular recording techniques are combined with signal processing to estimate several metrics of epilepsy including: (1) total time occupied by seizure activity (%); (2) seizure duration (s); (3) seizures per minute (#); and (4) power in the ictal (V2Hz−1); as well as (5) interictal spectra (V2Hz−1). Bilateral epileptiform activity in this preparation is highly correlated between hippocampi. Application of LFS to the VHC reduces all metrics of epilepsy during treatment in an amplitude and frequency dependent manner. This study lends several insights into the mechanisms of bilateral seizure reduction by LFS of the VHC, including that depolarization blocking, LTD/LTP and GABAA are not involved. Importantly, enhanced post-stimulation 1-Hz spiking correlates with long-lasting seizure reduction and both are heightened by targeting bilateral hippocampi via the VHC. Therefore, stimulating bilateral hippocampi via a single electrode in the VHC may provide an effective MTLE treatment. PMID:23123405

  13. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures.

    PubMed

    Cho, Seongeun; Liu, Danni; Fairman, Denise; Li, Ping; Jenkins, Lorayne; McGonigle, Paul; Wood, Andrew

    2004-07-01

    Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.

  14. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    PubMed

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.

  15. Efficacy of a new charge-balanced biphasic electrical stimulus in the isolated sciatic nerve and the hippocampal slice.

    PubMed

    Cappaert, Natalie L M; Ramekers, Dyan; Martens, Hubert C F; Wadman, Wytse J

    2013-02-01

    Most deep brain stimulators apply rectangular monophasic voltage pulses. By modifying the stimulus shape, it is possible to optimize stimulus efficacy and find the best compromise between clinical effect, minimal side effects and power consumption of the stimulus generator. In this study, we compared the efficacy of three types of charge-balanced biphasic pulses (CBBPs, nominal duration 100 μs) in isolated sciatic nerves and in in vitro hippocampal brain slices of the rat. Using these two models, we tested the efficacy of several stimulus shapes exclusively on axons (in the sciatic nerve) and compared the effect with that of stimuli in the more complex neuronal network of the hippocampal slice by considering the stimulus-response relation. We showed that (i) adding an interphase gap (IPG, range 100-500 μs) to the CBBP enhances stimulus efficacy in the rat sciatic nerve and (ii) that this type of stimuli (CBBP with IPG) is also more effective in hippocampal slices. This benefit was similar for both models of voltage and current stimulation. In our two models, asymmetric CBBPs were less beneficial. Therefore, CBBPs with IPG appear to be well suited for application to DBS, since they enhance efficacy, extend battery life and potentially reduce harmful side effects.

  16. Simultaneous monitoring of excitatory postsynaptic potentials and extracellular L-glutamate in mouse hippocampal slices.

    PubMed

    Hozumi, Shizuko; Ikezawa, Kana; Shoji, Atushi; Hirano-Iwata, Ayumi; Bliss, Tim; Sugawara, Masao

    2011-02-15

    Simultaneous monitoring of amperometric currents at a glass capillary sensor based on recombinant GluOx and field excitatory postsynaptic potentials (fEPSPs) were performed in region CA1 of mouse hippocampal slices. A transient increase in the glutamate current relative to the basal one at control stimulation (0.052Hz) was evoked by stimulation at 2 Hz for 2 min. The magnitude of the glutamate current was dependent on the intensity (current) of a 2 Hz stimulus and reflected the slope of the fEPSP. The in situ calibration of the L-glutamate sensor revealed that the extracellular concentration of L-glutamate released by 2 Hz stimulation before tetanus is in the range from 0.8 to 2.2 μM and it is enhanced after tetanic stimulation. The L-glutamate level at a test stimulus (0.052 Hz) was estimated to be 32 nM. The recombinant GluOx-based sensor exhibited weak responses to glutamine above 300 μM and L-aspartic acid above 200 μM. The potential use of a glass capillary sensor in combination with fEPSP measurements for electrophysiological study is discussed.

  17. Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice

    PubMed Central

    Wang, Dongsheng; McMahon, Shane; Zhang, Zhen

    2012-01-01

    Gene targeting with genetically encoded optical voltage sensors brings the methods of voltage imaging to genetically defined neurons and offers a method of studying circuit activity in these selected populations. The present study reports the targeting of genetically encoded hybrid voltage sensors (hVOS) to neurons in transgenic mice. The hVOS family of probes employs a membrane-targeted fluorescent protein, which generates voltage-dependent fluorescence changes in the presence of dipicrylamine (DPA) as the result of a voltage-dependent optical interaction between the two molecules. We generated transgenic mice with two different high-performance hVOS probes under control of a neuron-specific thy-1 promoter. Hippocampal slices from these animals present distinct spatial patterns of expression, and electrical stimulation evoked fluorescence changes as high as 3%. Glutamate receptor and Na+ channel antagonists blocked these responses. One hVOS probe tested here harbors an axonal targeting motif (from GAP-43) and shows preferential expression in axons; this probe can thus report axonal voltage changes. Voltage imaging in transgenic mice expressing hVOS probes opens the door to the study of functional activity in genetically defined populations of neurons in intact neural circuits. PMID:22993267

  18. Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices.

    PubMed

    Albiñana, Elisa; Gutierrez-Luengo, Javier; Hernández-Juarez, Natalia; Baraibar, Andrés M; Montell, Eulalia; Vergés, Josep; García, Antonio G; Hernández-Guijo, Jesus M

    2015-01-01

    It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.

  19. Taurine release modified by GABAergic agents in hippocampal slices from adult and developing mice.

    PubMed

    Saransaari, P; Oja, S S

    2000-01-01

    In order to characterize the possible regulation of taurine release by GABAergic terminals, the effects of several agonists and antagonists of GABA receptors on the basal and K+-stimulated release of [3H]taurine were investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice using a superfusion system. Taurine release was concentration-dependently potentiated by GABA, which effect was reduced by phaclofen, saclofen and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at both ages, suggesting regulation by both GABA(B) and GABA(C) receptors. The involvement of GABA(A) receptors could not be excluded since the antagonist bicuculline was able to affect both basal and K+-evoked taurine release. Furthermore, several GABA(B) receptor effectors were able to inhibit K+-stimulated taurine release in the adults, while the GABA(C) receptor agonists trans-4-aminocrotonic acid (TACA) and cis-4-aminocrotonic acid (CACA) potentiated this release. The potentiation of taurine release by agents acting on the three types of GABA receptors in both adult and developing hippocampus further indicates the involvement of transporters operating in an outward direction. This inference is corroborated by the moderate but significant inhibition of taurine uptake by the same compounds.

  20. Histamine H1 and endothelin ETB receptors mediate phospholipase D stimulation in rat brain hippocampal slices.

    PubMed

    Sarri, E; Picatoste, F; Claro, E

    1995-08-01

    Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans-(1S,3R)-aminocyclopentyl-1,3-dicarboxylic acid (trans-ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans-ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 microM) was inhibited by the H1 receptor antagonist mepyramine with a Ki constant of 0.7 nM and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 nM) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 nM, respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.

  1. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions.

    PubMed

    Dal-Cim, Tharine; Ludka, Fabiana K; Martins, Wagner C; Reginato, Charlise; Parada, Esther; Egea, Javier; López, Manuela G; Tasca, Carla I

    2013-08-01

    Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti-inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol-3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin-sensitive G-protein-coupled signaling, blockade of adenosine A2A receptors (A2A R), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.

  2. Ischaemia differentially regulates GABAB receptor subunits in organotypic hippocampal slice cultures

    PubMed Central

    Cimarosti, Helena; Kantamneni, Sriharsha; Henley, Jeremy M.

    2012-01-01

    Reduced synaptic inhibition due to dysfunction of ionotropic GABAA receptors has been proposed as one factor in cerebral ischaemia-induced excitotoxic cell death. However, the participation of the inhibitory metabotropic GABAB receptors in these pathological processes has not been extensively investigated. We used oxygen–glucose deprivation (OGD) and NMDA-induced excitotoxicity as models to investigate whether ischaemia-like challenges alter the protein levels of GABAB1 and GABAB2 receptor subunits in rat organotypic hippocampal slice cultures. Twenty-four hours after the insult both OGD and NMDA produced a marked decrease in the total levels of GABAB2 (~75%), while there was no significant change in the levels of GABAB1 after OGD, but an increase after NMDA treatment (~100%). The GABAB receptor agonist baclofen (100 μM) was neuroprotective following OGD or NMDA treatment if added before or during the insult. GABAB receptors comprise heterodimers of GABAB1 and GABAB2 subunits and our results suggest that the separate subunits are independently regulated in response to extreme neuronal stress. However, because GABAB2 is required for functional surface expression, down-regulation of this subunit removes an important inhibitory feedback mechanism under pathological conditions. PMID:19328818

  3. Electroosmotic sampling. Application to determination of ectopeptidase activity in organotypic hippocampal slice cultures.

    PubMed

    Xu, Hongjuan; Guy, Yifat; Hamsher, Amy; Shi, Guoyue; Sandberg, Mats; Weber, Stephen G

    2010-08-01

    We hypothesize that peptide-containing solutions pulled through tissue should reveal the presence and activity of peptidases in the tissue. Using the natural zeta-potential in the organotypic hippocampal slice culture (OHSC), physiological fluids can be pulled through the tissue with an electric field. The hydrolysis of the peptides present in the fluid drawn through the tissue can be determined using capillary HPLC with electrochemical detection of the biuret complexes of the peptides following a postcolumn reaction. We have characterized this new sampling method by measuring the flow rate, examining the use of internal standards, and examining cell death caused by sampling. The sampling flow rate ranges from 60 to 150 nL/min with a 150 microm (ID) sampling capillary with an electric field (at the tip of the capillary) from 30 to 60 V/cm. Cell death can be negligible with controlled sampling conditions. Using this sampling approach, we have electroosmotically pulled Leu-enkephalin through OHSCs to identify ectopeptidase activity in the CA3 region. These studies show that a bestatin-sensitive aminopeptidase may be critical for the hydrolysis of exogenous Leu-enkephalin, a neuropeptide present in the CA3 region of OHSCs.

  4. Electroosmotic Sampling. Application to Determination of Ectopeptidase Activity in Organotypic Hippocampal Slice Cultures

    PubMed Central

    Xu, Hongjuan; Guy, Yifat; Hamsher, Amy; Shi, Guoyue; Sandberg, Mats; Weber, Stephen G.

    2010-01-01

    We hypothesize that peptide-containing solutions pulled through tissue should reveal the presence and activity of peptidases in the tissue. Using the natural ζ-potential in the organotypic hippocampal slice culture (OHSC), physiological fluids can be pulled through the tissue with an electric field. The hydrolysis of the peptides present in the fluid drawn through the tissue can be determined using capillary HPLC with electrochemical detection of the biuret complexes of the peptides following a postcolumn reaction. We have characterized this new sampling method by measuring the flow rate, examining the use of internal standards, and examining cell death caused by sampling. The sampling flow rate ranges from 60 to 150 nL/min with a 150 μm (ID) sampling capillary with an electric field (at the tip of the capillary) from 30 to 60 V/cm. Cell death can be negligible with controlled sampling conditions. Using this sampling approach, we have electroosmotically pulled Leu-enkephalin through OHSCs to identify ectopeptidase activity in the CA3 region. These studies show that a bestatin-sensitive aminopeptidase may be critical for the hydrolysis of exogenous Leu-enkephalin, a neuropeptide present in the CA3 region of OHSCs. PMID:20669992

  5. Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures.

    PubMed

    Vogel, Edward W; Effgen, Gwen B; Patel, Tapan P; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2016-04-01

    Over the last 13 years, traumatic brain injury (TBI) has affected over 230,000 U.S. service members through the conflicts in Iraq and Afghanistan, mostly as a result of exposure to blast events. Blast-induced TBI (bTBI) is multi-phasic, with the penetrating and inertia-driven phases having been extensively studied. The effects of primary blast injury, caused by the shockwave interacting with the brain, remain unclear. Earlier in vivo studies in mice and rats have reported mixed results for primary blast effects on behavior and memory. Using a previously developed shock tube and in vitro sample receiver, we investigated the effect of isolated primary blast on the electrophysiological function of rat organotypic hippocampal slice cultures (OHSC). We found that pure primary blast exposure inhibited long-term potentiation (LTP), the electrophysiological correlate of memory, with a threshold between 9 and 39 kPa·ms impulse. This deficit occurred well below a previously identified threshold for cell death (184 kPa·ms), supporting our previously published finding that primary blast can cause changes in brain function in the absence of cell death. Other functional measures such as spontaneous activity, network synchronization, stimulus-response curves, and paired-pulse ratios (PPRs) were less affected by primary blast exposure, as compared with LTP. This is the first study to identify a tissue-level tolerance threshold for electrophysiological changes in neuronal function to isolated primary blast.

  6. Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays

    PubMed Central

    Gong, Wei; Senčar, Jure; Bakkum, Douglas J.; Jäckel, David; Obien, Marie Engelene J.; Radivojevic, Milos; Hierlemann, Andreas R.

    2016-01-01

    A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA) was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed “footprints” of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times. PMID:27920665

  7. The organophosphate sarin, at low concentrations, inhibits the evoked release of GABA in rat hippocampal slices.

    PubMed

    Chebabo, S R; Santos, M D; Albuquerque, E X

    1999-12-01

    In the present study, the whole-cell mode of the patch-clamp technique was applied to neurons of the CA1 pyramidal layer of rat hippocampal slices to investigate the effects of the organophosphate (OP) sarin on field stimulation-evoked and on tetrodotoxin (TTX)-insensitive postsynaptic currents (PSCs) mediated by activation of type A gamma-aminobutyric acid (GABA) receptors or AMPA-type glutamate receptors. At 0.3-1 nM, sarin reduced the amplitude of GABA-mediated PSCs and had no effect on the amplitude of glutamatergic PSCs evoked by field stimulation of neurons synaptically connected to the neuron under study. The effect of sarin on evoked GABAergic PSCs was unrelated to cholinesterase inhibition, was partially reversed upon washing of the neurons with sarin-free external solution, and was mediated by a direct interaction of the OP with muscarinic acetylcholine receptors present on presynaptic GABAergic neurons. Sarin had no effect on the amplitude or kinetics of GABA- or glutamate-mediated miniature postsynaptic currents (MPSCs) recorded in the presence of the Na+-channel blocker TTX (300 nM), indicating that the OP does not interact with GABA(A) or glutamate receptors. Further, sarin did not alter the frequency of GABAergic or glutamatergic MPSCs, a finding that led to the conclusion that this OP does not affect the TTX-insensitive release of neurotransmitters. A selective reduction by sarin of the action potential-dependent release of GABA in the hippocampus can account for the occurrence of seizures in intoxicated subjects.

  8. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    PubMed

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  9. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  10. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed Central

    Greene, R W; Haas, H L

    1985-01-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation. PMID:3932644

  11. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    PubMed

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  12. Analysis of Spine Motility of Newborn Granule Cells in Acute Brain Slices.

    PubMed

    Tashiro, Ayumu; Zhao, Chunmei; Suh, Hoonkyo; Gage, Fred H

    2015-10-01

    In this protocol, acute brain slices are prepared from mice in which newborn granule cells have been labeled using retroviral vector technology. Using a live-cell imaging stage and confocal microscopy coupled to imaging software, dendritic spines are analyzed.

  13. Protective effect of 20-HETE inhibition in a model of oxygen-glucose deprivation in hippocampal slice cultures

    PubMed Central

    Renic, Marija; Kumar, Suresh N.; Gebremedhin, Debebe; Florence, Matthew A.; Gerges, Nashaat Z.; Falck, John R.; Harder, David R.

    2012-01-01

    Recent studies have indicated that inhibitors of the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) may have direct neuroprotective actions since they reduce infarct volume after ischemia reperfusion in the brain without altering blood flow. To explore this possibility, the present study used organotypic hippocampal slice cultures subjected to oxygen-glucose deprivation (OGD) and reoxygenation to examine whether 20-HETE is released by organotypic hippocampal slices after OGD and whether it contributes to neuronal death through the generation of ROS and activation of caspase-3. The production of 20-HETE increased twofold after OGD and reoxygenation. Blockade of the synthesis of 20-HETE with N-hydroxy-N′-(4-butyl-2-methylphenol)formamidine (HET0016) or its actions with a 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, reduced cell death, as measured by the release of lactate dehydrogenase and propidium iodide uptake. Administration of a 20-HETE mimetic, 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid (5,14-20-HEDE), had the opposite effect and increased injury after OGD. The death of neurons after OGD was associated with an increase in the production of ROS and activation of caspase-3. These effects were attenuated by HET0016 and potentiated after the administration of 5,14-20-HEDE. These findings indicate that the production of 20-HETE by hippocampal slices is increased after OGD and that inhibitors of the synthesis or actions of 20-HETE protect neurons from ischemic cell death. The protective effect of 20-HETE inhibitors is associated with a decrease in superoxide production and activation of caspase-3. PMID:22245774

  14. Increase of hypoxic tolerance in rat hippocampal slices following 3-nitropropionic acid is not mediated by endogenous nerve growth factor.

    PubMed

    Riepe, M W; Kasischke, K; Gericke, C A; Löwe, A; Hellweg, R

    1996-06-14

    Chemical preconditioning with low dose inhibition of succinic dehydrogenase by 3-nitropropionic acid (3-np) increases tolerance against succeeding hypoxia. Supraphysiological doses of nerve growth factor (NGF) repeatedly were shown to protect against ischemic damage. We investigated whether increased tolerance against hypoxia results from increased or accelerated production of endogenous NGF. Average recovery of population spike amplitude after 15 min of hypoxia and 45 min of reoxygenation was 31 +/- 9% (mean +/- SE) in control hippocampal slices. After pretreatment with 3-np (single i.p. injection of 20 mg/kg body weight 1 h to 3 days prior to slice preparation), recovery exceeded 90% (P < 0.01). However, NGF content did not increase upon slice preparation, hypoxia in vitro, and pretreatment with 3-np in vivo 1 h to 1 day prior to slice preparation with and without additional hypoxia in vitro. We conclude that early-onset tolerance to hypoxia induced by 3-np treatment is not caused by induction of endogenous NGF production.

  15. Ampakine CX516 ameliorates functional deficits in AMPA receptors in a hippocampal slice model of protein accumulation.

    PubMed

    Kanju, Patrick M; Parameshwaran, Kodeeswaran; Sims, Catrina; Bahr, Ben A; Shonesy, Brian C; Suppiramaniam, Vishnu

    2008-11-01

    AMPAkines are positive modulators of AMPA receptors, and previous work has shown that these compounds can facilitate synaptic plasticity and improve learning and memory in both animals and humans; thus, their role in the treatment of cognitive impairment is worthy of investigation. In this study, we have utilized an organotypic slice model in which chloroquine-induced lysosomal dysfunction produces many of the pathogenic attributes of Alzheimer's disease. Our previous work demonstrated that synaptic AMPA receptor function is impaired in hippocampal slice cultures exhibiting lysosomal dysfunction leading to protein accumulation. The present study investigated the effect of the AMPAkine CX516 on AMPAR-mediated synaptic transmission as well as the CX516 induced modification of single channel AMPA receptor properties in this organotypic slice-culture model. In whole cell recordings from CA1 pyramidal neurons in chloroquine-treated slices we observed a significant decrease in AMPAR-mediated mEPSC frequency and amplitude indicating synaptic dysfunction. Following application of CX516, these parameters returned to nearly normal levels. Similarly, we report chloroquine-induced impairment of AMPAR single channel properties (decreased probability of opening and mean open time), and significant recovery of these properties following CX516 administration. These results suggest that AMPA receptors may be potential pharmaceutical targets for the treatment of neurodegenerative diseases, and highlights AMPAkines, in particular, as possible therapeutic agents.

  16. Catuaba (Trichilia catigua) prevents against oxidative damage induced by in vitro ischemia-reperfusion in rat hippocampal slices.

    PubMed

    Kamdem, Jean Paul; Waczuk, Emily Pansera; Kade, Ige Joseph; Wagner, Caroline; Boligon, Aline Augusti; Athayde, Margareth Linde; Souza, Diogo Onofre; Rocha, João Batista Teixeira

    2012-12-01

    Oxidative stress is implicated in brain damage associated with ischemia-reperfusion. Natural antioxidants found in some plants used in folk medicine have been indicated as potential neuroprotective agents. Here we investigated whether Trichilia catigua, a traditional Brazilian herbal medicine alleged to exhibit a variety of neuropharmacological properties (antidepressant, anti-neurasthenic, anti-inflammatory etc.), could have neuroprotective properties in rat hippocampal slices subjected to 2 h oxygen and glucose deprivation (OGD) followed by 1 h reperfusion. Ischemia-reperfusion (I/R) significantly decreased mitochondrial viability, increased dichlorofluorescein oxidation above control both in the incubation medium and slices homogenates, increased lactate dehydrogenase into the incubation medium and decreased non-protein thiols. T. catigua (40-100 μg/mL) protected slices from the deleterious effects of OGD when present before OGD and during the reperfusion periods. Oxidative stress in the medium was also determined under different conditions and the results demonstrated that T. catigua could not protect slices from I/R when it was added to the medium after ischemic insult. Although the translation to a real in vivo situation of I/R is difficult to be done, the results indicated that T. catigua should be used as preventive and not as a curative agent against brain damage.

  17. Effects of Blast Overpressure on Neurons and Glial Cells in Rat Organotypic Hippocampal Slice Cultures

    PubMed Central

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Budde, Matthew D.; Pintar, Frank A.; Tarima, Sergey; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2015-01-01

    Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure. PMID:25729377

  18. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures.

    PubMed

    Miller, Anna P; Shah, Alok S; Aperi, Brandy V; Budde, Matthew D; Pintar, Frank A; Tarima, Sergey; Kurpad, Shekar N; Stemper, Brian D; Glavaski-Joksimovic, Aleksandra

    2015-01-01

    Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.

  19. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    PubMed

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  20. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures.

    PubMed

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L; Pait, Morgan C; Almeida, Michael F; Ghukasyan, Vladimir V; Bahr, Ben A

    2016-12-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without

  1. Effects of a naturally occurring neurosteroid on GABAA IPSCs during development in rat hippocampal or cerebellar slices

    PubMed Central

    Cooper, Elizabeth J; Johnston, Graham A R; Edwards, Frances A

    1999-01-01

    The effects of the naturally occurring neurosteroid tetrahydrodeoxycorticosterone (THDOC) on GABAA receptor-mediated miniature, spontaneous and evoked IPSCs was tested using patch-clamp techniques in slices of hippocampus and cerebellum from rats at two developmental stages (≈10 and ≈20 days postnatal). The cells studied were hippocampal granule cells and cerebellar Purkinje and granule cells. Most miniature GABAergic currents (mIPSCs) decayed with two exponentials and neurosteroids caused a ≈4-fold increase in the decay time constant of the second exponential at the highest concentration used (2 μm). Similar effects were seen at high concentrations of THDOC (1-2 μm) in all cell groups tested. No effects were seen on amplitude or rise time of mIPSCs. The effects of THDOC (1 μm) were shown to be stereoselective and rapidly reversible, indicating that the neurosteroid binds to the GABAA receptor, rather than acting genomically. At concentrations of THDOC likely to occur physiologically (50–100 nm), the decay time of IPSCs was also enhanced (25–50 %) in all cerebellar cell groups tested. In contrast, at 100 nm THDOC, seven of 11 hippocampal granule cells were sensitive from the 10 day group but the 20 day hippocampal granule cells showed no significant enhancement in the presence of these lower concentrations of THDOC. The differences in sensitivity of hippocampal and cerebellar cells to THDOC are compared to data reported in the literature on regional development of expression of different receptor subunits in the brain and it is suggested that the progressive relative insensitivity of the 20 day hippocampal cells may depend on increasing expression of the δ subunit of the GABAA receptor and possibly an increase in the α4 subunit. PMID:10581314

  2. Selective Inhibition of KCC2 Leads to Hyperexcitability and Epileptiform Discharges in Hippocampal Slices and In Vivo

    PubMed Central

    Sivakumaran, Sudhir; Cardarelli, Ross A.; Maguire, Jamie; Kelley, Matt R.; Silayeva, Liliya; Morrow, Danielle H.; Mukherjee, Jayanta; Moore, Yvonne E.; Mather, Robert J.; Duggan, Mark E.; Brandon, Nicholas J.; Dunlop, John; Zicha, Stephen

    2015-01-01

    GABAA receptors form Cl− permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K+/Cl− cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl− levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization. Here we used the selective KCC2 inhibitor VU0463271 [N-cyclopropyl-N-(4-methyl-2-thiazolyl)-2-[(6-phenyl-3-pyridazinyl)thio]acetamide] to investigate the influence of KCC2 function. Application of VU0463271 caused a reversible depolarizing shift in EGABA values and increased spiking of cultured hippocampal neurons. Application of VU0463271 to mouse hippocampal slices under low-Mg2+ conditions induced unremitting recurrent epileptiform discharges. Finally, microinfusion of VU0463271 alone directly into the mouse dorsal hippocampus rapidly caused epileptiform discharges. Our findings indicated that KCC2 function was a critical inhibitory factor ex vivo and in vivo. PMID:26019342

  3. Novel sulfoglycolipid IG20 causes neuroprotection by activating the phase II antioxidant response in rat hippocampal slices.

    PubMed

    Punzón, Eva; García-Alvarado, Fernanda; Maroto, Marcos; Fernández-Mendívil, Cristina; Michalska, Patrycja; García-Álvarez, Isabel; Arranz-Tagarro, Juan Alberto; Buendia, Izaskun; López, Manuela G; León, Rafael; Gandía, Luis; Fernández-Mayoralas, Alfonso; García, Antonio G

    2017-04-01

    Compound IG20 is a newly synthesised sulphated glycolipid that promotes neuritic outgrowth and myelinisation, at the time it causes the inhibition of glial proliferation and facilitates exocytosis in chromaffin cells. Here we have shown that IG20 at 0.3-10 μM afforded neuroprotection in rat hippocampal slices stressed with veratridine, glutamate or with oxygen plus glucose deprivation followed by reoxygenation (OGD/reox). Excess production of reactive oxygen species (ROS) elicited by glutamate or ODG/reox was prevented by IG20 that also restored the depressed tissue levels of GSH and ATP in hippocampal slices subjected to OGD/reox. Furthermore, the augmented iNOS expression produced upon OGD/reox exposure was also counteracted by IG20. Additionally, the IG20 elicited neuroprotection was prevented by the presence of inhibitors of the signalling pathways Jak2/STAT3, MEK/ERK1/2, and PI3K/Akt, consistent with the ability of the compound to increase the phosphorylation of Jak2, ERK1/2, and Akt. Thus, the activation of phase II response and the Nrf2/ARE pathway could explain the antioxidant and anti-inflammatory effects and the ensuing neuroprotective actions of IG20.

  4. Dexmedetomidine promotes the recovery of the field excitatory postsynaptic potentials (fEPSPs) in rat hippocampal slices exposed to oxygen-glucose deprivation.

    PubMed

    Kim, Sung-Eun; Ko, Il-Gyu; Kim, Chang-Ju; Chung, Jun-Young; Yi, Jae-Woo; Choi, Jeong-Hyun; Jang, Myung-Soo; Han, Jin-Hee

    2016-09-19

    Dexmedetomidine (DEX), a selective α2 adrenergic agonist, is an anesthetic and sedative agent, and is reported to exert neuroprotective effects after hypoxic ischemia. However, there are few studies on the electrophysiological effect of DEX in hippocampal slices under ischemic conditions. The effects of DEX on field potential in hippocampal slices exposed to oxygen-glucose deprivation (OGD) were evaluated. Hippocampal slices were prepared from rats, and the evoked field excitatory postsynaptic potentials (fEPSPs) were recorded using the MED 64 system. Hypoxic-ischemia was induced by perfusion with glucose-free artificial cerebrospinal fluid (aCSF) bubbled with 95% N2 and 5% CO2, and hippocampal slices were perfused with DEX-added aCSF before, during, and after OGD induction. In the normal hippocampal slices, perfusion with 1 and 10μM DEX did not significantly decrease the normalized fEPSP amplitude, but 100μM DEX significantly reduced the fEPSP amplitude compared with its baseline control. The induction of OGD remarkably decreased the fEPSP amplitude, whereas the pre-, co-, and post-treatment of 10μM DEX gradually promoted recovery after washing out, and consequently the amplitude of fEPSP in DEX pre-, co-, and post-treated OGD slices were significantly higher than that in the untreated OGD slices at 10min and 60min after washing out. In particular, co-treatment with DEX conspicuously promoted the recovery of the fEPSP amplitude at the beginning of washing out. These results suggest the possibility of DEX as a therapeutic agent to prevent hypoxic-ischemic brain damage and promote functional recovery after ischemia.

  5. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia

    PubMed Central

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects. PMID:28280327

  6. Imbalance between excitation and inhibition among synaptic connections of CA3 pyramidal neurons in cultured hippocampal slices.

    PubMed

    Cruz-Martín, Alberto; Schweizer, Felix E

    2008-03-01

    A fundamental property of small neuronal ensembles is their ability to be selectively activated by distinct stimuli. One cellular mechanism by which neurons achieve this input selectivity is by modulating the temporal dynamics of excitation and inhibition. We explored the interplay of excitation and inhibition in synapses between pyramidal neurons of cornu ammonis field 3 of the hippocampal formation (CA3) in cultured rat hippocampal slices, where activation of a single excitatory cell can readily recruit local interneurons. Simultaneous whole-cell recordings from pairs of CA3 pyramidal neurons revealed that the strength of connections was neither uniform nor balanced. Rather, stimulation of presynaptic neurons elicited distinct combinations of excitatory postsynaptic current-inhibitory postsynaptic current (EPSC-IPSC) amplitudes in the postsynaptic neurons. EPSC-IPSC sequences with small EPSCs had large IPSCs and sequences that contained large EPSCs had small IPSCs. In addition to differences in the amplitudes of the responses, the kinetics of the EPSCs were also different, creating distinct temporal dynamics of excitation and inhibition. Weaker EPSCs had significantly slower kinetics and were efficiently occluded by IPSCs, thereby further limiting their contribution to depolarizing the postsynaptic membrane. Our data suggest that hippocampal pyramidal cells may use an imbalance between excitation and inhibition as a filter to enhance selectivity toward preferential excitatory connections.

  7. Changes in intrinsic inhibition in isolated hippocampal slices during ethanol withdrawal; lack of correlation with withdrawal hyperexcitability.

    PubMed Central

    Whittington, M. A.; Little, H. J.; Lambert, J. D.

    1992-01-01

    1. Intracellular recordings were made from pyramidal cells in area CA1 in mouse isolated hippocampal slices, after chronic ethanol treatment in vivo. 2. Fast i.p.s.ps were isolated by injection of the impaled neurones with QX314 (to block fast sodium currents and the slow i.p.s.p.) and stimulating the interneurones in the presence of the glutamatergic blockers, CNQX and APV. 3. The isolated fast-inhibitory postsynaptic potential (f.-i.p.s.p.) was measured at intervals during the 7 h withdrawal period. The reversal potential and sensitivity to bicuculline suggested that the isolated f.-i.p.s.p. was mediated by activation of the GABAA receptor-chloride ionophore complex. 4. Measurement of stimulus-response relationships for the f.-i.p.s.ps revealed an initial increase in the maximum size of the i.p.s.p., evoked from a membrane potential of -50 mV, seen at 2 h into ethanol withdrawal. This was attributed to a negative shift in the reversal potential, Ei.p.s.p., with no observed change in conductance, Gi.p.s.p. 5. No differences in f.-i.p.s.ps evoked during ethanol withdrawal or in control slices were seen at 4 h or 6 h. At these times, epileptiform activity was seen in previous field potential recordings. 6. Paired pulse depression of the f.-i.p.s.p. was significantly increased at 2 h into withdrawal, when a 150 ms pulse interval was used. No differences were seen at later times in the ethanol withdrawal period. 7. The results suggest that ethanol withdrawal hyperexcitability in isolated hippocampal slices is not caused by primary decreases in inhibition mediated by the GABAA receptor-chloride ionophore complex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1330182

  8. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system

    PubMed Central

    Sperlágh, Beáta; Szabó, Gábor; Erdélyi, Ferenc; Baranyi, Mária; Sylvester Vizi, E

    2003-01-01

    Here, we investigated how nucleotides and nucleosides affect the release of tritiated purines and endogenous adenosine 5′-triphosphate (ATP) from superfused rat hippocampal slices. ATP elicited concentration-dependent [3H]purine efflux from slices preloaded with [3H]adenosine. High-performance liquid chromatography analysis of the effluent showed that the tritium label represented the whole set of adenine nucleotides and nucleosides, and ATP significantly increased the outflow of [3H]ATP. Adenosine 5′-diphosphate, adenosine, uridine, uridine 5′-triphosphate, α,β-methylene-ATP and 3′-O-(4-benzoylbenzoyl)-ATP were also active in eliciting [3H]purine release. Adenosine (300 μM) also evoked endogenous ATP efflux from the hippocampal slices. Reverse transcription-coupled-polymerase chain reaction analysis revealed that mRNAs encoding a variety of P2X and P2Y receptor proteins are expressed in the rat hippocampus. Nevertheless, neither P2 receptor (i.e. pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid, 30 μM, suramin, 300 μM and reactive blue 2, 10 μM), nor adenosine receptor (8-cyclopentyl-1,3-dipropylxanthine, 250 nM and dimethyl-1-propargylxanthine, 250 nM) antagonists modified the effect of ATP (300 μM) to evoke [3H]purine release. The nucleoside transport inhibitors, dipyridamole (10 μM), nitrobenzylthioinosine (10 μM) and adenosine deaminase (2–10 U ml−1), but not the ecto-adenylate kinase inhibitor diadenosine pentaphosphate (200 μM) significantly reduced ATP-evoked [3H]purine efflux. In summary, we found that ATP and other nucleotides and nucleosides promote the release of one another and themselves by the nucleoside transport system. This action could have relevance during physiological and pathological elevation of extracellular purine levels high enough to reverse the nucleoside transporter. PMID:12788822

  9. PROPYLTHIOURACIL (PTU)-INDUCED HYPOTHYROIDISM: EFFECTS ON SYNAPTIC TRANSMISSION AND LONG TERM POTENTIATION IN HIPPOCAMPAL SLICES.

    EPA Science Inventory

    Concern has been raised over endocrine effects of some classes of environmental chemicals. Severe hypothyroidism during critical periods of brain developmental leads to alterations in hippocampal structure, learning deficits, yet neurophysiological properties of the hippocampus...

  10. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats.

    PubMed

    Krüger, Katharina; Straub, Heidrun; Hirner, Alfred V; Hippler, Jörg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krüger, K., Straub, H., Binding, N., Mubetahoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krüger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mubetahoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA(V) had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA(III) strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 micromol/l (adult rats) and 25 micromol/l (young rats) and LTP amplitudes at concentrations of 25 micromol/l (adult rats) and 10 micromol/l (young rats), respectively. In contrast, application of 1 micromol/l MMA(III) led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Kr

  11. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    SciTech Connect

    Krueger, Katharina Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mu{beta}hoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Mu{beta}hoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mu{beta}hoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA{sup V}) and monomethylarsonous acid (MMA{sup III}) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA{sup V} had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA{sup III} strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 {mu}mol/l (adult rats) and 25 {mu}mol/l (young rats) and LTP amplitudes at concentrations of 25 {mu}mol/l (adult rats) and 10 {mu}mol/l (young rats), respectively. In contrast, application of 1 {mu}mol/l MMA{sup III} led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at

  12. Simulation and experimental study of DC electric field distribution characteristics of rat hippocampal slices in vitro

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Qiu, Qian; Li, Ze-yan; Zhao, Zhe; Chen, Rui-juan; Wang, Hui-quan

    2016-06-01

    Direct current (DC) electric field is a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons. Despite its efficacy, the dielectric constant of artificial cerebrospinal fluid and the position and direction of brain slices and other factors can affect the field intensity and distribution acting on the surface of rat hippocampus slices, thus causing errors. In this study, we describe a new analytical method optimized for DC electric fields acting on brain slices, and the design of an external DC electric field stimulator to allow scientific evaluation of brain slices. We investigated parameters regarding the uniformity of electric field distribution and identified the maximal parameters using the finite element method. Then, we selected and simplified slice images using magnetic resonance imaging data and calculated the electric field intensity of the original and simplified models. The electric field simulator induced action potential and excitatory postsynaptic current with intensities of 1, 5, and 10 V/m. This study describes the development of a new electric field stimulator and successfully demonstrates its practicability for scientific evaluation of tissue slices.

  13. BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices.

    PubMed

    Jourdi, H; Hamo, L; Oka, T; Seegan, A; Baudry, M

    2009-04-01

    Neurotoxicity is involved in various neurodegenerative diseases including Parkinson's disease (PD), which affects mesencephalic dopaminergic neurons of the substantia nigra (SN). Positive alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators (PARMs, a.k.a. Ampakines, such as CX614) increase brain-derived neurotrophic factor (BDNF) protein levels in vivo and in cultured hippocampal slices. BDNF is a survival factor for various neuronal cell types including mesencephalic dopaminergic neurons. Using cultured mesencephalic and hippocampal slices, we investigated whether preincubation with CX614 could provide neuroprotection against MPP(+) toxicity and whether such neuroprotection was mediated by BDNF. Various treatment protocols were tested to demonstrate CX614-induced neuroprotection against MPP(+). Pretreatment with CX614 significantly reduced MPP(+)-induced toxicity and increased BDNF levels in both hippocampal and mesencephalic cultured slices; CX614 pretreatment for 6 h in hippocampal slices and 24 h in mesencephalic slices was sufficient to produce significant neuroprotection as assessed with lactate dehydrogenase release in slice medium and propidium iodide uptake in slices. Both a BDNF scavenger and an inhibitor of the BDNF receptor TrkB, abrogated CX614-mediated reduction of MPP(+)-induced toxicity. Inhibition of Ca(2+)-activated proteases, calpains, was also protective against MPP(+)-induced toxicity. However, co-application of calpain inhibitor with CX614 abolished CX614-mediated protection, suggesting a dual action of calpains in this model. We conclude that CX614 is neuroprotective against MPP(+)-induced toxicity, an effect mediated by increased BDNF expression and activation of BDNF-dependent signaling pathways. Our results provide support for using PARMs as a new therapy for neurodegenerative disorders, including PD.

  14. Effects of acute hippocampal stimulation on EEG dynamics.

    PubMed

    Nair, Sandeep P; Sackellares, J Chris; Shiau, Deng-Shan; Norman, Wendy M; Dance, Linda K; Pardalos, Panos M; Principe, Jose C; Carney, Paul R

    2006-01-01

    Progressive preictal dynamical convergence and postictal divergence of dynamical EEG descriptors among brain regions has been reported in human temporal lobe epilepsy (TLE) and in a rodent model of TLE. There are also reports of anticonvulsant effects of high frequency stimulation of the hippocampus in humans. We postulate that this anticonvulsant effect is due to dynamical resetting by the electrical stimulation. The following study investigated the effects of acute hippocampal electrical stimulation on dynamical transitions in the brain of a spontaneously seizing animal model of TLE to test the hypothesis of divergence in dynamical values by electrical stimulation of the hippocampus.

  15. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.

    PubMed

    Hájos, Norbert; Ellender, Tommas J; Zemankovics, Rita; Mann, Edward O; Exley, Richard; Cragg, Stephanie J; Freund, Tamás F; Paulsen, Ole

    2009-01-01

    Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.

  16. Properties of Taurine Release in Glucose-Free Media in Hippocampal Slices from Developing and Adult Mice

    PubMed Central

    Oja, Simo S.; Saransaari, Pirjo

    2015-01-01

    The release of preloaded [3H]taurine from hippocampal slices from developing 7-day-old and young adult 3-month-old mice was studied in a superfusion system in the absence of glucose. These hypoglycemic conditions enhanced the release at both ages, the effect being markedly greater in developing mice. A depolarizing K+ concentration accentuated the release, which indicates that it was partially mediated by exocytosis. The anion channel blockers were inhibitory, witnessing the contribution of ion channels. NO-generating agents fomented the release as a sign of the participation of excitatory amino acid receptors. The other second messenger systems were apparently less efficient. The much greater taurine release could be a reason for the well-known greater tolerance of developing nervous tissue to lack of glucose. PMID:26347028

  17. Copper Inhibits NMDA Receptor-Independent LTP and Modulates the Paired-Pulse Ratio after LTP in Mouse Hippocampal Slices

    PubMed Central

    Salazar-Weber, Nina L.; Smith, Jeffrey P.

    2011-01-01

    Copper misregulation has been implicated in the pathological processes underlying deterioration of learning and memory in Alzheimer's disease and other neurodegenerative disorders. Supporting this, inhibition of long-term potentiation (LTP) by copper (II) has been well established, but the exact mechanism is poorly characterized. It is thought that an interaction between copper and postsynaptic NMDA receptors is a major part of the mechanism; however, in this study, we found that copper (II) inhibited NMDA receptor-independent LTP in the CA3 region of hippocampal slices. In addition, in the CA3 and CA1 regions, copper modulated the paired-pulse ratio (PPR) in an LTP-dependent manner. Combined, this suggests the involvement of a presynaptic mechanism in the modulation of synaptic plasticity by copper. Inhibition of the copper-dependent changes in the PPR with cyclothiazide suggested that this may involve an interaction with the presynaptic AMPA receptors that regulate neurotransmitter release. PMID:22028985

  18. Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices.

    PubMed

    Bolea, S; Avignone, E; Berretta, N; Sanchez-Andres, J V; Cherubini, E

    1999-05-01

    Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. Giant depolarizing potentials (GDPs) are generated by the interplay of the depolarizing action of GABA and glutamate. In this study, single and dual whole cell recordings (in current-clamp configuration) were performed from CA3 pyramidal cells in hippocampal slices obtained from postnatal (P) days P1- to P6-old rats to evaluate the role of ionotropic glutamate receptors in GDP generation. Superfusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10-40 microM) completely blocked GDPs. However, in the presence of CNQX, it was still possible to re-induce the appearance of GDPs with GABA (20 microM) or (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxadepropionate (AMPA) (5 microM). This effect was prevented by the more potent and selective AMPA receptor antagonist GYKI 53655 (50-100 microM). In the presence of GYKI 53655, both kainic or domoic acid (0.1-1 microM) were unable to induce GDPs. In contrast, bath application of D-(-)-2-amino-5-phosphonopentanoic acid (50 microM) or (+)-3-(2carboxy-piperazin-4-yl)-propyl-L-phosphonic acid (20 microM) produced only a 37 +/- 9% (SE) and 36 +/- 11% reduction in GDPs frequency, respectively. Cyclothiazide, a selective blocker of AMPA receptor desensitization, increased GDP frequency by 76 +/- 14%. Experiments were also performed with an intracellular solution containing KF to block GABAA receptor-mediated responses. In these conditions, a glutamatergic component of GDP was revealed. GDPs could still be recorded synchronous with those detected simultaneously with KCl-filled electrodes, although their amplitude was smaller. Similar results were found in pair recordings obtained from minislices containing only a small portion of the CA3 area. These data suggest that GDP generation requires activation of AMPA receptors by local release of glutamate from recurrent collaterals.

  19. Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice.

    PubMed

    Salazar, Patricia; Tapia, Ricardo; Rogawski, Michael A

    2003-01-01

    The neurosteroids allopregnanolone (5alpha-pregnan-3alpha-ol-20-one; 5alpha,3alpha-P) and its 5beta-epimer pregnanolone (5beta,3alpha-P), and pregnenolone sulfate (PS) were examined for effects on spontaneous epileptiform discharges induced by 100 microM picrotoxin (PTX) and 55 microM 4-aminopyridine (4-AP) in the CA3 region of the rat hippocampal slice. At a concentration of 10 microM, 5alpha,3alpha-P partially reduced PTX-induced bursting and at 30 and 90 microM completely suppressed bursting. In contrast, 100 microM 5beta,3alpha-P failed to alter the discharge frequency. 5alpha,3alpha-P depressed 4-AP-induced bursting with similar potency as in the PTX model; 100 microM 5beta,3alpha-P was also partially effective. In the 4-AP model, 5alpha,3alpha-P inhibited both the more frequent predominantly positive-going potentials as well as the less frequent negative-going potentials that may be generated by synchronous GABAergic interneuron firing. PS enhanced the PTX bursting frequency and, in the 4-AP model, increased the frequency of negative potentials but did not alter the frequency of positive potentials. By itself, PS did not induce bursting. The effects of the steroids in the in vitro seizure models largely correspond with their activities on GABA(A) receptors; suppression of discharges may occur as a result of direct activation of these receptors rather than modulation of GABA-mediated synaptic responses. PTX and 4-AP-induced bursting in the hippocampal slice are useful models for directly assessing neurosteroid effects on seizure susceptibility under conditions that eliminate the factor of brain bioavailability.

  20. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices.

    PubMed

    Alkondon, M; Pereira, E F; Barbosa, C T; Albuquerque, E X

    1997-12-01

    In the present study we investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats. Application of nicotinic agonists to CA1 neurons evoked at least four types of nicotinic responses. Of major interest was the ability of these agonists to induce the release of gamma-aminobutyric acid (GABA) from interneurons. Slowly decaying ACh whole-cell currents and GABA-mediated postsynaptic currents could be recorded from pyramidal neurons and interneurons, whereas fast-decaying nicotinic currents and fast current transients were recorded only from interneurons. Nicotinic responses were sensitive to blockade by d-tubocurarine (10 microM), which indicated that they were mediated by nicotinic acetylcholine receptors (nAChRs). The slowly decaying currents, the postsynaptic currents and the fast current transients were insensitive to blockade by the alpha-7 nAChR-specific antagonist methyllycaconitine (up to 1 microM) or alpha-bungarotoxin (100 nM). On the other hand, the slowly decaying nicotinic currents recorded from the interneurons were blocked by the alpha4beta2 nAChR-specific antagonist dihydro-beta-erythroidine, and the fast-desensitizing nicotinic currents were evoked by the alpha-7 nAChR-specific agonist choline. In experimental conditions similar to those used to record nicotinic responses from neurons in slice (i. e., in the absence of tetrodotoxin), we observed that nicotinic agonists can also induce the release of GABA from hippocampal neurons in culture. In summary, these results provide direct evidence for more than one subtype of functional nAChR in CA1 neurons and suggest that activation of nAChRs present in GABAergic interneurons can evoke inhibitory activity in CA1 pyramidal neurons, thereby modulating processing of information in the hippocampus.

  1. Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS.

    PubMed

    Budni, Josiane; Molz, Simone; Dal-Cim, Tharine; Martín-de-Saavedra, Maria Dolores; Egea, Javier; Lopéz, Manuela G; Tasca, Carla Ines; Rodrigues, Ana Lúcia Severo

    2017-02-10

    Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[(3)H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[(3)H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3β at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3β and β-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3β/β-catenin pathway and iNOS inhibition.

  2. Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation

    SciTech Connect

    Kim, Kyung Ho; Inan, Salim Yalcin; Berman, Robert F.; Pessah, Isaac N.

    2009-06-01

    Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope > 200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX + PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached > 250% of baseline period in the presence of PTX + 100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca{sup 2+}-dependence of [{sup 3}H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca{sup 2+} appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.

  3. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide.

    PubMed

    Keynes, Robert G; Duport, Sophie; Garthwaite, John

    2004-03-01

    Nitric oxide (NO) has been proposed to mediate neurodegeneration arising from NMDA receptor activity, but the issue remains controversial. The hypothesis was re-examined using organotypic slice cultures of rat hippocampus, with steps being taken to avoid known artefacts. The NO-cGMP signalling pathway was well preserved in such cultures. Brief exposure to NMDA resulted in a concentration-dependent delayed neuronal death that could be nullified by administration of the NMDA antagonist MK801 (10 microm) given postexposure. Two inhibitors of NO synthesis failed to protect the slices, despite fully blocking NMDA-induced cGMP accumulation. By comparing NMDA-induced cGMP accumulation with that produced by an NO donor, toxic NMDA concentrations were estimated to produce only physiological NO concentrations (2 nm). In studies of the vulnerability of the slices to exogenous NO, it was found that continuous exposure to up to 4.5 microm NO failed to affect ATP levels (measured after 6 h) or cause damage during 24 h, whereas treatment with the respiratory inhibitors myxothiazol or cyanide caused ATP depletion and complete cell death within 24 h. An NO concentration of 10 microm was required for ATP depletion and cell death, presumably through respiratory inhibition. It is concluded that sustained activity of neuronal NO synthase in intact hippocampal tissue can generate only low nanomolar NO concentrations, which are unlikely to be toxic. At the same time, the tissue is remarkably resistant to exogenous NO at up to 1000-fold higher concentrations. Together, the results seriously question the proposed role of NO in NMDA receptor-mediated excitotoxicity.

  4. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  5. Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices.

    PubMed Central

    Leinekugel, X; Tseeb, V; Ben-Ari, Y; Bregestovski, P

    1995-01-01

    1. Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by activation of GABAA receptors (synaptic stimulation or application of the GABAA agonist isoguvacine) were studied on pyramidal cells and interneurons from hippocampal slices of rats from two age groups (postnatal days (P) 2-5 and P12-13) using the fluorescent dye fluo-3 and a confocal laser scanning microscope. Cells were loaded with the dye either intracellularly, using patch pipettes containing fluo-3 in the internal solution, or extracellularly, using pressure pulses applied to an extracellular pipette containing the permeant dye fluo-3 AM. 2. Interneurons and pyramidal cells from P2-5 slices loaded with fluo-3 AM responded by an increase in [Ca2+]i to isoguvacine and to glutamate, in contrast to cells from P12-13 slices which responded to glutamate but not to isoguvacine. 3. The isoguvacine-induced rise in [Ca2+]i was reversibly blocked by bath application of the GABAA receptor antagonist bicuculline (20 microM), suggesting the specific involvement of GABAA receptors. The sodium channel blocker tetrodotoxin (TTX, 1 microM in the bath) did not prevent the isoguvacine-induced rise in [Ca2+]i. 4. The isoguvacine-induced rise in [Ca2+]i was reversibly blocked by bath application of the calcium channel blocker D600 (50 microM) suggesting the involvement of voltage-dependent Ca2+ channels. 5. Electrical stimulation of afferent fibres induced a transient increase in [Ca2+]i in neonatal pyramidal cells and interneurons (P5) loaded non-invasively with fluo-3 AM. This elevation of [Ca2+]i was reversibly blocked by bicuculline (20 microM) but not by APV (50 microM) and CNQX (10 microM). 6. During simultaneous electrophysiological recording in the current-clamp mode and [Ca2+]i monitoring from P5 pyramidal cells, electrical stimulation of afferent fibres, in the presence of APV (50 microM) and CNQX (10 microM), caused synaptic depolarization accompanied by a few action potentials and a transient increase

  6. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures.

    PubMed

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P; Jakobsen, Birthe; Poulsen, Frantz R; Oliveira, Catarina R; Vezzani, Annamaria; Malva, João O; Zimmer, Jens

    2005-07-20

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects of these cytokines on neuronal death caused by exposure of mouse organotypic hippocampal slice cultures to toxic concentrations of AMPA. Either potentiation of excitotoxicity or neuroprotection was observed, depending on the concentration of the cytokines and the timing of exposure. A relatively high concentration of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol. By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed by macrophage antigen-1 and bromodeoxyuridine immunohistochemistry, suggesting a functional recruitment of cytokine-producing cells at sites of neurodegeneration. Together, these findings are relevant for understanding the role of proinflammatory cytokines and microglia activation in acute and chronic excitotoxic conditions.

  7. Acute ethanol suppresses glutamatergic neurotransmission through endocannabinoids in hippocampal neurons.

    PubMed

    Basavarajappa, Balapal S; Ninan, Ipe; Arancio, Ottavio

    2008-11-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.

  8. Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages.

    PubMed

    Lange-Asschenfeldt, C; Lohmann, P; Riepe, M W

    2007-06-29

    Long-term potentiation (LTP) and long-term depression (LTD) are principal reflections of synaptic plasticity that have been implicated in learning and memory. We have previously shown that spatial learning in a newly validated complex maze is accompanied by depression of hippocampal CA1 synaptic activity in hippocampal slices of trained mice ("behavioral LTD"). In the present study, we investigated whether behavioral LTD is accompanied by alterations of subsequent LTP induced by high-frequency stimulation (HFS). Moreover, we were interested in the time course of such alterations in relation to training stage. Animals underwent 1, 2, and 8 days of spatial training in the complex maze, respectively. Hippocampal slices were taken 24 h after the last training session. We found a simultaneous decrease of basal synaptic response and increase of HFS induced LTP magnitude compared with slices of untrained animals. Synaptic plasticity was not influenced by repeated running wheel exercise in an additional control group without spatial learning. The mentioned alterations occurred already after day 2 of maze exploration parallel to the most pronounced improvement of behavioral performance but did not change thereafter until day 8 despite further learning progress. They were also found when animals were trained for 2 days and kept at rest for a subsequent 6 days. In conclusion, spatial learning may be reflected by distinct and persistent measurable alterations of synaptic plasticity in hippocampal CA1 neurons at early training stages.

  9. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model

    PubMed Central

    Zhang, Huaqiu; Xie, Minjie; Schools, Gary P.; Feustel, Paul F.; Wang, Wei; Lei, Ting; Kimelberg, Harold K.; Zhou, Min

    2009-01-01

    Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely, we simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membrane potential depolarization and reduction in evoked action potential frequency and amplitude over a 10 to 15 minute OGD exposure. These changes were largely suppressed by 10 μM TAM. The TAM effect was neuron-specific as the OGD induced astrocytic membrane potential depolarization was not altered. The TAM effect was mediated through ER activation because it could be simulated by 17β-estradiol and was completely inhibited by the ER inhibitor ICI 182, 780, and is therefore an example of TAM’s selective estrogen receptor modulator (SERM) action. We further show that TAM effects on OGD- induced impairment of neuronal excitability was largely due to activation of neuroprotective BK channels, as the TAM effect was markedly attenuated by the BK channel inhibitor paxilline at10 μM. TAM also significantly reduced the frequency and amplitude of AMPA receptor mediated spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons which is an early consequence of OGD. Altogether, this study demonstrates that both 17β-estradiol and TAM attenuate neuronal excitability impairment early on in simulated ischemia model via ER activation mediated potentiation of BK K+ channels and reduction in enhanced neuronal AMPA/NMDA receptor-mediated excitotoxicity. PMID:18992727

  10. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model.

    PubMed

    Zhang, Huaqiu; Xie, Minjie; Schools, Gary P; Feustel, Paul F; Wang, Wei; Lei, Ting; Kimelberg, Harold K; Zhou, Min

    2009-01-09

    Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely. We simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membrane potential depolarization and reduction in evoked action potential frequency and amplitude over a 10 to 15 min OGD exposure. These changes were largely suppressed by 10 microM TAM. The TAM effect was neuron-specific as the OGD-induced astrocytic membrane potential depolarization was not altered. The TAM effect was mediated through ER activation because it could be simulated by 17beta-estradiol and was completely inhibited by the ER inhibitor ICI 182, 780, and is therefore an example of TAM's selective estrogen receptor modulator (SERM) action. We further show that TAM's effects on OGD-induced impairment of neuronal excitability was largely due to activation of neuroprotective BK channels, as the TAM effect was markedly attenuated by the BK channel inhibitor paxilline at 10 microM. TAM also significantly reduced the frequency and amplitude of AMPA receptor mediated spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons which is an early consequence of OGD. Altogether, this study demonstrates that both 17beta-estradiol and TAM attenuate neuronal excitability impairment early on in a simulated ischemia model via ER activation mediated potentiation of BK K(+) channels and reduction in enhanced neuronal AMPA/NMDA receptor-mediated excitotoxicity.

  11. Effects of the Aconitum alkaloid mesaconitine in rat hippocampal slices and the involvement of α- and β-adrenoceptors

    PubMed Central

    Ameri, Angela

    1998-01-01

    The effects of mesaconitine, the main alkaloid contained in Aconiti tuber, were investigated by use of extracellular recordings of stimulus-evoked population spikes and field excitatory postsynaptic potentials (e.p.s.ps) in the CA1 region of rat hippocampal slices.At a concentration of 10 nM, mesaconitine evoked excitations, which were manifested as an increase in the amplitude of the orthodromic spike and the appearance of multiple spikes following the first postsynaptic spike, without affecting the magnitude of paired-pulse facilitation. The increase in spike amplitude was persistent and was not reversed by up to 90 min of washout. At concentrations of 30 and 100 nM, the alkaloid produced a biphasic effect, that is an excitation followed by an inhibition without having any effect upon the field e.p.s.p. At concentrations above 100 nM, mesaconitine suppressed the orthodromic population spike and the field e.p.s.p.The excitatory effect was also observed when electrical stimulation was stopped completely during the application of mesaconitine (10 nM) and during the first 15 min of washout.The enhancement of the population spike and the appearance of multiple spikes induced by mesaconitine (10–100 nM) were blocked by pretreatment with the β-adrenoceptor antagonists propranolol (1 μM) and timolol (1 μM), whereas the inhibitory effect was blocked by the α-adrenoceptor antagonists yohimbine (1 μM) and phentolamine (10 μM). However, when the β-adrenoceptor antagonist timolol was added 10 min after the application of mesaconitine, it failed to block the long-lasting enhancement of the spike amplitude and the appearance of multiple population spikes.Application of the selective β-adrenoceptor agonist isoprenaline (500 nM) to the hippocampal slices induced an increase in the amplitude of the orthodromic population spike and elicited 2–3 additional spikes. Mesaconitine (10 nM) did not further potentiate this enhancement of the spike

  12. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    PubMed Central

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  13. An enzyme-entrapped agarose gel for visualization of ischemia-induced L-glutamate fluxes in hippocampal slices in a flow system.

    PubMed

    Tanaka, Kazuhisa; Shoji, Atushi; Sugawara, Masao

    2015-01-01

    An agarose gel slip containing L-glutamate oxidase (GluOx), horseradish peroxidase (HRP) and a dye DA-64 is proposed as a tool for visualizing ischemia-induced L-glutamate release in hippocampal slices in a flow system. The agarose slip with a detection limit of 6.0 ± 0.8 μmol L(-1) for L-glutamate enabled us to visualize L-glutamate fluxes in a flow system. The leak of a dye from the agarose gel was negligible and a diffusion blur due to spreading of Bindshedler's Green (BG) within the gel was suppressed. Monitoring the time-dependent change of ischemia-induced L-glutamate fluxes at neuronal regions CA1, DG and CA3 of hippocampal slices is demonstrated.

  14. Impaired tolerance to repetitive hypoxia in hippocampal slices of Cu,Zn superoxide dismutase transgenic mice.

    PubMed

    Büchner, M; Li, H; Huber, R; Timmler, M; Sehrsam, I; Kasischke, K; Völkel, H; Ludolph, A C; Riepe, M W

    1999-12-03

    Energy metabolism is impaired in the Cu,Zn superoxide dismutase transgenic mouse model of amyotrophic lateral sclerosis. The goal was to investigate tolerance against single and repetitive hypoxia in C57B6SJL-TgN(SOD1-G93A)1GUR mice (G93A mice). Posthypoxic recovery (15 min hypoxia, 45 min recovery) of population spike amplitude in hippocampal region CA1 was 38 +/- 29% (mean +/- SD) in controls and 67 +/- 41% (ns) in G93A mice at day 40. Upon in vivo pretreatment with 20 mg/kg 3-nitropropionate posthypoxic recovery increased to 82 +/- 32% (P < 0.01) in controls and decreased to 35 +/- 33% in G93A mice (P < 0.05 to pretreated controls). Results at day 80 and 110 were similar. We conclude that G93A mice show a long-lasting impairment to sustain repetitive hypoxic episodes whereas tolerance to a single hypoxic episode is comparable to controls.

  15. Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures.

    PubMed

    Pringle, A K; Sundstrom, L E; Wilde, G J; Williams, L R; Iannotti, F

    1996-06-28

    We have investigated the neuroprotective actions of neurotrophins in a model of ischaemia using slice cultures. Ischaemia was induced in organotypic hippocampal cultures by simultaneous oxygen and glucose deprivation. Cell death was assessed 24 h later by propidium iodide fluorescence. Pre- but not post-ischaemic addition of brain-derived neurotrophic factor (BDNF) produced a concentration-dependent reduction in neuronal damage. Neurotrophin-3 was not neuroprotective. These data suggest that BDNF may form part of an endogenous neuroprotective mechanism.

  16. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    PubMed

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  17. Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice.

    PubMed

    Traub, Roger D; Pais, Isabel; Bibbig, Andrea; Lebeau, Fiona E N; Buhl, Eberhard H; Garner, Helen; Monyer, Hannah; Whittington, Miles A

    2005-08-01

    Persistent gamma frequency (30-70 Hz) network oscillations occur in hippocampal slices under conditions of metabotropic glutamate receptor (mGluR) activation. Excessive mGluR activation generated a bistable pattern of network activity during which epochs of gamma oscillations of increasing amplitude were terminated by synchronized bursts and very fast oscillations (>70 Hz). We provide experimental evidence that, during this behavior, pyramidal cell-to-interneuron synaptic depression takes place, occurring spontaneously during the gamma rhythm and associated with the onset of epileptiform bursts. We further provide evidence that excitatory postsynaptic potentials (EPSPs) in pyramidal cells are potentiated during the interburst gamma oscillation. When these two types of synaptic plasticity are incorporated, phenomenologically, into a network model previously shown to account for many features of persistent gamma oscillations, we find that epochs of gamma do indeed alternate with epochs of very fast oscillations and epileptiform bursts. Thus the same neuronal network can generate either gamma oscillations or epileptiform bursts, in a manner depending on the degree of network drive and network-induced fluctuations in synaptic efficacies.

  18. Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA Receptor-mediated Neurosteroidogenesis

    PubMed Central

    Izumi, Yukitoshi; O'Dell, Kazuko A; Zorumski, Charles F

    2013-01-01

    Long-term depression (LTD) induced by low-frequency electrical stimulation (LFS) in the CA1 region of the hippocampus is a form of synaptic plasticity thought to contribute to learning and memory and to the pathophysiology of neuropsychiatric disorders. In naïve hippocampal slices from juvenile rats, we previously found that LTD induction can impair subsequent induction of long-term potentiation (LTP) via a form of N-methyl-d-aspartate receptor (NMDAR)-dependent metaplasticity, and have recently observed that pharmacologically induced NMDAR-dependent LTP inhibition involves 5α-reduced neurosteroids that augment the actions of γ-aminobutyric acid (GABA). In this study, we found that both LFS-induced LTD and subsequent inhibition of LTP induction involve neurosteroid synthesis via NMDAR activation. Furthermore, the timing of 5α-reductase inhibition relative to LFS can dissociate effects on LTD and metaplastic LTP inhibition. These findings indicate that 5α-reduced neurosteroids play an important role in synaptic plasticity and synaptic modulation in the hippocampus. PMID:24303196

  19. Tolerance of guinea pig hippocampal slice CA1 neurons to hyperthermia evaluated by orthodromic and antidromic responses.

    PubMed

    Fujii, S

    1998-01-01

    The tolerance of electrical responses in the CA1 neurons of guinea pig hippocampal slices to elevated temperatures was studied by recording orthodromic and antidromic responses of the population spike (PS). Increasing the temperature of the perfusing medium from 30 degrees C to 49 degrees C resulted in a decreased amplitude of both the orthodromic and antidromic PS, the former disappearing at 42.0 +/- 1.8 degrees C and the latter at 46.2 +/- 1.3 degrees C (n = 8 for both). When the temperature was increased to 44 degrees C, maintained at this level for less than 27 min, then lowered to 30 degrees C, both the orthodromic and antidromic PS recovered within 60 min. When the temperature was increased to 45-49 degrees C, marked irreversible effects were seen with the orthodromic PS, recovery being dependent on the maximum temperature and duration of exposure, the change becoming irreversible after 13 min at 45 degrees C, 6 min at 46 degrees C, 4 min at 47 degrees C or 2.5 min at 48 degrees C. In contrast, the antidromic PS, recorded simultaneously, recovered on lowering the temperature to 30 degrees C in all cases tested, except when the temperature was increased to 46 degrees C and maintained at this level for 25-27 min. These results indicate that, in CA1 neurons, temperatures above 44 degrees C have more potent irreversible effects on synaptic transmission than on axonal or somal function.

  20. Neuroprotective effects of α-tocotrienol on kainic acid-induced neurotoxicity in organotypic hippocampal slice cultures.

    PubMed

    Jung, Na Young; Lee, Kyung Hee; Won, Ran; Lee, Bae Hwan

    2013-09-05

    Vitamin E, such as alpha-tocopherol (ATPH) and alpha-tocotrienol (ATTN), is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC) and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM) treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS) formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM) or ATTN (100 µM) significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS) were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  1. Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices.

    PubMed

    Madl, J E; Burgesser, K

    1993-10-01

    Extracellular accumulations of excitatory amino acids (EAAs) may mediate ischemic neuronal damage. Metabolic insults can decrease Na+ and K+ plasma membrane gradients, thereby reducing the driving force for uptake of EAAs into cells by Na(+)-dependent EAA cotransporters. EAA accumulations could result from decreased uptake and increased release due to reversal of these cotransporters. ATP depletion, uptake, and release of EAAs were measured by HPLC in slices treated with metabolic inhibitors. Inhibition and reversal of cotransporters were determined by uptake or release of D,L-threo-beta-hydroxyaspartate (OH-Asp), an EAA analog with high affinity for cotransporters. Moderate ATP depletion (7 > ATP nmol/mg protein > 3) reduced uptake by cotransporters without increasing release of EAAs. When ATP was severely depleted (ATP < 2 nmol/mg protein), increased release of EAAs and preloaded OH-Asp occurred, consistent with reversal of cotransporters. Release of glutamine and asparagine was not increased, confirming that release was not primarily due to nonselective increased membrane permeability. ATP depletion and ouabain acted synergistically to produce EAA release, strongly suggesting release was largely mediated by inhibition of Na/K-ATPases. Severe ATP depletion decreased glutamate-like immunoreactivity primarily in axonal terminal-like structures, suggesting release occurred primarily from terminals. Moderate ATP depletion may increase extracellular EAAs by decreasing uptake. Severe ATP depletion may further increase EAAs by reversing uptake, thereby releasing cytosolic neuronal pools of EAAs.

  2. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions.

    PubMed

    Xu, Guangjin; Wang, Wei; Kimelberg, Harold K; Zhou, Min

    2010-03-01

    Mammalian protoplasmic astrocytes are extensively coupled through gap junction channels but the biophysical properties of these channels under physiological and ischemic conditions in situ are not well defined. Using confocal morphometric analysis of biocytin-filled astrocytic syncytia in rat hippocampal CA1 stratum radiatum we found that each astrocyte directly couples, on average, to 11 other astrocytes with a mean interastrocytic distance of 45 microm. Voltage-independent and bidirectional transjunctional currents were always measured between directly coupled astrocyte pairs in dual voltage-clamp recordings, but never from astrocyte-NG2 glia or astrocyte-interneuron pairs. The electrical coupling ratio varied considerably among astrocytes in developing postnatal day 14 rats (P14, 0.5-12.4%, mean = 3.6%), but became more constant in young adult P21 rats (0.18-3.9%, mean = 1.6%), and the coupling ratio declined exponentially with increasing pair distance. Electrical coupling was not affected by short-term oxygen-glucose deprivation (OGD) treatment, but showed delayed inhibition in an acidic extracellular pH of 6.4. Combination of acidic pH (6.4) and OGD, a condition that better represents cerebral ischemia in vivo, accelerated the inhibition of electrical coupling. Our results show that, under physiological conditions, 20.7-24.2% of K(+) induced currents can travel from any astrocytic soma in CA1 stratum radiatum to the gap junctions of the nearest neighbor astrocytes, but this should be severely inhibited as a consequence of the OGD and acidosis seen in the ischemic brain.

  3. Weak Sinusoidal Electric Fields Entrain Spontaneous Ca Transients in the Dendritic Tufts of CA1 Pyramidal Cells in Rat Hippocampal Slice Preparations

    PubMed Central

    Maeda, Kazuma; Maruyama, Ryuichi; Nagae, Toru; Inoue, Masashi; Aonishi, Toru; Miyakawa, Hiroyoshi

    2015-01-01

    Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 μM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 μM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes. PMID:25811836

  4. Actions of cromakalim on outward currents of CA1 neurones in hippocampal slices.

    PubMed Central

    Erdemli, G; Krnjević, K

    1994-01-01

    1. Membrane effects of cromakalim (Crom; 50-300 microM) were examined in CA1 neurones recorded mainly by intracellular, single-electrode voltage-clamping in slices (from Sprague-Dawley rats) kept in an interface chamber at 33 degrees C. 2. In 14 cells held at -63 +/- 3.5 mV, in the presence of tetrodotoxin, kynurenic acid and (in most cases) bicuculline, bath applied Crom produced no consistent change in holding current (-59 +/- 66 pA) or input conductance (GN) (-3.9 +/- 5.2%). 3. Overall there were no significant changes in instantaneous inward rectification or in Q-current inward relaxations. 4. In 18 out of 22 cells, outward currents, evoked by 0.5 s pulses to voltages > -50 and < -20 mV, were depressed by Crom (by 42 +/- 11%, for n = 22). Because this effect was consistently seen in Ca current-blocking media, containing either Mn and low Ca, or Cd (and also carbachol), the K channels depressed by Crom were probably of the delayed rectifier (IDR) type. 5. The Crom-control difference current (ICrom), obtained with slow depolarizing ramps, had a biphasic character, inward in the voltage (V) range > -50 < -20 mV (where outward currents are depressed by Crom) and tending outward for V > or = -20 mV. 6. In 10 out of 11 cells, Crom potentiated a D-like, slowly-inactivating outward current (by 88 +/- 31%, for n = 11).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7530570

  5. How to record a million synaptic weights in a hippocampal slice.

    PubMed

    Bhalla, Upinder S

    2008-06-20

    A key step toward understanding the function of a brain circuit is to find its wiring diagram. New methods for optical stimulation and optical recording of neurons make it possible to map circuit connectivity on a very large scale. However, single synapses produce small responses that are difficult to measure on a large scale. Here I analyze how single synaptic responses may be detectable using relatively coarse readouts such as optical recording of somatic calcium. I model a network consisting of 10,000 input axons and 100 CA1 pyramidal neurons, each represented using 19 compartments with voltage-gated channels and calcium dynamics. As single synaptic inputs cannot produce a measurable somatic calcium response, I stimulate many inputs as a baseline to elicit somatic action potentials leading to a strong calcium signal. I compare statistics of responses with or without a single axonal input riding on this baseline. Through simulations I show that a single additional input shifts the distribution of the number of output action potentials. Stochastic resonance due to probabilistic synaptic release makes this shift easier to detect. With approximately 80 stimulus repetitions this approach can resolve up to 35% of individual activated synapses even in the presence of 20% recording noise. While the technique is applicable using conventional electrical stimulation and extracellular recording, optical methods promise much greater scaling, since the number of synapses scales as the product of the number of inputs and outputs. I extrapolate from current high-speed optical stimulation and recording methods, and show that this approach may scale up to the order of a million synapses in a single two-hour slice-recording experiment.

  6. Activation of dentate hilar neurons by stimulation of the fimbria in rat hippocampal slices

    PubMed Central

    Scharfman, Helen E.

    2012-01-01

    It is has been shown that the major afferent input to the dentate gyrus, the perforant path, excites dentate hilar neurons. However, little is known about the other inputs to hilar cells. Therefore, we examined the responses of hilar neurons to stimulation of the fimbria. We positioned our stimulating electrodes so that granule cells were not excited antidromically by fimbria stimulation, although action potentials were easily triggered in area CA3b and CA3c pyramidal cells by such stimulation. In these experiments, fimbria stimulation evoked responses from every hilar cell tested, including examples of both of the major cell types, the spiny hilar ‘mossy’ cells (n=15) and the relatively aspiny. ‘fast-spiking’ cells (putative interneurons, n=5). Hilar cell responses consisted primarily of EPSPs that could trigger action potentials, but small IPSPs were also evoked in some cases, particularly in the fast-spiking cells. Excitation was blocked by an antagonist of the AMPA/kainate receptor subtype of excitatory amino acid receptors, 6-cyano-7-nitroquinoxaline-2,3-dione(CNQX, 5μM, n=5), whereas the cholinergic antagonist atropine (10μM) had no effect (n=4). When sequential intracellular recordings were made from hilar cells and area CA3 pyramidal cells in the same slice, hilar cell EPSPs began after action potentials of CA3b pyramidal cells, and stimulus strengths required to evoke hilar cell EPSPs were above threshold for area CA3b pyramidal cells. Taken together with the evidence that area CA3 pyramidal cells use an excitatory amino acid as a neurotransmitter [7, 21], and the demonstrations of area CA3 axon collaterals in the hilus [11, 16], the results raise the possibility that some area CA3 pyramidal cells excite dentate hilar neurons. PMID:8105429

  7. Opposite modulation of 4-aminopyridine and hypoxic hyperexcitability by A1 and A2 adenosine receptor ligands in rat hippocampal slices.

    PubMed

    Longo, R; Zeng, Y C; Sagratella, S

    1995-11-10

    The effects of the adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), and of the adenosine agonists N6-cyclopentyladenosine (CPA), N6-(2-phenylisopropyl)adenosine (R-PIA), and 2-[p-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680) were investigated on the hyperexcitability induced in the CA1 area of rat hippocampal slices by hypoxia or the epileptogenic agent 4-aminopiridine. Slice perfusion with the mixed adenosine receptor agonist R-PIA (0.2 microM) significantly (P < 0.05) decreased: (i) the number of slices showing a transient CA1 epileptiform bursting during the hypoxic period; (ii) the duration of the hypoxia-induced epileptiform bursting. Conversely, slice perfusion with the selective A1 adenosine receptor antagonists DPCPX (0.2 microM) or with the selective A2 adenosine receptor agonist CGS 21680 significantly (P < 0.05) increased the number of slices showing a transient CA1 epileptiform bursting during the hypoxic period but did not affect the duration of the hypoxia-induced epileptiform bursting. Neither drug significantly affected the number of slices showing functional recovery after hypoxia. Slice perfusion with DPCPX (0.2 microM) also significantly increased (P < 0.05) the number of slices showing a persistent CA1 epileptiform bursting during the reoxygenation period, while the other drugs failed to affect it. Slice perfusion with the selective A1 adenosine receptor agonist CPA (2 microM) or R-PIA (5 microM) significantly (P < 0.05) decreased the duration of the CA1 epileptiform bursting induced by 100 microM 4-aminopyridine. CGS 21680 (5 microM) perfused together with CPA (2 microM) significantly (P < 0.05) counteracted the inhibitory effects of the A1 adenosine receptor agonist on 4-aminopyridine epileptiform bursting, while it failed by itself to directly affect the 4-aminopyridine epileptiform bursting duration. The results produce evidence for a selective opposite modulation by A1 and A2 adenosine

  8. Acute Alterations of Somatodendritic Action Potential Dynamics in Hippocampal CA1 Pyramidal Cells after Kainate-Induced Status Epilepticus in Mice

    PubMed Central

    Minge, Daniel; Bähring, Robert

    2011-01-01

    Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP) dynamics immediately following status epilepticus (SE) in mice. SE was induced by intraperitoneal (i.p.) injection of kainate, and behavioral manifestation of SE was monitored for 3–4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2–5 mV). No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst) firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP), was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP)-induced Ca2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na+ and K+ current components. PMID:22039527

  9. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis.

    PubMed

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne; Waagepetersen, Helle Sønderby

    2017-02-28

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic substrate. Recent studies have, however, challenged the arguments used to anchor this astrocyte specificity of acetate and glutamate. The aim of the current study was to evaluate the specificity of acetate and glutamate as astrocyte substrates in brain slices. Acutely isolated hippocampal and cerebral cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive labeling of the astrocytic pool, which likewise suggests neuronal acetate metabolism. Approximately 50% of glutamate was uniformly labeled in slices incubated with [U-(13) C]glutamate in the presence of MSO, suggesting that neurons exhibit substantial uptake of exogenously provided glutamate. © 2017 Wiley Periodicals, Inc.

  10. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    PubMed

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the

  11. Electrogenic uptake contributes a major component of the depolarizing action of L-glutamate in rat hippocampal slices.

    PubMed Central

    Frenguelli, B. G.; Blake, J. F.; Brown, M. W.; Collingridge, G. L.

    1991-01-01

    1. A grease-gap technique has been used to measure d.c. potentials, in response to the application of excitatory amino acids and electrical stimulation of the Schaffer collateral-commissural pathway, in the CA1 region of rat hippocampal slices. The actions of L-glutamate (L-Glu) have been quantified and compared to those of structurally related compounds. 2. Perfusion of L-Glu (90s applications) depolarized the tissue with a threshold of approximately 50 microM and a maximum response in excess of 10 mM. L-Aspartate (L-Asp) produced a similar dose-response relationship. By comparison N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) were more potent excitants, producing dose-dependent depolarizations over the range 2-50 microM. 3. Application of the agonists depressed the amplitude of electrically-evoked synaptic responses; an effect that presumably reflects depolarization of neuronal tissue. However, for a given agonist-induced d.c. potential. L-Glu or L-Asp caused smaller depressions of synaptic responses than did either NMDA or AMPA. 4. The combined application of 50 microM D-2-amino-5-phosphonopentanoate (AP5) and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) substantially depressed synaptic responses and antagonized responses to NMDA and AMPA producing mean (+/- s.e.) dose-ratios of 12.2 +/- 1.2 and 7.0 +/- 0.8, respectively. However, these compounds produced minimal antagonism of responses to L-Glu and L-Asp (dose-ratios of 1.5 +/- 0.1 and 1.5 +/- 0.2, respectively). 5. Responses to the stereoisomers of homocysteate (HCA) were compared over the range 50 microM to 10 mM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1673070

  12. Controlled pulse delivery of electrical stimulation differentially reduces epileptiform activity in Mg2+-free-treated hippocampal slices.

    PubMed

    Albensi, Benedict C; Toupin, Justin D; Oikawa, Kensuke; Oliver, Derek R

    2008-08-21

    Electrical stimulation for applications in epilepsy has been attempted in multiple brain regions [corrected] using high- or low-frequency stimulation protocols. Data suggest that specific frequencies may have more benefit at controlling seizure activity. To this end, investigators have tested low-frequency stimulation (LFS) protocols (0.1 to 25 Hz) in both animal models and in human epileptic patients and reported reduced epileptiform synchronization, afterdischarge thresholds, and seizure activity in general. Collectively, these studies imply that LFS may have benefit in reducing epileptiform activity, however, the effectiveness of various electrical parameters still needs to be determined in specific targets. This study aimed to systematically control the total number of stimulation pulses when using primarily LFS protocols (0.5, 0.75, 1, 2, 5, 10, and 25 Hz) delivered for the suppression of seizure-like activity in the hippocampal brain slice using a Mg2+-free model of epilepsy. Fifty Hz was also tested as a reference higher frequency protocol. Regulating the total number of pulses also controlled the amount of electrical work delivered. Of the LFS protocols tested, 0.5 Hz, and 1 Hz were optimal and significantly (p<0.05) reduced several measures of epileptiform activity. However, the higher frequency protocol, 50 Hz was similarly effective at significantly (p < 0.05) suppressing several aspects of epileptiform activity (but not for reduction of population-spike amplitude). The data show that these protocols, which had a controlled number of pulses differentially reduced epileptiform activity in our model where increasing the frequency of stimulation did not result in increased attenuation.

  13. Nodule excitability in an animal model of periventricular nodular heterotopia: c-fos activation in organotypic hippocampal slices

    PubMed Central

    Doisy, Emily T.; Wenzel, H. Jürgen; Mu, Yi; Nguyen, Danh V.; Schwartzkroin, Philip A.

    2015-01-01

    Objective Aberrations in brain development may lead to dysplasic structures such as periventricular nodules. While these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Since one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. Methods To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. Results Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. Significance Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat – as seen not only with c-fos but also in previous electrophysiological studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to

  14. Potassium currents in acutely isolated human hippocampal dentate granule cells.

    PubMed Central

    Beck, H; Clusmann, H; Kral, T; Schramm, J; Heinemann, U; Elger, C E

    1997-01-01

    1. Properties of voltage- and Ca(2+)-dependent K+ currents were investigated in thirty-four dentate granule cells acutely isolated from the resected hippocampus of eleven patients with therapy-refractory temporal lobe epilepsy (TLE). 2. When intracellular Ca2+ was strongly buffered with 11.5 mM EGTA-1 mM Ca2+ in the recording pipette, K+ currents (IK) with a slow activation and biexponential time-dependent decay could be elicited, which showed a threshold for activation around -30 mV. 3. A contribution of Ca(2+)-dependent K+ currents became apparent with intracellular solution containing 1 mM BAPTA-0.1 mM Ca2+. Superfusion of low-Ca2+ extracellular solution blocked 43% of outward currents in this recording configuration. Outward current components could also be blocked by substituting 5 mM Ba2+ for extracellular Ca2+ (78%), or by application of 100 microM Cd2+ (25%). 4. The Ca(2+)-dependent K+ currents could be pharmacologically subdivided into two components. One component was sensitive to 500 microM tetraethylammmonium (TEA; 41%) and 10 nM charybdotoxin (CTX; 47.2%). The blocking effects of 10 nM CTX and 500 microM TEA were not additive, suggesting that both agents block the same conductance. A second, smaller outward current component was blocked by 50 nM apamin (13%). 5. A transient A-type K+ current could be observed in six neurones and showed a fast monoexponential time-dependent inactivation with a steady-state voltage dependence that was distinct from that of IK. The A-type current was blocked by 4-aminopyridine (4-AP) but not by TEA or low-Ca2+ solution. 6. We conclude that outward currents in human hippocampal dentate granule cells can be separated into at least four types by their kinetic and pharmacological properties. These include at least one voltage-dependent current similar to those observed in mammalian hippocampal neurones, and two Ca(2+)-dependent K+ currents that most probably correspond to SK- and BK-type currents. A classical A-type current

  15. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide.

    PubMed

    Tamagnini, Francesco; Scullion, Sarah; Brown, Jon T; Randall, Andrew D

    2015-07-01

    Accumulation of beta-amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ-overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2-5 h treatment with an oligomeric preparation of synthetic human Aβ 1-42 peptide. Whole cell current clamp recordings were compared between Aβ-(500 nM) and vehicle-(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub-threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated "sag". Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra-threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after-hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients.

  16. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    NASA Astrophysics Data System (ADS)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  17. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    PubMed Central

    2010-01-01

    Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR) 1. Adrenoceptor (AR) activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS) and subsequently subjected to oxygen-glucose deprivation (OGD). Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine)-, β2(terbutaline)-, α1(phenylephrine)- and α2(clonidine)-AR agonists (5 and 50 μM, respectively) during LPS (1 μg/mL, 24 h) -exposure followed by exposure to OGD (15 min) in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM) during LPS exposure before OGD conferred complete protection from cell death (P < 0.001) whereas the β2-agonist (50 μM) was partially protective (p < 0.01). Phenylephrine was weakly protective while no protection was attained by clonidine. Exposure to both β1- and β2-agonist during LPS exposure decreased the levels of secreted TNF-α, IL-6 and monocyte chemoattractant protein-1 and prevented microglia activation in the slices. Dobutamine remained neuroprotective in slices exposed to pure OGD as well as in TNFR1-/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies

  18. Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices.

    PubMed

    Small, D L; Poulter, M O; Buchan, A M; Morley, P

    1997-08-29

    Brain insults, including cerebral ischemia, can alter glutamate receptor subunit expression in vulnerable neurons. Understanding these post-ischemic changes in glutamate receptors could enhance our ability to identify specific, novel neuroprotective compounds. Reverse transcription-polymerase chain reaction (RT-PCR) amplification was used to quantify the altered expression of the N-methyl-D-aspartate (NMDA) NR2A, NR2B and NR2C subunits relative to one another in rat hippocampal slices in resistant and vulnerable regions following in vitro oxygen-glucose deprivation. Ninety minutes after re-oxygenation and return to 10 mM glucose, there was a significant increase in the expression of NR2C relative to NR2B and NR2A in the slice as a whole, as well as in the selectively vulnerable CA1 region and the resistant CA3 and dentate gyrus regions.

  19. The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model

    PubMed Central

    Singec, Ilyas; Knoth, Rolf; Vida, Imre; Frotscher, Michael

    2015-01-01

    ABSTRACT The mouse subventricular zone (SVZ) generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS), and replace specific interneurons in the olfactory bulb (OB). Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons. PMID:26340944

  20. Mifepristone (RU486) inhibits lateral perforant path long-term potentiation in hippocampal slices from prenatally morphine-exposed female rats.

    PubMed

    Velísek, Libor; Vathy, Ilona

    2005-11-01

    In brain slices from prenatally saline-exposed female rats during proestrus and diestrus, long-term potentiation (LTP) can be induced in the lateral perforant pathway (LPP). Prenatal morphine exposure suppresses LTP induction in the LPP during proestrus. Here we studied synaptic plasticity in the LPP in slices from female rats prenatally exposed to morphine. Two additional factors were investigated: the role of the estrous cycle and role of glucocorticoid receptors. Hippocampal slices were prepared from adult, prenatally saline- or morphine-exposed female rats. One hour prior to decapitation, vaginal smears were obtained and the rats either in proestrus or diestrus were treated with a non-specific glucocorticoid receptor antagonist mifepristone (RU486) or with a vehicle. LPP was stimulated with high-frequency stimulation. Short-tem plasticity (STP) and the induction and maintenance of long-term potentiation (LTP) were assessed. In all groups of prenatally saline-exposed rats, LTP was induced and maintained with the exception of RU486-treated rats during proestrus where the LTP was induced but not maintained. In prenatally morphine-exposed females in diestrus, both STP and LTP were induced after postnatal vehicle treatment. In morphine-exposed, proestrous females, neither STP nor LTP were induced irrespective of the postnatal treatment. Thus, prenatal morphine exposure suppresses the induction of LTP in the LPP, except during diestrus. Data indicate that the induction and maintenance of LTP in the LPP in hippocampal slices from female rats is multifactorial: ovarian steroids and functionality of glucocorticoid receptors cooperation are necessary for induction and maintenance of the LTP, prenatal morphine exposure interferes with this process possibly by its long-term effects on synaptic plasticity.

  1. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices

    PubMed Central

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  2. Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices.

    PubMed Central

    Zhang, L; Spigelman, I; Carlen, P L

    1991-01-01

    1. gamma-Aminobutyric acid (GABA)-mediated, Cl(-)-dependent inhibitory postsynaptic potentials (IPSPs) and GABA currents in immature rat hippocampal CA1 neurones were studied using the whole-cell recording technique in brain slices. 2. IPSPs evoked by electrical stimulation were observed in postnatal 2- to 5- (PN2-5), 8- to 13-(PN8-13) and 15- to 20-(PN15-20)day-old CA1 neurones. In the presence of glutamate receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D-2-amino-5-phosphonovaleric acid (APV), the reversal potential for the IPSP (EIPSP) was near the resting membrane potential (RMP) in the PN2-5 neurones, but 13 and 25 mV more negative than the RMP in PN8-13 and PN15-20 neurones respectively. IPSPs and GABA currents were blocked by the GABAA-receptor antagonists bicuculline or picrotoxin. 3. The reversal potential for somatic GABA currents (EGABA) was examined in the presence of tetrodotoxin (TTX). There was a strong dependence of the EGABA upon the patch pipette [Cl-] ([Cl-]p). indicating that the GABA currents were mediated by a Cl- conductance. In PN2-5 neurones, EGABA agreed with the value predicted by the Goldman-Hodgkin-Katz equation at given concentrations of internal and external anions permeable through GABA-activated Cl- channels, whereas EGABA in older neurones was 8-18 mV more negative. 4. Examination of the relations between EGABA, holding potential, [Cl-]p and resting conductance indicated that the membrane of the PN2-5 neurones was readily permeable to Cl- which followed a passive Donnan equilibrium. Passive distribution of Cl- played a decreasing role in PN8-13 neurones and in PN15-20 neurones. 5. To assess the contribution of outward Cl- co-transport, bath applications of high K+ or furosemide were performed. High K+ and furosemide caused a reversible positive shift of EGABA in PN15-20 neurones. Raising the temperature moved EGABA to a more negative potential, with a Q10 of 5 mV. A similar change of EGABA in response to high K

  3. Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not gamma-aminobutyric acid or bicuculline treatment.

    PubMed

    Massamiri, T; Khrestchatisky, M; Ben-Ari, Y

    1994-01-17

    Levels of gene expression following in vitro treatment of rat hippocampal slices with kainate, gamma-aminobutyric acid (GABA), or bicuculline were measured by the reverse transcription-coupled polymerase chain reaction method. Following a short-term exposure to kainate, c-fos gene expression was induced by 12-fold in the adult, but not the newborn, hippocampus. Under the same experimental conditions, zifl268 and brain-derived neurotrophic factor (BDNF) gene expression were unchanged. Our results also demonstrate a lack of induction of c-fos, zifl268 and BDNF after short-time treatment of either adult or newborn hippocampal slices with GABA or bicuculline. The relevance of the differential induction of gene expression in the adult and newborn in an in vitro hippocampal slice model as compared to previously described in vivo models is discussed.

  4. GnRH neuron firing and response to GABA in vitro depend on acute brain slice thickness and orientation.

    PubMed

    Constantin, Stephanie; Piet, Richard; Iremonger, Karl; Hwa Yeo, Shel; Clarkson, Jenny; Porteous, Robert; Herbison, Allan E

    2012-08-01

    The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABA(A) receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABA(A) or GABA(B) receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABA(A) and GABA(B) receptor-mediated effects in "long" and "short" dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.

  5. The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the guinea pig.

    PubMed

    Wada, H; Okada, Y; Uzuo, T; Nakamura, H

    1998-03-30

    Using hippocampal slices from guinea pigs, we investigated the effect of different concentrations of glucose and replacement of glucose with mannose, fructose and lactate on neural activity. As an index of neural activity, the population spikes (PS) were recorded in the granule cell layer of the dentate gyrus (DG) and the pyramidal cell layer of the CA3 area in the hippocampal slices. Lowering the concentration of glucose from 10 mM to 5, 3, 2, 1 and 0 mM caused a reduction in the PS amplitude. There were differences in the decay times of the PS evoked in these two regions. PS evoked in CA3 region decayed faster even at a concentration of 3 mM glucose at which PS in granule cell layer was well maintained. The decay time of the PS in the CA3 region in the presence of glucose up to a concentration of 3 mM was shorter than that evoked in the DG. After the replacement of glucose with mannose, fructose or lactate, the PS disappeared within 35 min and there were no significant differences between the decay times in the two regions of slices incubated in the same medium. ATP, creatine phosphate (CrP) and lactate levels in each slice were determined. To investigate whether mannose and fructose could be metabolized or not in the tissue slice, anaerobic production of lactate from glucose, mannose and fructose were measured during oxygen and glucose deprivation. Under anaerobic conditions for 60 min, the levels of high-energy phosphates decreased to 50% of the initial level and lactate was produced from glucose, mannose or fructose. However, there were significant differences in the rate of lactate production between the DG and CA3 areas during application of 3 mM glucose, 10 mM mannose and 10 mM fructose. These results indicate that mannose, fructose and lactate can be metabolized and are available for maintaining the levels of high-energy phosphates but not for neural activity in the tissue slices and that the presence of glucose is indispensable for the maintenance of

  6. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures.

    PubMed

    Jung, Yeon Joo; Suh, Eun Cheng; Lee, Kyung Eun

    2012-12-01

    Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

  7. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  8. Neural activity and the levels of high energy phosphates during deprivation of oxygen and/or glucose in hippocampal slices of immature and adult rats.

    PubMed

    Nabetani, M; Okada, Y; Kawai, S; Nakamura, H

    1995-02-01

    To investigate the relationship between neural activity and cerebral energy metabolism during anoxia or ischemia in neural tissue of different ages, hippocampal slices were prepared from four-, seven- and 10-day-old and adult rats. For the index of the neural activity, the population spikes were recorded in the pyramidal cell layer of the CA3 area. ATP and phosphocreatine levels in the slices were measured during oxygen and/or glucose deprivation. After deprivation of both oxygen and glucose, population spikes of the slices from four, seven- and 10-day-old and adult rats ceased completely in 14.2, 11.8, 9.4 and 5.3 min, respectively. The level of ATP at the time of cessation of population spike in four-, seven- and 10-day-old and adult rats was 37.4, 30.2, 28.5 and 56.4% of the original concentrations. After deprivation of glucose only, the decay time of the population spikes of the slices from four-, seven- and 10-day-old and adult rats was 17.8, 14.5, 9.0 and 10.0 min and at the time of population spikes cessation the level of ATP was 99.8, 84.2, 79.3 and 49%, respectively. After deprivation of oxygen only, population spikes of the slices from four, seven- and 10-day old and adult rats ceased completely in 257, 283, 109 and 8.5 min, respectively. The level of ATP at the time of population spikes cessation was 50, 40, 36.6 and 94.4% of the initial values, respectively. These results indicate that the immature rat is extremely resistant to oxygen deprivation from a functional and a metabolic view, whereas in the adult rat, preservation of neural activity depends much on both oxygen and glucose. During glucose deprivation, population spikes of the slices of immature and mature rats ceased rapidly although the level of ATP is preserved at high levels. This suggests that glucose plays an important role in the preservation of neural activity in addition to its major function as an energy substrate especially in immature animals.

  9. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation.

    PubMed

    Vandresen-Filho, Samuel; Martins, Wagner C; Bertoldo, Daniela B; Mancini, Gianni; Herculano, Bruno A; de Bem, Andreza F; Tasca, Carla I

    2013-06-01

    Oxygen-glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.

  10. Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures

    PubMed Central

    Radic, Tijana; Jungenitz, Tassilo; Singer, Mathias; Beining, Marcel; Cuntz, Hermann; Vlachos, Andreas; Deller, Thomas; Schwarzacher, Stephan W.

    2017-01-01

    Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier. PMID:28256620

  11. Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices

    PubMed Central

    Seto, David; Kar, Satyabrata; Quirion, Rémi

    1997-01-01

    The biphasic nature of the potent modulatory action of interleukin-2 (IL-2) on hippocampal acetylcholine (ACh) release was investigated by use of brain slice superfusion.Both the potentiating (10−13 M) and inhibitory (10−9 M) effects of IL-2 on hippocampal ACh release were stimulation-dependent and were blocked by a neutralizing IL-2 receptor antibody, suggesting the activation of typical IL-2 receptors in both cases.Tetrodotoxin (TTX; 10 μM) failed to block the potentiation of ACh release induced by a very low concentration of IL-2 (10−13M) suggesting a direct effect on cholinergic nerve terminals.In contrast, the inhibitory effect seen at a higher concentration (10−9 M) was TTX-sensitive, and hence indicative of an indirect action.To establish the nature of this intermediate mediator, blockers of nitric oxide synthesis, and of opioid and γ-aminobutyric acid (GABA) receptors were used. Only GABAA and GABAB receptor antagonists altered the inhibitory action of IL-2, suggesting the participation of GABA as mediator.Taken together, these results provide further evidence for the potent role of IL-2 in the modulation of cholinergic function in the rat hippocampus. PMID:9134229

  12. Acute pentobarbital treatment impairs spatial learning and memory and hippocampal long-term potentiation in rats.

    PubMed

    Wang, Wei; Tan, Tao; Tu, Man; He, Wenting; Dong, Zhifang; Han, Huili

    2015-10-01

    Reports of the effects of pentobarbital on learning and memory are contradictory. Some studies have not shown any interference with learning and memory, whereas others have shown that pentobarbital impairs memory and that these impairments can last for long periods. However, it is unclear whether acute local microinjections of pentobarbital affect learning and memory, and if so, the potential mechanisms are also unclear. Here, we reported that the intra-hippocampal infusion of pentobarbital (8.0mM, 1μl per side) significantly impaired hippocampus-dependent spatial learning and memory retrieval. Moreover, in vitro electrophysiological recordings revealed that these behavioral changes were accompanied by impaired hippocampal CA1 long-term potentiation (LTP) and suppressed neuronal excitability as reflected by a decrease in the number of action potentials (APs). These results suggest that acute pentobarbital application causes spatial learning and memory deficits that might be attributable to the suppression of synaptic plasticity and neuronal excitability.

  13. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    PubMed

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  14. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices.

    PubMed

    Zhou, Min; Xu, Guangjin; Xie, Minjie; Zhang, Xuexin; Schools, Gary P; Ma, Liqun; Kimelberg, Harold K; Chen, Haijun

    2009-07-01

    Expression of a linear current-voltage (I-V) relationship (passive) K(+) membrane conductance is a hallmark of mature hippocampal astrocytes. However, the molecular identifications of the K(+) channels underlying this passive conductance remain unknown. We provide the following evidence supporting significant contribution of the two-pore domain K(+) channel (K(2P)) isoforms, TWIK-1 and TREK-1, to this conductance. First, both passive astrocytes and the cloned rat TWIK-1 and TREK-1 channels expressed in CHO cells conduct significant amounts of Cs(+) currents, but vary in their relative P(Cs)/P(K) permeability, 0.43, 0.10, and 0.05, respectively. Second, quinine, which potently inhibited TWIK-1 (IC(50) = 85 microm) and TREK-1 (IC(50) = 41 microm) currents, also inhibited astrocytic passive conductance by 58% at a concentration of 200 microm. Third, a moderate sensitivity of passive conductance to low extracellular pH (6.0) supports a combined expression of acid-insensitive TREK-1, and to a lesser extent, acid-sensitive TWIK-1. Fourth, the astrocyte passive conductance showed low sensitivity to extracellular Ba(2+), and extracellular Ba(2+) blocked TWIK-1 channels at an IC(50) of 960 microm and had no effect on TREK-1 channels. Finally, an immunocytochemical study showed colocalization of TWIK-1 and TREK-1 proteins with the astrocytic markers GLAST and GFAP in rat hippocampal stratum radiatum. In contrast, another K(2P) isoform TASK-1 was mainly colocalized with the neuronal marker NeuN in hippocampal pyramidal neurons and was expressed at a much lower level in astrocytes. These results support TWIK-1 and TREK-1 as being the major components of the long-sought K(+) channels underlying the passive conductance of mature hippocampal astrocytes.

  15. The Role of Protein Synthesis and Monoamines in the Production of Long-Term Potentiation in the Rat Hippocampal Slice

    DTIC Science & Technology

    1985-04-01

    slices. Dingledine, R. ed., Plenum Press, N~Y. pp.145-147. Haas, H.L. and Konnerth, A. (1983) Histamine and noradrenaline decrease calcium-activated...that ~1- receptor stimulation of adenylate cyclase is probably the mechanism of NE’s action in the production of LTP in the dentate. These results...pharmacologic data support the conclusion that both phases of NE-induced potentiation are produced by e1- receptor stimulation of adenylate cyclase. This

  16. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  17. Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy.

    PubMed

    Li, Fengqiang; Song, Yu; Dryer, Alexandra; Cogguillo, William; Berdichevsky, Yevgeny; Zhou, Chao

    2014-10-01

    Three-dimensional tissue cultures have been used as effective models for studying different diseases, including epilepsy. High-throughput, nondestructive techniques are essential for rapid assessment of disease-related processes, such as progressive cell death. An ultrahigh-resolution optical coherence microscopy (UHR-OCM) system with [Formula: see text] axial resolution and [Formula: see text] transverse resolution was developed to evaluate seizure-induced neuronal injury in organotypic rat hippocampal cultures. The capability of UHR-OCM to visualize cells in neural tissue was confirmed by comparison of UHR-OCM images with confocal immunostained images of the same cultures. In order to evaluate the progression of neuronal injury, UHR-OCM images were obtained from cultures on 7, 14, 21, and 28 days in vitro (DIVs). In comparison to DIV 7, statistically significant reductions in three-dimensional cell count and culture thickness from UHR-OCM images were observed on subsequent time points. In cultures treated with kynurenic acid, significantly less reduction in cell count and culture thickness was observed compared to the control specimens. These results demonstrate the capability of UHR-OCM to perform rapid, label-free, and nondestructive evaluation of neuronal death in organotypic hippocampal cultures. UHR-OCM, in combination with three-dimensional tissue cultures, can potentially prove to be a promising tool for high-throughput screening of drugs targeting various disorders.

  18. Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.

    PubMed

    Danzer, S C; Pan, E; Nef, S; Parada, L F; McNamara, J O

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. To address this concern, BDNF immunoreactivity was examined in rodent slices using two different methods of slice preparation. Rapid and anatomically selective regulation of BDNF content followed slice preparation using both methodologies; however, different patterns of altered BDNF immunoreactivity were observed. First, in cultured slices, BDNF content decreased in the dentate molecular layer and increased in the CA3 pyramidal cell layer and the mossy fiber pathway of the hippocampus after 30 min. Furthermore, an initially "punctate" pattern of BDNF labeling observed in the mossy fiber pathway of control sections changed to homogenous labeling of the pathway in vitro. In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.

  19. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    PubMed

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  20. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices

    PubMed Central

    Pugliese, AM; Traini, C; Cipriani, S; Gianfriddo, M; Mello, T; Giovannini, MG; Galli, A; Pedata, F

    2009-01-01

    Background and purpose: Activation of adenosine A2A receptors in the CA1 region of rat hippocampal slices during oxygen-glucose deprivation (OGD), a model of cerebral ischaemia, was investigated. Experimental approach: We made extracellular recordings of CA1 field excitatory postsynaptic potentials (fepsps) followed by histochemical and immunohistochemical techniques coupled to Western blots. Key results: OGD (7 or 30 min duration) elicited an irreversible loss of fepsps invariably followed by the appearance of anoxic depolarization (AD), an unambiguous sign of neuronal damage. The application of the selective adenosine A2A receptor antagonist, ZM241385 (4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)phenol; 100–500 nmol·L−1) prevented or delayed AD appearance induced by 7 or 30 min OGD and protected from the irreversible fepsp depression elicited by 7 min OGD. Two different selective adenosine A2A receptor antagonists, SCH58261 and SCH442416, were less effective than ZM241385 during 7 min OGD. The extent of CA1 cell injury was assessed 3 h after the end of 7 min OGD by propidium iodide. Substantial CA1 pyramidal neuronal damage occurred in untreated slices, exposed to OGD, whereas injury was significantly prevented by 100 nmol·L−1 ZM241385. Glial fibrillary acid protein (GFAP) immunostaining showed that 3 h after 7 min OGD, astrogliosis was appreciable. Western blot analysis indicated an increase in GFAP 30 kDa fragment which was significantly reduced by treatment with 100 nmol·L−1 ZM241385. Conclusions and implications: In the CA1 hippocampus, antagonism of A2A adenosine receptors by ZM241385 was protective during OGD (a model of cerebral ischaemia) by delaying AD appearance, decreasing astrocyte activation and improving neuronal survival. PMID:19422385

  1. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress

    PubMed Central

    Li, Sisi; Papale, Ligia A.; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S.

    2015-01-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  2. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    PubMed

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology.

  3. Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca²+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake.

    PubMed

    Dal-Cim, T; Martins, W C; Santos, A R S; Tasca, C I

    2011-06-02

    Guanine derivatives (GD) have been implicated in many relevant brain extracellular roles, such as modulation of glutamate transmission and neuronal protection against excitotoxic damage. GD are spontaneously released to the extracellular space from cultured astrocytes and during oxygen/glucose deprivation (OGD). The aim of this study has been to evaluate the potassium channels and phosphatidilinositol-3 kinase (PI3K) pathway involvement in the mechanisms related to the neuroprotective role of guanosine in rat hippocampal slices subjected to OGD. The addition of guanosine (100 μM) to hippocampal slices subjected to 15 min of OGD and followed by 2 h of re-oxygenation is neuroprotective. The presence of K+ channel blockers, glibenclamide (20 μM) or apamin (300 nM), revealed that neuroprotective effect of guanosine was not dependent on ATP-sensitive K+ channels or small conductance Ca²+-activated K+ channels. The presence of charybdotoxin (100 nM), a large conductance Ca²+-activated K+ channel (BK) blocker, inhibited the neuroprotective effect of guanosine. Hippocampal slices subjected to OGD and re-oxygenation showed a significant reduction of glutamate uptake. Addition of guanosine in the re-oxygenation period has blocked the reduction of glutamate uptake. This guanosine effect was inhibited when hippocampal slices were pre-incubated with charybdotoxin or wortmanin (a PI3K inhibitor, 1 μM) in the re-oxygenation period. Guanosine promoted an increase in Akt protein phosphorylation. However, the presence of charybdotoxin blocked such effect. In conclusion, the neuroprotective effect of guanosine involves augmentation of glutamate uptake, which is modulated by BK channels and the activation of PI3K pathway. Moreover, neuroprotection caused by guanosine depends on the increased expression of phospho-Akt protein.

  4. Magnetic Resonance Imaging Findings of Mumps Meningoencephalitis with Bilateral Hippocampal Lesions without Preceding Acute Parotitis: A Case Report

    PubMed Central

    Woo, Ah Reum; Lim, Myung Kwan; Kang, Young Hye; Cho, Soon Gu; Choi, Seong Hye; Baek, Ji Hyeon

    2017-01-01

    Meningitis is a common central nervous system (CNS) complication of the mumps, a viral infection, but encephalitis and meningoencephalitis are less common in mumps. We describe magnetic resonance imaging findings of acute mumps meningoencephalitis in a 32-year-old male who showed bilateral hippocampal lesions without preceding parotitis. Although it is rare, hippocampal involvement should be considered a CNS complication of mumps infection. PMID:28246518

  5. Bupropion inhibits nicotine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine and from rat hippocampal slices preloaded with [(3)H]norepinephrine.

    PubMed

    Miller, Dennis K; Sumithran, Sangeetha P; Dwoskin, Linda P

    2002-09-01

    Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.

  6. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures

    PubMed Central

    Ou, Yangguang; Wu, Juanfang; Sandberg, Mats

    2014-01-01

    This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push–pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push–pull perfusion can distinguish ectoenzyme activity with a ~100 µm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus. PMID:25168111

  7. Effects of long-term lithium and desipramine treatment upon clonidine-induced inhibition of /sup 3/H-norepinephrine release from rat hippocampal slices

    SciTech Connect

    Spengler, R.N.; Hollingsworth, P.J.; Smith, C.B.

    1986-03-01

    Long-term treatment with antidepressant agents alters the specific binding of /sup 3/H-clonidine, an alpha/sub 2/ adrenoreceptor agonist, to neural membranes isolated from specific areas of the rat brain. The purpose of the present study was to determine whether these changes in binding of /sup 3/H-clonidine represent an alteration in the functional state of the presynaptic alpha/sub 2/ adrenorecepotr. Hippocampal slices were incubated with /sup 3/H-norepinephrine (/sup 3/H-NE, 330 nM0 for 20 min, washed with fresh buffer for 30 min and then stimulated (4 Hz, 2 msec duration, 2 min) at 12 min intervals. Cumulative concentration-effect curves were determined of /sup 3/H-NE. Rats were injected, i.p., twice daily for 14 days with lithium chloride (105 mg/kg), desipramine HCl (10 mg/kg) or saline. In controls, the EC50 for clonidine was 2.3 +/- 1.0 nM (n = 3). After lithium treatment, the clonidine concentration-effect curve was shifted to the right, and the EC50 as 12.1 +/- 4.3 nM. Desipramine treatment nearly abolished the inhibitory effect of clonidine upon the release of /sup 3/H-NE by field stimulation. These observations indicate that the long-term administration of desipramine and lithium produce a functional subsensitivity of the alpha/sub 2/ adrenoreceptor which regulates norepinephrine release in the rat brain.

  8. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and {alpha}{sub 7} nicotinic receptors

    SciTech Connect

    Olmos, Cristina; Sandoval, Rodrigo; Rozas, Carlos; Navarro, Sebastian; Wyneken, Ursula; Zeise, Marc; Morales, Bernardo; Pancetti, Floria

    2009-07-01

    Dichlorvos is the active molecule of the pro-drug metrifonate used to revert the cognitive deficits associated with Alzheimer's disease. A few years ago it was reported that dichlorvos inhibits the enzyme acylpeptide hydrolase at lower doses than those necessary to inhibit acetylcholinesterase to the same extent. Therefore, the aim of our investigation was to test the hypothesis that dichlorvos can enhance synaptic efficacy through a mechanism that involves acylpeptide hydrolase instead of acetylcholinesterase inhibition. We used long-term potentiation induced in rat hippocampal slices as a model of synaptic plasticity. Our results indicate that short-term exposures (20 min) to 50 {mu}M dichlorvos enhance long-term potentiation in about 200% compared to the control condition. This effect is correlated with approximately 60% inhibition of acylpeptide hydrolase activity, whereas acetylcholinesterase activity remains unaffected. Paired-pulse facilitation and inhibition experiments indicate that dichlorvos does not have any presynaptic effect in the CA3 {yields} CA1 pathway nor affect gabaergic interneurons. Interestingly, the application of 100 nM methyllicaconitine, an {alpha}{sub 7} nicotinic receptor antagonist, blocked the enhancing effect of dichlorvos on long-term potentiation. These results indicate that under the exposure conditions described above, dichlorvos enhances long-term potentiation through a postsynaptic mechanism that involves (a) the inhibition of the enzyme acylpeptide hydrolase and (b) the modulation of {alpha}{sub 7} nicotinic receptors.

  9. Aerobic Production and Utilization of Lactate Satisfy Increased Energy Demands Upon Neuronal Activation in Hippocampal Slices and Provide Neuroprotection Against Oxidative Stress

    PubMed Central

    Schurr, Avital; Gozal, Evelyne

    2012-01-01

    Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage. PMID:22275901

  10. Effects of deprivation of oxygen or glucose on the neural activity in the guinea pig hippocampal slice--intracellular recording study of pyramidal neurons.

    PubMed

    Takata, T; Okada, Y

    1995-06-12

    The block of synaptic transmission and neural activity during deprivation of oxygen or glucose has been simply attributed to the lack of energy due to the disorder of energy production. To clarify the interrelation between neural activity and energy metabolism during hypoxia or glucose deprivation, we studied the changes in ATP levels and electrical events of pyramidal neurons in the CA3 region and [Ca2+]i mobilization of the dendritic and cellular region of CA3 area, using guinea pig hippocampal slices. The studies of field potentials and intracellular recording from the pyramidal cell of CA3 area during hypoxia or glucose deprivation revealed that the cessation of synaptic activity and the depolarization of resting potential occurred earlier than during glucose deprivation while the increase of [Ca2+]i was slow during hypoxia but rapid during glucose deprivation although the ATP level of CA3 area was maintained at its original level for 20 min during both conditions. When glucose was replaced by lactate, ATP concentration was not reduced but the electrical activity decayed and [Ca2+]i increased with the similar time course as observed during lack of glucose, only. These results suggest that different mechanisms underlie the block of synaptic transmission in the CA3 pyramidal neurons during hypoxia and glucose deprivation and that lactate cannot substitute for glucose in the maintenance of neural activity.

  11. Subfield-specific neurovascular remodeling in the entorhino-hippocampal-organotypic slice culture as a response to oxygen–glucose deprivation and excitotoxic cell death

    PubMed Central

    Chip, Sophorn; Nitsch, Cordula; Wellmann, Sven; Kapfhammer, Josef P

    2013-01-01

    Transient ischemia causes delayed neurodegeneration in selective brain areas, particularly in the CA1 field of the hippocampus. This is accompanied by neurovascular impairment. It is unknown whether neurodegeneration is the cause or consequence of vascular changes. In an entorhino-hippocampal-organotypic slice culture system with well-preserved blood vessels, we studied the interplay between neurodegeneration and neurovasculature. Short-term oxygen and glucose deprivation (OGD) resulted in upregulation of hypoxic markers and with a delay of 24 to 48 hours in selective nerve cell death in CA1. In parallel, local vessel density decreased as detected by markers of endothelial cells and of the extracellular matrix. Claudin-5, a tight junction protein and marker of the blood–brain barrier was reduced. Preventing neuronal death with tetrodotoxin or 6-cyano-7-nitroquinoxaline-2,3-dione rescued blood vessels, suggesting that vessel loss is not due to OGD per se but a consequence of neuronal death. Induction of excitotoxic neuronal death with AMPA caused widespread neurodegeneration, but vessel reduction was confined to CA1. In dentate gyrus without neuronal loss, vessel density increased. We propose that neuronal stress and death influence maintenance, loss and remodeling of the neurovasculature and that the type of vascular response is in addition determined by local factors within the hippocampus. PMID:23232944

  12. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice.

    PubMed

    Stankiewicz, Adrian M; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H; Juszczak, Grzegorz R

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples.

  13. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice

    PubMed Central

    Stankiewicz, Adrian M.; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H.; Juszczak, Grzegorz R.

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples. PMID:26556046

  14. Slice orientation and muscarinic acetylcholine receptor activation determine the involvement of N-methyl D-aspartate receptor subunit GluN2B in hippocampal area CA1 long-term depression

    PubMed Central

    2011-01-01

    Background The contribution of different GluN2 subunits of the N-methyl D-aspartate (NMDA) receptor to the induction of bidirectional hippocampal synaptic plasticity is a controversial topic. As both supporting and refuting evidence for the hypothesis of subunit specialization in opposing directions of plasticity has accumulated since it was first proposed a few years ago, we hypothesize that differences in experimental conditions may have in part contributed to some of the inconsistent results from these studies. Here we investigate the controversial hypothesis that long-term depression (LTD) is preferentially induced by GluN2B-containing NMDA receptors in area CA1 of hippocampal slices. Results We find that brain slices from 2-3 week old rats prepared in the sagittal orientation have GluN2B-independent LTD whereas slices prepared in the coronal orientation have GluN2B-dependent LTD. There was no difference between the orientations in the fraction of the NMDAR EPSC sensitive to a GluN2B-selective antagonist, leading us to believe that the intracellular signaling properties of the NMDARs were different in the two preparations. Coronal slices had greater association of LTD-related intracellular signaling protein RasGRF1 with GluN2B relative to sagittal slices. Antagonism of muscarinic acetylcholine receptors (mAChRs) in the sagittal slices returned LTD to a GluN2B-dependent form and increased the association of GluN2B with RasGRF1. Conclusions These results suggest a novel form of NMDAR modulation by mAChRs and clarify some disagreement in the literature. PMID:22082088

  15. Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices.

    PubMed

    Izumi, Yukitoshi; Zorumski, Charles F

    2015-02-01

    Whereas ifenprodil has been used as a selective GluN1/GluN2B (NR1/NR2B, B-type) receptor antagonist to distinguish between GluN2B (NR2B) and GluN2A (NR2A)-containing N-methyl-d-aspartate receptors (NMDARs), TCN 201 (3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide) and TCN 213 [N-(cyclohexylmethyl)-2-[{5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio]acetamide] have been found to be selective GluN1/GluN2A (NR1/NR2A, A-type) antagonists. Based on the premise that A- and B-types are major synaptic NMDARs, we examined whether inhibition of NMDAR excitatory postsynaptic potentials (EPSPs) by the TCN compounds and ifenprodil are complementary. Contrary to this prediction, inhibition of NMDAR EPSPs by the TCN compounds and ifenprodil were largely overlapping in the CA1 region of hippocampal slices from 30-day-old rats. After partial inhibition by ifenprodil, TCN compounds produced little further suppression of NMDAR EPSPs. Similarly, after partial inhibition by TCN compounds ifenprodil failed to further suppress NMDAR EPSPs. However, low micromolar d-2-amino-5-phosphonovalerate, a competitive NMDAR antagonist, which alone only partially inhibits NMDAR EPSPs, markedly suppresses residual NMDAR responses in the presence of ifenprodil or the TCNs, suggesting that low 2-amino-5-phosphonovalerate antagonizes both ifenprodil- and TCN-insensitive synaptic NMDARs. These observations can be most readily interpreted if ifenprodil and TCNs act on a similar population of synaptic NMDARs. Recent lines of evidence suggest that the majority of hippocampal synaptic NMDARs are triheteromers. If so, modulation of GluN2A, and not just GluN2B NMDARs, could dampen long-term depression (LTD). Indeed, both TCNs, like ifenprodil, blocked LTD, suggesting the involvement of ifenprodil- and TCN-sensitive NMDARs in LTD induction. However, the TCNs plus ifenprodil failed to inhibit long-term potentiation (LTP), suggesting that neither ifenprodil- nor TCN

  16. Electrophysiological and Morphological Characterization of Neuronal Microcircuits in Acute Brain Slices Using Paired Patch-Clamp Recordings

    PubMed Central

    Qi, Guanxiao; Radnikow, Gabriele; Feldmeyer, Dirk

    2015-01-01

    The combination of patch clamp recordings from two (or more) synaptically coupled neurons (paired recordings) in acute brain slice preparations with simultaneous intracellular biocytin filling allows a correlated analysis of their structural and functional properties. With this method it is possible to identify and characterize both pre- and postsynaptic neurons by their morphology and electrophysiological response pattern. Paired recordings allow studying the connectivity patterns between these neurons as well as the properties of both chemical and electrical synaptic transmission. Here, we give a step-by-step description of the procedures required to obtain reliable paired recordings together with an optimal recovery of the neuron morphology. We will describe how pairs of neurons connected via chemical synapses or gap junctions are identified in brain slice preparations. We will outline how neurons are reconstructed to obtain their 3D morphology of the dendritic and axonal domain and how synaptic contacts are identified and localized. We will also discuss the caveats and limitations of the paired recording technique, in particular those associated with dendritic and axonal truncations during the preparation of brain slices because these strongly affect connectivity estimates. However, because of the versatility of the paired recording approach it will remain a valuable tool in characterizing different aspects of synaptic transmission at identified neuronal microcircuits in the brain. PMID:25650985

  17. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    PubMed

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  18. Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures.

    PubMed

    Dehghani, Faramarz; Conrad, Ariane; Kohl, Angelika; Korf, Horst-Werner; Hailer, Nils P

    2004-10-01

    Treatment of excitotoxically injured organotypic hippocampal slice cultures (OHSC) with clodronate is known to result in the inhibition of microglial activation. We hypothesized that this is due to direct effects of clodronate on microglial cells, and investigated microglial proliferation in OHSC, and cytokine and NO secretion in isolated microglial cells. N-methyl-D-aspartate (NMDA) lesioning of OHSC resulted in a massive increase in the number of proliferating, bromo-desoxy-uridine (BrdU)-labeled cells that was reduced to control levels after treatment with clodronate (0.1, 1, 10 microg/ml). Triple-labeling revealed that clodronate abrogated the proliferation of both glial fibrillary acidic protein (GFAP)-labeled astrocytes and Griffonia simplicifolia isolectin B4 (IB4)-labeled microglial cells. Furthermore, isolated microglial cells were treated with clodronate after stimulation with lipopolysaccharide (LPS) or macrophage colony stimulating factor (M-CSF). Clodronate (0.01, 0.1, 1 microg/ml) significantly down-regulated the LPS-stimulated microglial secretion of tumor necrosis factor (TNF)-alpha, Interleukin (IL)-1beta and NO, but not of IL-6. In contrast, clodronate significantly reduced the microglial IL-6-release induced by M-CSF, indicating different intracellular pathways. The number and morphology of isolated microglial cells did not change significantly after treatment with clodronate. In summary, the number of proliferating microglial cells and astrocytes after excitotoxic injury is reduced to control levels after treatment with clodronate. Furthermore, clodronate inhibits microglial secretion of proinflammatory cytokines and NO. Clodronate could therefore prove to be a useful tool in the investigation of interactions between damaged neurons and microglial cells.

  19. Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: Involvement of the Akt/GSK-3β pathway.

    PubMed

    Ramírez-Sánchez, Jeney; Simões Pires, Elisa Nicoloso; Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Fonseca-Fonseca, Luis Arturo; Ruiz-Reyes, Alberto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O; Salbego, Christianne

    2015-11-01

    Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 μM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3β (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 μM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway.

  20. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures.

    PubMed

    Rundén-Pran, E; Haug, F M; Storm, J F; Ottersen, O P

    2002-01-01

    BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.

  1. Brief anoxia preconditioning and HIF prolyl-hydroxylase inhibition enhances neuronal resistance in organotypic hippocampal slices on model of ischemic damage.

    PubMed

    Lushnikova, Iryna; Orlovsky, Maxim; Dosenko, Victor; Maistrenko, Anastasiia; Skibo, Galina

    2011-04-22

    It is well known that a brief anoxia or hypoxia episodes can render brain resistant to a subsequent ischemia. Recent investigations indicate that mechanisms of such stimulated endogenous neuroprotection are related to the family of hypoxia-inducible factors (HIF), however there are still little data available on the role of HIF family members in hippocampus-a brain structure, highly sensitive to oxygen deficiency. We have used the model of cultured hippocampal slices and single-cell quantitative RT-PCR to study HIF-1α and HIF-3α mRNA expression following triple 5-min mild anoxia, 30-min oxygen-glucose deprivation and their combination. We also tested the effects of HIF prolyl-hydroxylase inhibition with 2,4-pyridinedicarboxylic acid diethyl ester pre-treatment followed by a 30-min oxygen-glucose deprivation. It was found that neuronal damage induced by oxygen-glucose deprivation was accompanied by a significant decrease in both HIF-1α and HIF-3α mRNA levels in CA1 but not CA3 neurons. Anoxia preconditioning did not affect cell viability and HIF mRNA levels but applied before oxygen-glucose deprivation prevented neuronal damage and suppression of HIF-1α and HIF-3α mRNA expression. It was also found that effects of the prolyl-hydroxylase inhibitor were similar to anoxia preconditioning. These results suggest that anoxia preconditioning increases anti-ischemic neuronal resistance which to a certain extent correlates with the changes of HIF-1α and HIF-3α expression.

  2. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation.

    PubMed

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J

    2003-01-01

    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  3. An in situ measurement of extracellular cysteamine, homocysteine, and cysteine concentrations in organotypic hippocampal slice cultures by integration of electroosmotic sampling and microfluidic analysis.

    PubMed

    Wu, Juanfang; Xu, Kerui; Landers, James P; Weber, Stephen G

    2013-03-19

    We demonstrate an all-electric sampling/derivatization/separation/detection system for the quantitation of thiols in tissue cultures. Extracellular fluid collected from rat organotypic hippocampal slice cultures (OHSCs) by electroosmotic flow through an 11 cm (length) × 50 μm (i.d.) sampling capillary is introduced to a simple microfluidic chip for derivatization, continuous flow-gated injection, separation, and detection. With the help of a fluorogenic, thiol-specific reagent, ThioGlo-1, we have successfully separated and detected the extracellular levels of free reduced cysteamine, homocysteine, and cysteine from OHSCs within 25 s in a 23 mm separation channel with a confocal laser-induced fluorescence (LIF) detector. Attention to the conductivities of the fluids being transported is required for successful flow-gated injections. When the sample conductivity is much higher than the run buffer conductivities, the electroosmotic velocities are such that there is less fluid coming by electroosmosis into the cross from the sample/reagent channel than is leaving by electroosmosis into the separation and waste channels. The resulting decrease in the internal fluid pressure in the injection cross pulls flow from the gated channel. This process may completely shut down the gated injection. Using a glycylglycine buffer with physiological osmolarity but only 62% of physiological conductivity and augmenting the conductivity of the run buffers solved this problem. Quantitation is by standard additions. Concentrations of cysteamine, homocysteine, and cysteine in the extracellular space of OHSCs are 10.6 ± 1.0 nM (n = 70), 0.18 ± 0.01 μM (n = 53), and 11.1 ± 1.2 μM (n = 70), respectively. This is the first in situ quantitative estimation of endogenous cysteamine in brain tissue. Extracellular levels of homocysteine and cysteine are comparable with other reported values.

  4. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    PubMed Central

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H.

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA. PMID:27867486

  5. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices.

    PubMed

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  6. EPSP-spike potentiation during primed burst-induced long-term potentiation in the CA1 region of rat hippocampal slices.

    PubMed

    Pugliese, A M; Ballerini, L; Passani, M B; Corradetti, R

    1994-10-01

    Long-term potentiation induced by high-frequency stimulation in the CA1 region of the hippocampus exhibits EPSP-spike potentiation. This consists of an increase in population spike amplitude exceeding that predicted by EPSP potentiation alone. This phenomenon is apparently due to an increase in pyramidal cell excitability. Patterns of afferent stimuli which activate pyramidal cells to reproduce the theta rhythm observed in the hippocampus under physiological conditions, have been shown to induce LTP-like enhancement of synaptic responses in vitro. The aim of this study was to investigate the presence of EPSP-spike potentiation and/or changes in pyramidal cell excitability during the long-term potentiation induced in the CA1 region of rat hippocampal slices by theta-like patterns of stimuli: the primed burst and the patterned stimulation. Using extracellular recording, a significant leftward shift in the EPSP-spike relationship was found 30 min after primed burst or patterned stimulation. The magnitude of EPSP-spike potentiation induced by patterned stimulation was similar to that produced by high-frequency stimulation. Both were significantly greater than that induced by a primed burst, indicating that only a subset of pyramidal cells were potentiated by this kind of afferent activation. Modifications in synaptic efficacy and cell excitability brought about by a primed burst were investigated in 25 intracellularly recorded pyramidal cells. Consistent with extracellular results, it was found that only 11 out of 25 neurons receiving a primed burst were potentiated. In these cells the increase in probability of firing action potentials elicited by synaptic activation with test shocks was accompanied by enhanced cell excitability, but not by an increase in EPSP slope. High-frequency stimulation delivered 40 min after a primed burst invariably increased the EPSP slope, the probability of firing upon synaptic stimulation, and the excitability of cells. The presence of

  7. Modifications of excitatory and inhibitory transmission in rat hippocampal pyramidal neurons by acute lithium treatment.

    PubMed

    Wakita, Masahito; Nagami, Hideaki; Takase, Yuko; Nakanishi, Ryoji; Kotani, Naoki; Akaike, Norio

    2015-08-01

    The acute effects of high-dose Li(+) treatment on glutamatergic and GABAergic transmissions were studied in the "synaptic bouton" preparation of isolated rat hippocampal pyramidal neurons by using focal electrical stimulation. Both action potential-dependent glutamatergic excitatory and GABAergic inhibitory postsynaptic currents (eEPSC and eIPSC, respectively) were dose-dependently inhibited in the external media containing 30-150 mM Li(+), but the sensitivity for Li(+) was greater tendency for eEPSCs than for eIPSCs. When the effects of Li(+) on glutamate or GABAA receptor-mediated whole-cell responses (IGlu and IGABA) elicited by an exogenous application of glutamate or GABA were examined in the postsynaptic soma membrane of CA3 neurons, Li(+) slightly inhibited both IGlu and IGABA at the 150 mM Li(+) concentration. Present results suggest that acute treatment with high concentrations of Li(+) acts preferentially on presynaptic terminals, and that the Li(+)-induced inhibition may be greater for excitatory than for inhibitory transmission.

  8. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    PubMed Central

    Schnell, Christian; Hagos, Yohannes; Hülsmann, Swen

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes. PMID:23189143

  9. Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex

    PubMed Central

    Risher, W. Christopher; Lee, Mark R.; Fomitcheva, Ioulia V.; Hess, David C.; Kirov, Sergei A.

    2011-01-01

    Background Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury. Methodology/Principal Findings We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model. Conclusions/Significance Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from

  10. Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro.

    PubMed

    Lacaille, J C

    1991-11-01

    1. Because interneurons of stratum pyramidale partly mediate the feed-forward inhibition of pyramidal cells, intracellular postsynaptic potentials (PSPs) evoked by activation of afferent fibers were examined in 32 nonpyramidal cells of stratum pyramidale of the CA1 region of rat hippocampal slices. 2. Electrical stimulation of stratum radiatum at the CA1-CA3 border elicited, in interneurons, PSPs that were composed of four components: a fast excitatory postsynaptic potential (EPSP), an early inhibitory postsynaptic potential (IPSPA), a late IPSPB, and in some cells a delayed, slower EPSP. These synaptic potentials summated and elicited single action potentials in 57% of cells (17/30) and burst of action potentials (2-10) in the remaining 43%. 3. The fast EPSP was observed in all cells, and the mean stimulation intensity at its threshold was 53.4 microA. Its amplitude increased with membrane hyperpolarization, and it was associated with a 45.4% decrease in cellular input resistance. The fast EPSP always elicited an action potential at short latencies (3.6-6.4 ms poststimulation). It was reversibly reduced by 6-cyano-7-nitroquinoxaline-2,3- dione (CNQX), a blocker of non-N-methyl-D-aspartate (non-NMDA) excitatory amino acid receptors. 4. The IPSPA was observed in 28/32 cells, and the mean intensity of stimulation was 57.6 microA at its threshold. The mean latency of its peak amplitude was 17.4 ms. The mean equilibrium potential (Erev) was -72.8 mV, and it was associated with a 38.9% decrease in cellular input resistance. IPSPA was blocked by the GABAA antagonist bicuculline. 5. The IPSPB was seen in 29/32 cells, and the mean intensity of stimulation at its threshold was 80.3 microA. Its latency to peak was 130.6 ms, its Erev was -107.6 mV, and it was associated with a small (7.6%) decrease in cellular input resistance. IPSPB was blocked by the GABAB antagonist phaclofen. 6. In 11/32 cells a slower EPSP was also observed. Its mean latency to peak was 53.3 ms, and the

  11. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    PubMed

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2016-07-21

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  12. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-07

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences.

  13. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    PubMed

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  14. Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2.

    PubMed

    Strokin, M; Chechneva, O; Reymann, K G; Reiser, G

    2006-06-30

    Polyunsaturated fatty acids play an important role in the development of pathological states in brain after hypoxia/ischemia. Here, we investigated the role of docosahexaenoic acid (22:6n-3) in brain phospholipids for neuronal survival. We used organotypic cultures of rat brain hippocampal slices exposed to 40 min of oxygen-glucose deprivation, to study the consequences of experimental ischemia. In [14C]docosahexaenoic acid-labeled cultures, oxygen-glucose deprivation induced significant release of radioactive docosahexaenoic acid. This release could be blocked by the selective inhibitor of the Ca2+-independent phospholipase A2, 4-bromoenol lactone (10 microM), when it was added 30 min prior to oxygen-glucose deprivation. Addition of 4-bromoenol lactone at 30 min prior to oxygen-glucose deprivation markedly decreased the neuronal damage induced by oxygen-glucose deprivation. The protective effect was substantially higher in dentate gyrus than in CA1 and CA3 areas. Enrichment of the hippocampal tissue with docosahexaenoic acid by incubation with 10 microM docosahexaenoic acid for 24 h exerted the same neuroprotective effect, which was observed after treatment with 4-bromoenol lactone. In contrast to the 24 h-preincubation, simultaneous addition of docosahexaenoic acid with the onset of oxygen-glucose deprivation had no protective effect. This suggests that incorporation of docosahexaenoic acid into phospholipids is required for the protective effect observed. Then the possible involvement of arachidonic acid metabolism in docosahexaenoic acid-induced neuroprotection was tested. Inhibition of prostaglandin production by ibuprofen produced no change in neuroprotection after 24-h incubation of the hippocampal slices with docosahexaenoic acid. Simultaneous inhibition of Ca2+-independent and Ca2+-dependent phospholipases A2 by treatment with the general phospholipase A2 inhibitor methyl arachidonyl fluorophosphonate (3 microM, 30 min prior to oxygen-glucose deprivation

  15. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis.

    PubMed

    Sheu, Ji-Nan; Liao, Wen-Chieh; Wu, Un-In; Shyu, Ling-Yuh; Mai, Fu-Der; Chen, Li-You; Chen, Mei-Jung; Youn, Su-Chung; Chang, Hung-Ming

    2013-03-01

    Acute bacterial meningitis (ABM) is a serious disease with severe neurological sequelae. The intense calcium-mediated microglial activation and subsequently pro-inflammatory cytokine release plays an important role in eliciting ABM-related oxidative damage. Considering resveratrol possesses significant anti-inflammatory and anti-oxidative properties, the present study aims to determine whether resveratrol would exert beneficial effects on hippocampal neurons following ABM. ABM was induced by inoculating Klebsiella pneumoniae into adult rats intraventricularly. The time-of-flight secondary ion mass spectrometry (TOF-SIMS), Griffonia simplicifolia isolectin-B4 (GSA-IB4) and ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry, enzyme-linked immunosorbent assay as well as malondialdehyde (MDA) measurement were used to examine the calcium expression, microglial activation, pro-inflammatory cytokine level, and extent of oxidative stress, respectively. In ABM rats, strong calcium signaling associated with enhanced microglial activation was observed in hippocampus. Increased microglial expression was coincided with intense production of pro-inflammatory cytokines and oxidative damage. However, in rats receiving resveratrol after ABM, the calcium intensity, microglial activation, pro-inflammatory cytokine and MDA levels were all significantly decreased. Quantitative data showed that much more hippocampal neurons were survived in resveratrol-treated rats following ABM. As resveratrol successfully rescues hippocampal neurons from ABM by suppressing the calcium-mediated microglial activation, therapeutic use of resveratrol may act as a promising strategy to counteract the ABM-induced neurological damage.

  16. Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats

    PubMed Central

    Smith, Catherine A.; Holahan, Matthew R.

    2014-01-01

    Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats. PMID:25295592

  17. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats.

    PubMed

    Smith, Catherine A; Holahan, Matthew R

    2014-01-01

    Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  18. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons.

    PubMed

    Zhao, Jingxia; Xu, Lanju; Zhang, Tao; Ren, Guogang; Yang, Zhuo

    2009-03-01

    The effects of zinc oxide nanoparticles (nano-ZnO) on the properties of voltage-dependent sodium, potassium currents and evoked action potentials were studied in acutely isolated rat hippocampal CA3 pyramidal neurons at postnatal ages of 10-14 days rats using the whole-cell patch-clamp technique. The results indicated that: (1) in the present of final concentration of 10(-4)g/ml nano-ZnO, the current-voltage curve of sodium current (I(Na)) was decreased, and the peak amplitudes of I(Na) were increased considerably from -50 to +20mV (p<0.05). Meanwhile, the inactivation and the recovery from inactivation of I(Na) were also promoted by the nano-ZnO solution (10(-4)g/ml) (p<0.01). However, the steady-state activation curve of I(Na) was not shifted by the nano-ZnO. (2) The amplitudes of transient outward potassium current (I(A)) were increased by the nano-ZnO solution (10(-4)g/ml), while the current-voltage curve of delayed rectifier potassium current (I(K)) was significantly increased from +20 to +90mV (p<0.05). However, it is apparent that the nano-ZnO solution did not shift the steady-state activation curve of I(A) and I(K), and neither had significant effects on the inactivation and the recovery from inactivation of I(A). (3) Peak amplitude and overshoot of the evoked single action potential were increased and half-width was diminished in the presence of the 10(-4)g/ml nano-ZnO solution (p<0.05). Simultaneously, a prolonged depolarizing current injection enhanced (p<0.05) repetitive firing evoked firing rate. These results suggested that 10(-4)g/ml nano-ZnO solution can lead to an enhancement in the current amplitudes of I(Na) and I(K) by increasing the opening number of sodium channels, delaying rectifier potassium channels, and enhancing the excitability of neurons, which lead to Na(+) influx and the accumulation of intracellular Na(+), as well as K(+) efflux plus the loss of cytoplasmic K(+). These may disturb the ionic homeostasis and the physiological

  19. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    PubMed

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-03-20

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H2S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H2S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H2S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H2S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H2S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H2S exerts these roles by inhibiting the activation of JNK signaling pathway.

  20. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  1. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.

    PubMed

    Mauleon, Gerardo; Fall, Christopher P; Eddington, David T

    2012-01-01

    The acute brain slice preparation is an excellent model for studying the details of how neurons and neuronal tissue respond to a variety of different physiological conditions. But open slice chambers ideal for electrophysiological and imaging access have not allowed the precise spatiotemporal control of oxygen in a way that might realistically model stroke conditions. To address this problem, we have developed a microfluidic add-on to a commercially available perfusion chamber that diffuses oxygen throughout a thin membrane and directly to the brain slice. A microchannel enables rapid and efficient control of oxygen and can be modified to allow different regions of the slice to experience different oxygen conditions. Using this novel device, we show that we can obtain a stable and homogeneous oxygen environment throughout the brain slice and rapidly alter the oxygen tension in a hippocampal slice. We also show that we can impose different oxygen tensions on different regions of the slice preparation and measure two independent responses, which is not easily obtainable with current techniques.

  2. Acute hippocampal BDNF restores motivational and forced swim performance after corticosterone

    PubMed Central

    Gourley, Shannon L.; Kiraly, Drew D.; Howell, Jessica L.; Olausson, Peter; Taylor, Jane R.

    2008-01-01

    Background Alterations in cellular survival and plasticity are implicated in the neurobiology of depression, based primarily on the characterization of antidepressant efficacy in naïve rodents, rather than on models that capture the debilitating and protracted feelings of anhedonia and loss of motivation that are core features of depression. Methods In adult male mice, we evaluated persistent effects of oral corticosterone (CORT) exposure on anhedonic-like behavior, immobility in the forced swim test (FST), motivational performance in the progressive ratio task, and later endogenous CORT secretion. After verifying long-term decreases in hippocampal Brain-derived Neurotrophic Factor (BDNF) and cAMP Response Element Binding protein phosphorylation (pCREB), the ability of direct hippocampal BDNF microinfusion after CORT exposure to reverse deficits was investigated. Results Prior CORT exposure decreased sucrose consumption, appetitive responding, and FST mobility without long-term effects on water:quinine discrimination and endogenous CORT secretion. Critically, BDNF replacement mimicked chronic antidepressant treatment (ADT) by reversing CORT-induced reductions in instrumental performance and FST mobility. Conclusions Together these findings link persistent alterations in hippocampal BDNF expression and CREB transcriptional activity with a persistent depressive-like state—as opposed to ADT efficacy. These results identify hippocampal BDNF as an essential molecular substrate that bidirectionally regulates appetitive instrumental behavior. Additionally, we suggest this CORT model may provide a powerful tool for future investigation into the neurobiology of complex stress-associated depressive symptoms that persist long after stress exposure itself. PMID:18675955

  3. BONLAC: A Combinatorial Proteomic Technique to Measure Stimulus-induced Translational Profiles in Brain Slices

    PubMed Central

    Bowling, Heather; Bhattacharya, Aditi; Zhang, Guoan; Lebowitz, Joseph Z.; Alam, Danyal; Smith, Peter T.; Kirshenbaum, Kent; Neubert, Thomas A.; Vogel, Christine; Chao, Moses V.; Klann, Eric

    2015-01-01

    Stimulus-triggered protein synthesis is critical for brain health and function. However, due to technical hurdles, de novo neuronal translation is predominantly studied in cultured cells, whereas electrophysiological and circuit analyses often are performed in brain slices. The different properties of these two experimental systems create an information gap about stimulus-induced alterations in the expression of new proteins in mature circuits. To address this, we adapted two existing techniques, BONCAT and SILAC, to a combined proteomic technique, BONLAC, for use in acute adult hippocampal slices. Using BDNF-induced protein synthesis as a proof of concept, we found alterations in expression of proteins involved in neurotransmission, trafficking, and cation binding that differed from those found in a similar screen in cultured neurons. Our results indicate important differences between cultured neurons and slices, and suggest that BONLAC could be used to dissect proteomic changes underlying synaptic events in adult circuits. PMID:26205778

  4. Simultaneous monitoring of tissue P2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices

    PubMed Central

    Galeffi, Francesca; Somjen, George G; Foster, Kelley A; Turner, Dennis A

    2011-01-01

    Nicotinamide adenine dinucleotide (NADH) imaging can be used to monitor neuronal activation and ascertain mitochondrial dysfunction, for example during hypoxia. During neuronal stimulation in vitro, NADH normally becomes more oxidized, indicating enhanced oxygen utilization. A subsequent NADH overshoot during activation or on recovery remains controversial and reflects either increased metabolic activity or limited oxygen availability. Tissue P2 measurements, obtained simultaneously with NADH imaging in area CA1 in hippocampal slices, reveal that during prolonged train stimulation (ST) in 95% O2, a persistent NADH oxidation is coupled with increased metabolic demand and oxygen utilization, for the duration of the stimulation. However, under conditions of either decreased oxygen supply (ST-50% O2) or enhanced metabolic demand (K+-induced spreading depression (K+-SD) 95% O2) the NADH oxidation is brief and the redox balance shifts early toward reduction, leading to a prolonged NADH overshoot. Yet, oxygen utilization remains elevated and is correlated with metabolic demand. Under these conditions, it appears that the rate of NAD+ reduction may transiently exceed oxidation, to maintain an adequate oxygen flux and ATP production. In contrast, during SD in 50% O2, the oxygen levels dropped to a point at which oxidative metabolism in the electron transport chain is limited and the rate of utilization declined. PMID:20736960

  5. Caffeine-dependent stimulus-triggered oscillations in the CA3 region of hippocampal slices from rats chronically exposed to lead.

    PubMed

    He, Shui-Jin; Xiao, Cheng; Wu, Zhi-Yuan; Ruan, Di-Yun

    2004-12-01

    Yoshimura et al. [Yoshimura, H., Sugai, T., Onoda, N., Segami, N., Kato, N., 2002. Age-dependent occurrence of synchronized population oscillation suggestive of a developing functional coupling between NMDA and ryanodine receptors in the neocortex. Dev. Brain Res., 136, 63-68.] have shown that caffeine can elicit synchronized oscillations (10-12 Hz) dependent on calcium-induced calcium release in rat neocortex neurons. In the present work, synchronized oscillations in the CA3 region of rat hippocampus were studied by recording field excitatory postsynaptic potentials (fEPSPs) in vitro. In the presence of 0.1 mM caffeine, in CA3 of 44 of 45 (97.8%) slices from chronic lead-exposed rats, single electrical stimuli triggered a burst of high-frequency oscillations (approximately 230 Hz), whereas in CA3 of caffeine-treated slices from control rats, such oscillations could be elicited in only 2 of 24 (8.3%) slices. The complete (but fully reversible) block of caffeine-dependent oscillations by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 20 microM) indicates that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are necessary for the high-frequency synchronized oscillations. 2-Amino-5-phosphonopentanoate (AP-5; 50 micoM) partially reduced the amplitude of caffeine-dependent oscillations without significantly altering their frequency. Caffeine-dependent oscillations could be abolished by application of AP-5 and 3 mM Mg2+ during the initial period of bursting, indicating that N-methyl-D-aspartate (NMDA) receptors play an important role in the generation of oscillations. The Ca2+ chelator ethylene glycol bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA; 5 mM) added in standard artificial cerebrospinal fluid (ACSF) containing 0.1 mM caffeine fully blocked the oscillations. Caffeine-dependent oscillations are insensitive to an antagonist of gamma-aminobutyric acid (GABAA) receptors (10 microM bicuculline), L-type Ca2+ channels (10 mu

  6. Changes in C57BL6 Mouse Hippocampal Transcriptome Induced by Hypergravity Mimic Acute Corticosterone-Induced Stress

    PubMed Central

    Pulga, Alice; Porte, Yves; Morel, Jean-Luc

    2016-01-01

    Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed during spaceflights, allowing us to understand how a long-term physical constraint can condition the mammalian physiology. It is known that mice, placed in classical cages and maintained during 21 days in a centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity, and/or stress. Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-exposed mice. Corticosterone is known to modify neuronal activity during memory processes. Although learning and memory performances cannot be assessed during the centrifugation, literature largely described a large panel of proteins (channels, second messengers, transcription factors, structural proteins) which expressions are modified during memory processing. Thus, we used the Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days, and (3) aged mice because aging could be characterized by a decrease of hippocampus functions and memory impairment. Our results suggest that hypergravity stress induced by corticosterone administration and aging modulate the expression of genes in the hippocampus. However, the modulations of the transcriptome observed in these conditions are not identical. Hypergravity affects per-se the hippocampus transcriptome and probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more similar to acute injection than chronic diffusion of corticosterone or aging. PMID:28082866

  7. Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: protective effects of CsA, its immunosuppressive congener [D-Ser](8)CsA, the novel non-immunosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801.

    PubMed

    Trumbeckaite, Sonata; Gizatullina, Zemfira; Arandarcikaite, Odeta; Röhnert, Peter; Vielhaber, Stefan; Malesevic, Miroslav; Fischer, Gunter; Seppet, Enn; Striggow, Frank; Gellerich, Frank Norbert

    2013-09-01

    We have introduced a sensitive method for studying oxygen/glucose deprivation (OGD)-induced mitochondrial alterations in homogenates of organotypic hippocampal slice cultures (slices) by high-resolution respirometry. Using this approach, we tested the neuroprotective potential of the novel non-immunosuppressive cyclosporin (CsA) derivative Cs9 in comparison with CsA, the immunosuppressive CsA analog [D-Ser](8)CsA, and MK 801, a N-methyl-d-aspartate (NMDA) receptor antagonist. OGD/reperfusion reduced the glutamate/malate dependent (and protein-related) state 3 respiration to 30% of its value under control conditions. All of the above drugs reversed this effect, with an increase to >88% of the value for control slices not exposed to OGD. We conclude that Cs9, [D-Ser](8)CsA, and MK 801, despite their different modes of action, protect mitochondria from OGD-induced damage.

  8. OLM interneurons are transiently recruited into field gamma oscillations evoked by brief kainate pressure ejections onto area CA1 in mice hippocampal slices.

    PubMed

    Kipiani, E

    2009-02-01

    Oscillations (30-100 Hz) are correlated with the cognitive functions of the brain. In the hippocampus interactions between perisomatic and trilaminar interneurons with pyramidal cells are thought to underlie generation of field gamma oscillations. In area CA3 OLM interneurons receive synaptic input in gamma range but generate action potential (AP) output in theta band and are involved in theta oscillations synchronized along the longitudinal axis of the hippocampus. In slice preparations of CA3 area the spike timing of OLM cells could be modulated by carbachole induced gamma oscillations, although their firing rates are limited to theta frequency. Normally, OLM interneurons are somatostatin positive cells. In this study we tested whether parvalbumin (PV) containing OLM interneurons in area CA1 limit AP output during kainate pressure ejection also to theta frequency. We used focal short applications of kainate in area CA1 to induce filed gamma oscillations with an average frequency of about 44.7+/-4.4 Hz. The duration of field gamma was on average 8.9+/-3.5 s. During such oscillations CA1 PV positive OLM interneurons of mice hippocampus received excitatory synaptic input at gamma frequency. Moreover, their AP output was in gamma range as well. Thus, we show that beside the somatostatin containing OLM interneurons, which generate theta rhythm there are PV containing OLM cells, which could synchronize the distal dendrites of CA1 pyramidal cells to the field gamma oscillations.

  9. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses

    PubMed Central

    Tyler, William J; Zhang, Xiao-lei; Hartman, Kenichi; Winterer, Jochen; Muller, Wolfgang; Stanton, Patric K; Pozzo-Miller, Lucas

    2006-01-01

    Exerting its actions pre-, post- and peri-synaptically, brain-derived neurotrophic factor (BDNF) is one of the most potent modulators of hippocampal synaptic function. Here, we examined the effects of BDNF on a rapidly recycling pool (RRP) of vesicles within excitatory synapses. First, we estimated vesicular release in hippocampal cultures by performing FM4-64 imaging in terminals impinging on enhanced green fluorescent protein (eGFP)-labelled dendritic spines – a hallmark of excitatory synapses. Consistent with a modulation of the RRP, BDNF increased the evoked destaining rate of FM4-64 only during the initial phase of field stimulation. Multiphoton microscopy in acute hippocampal slices confirmed these observations by selectively imaging the RRP, which was loaded with FM1-43 by hyperosmotic shock. Slices exposed to BDNF showed an increase in the evoked and spontaneous rates of FM1-43 destaining from terminals in CA1 stratum radiatum, mostly representing excitatory terminals of Schaffer collaterals. Variance-mean analysis of evoked EPSCs in CA1 pyramidal neurons further confirmed that release probability is increased in BDNF-treated slices, without changes in the number of independent release sites or average postsynaptic quantal amplitude. Because BDNF was absent during dye loading, imaging, destaining and whole-cell recordings, these results demonstrate that BDNF induces a long-lasting enhancement in the probability of transmitter release at hippocampal excitatory synapses by modulating the RRP. Since the endogenous BDNF scavenger TrkB-IgG prevented the enhancement of FM1-43 destaining rate caused by induction of long-term potentiation in acute hippocampal slices, the modulation of a rapidly recycling vesicle pool may underlie the role of BDNF in hippocampal long-term synaptic plasticity. PMID:16709633

  10. Endogenous activation of nAChRs and NMDA receptors contributes to the excitability of CA1 stratum radiatum interneurons in rat hippocampal slices: effects of kynurenic acid.

    PubMed

    Alkondon, Manickavasagom; Pereira, Edna F R; Albuquerque, Edson X

    2011-10-15

    CA1 stratum radiatum interneurons (SRIs) express α7 nicotinic receptors (nAChRs) and receive inputs from glutamatergic neurons/axons that express α3β4β2 nAChRs. To test the hypothesis that endogenously active α7 and/or α3β4β2 nAChRs control the excitability of CA1 SRIs in the rat hippocampus, we examined the effects of selective receptor antagonists on spontaneous fast current transients (CTs) recorded from these interneurons under cell-attached configuration. The frequency of CTs, which represent action potentials, increased in the absence of extracellular Mg(2+) and decreased in the presence of the α3β4β2 nAChR antagonist mecamylamine (3 μM) or the NMDA receptor antagonist APV (50 μM). However, it was unaffected by the α7 nAChR antagonist MLA (10 nM) or the AMPA receptor antagonist CNQX (10 μM). Thus, in addition to synaptically and tonically activated NMDA receptors, α3β4β2 nAChRs that are present on glutamatergic axons/neurons synapsing onto SRIs and are activated by basal levels of acetylcholine contribute to the maintenance of the excitability of these interneurons. Kynurenic acid (KYNA), an astrocyte-derived kynurenine metabolite whose levels are increased in the brains of patients with schizophrenia, also controls the excitability of SRIs. At high micromolar concentrations, KYNA, acting primarily as an NMDA receptor antagonist, decreased the CT frequency recorded from the interneurons. At 2 μM, KYNA reduced the CA1 SRI excitability via mechanisms independent of NMDA receptor block. KYNA-induced reduction of excitability of SRIs may contribute to sensory gating deficits that have been attributed to deficient hippocampal GABAergic transmission and high levels of KYNA in the brain of patients with schizophrenia.

  11. Bicarbonate efflux via GABAA receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices

    PubMed Central

    Ma, Bao-Feng; Xie, Min-Jie; Zhou, Min

    2014-01-01

    Increasing evidence indicates the functional expression of ionotropic γ-aminobutyric acid receptor (GABAA-R) in astrocytes. However, it remains controversial in regard to the intracellular Cl− concentration ([Cl−]i) and the functional role of anion-selective GABAA-R in astrocytes. In gramicidin perforated-patch recordings from rat hippocampal CA1 astrocytes, GABA and GABAA-R specific agonist THIP depolarized astrocyte membrane potential (Vm), and the THIP induced currents reversed at the voltages between −75.3 to −78.3 mV, corresponding to a [Cl−]i of 3.1 – 3.9 mM that favors a passive distribution of Cl− anions across astrocyte membrane. Further analysis showed that GABAA-R induced Vm depolarization is ascribed to HCO3− efflux, while a passively distributed Cl− mediates no net flux or influx of Cl-that leads to an unchanged or hyperpolarized Vm. In addition to a rapidly activated GABAA-R current component, GABA and THIP also induced a delayed inward current (DIC) in 63% of astrocytes. The DIC became manifest after agonist withdrawal and enhanced in amplitude with increasing agonist application duration or concentrations. Astrocytic two-pore domain K+ channels (K2Ps), especially TWIK-1, appeared to underlie the DIC, because 1) acidic intracellular pH, as a result of HCO3− efflux, inhibited TWIK-1; 2) the DIC remained in the Cs+ recording solutions that inhibited conventional K+ channels and 3) the DIC was completely inhibited by 1 mM quinine but not by blockers for other cation/anion channels. Altogether, HCO3− efflux through activated GABAA-R depolarizes astrocyte Vm and induces a delayed inhibition of K2Ps K+ channels via intracellular acidification. PMID:22855415

  12. Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain

    PubMed Central

    Dzhala, Volodymyr; Valeeva, Guzel; Glykys, Joseph; Khazipov, Rustem; Staley, Kevin

    2012-01-01

    Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride concentration ([Cl−]i) associated with the widespread neural shear injury induced during preparation of acute brain slices. In hippocampal slices and intact hippocampal preparations from immature CLM-1 mice, increases in [Cl−]i correlated with disruption of neural processes and biomarkers of cell injury. Traumatized neurons with higher [Cl−]i demonstrated excitatory GABA signaling, remained synaptically active, and facilitated network activity as assayed by the frequency of extracellular action potentials and spontaneous network-driven oscillations. These data support a more inhibitory role for GABA in the unperturbed immature brain, demonstrate the utility of the acute brain slice preparation for the study of the consequences of trauma, and provide potential mechanisms for both GABA-mediated excitatory network events in the slice preparation and early post-traumatic seizures. PMID:22442068

  13. Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices

    PubMed Central

    Coppi, Elisabetta; Pugliese, Anna Maria; Stephan, Holger; Müller, Christa E.

    2007-01-01

    The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor

  14. Basic presynaptic functions in hippocampal neurons are not affected by acute or chronic lithium treatment.

    PubMed

    Lueke, Katharina; Kaiser, Tobias; Svetlitchny, Alexei; Welzel, Oliver; Wenzel, Eva M; Tyagarajan, Shiva; Kornhuber, Johannes; Groemer, Teja W

    2014-02-01

    Lithium is an effective mood-stabilizer in the treatment of bipolar affective disorder. While glycogen synthase kinase 3-mediated and inositol depletion-dependent effects of lithium have been described extensively in literature, there is very little knowledge about the consequences of lithium treatment on vesicle recycling and neurotransmitter availability. In the present study we have examined acute and chronic effects of lithium on synaptic vesicle recycling using primary hippocampal neurons. We found that exocytosis of readily releasable pool vesicles as well as recycling pool vesicles was unaffected by acute and chronic treatment within the therapeutic range or at higher lithium concentrations. Consistent with this observation, we also noticed that the network activity and number of active synapses within the network were also not significantly altered after lithium treatment. Taken together, as lithium treatment does not affect synaptic vesicle release at even high concentrations, our data suggest that therapeutic effects of lithium in bipolar affective disorder are not directly related to presynaptic function.

  15. Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons

    PubMed Central

    Wu, Wendy W.; Adelman, John P.; Maylie, James

    2011-01-01

    Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E2)-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently the cellular bases underlying these clinical findings are unknown. At the cellular level, intrinsic membrane properties regulate the efficiency of synaptic inputs to initiate output action potentials (APs), thereby affecting neuronal communication hence cognitive processing. This study tested the hypothesis that in CA1 pyramidal neurons, intrinsic membrane properties and their acute regulation by E2 require ovarian hormones for maintenance. Whole-cell current clamp recordings were performed on neurons from ~7 months old OVX rats that experienced either short-term (10 days, control OVX) or long-term (5 months, OVXLT) ovarian hormone deficiency. The results reveal that long-term hormone deficiency reduced intrinsic membrane excitability (IE) as measured by the number of evoked action potentials (APs) and firing duration for a given current injection. This was accompanied by AP broadening, an increased slow afterhyperpolarization (sAHP), and faster accumulation of NaV channel inactivation during repetitive firing. In the control OVX neurons, E2 acutely increased IE and reduced the sAHP. In contrast, acute regulation of IE by E2 was absent in the OVXLT neurons. Since the degree of IE of hippocampal pyramidal neurons is positively related with hippocampus-dependent learning ability, and modulation of IE is observed following successful learning, these findings provide a framework for understanding hormone deficiency-related cognitive impairment and the critical window for therapy initiation. PMID:21325532

  16. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    PubMed Central

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology performed. At 1–2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery. PMID:25151457

  17. Organotypic slice cultures for studies of postnatal neurogenesis.

    PubMed

    Mosa, Adam J; Wang, Sabrina; Tan, Yao Fang; Wojtowicz, J Martin

    2015-03-04

    Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research.

  18. Organotypic Slice Cultures for Studies of Postnatal Neurogenesis

    PubMed Central

    Mosa, Adam J.; Wang, Sabrina; Tan, Yao Fang; Wojtowicz, J. Martin

    2015-01-01

    Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research. PMID:25867138

  19. Gonadal Steroids: Effects on Excitability of Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Teyler, Timothy J.; Vardaris, Richard M.; Lewis, Deborah; Rawitch, Allen B.

    1980-08-01

    Electrophysiological field potentials from hippocampal slices of rat brain show sex-linked differences in response to 1 × 10-10M concentrations of estradiol and testosterone added to the incubation medium. Slices from male rats show increased excitability to estradiol and not to testosterone. Slices from female rats are not affected by estradiol, but slices from female rats in diestrus show increased excitability in response to testosterone whereas slices from females in proestrus show decreased excitability.

  20. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression.

  1. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.

  2. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays

    PubMed Central

    Ferrea, E.; Maccione, A.; Medrihan, L.; Nieus, T.; Ghezzi, D.; Baldelli, P.; Benfenati, F.; Berdondini, L.

    2012-01-01

    Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cortico-hippocampal brain slices at unprecedented spatial and temporal resolution. We demonstrate that multiple chemically induced epileptiform episodes in the mouse cortex and hippocampus can be classified according to their spatio-temporal dynamics. Additionally, the large-scale and high-density features of our recording system enable the topological localization and quantification of the effects of antiepileptic drugs in local neuronal microcircuits, based on the distinct field potential propagation patterns. This novel high-resolution approach paves the way to detailed electrophysiological studies in brain circuits spanning spatial scales from single neurons up to the entire slice network. PMID:23162432

  3. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3

    PubMed Central

    LI, JIANGUO; ZHANG, GUOWEI; MENG, ZHUANGZHI; WANG, LINGZHAN; LIU, HAIYING; LIU, QIANG; BUREN, BATU

    2016-01-01

    Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms. PMID:27313671

  4. Fingolimod Limits Acute Aβ Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons

    PubMed Central

    Joshi, Pooja; Gabrielli, Martina; Ponzoni, Luisa; Pelucchi, Silvia; Stravalaci, Matteo; Beeg, Marten; Mazzitelli, Sonia; Braida, Daniela; Sala, Mariaelvina; Boda, Enrica; Buffo, Annalisa; Gobbi, Marco; Gardoni, Fabrizio; Matteoli, Michela; Marcello, Elena; Verderio, Claudia

    2017-01-01

    Fingolimod, also known as FTY720, is an analogue of the sphingolipid sphingosine, which has been proved to be neuroprotective in rodent models of Alzheimer’s disease (AD). Several cellular and molecular targets underlying the neuroprotective effects of FTY720 have been recently identified. However, whether the drug directly protects neurons from toxicity of amyloid-beta (Aβ) still remains poorly defined. Using a combination of biochemical assays, live imaging and electrophysiology we demonstrate that FTY720 induces a rapid increase in GLUN2A-containing neuroprotective NMDARs on the surface of dendritic spines in cultured hippocampal neurons. In addition, the drug mobilizes extrasynaptic GLUN2B-containing NMDARs, which are coupled to cell death, to the synapses. Altered ratio of synaptic/extrasynaptic NMDARs decreases calcium responsiveness of neurons to neurotoxic soluble Aβ 1–42 and renders neurons resistant to early alteration of calcium homeostasis. The fast defensive response of FTY720 occurs through a Sphingosine-1-phosphate receptor (S1P-R) -dependent mechanism, as it is lost in the presence of S1P-R1 and S1P-R3 antagonists. We propose that rapid synaptic relocation of NMDARs might have direct impact on amelioration of cognitive performance in transgenic APPswe/PS1dE9 AD mice upon sub-chronic treatment with FTY720. PMID:28134307

  5. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats

    PubMed Central

    Smith, Catherine A.; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R.; Smith, Jeffrey C.

    2015-01-01

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females. PMID:26516880

  6. Acute low dose of MK-801 prevents memory deficits without altering hippocampal DARPP-32 expression and BDNF levels in sepsis survivor rats.

    PubMed

    Cassol-Jr, Omar J; Comim, Clarissa M; Constantino, Larissa S; Rosa, Daniela V F; Mango, Luiz Alexandre V; Stertz, Laura; Kapczinski, Flávio; Romano-Silva, Marco A; Quevedo, João; Dal-Pizzol, Felipe

    2011-01-01

    Sepsis is characterized by an intense inflammatory reaction with potential neurotoxic effects in the central nervous system and damage to memory and learning ability. We assessed the effects of acute low dose of MK-801 on the memory impairment, hippocampal BDNF levels and DARPP-32 expression ten days after sepsis. Under anesthesia, male Wistar rats underwent either cecal ligation and perforation (CLP) or sham. Then, the animals received either a single systemic injection of MK-801 (0.025 mg/kg) or saline solution. Ten days after CLP, the animals were submitted to the step-down inhibitory avoidance and object recognition tests. Also, the hippocampal BDNF protein levels and DARPP-32 expression were evaluated. MK-801 prevented cognitive impairment, but did not affect the hippocampal BDNF levels. DARPP-32 expression was significantly different only in the animals submitted to sepsis that received MK-801 treatment. Thus, we demonstrated that a single low dose of MK-801 prevented memory impairment without altering hippocampal DARPP-32 expression and BDNF levels.

  7. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  8. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    PubMed

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  9. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  10. New illumination technique for IR-video guided patch-clamp recording from neurons in slice cultures on biomembrane.

    PubMed

    Alix, Philippe; Winterer, Jochen; Müller, Wolfgang

    2003-09-30

    Slice cultures on biomembrane are the method of choice for studying Ca2+-dependent plastic changes occurring over several days to weeks. Using IR-differential interference contrast, good visualization of neurons in biomembrane slice cultures has been achieved despite a negative optical effect of the biomembrane, but epifluorescence imaging requires removal of a Wollaston prism and the analyzer. Here, we describe a novel illumination method to overcome this problem. Using optic fiber illumination at a shallow angle from the top of the slice culture, with or without additional illumination from the bottom, we obtained good cellular resolution of neurons in biomembrane slice cultures as well as in acute slices with an infrared-video camera. With this technique, we demonstrate visually guided whole-cell patch-clamp recording of Na+- and K+-currents as well as combination of whole-cell recording with fluorescence imaging of hippocampal and entorhinal cortex neurons in biomembrane slice cultures. Our inexpensive method should prove very useful for studying in vitro effects of long-term manipulations on membrane currents and intracellular Ca2+-signaling.

  11. Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat.

    PubMed Central

    Shirasaki, T; Harata, N; Akaike, N

    1994-01-01

    1. The metabotropic glutamate (mGlu) response was investigated in dissociated rat hippocampal CA1 pyramidal neurones using conventional and nystatin-perforated whole-cell modes of the patch recording configuration. 2. In the perforated patch recording configuration, the application of glutamate (Glu), quisqualate (QA), aspartate (Asp) and N-methyl-D-aspartate (NMDA) induced a slow outward current superimposed on a fast ionotropic inward current, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate (KA) induced only an ionotropic inward current at a holding potential (VH) of -20 mV. A specific agonist of the mGlu receptor (mGluR), trans-1-aminocyclopentane-1,3-dicarboxylate (tACPD), induced an outward current in approximately 80% of the neurones tested. Asp- and NMDA-induced outward currents were antagonized by D-2-amino-5-phosphonopentanoate (D-AP5) whereas Glu-, QA- and tACPD-induced outward currents were not antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dinitroquinoxaline-2,3-dione (DNQX) and D-AP5, indicating that the mGlu response is an outward current component. 3. L-2-Amino-3-phosphonopropionate (L-AP3) and DL-2-amino-4-phosphonobutyrate (AP4) did not block the mGlu response. 4. The relative potencies of mGlu agonists were QA > Glu > tACPD. The threshold and EC50 values of metabotropic outward currents were 10-100 times lower than those of the ionotropic inward current (iGlu response). 5. The reversal potential of the mGlu response (EmGlu) was close to EK (K+ equilibrium potential), and it shifted 59.5 mV for a tenfold change in extracellular K+ concentration. 6. In Ca(2+)-free external solution, the mGlu response was elicited by an initial application of Glu, but subsequent applications failed to induce the response. There was also an increase in the intracellular free Ca2+ concentration ([Ca2+]i) during the application of Glu and QA but not of AMPA, indicating Ca2+ release from an intracellular Ca2+ store. 7

  12. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  13. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    PubMed

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  14. Ketogenic diet sensitizes glucose control of hippocampal excitability1

    PubMed Central

    Kawamura, Masahito; Ruskin, David N.; Geiger, Jonathan D.; Boison, Detlev; Masino, Susan A.

    2014-01-01

    A high-fat low-carbohydrate ketogenic diet (KD) is an effective treatment for refractory epilepsy, yet myriad metabolic effects in vivo have not been reconciled clearly with neuronal effects. A KD limits blood glucose and produces ketone bodies from β-oxidation of lipids. Studies have explored changes in ketone bodies and/or glucose in the effects of the KD, and glucose is increasingly implicated in neurological conditions. To examine the interaction between altered glucose and the neural effects of a KD, we fed rats and mice a KD and restricted glucose in vitro while examining the seizure-prone CA3 region of acute hippocampal slices. Slices from KD-fed animals were sensitive to small physiological changes in glucose, and showed reduced excitability and seizure propensity. Similar to clinical observations, reduced excitability depended on maintaining reduced glucose. Enhanced glucose sensitivity and reduced excitability were absent in slices obtained from KD-fed mice lacking adenosine A1 receptors (A1Rs); in slices from normal animals effects of the KD could be reversed with blockers of pannexin-1 channels, A1Rs, or KATP channels. Overall, these studies reveal that a KD sensitizes glucose-based regulation of excitability via purinergic mechanisms in the hippocampus and thus link key metabolic and direct neural effects of the KD. PMID:25170119

  15. Hippocampal stroke.

    PubMed

    Szabo, Kristina

    2014-01-01

    The first to link disturbance of memory and lesions of the medial temporal lobe was the Russian neurologist von Bechterew, who in 1989 presented the brain of a 60-year-old man who had suffered from severe amnesia. Autopsy showed bilateral damage of the medial temporal lobe. Several following postmortem case studies confirmed the association between permanent amnesia and bitemporal stroke. Reports of transient memory deficits in unilateral stroke in combination with other neurological and neuropsychological deficits followed. With the advent of brain imaging, persistent or transient amnesia as the sole or primary manifestation of acute - mostly left-sided - hippocampal stroke was described. With the use of modern MRI techniques the identification of typical ischemic stroke lesion patterns affecting the hippocampus has become possible. Although overt cognitive deficits in unilateral hippocampal stroke seem to be rare, a careful neuropsychological examination might be necessary to detect resulting neuropsychological deficits including disturbances of verbal and nonverbal episodic long-term memory and spatial orientation.

  16. The Energy Demand of Fast Neuronal Network Oscillations: Insights from Brain Slice Preparations

    PubMed Central

    Kann, Oliver

    2012-01-01

    Fast neuronal network oscillations in the gamma range (30–100 Hz) in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes, and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration. PMID:22291647

  17. Effects of extracellular delta-aminolaevulinic acid on sodium currents in acutely isolated rat hippocampal CA1 neurons.

    PubMed

    Wang, Lang; Yan, Dan; Gu, Yan; Sun, Li-Guang; Ruan, Di-Yun

    2005-12-01

    The effects of delta-aminolaevulinic acid (ALA) on voltage-gated sodium channel (VGSC) currents (I(Na)) in acutely isolated hippocampal CA1 neurons from 10- to 12-day-old Wistar rats were examined by using the whole-cell patch-clamp technique under voltage-clamp conditions. ALA from 0.01 microm to 20 microm was applied to the recorded neurons. Low concentrations of ALA (0.01-1.0 microM) increased I(Na) amplitude, whereas high concentrations of ALA (5.0-20.0 microM) decreased it. The average I(Na) amplitude reached a maximum of 117.4 +/- 3.9% (n = 9, P < 0.05) with 0.1 microM ALA, and decreased to 78.1 +/- 3.8% (n = 13, P < 0.05) with 10 microm ALA. ALA shifted the steady-state activation and inactivation curves of I(Na) in the hyperpolarizing direction with different V0.5, suggesting that ALA could depress the opening threshold of the voltage-gated sodium channel (VGSC) and thus increase the excitability of neurons through facilitating the opening of VGSC. The time course of recovery from inactivation was significantly prolonged at both low and high concentrations of ALA, whereas either low or high concentrations of ALA had no significant effect on the attenuation of I(Na) during stimulation at 5 Hz, indicating that the effect of ALA on VGSC is state-independent. Furthermore, we found that application of ascorbic acid, which blocks pro-oxidative effects in neurons, could prevent the increase of I(Na) amplitude at low concentrations of ALA. Baclofen, an agonist of GABAb receptors, induced some similar effects to ALA on VGSC, whereas bicuculline, an antagonist of GABAa receptors, could not prevent ALA-induced effects on VGSC. These results suggested that ALA regulated VGSC mainly through its pro-oxidative effects and GABAb receptor-mediated effects.

  18. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures.

    PubMed

    Feiner, John R; Bickler, Philip E; Estrada, Sergio; Donohoe, Paul H; Fahlman, Christian S; Schuyler, Jennifer A

    2005-01-01

    The neuroprotective potency of anesthetics such as propofol compared to mild hypothermia remains undefined. Therefore, we determined whether propofol at two clinically relevant concentrations is as effective as mild hypothermia in preventing delayed neuron death in hippocampal slice cultures (HSC). Survival of neurons was assessed 2 and 3 days after 1 h oxygen and glucose deprivation (OGD) either at 37 degrees C (with or without 10 or 100 microM propofol) or at an average temperature of 35 degrees C during OGD (mild hypothermia). Cell death in CA1, CA3, and dentate neurons in each slice was measured with propidium iodide fluorescence. Mild hypothermia eliminated death in CA1, CA3, and dentate neurons but propofol protected dentate neurons only at a concentration of 10 microM; the more ischemia vulnerable CA1 and CA3 neurons were not protected by either 10 microM or 100 microM propofol. In slice cultures, the toxicity of 100 muM N-methyl-D-aspartate (NMDA), 500 microM glutamate, and 20 microM alpha-amino-5-methyl-4-isoxazole propionic acid (AMPA) was not reduced by 100 microM propofol. Because propofol neuroprotection may involve gamma-aminobutyric acid (GABA)-mediated indirect inhibition of glutamate receptors (GluRs), the effects of propofol on GluR activity (calcium influx induced by GluR agonists) were studied in CA1 neurons in HSC, in isolated CA1 neurons, and in cortical brain slices. Propofol (100 and 200 microM, approximate burst suppression concentrations) decreased glutamate-mediated [Ca2+]i increases (Delta[Ca2+]i) responses by 25%-35% in isolated CA1 neurons and reduced glutamate and NMDA Delta[Ca2+]i in acute and cultured hippocampal slices by 35%-50%. In both CA1 neurons and cortical slices, blocking GABAA receptors with picrotoxin reduced the inhibition of GluRs substantially. We conclude that mild hypothermia, but not propofol, protects CA1 and CA3 neurons in hippocampal slice cultures subjected to oxygen and glucose deprivation. Propofol was not

  19. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics

    PubMed Central

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-01-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context. In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro. PMID:18615151

  20. Lamina-specific synaptic connections of hippocampal neurons in vitro.

    PubMed

    Frotscher, M; Heimrich, B

    1995-03-01

    By using slice cultures as a model, we demonstrate here that different target selectivities exist among the various afferent fibers to the hippocampus. As in intact animals, septohippocampal cholinergic fibers, provided by a slice culture of septum, innervate a co-cultured slice of hippocampus diffusely, that is, without forming distinct layers of termination. As in vivo, the septal cholinergic fibers establish synapses with a variety of target cells. Conversely, fibers from an entorhinal slice co-cultured to a hippocampal slice display their normal laminar specificity. They preferentially terminate in the outer molecular layer of the fascia dentata, thereby selectively contacting peripheral dendrites of the granule cells. This preferential termination on peripheral dendritic segments is remarkable, since these fibers do not have to compete with commissural fibers, hypothalamic fibers, and septal afferents for dendritic space under these culture conditions. Moreover, in triplet cultures in which first two hippocampal slices were co-cultured and then, with a delay of 5 days, an entorhinal slice was added, the fibers from the entorhinal slice and those from the hippocampal culture terminated in their appropriate layers in the hippocampal target culture. However, in this approach the normal sequence of ingrowth of these two afferents was reversed. In normal ontogenetic development, entorhinal afferents arrive in the hippocampus before the commissural fibers. The results show that there are different degrees of target selectivity of hippocampal afferents and that the characteristic lamination of certain afferent fibers in the hippocampus is not determined by their sequential ingrowth during development.

  1. Acute p38-mediated inhibition of NMDA-induced outward currents in hippocampal CA1 neurons by interleukin-1beta.

    PubMed

    Zhang, Ruoyu; Sun, Li; Hayashi, Yoshinori; Liu, Xia; Koyama, Susumu; Wu, Zhou; Nakanishi, Hiroshi

    2010-04-01

    Interleukin-1beta (IL-1beta) is a potent pro-inflammatory cytokine that is primarily produced by microglia in the brain. IL-1beta inhibits N-methyl-d-aspartate (NMDA)-induced outward currents (I(NMDA-OUT)) through IL-1 type I receptor (IL-1RI) in hippocampal CA1 neurons (Zhang, R., Yamada, J., Hayashi, Y., Wu, Z, Koyama, S., Nakanishi, H., 2008. Inhibition of NMDA-induced outward currents by interleukin-1beta in hippocampal neurons, Biochem. Biophys. Res. Commun. 372, 816-820). Although IL-1RI is associated with mitogen-activated protein kinases, their involvement in the effect of IL-1beta on I(NMDA-OUT) remains unclear. In the present study, we demonstrate that IL-1beta caused activation of p38 mitogen-activated protein kinase and that the p38 inhibitor SB203580 significantly blocked the effect of IL-1beta on I(NMDA-OUT) in hippocampal CA1 neurons. Furthermore, the intracellular perfusion of active recombinant p38alpha significantly decreased the mean amplitude of I(NMDA-OUT). In neurons prepared from inflamed hippocampus, the mean amplitude of I(NMDA-OUT) was significantly reduced. In the inflamed hippocampus, IL-1beta and IL-1RI were expressed mainly in microglia and neurons, respectively. These results suggest that IL-1beta increases the excitability of hippocampal CA1 neurons in the p38-dependent inhibition of I(NMDA-OUT).

  2. In vitro detection of oxygen and glucose deprivation-induced neurodegeneration and pharmacological neuroprotection based on hippocampal stratum pyramidale width.

    PubMed

    Öz, Pınar; Saybaşılı, Hale

    2017-01-01

    Ischemia is one of the most prominent risk factors of neurodegenerative diseases such as Alzheimer's disease. The effects of oxygen and glucose depletion in hippocampal tissue due to ischemia can be mimicked in vitro using the oxygen and glucose deprivation (OGD) model. In this study, we applied OGD on acute rat hippocampal slices in order to design an elementary yet quantitative histological technique that compares the neuroprotective effects of (l)-carnitine to known neuroprotectors, such as the N-methyl-d-aspartate (NMDA) receptor antagonist memantine and the gamma-aminobutyric acid (GABA)-B receptor agonist baclofen. The level of neurodegeneration and the efficiency of pharmacological applications were estimated via stratum pyramidale width measurements in CA1 and CA3 regions of Nissl-stained 200-μm thick hippocampal slices. We demonstrated that (l)-carnitine is an effective pharmacological target against the neurodegeneration induced by in vitro ischemia in a narrow range of concentrations. Even though the effect of chemical neuroprotection was significant, full recovery was not achieved in the dose interval of 5-100μM. In addition to chemical applications, hypothermia was used as a physical neuroprotection against ischemia-related neurodegeneration. Our results showed that incubation of slices for 60min at 4°C provided the same level of neuroprotection as the most effective doses of memantine, baclofen, and (l)-carnitine.

  3. Repeated Acute Oral Exposure to Cannabis sativa Impaired Neurocognitive Behaviours and Cortico-hippocampal Architectonics in Wistar Rats.

    PubMed

    Imam, A; Ajao, M S; Akinola, O B; Ajibola, M I; Ibrahim, A; Amin, A; Abdulmajeed, W I; Lawal, Z A; Ali-Oluwafuyi, A

    2017-03-06

    The most abused illicit drug in both the developing and the developed world is Cannabis disposing users to varying forms of personality disorders. However, the effects of cannabis on cortico-hippocampal architecture and cognitive behaviours still remain elusive.  The present study investigated the neuro-cognitive implications of oral cannabis use in rats. Eighteen adult Wistar rats were randomly grouped to three. Saline was administered to the control rats, cannabis (20 mg/kg) to the experimental group I, while Scopolamine (1 mg/kg. ip) was administered to the last group as a standard measure for the cannabis induced cognitive impairment. All treatments lasted for seven consecutive days. Open Field Test (OFT) was used to assess locomotor activities, Elevated Plus Maze (EPM) for anxiety-like behaviour, and Y maze paradigm for spatial memory and data subjected to ANOVA and T test respectively. Thereafter, rats were sacrificed and brains removed for histopathological studies. Cannabis significantly reduced rearing frequencies in the OFT and EPM, and increased freezing period in the OFT. It also reduced percentage alternation similar to scopolamine in the Y maze, and these effects were coupled with alterations in the cortico-hippocampal neuronal architectures. These results point to the detrimental impacts of cannabis on cortico-hippocampal neuronal architecture and morphology, and consequently cognitive deficits.

  4. Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke

    PubMed Central

    Stein, Efrat Shavit; Itsekson-Hayosh, Zeev; Aronovich, Anna; Reisner, Yair; Bushi, Doron; Pick, Chaim G.; Tanne, David; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Acute brain ischemia modifies synaptic plasticity by inducing ischemic long-term potentiation (iLTP) of synaptic transmission through the activation of N-Methyl-D-aspartate receptors (NMDAR). Thrombin, a blood coagulation factor, affects synaptic plasticity in an NMDAR dependent manner. Since its activity and concentration is increased in brain tissue upon acute stroke, we sought to clarify whether thrombin could mediate iLTP through the activation of its receptor Protease-Activated receptor 1 (PAR1). Extracellular recordings were obtained in CA1 region of hippocampal slices from C57BL/6 mice. In vitro ischemia was induced by acute (3 minutes) oxygen and glucose deprivation (OGD). A specific ex vivo enzymatic assay was employed to assess thrombin activity in hippocampal slices, while OGD-induced changes in prothrombin mRNA levels were assessed by (RT)qPCR. Upon OGD, thrombin activity increased in hippocampal slices. A robust potentiation of excitatory synaptic strength was detected, which occluded the ability to induce further LTP. Inhibition of either thrombin or its receptor PAR1 blocked iLTP and restored the physiological, stimulus induced LTP. Our study provides important insights on the early changes occurring at excitatory synapses after ischemia and indicates the thrombin/PAR1 pathway as a novel target for developing therapeutic strategies to restore synaptic function in the acute phase of ischemic stroke. PMID:25604482

  5. Thick Slice and Thin Slice Teaching Evaluations

    ERIC Educational Resources Information Center

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  6. Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method.

    PubMed

    Pan, Geng; Li, Yue; Geng, Hong-Yan; Yang, Jian-Ming; Li, Ke-Xin; Li, Xiao-Ming

    2015-04-01

    Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.

  7. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis.

    PubMed

    Kim, Joong-Sun; Lee, Hae-June; Kim, Jong Choon; Kang, Seong Soo; Bae, Chun-Sik; Shin, Taekyun; Jin, Jae-Kwang; Kim, Sung Ho; Wang, Hongbing; Moon, Changjong

    2008-09-01

    Neurogenesis in the adult hippocampus, which occurs constitutively, is vulnerable to ionizing radiation. In the relatively low-dose exposure of acute radiation syndrome (ARS), the change in the adult hippocampal function is poorly understood. This study analyzed the changes in apoptotic cell death and neurogenesis in the DGs of hippocampi from adult ICR mice with single whole-body gamma-irradiation using the TUNEL method and immunohistochemical markers of neurogenesis, Ki-67 and doublecortin (DCX). In addition, the hippocampus-dependent learning and memory tasks after single whole-body gamma-irradiation were examined in order to evaluate the hippocampus-related behavioral dysfunction in the relatively low-dose exposure of ARS. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 6-12 h after acute gamma-irradiation (a single dose of 0.5 to 4 Gy). In contrast, the number of Ki-67- and DCX-positive cells began to decrease significantly 6 h postirradiation, reaching its lowest level 24 h after irradiation. The level of Ki-67 and DCX immunoreactivity decreased in a dose-dependent manner within the range of irradiation applied (0-4 Gy). In passive avoidance and object recognition memory test, the mice trained 1 day after acute irradiation (2 Gy) showed significant memory deficits, compared with the sham controls. In conclusion, the pattern of the hippocampus-dependent memory dysfunction is consistent with the change in neurogenesis after acute irradiation. It is suggested that a relatively low dose of ARS in adult ICR mice is sufficiently detrimental to interrupt the functioning of the hippocampus, including learning and memory, possibly through the inhibition of neurogenesis.

  8. Neuregulin directly decreases voltage-gated sodium current in hippocampal ErbB4-expressing interneurons.

    PubMed

    Janssen, Megan J; Leiva-Salcedo, Elias; Buonanno, Andres

    2012-10-03

    The Neuregulin 1 (NRG1)/ErbB4 signaling pathway has been genetically and functionally implicated in the etiology underlying schizophrenia, and in the regulation of glutamatergic pyramidal neuron function and plasticity. However, ErbB4 receptors are expressed in subpopulations of GABAergic interneurons, but not in hippocampal or cortical pyramidal neurons, indicating that NRG1 effects on principal neurons are indirect. Consistent with these findings, NRG1 effects on hippocampal long-term potentiation at CA1 pyramidal neuron synapses in slices are mediated indirectly by dopamine. Here we studied whether NRG/ErbB signaling directly regulates interneuron intrinsic excitability by pharmacologically isolating ErbB4-expressing neurons in rat dissociated hippocampal cultures, which lack dopaminergic innervation. We found that NRG1 acutely attenuates ErbB4-expressing interneuron excitability by depolarizing the firing threshold; neurons treated with the pan-ErbB inhibitor PD158780 or negative for ErbB4 were unaffected. These effects of NRG1 are primarily attributable to decreased voltage-gated sodium channel activity, as current density was attenuated by ∼60%. In stark contrast, NRG1 had minor effects on whole-cell potassium currents. Our data reveal the direct actions of NRG1 signaling in ErbB4-expressing interneurons, and offer novel insight into how NRG1/ErbB4 signaling can impact hippocampal activity.

  9. Acute chest pain in emergency room. Preliminary findings with 40-64-slice CT ECG-gated of the whole chest.

    PubMed

    Coche, E

    2007-01-01

    ECG-gated MDCT of the entire chest represents the latest technical advance in the diagnostic work-up of atypical chest pain. The authors report their preliminary experience with the use of 40 and 64-slice CT in the emergency room and recommend to study only patients with moderate likelihood of coronary artery disease. ECG-gated MDCT of the entire chest will be preferentially performed on 64-slice MDCT rather than 40-slice MDCT because it enable to reduce the scan time (18 seconds versus 28 seconds acquisition time), the volume of contrast medium (82 mL + 15 mL versus 97 mL + 15 mL of highly concentrated contrast agent for a patient of 70 kgs) and radiation exposure (17 mSv versus 19 mSv). Approximately 1500 to 2000 of images are produced and need to be analysed on a dedicated workstation by a radiologist expert in cardiac and thoracic disorders. At the present time, only a few studies exist in the literature showing some promising results but further large clinical studies are needed before to implement such sophisticated protocol in emergency room.

  10. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats.

    PubMed

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-07-28

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals.

  11. Automated Computer-Assisted Diagnosis of Obstructive Coronary Artery Disease in Emergency Department Patients Undergoing 256-Slice Coronary Computed Tomography Angiography for Acute Chest Pain.

    PubMed

    Hashoul, Sharbell; Gaspar, Tamar; Halon, David A; Lewis, Basil S; Shenkar, Yuval; Jaffe, Ronen; Peled, Nathan; Rubinshtein, Ronen

    2015-10-01

    A 256-slice coronary computed tomography angiography (CCTA) is an accurate method for detection and exclusion of obstructive coronary artery disease (OBS-CAD). However, accurate image interpretation requires expertise and may not be available at all hours. The purpose of this study was to evaluate the usefulness of a fully automated computer-assisted diagnosis (COMP-DIAG) tool for exclusion of OBS-CAD in patients in the emergency department (ED) presenting with chest pain. Three hundred sixty-nine patients in ED without known coronary disease underwent 256-slice CCTA as part of the assessment of chest pain of uncertain origin. COMP-DIAG (CorAnalyzer II) automatically reported presence or exclusion of OBS-CAD (>50% stenosis, ≥1 vessel). Performance characteristics of COMP-DIAG for exclusion and detection of OBS-CAD were determined using expert reading as the reference standard. Seventeen (5%) studies were unassessable by COMP-DIAG software, and 352 patients (1,056 vessels) were therefore available for analysis. COMP-DIAG identified 33% of assessable studies as having OBS-CAD, but the prevalence of OBS-CAD on CCTA was only 18% (66 of 352 patients) by standard expert reading. However, COMP-DIAG correctly identified 61 of the 66 patients (93%) with OBS-CAD with 21 vessels (2%) with OBS-CAD misclassified as negative. In conclusion, compared to expert reading, automated computer-assisted diagnosis using the CorAnalyzer showed high sensitivity but only moderate specificity for detection of obstructive coronary disease in patients in ED who underwent 256-slice CCTA. The high negative predictive value of this computer-assisted algorithm may be useful in the ED setting.

  12. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  13. Abnormal endogenous amino acid release in brain slices from vitamin B-6 restricted neonatal rats.

    PubMed

    Guilarte, T R

    1991-01-02

    The basal and potassium-evoked efflux of glutamate, glycine, taurine, and gamma-aminobutyric acid (GABA) was measured in brain slices from vitamin B-6 restricted and sufficient 14-day-old rats. The results indicate a reduced level of basal glutamate, taurine, and GABA efflux in hippocampal slices and taurine and GABA in cortical slices from vitamin B-6 restricted animals. In the presence of depolarizing potassium concentrations, there was a reduced level of GABA efflux in hippocampal and cortical slices, and a marked reduction in the release of glutamate in cortical slices from B-6 restricted rats. The abnormalities in the secretion process of these neuroactive amino acids may be related to the neurological sequelae associated with neonatal vitamin B-6 restriction.

  14. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress.

    PubMed

    Ciarlone, Geoffrey E; Dean, Jay B

    2016-12-01

    Central CO2 chemoreceptive neurons in the caudal solitary complex (cSC) are stimulated by hyperoxia via a free radical mechanism. Hyperoxia has been shown to increase superoxide and nitric oxide in the cSC, but it remains unknown how changes in Pco2 during hyperoxia affect the production of O2-dependent reactive oxygen and nitrogen species (RONS) downstream that can lead to increased levels of oxidative and nitrosative stress, cellular excitability, and, potentially, dysfunction. We used real-time fluorescence microscopy in rat brain slices to determine how hyperoxia and hypercapnic acidosis (HA) modulate one another in the production of key RONS, as well as colorimetric assays to measure levels of oxidized and nitrated lipids and proteins. We also examined the effects of CO2 narcosis and hypoxia before euthanasia and brain slice harvesting, as these neurons are CO2 sensitive and hypothesized to employ CO2/H(+) mechanisms that exacerbate RONS production and potentially oxidative stress. Our findings show that hyperoxia ± HA increases the production of peroxynitrite and its derivatives, whereas increases in Fenton chemistry are most prominent during hyperoxia + HA. Using CO2 narcosis before euthanasia modulates cellular sensitivity to HA postmortem and enhances the magnitude of the peroxynitrite pathway, but blunts the activity of Fenton chemistry. Overall, hyperoxia and HA do not result in increased production of markers of oxidative and nitrosative stress as expected. We postulate this is due to antioxidant and proteosomal removal of damaged lipids and proteins to maintain cell viability and avoid death during protracted hyperoxia.

  15. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Musazzi, Laura; Popoli, Maurizio

    2015-11-01

    Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.

  16. The TNFα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, and Post-Ischemic Cell Loss

    PubMed Central

    Pettigrew, L. Creed; Kryscio, Richard J.; Norris, Christopher M.

    2016-01-01

    The cytokine, tumor necrosis factor α (TNFα), is a key regulator of neuroinflammation linked to numerous neurodegenerative conditions and diseases. The present study used transgenic rats that overexpress a murine TNFα gene, under the control of its own promoter, to investigate the impact of chronically elevated TNFα on hippocampal synaptic function. Neuronal viability and cognitive recovery in TNFα Tg rats were also determined following an ischemic insult arising from reversible middle cerebral artery occlusion (MCAO). Basal CA3-CA1 synaptic strength, recorded in acute brain slices, was not significantly different between eight-week-old TNFα Tg rats and non-Tg rats. In contrast, slices from TNFα Tg rats showed significantly greater levels of long-term potentiation (LTP) in response to 100 Hz stimulation, suggesting that synaptic networks may be hyperexcitable in the context of elevated TNFα. Cognitive and motor deficits (assessed on the Morris Water Maze and Rotarod task, respectively) were present in TNFα Tg rats in the absence of significant differences in the loss of cortical and hippocampal neurons. TNF overexpression exacerbated MCAO-dependent deficits on the rotarod, but ameliorated cortical neuron loss in response to MCAO. PMID:27144978

  17. Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells.

    PubMed

    Degro, Claudius E; Kulik, Akos; Booker, Sam A; Vida, Imre

    2015-01-01

    Activity of cortical principal cells is controlled by the GABAergic system providing inhibition in a compartmentalized manner along their somatodendritic axis. While GABAAR-mediated inhibitory synaptic transmission has been extensively characterized in hippocampal principal cells, little is known about the distribution of postsynaptic effects of GABABRs. In the present study, we have investigated the functional localization of GABABRs and their effector inwardly rectifying potassium (Kir3) channels by combining electrophysiological recordings in acute rat hippocampal slices, high-resolution immunoelectron microscopic analysis and single cell simulations. Pharmacologically isolated slow inhibitory postsynaptic currents were elicited in the three major hippocampal principal cell types by endogenous GABA released by electrical stimulation, photolysis of caged-GABA, as well as the canonical agonist baclofen, with the highest amplitudes observed in the CA3. Spatially restricted currents were assessed along the axis of principal cells by uncaging GABA in the different hippocampal layers. GABABR-mediated currents were present along the entire somatodendritic axis of principal cells, but non-uniformly distributed: largest currents and the highest conductance densities determined in the simulations were consistently found on the distal apical dendrites. Finally, immunocytochemical localization of GABABRs and Kir3 channels showed that distributions overlap but their densities diverge, particularly on the basal dendrites of pyramidal cells. GABABRs current amplitudes and the conductance densities correlated better with Kir3 density, suggesting a bottlenecking effect defined by the effector channel. These data demonstrate a compartmentalized distribution of the GABABR-Kir3 signaling cascade and suggest differential control of synaptic transmission, dendritic integration and synaptic plasticity at afferent pathways onto hippocampal principal cells.

  18. Selective Dysregulation of Hippocampal Inhibition in the Mouse Lacking Autism Candidate Gene CNTNAP2.

    PubMed

    Jurgensen, Sofia; Castillo, Pablo E

    2015-10-28

    Mutations in the human gene encoding contactin-associated protein-like 2 (CNTNAP2) have been strongly associated with autism spectrum disorders (ASDs). Cntnap2(-/-) mice recapitulate major features of ASD, including social impairment, reduced vocalizations, and repetitive behavior. In addition, Cntnap2(-/-) mice show reduced cortical neuronal synchrony and develop spontaneous seizures throughout adulthood. As suggested for other forms of ASDs, this phenotype could reflect some form of synaptic dysregulation. However, the impact of lifelong deletion of CNTNAP2 on synaptic function in the brain remains unknown. To address this issue, we have assessed excitatory and inhibitory synaptic transmission in acute hippocampal slices of Cntnap2(-/-) mice. We found that although excitatory transmission was mostly normal, inhibition onto CA1 pyramidal cells was altered in Cntnap2(-/-) mice. Specifically, putative perisomatic, but not dendritic, evoked IPSCs were significantly reduced in these mice. Whereas both inhibitory short-term plasticity and miniature IPSC frequency and amplitude were normal in Cntnap2(-/-) mice, we found an unexpected increase in the frequency of spontaneous, action potential-driven IPSCs. Altered hippocampal inhibition could account for the behavioral phenotype Cntnap2(-/-) mice present later in life. Overall, our findings that Cntnap2 deletion selectively impairs perisomatic hippocampal inhibition while sparing excitation provide additional support for synaptic dysfunction as a common mechanism underlying ASDs.

  19. Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Best, Tyler K.; Cramer, Nathan P.; Chakrabarti, Lina; Haydar, Tarik F.; Galdzicki, Zygmunt

    2013-01-01

    GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABAB/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABAB and GABAA mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABAB/GABAA ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABAB/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABAB and GABAA inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice. PMID:22178330

  20. Evaluation of biventricular ejection fraction with ECG-gated 16-slice CT: preliminary findings in acute pulmonary embolism in comparison with radionuclide ventriculography.

    PubMed

    Coche, Emmanuel; Vlassenbroek, Alain; Roelants, Véronique; D'Hoore, William; Verschuren, Franck; Goncette, Louis; Maldague, Baudouin

    2005-07-01

    This study aimed to assess the feasibility of cardiac global function evaluation during a whole-chest multi-slice CT (MSCT) acquisition in patients referred for suspicion of pulmonary embolism (PE), and to compare the results with planar equilibrium radionuclide ventriculography (ERNA). Ten consecutive haemodynamically stable patients (six female, four male; mean age 69.7 years; heart rate 65-99 bpm) with suspicion of PE underwent an MSCT and ERNA within a 6 h period. CT acquisition was performed after contrast medium injection by using 16x1.5 mm collimation and retrospective ECG gating. Left ventricular (LVEF) and right ventricular (RVEF) ejection fractions were calculated using dedicated three-dimensional software. Relationships between measurements obtained with MSCT and ERNA were assessed using linear regression analysis and reliability of MSCT was assessed with intra-class correlation coefficient. Bland-Altman analysis was performed to calculate limits of agreement between MSCT and ERNA. MSCT was performed successfully in ten patients with a mean acquisition time of 16.5+/-2.8 s. Functional cardiac evaluation was possible on CT for all patients except for one due to poor opacification of right ventricle. Linear regression analysis showed a good correlation between MSCT and ERNA for the LVEF (R=0.91) and the RVEF (R=0.89) measurements. Intra-class correlation was superior for LVEF (0.92) than for the RVEF (0.68). Bland-Altman plots demonstrated that MSCT substantially overestimated the ERNA RVEF. Morphological CT data demonstrated PE in four of ten of patients and alternative diagnoses in five of ten patients. Our study reveals that MSCT with retrospective ECG gating may provide in one modality a morphological and a functional cardiopulmonary evaluation. Comparison with ERNA demonstrated a good correlation for both ventricular ejection fractions.

  1. Regulating hippocampal hyperexcitability through GABAB Receptors

    PubMed Central

    Lang, Min; Moradi‐Chameh, Homeira; Zahid, Tariq; Gane, Jonathan; Wu, Chiping; Valiante, Taufik; Zhang, Liang

    2014-01-01

    Abstract Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein‐coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvulsive, or inhibitory effects, of GABAB receptors in a mouse model of hippocampal kindling as well as mouse hippocampal slices through the use of GS 39783, a positive allosteric GABAB receptor modulator, and CGP 55845, a selective GABAB receptor antagonist. When administered via intraperitoneal injections in kindled mice, GS 39783 (5 mg/kg) did not attenuate hippocampal EEG discharges, but did reduce aberrant hippocampal spikes, whereas CGP 55845 (10 mg/kg) prolonged hippocampal discharges and increased spike incidences. When examined in hippocampal slices, neither GS 39783 at 5 μmol/L nor the GABAB receptor agonist baclofen at 0.1 μmol/L alone significantly altered repetitive excitatory field potentials, but GS 39783 and baclofen together reversibly abolished these field potentials. In contrast, CGP 55845 at 1 μmol/L facilitated induction and incidence of these field potentials. In addition, CGP 55845 attenuated the paired pulse depression of CA3 population spikes and increased the frequency of EPSCs in individual CA3 pyramidal neurons. Collectively, these data suggest that GABABB receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic synapses. We postulate that positive allosteric modulation of GABAB receptors may be effective in reducing seizure‐related hyperexcitability. PMID:24771688

  2. Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis.

    PubMed

    Izumi, Yukitoshi; O'Dell, Kazuko A; Zorumski, Charles F

    2015-01-01

    Corticosterone is known to accumulate in brain after various stressors including alcohol intoxication. Just as severe alcohol intoxication is typically required to impair memory formation only high concentrations of ethanol (60 mM) acutely inhibit long-term potentiation (LTP), a cellular memory mechanism, in naïve hippocampal slices. This LTP inhibition involves synthesis of neurosteroids, including allopregnanolone, and appears to involve a form of cellular stress. In the CA1 region of rat hippocampal slices, we examined whether a lower concentration of ethanol (20 mM) inhibits LTP in the presence of corticosterone, a stress-related modulator, and whether corticosterone stimulates local neurosteroid synthesis. Although low micromolar corticosterone alone did not inhibit LTP induction, we found that 20 mM ethanol inhibited LTP in the presence of corticosterone. At 20 mM, ethanol alone did not stimulate neurosteroid synthesis or inhibit LTP. LTP inhibition by corticosterone plus ethanol was blocked by finasteride, an inhibitor of 5α-reductase, suggesting a role for neurosteroid synthesis. We also found that corticosterone alone enhanced neurosteroid immunostaining in CA1 pyramidal neurons and that this immunostaining was further augmented by 20 mM ethanol. The enhanced neurosteroid staining was blocked by finasteride and the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate (APV). These results indicate that corticosterone promotes neurosteroid synthesis in hippocampal pyramidal neurons and can participate in ethanol-mediated synaptic dysfunction even at moderate ethanol levels. These effects may contribute to the influence of stress on alcohol-induced cognitive impairment.

  3. Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis

    PubMed Central

    Izumi, Yukitoshi; O’Dell, Kazuko A.; Zorumski, Charles F.

    2015-01-01

    Corticosterone is known to accumulate in brain after various stressors including alcohol intoxication. Just as severe alcohol intoxication is typically required to impair memory formation only high concentrations of ethanol (60 mM) acutely inhibit long-term potentiation (LTP), a cellular memory mechanism, in naïve hippocampal slices. This LTP inhibition involves synthesis of neurosteroids, including allopregnanolone, and appears to involve a form of cellular stress. In the CA1 region of rat hippocampal slices, we examined whether a lower concentration of ethanol (20 mM) inhibits LTP in the presence of corticosterone, a stress-related modulator, and whether corticosterone stimulates local neurosteroid synthesis. Although low micromolar corticosterone alone did not inhibit LTP induction, we found that 20 mM ethanol inhibited LTP in the presence of corticosterone. At 20 mM, ethanol alone did not stimulate neurosteroid synthesis or inhibit LTP. LTP inhibition by corticosterone plus ethanol was blocked by finasteride, an inhibitor of 5α-reductase, suggesting a role for neurosteroid synthesis. We also found that corticosterone alone enhanced neurosteroid immunostaining in CA1 pyramidal neurons and that this immunostaining was further augmented by 20 mM ethanol. The enhanced neurosteroid staining was blocked by finasteride and the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate (APV). These results indicate that corticosterone promotes neurosteroid synthesis in hippocampal pyramidal neurons and can participate in ethanol-mediated synaptic dysfunction even at moderate ethanol levels. These effects may contribute to the influence of stress on alcohol-induced cognitive impairment. PMID:26190975

  4. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats

    PubMed Central

    Jacome, Luis F.; Barateli, Ketti; Buitrago, Dina; Lema, Franklin; Frankfurt, Maya

    2016-01-01

    17β-estradiol (E2) rapidly, within minutes, activates behaviors and cognition by binding to membrane estrogen receptors, activating cell signaling cascades and increasing dendritic spines. In female rodents, E2 enhances spatial memory within 2–4 hours, and spine density is increased in the CA1 area of the hippocampus within 30–60 minutes. Although chronic gonadal hormone treatments in male rats alter cognition and spines/spine synapses and acute hormone effects occur in hippocampal slices, effects of acute, in vivo hormone administration in males are unknown. Therefore, we assessed rapid effects of E2 (20 μg/kg) and testosterone (T) (750 μg/kg) on spatial memory using the object placement task and on hippocampal spine density using Golgi impregnation. Orchidectomized rats received hormones immediately after the training trial and were tested for retention 2 hours later. Vehicle-injected orchidectomized males spent equal time exploring objects in the old and new locations, but E2- or T-treated subjects spent more time exploring objects at the new location, suggesting enhanced memory. Both hormones also increased spine density in CA1, but not the dentate gyrus, by 20%–40% at 30 minutes and 2 hours after injections. This report is the first, to our knowledge, to show E2 and T enhancements of memory and spine density within such a short time frame in male rats. PMID:26844375

  5. Transgenic Mice with Increased Astrocyte Expression of IL-6 Show Altered Effects of Acute Ethanol on Synaptic Function

    PubMed Central

    Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.

    2015-01-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including

  6. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function.

    PubMed

    Hernandez, Ruben V; Puro, Alana C; Manos, Jessica C; Huitron-Resendiz, Salvador; Reyes, Kenneth C; Liu, Kevin; Vo, Khanh; Roberts, Amanda J; Gruol, Donna L

    2016-04-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including

  7. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation.

    PubMed

    Isla, Arturo G; Vázquez-Cuevas, Francisco Gabriel; Peña-Ortega, Fernando

    2016-03-16

    Exercise is becoming a promising therapeutic approach to prevent alterations both in Alzheimer's disease (AD) patients and in transgenic models of AD. This neuroprotection has been associated with changes in hippocampal structure and function, as well as with the reduction of amyloid-β (Aβ) production and accumulation. However, whether exercise produces lasting changes in hippocampal population activity and renders it resistant to Aβ-induced network dysfunction is still unknown. Thus, we tested whether voluntary exercise changes hippocampal population activity and prevents its alteration in the presence of Aβ, which has been associated to glycogen synthase kinase-3β (GSK3β) activation. We found that the hippocampal population activity recorded in slices obtained from mice that exercised voluntarily (with free access to a running wheel for 21 days) exhibits higher power and faster frequency composition than slices obtained from sedentary animals. Moreover, the hippocampal network of mice that exercised becomes insensitive to Aβ-induced inhibition of spontaneous population activity. This protective effect correlates with the inability of Aβ to activate GSK3β, is mimicked by GSK3β inhibition with SB126763 (in slices obtained from sedentary mice), and is abolished by the inhibition of PI3K with LY294002 (in slices obtained from mice that exercised). We conclude that voluntary exercise produces a lasting protective state in the hippocampus, maintained in hippocampal slices by a PI3K-dependent mechanism that precludes its functional disruption in the presence of Aβ by avoiding GSK3β activation.

  8. Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression

    PubMed Central

    Ahmad, Mohiuddin; Jurado, Sandra; Malenka, Robert C.

    2015-01-01

    Postsynaptic AMPA-type glutamate receptors (AMPARs) are among the major determinants of synaptic strength and can be trafficked into and out of synapses. Neuronal activity regulates AMPAR trafficking during synaptic plasticity to induce long-term changes in synaptic strength, including long-term potentiation (LTP) and long-term depression (LTD). Rab family GTPases regulate most membrane trafficking in eukaryotic cells; particularly, Rab11 and its effectors are implicated in mediating postsynaptic AMPAR insertion during LTP. To explore the synaptic function of Rab11Fip5, a neuronal Rab11 effector and a candidate autism-spectrum disorder gene, we performed shRNA-mediated knock-down and genetic knock-out (KO) studies. Surprisingly, we observed robust shRNA-induced synaptic phenotypes that were rescued by a Rab11Fip5 cDNA but that were nevertheless not observed in conditional KO neurons. Both in cultured neurons and acute slices, KO of Rab11Fip5 had no significant effect on basic parameters of synaptic transmission, indicating that Rab11Fip5 is not required for fundamental synaptic operations, such as neurotransmitter release or postsynaptic AMPAR insertion. KO of Rab11Fip5 did, however, abolish hippocampal LTD as measured both in acute slices or using a chemical LTD protocol in cultured neurons but did not affect hippocampal LTP. The Rab11Fip5 KO mice performed normally in several behavioral tasks, including fear conditioning, but showed enhanced contextual fear extinction. These are the first findings to suggest a requirement for Rab11Fip5, and presumably Rab11, during LTD. PMID:25972173

  9. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    PubMed

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents.

  10. Presynaptic Modulation of the Hippocampal Mossy Fiber Synapse

    DTIC Science & Technology

    1991-10-07

    al., 1987). In addition, the nootropic (cognitive enhancing) drug bifemaline has been shown to increase the magnitude of MF LTP (Satoh et al., 1988...Different susceptibilities of long-term potentiations in CA3 and CAl regions of guinea pig hippocampal slices to nootropic drugs. Neurosci. Lett., 1988; 93

  11. The roles of hippocampal microRNAs in response to acute postnatal exposure to di(2-ethylhexyl) phthalate in female and male rats.

    PubMed

    Luu, Bryan E; Green, Stuart R; Childers, Christine L; Holahan, Matthew R; Storey, Kenneth B

    2017-02-10

    Previous studies have shown that di(2-ethylhexyl) phthalate (DEHP) exposure impairs the normal development of pre- and post-synaptic elements of the male, but not female, rat hippocampus. While males seem to be vulnerable to the neurodevelopmental deficits resulting from DEHP exposure, females appear to show a protective response. The purpose of the present study was to characterize hippocampal microRNAs in female and male rats exposed to DEHP to assess whether any patterns emerged that would be consistent with vulnerability in males and resilience in females. Male and female rats were treated with 0, 1, 10, or 20mg/kg of DEHP by intraperitoneal injections from postnatal day 16 (PND16) - PND22 and brains were removed and flash frozen on PND78. A group of 85 microRNAs which have been previously shown to play a role in the development and maintenance of hippocampal neurons was assessed with RT-qPCR. In response to DEHP exposure, there were 19 microRNAs that increased in females and 52 that decreased in males. The strongest microRNA response in females occurred in conjunction with the 10mg/kg of DEHP dose, whereas suppression of microRNAs in males appeared to be dose-dependent. Select hippocampal microRNAs (such as miR-132-3p and miR-191-5p), previously shown to regulate dendrite morphology, were modulated by DEHP exposure in this study. The results suggest that DEHP exposure has the potential to regulate microRNAs in a sex-specific manner which may interfere with proper hippocampal development in males and preserve hippocampal development in females.

  12. Oxidative Damage in the Guinea Pig Hippocampal Slice

    DTIC Science & Technology

    1989-01-01

    ferences between control and treated curves were tested was expected from the dose response curve to produce. for significance by comparing the residual sum... response curve for N-chlorosuccinimide 0ics"Yiaptic activity to elicit an action11 pOLfltda! :) the (NCS) (Fig. I) shows that NCS icquiicd highci...greater than about 500 and 35 population PSP vs. population spike. The volley ItM. vs. population spike curve reflects the ability of the The dose

  13. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats

    PubMed Central

    Caiati, Maddalena D.; Cherubini, Enrico

    2013-01-01

    Fluoxetine (Prozac), an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs), generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 μM) in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic) drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development. PMID:23641199

  14. Silhouette-Slice Theorems

    DTIC Science & Technology

    1987-03-20

    with standard expressions of spherical trigonometry is sinr)0 = cos0 sini//0 (4.37) which is consistent with the results obtained previously with...theorems for discrete transforms. However, sampling questions inlroduce difficult obstacles in the develop- ment of a discrete theory. First, sampling...additional obstacle to discrete represen- tations of the CT. An example of qualitative predication of the shape of silhouettes with the Silhouette-Slice

  15. Physiological Effects of Enriched Environment Exposure and LTP Induction in the Hippocampus In Vivo Do Not Transfer Faithfully to In Vitro Slices

    ERIC Educational Resources Information Center

    Eckert, Michael J.; Abraham, Wickliffe C.

    2010-01-01

    A number of experimental paradigms use in vitro brain slices to test for changes in synaptic transmission and plasticity following a behavioral manipulation. For example, a number of previous studies have reported a variety of effects of environmental enrichment (EE) exposure on field potential responses in hippocampal slices, but in no study was…

  16. A multifunctional pipette for localized drug administration to brain slices.

    PubMed

    Ahemaiti, Aikeremu; Ainla, Alar; Jeffries, Gavin D M; Wigström, Holger; Orwar, Owe; Jesorka, Aldo; Jardemark, Kent

    2013-10-15

    We have developed a superfusion method utilizing an open-volume microfluidic device for administration of pharmacologically active substances to selected areas in brain slices with high spatio-temporal resolution. The method consists of a hydrodynamically confined flow of the active chemical compound, which locally stimulates neurons in brain slices, applied in conjunction with electrophysiological recording techniques to analyze the response. The microfluidic device, which is a novel free-standing multifunctional pipette, allows diverse superfusion experiments, such as testing the effects of different concentrations of drugs or drug candidates on neurons in different cell layers with high positional accuracy, affecting only a small number of cells. We demonstrate herein the use of the method with electrophysiological recordings of pyramidal cells in hippocampal and prefrontal cortex brain slices from rats, determine the dependence of electric responses on the distance of the superfusion device from the recording site, document a multifold gain in solution exchange time as compared to whole slice perfusion, and show that the device is able to store and deliver up to four solutions in a series. Localized solution delivery by means of open-volume microfluidic technology also reduces reagent consumption and tissue culture expenses significantly, while allowing more data to be collected from a single tissue slice, thus reducing the number of laboratory animals to be sacrificed for a study.

  17. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.

    PubMed

    Robinson, Jennifer; Manseau, Frédéric; Ducharme, Guillaume; Amilhon, Bénédicte; Vigneault, Erika; El Mestikawy, Salah; Williams, Sylvain

    2016-03-09

    The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus.

  18. Serotonin dependent masking of hippocampal sharp wave ripples.

    PubMed

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory.

  19. Selective vulnerability of hippocampal sub-fields to oxygen-glucose deprivation is a function of animal age.

    PubMed

    Lalonde, Crystal C; Mielke, John G

    2014-01-16

    For more than a century, the hippocampal sub-fields have been recognized as being differentially vulnerable to injury. While the cause remains unknown, the explanations generally considered have involved either vascular differences, or innate variability among cells. To examine the latter possibility, we prepared acute hippocampal slices from Sprague-Dawley rats, applied a brief period of oxygen-glucose deprivation (OGD; an in vitro model of ischemia), and assessed the viability of dissected sub-fields (CA1, CA3, dentate gyrus) by measuring mitochondrial 2,3,5-triphenyltetrazolium chloride (TTC) metabolism. In slices from young animals (15 weeks of age), post-OGD TTC metabolism was significantly reduced in the CA sub-fields relative to the dentate gyrus. Since previous studies found increasing age may worsen ischemic injury, we completed the same experiment using tissue from animals at 52 weeks of age, and found no differences in TTC metabolism across sub-fields. Given the established role of glutamate receptors in ischemic cell death, we examined two key subunit proteins (GluN1, found in all NMDA receptors, and GluA2, found in most AMPA receptors) across sub-fields and age to determine whether their expression complemented our viability data. We found that, relative to the CA1, the DG displayed greater GluN1 expression and lower GluA2 expression in both young and old animals. Our results confirm that regional vulnerability can be shown in a slice model, that the property is not intransigent, and that these features are likely not attributable to the expression pattern of key glutamate receptor subunits, but another molecular variable that changes over the lifespan.

  20. Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma-1 receptor activation in hippocampal CA1 neurons

    PubMed Central

    Sabeti, Jilla

    2011-01-01

    Background We demonstrated previously that rats exposed to chronic intermittent ethanol (CIE) vapors in early adolescence show increased magnitudes of long-term potentiation (LTP) of excitatory transmission when recorded at dendritic synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated by sigma-1 receptors; however, not yet addressed is the role of sigma-1 receptors in modulating the intrinsic properties of neurons to alter their action potential firing during LTP. Methods Activity-induced plasticity of spike firing was investigated using rat hippocampal slice recordings to measure changes in both field excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes) concomitantly at dendritic inputs and soma of CA1 pyramidal neurons, respectively. Results We observed unique modifications in plasticity of action potential firing in hippocampal slices from CIE exposed adolescent rats, where the induction of large amplitude LTP by 100 Hz stimulations was accompanied by reduced CA1 neuronal excitability—reflected as decreased pop. spike efficacy and impaired activity-induced fEPSP-to-spike (E-S) potentiation. By contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation. E-S potentiation impairments emerged at 24 hr after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist D-AP5. Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition. Conclusions Results here suggest that acute withdrawal from adolescent CIE exposure triggers sigma-1 receptors that act to depress the efficacy of excitatory inputs in triggering

  1. System for slicing wafers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.

  2. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  3. Mouse δ opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells.

    PubMed

    Rezaï, Xavier; Faget, Lauren; Bednarek, Ewa; Schwab, Yannick; Kieffer, Brigitte L; Massotte, Dominique

    2012-05-01

    Delta opioid receptors participate in the control of chronic pain and emotional responses. Recent data have also identified their implication in drug-context associations pointing to a modulatory role on hippocampal activity. We used fluorescent knock-in mice that express a functional delta opioid receptor fused at its carboxy terminus with the green fluorescent protein in place of the native receptor to investigate the receptor neuroanatomical distribution in this structure. Fine mapping of the pyramidal layer was performed in hippocampal acute brain slices and organotypic cultures using fluorescence confocal imaging, co-localization with pre- and postsynaptic markers and correlative light-electron microscopy. The different approaches concurred to identify delta opioid receptors on presynaptic afferents to glutamatergic principal cells. In the latter, only scarce receptors were detected that were confined within the Golgi or vesicular intracellular compartments with no receptor present at the cell surface. In the mouse hippocampus, expression of functional delta opioid receptors is therefore mostly associated with interneurons emphasizing a presynaptic modulatory effect on the pyramidal cell firing rate.

  4. Hippocampal culture stimulus with 4-megahertz ultrasound

    NASA Astrophysics Data System (ADS)

    Muratore, Robert; LaManna, Justine K.; Lamprecht, Michael R.; Morrison, Barclay, III

    2012-10-01

    Among current modalities, ultrasound uniquely offers both millisecond and millimeter accuracy in noninvasively stimulating brain tissue. In addition, by sweeping the ultrasound beam within the refractory period of the neuronal tissue, ultrasonic neuromodulation can be adapted to target extended or multiply connected regions with quasi-simultaneity. Towards the development of this safe brain stimulus technique, the response of rat hippocampal cultures to ultrasound was investigated. Hippocampal slices, 0.4-mm thick, were obtained from 8-day old Sprague Dawley rats and cultured for 6 days. The in vitro cultures were exposed to multiple 100-ms 4.04-MHz ultrasound pulses from a 42-mm diameter, 90-mm spherical cap transducer. Peak pressure ranged from 0 through about 77 kPa. Responses in the form of electrical potentials from a sixty channel electrode array were digitized and recorded. The DG and CA1 regions of the hippocampus exhibited similar ultrasonically-evoked field potentials.

  5. Neurogliaform Cells in the Molecular Layer of the Dentate Gyrus as Feed-Forward γ-Aminobutyric Acidergic Modulators of Entorhinal–Hippocampal Interplay

    PubMed Central

    Armstrong, Caren; Szabadics, János; Tamás, Gábor; Soltesz, Ivan

    2014-01-01

    Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal–hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABAA and GABAB postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure PMID:21452204

  6. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3.

    PubMed

    Scala, Federico; Fusco, Salvatore; Ripoli, Cristian; Piacentini, Roberto; Li Puma, Domenica Donatella; Spinelli, Matteo; Laezza, Fernanda; Grassi, Claudio; D'Ascenzo, Marcello

    2015-02-01

    Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.

  7. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K+ current inhibition mediated by activation of caspases and GSK-3

    PubMed Central

    Scala, Federico; Fusco, Salvatore; Ripoli, Cristian; Piacentini, Roberto; Li Puma, Domenica Donatella; Spinelli, Matteo; Laezza, Fernanda; Grassi, Claudio; D’Ascenzo, Marcello

    2016-01-01

    Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K+ currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K+ currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer’s mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer’s disease treatment. PMID:25541422

  8. In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging.

    PubMed

    Malykhin, N V; Lebel, R M; Coupland, N J; Wilman, A H; Carter, R

    2010-01-15

    Several neuropsychiatric disorders involving hippocampal structural changes have been studied extensively using volumetric magnetic resonance imaging (MRI). These studies have mostly measured total hippocampal volume while the present study aimed to delineate and measure hippocampal subfields within the whole hippocampus and subdivisions along its longitudinal axis. Images were acquired at 4.7 T in 11 healthy subjects (5 males and 6 females, aged 23-56 years), using a fast spin echo (FSE) sequence with 0.52 x 0.68 x 1.0 mm(3) native resolution, collecting 90 contiguous coronal slices. Subiculum, cornu ammonis (CA1-3), and dentate gyrus were traced manually within the hippocampal head, body, and tail. We reported volumes for the subfields and demonstrated differences in the distribution within the hippocampus and its parts. The biggest part of the dentate gyrus was located in the hippocampal body, following the hippocampal head and tail. In contrast, the hippocampal head had the largest part of CA1-3, following the hippocampal body and tail. The hippocampal tail had the smallest portion of the subiculum compared to hippocampal head and tail. Subfield volumes were consistent between hemispheres and showed distributions within the longitudinal subdivisions that were consistent with histological data. Direct measurements of subfield distribution along the longitudinal axis of the hippocampus may be more sensitive to detecting disease effects than total volume measures and the differential distribution of subfield volumes may aid in the interpretation of measurements obtained at lower field strength and spatial resolution.

  9. Age-related changes in susceptibility of rat brain slice cultures including hippocampus to encephalomyocarditis virus

    PubMed Central

    Su, Weiping; Ueno-Yamanouchi, Aito; Uetsuka, Koji; Nakayama, Hiroyuki; Doi, Kunio

    1999-01-01

    Replication of the D variant of encephalomyocarditis virus (EMC-D) and its cytopathic effects were studied in the brain slice cultures including hippocampus (hippocampal slice) obtained from postnatal 1-, 4-, 7-, 14-, 28-and 56-day-old Fischer 344 rats. At 0, 12, 24, 36 and 48 h after infection, virus titres of the slices and culture media were assayed. Viral replication was observed in cultures from 1-to 28-day-old rats, and the highest titre was recorded in the slice and culture medium from the youngest rat. The peak of virus titre decreased with age and no distinct viral replication was observed in the cultures from 56-day-old rats. Light microscopy revealed that degenerative and necrotic changes appeared in the infected hippocampal slices from 1- to 28-day-old rats, and the changes became less prominent with age. In situ hybridization and indirect immunofluorescence staining showed that positive signals of viral RNA and antigen were prominent in younger rats and decreased with age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC-D is less related to the maturation of the immune system but possibly to that of the neurone. PMID:10632784

  10. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons.

    PubMed

    Lauterborn, J C; Lynch, G; Vanderklish, P; Arai, A; Gall, C M

    2000-01-01

    This study investigated whether positive modulators of AMPA-type glutamate receptors influence neurotrophin expression by forebrain neurons. Treatments with the ampakine CX614 markedly and reversibly increased brain-derived neurotrophic factor (BDNF) mRNA and protein levels in cultured rat entorhinal/hippocampal slices. Acute effects of CX614 were dose dependent over the range in which the drug increased synchronous neuronal discharges; threshold concentrations for acute responses had large effects on mRNA content when applied for 3 d. Comparable results were obtained with a second, structurally distinct ampakine CX546. Ampakine-induced upregulation was broadly suppressed by AMPA, but not NMDA, receptor antagonists and by reducing transmitter release. Antagonism of L-type voltage-sensitive calcium channels blocked induction in entorhinal cortex but not hippocampus. Prolonged infusions of suprathreshold ampakine concentrations produced peak BDNF mRNA levels at 12 hr and a return to baseline levels by 48 hr. In contrast, BDNF protein remained elevated throughout a 48 hr incubation with the drug. Nerve growth factor mRNA levels also were increased by ampakines but with a much more rapid return to control levels during chronic administration. Finally, intraperitoneal injections of CX546 increased hippocampal BDNF mRNA levels in aged rats and middle-aged mice. The present results provide evidence of regional differences in mechanisms via which activity regulates neurotrophin expression. Moreover, these data establish that changes in synaptic potency produce sufficient network level physiological effects for inducing neurotrophin genes, indicate that the response becomes refractory during prolonged ampakine exposure, and raise the possibility of using positive AMPA modulators to regulate neurotrophin levels in aged brain.

  11. Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons.

    PubMed

    Rovira, C; Ben-Ari, Y

    1991-09-16

    Benzodiazepines (midazolam; flunitrazepam) and pentobarbital increase the response to exogenous gamma-aminobutyric acid (GABA) in adult hippocampal cells. We report in this paper that in contrast pentobarbital but not benzodiazepine potentiate the effects of exogenous (GABA) in neurons recorded from slices of less than two weeks old. This finding suggests that the functional association of benzodiazepine and GABAA receptors is changed during early postnatal life.

  12. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement.

    PubMed

    Tabassum, Heena; Frey, Julietta U

    2013-12-01

    Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively.

  13. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats.

    PubMed

    Soumier, Amelie; Carter, Rayna M; Schoenfeld, Timothy J; Cameron, Heather A

    2016-01-01

    Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis.

  14. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats123

    PubMed Central

    Soumier, Amelie; Carter, Rayna M.; Schoenfeld, Timothy J.

    2016-01-01

    Abstract Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis. PMID:27066531

  15. Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin

    PubMed Central

    Willmes, Claudia G.; Mack, Till G. A.; Ledderose, Julia; Schmitz, Dietmar; Wozny, Christian; Eickholt, Britta J.

    2017-01-01

    The dynamic regulation of the actin cytoskeleton plays a key role in controlling the structure and function of synapses. It is vital for activity-dependent modulation of synaptic transmission and long-term changes in synaptic morphology associated with memory consolidation. Several regulators of actin dynamics at the synapse have been identified, of which a salient one is the postsynaptic actin stabilising protein Drebrin (DBN). It has been suggested that DBN modulates neurotransmission and changes in dendritic spine morphology associated with synaptic plasticity. Given that a decrease in DBN levels is correlated with cognitive deficits associated with ageing and dementia, it was hypothesised that DBN protein abundance instructs the integrity and function of synapses. We created a novel DBN deficient mouse line. Analysis of gross brain and neuronal morphology revealed no phenotype in the absence of DBN. Electrophysiological recordings in acute hippocampal slices and primary hippocampal neuronal cultures showed that basal synaptic transmission, and both long-term and homeostatic synaptic plasticity were unchanged, suggesting that loss of DBN is not sufficient in inducing synapse dysfunction. We propose that the overall lack of changes in synaptic function and plasticity in DBN deficient mice may indicate robust compensatory mechanisms that safeguard cytoskeleton dynamics at the synapse. PMID:28198431

  16. Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length

    PubMed Central

    Fischer, Tim J.; Walker, Tara L.; Overall, Rupert W.; Brandt, Moritz D.; Kempermann, Gerd

    2014-01-01

    Exercise stimulates cellular brain plasticity by extending the pool of proliferating neural precursor cells in the adult hippocampus. This effect has been investigated extensively, but the most immediate cellular effect induced by exercise that results in this acute increase in the number of cycling cells remained unclear. In the developing brain as well as adult pathological models, cell cycle alterations have a major influence on the balance between proliferative and neurogenic divisions. In this study we investigated whether this might also apply to the acute physiological pro-neurogenic stimulus of physical exercise in adulthood. Do changes in cell cycle precede the measurable increase in proliferation? After 5 days of voluntary wheel running, however, we measured only a very small, statistically not significant acceleration in cell cycle, which could not quantitatively explain the observed increase in proliferating cells after exercise. Thus, at this acute stage, changes at the level of cell cycle control is not the primary causal mechanism for the expansion of the precursor cell population, although with time after the stimulus changes in cell cycle of the entire population of labeled cells might be the result of the expanded pool of cells that have progressed to the advanced neurogenic stages with shorter cell cycle length. PMID:25339861

  17. Updating the lamellar hypothesis of hippocampal organization.

    PubMed

    Sloviter, Robert S; Lømo, Terje

    2012-01-01

    Andersen et al. (1971) proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a "trisynaptic circuit" lying within transverse hippocampal "slices" or "lamellae." In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the "lamellar" distribution of dentate granule cell axons (the mossy fibers), which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly "lamellar" mossy fiber pathway. The existence of pathways with "translamellar" distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis (Amaral and Witter, 1989). We suggest that the functional implications of longitudinally projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar organization.

  18. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor

    PubMed Central

    Ganesana, Mallikarjunarao; Erlichman, Joseph S.; Andreescu, Silvana

    2012-01-01

    The overproduction of reactive oxygen species and resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited due to the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome C (Cyt C) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. During control conditions, superoxide radicals produced from the hippocampal region of the brain in 400 μm thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production two fold and measurements from the slices were stable over a 3–4 hour period. The stilbene derivative and anion channel inhibitor, 4,4′-diisothiocyano-2,2′-disulfonic stilbene (DIDS), markedly reduced the extracellular superoxide signal under control conditions suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD) which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD-mimetic, cerium oxide nanoparticles (nanoceria) where the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. PMID:23085519

  19. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes.

    PubMed

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2013-10-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K(+) channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  20. Hippocampal Inactivation Enhances Taste Learning

    ERIC Educational Resources Information Center

    Stone, Martha E.; Grimes, Brandon S.; Katz, Donald B.

    2005-01-01

    Learning tasks are typically thought to be either hippocampal-dependent (impaired by hippocampal lesions) or hippocampal-independent (indifferent to hippocampal lesions). Here, we show that conditioned taste aversion (CTA) learning fits into neither of these categories. Rats were trained to avoid two taste stimuli, one novel and one familiar.…

  1. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  2. Impaired K+ Homeostasis and Altered Electrophysiological Properties of Post-Traumatic Hippocampal Glia

    PubMed Central

    D'Ambrosio, Raimondo; Maris, Donald O.; Grady, M. Sean; Winn, H. Richard; Janigro, Damir

    2014-01-01

    Traumatic brain injury (TBI) can be associated with memory impairment, cognitive deficits, or seizures, all of which can reflect altered hippocampal function. Whereas previous studies have focused on the involvement of neuronal loss in post-traumatic hippocampus, there has been relatively little understanding of changes in ionic homeostasis, failure of which can result in neuronal hyperexcitability and abnormal synchronization. Because glia play a crucial role in the homeostasis of the brain microenvironment, we investigated the effects of TBI on rat hippocampal glia. Using a fluid percussion injury (FPI) model and patch-clamp recordings from hippocampal slices, we have found impaired glial physiology 2 d after FPI. Electrophysiologically, we observed reduction in transient outward and inward K+ currents. To assess the functional consequences of these glial changes, field potentials and extracellular K+ activity were recorded in area CA3 during antidromic stimulation. An abnormal extracellular K+ accumulation was observed in the post-traumatic hippocampal slices, accompanied by the appearance of CA3 afterdischarges. After pharmacological blockade of excitatory synapses and of K+ inward currents, uninjured slices showed the same altered K+ accumulation in the absence of abnormal neuronal activity. We suggest that TBI causes loss of K+ conductance in hippocampal glia that results in the failure of glial K+ homeostasis, which in turn promotes abnormal neuronal function. These findings provide a new potential mechanistic link between traumatic brain injury and subsequent development of disorders such as memory loss, cognitive decline, seizures, and epilepsy. PMID:10479715

  3. Urea Biosynthesis Using Liver Slices

    ERIC Educational Resources Information Center

    Teal, A. R.

    1976-01-01

    Presented is a practical scheme to enable introductory biology students to investigate the mechanism by which urea is synthesized in the liver. The tissue-slice technique is discussed, and methods for the quantitative analysis of metabolites are presented. (Author/SL)

  4. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity

    PubMed Central

    Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.

    2015-01-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852

  5. Restoration of mossy fiber projection in slice co-cultures of dislocated dentate gyrus and degranulated hippocampus.

    PubMed

    Gaiarsa, J L; Heimrich, B

    1995-05-26

    Regional specificity of the mossy fiber projection is a well described feature of hippocampal intrinsic connectivity. Possible mechanisms involved in the formation of this specific projection include attraction molecules localized in the target area or repulsive cues preventing from ingrowth in non-target areas. To test this hypothesis, using organotypic co-cultures of dentate gyrus and irradiated degranulated hippocampal slices, we have disrupted the pathway normally taken by mossy fibers. The dentate gyrus explant was ectopically placed facing the alveus/stratum oriens of the irradiated hippocampal slice forcing the mossy fibers to cross the stratum oriens to reach their target area. Extensive plexuses of labeled mossy fibers were observed in the hilus and adjacent pyramidal cell layer of non-irradiated dentate gyrus explants. A few mossy fibers crossed the border between the co-cultures and reached their specific termination area in the irradiated hippocampus where they formed characteristic multiple synaptic contacts on their target cells. In addition to mossy fibers, numerous thin and varicose non-mossy fibers invade all parts of the co-cultured hippocampus establishing symmetric synapses. From these data we assume that mossy fiber axons emerging from dislocated non-irradiated dentate gyrus explants find their normal termination zone in the co-cultured degranulated hippocampal slice even if they are forced to run an unusual pathway. These results support the idea that an attraction signal arising from the target area is involved in the formation of this specific projection.

  6. Ischemic insults promote epigenetic reprogramming of μ opioid receptor expression in hippocampal neurons

    PubMed Central

    Formisano, Luigi; Noh, Kyung-Min; Miyawaki, Takahiro; Mashiko, Toshihiro; Bennett, Michael V. L.; Zukin, R. Suzanne

    2007-01-01

    Transient global ischemia is a neuronal insult that induces delayed, selective death of hippocampal CA1 pyramidal neurons. A mechanism underlying ischemia-induced cell death is activation of the gene silencing transcription factor REST (repressor element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor) and REST-dependent suppression of the AMPA receptor subunit GluR2 in CA1 neurons destined to die. Here we show that REST regulates an additional gene target, OPRM1 (μ opioid receptor 1 or MOR-1). MORs are abundantly expressed by basket cells and other inhibitory interneurons of CA1. Global ischemia induces a marked decrease in MOR-1 mRNA and protein expression that is specific to the selectively vulnerable area CA1, as assessed by quantitative real-time RT-PCR, Western blotting, and ChIP. We further show that OPRM1 gene silencing is REST-dependent and occurs via epigenetic modifications. Ischemia promotes deacetylation of core histone proteins H3 and H4 and dimethylation of histone H3 at lysine-9 (H3-K9) over the MOR-1 promoter, an signature of epigenetic gene silencing. Acute knockdown of MOR-1 gene expression by administration of antisense oligodeoxynucleotides to hippocampal slices in vitro or injection of the MOR antagonist naloxone to rats in vivo affords protection against ischemia-induced death of CA1 pyramidal neurons. These findings implicate MORs in ischemia-induced death of CA1 pyramidal neurons and document epigenetic remodeling of expression of OPRM1 in CA1 inhibitory interneurons. PMID:17360495

  7. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  8. Hippocampal neurons in schizophrenia

    PubMed Central

    Heckers, S.; Konradi, C.

    2014-01-01

    Summary The hippocampus is crucial for normal brain function, especially for the encoding and retrieval of multimodal sensory information. Neuropsychiatric disorders such as temporal lobe epilepsy, amnesia, and the dementias are associated with structural and functional abnormalities of specific hippocampal neurons. More recently we have also found evidence for a role of the hippocampus in the pathophysiology of schizophrenia. The most consistent finding is a subtle, yet significant volume difference in schizophrenia. Here we review the cellular and molecular basis of smaller hippocampal volume in schizophrenia. In contrast to neurodegenerative disorders, total hippocampal cell number is not markedly decreased in schizophrenia. However, the intriguing finding of a selective loss of hippocampal inter-neurons deserves further study. Two neurotransmitter receptors, the GABAA and AMPA/kainate glutamate receptors, appear to be abnormal, whereas changes of the NMDA glutamate receptor are less robust. The expression of several genes, including those related to the GABAergic system, neurodevelopment, and synaptic function, is decreased in schizophrenia. Taken together, recent studies of hippocampal cell number, protein expression, and gene regulation point towards an abnormality of hippocampal architecture in schizophrenia. PMID:12111476

  9. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.

    PubMed

    Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A

    2014-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple

  10. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI

    PubMed Central

    Adler, Daniel H.; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C.; Avants, Brian B.; Yushkevich, Paul A.

    2013-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules is challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200 μm spacing and 5 μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4 Tesla MRI scan of the intact, whole hippocampal formation acquired with 160 μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1 cm-thick tissue sub-blocks acquired with 200 μm isotropic resolution. These 1 cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to

  11. Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol

    PubMed Central

    Apostolova, Liana G.; Zarow, Chris; Biado, Kristina; Hurtz, Sona; Boccardi, Marina; Somme, Johanne; Honarpisheh, Hedieh; Blanken, Anna E.; Brook, Jenny; Tung, Spencer; Lo, Darrick; Ng, Denise; Alger, Jeffry R.; Vinters, Harry V.; Bocchetta, Martina; Duvernoy, Henri; Jack, Clifford R.; Frisoni, Giovanni; Bartzokis, George; Csernansky, John G.; de Leon, Mony J.; deToledo-Morrell, Leyla; Killiany, Ronald J.; Lehéricy, Stéphane; Malykhin, Nikolai; Pantel, Johannes; Pruessner, Jens C.; Soininen, Hilkka; Watson, Craig

    2015-01-01

    Objective The pathologic validation of European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Center Harmonized Hippocampal Segmentation Protocol (HarP). Methods Temporal lobes of nine Alzheimer's disease (AD) and seven cognitively normal subjects were scanned post-mortem at 7 Tesla. Hippocampal volumes were obtained with HarP. Six-micrometer-thick hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet. Hippocampal subfields were manually traced. Neuronal counts, Aβ, and tau burden for each hippocampal subfield were obtained. Results We found significant correlations between hippocampal volume and Braak and Braak staging (ρ = −0.75, P = .001), tau (ρ = −0.53, P = .034), Aβ burden (ρ = −0.61, P = .012), and neuronal count (ρ = 0.77, P < .001). Exploratory subfield-wise significant associations were found for Aβ in CA1 (ρ = −0.58, P = .019) and subiculum (ρ = −0.75, P = .001), tau in CA2 (ρ = −0.59, P = .016), and CA3 (ρ = −0.5, P = .047), and neuronal count in CA1 (ρ = 0.55, P = .028), CA3 (ρ = 0.65, P = .006), and CA4 (ρ = 0.76, P = .001). Conclusions The observed associations provide the pathological confirmation of hippocampal morphometry as a valid biomarker for AD and the pathologic validation of HarP. PMID:25620800

  12. Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons.

    PubMed

    Dobelis, Peter; Staley, Kevin J; Cooper, Donald C

    2012-01-01

    Kynurenic acid (KYNA), a classical ionotropic glutamate receptor antagonist is also purported to block the α7-subtype nicotinic acetylcholine receptor (α7* nAChR). Although many published studies cite this potential effect, few have studied it directly. In this study, the α7*-selective agonist, choline, was pressure-applied to interneurons in hippocampal subregions, CA1 stratum radiatum and hilus of acute brain hippocampal slices from adolescent to adult mice and adolescent rats. Stable α7* mediated whole-cell currents were measured using voltage-clamp at physiological temperatures. The effects of bath applied KYNA on spontaneous glutamatergic excitatory postsynaptic potentials (sEPSC) as well as choline-evoked α7* currents were determined. In mouse hilar interneurons, KYNA totally blocked sEPSC whole-cell currents in a rapid and reversible manner, but had no effect on choline-evoked α7* whole-cell currents. To determine if this lack of KYNA effect on α7* function was due to regional and/or species differences in α7* nAChRs, the effects of KYNA on choline-evoked α7* whole-cell currents in mouse and rat stratum radiatum interneurons were tested. KYNA had no effect on either mouse or rat stratum radiatum interneuron choline-evoked α7* whole-cell currents. Finally, to test whether the lack of effect of KYNA was due to unlikely slow kinetics of KYNA interactions with α7* nAChRs, recordings of a7*-mediated currents were made from slices that were prepared and stored in the presence of 1 mM KYNA (>90 minutes exposure). Under these conditions, KYNA had no measurable effect on α7* nAChR function. The results show that despite KYNA-mediated blockade of glutamatergic sEPSCs, two types of hippocampal interneurons that express choline-evoked α7* nAChR currents fail to show any degree of modulation by KYNA. Our results indicate that under our experimental conditions, which produced complete KYNA-mediated blockade of sEPSCs, claims of KYNA effects on choline

  13. Circadian Regulation of Hippocampal Long-Term Potentiation

    PubMed Central

    Chaudhury, Dipesh; Wang, Louisa M.; Colwell, Christopher S.

    2008-01-01

    The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57 mice. These 2 strains of mice were of interest because the C3H mice secrete melatonin rhythmically while the C57 mice do not. The authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from night slices compared to day slices of both C3H and C57 mice. They also found significant diurnal variation in the decay of LTP measured with fEPSPs, with the decay slower during the night in both strains of mice. There was evidence for a diurnal rhythm in the input/output function of pyramidal neurons measured at the soma in C57 but not C3H mice. Furthermore, LTP in the PS, measured in slices prepared during the day but recorded during the night, had a profile remarkably similar to the night group. Finally, PS recordings were carried out in slices from C3H mice maintained in constant darkness prior to experimentation. Again, the authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from subjective night slices compared to subjective day slices. These results provide the 1st evidence that an endogenous circadian oscillator modulates synaptic plasticity in the hippocampus. PMID:15851529

  14. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.

    PubMed

    Izumi, Y; Svrakic, N; O'Dell, K; Zorumski, C F

    2013-03-13

    Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. Based on this, we hypothesize that metabolic stressors, including hyperammonemia, promote untimely NMDAR activation and result in neural adaptations that include the synthesis of allopregnanolone (alloP) and other GABA-potentiating neurosteroids that dampen neuronal activity and impair LTP and memory formation. Using an antibody against 5α-reduced neurosteroids, we found that 100 μM ammonia acutely enhanced neurosteroid immunostaining in pyramidal neurons in the CA1 region of rat hippocampal slices. The enhanced staining was blocked by finasteride, a selective inhibitor of 5α-reductase, a key enzyme required for alloP synthesis. Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia.

  15. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms

    PubMed Central

    Phillips, Wiktor S.; Herly, Mikkel; Del Negro, Christopher A.

    2015-01-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7–43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  16. Different patterns of synaptic transmission revealed between hippocampal CA3 stratum oriens and stratum lucidum interneurons and their pyramidal cell targets.

    PubMed

    Aaron, G B; Wilcox, K S; Dichter, M A

    2003-01-01

    Stratum lucidum (SL) interneurons likely mediate feedforward inhibition between the dentate gyrus mossy fibers and CA3 pyramidal cells, while stratum oriens (SO) interneurons likely provide both feedforward and feedback inhibition within the CA3 commissural/associational network. Using dual whole-cell patch-clamp recordings between interneurons and CA3 pyramidal cells, we have examined SL and SO interneurons and their synapses within organotypic hippocampal slice cultures. Biocytin staining revealed different morphologies between these interneuron groups, both being very similar to those found previously in acute slices. The kinetics of IPSCs were similar between the two groups, but the reliability of synaptic transmission of SL interneuron (SL-INT) IPSCs was significantly lower than the virtually 100% reliability (non-existent failure rates) of SO-INT IPSCs. The SL-INT IPSCs also had a lower quantal content than the SO-INT IPSCs. In addition, SL-INTs were less likely than SO-INTs to innervate or to be innervated by nearby CA3 pyramidal cells. Paired-pulse stimulation at 100 ms interstimulus intervals produced similar paired-pulse depression in both interneuron synapses, despite the significantly higher failure rate of IPSCs produced by the SL-INTs compared with SO-INTs. CV analysis supported the hypothesis that paired-pulse depression was presynaptic. During repetitive, high frequency stimulation (>10 Hz for 500 ms) the two different synapses exhibited distinctly different forms of short-term plasticity: all SL interneurons displayed significant short-term facilitation (mean 113% facilitation, n=4), while, by contrast, SO interneuron synapses displayed either short-term depression (mean 42% depression, n=5 of 8) or no net facilitation or depression (n=3 of 8). These results indicate that the synaptic properties of interneurons can be quite different for interneurons in different hippocampal circuits.

  17. Single-shot curved slice imaging.

    PubMed

    Jochimsen, Thies H; Norris, David G

    2002-03-01

    The feasibility of imaging a curved slice with a single-shot technique so that the reconstructed image shows an un-warping of the slice is examined. This could be of practical importance when the anatomical structures of interest can be more efficiently covered with curved slices than with a series of flat planes. One possible example of such a structure is the cortex of the human brain. Functional imaging would especially benefit from this technique because several planar images can be replaced by a few curved slice images. A method is introduced that is based on multidimensional pulses to excite the desired curved slice profile. A GRASE imaging sequence is then applied that is tailored to the k-space representation of the curved slice. This makes it possible to capture the in-plane information of the slice with a single-shot technique. The method presented is limited to slices that are straight along one axis and can be approximated by a polygon. Reconstruction is performed using a simple numeric Fourier integration along the curved slice. This leads to an image that shows the desired un-warped representation of the slice. Experimental results obtained with this method from healthy volunteers are presented and demonstrate the feasibility of the proposed technique.

  18. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  19. Selective Dysregulation of Hippocampal Inhibition in the Mouse Lacking Autism Candidate Gene CNTNAP2

    PubMed Central

    Jurgensen, Sofia

    2015-01-01

    Mutations in the human gene encoding contactin-associated protein-like 2 (CNTNAP2) have been strongly associated with autism spectrum disorders (ASDs). Cntnap2−/− mice recapitulate major features of ASD, including social impairment, reduced vocalizations, and repetitive behavior. In addition, Cntnap2−/− mice show reduced cortical neuronal synchrony and develop spontaneous seizures throughout adulthood. As suggested for other forms of ASDs, this phenotype could reflect some form of synaptic dysregulation. However, the impact of lifelong deletion of CNTNAP2 on synaptic function in the brain remains unknown. To address this issue, we have assessed excitatory and inhibitory synaptic transmission in acute hippocampal slices of Cntnap2−/− mice. We found that although excitatory transmission was mostly normal, inhibition onto CA1 pyramidal cells was altered in Cntnap2−/− mice. Specifically, putative perisomatic, but not dendritic, evoked IPSCs were significantly reduced in these mice. Whereas both inhibitory short-term plasticity and miniature IPSC frequency and amplitude were normal in Cntnap2−/− mice, we found an unexpected increase in the frequency of spontaneous, action potential-driven IPSCs. Altered hippocampal inhibition could account for the behavioral phenotype Cntnap2−/− mice present later in life. Overall, our findings that Cntnap2 deletion selectively impairs perisomatic hippocampal inhibition while sparing excitation provide additional support for synaptic dysfunction as a common mechanism underlying ASDs. SIGNIFICANCE STATEMENT The gene encoding contactin-associated protein-like 2 (CNTNAP2) stands out as one the first genes to have both rare and common mutations strongly associated with ASDs. Whereas Cntnap2−/− mice appear to recapitulate core behavioral endophenotypes (e.g., social impairment, language deficits, and repetitive behavior), the cellular and circuit bases of this phenotype remain poorly understood. Here, we report

  20. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  1. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  2. Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation.

    PubMed

    Castelli, Loretta; Nigro, Maximiliano J; Magistretti, Jacopo

    2007-08-13

    The resurgent Na(+) current (I(NaR)) is a component of neuronal voltage-dependent Na(+) currents that is activated by repolarization and is believed to result from an atypical path of Na(+)-channel recovery from inactivation. So far, I(NaR) has only been identified in a small number of central neuronal populations in the cerebellum, diencephalon, and brainstem. The possible presence and roles of I(NaR) in neurons of the cerebral cortex and temporal-lobe memory system are still uncharacterized. In this study whole-cell, patch-clamp experiments were carried out in acute rat brain slices to investigate I(NaR) expression and properties in several neuronal populations of the parahippocampal region and hippocampal formation. Specifically, we examined pyramidal neurons of perirhinal cortex areas 36 and 35 (layers II and V); neurons of superficial and deep layers of medial entorhinal cortex (mEC); dentate gyrus (DG) granule cells; and pyramidal cells of the CA3 and CA1 hippocampal fields. I(NaR) was found to be thoroughly expressed in parahippocampal cortices. The most consistent and prominent I(NaR) expression was observed in mEC layer-II cells. A vast majority of areas 36 and 35 neurons (both in layers II and V) and mEC layer-III and -V neurons were also endowed with I(NaR), although at lower amplitude levels. I(NaR) was expressed by approximately 60% of DG granule cells and approximately 35% of CA1 pyramidal cells of the ventral hippocampus, whereas it was never observed in CA3 neurons (both in the ventral and dorsal hippocampus) and CA1 neurons of the dorsal hippocampus. The biophysical properties of I(NaR) were very similar in all of the neuronal types in which the current was observed, with a peak in the current-voltage relationship at -35/-40 mV. Our results show that the parahippocampal region and part of the hippocampal formation are sites of major I(NaR) expression, and provide a new basis for further studies on the molecular correlates of I(NaR).

  3. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly

  4. Involvement of IP3 Receptors in LTP and LTD Induction in Guinea Pig Hippocampal CA1 Neurons

    ERIC Educational Resources Information Center

    Taufiq, Ahmed Mostafa; Fujii, Satoshi; Yamazaki, Yoshihiko; Sasaki, Hiroshi; Kaneko, Kenya; Li, Jianmin; Kato, Hiroshi; Mikoshiba, Katsuhiko

    2005-01-01

    The role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) in long-term potentiation (LTP) and long-term depression (LTD) was studied in CA1 neurons in guinea pig hippocampal slices. In standard solution, short tetanic stimulation consisting of 15 pulses at 100 Hz induced LTP, while three short trains of low-frequency stimulation (LFS; 200…

  5. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.

    PubMed

    Rambani, Komal; Vukasinovic, Jelena; Glezer, Ari; Potter, Steve M

    2009-06-15

    Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. Although thin organotypic brain slice cultures can be successfully cultured using a well-established roller-tube method (a monolayer organotypic culture) (Gahwiler B H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981; 4: 329-342) or a membrane-insert method (up to 1-4 cell layers, <150 microm) (Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of neural tissue. J Neurosci Methods 1991; 37: 173-182), these methods fail to support thick tissue preparations. A few perfusion methods (using submerged or interface/microfluidic chambers) have been reported to enhance the longevity (up to few hours) of acute slice preparations (up to 600 microm thick) (Hass HL, Schaerer B, Vosmansky M. A simple perfusion chamber for study of nervous tissue slices in vitro. J Neurosci Methods 1979; 1: 323-325; Nicoll RA, Alger BE. A simple chamber for recording from submerged brain slices. J Neurosci Methods 1981; 4: 153-156; Passeraub PA, Almeida AC, Thakor NV. Design, microfabrication and characterization of a microfluidic chamber for the perfusion of brain tissue slices. J Biomed Dev 2003; 5: 147-155). Here, we report a unique interstitial microfluidic perfusion technique to culture thick (700 microm) organotypic brain slices. The design of the custom-made microperfusion chamber facilitates laminar, interstitial perfusion of oxygenated nutrient medium throughout the tissue thickness with concomitant removal of depleted medium

  6. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  7. Effects of Low Frequency Stimulation on Spontaneous Inhibitory and Excitatory Post-Synaptic Currents in Hippocampal CA1 Pyramidal Cells of Kindled Rats

    PubMed Central

    Ghafouri, Samireh; Fathollahi, Yaghoub; Semnanian, Saeed; Shojaei, Amir; Mirnajafi-Zadeh, Javad

    2017-01-01

    Objective Low-frequency stimulation (LFS) exerts suppressive effects in kindled animals. It is believed that overstimulated glutamatergic and decreased GABAergic transmission have long been associated with seizure activity. In this study, we investigated the effect of electrical LFS on different parameters of spontaneous excitatory and inhibitory post-synaptic currents (sEPSCs and sIPSCs) in hippocampal CA1 pyramidal cells in kindled animals. Materials and Methods In this experimental study, rats were kindled by electrical stimulation of the hippocampal CA1 area in a semi-rapid manner (12 stimulations/day). The animals were considered fully kindled when they showed stage 5 seizures on three consecutive days. One group of animals received LFS 4 times at 30 seconds, 6 hours, 18 and 24 hours following the last kindling stimulation. Each LFS consisted of 4 packages at 5 minutes intervals. Each package of LFS consisted of 200 pulses at 1 Hz and each monophasic square wave pulse duration was 0.1 millisecond. At 2-3 hours post-LFS, acute hippocampal slices were prepared and a whole cell patch clamp recording was performed in all animals to measure the different parameters of sEPSCs and sIPSCs. Results In kindled animals, the inter-event interval (as an index of occurrence) of sEPSCs decreased, whereas sIPSC increased. In addition, the decay time constant of sIPSCs as an index of the duration of its activity decreased compared to the control group. There was no significant difference in other parameters between the kindled and control groups. Application of LFS in kindled animals prevented the observed changes. There was no significant difference between the measured parameters in kindled+LFS and control groups. Conclusion LFS application may prevent seizure-induced increase in the occurrence of sEPSCs and seizure-induced decrease in occurrence and activity duration of sIPSCs. PMID:28042539

  8. Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3.

    PubMed

    Axmacher, Nikolai; Draguhn, Andreas

    2004-02-09

    Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of GABAA receptors. The effect is present for both stimulus-induced and miniature IPSCs, indicating a reduction in the probability of vesicular release by presynaptic, action-potential-independent mechanisms. We conclude that the release of GABA from hippocampal CA3 interneurons is regulated by a negative feedback via presynaptic ionotropic GABA autoreceptors.

  9. Culturing rat hippocampal neurons.

    PubMed

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  10. Radiation sterilization and identification of gizzard slices

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Fu, C.; Jiang, W.; Yao, D.; Zhao, K.; Zhang, Y.

    1998-06-01

    An orthogonal test of 4 factors of radiation dose, storage temperature, storage time, and sanitation of cutting places was carried out to optimize the conditions for disinfection of gizzard slices. In the optimized condition, both the sanitary quality and the shelf-life of gizzard slices were improved. To identify irradiated gizzard slices, the sensory change, and the levels of water-soluble nitrogen, amino acid, total volatile basic nitrogen, peroxide value, vitamin C consumption and KMnO 4 consumption were determinated. No significant change was observed except for the color which was light brown on the surface of irradiated slices.

  11. Bcl-2 overexpression does not promote axonal regeneration of the entorhino-hippocampal connections in vitro after axotomy.

    PubMed

    Solé, Marta; Fontana, Xavier; Gavín, Rosalina; Soriano, Eduardo; del Río, José Antonio

    2004-09-10

    CNS lesions trigger cell death in injured neurons and glia. Genes of the bcl-2 family play crucial roles in the control of apoptosis and cell survival in the CNS. Recently, it has been suggested that overexpression of bcl-2 induces axonal elongation and regeneration in vitro and in vivo. Here, we analyze the regenerative potential of bcl-2 overexpression in the axotomized entorhino-hippocampal connection in organotypic slice cocultures. Our results show that in slice cocultures from bcl-2-overexpressing mice, there is a decrease in the number of dead neurons in the entorhinal cortex. In addition, axonal regeneration is not enhanced after axotomy. Thus, in the entorhino-hippocampal formation in vitro, bcl-2 overexpression rescues neurons from axotomy-induced cell death but fails to enhance the regeneration of the entorhino-hippocampal connection.

  12. Ischemic preconditioning decreases intracellular zinc accumulation induced by oxygen-glucose deprivation in gerbil hippocampal CA1 neurons.

    PubMed

    Miyawaki, Takahiro; Yokota, Hidenori; Oguro, Keiji; Kato, Kengo; Shimazaki, Kuniko

    2004-05-27

    In normal gerbils, intracellular zinc ions ([Zn2+]i) and calcium ions ([Ca2+]i) accumulate in hippocampal CA1 neurons after global ischemia. We examined whether ischemic preconditioning modifies these changes in gerbil hippocampal slices. In normal slices, large increases in [Zn2+]i and [Ca2+]i were observed in the stratum radiatum of the CA1 area after oxygen-glucose deprivation. In preconditioned slices, there were significantly decreased peak levels of [Zn2+]i and [Ca2+]i in CA1. However, there were no differences in the peak levels of these ions in CA3 and dentate gyrus. These results suggest that modified [Zn2+]i and [Ca2+]i accumulation after an ischemic insult might be important for the mechanisms of ischemic tolerance induced by preconditioning.

  13. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline

    PubMed Central

    Cho, Kyung-Ok; Lybrand, Zane R.; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G.; Birnbaum, Shari G.; Scharfman, Helen E.; Eisch, Amelia J.; Hsieh, Jenny

    2015-01-01

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. PMID:25808087

  14. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    PubMed

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-03-26

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.

  15. A slice of the universe

    NASA Technical Reports Server (NTRS)

    De Lapparent, V.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    A preliminary discussion is presented of recent results obtained as part of the extension of the Center of Astrophysics redshift survey. Several features of the results are striking. The distribution of galaxies in the sample, which contains 1100 galaxies in a 6 deg x 117 deg strip going through the Coma cluster, looks like a slice through the suds in the kitchen sink. It appears that the galaxies are on the surfaces of bubble-like structures with diameters of 25-50/h-Mpc. The largest bubble in the survey has a diameter comparable with the most recent estimates of the diameter of the void in Bootes. This topology poses serious challenges for current models for the formation of large-scale structure. The best available model for generating these structures is the explosive galaxy formation theory of Ostriker and Cowie (1981).

  16. Electrohydrodynamic Drying of Carrot Slices

    PubMed Central

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  17. Electrohydrodynamic drying of carrot slices.

    PubMed

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.

  18. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo

    PubMed Central

    Weth-Malsch, Daniela; Langeslag, Michiel; Beroukas, Dimitra; Zangrandi, Luca; Kastenberger, Iris; Quarta, Serena; Malsch, Philipp; Kalpachidou, Theodora; Schwarzer, Christoph; Proia, Richard L.; Haberberger, Rainer V.; Kress, Michaela

    2016-01-01

    Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus. PMID:27872583

  19. Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment.

    PubMed

    Chepkova, Aisa N; Sergeeva, Olga A; Haas, Helmut L

    2006-09-01

    Hyperammonemia, a major pathophysiological factor in hepatic encephalopathy, impairs long-term potentiation (LTP) of synaptic transmission, a cellular model of learning and memory, in the hippocampus. We have now studied the protective action of taurine on this paradigm by analyzing LTP characteristics in mouse hippocampal slices treated with ammonium chloride (1 mM) in the presence of taurine (1 mM), an ubiquitous osmolyte, antioxidant, and neuromodulator, as well as other substances with such properties. Ammonia-treated slices displayed a significant impairment of LTP maintenance. Taurine and the mitochondrial enhancer l-carnitine, but not the antioxidants (ascorbate, carnosine, and the novel compound GVS-111) or the osmolyte betaine prevented this impairment. The protective effect of taurine was preserved under the blockade of inhibitory GABA(A) and glycine receptors. It is suggested that taurine may rescue the mechanisms of hippocampal synaptic plasticity by improving mitochondrial function under hyperammonemic conditions.

  20. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  1. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory.

    PubMed

    Duffy, S N; Craddock, K J; Abel, T; Nguyen, P V

    2001-01-01

    cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.

  2. Acutely applied MDMA enhances long-term potentiation in rat hippocampus involving D1/D5 and 5-HT2 receptors through a polysynaptic mechanism.

    PubMed

    Rozas, C; Loyola, S; Ugarte, G; Zeise, M L; Reyes-Parada, M; Pancetti, F; Rojas, P; Morales, B

    2012-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a drug of abuse that induces learning and memory deficit. However, there are no experimental data that correlate the behavioral evidence with models of synaptic plasticity such as long-term potentiation (LTP) or long-term depression (LTD). Using field potential recordings in rat hippocampal slices of young rats, we found that acute application of MDMA enhances LTP in CA3-CA1 synapses without affecting LTD. Using specific antagonists and paired-pulse facilitation protocols we observed that the MDMA-dependent increase of LTP involves presynaptic 5-HT₂ serotonin receptors and postsynaptic D1/D5 dopamine receptors. In addition, the inhibition of PKA suppresses the MDMA-dependent increase in LTP, suggesting that dopamine receptor agonism activates cAMP-dependent intracellular pathways. We propose that MDMA exerts its LTP-altering effect involving a polysynaptic interaction between serotonergic and dopaminergic systems in hippocampal synapses. Our results are compatible with the view that the alterations in hippocampal LTP could be responsible for MDMA-dependent cognitive deficits observed in humans and animals.

  3. Neuronal MHC Class I Molecules are Involved in Excitatory Synaptic Transmission at the Hippocampal Mossy Fiber Synapses of Marmoset Monkeys

    PubMed Central

    Zhang, Mingyue; Schlumbohm, Christina; Mätz-Rensing, Kerstin; Uchanska-Ziegler, Barbara; Flügge, Gabriele; Zhang, Weiqi; Walter, Lutz; Fuchs, Eberhard

    2010-01-01

    Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber–CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species. Electronic supplementary material The online version of this article (doi:10.1007/s10571-010-9510-3) contains supplementary material, which is available to authorized users. PMID:20232136

  4. Changes in the physiology of CA1 hippocampal pyramidal neurons in pre-plaque CRND8 mice

    PubMed Central

    Wykes, Robert; Kalmbach, Abigail; Eliava, Marina; Waters, Jack

    2011-01-01

    Amyloid-β protein (Aβ) is thought to play a central pathogenic role in Alzheimer’s disease. Aβ can impair synaptic transmission, but little is known about the effects of Aβ on intrinsic cellular properties. Here we compared the cellular properties of CA1 hippocampal pyramidal neurons in acute slices from pre-plaque transgenic (Tg+) CRND8 mice and wild-type (Tg−) littermates. CA1 pyramidal neurons from Tg+ mice had narrower action potentials with faster decays than neurons from Tg− littermates. Action potential-evoked intracellular Ca2+ transients in the apical dendrite were smaller in Tg+ than Tg− neurons. Resting calcium concentration was higher in Tg+ than Tg− neurons. The difference in action potential waveform was eliminated by low concentrations of tetraethylammonium ions and of 4-aminopyridine, implicating a fast delayed-rectifier potassium current. Consistent with this suggestion, there was a small increase in immunoreactivity for Kv3.1b in stratum radiatum in Tg+ mice. These changes in intrinsic properties may affect information flow through the hippocampus and contribute to the behavioral deficits observed in mouse models and patients with early-stage Alzheimer’s disease. PMID:21676499

  5. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice.

    PubMed

    Calfa, Gaston; Li, Wei; Rutherford, John M; Pozzo-Miller, Lucas

    2015-02-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multiunit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2(-/y) ). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2(-/y) slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2(-/y) neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAA Rs in the CA3 cell body layer of Mecp2(-/y) mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2(-/y) mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2(-/y) neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2(-/y) mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2(-/y) mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a

  6. Excitation/Inhibition Imbalance and Impaired Synaptic Inhibition in Hippocampal Area CA3 of Mecp2 Knockout Mice

    PubMed Central

    Calfa, Gaston; Li, Wei; Rutherford, John M.; Pozzo-Miller, Lucas

    2014-01-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multi-unit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2-/y). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2-/y slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2-/y neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAARs in the CA3 cell body layer of Mecp2-/y mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2-/y mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2-/y neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2-/y mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2-/y mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a hyperactive

  7. The Role of Chloride Transport in Postsynaptic Inhibition of Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Misgeld, U.; Deisz, R. A.; Dodt, H. U.; Lux, H. D.

    1986-06-01

    Hippocampal inhibitory postsynaptic potentials are depolarizing in granule cells but hyperpolarizing in CA3 neurons because the reversal potentials and membrane potentials of these cells differ. Here the hippocampal slice preparation was used to investigate the role of chloride transport in these inhibitory responses. In both cell types, increasing the intracellular chloride concentration by injection shifted the reversal potential of these responses in a positive direction, and blocking the outward transport of chloride with furosemide slowed their recovery from the injection. In addition, hyperpolarizing and depolarizing inhibitory responses and the hyperpolarizing and depolarizing responses to the inhibitory neurotransmitter γ - aminobutyric acid decreased in the presence of furosemide. These effects of furosemide suggest that the internal chloride activity of an individual hippocampal neuron is regulated by two transport processes, one that accumulates chloride and one that extrudes chloride.

  8. Priming of hippocampal population bursts by individual perisomatic-targeting interneurons.

    PubMed

    Ellender, Tommas J; Nissen, Wiebke; Colgin, Laura L; Mann, Edward O; Paulsen, Ole

    2010-04-28

    Hippocampal population bursts ("sharp wave-ripples") occur during rest and slow-wave sleep and are thought to be important for memory consolidation. The cellular mechanisms involved are incompletely understood. Here we investigated the cellular mechanisms underlying the initiation of sharp waves using a hippocampal slice model. To this end, we used a combination of field recordings with planar multielectrode arrays and whole-cell patch-clamp recordings of individual anatomically identified pyramidal neurons and interneurons. We found that GABA(A) receptor-mediated inhibition is necessary for sharp wave generation. Moreover, the activity of individual perisomatic-targeting interneurons can both suppress, and subsequently enhance, the local generation of sharp waves. Finally, we show that this is achieved by the tight control of local excitation and inhibition by perisomatic-targeting interneurons. These results suggest that perisomatic-targeting interneurons assist in selecting the subset of pyramidal neurons that initiate each hippocampal sharp wave-ripple.

  9. AROUSAL FROM SLICES TO HUMANS

    PubMed Central

    Kezunovic, N.; Simon, C.; Hyde, J.; Smith, K.; Beck, P.; Odle, A.

    2012-01-01

    Most psychiatric and neurological disorders exhibit sleep disorders, and in some cases presage the disease. Study of the control of sleep and waking has the potential for making a major impact on a number of disorders, making translational neuroscience research on this area critical. One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which is the cholinergic arm of the RAS, and projects to the thalamus to trigger thalamocortical rhythms and to the brainstem to modulate muscle tone and locomotion. We developed a research program using brainstem slices containing the PPN to tell us about the cellular and molecular organization of this region. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, preparation in freely moving rats. This allows the study of PPN cellular and molecular mechanisms at the level of the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study processes detected in vitro, confirmed in the whole animal, and tested in humans. This translational research program led to the discovery of a novel mechanism of sleep-wake control, pointing the way to a number of new clinical applications in the development of novel stimulants and anesthetics. PMID:22639732

  10. Increased extracellular release of hippocampal NE is associated with tetanization of the medial perforant pathway in the freely moving adult male rat.

    PubMed

    Bronzino, J D; Kehoe, P; Mallinson, K; Fortin, D A

    2001-01-01

    The induction of long-term potentiation (LTP) within the dentate gyrus of the hippocampal formation is modulated by many afferent influences from a number of subcortical structures known to be intimately involved in hippocampal-dependent learning and memory. It has been demonstrated in slice and anesthetized preparations that norepinephrine (NE) is one of these major neuromodulators involved in the induction of LTP. However, the majority of these studies have not been conducted in the freely moving animal. Recently, we developed surgical procedures and instrumentation techniques to simultaneously record electrophysiological and neurochemical data from the hippocampal formation. The present study uses these techniques to examine the underlying neurochemical changes in the hippocampus associated with the induction of hippocampal dentate LTP in the freely moving adult rat. These findings establish baseline levels of NE that can be used to evaluate the impact of various tetanization paradigms as well as the effect of a variety of insults on hippocampal plasticity.

  11. Nearly Automatic Segmentation of Hippocampal Subfields in In Vivo Focal T2-Weighted MRI

    PubMed Central

    Yushkevich, Paul A.; Wang, Hongzhi; Pluta, John; Das, Sandhitsu R.; Craige, Caryne; Avants, Brian B.; Weiner, Michael W.; Mueller, Susanne

    2010-01-01

    We present and evaluate a new method for automatically labeling the subfields of the hippocampal formation in focal 0.4×0.5×2.0mm3 resolution T2-weighted magnetic resonance images that can be acquired in the routine clinical setting with under 5 min scan time. The method combines multi-atlas segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into hippocampal ‘head’, ‘body’ and ‘tail’ slices is the only input required from the user, necessitated by the nature of the underlying segmentation protocol. Dice overlap between manual and automatic segmentation is above 0.87 for the larger subfields, CA1 and dentate gyrus, and is competitive with the best results for whole-hippocampus segmentation in the literature. Intraclass correlation of volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters. These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies of memory and neurodegenerative disease. PMID:20600984

  12. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model.

    PubMed

    Gong, Xin-Wei; Li, Jing-Bo; Lu, Qin-Chi; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-01-01

    Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.

  13. Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons

    PubMed Central

    2010-01-01

    Background Soluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. Results We report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components. Conclusion These results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation. PMID:20205789

  14. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    PubMed

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism.

  15. Unusually severe food poisoning from vanilla slices.

    PubMed Central

    Fenton, P. A.; Dobson, K. W.; Eyre, A.; McKendrick, M. W.

    1984-01-01

    Thirty six people suffered from severe vomiting and diarrhoea 15 min to 3 h after eating vanilla slices from the same bakery. Five patients were admitted to hospital, and one developed unusual skin lesions after admission. Staphylococcus aureus was isolated in large numbers from vanilla slices of the same batch as those giving rise to symptoms, and from five faecal specimens obtained from affected persons. Bacillus cereus and Bacillus subtilis were also isolated from the slices. Unbaked custard provides an ideal environment for bacterial multiplication, especially when (as on this occasion) the ambient temperature is persistently high. PMID:6438231

  16. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation.

    PubMed

    Szeszko, P R; Lipsky, R; Mentschel, C; Robinson, D; Gunduz-Bruce, H; Sevy, S; Ashtari, M; Napolitano, B; Bilder, R M; Kane, J M; Goldman, D; Malhotra, A K

    2005-07-01

    Magnetic resonance (MR) imaging studies have identified hippocampal structural alterations in the pathogenesis of schizophrenia. Brain-derived neurotrophic factor (BDNF) is one of the neurotrophins that is widely expressed in the hippocampal formation and has been implicated in the neurobiology of schizophrenia. Polymorphisms in the BDNF gene may therefore confer risk for schizophrenia through hippocampal pathogenesis and/or making the hippocampus more susceptible to environmental insults. In this study, we investigated whether val66met, a functional and abundant missense polymorphism in the coding region of the BDNF gene, was associated with the volume of the hippocampal formation in 19 patients with first-episode schizophrenia and 25 healthy volunteers. A total of 124 contiguous T1-weighted coronal MR images (slice thickness=1.5 mm) were acquired through the whole head using a 3D Fast SPGR IR Prep sequence on a 1.5 T GE imaging system. Volumes of the right and left hippocampal formation were measured manually by an operator blind to group status and genotype. All participants were genotyped for the BDNF val66met locus. Mixed model analyses revealed a main effect of BDNF val66met genotype such that in the combined sample of patients and healthy volunteers, val/val homozygotes (N=27) had larger volumes of the hippocampal formation compared to val/met heterozygotes (N=17). In separate analyses by group, however, val66met genotype accounted for a greater proportion of the variance in the volume of the hippocampal formation in patients compared to healthy volunteers. These findings implicate genetic involvement of BDNF in variation of human hippocampal volume and suggest that this effect may be greater among patients compared to healthy volunteers.

  17. Overview of a new slicing method: Fixed Abrasive Slicing Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Smith, M. B.; Khattak, C. P.

    1982-01-01

    The fixed abrasive slicing technique (FAST) was developed to slice silicon ingots more effectively. It was demonstrated that 25 wafers/cm can be sliced from 10 cm diameter and 19 wafers/cm from 15 cm diameter ingots. This was achieved with a combination of machine development and wire-blade development programs. Correlation was established between cutting effectiveness and high surface speeds. A high speed slicer was designed and fabricated for FAST slicing. Wirepack life of slicing three 10 cm diameter ingots was established. Electroforming techniques were developed to control widths and prolong life of wire-blades. Economic analysis indicates that the projected add-on price of FAST slicing is compatible with the DOE price allocation to meet the 1986 cost goals.

  18. Field experience with various slicing methods

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.

    1982-01-01

    Wafer slicing using internal diameter (ID) saw, multiblade slurry (MBS) saw and multiwire slurry (MWS) saw techniques were evaluated. Wafer parameters such as bow, taper, and roughness which may not be important factors for solar cell fabrication, were considerably better for ID saw than those of the MBS and MWS saw. Analysis of add-on slicing cost indicated that machine productivity seems to be a major limiting factor for ID saw, while expendible material costs are a major factor for both MBS and MWS saw. Slicing experience indicated that the most important factors controling final wafer cost are: (1) silicon cost (wafer thickness + kerf loss); (2) add-on slicing cost, and (3) mechanical yield. There is a very strong interaction between these parameters, suggesting a necessity of optimization of these parameters.

  19. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  20. Test and Evaluation of Program Slicing Tools

    DTIC Science & Technology

    2012-12-19

    and engineering databases. Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the faculty at the University of Texas and the...slice. C. Existing Tools A thesis (Lim & Ben Kahia, 2011) was done at the Naval Postgraduate School (NPS) in which the students tried to find a...reduction of testing effort (Unpublished master’s thesis ). Naval Postgraduate School, Monterey, CA. Weiser, M. (1984). Program slicing. IEEE

  1. State-dependent variation in the inhibitory effect of (D-Ala sup 2 , D-Leu sup 5 )-enkephalin on hippocampal serotonin release in ground squirrels

    SciTech Connect

    Kramarova, L.I.; Lee, T.F.; Cui, Y.; Wang, L.C.H. )

    1990-01-01

    Accumulated evidence has suggested that increased endogenous opioid activities may facilitate the onset of hibernation either directly or possibly through modulation of other neurotransmitter systems. The seasonal change of (D-Ala{sup 2}, D-Leu{sup 5})-enkephalin (DADLE), a {delta} receptor agonist, in modulating K{sup +}-induced ({sup 3}H)-5-hydroxytryptamine (5-HT) release from the hippocampal and hypothalamic slices of euthermic and hibernating Richardsons' ground squirrels was therefore investigated. DADLE had no effect on 5-HT release in the hypothalamic slices but elicited a dose-related inhibition on ({sup 3}H)-5-HT release from the hippocampal slices of the euthermic ground squirrel. The inhibitory effect of DADLE was completely reversed by naloxone, but not by tetrodotoxin. In contrast, DADLE failed to alter the K{sup +}-induced 5-HT release from the hippocampal slices of the hibernating ground squirrel. This state-dependent reduction in responsiveness to an opioid is consistent with the hypothesis that enhanced endogenous opioid activity in the hibernating phase could lead to down regulation of the opioid receptors and minimize its inhibition on hippocampal serotonergic activity. A high 5-HT activity would inhibit midbrain reticular activating system indirectly through non-serotonergic fibers, which in turn facilitate the onset or maintenance of hibernation.

  2. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    ERIC Educational Resources Information Center

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  3. Organotypic slice culture of embryonic brain tissue.

    PubMed

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  4. HEPES prevents edema in rat brain slices.

    PubMed

    MacGregor, D G; Chesler, M; Rice, M E

    2001-05-11

    Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.

  5. Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor.

    PubMed

    Scharfman, Helen E; Mercurio, Thomas C; Goodman, Jeffrey H; Wilson, Marlene A; MacLusky, Neil J

    2003-12-17

    To test the hypothesis that induction of BDNF may contribute to changes in hippocampal excitability occurring during the female reproductive cycle, we examined the distribution of BDNF immunoreactivity and changes in CA1 and CA3 electrophysiology across the estrous cycle in rats. Hippocampal BDNF immunoreactivity increased on the day of proestrus as well as on the following morning (estrus), relative to metestrus or ovariectomized animals. Changes in immunoreactivity were clearest in mossy fiber axons of dentate gyrus granule cells, which contain the highest concentration of BDNF. Increased immunoreactivity was also apparent in the neuropil-containing dendrites of CA1 and CA3 neurons. Electrophysiological recordings in hippocampal slices showed robust cycle-dependent differences. Evoked responses of CA1 neurons to Schaffer collateral stimulation changed over the cycle, with larger maximum responses at both proestrus and estrus relative to metestrus. In area CA3, repetitive hilar stimuli frequently evoked multiple population spikes at proestrus and estrus but only rarely at other cycle stages, and never in slices of ovariectomized rats. Hyperexcitability in area CA3 at proestrus was blocked by exposure to the high-affinity neurotrophin receptor antagonist K252a, or an antagonist of the alpha7 nicotinic cholinergic receptor, whereas it was induced at metestrus by the addition of BDNF to hippocampal slices. These studies suggest that hippocampal BDNF levels change across the estrous cycle, accompanied by neurophysiological responses that resemble the effects of BDNF treatment. An estrogen-induced interaction of BDNF and alpha7 nicotinic receptors on mossy fibers seems responsible for estrous cycle changes in area CA3. Periovulatory changes in hippocampal function may, thus, involve estrogen-induced increases in BDNF expression.

  6. Deep Sequencing and High-Resolution Imaging Reveal Compartment-Specific Localization of Bdnf mRNA in Hippocampal Neurons

    PubMed Central

    Will, Tristan J.; Tushev, Georgi; Kochen, Lisa; Nassim-Assir, Belquis; Cajigas, Ivan J.; tom Dieck, Susanne; Schuman, Erin M.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a small protein of the neurotrophin family that regulates various brain functions. Although much is known about how its transcription is regulated, the abundance of endogenous BDNF mRNA and its subcellular localization pattern are matters of debate. We used next-generation sequencing and high-resolution in situ hybridization in the rat hippocampus to reexamine this question. We performed 3′ end sequencing on rat hippocampal slices and detected two isoforms of Bdnf containing either a short or a long 3′ untranslated region (3′UTR). Most of the Bdnf transcripts contained the short 3′UTR isoform and were present in low amounts relative to other neuronal transcripts. Bdnf mRNA was present in the somatic compartment of rat hippocampal slices or the somata of cultured rat hippocampal neurons but was rarely detected in the dendritic processes. Pharmacological stimulation of hippocampal neurons induced Bdnf expression but did not change the ratio of Bdnf isoform abundance. The findings indicate that endogenous Bdnf mRNA, although weakly abundant, is primarily localized to the somatic compartment of hippocampal neurons. Both Bdnf mRNA isoforms have shorter half-lives compared with other neuronal mRNAs. Furthermore, the findings show that using complementary high-resolution techniques can provide sensitive measures of endogenous transcript abundance. PMID:24345682

  7. Culturing thick brain slices: An interstitial 3D microperfusion system for enhanced viability

    PubMed Central

    Rambani, Komal; Vukasinovic, Jelena; Glezer, Ari; Potter, Steve M.

    2009-01-01

    Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. Although thin organotypic brain slice cultures can be successfully cultured using a well established roller tube method (a monolayer organotypic culture) (Gahwiler B H, 1981) or a membrane insert method (up to 1–4 cell layers, <150μm)(Stoppini L et al., 1991), these methods fail to support thick tissue preparations. A few perfusion methods (using submerged or interface/microfluidic chambers) have been reported to enhance the longevity (up to few hours) of acute slice preparations (up to 600μm thick) (Hass H L et al., 1979; Nicoll R A and Alger B E, 1981; Passeraub P A et al., 2003). Here, we report a unique interstitial microfluidic perfusion technique to culture thick (700μm) organotypic brain slices. The design of the custom-made micro-perfusion chamber facilitates laminar, interstitial perfusion of oxygenated nutrient medium throughout the tissue thickness with concomitant removal of depleted medium and catabolites. We examined the utility of this perfusion method to enhance the viability of the thick organotypic brain slice cultures after 2 days and 5 days in vitro (DIV). We investigated the range of amenable flow rates that enhance the viability of 700μm thick organotypic brain slices compared to the unperfused control cultures. Our perfusion method allows up to 84.6% viability (P<0.01) and up to 700μm thickness, even after 5 DIV. Our results also confirm that these cultures are functionally active and have their in vivo cytoarchitecture

  8. Recovery of Syrian hamster hippocampal signaling following its depression during oxygen-glucose deprivation is enhanced by cold temperatures and by hibernation.

    PubMed

    Mikhailova, Alexandra; Mack, Jacob; Vitagliano, Nicholas; Hamilton, Jock S; Horowitz, John M; Horwitz, Barbara A

    2016-05-16

    Signal transmission over a hippocampal network of CA3 and CA1 neurons in Syrian hamsters (Mesocricetus auratus), facultative hibernators, has not been fully characterized in response to oxygen-glucose deprivation (OGD). We hypothesized that during OGD, hippocampal signal transmission fails first at the synapse between CA3 and CA1 pyramidal neurons and that recovery of signal processing following OGD is more robust in hippocampal slices at cold temperature, from hamsters vs. rats, and from hibernating vs. non-hibernating hamsters. To test these hypotheses, we recorded fEPSPs and population spikes of CA1 neurons at 25°C, 30°C, and 35°C in 400μm slices over a 15min control period with the slice in oxygenated aCSF containing glucose (control solution), a 10min treatment period (OGD insult) where oxygen was replaced by nitrogen in aCSF lacking glucose, and a 30min recovery period with the slice in the control solution. The initial site of transmission failure during OGD occurred at the CA3-CA1 synapse, and recovery of signal transmission was at least, if not more (depending on temperature), complete in slices from hibernating vs. non-hibernating hamsters, and from non-hibernating hamsters vs. rats. Thus, hamster neuroprotective mechanisms supporting functional recovery were enhanced by cold temperatures and by hibernation.

  9. Thin layer drying of tomato slices.

    PubMed

    Das Purkayastha, Manashi; Nath, Amit; Deka, Bidyut Chandra; Mahanta, Charu Lata

    2013-08-01

    The hot air convective drying characteristics of blanched tomato (Lycopersicon esculantum L.) slices have been investigated. Drying experiments were carried out at four different temperatures (50, 60, 65 and 70 °C). The effect of drying temperatures on the drying behavior of the tomato slices was evaluated. All drying experiments had only falling rate period. The average effective diffusivity values varied from 0.5453 × 10(-9) to 2.3871 × 10(-9) m(2)/s over the temperature range studied and the activation energy was estimated to be 61.004 kJ/mol. In order to select a suitable form of the drying curve, six different thin layer drying models (Henderson-Pabis, Page, Diamante et al., Wang and Singh, Logarithmic and Newton models) were fitted to the experimental data. The goodness of fit tests indicated that the Logarithmic model gave the best fit to experimental results, which was closely followed by the Henderson-Pabis model. The influence of varied drying temperatures on quality attributes of the tomato slices viz. Hunter color parameters, ascorbic acid, lycopene, titratable acidity, total sugars, reducing sugars and sugar/acid ratio of dried slices was also studied. Slices dried at 50 and 60 °C had high amount of total sugars, lycopene, sugar/acid ratio, Hunter L- and a-values. Drying of slices at 50 °C revealed optimum retention of ascorbic acid, sugar/acid ratio and red hue, whereas, drying at higher temperature (65 and 70 °C) resulted in a considerable decrease in nutrients and colour quality of the slices.

  10. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials

    PubMed Central

    Kang, C.; Qiao, Y.; Li, G.; Baechle, K.; Camelliti, P.; Rentschler, S.; Efimov, I. R.

    2016-01-01

    Translation of novel therapies from bench to bedside is hampered by profound disparities between animal and human genetics and physiology. The ability to test for efficacy and cardiotoxicity in a clinically relevant human model system would enable more rapid therapy development. We have developed a preclinical platform for validation of new therapies in human heart tissue using organotypic slices isolated from donor and end-stage failing hearts. A major advantage of the slices when compared with human iPS-derived cardiomyocytes is that native tissue architecture and extracellular matrix are preserved, thereby allowing investigation of multi-cellular physiology in normal or diseased myocardium. To validate this model, we used optical mapping of transmembrane potential and calcium transients. We found that normal human electrophysiology is preserved in slice preparations when compared with intact hearts, including slices obtained from the region of the sinus node. Physiology is maintained in slices during culture, enabling testing the acute and chronic effects of pharmacological, gene, cell, optogenetic, device, and other therapies. This methodology offers a powerful high-throughput platform for assessing the physiological response of the human heart to disease and novel putative therapies. PMID:27356882

  11. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.

    PubMed

    Marty, S; Wehrlé, R; Sotelo, C

    2000-11-01

    Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

  12. Spontaneous rhythmic field potentials of isolated mouse hippocampal-subicular-entorhinal cortices in vitro.

    PubMed

    Wu, C P; Huang, H L; Asl, M Nassiri; He, J W; Gillis, J; Skinner, F K; Zhang, L

    2006-10-15

    The rodent hippocampal circuit is capable of exhibiting in vitro spontaneous rhythmic field potentials (SRFPs) of 1-4 Hz that originate from the CA3 area and spread to the CA1 area. These SRFPs are largely correlated with GABA-A IPSPs in pyramidal neurons and repetitive discharges in inhibitory interneurons. As such, their generation is thought to result from cooperative network activities involving both pyramidal neurons and GABAergic interneurons. Considering that the hippocampus, subiculum and entorhinal cortex function as an integrated system crucial for memory and cognition, it is of interest to know whether similar SRFPs occur in hippocampal output structures (that is, the subiculum and entorhinal cortex), and if so, to understand the cellular basis of these subicular and entorhinal SRFPs as well as their temporal relation to hippocampal SRFPs. We explored these issues in the present study using thick hippocampal-subicular-entorhinal cortical slices prepared from adult mice. SRFPs were found to spread from the CA1 area to the subicular and entorhinal cortical areas. Subicular and entorhinal cortical SRFPs were correlated with mixed IPSPs/EPSPs in local pyramidal neurons, and their generation was dependent upon the activities of GABA-A and AMPA glutamate receptors. In addition, the isolated subicular circuit could elicit SRFPs independent of CA3 inputs. We hypothesize that the SRFPs represent a basal oscillatory activity of the hippocampal-subicular-entorhinal cortices and that the subiculum functions as both a relay and an amplifier, spreading the SRFPs from the hippocampus to the entorhinal cortex.

  13. Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chen, Lin; Huang, Jianpan; Li, Jing; Cai, Shuhui; Cai, Congbo; Chen, Zhong

    2016-08-01

    As a recently emerging method, spatiotemporally encoded (SPEN) magnetic resonance imaging (MRI) has a high robustness to field inhomogeneity and chemical shift effect. It has been broadened from single-slice scanning to multi-slice scanning. In this paper, a novel multi-slice SPEN MRI method was proposed. In this method, the slice-selective dimension was segmented to lower the specific absorption rate (SAR) and improve the image quality. This segmented method, dubbed SeSPEN method, was theoretically analyzed and demonstrated with phantom, lemon and in vivo rat brain experiments. The experimental results were compared with the results obtained from the spin-echo EPI, spin-echo SPEN method and multi-slice global SPEN method proposed by Frydman and coauthors (abbr. GlSPEN method). All the SPEN images were super-resolved reconstructed using deconvolution method. The results indicate that the SeSPEN method retains the advantage of SPEN MRI with respect to resistance to field inhomogeneity and can provide better signal-to-noise ratio than multi-slice GlSPEN MRI technique. The SeSPEN method has comparable SAR to the GlSPEN method while the T1 signal attenuation effect is alleviated. The proposed method will facilitate the multi-slice SPEN MRI to scan more slices within one scan with better image quality.

  14. Comparative Visualization of Ensembles Using Ensemble Surface Slicing

    PubMed Central

    Alabi, Oluwafemi S.; Wu, Xunlei; Harter, Jonathan M.; Phadke, Madhura; Pinto, Lifford; Petersen, Hannah; Bass, Steffen; Keifer, Michael; Zhong, Sharon; Healey, Chris; Taylor, Russell M.

    2012-01-01

    By definition, an ensemble is a set of surfaces or volumes derived from a series of simulations or experiments. Sometimes the series is run with different initial conditions for one parameter to determine parameter sensitivity. The understanding and identification of visual similarities and differences among the shapes of members of an ensemble is an acute and growing challenge for researchers across the physical sciences. More specifically, the task of gaining spatial understanding and identifying similarities and differences between multiple complex geometric data sets simultaneously has proved challenging. This paper proposes a comparison and visualization technique to support the visual study of parameter sensitivity. We present a novel single-image view and sampling technique which we call Ensemble Surface Slicing (ESS). ESS produces a single image that is useful for determining differences and similarities between surfaces simultaneously from several data sets. We demonstrate the usefulness of ESS on two real-world data sets from our collaborators. PMID:23560167

  15. Hippocampal neurogenesis: Learning to remember.

    PubMed

    Lazarov, Orly; Hollands, Carolyn

    2016-01-01

    Alzheimer's disease, the most prevalent form of dementia in the elderly, is characterized by progressive memory loss and cognitive dysfunction. It has become increasingly clear that while neuronal cell loss in the entorhinal cortex and hippocampus occurs in Alzheimer's disease, it is preceded by a long period of deficits in the connectivity of the hippocampal formation that contributes to the vulnerability of these circuits. Hippocampal neurogenesis plays a role in the maintenance and function of the dentate gyrus and hippocampal circuitry. This review will examine the evidence suggesting that hippocampal neurogenesis plays a role in cognitive function that is affected in Alzheimer's disease, will discuss the cognitive assessments used for the detection of Alzheimer's disease in humans and rodent models of familial Alzheimer's disease, and their value for unraveling the mechanism underlying the development of cognitive impairments and dementia.

  16. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    PubMed

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits.

  17. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum.

    PubMed Central

    Tóth, K; Freund, T F; Miles, R

    1997-01-01

    1. Slices were prepared from rat forebrain to include both the septum and the hippocampus in order to examine the effects of septal stimulation on hippocampal inhibitory circuits. 2. Repetitive stimulation of septo-hippocampal fibres caused a maintained decrease in the frequency of spontaneous IPSPs recorded from CA3 pyramidal cells in the presence of antagonists of excitatory amino acid receptors and of muscarine receptors. 3. In records made from pyramidal cells with CsCl-filled electrodes, IPSPs were examined at potentials both more positive and more negative than their reversal potential. Single septal stimuli hyperpolarized pyramidal cells when IPSPs were depolarizing events and depolarized them when IPSPs were hyperpolarizing. The GABAA receptor antagonist picrotoxin abolished the effects of septal stimulation. 4. Activation of septal afferents initiated an IPSP in hippocampal inhibitory cells but not in pyramidal cells. Septal IPSPs had similar kinetics to those initiated by local hippocampal stimulation and could suppress inhibitory cell discharge. 5. In pyramidal cells recorded with potassium acetate-filled electrodes, septal stimuli initiated a depolarization that increased with the driving force for Cl- and that could cause firing. 6. Rhythmic stimulation of septo-hippocampal fibres at 5 Hz initiated, in the hippocampus, a maintained out-of-phase oscillation of pyramidal cell discharge and inhibitory cell firing, as detected by the occurrence of spontaneous IPSPs. 7. These results suggest that GABAergic septo-hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells. This disinhibition could contribute to the transmission of the theta rhythm from the septum to the hippocampus. Images Figure 1 PMID:9147330

  18. Common hippocampal structural and functional changes in migraine

    PubMed Central

    Maleki, Nasim; Becerra, Lino; Brawn, Jennifer; McEwen, Bruce; Burstein, Rami; Borsook, David

    2013-01-01

    The hippocampus is classically involved in memory consolidation, spatial navigation and is involved in the stress response. Migraine is an episodic disorder characterized by intermittent attacks with a number of physiological and emotional stressors associated with or provoking each attack. Given that migraine attacks can be viewed as repeated stressors, alterations in hippocampal function and structure may play an important role in migraine pathophysiology. Using high-resolution magnetic resonance imaging, hippocampal morphometric and functional differences (in response to noxious heat stimulation) were compared in age and gender-matched acute episodic migraineurs with high (HF) versus low (LF) frequency of migraine attacks. Morphometric results were compared with age and gender-matched healthy control (HC) cohort. Significant larger bilateral hippocampal volume was found in LF group relative to the HF and HC groups suggestive of an initial adaptive plasticity that may then become dysfunctional with increased frequency. Functional correlates of greater deactivation (LF > HF) in the same hippocampal regions in response to noxious stimulation was also accompanied by overall reduction in functional connectivity of the hippocampus with other brain regions involved in pain processing in the HF group. The results implicate involvement of hippocampus in the pathophysiology of the migraine. PMID:22760159

  19. Adult hippocampal neurogenesis in natural populations of mammals.

    PubMed

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.

  20. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels

    PubMed Central

    Martina, Marzia; Gorfinkel, Yelena; Halman, Samantha; Lowe, John A; Periyalwar, Pranav; Schmidt, Christopher J; Bergeron, Richard

    2004-01-01

    Long-term potentiation (LTP) in the hippocampal CA1 region requires the activation of NMDA receptors (NMDARs). NMDAR activation in turn requires membrane depolarization as well as the binding of glutamate and its coagonist glycine. Previous pharmacological studies suggest that the glycine transporter type 1 (GlyT1) maintains subsaturating concentrations of glycine at synaptic NMDARs. Antagonists of GlyT1 increase levels of glycine in the synaptic cleft and, like direct glycine site agonists, can augment NMDAR currents and NMDAR-mediated functions such as LTP. In addition, stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. We have used a new potent GlyT1 antagonist, CP-802,079, with whole-cell patch-clamp recordings in acute rat hippocampal slices to determine the effect of GlyT1 blockade on LTP. Reverse microdialysis experiments in the hippocampus of awake, freely moving rats, showed that this drug elevated only the extracellular concentration of glycine. We found that CP-802,079, sarcosine and glycine significantly increased the amplitude of the NMDAR currents and LTP. In contrast, application of higher concentrations of CP-802,079 and glycine slightly reduced NMDAR currents and did not increase LTP. Overall, these data suggest that the level of glycine present in the synaptic cleft tightly regulates the NMDAR activity. This level is kept below the ‘set point’ of the NMDAR internalization priming mechanism by the presence of GlyT1-dependent uptake. PMID:15064326

  1. The G‐protein biased partial κ opioid receptor agonist 6′‐GNTI blocks hippocampal paroxysmal discharges without inducing aversion

    PubMed Central

    Zangrandi, Luca; Burtscher, Johannes; MacKay, James P; Colmers, William F

    2016-01-01

    Background and Purpose With a prevalence of 1–2%, epilepsies belong to the most frequent neurological diseases worldwide. Although antiepileptic drugs are available since several decades, the incidence of patients that are refractory to medication is still over 30%. Antiepileptic effects of κ opioid receptor (κ receptor) agonists have been proposed since the 1980s. However, their clinical use was hampered by dysphoric side effects. Recently, G‐protein biased κ receptor agonists were developed, suggesting reduced aversive effects. Experimental Approach We investigated the effects of the κ receptor agonist U‐50488H and the G‐protein biased partial κ receptor agonist 6′‐GNTI in models of acute seizures and drug‐resistant temporal lobe epilepsy and in the conditioned place avoidance (CPA) test. Moreover, we performed slice electrophysiology to understand the functional mechanisms of 6′‐GNTI. Key Results As previously shown for U‐50488H, 6′‐GNTI markedly increased the threshold for pentylenetetrazole‐induced seizures. All treated mice displayed reduced paroxysmal activity in response to U‐50488H (20 mg·kg−1) or 6′‐GNTI (10–30 nmoles) treatment in the mouse model of intra‐hippocampal injection of kainic acid. Single cell recordings on hippocampal pyramidal cells revealed enhanced inhibitory signalling as potential mechanisms causing the reduction of paroxysmal activity. Effects of 6′‐GNTI were blocked in both seizure models by the κ receptor antagonist 5′‐GNTI. Moreover, 6′‐GNTI did not induce CPA, a measure of aversive effects, while U‐50488H did. Conclusions and Implications Our data provide the proof of principle that anticonvulsant/antiseizure and aversive effects of κ receptor activation can be pharmacologically separated in vivo. PMID:26928671

  2. K(+)-evoked [(3)H]-norepinephrine release in human brain slices from epileptic and non-epileptic patients is differentially modulated by gabapentin and pinacidil.

    PubMed

    Freiman, Thomas M; Surges, Rainer; Kukolja, Juraj; Heinemeyer, Jan; Klar, Maximilian; van Velthoven, Vera; Zentner, Josef

    2006-06-01

    The modulation of K(+)-evoked [(3)H]-norepinephrine ([(3)H]-NE) release by gabapentin (GBP) and pinacidil (PIN), a known K(ATP) agonist, was examined in human brain slices. We compared the pharmacological effects on NE-release in human epileptic neocortex and epileptic hippocampus to non-epileptic neocortex. GBP (100 microM) decreased [(3)H]-NE release by 22% in non-epileptic neocortical slices, whereas this inhibition was absent in slices from epileptic hippocampus and epileptic neocortex. PIN (10 microM) also reduced [(3)H]-NE release by 30% in non-epileptic neocortical slices and only by 5% in epileptic hippocampal slices. The blockade of voltage-gated calcium channels by omega-conotoxins MVIIA and MVIIC (0.1 microM) reduced [(3)H]-NE release in epileptic and non-epileptic neocortical slices to the same extend. The data show a marked reduction in K(+)-evoked [(3)H]-NE release by GBP and PIN in epileptic hippocampus and neocortex, suggesting an alteration of K(ATP) channel function, whereas the effects of the calcium channel modulators omega-conotoxins MVIIA and MVIIC are similar in both epileptic and non-epileptic neocortex.

  3. Ultrashort pulse laser slicing of semiconductor crystal

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Meanwhile, by the convention wire-saw technique, it is difficult to slice off a thin wafer from bulk SiC crystal without the reserving space for cutting. In this study, we have achieved exfoliation of 4H-SiC single crystal by femtosecond laser induced slicing method. By using this, the exfoliated surface with the root-mean-square roughness of 3 μm and the cutting-loss thickness smaller than 30 μm was successfully demonstrated. We have also observed the nanostructure on the exfoliated surface in SiC crystal.

  4. ID slicing and the automated factory

    NASA Technical Reports Server (NTRS)

    Lewandowski, T.

    1982-01-01

    The automation of the slicing system utilizing internal-diameter saws for the production of the silicon wafers used in solar arrays is discussed. It is argued that saw productivity can be increased by reducing silicon waste, decreasing usage of consumables, keeping the saw slicing, and increasing the cutting speed. Several machine enhancements utilizing automatic control are discussed. The need for record keeping to anticipate maintenance operations is noted, and a digital serial communication interface with the microprocessor-based saws is recommended. Distributed control of the manufacturing process is discussed in detail, and is recommended as a method for increasing productivity.

  5. Pre- and Postnatal Exposure to Moderate Levels of Ethanol Can Have Long-Lasting Effects on Hippocampal Glutamate Uptake in Adolescent Offspring

    PubMed Central

    de Souza, Daniela F.; Lopes, Fernanda M.; Leite, Marina C.; Gonçalves, Carlos-Alberto

    2015-01-01

    The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure—MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood. PMID:25978644

  6. Pre- and postnatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal glutamate uptake in adolescent offspring.

    PubMed

    Brolese, Giovana; Lunardi, Paula; de Souza, Daniela F; Lopes, Fernanda M; Leite, Marina C; Gonçalves, Carlos-Alberto

    2015-01-01

    The developing brain is vulnerable to the effects of ethanol. Glutamate is the main mediator of excitatory signals in the brain and is probably involved in most aspects of normal brain function during development. The aim of this study was to investigate vulnerability to and the impact of ethanol toxicity on glutamate uptake signaling in adolescent rats after moderate pre and postnatal ethanol exposure. Pregnant female rats were divided into three groups and treated only with water (control), non-alcoholic beer (vehicle) or 10% (v/v) beer solution (moderate prenatal alcohol exposure-MPAE). Thirty days after birth, adolescent male offspring were submitted to hippocampal acute slice procedure. We assayed glutamate uptake and measured glutathione content and also quantified glial glutamate transporters (EAAT 1 and EAAT 2). The glutamate system vulnerability was tested with different acute ethanol doses in naïve rats and compared with the MPAE group. We also performed a (lipopolysaccharide-challenge (LPS-challenge) with all groups to test the glutamate uptake response after an insult. The MPAE group presented a decrease in glutamate uptake corroborating a decrease in glutathione (GSH) content. The reduction in GSH content suggests oxidative damage after acute ethanol exposure. The glial glutamate transporters were also altered after prenatal ethanol treatment, suggesting a disturbance in glutamate signaling. This study indicates that impairment of glutamate uptake can be dose-dependent and the glutamate system has a higher vulnerability to ethanol toxicity after moderate ethanol exposure In utero. The effects of pre- and postnatal ethanol exposure can have long-lasting impacts on the glutamate system in adolescence and potentially into adulthood.

  7. The Effects of Cyanide on Neural and Synaptic Function in Hippocampal Slices

    DTIC Science & Technology

    1989-01-01

    vitro. Neurosci transmission, although these mechanisms have Lett, 1986; 67:92-96 yet to be investigated in detail. Albaum HG, Tepperman J, Bodansky 0...eso e~e on neuron not mediated by ift kghWn of metabolism. e i m knot Nsa ., we.

  8. Calcium-dependent potassium current following penicillin-induced epileptiform discharges in the hippocampal slice.

    PubMed

    Domann, R; Dorn, T; Witte, O W

    1989-01-01

    Penicillin-induced paroxysmal depolarization shifts (PDS) are followed by prolonged afterhyperpolarizations of about 2 seconds duration. Intracellular injection of EGTA blocked a late component of the afterhyperpolarizations; an early one lasting up to one second was only slightly reduced by EGTA. It is concluded that afterhyperpolarizations following penicillin-induced PDS comprise different components: an initial one lasting up to one second which is not Ca2+-dependent and a slow one lasting up to two seconds which is caused by a Ca2+-dependent K+ current.

  9. Neural Activity Propagation in an Unfolded Hippocampal Preparation with a Penetrating Micro-electrode Array

    PubMed Central

    Gonzales-Reyes, Luis E.; Durand, Dominique M.

    2015-01-01

    This protocol describes a method for preparing a new in vitro flat hippocampus preparation combined with a micro-machined array to map neural activity in the hippocampus. The transverse hippocampal slice preparation is the most common tissue preparation to study hippocampus electrophysiology. A longitudinal hippocampal slice was also developed in order to investigate longitudinal connections in the hippocampus. The intact mouse hippocampus can also be maintained in vitro because its thickness allows adequate oxygen diffusion. However, these three preparations do not provide direct access to neural propagation since some of the tissue is either missing or folded. The unfolded intact hippocampus provides both transverse and longitudinal connections in a flat configuration for direct access to the tissue to analyze the full extent of signal propagation in the hippocampus in vitro. In order to effectively monitor the neural activity from the cell layer, a custom made penetrating micro-electrode array (PMEA) was fabricated and applied to the unfolded hippocampus. The PMEA with 64 electrodes of 200 µm in height could record neural activity deep inside the mouse hippocampus. The unique combination of an unfolded hippocampal preparation and the PMEA provides a new in-vitro tool to study the speed and direction of propagation of neural activity in the two-dimensional CA1-CA3 regions of the hippocampus with a high signal to noise ratio. PMID:25868081

  10. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  11. Microcutting of living brain slices by a pulsed ultrafine water jet which allows simultaneous electrophysiological recordings (micromingotome).

    PubMed

    Speckmann, E J; Köhling, R; Lücke, A; Straub, H; Wittkowski, W; Elger, C E; Wiemann, M; Bingmann, D

    1998-07-01

    Up to now microsurgical dissections in living nervous tissue (e.g. in slices or cell cultures) are performed either by micro-scalpels or by laser beams. As an alternative technique, a device for cutting with an ultrafine pulsed water jet was developed to allow precise, visually controled dissections in neuronal circuits even during electrophysiological recordings. Water is ejected by pressure (20-30 bar) from patch pipettes with tip diameters of 10-12 microm. By means of a piezo-element the pipette and the water jet are forced to oscillate vertically with a frequency of 200-400 Hz with an adjustable amplitude. These oscillations facilitate the transsection of neuronal connections even in thick slice preparations. Best results were obtained when the tip of the pipette was about 500 microm above the surface of the submerged slice tissue. This micromingotome offers the following advantages: (i) histological studies show that the water jet cleans the cutting surface, thus avoiding debris and its uncontrolable effects on cells underneath; (ii) the arrangement enables ongoing electrophysiological recordings from hippocampal slices during the cutting procedure and thus facilitates studies of the functions of neuronal connections; (iii) the device allows even disconnection in cultured nervous tissue overgrowing polyamid grids with 50 microm wide meshes.

  12. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation

    PubMed Central

    Shivarama Shetty, Mahesh; Gopinadhan, Suma

    2016-01-01

    ABSTRACT Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26194339

  13. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation.

    PubMed

    Shivarama Shetty, Mahesh; Gopinadhan, Suma; Sajikumar, Sreedharan

    2016-02-01

    Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long-term plasticity, a cellular correlate of associative long-term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long-term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long-term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5-receptor-mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co-operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal-regulated kinases-1 and 2 (ERK1/2) as signal integrators and dose-sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration-dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long-term associative memory in neural networks.

  14. The ESO Slice Project (ESP) redshift survey.

    NASA Astrophysics Data System (ADS)

    Vettolani, G.; Zucca, E.; Cappi, A.; Merighi, R.; Mignoli, M.; Stirpe, G.; Zamorani, G.; MacGillivray, H.; Collins, C.; Balkowski, C.; Cayatte, V.; Maurogordato, S.; Proust, D.; Chincarini, G.; Guzzo, L.; Maccagni, D.; Scaramella, R.; Blanchard, A.; Ramella, M.

    The ESO Slice Project (ESP) is a galaxy redshift survey over about 30 square degrees, in a region near the South Galactic Pole. The survey is nearly complete to the limiting magnitude bj = 19.4 and consists of more than three thousands galaxies with reliable redshift determination.

  15. Thin-Slice Perception Develops Slowly

    ERIC Educational Resources Information Center

    Balas, Benjamin; Kanwisher, Nancy; Saxe, Rebecca

    2012-01-01

    Body language and facial gesture provide sufficient visual information to support high-level social inferences from "thin slices" of behavior. Given short movies of nonverbal behavior, adults make reliable judgments in a large number of tasks. Here we find that the high precision of adults' nonverbal social perception depends on the slow…

  16. nem_slice ver. 3.34

    SciTech Connect

    HUTCHINSON, SCOTT; STJOHN, MATTHEW; SJAARDEMA, GREGORY; HENNIGAN, GARY; SHADID, JOHN; DEVINE, KAREN

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  17. Detecting Psychopathy from Thin Slices of Behavior

    ERIC Educational Resources Information Center

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  18. Ethanol Acutely Inhibits Ionotropic Glutamate Receptor-mediated Responses and Long-Term Potentiation in the Developing CA1 Hippocampus

    PubMed Central

    Puglia, Michael P.; Valenzuela, C. Fernando

    2011-01-01

    Background Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third-trimester of human pregnancy (first 12 days of life in rats). Methods Acute coronal brain slices were prepared from 7–9 day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. Results EtOH (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. Conclusions Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder. PMID:20102565

  19. ATP induces NO production in hippocampal neurons by P2X(7) receptor activation independent of glutamate signaling.

    PubMed

    Codocedo, Juan Francisco; Godoy, Juan Alejandro; Poblete, Maria Ines; Inestrosa, Nibaldo C; Huidobro-Toro, Juan Pablo

    2013-01-01

    To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3')-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by N(ω)-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  20. ATP Induces NO Production in Hippocampal Neurons by P2X7 Receptor Activation Independent of Glutamate Signaling

    PubMed Central

    Codocedo, Juan Francisco; Godoy, Juan Alejandro; Poblete, Maria Ines; Inestrosa, Nibaldo C.; Huidobro-Toro, Juan Pablo

    2013-01-01

    To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2′(3′)-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by Nω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity. PMID:23472093

  1. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats.

    PubMed

    Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F

    2012-10-11

    Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a

  2. Slice stretching effects for maximal slicing of a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Reimann, Bernd

    2005-11-01

    Slice stretching effects such as slice sucking and slice wrapping arise when foliating the extended Schwarzschild spacetime with maximal slices. For arbitrary spatial coordinates these effects are quantified here in the context of boundary conditions where the lapse arises as a linear combination of odd and even lapse. Favourable boundary conditions are then derived which make the overall slice stretching occur late in numerical simulations. Allowing the lapse to become negative, this requirement leads to lapse functions which approach at late times the odd lapse corresponding to the static Schwarzschild metric. Demanding, however, that a numerically favourable lapse remains non-negative, as a result the average of odd and even lapse is obtained. At late times the lapse with zero gradient at the puncture arising for the puncture evolution is precisely of this form. Finally, analytic arguments are given on how slice stretching effects can be avoided. Here the excision technique and the working mechanism of the shift function are studied in detail.

  3. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    PubMed Central

    Gutiérrez-Lerma, Armando I.; Ordaz, Benito; Peña-Ortega, Fernando

    2013-01-01

    Soluble amyloid beta peptide (Aβ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM). We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function. PMID:23878547

  4. Activity-dependent plasticity of mouse hippocampal assemblies in vitro

    PubMed Central

    Keller, Martin K.; Draguhn, Andreas; Both, Martin; Reichinnek, Susanne

    2015-01-01

    Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R), repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation. This function implies that repetition of specific SPW-R induces plastic changes which render the underlying neuronal assemblies more stable. We modeled this repetitive activation in an in vitro model of SPW-R in mouse hippocampal slices. Weak electrical stimulation upstream of the CA3-CA1 networks reliably induced SPW-R of stereotypic waveform, thus representing re-activation of similar neuronal activity patterns. Frequent repetition of these patterns (100 times) reduced the variance of both, evoked and spontaneous SPW-R waveforms, indicating stabilization of pre-existing assemblies. These effects were most pronounced in the CA1 subfield and depended on the timing of stimulation relative to spontaneous SPW-R. Additionally, plasticity of SPW-R was blocked by application of a NMDA receptor antagonist, suggesting a role for associative synaptic plasticity in this process. Thus, repetitive activation of specific patterns of SPW-R causes stabilization of memory-related networks. PMID:26041998

  5. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    PubMed Central

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  6. Probing oxygen consumption in epileptic brain slices with QDs-based FRET sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Ingram, Justin; Schiff, Steven; Xu, Jian; Xiao, Min

    2011-02-01

    We developed ratiometric optical oxygen sensors to probe the oxygen consumption during epileptic events in rat brain slices. The oxygen sensors consist of the sensing part of phosphorescence dyes (Platinum (II) octaethylporphine ketone) and reference part of nanocystal quantum dots (NQDs) embedded in polymer blends, with pre-designed excitation through fluorescence resonance energy transfer (FRET) from NQDs to the oxygen sensitive dyes (OSDs). The ratiometric FRET sensors with fast temporal response and excellent bio-compatibility are suitable for real time quantitative dissolved oxygen (D.O.) probes in biological microenvironment. Coating the sensors onto the micro-pipettes, we performed simultaneous oxygen probes at pyramidal and oriens layers in rat hippocampal CA1. Different spatiotemporal patterns with maximum D.O. decreases of 9.9+/-1.1 mg/L and 4.9+/-0.7 mg/L during seizure events were observed in pyramidal and oriens layers, respectively.

  7. Remembering preservation in hippocampal amnesia

    PubMed Central

    Clark, Ian A.; Maguire, Eleanor A.

    2017-01-01

    The lesion-deficit model dominates neuropsychology. This is unsurprising given powerful demonstrations that focal brain lesions can affect specific aspects of cognition. Nowhere is this more evident than in patients with bilateral hippocampal damage. In the last sixty years the amnesia and other impairments exhibited by these patients have helped to delineate the functions of the hippocampus and shape the field of memory. We do not question the value of this approach. However, less prominent are the cognitive processes that remain intact following hippocampal lesions. Here, we collate the piecemeal reports of preservation of function following focal bilateral hippocampal damage, highlighting a wealth of information often veiled by the field’s focus on deficits. We consider how a systematic understanding of what is preserved as well as what is lost could add an important layer of precision to models of memory and the hippocampus. PMID:26361051

  8. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations.

    PubMed

    Hájos, N; Katona, I; Naiem, S S; MacKie, K; Ledent, C; Mody, I; Freund, T F

    2000-09-01

    Using a new antibody developed against the C-terminus of the cannabinoid receptor (CB1), the immunostaining in the hippocampus revealed additional axon terminals relative to the pattern reported previously with an N-terminus antibody. Due to a greater sensitivity of this antibody, a large proportion of boutons in the dendritic layers displaying symmetrical (GABAergic) synapses were also strongly immunoreactive for CB1 receptors, as were axon terminals of perisomatic inhibitory cells containing cholecystokinin. Asymmetrical (glutamatergic) synapses, however, were always negative for CB1. To investigate the effect of presynaptic CB1 receptor activation on hippocampal inhibition, we recorded inhibitory postsynaptic currents (IPSCs) from principal cells. Bath application of CB1 receptor agonists (WIN55,212-2 and CP55,940) suppressed IPSCs evoked by local electrical stimulation, which could be prevented or reversed by the CB1 receptor antagonist SR141716A. Action potential-driven IPSCs, evoked by pharmacological stimulation of a subset of interneurons, were also decreased by CB1 receptor activation. We also examined the effects of CB1 receptor agonists on Ca2+-independent miniature IPSCs (mIPSC). Both agonists were without significant effect on the frequency or amplitude of mIPSCs. Synchronous gamma oscillations induced by kainic acid in the CA3 region of hippocampal slices were reversibly reduced in amplitude by the CB1 receptor agonist CP 55,940, which is consistent with an action on IPSCs. We used CB1-/- knock-out mice to confirm the specificity of the antibody and of the agonist (WIN55,212-2) action. We conclude that activation of presynaptic CB1 receptors decreases Ca2+-dependent GABA release, and thereby reduces the power of hippocampal network oscillations.

  9. Regulation of GABA Equilibrium Potential by mGluRs in Rat Hippocampal CA1 Neurons

    PubMed Central

    Yang, Bo; Rajput, Padmesh S.; Kumar, Ujendra; Sastry, Bhagavatula R.

    2015-01-01

    The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary. PMID:26389591

  10. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges.

    PubMed

    Jones, Roland S G; da Silva, Anderson Brito; Whittaker, Roger G; Woodhall, Gavin L; Cunningham, Mark O

    2016-02-15

    Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.

  11. Detrimental effects of postnatal exposure to propofol on memory and hippocampal LTP in mice.

    PubMed

    Wang, Yuan-Lin; Chen, Xin; Wang, Zhi-Ping

    2015-10-05

    Acute effects of propofol on memory and hippocampal long-term potentiation (LTP) in adult animals were reported. However, long-term effect of early postnatal application of propofol on memory was not totally disclosed. In this study, experiments were designed to verify the mechanisms underlying the long-term detrimental effects of propofol on memory and hippocampal synaptic plasticity. A consecutive propofol protocol from postnatal day 7 was applied to model anesthesia, long term memory and hippocampal synaptic plasticity were detected 2 months later. Our results showed that repeated propofol exposure in early phase affect the memory in the adult phase. Through recording the field excitatory postsynaptic potentials (fEPSPs) at Schaffer colletaral-CA1 synapses, both of basal synaptic transmission and hippocampal LTP were decreased after propofol application. While LTD induced by low frequency stimulation and 3,5-dihydroxyphenylglycine (3,5-DHPG) were not affected. Through analyzing the ultrastructure of dendrite in CA1 region, we found that propofol application decreased the spine density, which was consistent with the decrease of PSD-95 expression. In addition, p-AKT level was reduced after first propofol application. Intracerebroventricular injection of Akt inhibitor could mimic the propofol effects on basal synaptic transmission, hippocampal LTP and memory. Taken together, these results suggested that propofol possibly decreased AKT signaling pathway to restrict the spine development, finally leading to hippocampal LTP impairment and memory deficit.

  12. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input.

    PubMed

    Flores-Martínez, Ernesto; Peña-Ortega, Fernando

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  13. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    PubMed Central

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  14. Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons.

    PubMed

    Hu, G Y; Storm, J F

    1991-12-24

    Activation of metabotropic glutamate receptors (mGluRs, QP or ACPD receptors) has recently been shown to cause depolarization, blockade of the slow after-hyperpolarization and depression of calcium currents in hippocampal pyramidal cells. Here, we report evidence for a new mGluR-mediated effect: slowing of the spike repolarization in CA1 cells in rat hippocampal slices. During blockade of the ionotropic glutamate receptors, the mGluR agonists trans-1-amino-cyclopentyl-1,3-dicarboxylate (t-ACPD), quisqualate or L-glutamate caused spike broadening. In contrast, the ionotropic receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) was ineffective. The spike broadening may act in concert with the other mGluR effects, e.g. by further increasing the influx of Ca2+ ions which, in turn, may contribute to synaptic modulation.

  15. Topographic specificity of functional connections from hippocampal CA3 to CA1

    NASA Astrophysics Data System (ADS)

    Brivanlou, Iman H.; Dantzker, Jami L. M.; Stevens, Charles F.; Callaway, Edward M.

    2004-02-01

    The hippocampus is a cortical region thought to play an important role in learning and memory. Most of our knowledge about the detailed organization of hippocampal circuitry responsible for these functions is derived from anatomical studies. These studies present an incomplete picture, however, because the functional character and importance of connections are often not revealed by anatomy. Here, we used a physiological method (photostimulation with caged glutamate) to probe the fine pattern of functional connectivity between the CA3 and CA1 subfields in the mouse hippocampal slice preparation. We recorded intracellularly from CA1 and CA3 pyramidal neurons while scanning with photostimulation across the entire CA3 subfield with high spatial resolution. Our results show that, at a given septotemporal level, nearby CA1 neurons receive synaptic inputs from neighboring CA3 neurons. Thus, the CA3 to CA1 mapping preserves neighbor relations.

  16. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    ERIC Educational Resources Information Center

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  17. Dopamine and Norepinephrine Receptors Participate in Methylphenidate Enhancement of In Vivo Hippocampal Synaptic Plasticity

    PubMed Central

    Jenson, Daniel; Yang, Kechun; Acevedo-Rodriguez, Alexandra; Levine, Amber; Broussard, John I.; Tang, Jianrong; Dani, John A.

    2014-01-01

    Attention-deficit hyperactive disorder (ADHD) is the most commonly studied and diagnosed psychiatric disorder in children. Methylphenidate (MPH, e.g., Ritalin) has been used to treat ADHD for over 50 years. It is the most commonly prescribed treatment for ADHD, and in the past decade it was the drug most commonly prescribed to teenagers. In addition, MPH has become one of the most widely abused drugs on college campuses. In this study, we examined the effects of MPH on hippocampal synaptic plasticity, which serves as a measurable quantification of memory mechanisms. Field potentials were recorded with permanently implanted electrodes in freely-moving mice to quantify MPH modulation of perforant path synaptic transmission onto granule cells of the dentate gyrus. Our hypothesis was that MPH affects hippocampal synaptic plasticity underlying learning because MPH boosts catecholamine signaling by blocking the dopamine and norepinephrine transporters (DAT and NET respectively). In vitro hippocampal slice experiments indicated MPH enhances perforant path plasticity, and this MPH enhancement arose from action via D1-type dopamine receptors and β-type adrenergic receptors. Similarly, MPH boosted in vivo initiation of long-term potentiation (LTP). While there was an effect via both dopamine and adrenergic receptors in vivo, LTP induction was more dependent on the MPH-induced action via D1-type dopamine receptors. Under biologically reasonable experimental conditions, MPH enhances hippocampal synaptic plasticity via catecholamine receptors. PMID:25445492

  18. Wnt5a inhibits K(+) currents in hippocampal synapses through nitric oxide production.

    PubMed

    Parodi, Jorge; Montecinos-Oliva, Carla; Varas, Rodrigo; Alfaro, Iván E; Serrano, Felipe G; Varas-Godoy, Manuel; Muñoz, Francisco J; Cerpa, Waldo; Godoy, Juan A; Inestrosa, Nibaldo C

    2015-09-01

    Hippocampal synapses play a key role in memory and learning processes by inducing long-term potentiation and depression. Wnt signaling is essential in the development and maintenance of synapses via several mechanisms. We have previously found that Wnt5a induces the production of nitric oxide (NO), which modulates NMDA receptor expression in the postsynaptic regions of hippocampal neurons. Here, we report that Wnt5a selectively inhibits a voltage-gated K(+) current (Kv current) and increases synaptic activity in hippocampal slices. Further supporting a specific role for Wnt5a, the soluble Frizzled receptor protein (sFRP-2; a functional Wnt antagonist) fully inhibits the effects of Wnt5a. We additionally show that these responses to Wnt5a are mediated by activation of a ROR2 receptor and increased NO production because they are suppressed by the shRNA-mediated knockdown of ROR2 and by 7-nitroindazole, a specific inhibitor of neuronal NOS. Together, our results show that Wnt5a increases NO production by acting on ROR2 receptors, which in turn inhibit Kv currents. These results reveal a novel mechanism by which Wnt5a may regulate the excitability of hippocampal neurons.

  19. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    PubMed Central

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo; Aschner, Michael; Bohrer, Denise; Rocha, João Batista T.; de Vargas Barbosa, Nilda B.

    2016-01-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg–Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg–Cys complex. The liver slices were pre-treated with Met (250 μM) 15 min before being exposed to MeHg (25 μM) or MeHg–Cys (25 μM each) for 30 min at 37 °C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg–Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg–Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg–Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg–Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg–Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg-and/or MeHg–Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the

  20. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    SciTech Connect

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo; Aschner, Michael; Bohrer, Denise; Rocha, Joao Batista T.; Vargas Barbosa, Nilda B. de

    2011-04-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 {mu}M) 15 min before being exposed to MeHg (25 {mu}M) or MeHg-Cys (25 {mu}M each) for 30 min at 37 {sup o}C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the competition

  1. Genetic and Behavioral Determinants of Hippocampal Volume Recovery During Abstinence from Alcohol

    PubMed Central

    Hoefer, Michael E.; Pennington, David L.; Durazzo, Timothy C.; Mon, Anderson; Abé, Christoph; Truran, Diana; Hutchison, Kent E.; Meyerhoff, Dieter J.

    2014-01-01

    Alcohol-dependent individuals (ALC) have smaller hippocampi and poorer neurocognition than healthy controls. Results from studies on the association between alcohol consumption and hippocampal volume have been mixed, suggesting that comorbid or premorbid factors (i.e., those present prior to the initiation of alcohol dependence) determine hippocampal volume in ALC. We aimed to characterize the effects of select comorbid (i.e., cigarette smoking) and premorbid factors (brain-derived neurotrophic factor [BDNF] genotype [Val66Met rs6265]) on hippocampal volume in an ALC cohort followed longitudinally into extended abstinence. One hundred twenty-one adult ALC in treatment (76 smokers, 45 non-smokers) and 35 non-smoking light-drinking controls underwent quantitative magnetic resonance imaging, BDNF genotyping, and neurocognitive assessments. Representative subgroups were studied at 1 week, 1 month, and at an average of 7 months of abstinence. ALC had smaller hippocampi than healthy controls at all time points. Hippocampal volume at 1 month of abstinence correlated with lower visuospatial function. Smoking status did not influence hippocampal volume or hippocampal volume recovery during abstinence. However, only BDNF Val homozygotes tended to have hippocampal volume increases over 7 months of abstinence, and Val homozygotes had significantly larger hippocampi than Met carriers at 7 months of abstinence. These findings suggest that BDNF genotype, but not smoking status or measures of drinking severity, regulate functionally relevant hippocampal volume recovery in abstinent ALC. Future studies aimed at exploring genetic determinants of brain morphometry in ALC may need to evaluate individuals during extended abstinence after the acute environmental effects of chronic alcohol consumption have waned. PMID:25262572

  2. Updating stored memory requires adult hippocampal neurogenesis

    PubMed Central

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-01-01

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogenesis is required to update object recognition stored memory more than to reinforce it. Indeed, we show that immature neurons were selectively recruited to hippocampal circuits during the updating of stored information. Thus, our data demonstrate a new role for neurogenesis in cognitive processes, adult hippocampal neurogenesis being required for the updating of stored OR memories. These findings suggest that manipulating adult neurogenesis may have a therapeutic application in conditions associated with traumatic stored memory, for example. PMID:26358557

  3. Updating stored memory requires adult hippocampal neurogenesis.

    PubMed

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-09-11

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogenesis is required to update object recognition stored memory more than to reinforce it. Indeed, we show that immature neurons were selectively recruited to hippocampal circuits during the updating of stored information. Thus, our data demonstrate a new role for neurogenesis in cognitive processes, adult hippocampal neurogenesis being required for the updating of stored OR memories. These findings suggest that manipulating adult neurogenesis may have a therapeutic application in conditions associated with traumatic stored memory, for example.

  4. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content

    PubMed Central

    Hájos, Norbert; Mody, Istvan

    2009-01-01

    Our insights into the basic characteristics of neuronal function were significantly advanced by combining the in vitro slice technique with the visualization of neurons and their processes. The visualization through water immersion objectives requires keeping slices submerged in recording chambers where delivering artificial cerebro-spinal fluid (aCSF) at flow rates of 2–3 ml/min results in a limited oxygen supply [Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci 2009;29:319–27]. Here we review two methods aimed at providing sufficient oxygen levels to neurons in submerged slices to enable high energy consuming processes such as elevated firing rates or network oscillations. The use of these methods may also influence the outcome of other electrophysiological experiments in submerged slices including the study of intercellular signaling pathways. In addition, we also emphasize the importance of various aCSF constituents used in in vitro experiments. PMID:19524611

  5. Chronic CXCL10 Alters Neuronal Properties in Rat Hippocampal Culture

    PubMed Central

    Cho, Jungsook; Nelson, Thomas E.; Bajova, Hilda; Gruol, Donna L.

    2009-01-01

    The chemokine CXCL10 is expressed in the central nervous system (CNS) during neuroinflammatory conditions. Neurons express CXCR3, the receptor for CXCL10, and neuronal function has been shown to be altered by acute exposure to CXCL10. Little is known about the effects of chronic exposure to CXCL10 on neuronal function. Results from our studies show that chronic exposure of cultured rat hippocampal neurons to CXCL10 results in altered levels of protein for GABA and glutamate receptors and altered synaptic network activity. These effects of CXCL10 may contribute to altered CNS function that occurs in some chronic neuroinflammatory conditions. PMID:19167097

  6. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression

    PubMed Central

    Füchsl, Andrea M.; Reber, Stefan O.

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC. PMID:27057751

  7. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression.

    PubMed

    Füchsl, Andrea M; Reber, Stefan O

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC.

  8. Decoding hippocampal signaling deficits after traumatic brain injury.

    PubMed

    Atkins, Coleen M

    2011-12-01

    There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.

  9. Citrulline uptake in rat cerebral cortex slices: modulation by Thioacetamide -Induced hepatic failure.

    PubMed

    Zielińska, Magdalena; Obara-Michlewska, Marta; Hilgier, Wojciech; Albrecht, Jan

    2014-12-01

    L-citrulline (Cit) is a co-product of NO synthesis and a direct L-arginine (Arg) precursor for de novo NO synthesis. Acute liver failure (ALF) is associated with increased nitric oxide (NO) and cyclic GMP (cGMP) synthesis in the brain, indirectly implicating a role for active transport of Cit. In the present study we characterized [(3)H]Cit uptake to the cortical brain slices obtained from control rats and rats with thioacetamide (TAA)-induced ALF ("TAA slices"). In both control and TAA slices the uptake was partially Na(+)-dependent and markedly inhibited by substrates of systems L and N, including L-glutamine (Gln), which accumulates in excess in brain during ALF. Cit uptake was not affected by Arg, the y(+)/y(+)L transport system substrate, nor by amino acids taken up by systems A, xc (-)or XAG. The Vmax of the uptake in TAA slices was ~60 % higher than in control slices. Chromatographic (HPLC) analysis revealed a ~30 % increase of Cit concentration in the cerebral cortical homogenates of TAA rats. The activity of argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL), the two enzymes of Cit-NO cycle catalyzing synthesis of Arg, showed an increase in TAA rats, consistent with increased ASS and ASL protein expression, by ~30 and ~20 %, respectively. The increased Cit-NO cycle activity was paralleled by increased expression of mRNA coding for inducible nitric oxide synthase (iNOS). Taken together, the results suggest a role for Cit in the activation of cerebral NO synthesis during ALF.

  10. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  11. Mechanical characteristics of native tendon slices for tissue engineering scaffold

    PubMed Central

    Qin, Ting-Wu; Chen, Qingshan; Sun, Yu-Long; Steinmann, Scott P.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng

    2014-01-01

    The purpose of this study was to characterize the mechanical behavior of tendon slices with different thicknesses. Tendon slices of 100, 200, 300, 400, and 500 μm thickness were mechanically tested. The 300 μm slices were further tested for strength and modulus after 21,000-cycle fatigue testing under different applied strain levels (0, 1, 3, 5, 8, 10, and 12%). The tendon slice structure, morphology, and viability of bone marrow stromal cells (BMSCs) seeded onto the slices were also examined with histology, scanning electron microscopy, and vital cell labeling, respectively. Tendon slices 300 μm or more in thickness had similar ultimate tensile strength and Young's modulus to the intact tendon bundle. A strain of 5% or less did not cause any structural damage, nor did it change the mechanical properties of a 300 μm-thick tendon slice after 21,000-cycle fatigue testing. BMSCs were viable between and on the tendon slices after 2 weeks in tissue culture. This study demonstrated that, if tendon slices are used as a scaffold for tendon tissue engineering, slices 300 μm or more in thickness would be preferable from a mechanical strength point of view. If mechanical stimulation is performed for seeded-cell preparations, 5% strain or less would be appropriate. PMID:22323314

  12. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.

    PubMed

    Moradi-Chameh, H; Peng, J; Wu, C; Zhang, L

    2014-09-26

    Pyramidal neurons in the hippocampal CA3 area interconnect intensively via recurrent axonal collaterals, and such CA3-to-CA3 recurrent circuitry plays important roles in the generation of hippocampal network activities. In particular, the CA3 circuitry is able to generate spontaneous sharp waves (SPWs) when examined in vitro. These in vitro SPWs are thought to result from the network activity of GABAergic inhibitory interneurons as SPW-correlating intracellular activities are featured with strong IPSPs in pyramidal neurons and EPSPs or spikes in GABAergic interneurons. In view of accumulating evidence indicating a decrease in subgroups of hippocampal GABAergic interneurons in aged animals, we test the hypothesis that the intracellular activities related to in vitro SPWs are altered in CA3 pyramidal neurons of aged mice. Hippocampal slices were prepared from adult and aged C57 black mice (ages 3-6 and 24-28months respectively). Population and single-cell activities were examined via extracellular and whole-cell patch-clamp recordings. CA3 SPW frequencies were not significantly different between the slices of adult and aged mice but SPW-correlating intracellular activities featured weaker IPSC components in aged CA3 pyramidal neurons compared to adult neurons. It was unlikely that this latter phenomenon was due to general impairments of GABAergic synapses in the aged CA3 circuitry as evoked IPSC responses and pharmacologically isolated IPSCs were observed in aged CA3 pyramidal neurons. In addition, aged CA3 pyramidal neurons displayed more positive resting potentials and had a higher propensity of burst firing than adult neurons. We postulate that alterations of GABAergic network activity may explain the reduced IPCS contributions to in vitro SPWs in aged CA3 pyramidal neurons. Overall, our present observations are supportive of the notion that excitability of hippocampal CA3 circuitry is increased in aged mice.

  13. Metabolism of Red Beet Slices I. Effects of Washing 1

    PubMed Central

    Reed, D. J.; Kolattukudy, P. E.

    1966-01-01

    The changes in relative participation of pathways of glucose catabolism in red beet slices during washing have been examined using specifically 14C labeled glucoses. Washing of these slices brings about an increase in participation of the pentose phosphate pathway. The composition of the washing medium influences slightly the extent of change in pathway participation. The activity level of certain enzymes participating in the initial stages of glucose catabolism has been measured in fresh and washed beet slices. Fresh slices which barely metabolized gluconate were found to have very little 6-phosphogluconate dehydrogenase activity. Washing brings about a dramatic increase in 6-phosphogluconate dehydrogenase activity and this increase was accompanied by a marked increase in the ability of the slices to metabolize gluconate. In red beet slices the TPNH generated via pentose phosphate pathway appears to be utilized for biosynthetic reductions rather than as respiratory substrate. PMID:16656302

  14. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.

    PubMed

    Katona, I; Sperlágh, B; Sík, A; Käfalvi, A; Vizi, E S; Mackie, K; Freund, T F

    1999-06-01

    To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions. We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks. Interneurons with features typical of basket cells showed a selective, intense staining for CB1 in all hippocampal subfields and layers. Most of them (85.6%) contained cholecystokinin (CCK), which corresponded to 96.9% of all CCK-positive interneurons, whereas only 4.6% of the parvalbumin (PV)-containing basket cells expressed CB1. Accordingly, electron microscopy revealed that CB1-immunoreactive axon terminals of CCK-containing basket cells surrounded the somata and proximal dendrites of pyramidal neurons, whereas PV-positive basket cell terminals in similar locations were negative for CB1. The synthetic cannabinoid agonist WIN 55,212-2 (0.01-3 microM) reduced dose-dependently the electrical field stimulation-induced [3H]GABA release from superfused hippocampal slices, with an EC50 value of 0. 041 microM. Inhibition of GABA release by WIN 55,212-2 was not mediated by inhibition of glutamatergic transmission because the WIN 55,212-2 effect was not reduced by the glutamate blockers AP5 and CNQX. In contrast, the CB1 cannabinoid receptor antagonist SR 141716A (1 microM) prevented this effect, whereas by itself it did not change the outflow of [3H]GABA. These results suggest that cannabinoid-mediated modulation of hippocampal interneuron networks operate largely via presynaptic receptors on CCK-immunoreactive basket cell terminals. Reduction of GABA release from these terminals is the likely mechanism by which both endogenous and exogenous CB1 ligands interfere with hippocampal network oscillations and associated cognitive functions.

  15. Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

    PubMed

    McQuiston, A Rory

    2010-10-01

    During theta rhythm, the timing of inputs to hippocampal CA1 from the perforant path (PP) of the entorhinal cortex and the Schaffer collaterals (SCs) from individual CA3 pyramidal neurons can vary within an individual theta period. Importantly, during theta rhythms these interactions occur during elevated acetylcholine concentrations. Thus, I examined the effect that PP inputs have on SC inputs in hippocampal CA1 during cholinergic receptor activation. To do this I measured the impact that a single electrical stimulus of the stratum lacunosum-moleculare (SLM, which contains the PP) had on excitation evoked by stimulation of the stratum radiatum (SR, which contains the SC) using voltage-sensitive dye imaging, field excitatory postsynaptic potentials and whole cell patch clamping in rat hippocampal brain slices. My data showed that SLM stimulation one half a theta cycle or less (25-75 ms) before SR stimulation resulted in the summation of excitatory events in SR and SP of hippocampal CA1. The summation was unaffected by cholinergic receptor activation by carbachol. SLM stimulation one theta cycle (150-225 ms) preceding SR stimulation significantly suppressed excitatory events measured in SR and SP. This SLM stimulus inhibition of SR-driven excitatory events was augmented by carbachol application. The carbachol effect was blocked by atropine and SLM-driven suppression of excitatory events was blocked by the GABA(B) receptor antagonist CGP 54626. SR field EPSP slopes were unaffected by SLM prepulses. Carbachol increased the probability of SR input to drive action potential firing in CA1 pyramidal neurons, which was inhibited by SLM prepulses (150-225 ms). Together these data provide important information regarding the integration of inputs in hippocampal CA1 during theta rhythms. More specifically, SR inputs can be differentially gated by SLM feedforward inhibition at varying temporal intervals within a theta cycle.

  16. Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail.

    PubMed

    Malykhin, Nikolai V; Bouchard, Thomas P; Ogilvie, Catherine J; Coupland, Nicholas J; Seres, Peter; Camicioli, Richard

    2007-07-15

    Volumetric changes in the amygdala and hippocampus are relevant to many disorders, but their close proximity makes it difficult to separate these structures by magnetic resonance imaging, leading many volumetric protocols to exclude problematic slices from analysis, or to analyze the amygdalo-hippocampal complex conjointly. The hippocampus tail is also often excluded, because of the difficulty in separating it from the thalamus. We have developed a reliable protocol for volumetric analysis and 3-D reconstruction of the amygdala and hippocampus (as a whole and in its anatomical parts). Twenty volunteers from clinical and healthy populations were recruited. T1-weighted images were acquired at 1.5 Tesla with native spatial resolution of 1.5 mm x 1.0 mm x 1.0 mm. Volumetric analyses were perfor