Sample records for acute hypoxic exposure

  1. Effects of acute hypoxic exposure on oxygen affinity of human red blood cells.

    PubMed

    Chowdhury, Aniket; Dasgupta, Raktim

    2017-01-20

    Adaptation of red blood cells subjected to acute hypoxia, crucial for managing high altitude syndrome and pulmonary diseases, has been investigated. For this, red blood cells were exposed to the acute hypoxic condition by purging nitrogen over increasing time periods from 15 to 60 min and thereafter equilibrated with atmospheric oxygen for 10 min. Raman spectra of these red blood cells were then recorded and analyzed to look for changes in the level of oxygenation compared to unexposed cells. A decreasing oxygen affinity for the cells was observed with increasing time of exposure to the hypoxic condition. This change in oxygen affinity for the red blood cells may result from metabolic adjustment of the cells under the hypoxic condition to promote increased concentration of intracellular 2, 3-diphosphoglycerate.

  2. Effects of Acutely Intermittent Hypoxic Exposure on Running Economy and Physical Performance in Basketball Players.

    PubMed

    Kilding, Andrew E; Dobson, Bryan P; Ikeda, Erika

    2016-07-01

    Kilding, AE, Dobson, BP, and Ikeda, E. Effects of acutely intermittent hypoxic exposure on running economy and physical performance in basketball players. J Strength Cond Res 30(7): 2033-2042, 2016-The aim of this study was to determine the effect of short duration intermittent hypoxic exposure (IHE) on physical performance in basketball players. Using a single-blind placebo-controlled group design, 14 trained basketball players were subjected to 15 days of passive short duration IHE (n = 7), or normoxic control (CON, n = 7), using a biofeedback nitrogen dilution device. A range of physiological, performance, and hematological variables were measured at baseline, and 10 days after IHE. After intervention, the IHE group, relative to the CON group, exhibited improvements in the Yo-Yo intermittent recovery level 1 (+4.8 ± 1.6%; effect size [ES]: 1.0 ± 0.4) and repeated high-intensity exercise test performance (-3.5 ± 1.6%; ES: -0.4 ± 0.2). Changes in hematological parameters were minimal, although soluble transferrin receptor increased after IHE (+9.2 ± 10.1%; ES: 0.3 ± 0.3). Running economy at 11 km·h (-9.0 ± 9.7%; ES: -0.7 ± 0.7) and 13 km·h was improved (-8.2 ± 6.9%; ES: -0.7 ± 0.5), but changes to V[Combining Dot Above]O2peak, HRpeak, and lactate were unclear. In summary, acutely IHE resulted in worthwhile changes in physical performance tests among competitive basketball players. However, physiological measures explaining the performance enhancement were in most part unclear.

  3. Exhaled isoprene for monitoring recovery from acute hypoxic stress.

    PubMed

    Harshman, Sean W; Geier, Brian A; Qualley, Anthony V; Drummond, Leslie A; Flory, Laura E; Fan, Maomian; Pitsch, Rhonda L; Grigsby, Claude C; Phillips, Jeffrey B; Martin, Jennifer A

    2017-11-29

    Hypoxia-like incidents in-flight have increased over the past decade causing severe safety concerns across the aviation community. As a result, the need to monitor flight crews in real-time for the onset of hypoxic conditions is paramount for continued aeronautical safety. Here, hypoxic events were simulated in the laboratory via a reduced oxygen-breathing device to determine the effect of recovery gas oxygen concentration (21% and 100%) on exhaled breath volatile organic compound composition. Data from samples collected both serially (throughout the exposure), prior to, and following exposures yielded 326 statistically significant features, 203 of which were unique. Of those, 72 features were tentatively identified while 51 were verified with authentic standards. A comparison of samples collected serially between recovery and hypoxia time points shows a statistically significant reduction in exhaled breath isoprene (2-methyl-1,3-butadiene, log 2 FC -0.399, p = 0.005, FDR = 0.034, q = 0.033), however no significant difference in isoprene abundance was observed when comparing recovery gases (21% or 100% O 2 , p = 0.152). Furthermore, examination of pre-/post-exposure 1 l bag breath samples illustrate an overall increase in exhaled isoprene abundance post-exposure (log 2 FC 0.393, p = 0.005, FDR = 0.094, q = 0.033) but again no significant difference between recovery gas (21% and 100%, p = 0.798) was observed. A statistically significant difference in trend was observed between isoprene abundance and recovery gases O 2 concentration when plotted against minimum oxygen saturation (p = 0.0419 100% O 2 , p = 0.7034 21% O 2 ). Collectively, these results suggest exhaled isoprene is dynamic in the laboratory ROBD setup and additional experimentation will be required to fully understand the dynamics of isoprene in response to acute hypoxic stress.

  4. Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure.

    PubMed

    Davranche, Karen; Casini, Laurence; Arnal, Pierrick J; Rupp, Thomas; Perrey, Stéphane; Verges, Samuel

    2016-10-01

    The present study aimed to assess specific cognitive processes (cognitive control and time perception) and hemodynamic correlates using functional near-infrared spectroscopy (fNIRS) during acute and prolonged high-altitude exposure. Eleven male subjects were transported via helicopter and dropped at 14 272 ft (4 350 meters) of altitude where they stayed for 4 days. Cognitive tasks, involving a conflict task and temporal bisection task, were performed at sea level the week before ascending to high altitude, the day of arrival (D0), the second (D2) and fourth (D4) day at high altitude. Cortical hemodynamic changes in the prefrontal cortex (PFC) area were monitored with fNIRS at rest and during the conflict task. Results showed that high altitude impacts information processing in terms of speed and accuracy. In the early hours of exposure (D0), participants displayed slower reaction times (RT) and decision errors were twice as high. While error rate for simple spontaneous responses remained twice that at sea level, the slow-down of RT was not detectable after 2 days at high-altitude. The larger fNIRS responses from D0 to D2 suggest that higher prefrontal activity partially counteracted cognitive performance decrements. Cognitive control, assessed through the build-up of a top-down response suppression mechanism, the early automatic response activation and the post-error adjustment were not impacted by hypoxia. However, during prolonged hypoxic exposure the temporal judgments were underestimated suggesting a slowdown of the internal clock. A decrease in cortical arousal level induced by hypoxia could consistently explain both the slowdown of the internal clock and the persistence of a higher number of errors after several days of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Effect of mexamine on the resistance of dogs to acute hypoxic hypoxia].

    PubMed

    Vasin, M V; Antipov, V V; Davydov, B I; Suvorov, N N

    1975-01-01

    As demonstrated in experiments staged on dogs mexamine hydrochloride, used in a dose of 20 mg/kg by the intraperiotoneal route 1.5 hours before the onset of acute hypoxic hypoxia increases the resistance of the organism to oxigen deficiency. Mexamine is capable of significantly intensity hypothermy in dogs during acute hypoxic hypoxia.

  6. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions.

    PubMed

    Deb, Sanjoy K; Gough, Lewis A; Sparks, S Andy; McNaughton, Lars R

    2018-03-01

    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H + ) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO 3 ) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO 2 % = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO 3 - ]) following NaHCO 3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm -1 of NaHCO 3 or a matched placebo of 0.21 g kg bm -1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3-178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3-9.9 kJ; g = 0.8) were enhanced with NaHCO 3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l -1 ; 95% CI 2.2-5.9; g = 1.8), while blood [HCO 3 - ] and pH remained elevated in the NaHCO 3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO 3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.

  7. Acute Hypoxic Stress Affects Migration Machinery of Tissue O2-Adapted Adipose Stromal Cells.

    PubMed

    Udartseva, Olga O; Lobanova, Margarita V; Andreeva, Elena R; Buravkov, Sergey V; Ogneva, Irina V; Buravkova, Ludmila B

    2016-01-01

    The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O 2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O 2 . Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O 2 , 24 h) on adipose tissue-derived MSC motility at tissue-related O 2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O 2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1 , and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.

  8. Acute Hypoxic Stress Affects Migration Machinery of Tissue O2-Adapted Adipose Stromal Cells

    PubMed Central

    Lobanova, Margarita V.; Andreeva, Elena R.

    2016-01-01

    The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4–7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury. PMID:28115943

  9. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination.

    PubMed

    Rofstad, Einar K; Gaustad, Jon-Vidar; Egeland, Tormod A M; Mathiesen, Berit; Galappathi, Kanthi

    2010-10-01

    Clinical studies have shown that patients with highly hypoxic primary tumors may have poor disease-free and overall survival rates. Studies of experimental tumors have revealed that acutely hypoxic cells may be more metastatic than normoxic or chronically hypoxic cells. In the present work, causal relations between acute cyclic hypoxia and metastasis were studied by periodically exposing BALB/c nu/nu mice bearing A-07 human melanoma xenografts to a low oxygen atmosphere. The hypoxia treatment consisted of 12 cycles of 10 min of 8% O(2) in N(2) followed by 10 min of air for a total of 4 hr, began on the first day after tumor cell inoculation and was given daily until the tumors reached a volume of 100 mm(3). Twenty-four hours after the last hypoxia exposure, the primary tumors were subjected to dynamic contrast-enhanced magnetic resonance imaging for assessment of blood perfusion before being resected and processed for immunohistochemical examinations of microvascular density and expression of proangiogenic factors. Mice exposed to acute cyclic hypoxia showed increased incidence of pulmonary metastases, and the primary tumors of these mice showed increased blood perfusion, microvascular density and vascular endothelial growth factor-A (VEGF-A) expression; whereas, the expression of interleukin-8, platelet-derived endothelial cell growth factor and basic fibroblast growth factor was unchanged. The increased pulmonary metastasis was most likely a consequence of hypoxia-induced VEGF-A upregulation, which resulted in increased angiogenic activity and blood perfusion in the primary tumor and thus facilitated tumor cell intravasation and hematogenous transport into the general circulation.

  10. Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men

    PubMed Central

    Teppema, Luc J; Nieuwenhuijs, Diederik; Sarton, Elise; Romberg, Raymonda; Olievier, Cees N; Ward, Denham S; Dahan, Albert

    2002-01-01

    We studied the effect of the antioxidants (AOX) ascorbic acid (2 g, I.V.) and α-tocopherol (200 mg, P.O.) on the depressant effect of subanaesthetic doses of halothane (0.11 % end-tidal concentration) on the acute isocapnic hypoxic ventilatory response (AHR), i.e. the ventilatory response upon inhalation of a hypoxic gas mixture for 3 min (leading to a haemoglobin saturation of 82 ± 1.8 %) in healthy male volunteers. In the first set of protocols, two groups of eight subjects each underwent a control hypoxic study, a halothane hypoxic study and finally a halothane hypoxic study after pretreatment with AOX (study 1) or placebo (study 2). Halothane reduced the AHR by more than 50 %, from 0.79 ± 0.31 to 0.36 ± 0.14 l min−1 %−1 in study 1 and from 0.79 ± 0.40 to 0.36 ± 0.19 l min−1 %−1 in study 2, P < 0.01 for both. Pretreatment with AOX prevented this depressant effect of halothane in the subjects of study 1 (AHR returning to 0.77 ± 0.32 l min−1 %−1, n.s. from control), whereas placebo (study 2) had no effect (AHR remaining depressed at 0.36 ± 0.27 l min−1 %−1, P < 0.01 from control). In a second set of protocols, two separate groups of eight subjects each underwent a control hypoxic study, a sham halothane hypoxic study and finally a sham halothane hypoxic study after pretreatment with AOX (study 3) or placebo (study 4). In studies 3 and 4, sham halothane did not modify the control hypoxic response, nor did AOX (study 3) or placebo (study 4). The 95 % confidence intervals for the ratio of hypoxic sensitivities, (AOX + halothane):halothane in study 1 and (AOX - sham halothane):sham halothane in study 3, were [1.7, 2.6] and [1.0, 1.2], respectively. Because the antioxidants prevented the reduction of the acute hypoxic response by halothane, we suggest that this depressant effect may be caused by reactive species produced by a reductive metabolism of halothane during hypoxia or that a change in redox state of carotid body cells by the

  11. Comparison of live high: train low altitude and intermittent hypoxic exposure.

    PubMed

    Humberstone-Gough, Clare E; Saunders, Philo U; Bonetti, Darrell L; Stephens, Shaun; Bullock, Nicola; Anson, Judith M; Gore, Christopher J

    2013-01-01

    Live High:Train Low (LHTL) altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily) Intermittent Hypoxic Exposure (IHE), has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass), maximal oxygen consumption (VO2max), velocity at VO2max (vVO2max), time to exhaustion (TTE), running economy, maximal blood lactate concentration ([La]) and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia), IHE (10.2 h of hypoxia) or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male). There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits) increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes. Key PointsDespite a clear 3.2% increase in haemoglobin mass following 17 days of Live High: Train Low altitude training, no change in maximal aerobic capacity was observed.There were positive changes in running economy and the lactate-speed relationship at submaximal running speeds

  12. Effects of chronic normobaric hypoxic and hypercapnic exposure in rats: Prevention of experimental chronic mountain sickness by hypercapnia

    NASA Astrophysics Data System (ADS)

    Lincoln, B.; Bonkovsky, H. L.; Ou, Lo-Chang

    1987-09-01

    A syndrome of experimental chronic mountain sickness can be produced in the Hilltop strain of Sprague-Dawley rats by chronic hypobaric hypoxic exposure. This syndrome is characterized by polycythemia, plasma hemoglobinemia, pulmonary hypertension and right ventricular hypertrophy with eventual failure and death. It has generally been assumed that these changes are caused by chronic hypoxemia, not by hypobaric exposure per se. We have now confirmed this directly by showing that chronic normobaric hypoxic exposure (10.5% O2) produces similar hematologic and hemodynamic changes. Further, the addition of hypercapnic exposure to the hypoxic exposure blunted or prevented the effects of the hypoxic exposure probably by stimulating respiration, thus increasing the rate of oxygen delivery to the cells. Changes in the rate-controlling enzymes of hepatic heme metabolism, 5-aminolevulinate synthase and heme oxygenase, and in cytochrome(s) P-450, the major hepatic hemoprotein(s), were also measured in hypoxic and hypercapnic rats. Hypoxia decreased 5-aminolevulinate synthase and increased cytochrome(s) P-450, probably by increasing the size of a “regulatory” heme pool within hepatocytes. These changes were also prevented by the addition of hypercapnic to hypoxic exposure.

  13. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. Copyright © 2015 the American Physiological Society.

  14. A pig model of acute right ventricular afterload increase by hypoxic pulmonary vasoconstriction.

    PubMed

    Knai, Kathrine; Skjaervold, Nils Kristian

    2017-01-03

    The aim of this study was to construct a non-invasive model for acute right ventricular afterload increase by hypoxic pulmonary vasoconstriction. Intact animal models are vital to improving our understanding of the pathophysiology of acute right ventricular failure. Acute right ventricular failure is caused by increased afterload of the right ventricle by chronic or acute pulmonary hypertension combined with regionally or globally reduced right ventricular contractile capacity. Previous models are hampered by their invasiveness; this is unfortunate as the pulmonary circulation is a low-pressure system that needs to be studied in closed chest animals. Hypoxic pulmonary vasoconstriction is a mechanism that causes vasoconstriction in alveolar vessels in response to alveolar hypoxia. In this study we explored the use of hypoxic pulmonary vasoconstriction as a means to increase the pressure load on the right ventricle. Pulmonary hypertension was induced by lowering the FiO 2 to levels below the physiological range in eight anesthetized and mechanically ventilated pigs. The pigs were monitored with blood pressure measurements and blood gases. The mean pulmonary artery pressures (mPAP) of the animals increased from 18.3 (4.2) to 28.4 (4.6) mmHg and the pulmonary vascular resistance (PVR) from 254 (76) dyns/cm 5 to 504 (191) dyns/cm 5 , with a lowering of FiO 2 from 0.30 to 0.15 (0.024). The animals' individual baseline mPAPs varied substantially as did their response to hypoxia. The reduced FiO 2 level yielded an overall lowering in oxygen offer, but the global oxygen consumption was unaltered. We showed in this study that the mPAP and the PVR could be raised by approximately 100% in the study animals by lowering the FiO 2 from 0.30 to 0.15 (0.024). We therefore present a novel method for minimally invasive (closed chest) right ventricular afterload manipulations intended for future studies of acute right ventricular failure. The method should in theory be reversible

  15. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    PubMed

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  16. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes

    PubMed Central

    Bevans-Fonti, Shannon; Drager, Luciano F.; Shin, Mi-Kyung; Polotsky, Vsevolod Y.

    2011-01-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O2 fraction (FiO2) 21–5%, 60/h], IH 12 times/h (FiO2 5% for 15 s, 12/h), sustained hypoxia (SH; FiO2 10%), or normoxia while fasting. Tissue oxygen partial pressure (PtiO2) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of PtiO2 were attenuated in muscle and abolished in fat. In obese mice, baseline liver PtiO2 was lower than in lean mice, whereas muscle and fat PtiO2 did not differ. During IH, PtiO2 was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens. PMID:21737828

  17. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    PubMed

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. β-Adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans

    PubMed Central

    Hopkins, Susan R; Bogaard, Harm J; Niizeki, Kyuichi; Yamaya, Yoshiki; Ziegler, Michael G; Wagner, Peter D

    2003-01-01

    Acute hypoxia increases heart rate (HR) and cardiac output () at a given oxygen consumption () during submaximal exercise. It is widely believed that the underlying mechanism involves increased sympathetic activation and circulating catecholamines acting on cardiac β receptors. Recent evidence indicating a continued role for parasympathetic modulation of HR during moderate exercise suggests that increased parasympathetic withdrawal plays a part in the increase in HR and during hypoxic exercise. To test this, we separately blocked the β-sympathetic and parasympathetic arms of the autonomic nervous system (ANS) in six healthy subjects (five male, one female; mean ± s.e.m. age = 31.7 ± 1.6 years, normoxic maximal () = 3.1 ± 0.3 l min−1) during exercise in conditions of normoxia and acute hypoxia (inspired oxygen fraction = 0.125) to . Data were collected on different days under the following conditions: (1)control, (2) after 8.0 mg propranolol I.V. and (3) after 0.8 mg glycopyrrolate I.V. was measured using open-circuit acetylene uptake. Hypoxia increased venous [adrenaline] and [noradrenaline] but not [dopamine] at a given (P < 0.05, P < 0.01 and P = 0.2, respectively). HR/ and / increased during hypoxia in all three conditions (P < 0.05). Unexpectedly, the effects of hypoxia on HR and were not significantly different from control with either β-sympathetic or parasympathetic inhibition. These data suggest that although acute exposure to hypoxia increases circulating [catecholamines], the effects of hypoxia on HR and do not necessarily require intact cardiac muscarinic and β receptors. It may be that cardiac α receptors play a primary role in elevating HR and during hypoxic exercise, or perhaps offer an alternative mechanism when other ANS pathways are blocked. PMID:12766243

  19. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    PubMed

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.

  20. Prediction of Susceptibility to Acute Mountain Sickness Using Hypoxia-Induced Intrapulmonary Arteriovenous Shunt and Intracardiac Shunt Fractions

    DTIC Science & Technology

    2013-10-01

    echocardiography to determine bubble/shunt scores. We will also use nuclear medicine imaging to determine shunt fractions following acute exposures to... echocardiography while breathing hypoxic gas mixtures. – TASK COMPLETED. For Task #1.3 “Quantify shunt during hypoxic exposure with SPECT CT – PFO...subjects.” 19 PFO+ subjects have completed saline contrast echocardiography while breathing hypoxic gas mixtures for 30 min. One PFO+ subject that had

  1. Periodicity during hypercapnic and hypoxic stimulus is crucial in distinct aspects of phrenic nerve plasticity.

    PubMed

    Stipica, I; Pavlinac Dodig, I; Pecotic, R; Dogas, Z; Valic, Z; Valic, M

    2016-01-01

    This study was undertaken to determine pattern sensitivity of phrenic nerve plasticity in respect to different respiratory challenges. We compared long-term effects of intermittent and continuous hypercapnic and hypoxic stimuli, and combined intermittent hypercapnia and hypoxia on phrenic nerve plasticity. Adult, male, urethane-anesthetized, vagotomized, paralyzed, mechanically ventilated Sprague-Dawley rats were exposed to: acute intermittent hypercapnia (AIHc or AIHc(O2)), acute intermittent hypoxia (AIH), combined intermittent hypercapnia and hypoxia (AIHcH), continuous hypercapnia (CHc), or continuous hypoxia (CH). Peak phrenic nerve activity (pPNA) and burst frequency were analyzed during baseline (T0), hypercapnia or hypoxia exposures, at 15, 30, and 60 min (T60) after the end of the stimulus. Exposure to acute intermittent hypercapnia elicited decrease of phrenic nerve frequency from 44.25+/-4.06 at T0 to 35.29+/-5.21 at T60, (P=0.038, AIHc) and from 45.5+/-2.62 to 37.17+/-3.68 breaths/min (P=0.049, AIHc(O2)), i.e. frequency phrenic long term depression was induced. Exposure to AIH elicited increase of pPNA at T60 by 141.0+/-28.2 % compared to baseline (P=0.015), i.e. phrenic long-term facilitation was induced. Exposure to AIHcH, CHc, or CH protocols failed to induce long-term plasticity of the phrenic nerve. Thus, we conclude that intermittency of the hypercapnic or hypoxic stimuli is needed to evoke phrenic nerve plasticity.

  2. [Effects of hypoxic acclimatization on myocardial sarcoplasmic reticulum ATPase and 45Ca2+ uptake in rats].

    PubMed

    Long, Chao-liang; Zhang, Yan-fang; Yin, Zhao-yun; Wang, Hai

    2005-08-01

    To study the effect of acute hypoxia and hypoxic acclimatization on myocardial function of rats. Eighteen male Wistar rats were randomly divided into three groups: normoxic control, acute hypoxia and intermittent hypoxic acclimatization group (n=6). After being exposed to hypoxia (8000 m) for 4 h before and after intermittent hypoxic acclimatization (3000 m and 5000 m, 14 d respectively, 4 h/d), the rats were decapitated and then myocardial sarcoplasmic reticulum (SR) were derived from cardiac muscles. Activities of Na+, K(+)-ATPase, Ca2+, Mg2(+)-ATPase in SR, phosphorylation of phospholamban (PLB) and the ability of 45Ca2+ uptake in SR were observed in all these three groups. 1) Hypoxia had no effects on the activity of Na+, K(+)-ATPase in rats myocardial SR of rats. 2) Compared with normoxic control rats, the activity of Ca2+, Mg2(+)-ATPase in myocardial SR of rats after acute hypoxia was reduced significantly (P<0.01). After intermittent hypoxic acclimatization, its activity increased significantly as compared with that of acute hypoxic rats (P<0.01). 3) The phosphorylation of PLB in acute hypoxic rats was reduced significantly compared with normoxic control rats. After intermittent hypoxic acclimatization, its phosphorylation was increased significantly compared with that of acute hypoxic rats. It suggests that hypoxic acclimatization could alleviate the inhibition of calcium pump. 4) The ability of 45Ca2+ uptake of SR in acute hypoxic rats was decreased significantly. After hypoxic acclimatization, its ability was strengthened significantly. These results suggest that the increased function of myocardial SR calcium pump, the strengthened phosphorylation of PLB to alleviate the inhibition of calcium pump and the increased function of Ca2+ transport in SR are the mechanisms of hypoxic acclimatization protecting cardiac functions from injury induced by severe hypoxia.

  3. Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins.

    PubMed

    Polymeropoulos, Elias T; Elliott, Nicholas G; Frappell, Peter B

    2017-11-01

    Hypoxia is common in aquatic environments and has substantial effects on development, metabolism and survival of aquatic organisms. To understand the physiological effects of hypoxia and its dependence on temperature, metabolic rate ( [Formula: see text] ) and cardiorespiratory function were studied in response to acute hypoxia (21→5kPa) at different measurement temperatures (T a ; 4, 8 and 12°C) in Salmo salar alevins that were incubated under normoxic conditions (P O 2 =21kPa) or following hypoxic acclimation (P O 2 =10kPa) as well as two different temperatures (4°C or 8°C). Hypoxic acclimation lead to a developmental delay manifested through slower yolk absorption. The general response to acute hypoxia was metabolic depression (~60%). Hypoxia acclimated alevins had higher [Formula: see text] s when measured in normoxia than alevins acclimated to normoxia. [Formula: see text] s were elevated to the same degree (~30% per 4°C change) irrespective of T a . Under severe, acute hypoxia (~5kPa) and irrespective of T a or acclimation, [Formula: see text] s were similar between most groups. This suggests that despite different acclimation regimes, O 2 transport was limited to the same degree. While cardiorespiratory function (heart-, ventilation rate) was unchanged in response to acute hypoxia after normoxic acclimation, hypoxic acclimation led to cardiorespiratory changes predominantly in severe hypoxia, indicating earlier onset and plasticity of cardiorespiratory control mechanisms. Although [Formula: see text] in normoxia was higher after hypoxic acclimation, at the respective acclimation P O 2 , [Formula: see text] was similar in normoxia and hypoxia acclimated alevins. This is indicative of metabolic compensation to an intrinsic [Formula: see text] at the acclimation condition in hypoxia-acclimated alevins after re-exposure to normoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Adaptation of skeletal muscle energy metabolism to repeated hypoxic-normoxic exposures and drug treatment.

    PubMed

    Pastoris, O; Dossena, M; Gorini, A; Vercesi, L; Benzi, G

    1985-03-01

    Muscular glycolytic fuels, intermediates and end-products (glycogen, glucose, glucose-6-phosphate, pyruvate, lactate), Krebs cycle intermediates (citrate, alpha-ketoglutarate, succinate, malate), related free amino acids (glutamate, alanine), ammonia, energy store (creatine phosphate), energy mediators (ATP, ADP, AMP) and energy charge potential were evaluated. Furthermore the maximum rate (Vmax) of the following muscular enzyme activities was evaluated in the crude extract and/or mitochondrial fraction: for the anaerobic glycolytic pathway: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; for the tricarboxylic acid cycle: citrate synthase, malate dehydrogenase; for the electron transfer chain: total NADH cytochrome c reductase, cytochrome oxidase. The rat gastrocnemius muscles were analyzed in normoxia and after repeated, alternate hypoxic and normoxic exposures (12 hours of hypoxia daily; for 5 days). Naftidrofuryl was administered daily at three different doses: 10, 15 and 22.5 mg/kg i.m., 30 min before the beginning of the experimental hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular contents of creatine phosphate, citrate, alpha-ketoglutarate and glutamate. This adaptation occurred in absence of significant changes in the Vmax of the muscle enzymes tested. By naftidrofuryl treatment, in gastrocnemius muscle from hypoxic rats both alpha-ketoglutarate and creatine phosphate contents maintained normal values, while glutamate concentration remained reduced to subnormal values. With the exception of hexokinase, naftidrofuryl treatment did not modify the Vmax of marker enzymes related to energy transduction.

  5. Molecular and biochemical responses of hypoxia exposure in Atlantic croaker collected from hypoxic regions in the northern Gulf of Mexico.

    PubMed

    Rahman, Md Saydur; Thomas, Peter

    2017-01-01

    A major impact of global climate change has been the marked increase worldwide in the incidence of coastal hypoxia (dissolved oxygen, DO<2.0 mg l-1). However, the extent of hypoxia exposure to motile animals such as fish collected from hypoxic waters as well as their molecular and physiological responses to environmental hypoxia exposure are largely unknown. A suite of potential hypoxia exposure biomarkers was evaluated in Atlantic croaker collected from hypoxic and normoxic regions in the northern Gulf of Mexico (nGOM), and in croaker after laboratory exposure to hypoxia (DO: 1.7 mg l-1). Expression of hypoxia-inducible factor-α, hif-α; neuronal nitric oxide synthase, nNOS; and insulin-like growth factor binding protein, igfbp mRNAs and protein carbonyl (PC, an oxidative stress indicator) content were elevated several-fold in brain and liver tissues of croaker collected from nGOM hypoxic sites. All of these molecular and biochemical biomarkers were also upregulated ~3-10-fold in croaker brain and liver tissues within 1-2 days of hypoxia exposure in controlled laboratory experiments. These results suggest that hif-αs, nNOS and igfbp-1 transcripts and PC contents are useful biomarkers of environmental hypoxia exposure and some of its physiological effects, making them important components for improved assessments of long-term impacts of environmental hypoxia on fish populations.

  6. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    PubMed Central

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  7. Preacclimatization in hypoxic chambers for high altitude sojourns.

    PubMed

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  8. Deoxycytidine kinase is downregulated under hypoxic conditions and confers resistance against cytarabine in acute myeloid leukaemia.

    PubMed

    Degwert, Nicole; Latuske, Emily; Vohwinkel, Gabi; Stamm, Hauke; Klokow, Marianne; Bokemeyer, Carsten; Fiedler, Walter; Wellbrock, Jasmin

    2016-09-01

    Leukaemia initiating cells reside within specialised niches in the bone marrow where they undergo complex interactions with different stromal cell types. The bone marrow niche is characterised by a low oxygen content resulting in high expression of hypoxia-inducible factor 1 α in leukaemic cells conferring a negative prognosis to patients with acute myeloid leukaemia (AML). In the current study, we investigated the impact of hypoxic vs. normoxic conditions on the sensitivity of AML cell lines and primary AML blasts to cytarabine. AML cells cultured under 6% oxygen were significantly more resistant against cytarabine compared to cells cultured under normoxic conditions in proliferation and colony-formation assays. Interestingly upon cultivation under hypoxia, the expression of the cytarabine-activating enzyme deoxycytidine kinase was downregulated in all analysed AML cell lines and primary AML samples representing a possible mechanism for resistance to chemotherapy. Furthermore, the downregulation of deoxycytidine kinase could be associated with hypoxia-inducible factor 1 α as treatment with its inhibitor BAY87-2243 hampered the downregulation of deoxycytidine kinase expression under hypoxic conditions. In conclusion, our data reveal that hypoxia-induced downregulation of deoxycytidine kinase represents one stroma-cell-independent mechanism of drug resistance to cytarabine in acute myeloid leukaemia. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. U.S. EPA'S ACUTE REFERENCE EXPOSURE METHODOLOGY FOR ACUTE INHALATION EXPOSURES

    EPA Science Inventory

    The US EPA National Center for Environmental Assessment has developed a methodology to derive acute inhalation toxicity benchmarks, called acute reference exposures (AREs), for noncancer effects. The methodology provides guidance for the derivation of chemical-specific benchmark...

  10. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain

    PubMed Central

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi

    2008-01-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity. PMID:19105051

  11. The effect of short-term intermittent hypoxic exposure on heart rate variability in a sedentary population.

    PubMed

    Lizamore, C A; Kathiravel, Y; Elliott, J; Hellemans, J; Hamlin, M J

    2016-03-01

    While the effects of instantaneous, single-bout exposure to hypoxia have been well researched, little is known about the autonomic response during, or as an adaptation to, repeated intermittent hypoxic exposure (IHE) in a sedentary population. Resting heart rate variability (HRV) and exercise capacity was assessed in 16 participants (8 receiving IHE, [Hyp] and 8 receiving a placebo treatment [C]) before and after a 4-week IHE intervention. Heart rate variability was also measured during an IHE session in the last week of the intervention. Post-intervention, the root mean squared successive difference (rMSSD) increased substantially in Hyp (71.6 ± 52.5%, mean change ± 90% confidence limits) compared to C suggesting an increase in vagal outflow. However, aside from a likely decrease in submaximal exercise heart rate in the Hyp group (-5.0 ± 6.4%) there was little evidence of improved exercise capacity. During the week 4 IHE measurement, HRV decreased during the hypoxic exposure (reduced R-R interval: -7.5 ± 3.2%; and rMSSD: -24.7 ± 17.3%) suggesting a decrease in the relative contribution of vagal activity. In summary, while 4 weeks of IHE is unlikely to improve maximal exercise capacity, it may be a useful means of increasing HRV in people unable to exercise.

  12. Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia.

    PubMed

    Crossley, Dane A; Altimiras, Jordi

    2005-01-01

    Chronic hypoxic incubation is a common tool used to address the plasticity of morphological and physiological characteristics during vertebrate development. In this study chronic hypoxic incubation of embryonic American alligators resulted in both morphological (mass) and physiological changes. During normoxic incubation embryonic mass, liver mass and heart mass increased throughout the period of study, while yolk mass fell. Chronic hypoxia (10%O2) resulted in a reduced embryonic mass at 80% and 90% of incubation. This reduction in embryonic mass was accompanied by a relative enlargement of the heart at 80% and 90% of incubation, while relative embryonic liver mass was similar to the normoxic group. Normoxic incubated alligators maintained a constant heart rate during the period of study, while mean arterial pressure rose continuously. Both levels of hypoxic incubation (15% and 10%O2) resulted in a lower mean arterial pressure at 90% of incubation, while heart rate was lower in the 10%O2 group only. Acute (5 min) exposure to 10%O2 in the normoxic group resulted in a biphasic response, with a normotensive bradycardia occurring during the period of exposure and a hypertensive tachycardic response occurring during recovery. The embryos incubated under hypoxia also showed a blunted response to acute hypoxic stress. In conclusion, the main responses elicited by chronic hypoxic incubation, namely, cardiac enlargement, blunted hypoxic response and systemic vasodilation, may provide chronically hypoxic embryos with a new physiological repertoire for responding to hypoxia.

  13. The Effects of Acidic and Hypoxic Conditions on the Estuarine ...

    EPA Pesticide Factsheets

    The interactive and combined effects of coastal acidification and hypoxia on estuarine species is an increasing concern as these stressors change concomitantly. There is a need to understand how these environmental factors interact, as well as their effect on estuarine organisms. A method was developed for this research whereby four exposure treatments were created simultaneously: ambient, elevated pCO2, (~1300µatm, IPCC RCP 8.5 scenario), hypoxic (low dissolved oxygen, ~2 mg/L), and combined elevated pCO2 with low dissolved oxygen. An exposure with variant water quality parameters allows for the comparative study of organismal survival response to acidified and hypoxic conditions. The goal of this research is to determine acute species sensitivity, which is determined by survivability, to the combined effects of elevated pCO2 and hypoxia over a 5 day period, as well as possible differences in sensitivity between life-stages. Preliminary research on sheepshead minnow and mysid shrimp, indicates that mysid shrimp were tolerant of both elevated pCO2 and low DO exposure regardless of life-stage, whereas sheepshead minnows were more sensitive to the combined effects of acidification and hypoxia. This work is part of the first phase of the NECAH project, which is identifying species that are sensitive to the combined effects of acidification and hypoxia. The project describes the initial work on the first 2 species selected for testing and the final product will be

  14. Ethyl pyruvate inhibits hypoxic pulmonary vasoconstriction and attenuates pulmonary artery cytokine expression

    PubMed Central

    Tsai, Ben M.; Lahm, Tim; Morrell, Eric D.; Crisostomo, Paul R.; Markel, Troy; Wang, Meijing; Meldrum, Daniel R.

    2009-01-01

    Hypoxic pulmonary vasoconstriction is a common consequence of acute lung injury and may be mediated by increased local production of proinflammatory cytokines. Ethyl pyruvate is a novel anti-inflammatory agent that has been shown to downregulate proinflammatory genes following hemorrhagic shock; however, its effects on hypoxic pulmonary vasoconstriction are unknown. We hypothesized that ethyl pyruvate would inhibit hypoxic pulmonary vasoconstriction and downregulate pulmonary artery cytokine expression during hypoxia. To study this, isometric force displacement was measured in isolated rat pulmonary artery rings (n=8/group) during hypoxia (95% N2/5% CO2) with or without prior ethyl pyruvate (10 mM) treatment. Following 60 minutes of hypoxia, pulmonary artery rings were analyzed for TNF-α and IL-1 mRNA via RT-PCR. Ethyl pyruvate inhibited hypoxic pulmonary artery contraction (4.49±2.32% vs. 88.80±5.68% hypoxia alone) and attenuated the hypoxic upregulation of pulmonary artery TNF and IL-1 mRNA (p<0.05). These data indicate that: 1) hypoxia increases pulmonary artery vasoconstriction and proinflammatory cytokine gene expression; 2) ethyl pyruvate decreases hypoxic pulmonary vasoconstriction and downregulates hypoxia-induced pulmonary artery proinflammatory cytokine gene expression; and 3) ethyl pyruvate may represent a novel therapeutic adjunct in the treatment of acute lung injury. PMID:17574585

  15. Abundance of Plasma Antioxidant Proteins Confers Tolerance to Acute Hypobaric Hypoxia Exposure

    PubMed Central

    Padhy, Gayatri; Sethy, Niroj Kumar; Ganju, Lilly

    2013-01-01

    Abstract Padhy, Gayatri, Niroj Kumar Sethy, Lilly Ganju, and Kalpana Bhargava. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 14:289–297, 2013—Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies. PMID:24067188

  16. Hypoxic ventilatory response in Tac1-/- neonatal mice following exposure to opioids.

    PubMed

    Berner, J; Shvarev, Y; Zimmer, A; Wickstrom, R

    2012-12-01

    Morphine is the dominating analgetic drug used in neonates, but opioid-induced respiratory depression limits its therapeutic use. In this study, we examined acute morphine effects on respiration during intermittent hypoxia in newborn Tac1 gene knockout mice (Tac1-/-) lacking substance P and neurokinin A. In vivo, plethysmography revealed a blunted hypoxic ventilatory response (HVR) in Tac1-/- mice. Morphine (10 mg/kg) depressed the HVR in wild-type animals through an effect on respiratory frequency, whereas it increased tidal volumes in Tac1-/- during hypoxia, resulting in increased minute ventilation. Apneas were reduced during the first hypoxic episode in both morphine-exposed groups, but were restored subsequently in Tac1-/- mice. Morphine did not affect ventilation or apnea prevalence during baseline conditions. In vitro, morphine (50 nM) had no impact on anoxic response of brain stem preparations of either strain. In contrast, it suppressed the inspiratory rhythm during normoxia and potentiated development of posthypoxic neuronal arrest, especially in Tac1-/-. Thus this phenotype has a higher sensitivity to the depressive effects of morphine on inspiratory rhythm generation, but morphine does not modify the reactivity to oxygen deprivation. In conclusion, although Tac1-/- mice are similar to wild-type animals during normoxia, they differed by displaying a reversed pattern with an improved HVR during intermittent hypoxia both in vivo and in vitro. These data suggest that opioids and the substance P-ergic system interact in the HVR, and that reducing the activity in the tachykinin system may alter the respiratory effects of opioid treatment in newborns.

  17. Temperate Performance Benefits after Heat, but Not Combined Heat and Hypoxic Training.

    PubMed

    McCleave, Erin L; Slattery, Katie M; Duffield, Rob; Saunders, Philo U; Sharma, Avish P; Crowcroft, Stephen J; Coutts, Aaron J

    2017-03-01

    Independent heat and hypoxic exposure can enhance temperate endurance performance in trained athletes, although their combined effects remain unknown. This study examined whether the addition of heat interval training during "live high, train low" (LHTL) hypoxic exposure would result in enhanced performance and physiological adaptations as compared with heat or temperate training. Twenty-six well-trained runners completed 3 wk of interval training assigned to one of three conditions: 1) LHTL hypoxic exposure plus heat training (H + H; 3000 m for 13 h·d, train at 33°C, 60% relative humidity [RH]), 2) heat training with no hypoxic exposure (HOT, live at <600 m and train at 33°C, 60% RH), or 3) temperate training with no hypoxic exposure (CONT; live at <600 m and train at 14°C, 55% RH). Performance 3-km time-trials (3-km TT), running economy, hemoglobin mass, and plasma volume were assessed using magnitude-based inferences statistical approach before (Baseline), after (Post), and 3 wk (3wkP) after exposure. Compared with Baseline, 3-km TT performance was likely increased in HOT at 3wkP (-3.3% ± 1.3%; mean ± 90% confidence interval), with no performance improvement in either H + H or CONT. Hemoglobin mass increased by 3.8% ± 1.8% at Post in H + H only. Plasma volume in HOT was possibly elevated above H + H and CONT at Post but not at 3wkP. Correlations between changes in 3-km TT performance and physiological adaptations were unclear. Incorporating heat-based training into a 3-wk training block can improve temperate performance at 3 wk after exposure, with athlete psychology, physiology, and environmental dose all important considerations. Despite hematological adaptations, the addition of LHTL to heat interval training has no greater 3-km TT performance benefit than temperate training alone.

  18. Chemical composition of rainbow trout urine following acute hypoxic stress

    USGS Publications Warehouse

    Hunn, Joseph B.

    1969-01-01

    Rainbow trout (Salmo gairdnerii) were anesthetized with MS-222, catheterized, and introduced into urine collecting chambers. Twenty-four hours after introduction, a 4-hour accumulation of urine was collected to serve as the control. Water flow to the chambers was then discontinued for 30 minutes during which the oxygen content of the water exiting in the chamber dropped from 4.9 to 2.8 mg/l. Following this hypoxic stress fresh water was restored and accumulated urine samples were taken for analysis at 1, 4, and 20 hours post-hypoxic stress. Rainbow trout excrete abnormally high concentrations of Na, K, Mg, Cl, and inorganic PO4 following hypoxia.

  19. Age specific effect of MK-801 on hypoxic body temperature regulation in rats.

    PubMed

    Baig, Mirza Shafiulla; Joseph, Vincent

    2008-02-01

    Hypoxic exposure produces a consistent decrease of rectal temperature (Tb), which is recognized as a potent protective response. While some of the neural mechanisms underlying this response have recently been described, it remains poorly known how these mechanisms evolve during post-natal development. We recently reported that in rat pups NMDA glutamate receptor limits Tb drop upon hypoxic exposure, an effect that has not been reported by others in adult rats. Accordingly, we tested the hypothesis that the implication of NMDA receptors on temperature control during hypoxic exposure evolves during development. To this aim, we evaluated the hypoxic (30 min - 12% O(2)) responses of Tb, metabolic rate, and ventilation in rats after injection of vehicle, or the NMDA receptor antagonist MK-801, at different ages (post-natal days 4, 10, 20 and 2-3 month-old - P4, P10, P20 and P60). MK-801 amplified the magnitude of the hypoxic-induced Tb drop in P4, P10 and P20 rats, but this effect was not apparent in adults. In P20 rats MK-801 tripled the hypoxic induced Tb drop, which was 0.5 degrees C in control and 1.4 degrees C in treated rats (p<0.0001). This effect was specific to temperature regulation, and was not accompanied by similar changes of other recorded parameters. MK-801 induced a significant decrease of the hypoxic ventilatory response in adults only. We conclude that NMDA glutamate receptor acts as a counter-regulatory factor that limits the hypoxic-induced drop of rectal temperature during post-natal development in rats.

  20. Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.

    PubMed

    Xie, Hui-Chun; Li, Jin-Gang; He, Jian-Ping

    2017-05-04

    With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results

  1. Development of acute exposure guideline levels for airborne exposures to hazardous substances.

    PubMed

    Krewski, Daniel; Bakshi, Kulbir; Garrett, Roger; Falke, Ernest; Rusch, George; Gaylor, David

    2004-04-01

    Hazardous substances can be released into the atmosphere due to industrial and transportation accidents, fires, tornadoes, earthquakes, and terrorists, thereby exposing workers and the nearby public to potential adverse health effects. Various enforceable guidelines have been set by regulatory agencies for worker and ambient air quality. However, these exposure levels generally are not applicable to rare lifetime acute exposures, which possibly could occur at high concentrations. Acute exposure guideline levels (AEGLs) provide estimates of concentrations for airborne exposures for an array of short durations that possibly could cause mild (AEGL-1), severe, irreversible, potentially disabling adverse health effects (AEGL-2), or life threatening effects (AEGL-3). These levels can be useful for emergency responders and planners in reducing or eliminating potential risks to the public. Procedures and methodologies for deriving AEGLs are reviewed in this paper that have been developed in the United States, with direct input from international representatives of OECD member-countries, by the National Advisory Committee for Acute Exposure Guidelines for Hazardous Substances and reviewed by the National Research Council. Techniques are discussed for the extrapolation of effects across different exposure durations. AEGLs provide a viable approach for assisting in the prevention, planning, and response to acute airborne exposures to toxic agents.

  2. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins

    PubMed Central

    Li, Jianyu; Qi, Yuting; Liu, Hui; Cui, Ying; Zhang, Li; Gong, Haiying; Li, Yaxiao; Li, Lingzhi; Zhang, Yongliang

    2013-01-01

    Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production. PMID:25206614

  3. The Syndrome of Delayed Post-Hypoxic Leukoencephalopathy

    PubMed Central

    Shprecher, David; Mehta, Lahar

    2010-01-01

    Delayed post-hypoxic leukoencephalopathy (DPHL) is a demyelinating syndrome characterized by acute onset of neuropsychiatric symptoms days to weeks following apparent recovery from coma after a period of prolonged cerebral hypo-oxygenation. It is diagnosed, after excluding other potential causes of delirium, with a clinical history of carbon monoxide poisoning, narcotic overdose, myocardial infarction, or another global cerebral hypoxic event. The diagnosis can be supported by neuroimaging evidence of diffuse hemispheric demyelination sparing cerebellar and brainstem tracts, or by an elevated cerebrospinal fluid myelin basic protein. Standard or hyperbaric oxygen following CO poisoning may reduce the likelihood of DPHL or other neurologic sequelae. Bed rest and avoidance of stressful procedures for the first 10 days following any prolonged hypoxic event may also lower the risk. Gradual recovery over a 3 to 12 month period is common, but impaired attention or executive function, parkinsonism, or corticospinal tract signs can persist. Stimulants, amantadine or levodopa may be considered for lasting cognitive or parkinsonian symptoms. Anticipation and recognition of DPHL should lead to earlier and more appropriate utilization of health care services. PMID:20166270

  4. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Brendel, K

    1987-09-15

    The innate susceptibility of renal cell types to these agents was investigated using precision-cut rabbit renal cortical slices made perpendicular to the cortical-papillary axis. Slices were incubated in DME/F12 medium containing 10 microM, 100 microM, or 1 mM concentrations of either metal for 12 hr or in Krebs-Hepes buffer gassed with nitrogen (100%) for 0.75 to 5 hr of hypoxic exposure. To simulate postischemic reperfusion, some slices were transferred to vessels gassed with oxygen after an initial hypoxic period. Mercuric chloride (100 microM) exposure resulted in damage to the straight regions of proximal tubules by 12 hr leaving convoluted regions unaffected. Hypoxia (2.25 hr) and potassium dichromate (100 microM for 12 hr) both caused injury to the convoluted proximal tubules without affecting straight proximal tubular regions. Mercury concentrations of 10 microM and 1 mM had no effect or injured all cell types within the slice, respectively. Similar results were observed for hypoxic periods less than 1.5 hr or greater than 3 hr of exposure. Potassium dichromate had no measurable affect at 10 microM, but at 1 mM focal lesions were observed after 4 hr of exposure, and by 12 hr all cell types within the slice were affected. Intracellular potassium content normalized to DNA correlated well, but always preceded the pathological lesions observed. These results demonstrate that injury to specific regions of the proximal tubule by these agents relates to an innate susceptibility of the intoxicated cell type independent of physiologic feedback or blood delivery patterns proposed as mechanisms of selective injury from in vivo studies.

  5. Circadian and Sex Differences After Acute High-Altitude Exposure: Are Early Acclimation Responses Improved by Blue Light?

    PubMed

    Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés

    2015-12-01

    The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia.

    PubMed

    Shao, Guo; Gao, Cui-Ying; Lu, Guo-Wei

    2005-01-01

    This work aims at investigating the effects of hypoxic preconditioning on hypoxia-inducible factor-1 alpha (HIF-1alpha) expression in the hippocampus of mice during acute and repeated hypoxic exposures. The mice were randomly divided into three groups and exposed, respectively, to hypoxia for 4 runs (group H4), 1 run (group H1), and 0 run (group H0). Reverse transcription-polymerase chain reaction (RT-PCR), Western blot, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation were used to examine the HIF-1alpha responses in the mouse hippocampus following exposure to hypoxia. The tolerance of mice to hypoxia increased significantly following acute and repetitive exposure to autoprogressive hypoxia. Total mRNA, total protein, and nuclear protein were extracted from the hippocampus for RT-PCR, Western blot, and EMSA, respectively. The HIF-1alpha mRNA levels were found to be increased in group H1 and decreased in group H4. The HIF-1alpha protein levels and HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. One of the HIF-1 target genes, vascular endothelial growth factor, increased in group H4. HIF-1 activation is thought to be involved in the protection of the brain of hypoxic preconditioned mice. Copyright 2005 S. Karger AG, Basel

  7. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  8. Hypobaric hypoxic cerebral insults: the neurological consequences of going higher.

    PubMed

    Maa, Edward H

    2010-01-01

    As increasing numbers of people live, work, and play at high altitudes, awareness of the neurological consequences of hypobaric hypoxic environments becomes paramount. Despite volumes of studies examining the pathophysiology of altitude sickness, the underlying mechanisms of the spectrum of altitude related illnesses is still elusive. High altitude headache, acute mountain sickness, high altitude cerebral edema and other neurological presentations including sleep disturbances and seizures at high altitude are reviewed. As our knowledge advances in the field of altitude physiology, the clinical and research techniques developed may help our understanding of hypoxic brain injury in general.

  9. Fit for high altitude: are hypoxic challenge tests useful?

    PubMed

    Matthys, Heinrich

    2011-02-28

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  10. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    PubMed Central

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during

  11. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    PubMed

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The

  12. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats.

    PubMed

    Richter, D W; Schmidt-Garcon, P; Pierrefiche, O; Bischoff, A M; Lalley, P M

    1999-01-15

    1. The contributions of neurotransmitters and neuromodulators to the responses of the respiratory network to acute hypoxia were analysed in anaesthetized cats. 2. Samples of extracellular fluid were collected at 1-1.5 min time intervals by microdialysis in the medullary region of ventral respiratory group neurones and analysed for their content of glutamate, gamma-aminobutyric acid (GABA), serotonin and adenosine by high performance liquid chromatography. Phrenic nerve activity was correlated with these measurements. 3. Levels of glutamate and GABA increased transiently during early periods of hypoxia, coinciding with augmented phrenic nerve activity and then fell below control during central apnoea. Serotonin and adenosine increased slowly and steadily with onset of hypoxic depression of phrenic nerve activity. 4. The possibility that serotonin contributes to hypoxic respiratory depression was tested by microinjecting the 5-HT-1A receptor agonist 8-OH-DPAT into the medullary region that is important for rhythmogenesis. Hypoxic activation of respiratory neurones and phrenic nerve activity were suppressed. Microinjections of NAN-190, a 5-HT-1A receptor blocker, enhanced hypoxic augmentation resulting in apneustic prolongation of inspiratory bursts. 5. The results reveal a temporal sequence in the release of neurotransmitters and neuromodulators and suggest a specific role for each of them in the sequential development of hypoxic respiratory disturbances.

  13. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  14. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  15. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance.

    PubMed

    Rendell, Rebecca A; Prout, Jamie; Costello, Joseph T; Massey, Heather C; Tipton, Michael J; Young, John S; Corbett, Jo

    2017-09-01

    Adaptations to heat and hypoxia are typically studied in isolation but are often encountered in combination. Whether the adaptive response to multiple stressors affords the same response as when examined in isolation is unclear. We examined 1 ) the influence of overnight moderate normobaric hypoxia on the time course and magnitude of adaptation to daily heat exposure and 2 ) whether heat acclimation (HA) was ergogenic and whether this was influenced by an additional hypoxic stimulus. Eight males [V̇o 2max  = 58.5 (8.3) ml·kg -1 ·min -1 ] undertook two 11-day HA programs (balanced-crossover design), once with overnight normobaric hypoxia (HA Hyp ): 8 (1) h per night for 10 nights [[Formula: see text] = 0.156; S p O 2  = 91 (2)%] and once without (HA Con ). Days 1 , 6 , and 11 were exercise-heat stress tests [HST (40°C, 50% relative humidity, RH)]; days 2-5 and 7-10 were isothermal strain [target rectal temperature (T re ) ~38.5°C], exercise-heat sessions. A graded exercise test and 30-min cycle trial were undertaken pre-, post-, and 14 days after HA in temperate normoxia (22°C, 55% RH; F I O 2  = 0.209). HA was evident on day 6 (e.g., reduced T re , mean skin temperature (T̄ sk ), heart rate, and sweat [Na + ], P < 0.05) with additional adaptations on day 11 (further reduced T̄ sk and heart rate). HA increased plasma volume [+5.9 (7.3)%] and erythropoietin concentration [+1.8 (2.4) mIU/ml]; total hemoglobin mass was unchanged. Peak power output [+12 (20) W], lactate threshold [+15 (18) W] and work done [+12 (20) kJ] increased following HA. The additional hypoxic stressor did not affect these adaptations. In conclusion, a separate moderate overnight normobaric hypoxic stimulus does not affect the time course or magnitude of HA. Performance may be improved in temperate normoxia following HA, but this is unaffected by an additional hypoxic stressor. Copyright © 2017 the American Physiological Society.

  16. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 < 0.209 at or near sea level pressure to match the ambient O2 partial pressure (iso-pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  17. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    PubMed

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  18. Hypoxic Hypoxia at Moderate Altitudes: State of the Science

    DTIC Science & Technology

    2011-05-01

    neuropsychological metrics (surrogate investigational end points) with actual flight task metrics (desired end points of interest) under moderate hypoxic...conditions, (2) determine efficacy of potential neuropsychological performance-enhancing agents (e.g. tyrosine supplementation) for both acute and chronic...to air hunger ; may impact training fidelity Banderet et al. (1985) 4200 and 4700 m H 27 Tyrosine enhanced performance and reduced subjective

  19. Antileukemic activity of sulforaphane in primary blasts from patients affected by myelo- and lympho-proliferative disorders and in hypoxic conditions.

    PubMed

    Fimognari, Carmela; Turrini, Eleonora; Sestili, Piero; Calcabrini, Cinzia; Carulli, Giovanni; Fontanelli, Giulia; Rousseau, Martina; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-01-01

    Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia, B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel therapeutic principle complementing our growing armature against malignancies and advocate the exploration of sulforaphane in a broader population of leukemic patients.

  20. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide.

    PubMed

    La Padula, Pablo H; Etchegoyen, Melisa; Czerniczyniec, Analia; Piotrkowski, Barbara; Arnaiz, Silvia Lores; Milei, Jose; Costa, Lidia E

    2018-02-28

    In previous studies, upregulation of NOS during acclimatization of rats to sustained hypobaric hypoxia was associated to cardioprotection, evaluated as an increased tolerance of myocardium to hypoxia/reoxygenation. The objective of the present work was to investigate the effect of acute hypobaric hypoxia and the role of endogenous NO concerning cardiac tolerance to hypoxia/reoxygenation under β-adrenergic stimulation. Rats were submitted to 58.7 kPa in a hypopressure chamber for 48 h whereas their normoxic controls remained at 101.3 kPa. By adding NOS substrate L-arg, or blocker L-NNA, isometric mechanical activity of papillary muscles isolated from left ventricle was evaluated at maximal or minimal production of NO, respectively, under β-adrenergic stimulation by isoproterenol, followed by 60/30 min of hypoxia/reoxygenation. Activities of NOS and cytochrome oxidase were evaluated by spectrophotometric methods and expression of HIF1-α and NOS isoforms by western blot. Eosin and hematoxiline staining were used for histological studies. Cytosolic expression of HIF1-α, nNOS and eNOS, and NO production were higher in left ventricle of hypoxic rats. Mitochondrial cytochrome oxidase activity was decreased by hypobaric hypoxia and this effect was reversed by L-NNA. After H/R, recovery of developed tension in papillary muscles from normoxic rats was 51-60% (regardless NO modulation) while in hypobaric hypoxia was 70% ± 3 (L-arg) and 54% ± 1 (L-NNA). Other mechanical parameters showed similar results. Preserved histological architecture was observed only in L-arg papillary muscles of hypoxic rats. Exposure of rats to hypobaric hypoxia for only 2 days increased NO synthesis leading to cardioprotection. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia.

    PubMed

    Youssef, F F; Addae, J I; McRae, A; Stone, T W

    2001-07-13

    We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (P<0.01; paired t-test). The neuroprotective effects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those

  2. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    PubMed

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  3. Preclinical Positron Emission Tomographic Imaging of Acute Hyperoxia Therapy of Chronic Hypoxia during Pregnancy.

    PubMed

    Zheleznyak, Alexander; Garbow, Joel R; Neeman, Michal; Lapi, Suzanne E

    2015-01-01

    The goal of this work was to study the efficacy of the positron emission tomography (PET) tracers 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) and in monitoring placental and fetal functional response to acute hyperoxia in late-term pregnant mice subjected to experimentally induced chronic hypoxia. E15 mice were maintained at 12% inspired oxygen for 72 hours and then imaged during oxygen inhalation with either [18F]FDG to monitor nutrient transport or 64Cu-ATSM to establish the presence of hypoxia. Computed tomography (CT) with contrast allowed clear visualization of both placentas and fetuses. The average ratio of fetal to placental [18F]FDG uptake was 0.45 ± 0.1 for the hypoxic animals and 0.55 ± 0.1 for the normoxic animals, demonstrating a significant decrease (p = .0002) in placental function in dams exposed to chronic hypoxic conditions. Hypoxic placentas and fetuses retained more 64Cu-ATSM compared to normoxic placentas and fetuses. Herein we report first-in-mouse PET imaging of fetuses employing both tracers [18F]FDG (metabolism) and 64Cu-ATSM (hypoxia). [18F]FDG PET/CT imaging allowed clear visualization of placental-fetal structures and supported quantification of tracer uptake, making this a sensitive tool for monitoring placental function in preclinical rodent models. These measurements illustrate the potentially irreversible damage generated by chronic exposure to hypoxia, which cannot be corrected by acute exposure to hyperoxia.

  4. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.

    PubMed

    Gao, Yuansheng; Chen, Zhengju; Leung, Susan W S; Vanhoutte, Paul M

    2015-06-01

    In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-triphosphate and in the synthesis of inosine 3',5'-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5'-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.

  5. Relationship between exposure to pesticides and occurrence of acute leukemia in Iran.

    PubMed

    Maryam, Zakerinia; Sajad, Amirghofran; Maral, Namdari; Zahra, Lesan; Sima, Pooralimohamad; Zeinab, Attabac; Zahra, Mehravar; Fariba, Ebrahimi; Sezaneh, Haghpanah; Davood, Mehrabani

    2015-01-01

    One of the causes of acute leukemia can be exposure to certain chemicals such as pesticides. This study determined the relationship between exposure to pesticides and the occurrence of acute leukemia in Fars province, south of Iran. Between April 2011 and April 2013 in a case-control study conducted in Nemazee Hospital in Shiraz, Southern Iran; 314 subjects diagnosed with acute leukemia (94 pediatric cases and 220 adults) were enrolled to determine any correlation between exposure to pesticides and the occurrence. Controls (n=314) were matched by sex and age. There was a history of exposure to pesticides among 85% of pediatric cases and 69% of their controls and 83% of adult cases and 75% of their controls while 87.5% of pediatric cases and 90% of adult cases reported exposure to intermediate and high doses of pesticides and among the controls, the exposure to low doses of pesticides was 70.5% and 65%, respectively. Exposure to indoor pesticides was seen among most of cases and controls. Being a farmer was at a significantly more increased risk of developing acute leukemia in comparison to other jobs, especially for their children. Exposure to pesticides was shown to be one of the most important causes of acute leukemia. It seems that there is a need to educate the people on public health importance of exposure to pesticides especially during school time to reduce the risk of malignancies during childhood.

  6. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    PubMed Central

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to no, mild (10), or severe (100) acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced rapid eye movement (REM) and non-REM (NREM) sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep/wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep/wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders. PMID

  7. Hypoxic Adaptation during Development: Relation to Pattern of Neurological Presentation and Cognitive Disability

    ERIC Educational Resources Information Center

    Kirkham, Fenella J.; Datta, Avijit K.

    2006-01-01

    Children with acute hypoxic-ischaemic events (e.g. stroke) and chronic neurological conditions associated with hypoxia frequently present to paediatric neurologists. Failure to adapt to hypoxia may be a common pathophysiological pathway linking a number of other conditions of childhood with cognitive deficit. There is evidence that congenital…

  8. Neuroprotection Against Hypoxic/Ischemic Injury: δ-Opioid Receptors and BDNF-TrkB Pathway.

    PubMed

    Sheng, Shiying; Huang, Jingzhong; Ren, Yi; Zhi, Feng; Tian, Xuansong; Wen, Guoqiang; Ding, Guanghong; Xia, Terry C; Hua, Fei; Xia, Ying

    2018-05-11

    The delta-opioid receptor (DOR) is one of three classic opioid receptors in the opioid system. It was traditionally thought to be primarily involved in modulating the transmission of messages along pain signaling pathway. Although there were scattered studies on its other neural functions, inconsistent results and contradicting conclusions were found in past literatures, especially in terms of DOR's role in a hypoxic/ischemic brain. Taking inspiration from the finding that the turtle brain exhibits a higher DOR density and greater tolerance to hypoxic/ischemic insult than the mammalian brain, we clarified DOR's specific role in the brain against hypoxic/ischemic injury and reconciled previous controversies in this aspect. Our serial studies have strongly demonstrated that DOR is a unique neuroprotector against hypoxic/ischemic injury in the brain, which has been well confirmed in current research. Moreover, mechanistic studies have shown that during acute phases of hypoxic/ischemic stress, DOR protects the neurons mainly by the stabilization of ionic homeostasis, inhibition of excitatory transmitter release, and attenuation of disrupted neuronal transmission. During prolonged hypoxia/ischemia, however, DOR neuroprotection involves a variety of signaling pathways. More recently, our data suggest that DOR may display its neuroprotective role via the BDNF-TrkB pathway. This review concisely summarizes the progress in this field. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. GABA is not elevated during neuroprotective neuronal depression in the hypoxic epaulette shark (Hemiscyllium ocellatum).

    PubMed

    Mulvey, Jamin M; Renshaw, Gillian M C

    2009-02-01

    Prolonged hypoxic exposure results in cell failure, glutamate excitotoxicity and apoptosis in the brain. The epaulette shark can withstand prolonged hypoxic exposure without brain injury, while maintaining normal function and activity at tropical temperatures. We examined whether the inhibitory neurotransmitter GABA was involved in hypoxia tolerance and neuroprotection during hypoxic preconditioning. Sharks were exposed to either cyclic hypoxic preconditioning or normoxic conditions. Whole brain GABA concentration was determined using high performance liquid chromatography; GABA distribution in neuronal structures was localised with immunohistochemistry and quantified. While the overall brain level of GABA was not significantly different, there was a significant heterogeneous change in GABA distribution. GABA immunoreactivity was elevated in key motor and sensory nuclei from preconditioned animals, including the nucleus motorius nervi vagi and the cerebellar crest (p<0.001), corresponding to areas of previously reported neuronal hypometabolism. Since the neuroprotection in all other hypoxia and anoxia tolerant species examined so far relies in part on significant elevations in GABA and the phylogenetically older epaulette shark does not, it is reasonable to assume that further research in this unique animal model may yield clues to new key modulators of neuroprotection. Understanding such mechanisms may facilitate the development of therapeutic interventions in the treatment of transient ischaemic attacks, strokes and traumatic brain injury.

  10. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark.

    PubMed

    Nilsson, Göran E; Renshaw, Gillian M C

    2004-08-01

    Especially in aquatic habitats, hypoxia can be an important evolutionary driving force resulting in both convergent and divergent physiological strategies for hypoxic survival. Examining adaptations to anoxic/hypoxic survival in hypoxia-tolerant animals may offer fresh ideas for the treatment of hypoxia-related diseases. Here, we summarise our present knowledge of two fishes that have evolved to survive hypoxia under very different circumstances. The crucian carp (Carassius carassius) is of particular interest because of its extreme anoxia tolerance. During the long North European winter, it survives for months in completely oxygen-deprived freshwater habitats. The crucian carp also tolerates a few days of anoxia at room temperature and, unlike anoxia-tolerant freshwater turtles, it is still physically active in anoxia. Moreover, the crucian carp does not appear to reduce neuronal ion permeability during anoxia and may primarily rely on more subtle neuromodulatory mechanisms for anoxic metabolic depression. The epaulette shark (Hemiscyllium ocellatum) is a tropical marine vertebrate. It lives on shallow reef platforms that repeatedly become cut off from the ocean during periods of low tides. During nocturnal low tides, the water [O(2)] can fall by 80% due to respiration of the coral and associated organisms. Since the tides become lower and lower over a period of a few days, the hypoxic exposure during subsequent low tides will become progressively longer and more severe. Thus, this shark is under a natural hypoxic preconditioning regimen. Interestingly, hypoxic preconditioning lowers its metabolic rate and its critical P(O(2)). Moreover, repeated anoxia appears to stimulate metabolic depression in an adenosine-dependent way.

  11. Impairment of mitochondrial β-oxidation in rats under cold-hypoxic environment

    NASA Astrophysics Data System (ADS)

    Dutta, Arkadeb; Vats, Praveen; Singh, Vijay K.; Sharma, Yogendra K.; Singh, Som N.; Singh, Shashi B.

    2009-09-01

    Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190-220 g) were randomly divided into eight groups ( n = 6 rats in each group): 1 day hypoxia (H1); 7 days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.

  12. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo.

    PubMed

    Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-05-01

    Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.

  13. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  14. Regulation of breathing and body temperature of a burrowing rodent during hypoxic-hypercapnia.

    PubMed

    Barros, Renata C H; Abe, Augusto S; Cárnio, Evelin C; Branco, Luiz G S

    2004-05-01

    Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O(2) consumption (V?O(2)) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O(2)), hypercapnia (3% and 5% CO(2)) and hypoxic-hypercapnia (10% O(2)+ 3% CO(2)). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased V?O(2) and 7% O(2) significantly increased V/V?O(2). Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, V?O(2) or V/V?O(2) was detected. A combination of 10% O(2) and 3% CO(2) had minor effects on V and Tb, while V?O(2) decreased and V/V?O(2) tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/V?O(2). The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns.

  15. Cultured astrocytes do not release adenosine during hypoxic conditions

    PubMed Central

    Fujita, Takumi; Williams, Erika K; Jensen, Tina K; Smith, Nathan A; Takano, Takahiro; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Recent reports based on a chemiluminescent enzymatic assay for detection of adenosine conclude that cultured astrocytes release adenosine during mildly hypoxic conditions. If so, astrocytes may suppress neural activity in early stages of hypoxia. The aim of this study was to reevaluate the observation using high-performance liquid chromatography (HPLC). The HPLC analysis showed that exposure to 20 or 120 minutes of mild hypoxia failed to increase release of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine from cultured astrocytes. Similar results were obtained using a chemiluminescent enzymatic assay. Moreover, since the chemiluminescent enzymatic assay relies on hydrogen peroxide generation, release of free-radical scavengers from hypoxic cells can interfere with the assay. Accordingly, adenosine added to samples collected from hypoxic cultures could not be detected using the chemiluminescent enzymatic assay. Furthermore, addition of free-radical scavengers sharply reduced the sensitivity of adenosine detection. Conversely, use of a single-step assay inflated measured values due to the inability of the assay to distinguish adenosine and its metabolite inosine. These results show that cultured astrocytes do not release adenosine during mild hypoxia, an observation consistent with their high resistance to hypoxia. PMID:21989480

  16. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure.

    PubMed

    Tyler, Christina R; Noor, Shahani; Young, Tamara L; Rivero, Valeria; Sanchez, Bethany; Lucas, Selita; Caldwell, Kevin K; Milligan, Erin D; Campen, Matthew J

    2018-05-01

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O3) exposure in aged mice, where increased blood-brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C57BL/6 male mice, aged 8-10 weeks or 12-18 months were exposed to either filtered air or 1.0 ppm O3 for 4 h; animals received a single IP injection of sodium fluorescein (FSCN) 20 h postexposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression was assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 h post-O3 exposure. Flow cytometry analysis of brains revealed increased microglia "activation" and presentation of CD11b, F4/80, and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O3 insult. The aged cerebellum was particularly vulnerable to acute O3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C+ inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Thus, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O3 exposure, leading to greater neuroinflammatory outcomes.

  17. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure

    DOE PAGES

    Tyler, Christina R.; Noor, Shahani; Young, Tamara; ...

    2018-01-27

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O 3) exposure in aged mice, where increased blood brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C 57BL/6 male mice, aged 8-10 weeks or 12–18 months were exposed to either filtered air (FA) or 1.0 ppm O 3 for 4 hours; animals received a single IP injection of sodium fluorescein (FSCN) 20 hours post-exposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression wasmore » assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 hours post-O 3 exposure. Flow cytometry analysis of brains revealed increased microglia “activation” and presentation of CD11b, F4/80 and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O 3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O 3 insult. The aged cerebellum was particularly vulnerable to acute O 3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C + inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O 3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Furthermore, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O 3 exposure, leading to greater neuroinflammatory outcomes.« less

  18. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Christina R.; Noor, Shahani; Young, Tamara

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O 3) exposure in aged mice, where increased blood brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C 57BL/6 male mice, aged 8-10 weeks or 12–18 months were exposed to either filtered air (FA) or 1.0 ppm O 3 for 4 hours; animals received a single IP injection of sodium fluorescein (FSCN) 20 hours post-exposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression wasmore » assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 hours post-O 3 exposure. Flow cytometry analysis of brains revealed increased microglia “activation” and presentation of CD11b, F4/80 and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O 3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O 3 insult. The aged cerebellum was particularly vulnerable to acute O 3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C + inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O 3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Furthermore, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O 3 exposure, leading to greater neuroinflammatory outcomes.« less

  19. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment

    PubMed Central

    Frolova, Olga; Samudio, Ismael; Benito, Juliana Maria; Jacamo, Rodrigo; Kornblau, Steven M.; Markovic, Ana; Schober, Wendy; Lu, Hongbo; Qiu, Yi Hua; Buglio, Daniela; McQueen, Teresa; Pierce, Sherry; Shpall, Elizabeth; Konoplev, Sergej; Thomas, Deborah; Kantarjian, Hagop; Lock, Richard; Andreeff, Michael; Konopleva, Marina

    2012-01-01

    Overcoming resistance to chemotherapy is the main therapeutic challenge in the treatment of acute lymphocytic leukemia (ALL). Interactions between leukemia cells and the microenvironment promote leukemia cell survival and confer resistance to chemotherapy. Hypoxia is an integral component of bone marrow (BM) microenvironment. Hypoxia-inducible factor-1α (HIF-1), a key regulator of the cellular response to hypoxia, regulates cell growth and metabolic adaptation to hypoxia. HIF-1α expression, analyzed by Reverse Phase Protein Arrays in 92 specimens from newly diagnosed patients with pre-B-ALL, had a negative prognostic impact on survival (p = 0.0025). Inhibition of HIF-1α expression by locked mRNA antagonist (LNA) promoted chemosensitivity under hypoxic conditions, while pharmacological or genetic stabilization of HIF-1α under normoxia inhibited cell growth and reduced apoptosis induction by chemotherapeutic agents. Co-culture of pre-B ALL or REH cells with BM-derived mesenchymal stem cells (MSC) under hypoxia resulted in further induction of HIF-1α protein and acquisition of the glycolytic phenotype, in part via stroma-induced AKT/mTOR signaling. mTOR blockade with everolimus reduced HIF-1α expression, diminished glucose uptake and glycolytic rate and partially restored the chemosensitivity of ALL cells under hypoxia/stroma co-cultures. Hence, mTOR inhibition or blockade of HIF-1α-mediated signaling may play an important role in chemosensitization of ALL cells under hypoxic conditions of the BM microenvironment. PMID:22785211

  20. Hyperoxia and Hypoxic Hypoxia Effects on Simple and Choice Reaction Times.

    PubMed

    Dart, Todd; Gallo, Megan; Beer, Jeremy; Fischer, Joseph; Morgan, Thomas; Pilmanis, Andrew

    2017-12-01

    Effects of exposure to hyperoxia (PiO2 > 105 mmHg), normoxia (PiO2 95-105 mmHg) and hypoxia (PiO2 < 95 mmHg) on simple and choice reaction performance tasks were evaluated. Ten subjects performed simple and choice reaction time tests (SRT and CRT, respectively) at ground level for 40 min (20 min normoxic, 20 min hyperoxic, randomly assigned), 3048 m (10,000 ft) for 75 min (15 min hyperoxic, 60 min hypoxic), 4572 m (15,000 ft) for 60 min (15 min hyperoxic, 45 min hypoxic), and 6096 m (20,000 ft) for 35 min (15 min hyperoxic, 20 min hypoxic). SRT and CRT tests were also conducted at ground level 1 h after normoxic rest (recovery) to assess any recovery time effect on these psychomotor tasks. Total response time (TRT) significantly increased by 15 ms to 25 ms at all three altitudes for both the SRT and CRT tasks. At and below 4572 m, the performance changes were gradual over the duration of the exposures, whereas at 6096 m these changes were immediate. After 1 h, no performance decrement was measured. There was no statistical evidence that ground-level performance on these tasks was improved in hyperoxic vs. normoxic conditions. Results suggest mild decrements in reaction time due to hypoxia may occur as low as 3048 m (10,000 ft) while hyperoxia showed no positive effect on accuracy or reaction time at ground level or higher when performing simple and choice psychomotor reaction tasks.Dart T, Gallo M, Beer J, Fischer J, Morgan T, Pilmanis A. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times. Aerosp Med Hum Perform. 2017; 88(12):1073-1080.

  1. Redox signaling in acute oxygen sensing.

    PubMed

    Gao, Lin; González-Rodríguez, Patricia; Ortega-Sáenz, Patricia; López-Barneo, José

    2017-08-01

    Acute oxygen (O 2 ) sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB) is the main peripheral chemoreceptor, which contains excitable and O 2 -sensitive glomus cells with O 2 -regulated ion channels. Upon exposure to acute hypoxia, inhibition of K + channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O 2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K + channels. We propose that the structural substrates for acute O 2 sensing in CB glomus cells are "O 2 -sensing microdomains" formed by mitochondria and neighboring K + channels in the plasma membrane. Copyright © 2017. Published by Elsevier B.V.

  2. Transepithelial Ion Transport is Suppressed in Hypoxic Sinonasal Epithelium

    PubMed Central

    Blount, Angela; Zhang, Shaoyan; Chestnut, Michael; Hixon, Brian; Skinner, Daniel; Sorscher, Eric J.; Woodworth, Bradford A.

    2011-01-01

    Objectives/Hypothesis Sinonasal respiratory epithelial mucociliary clearance (MCC) is dependent on the transepithelial transport of ions such as Cl−. The objectives of the present study were to investigate the role of oxygen restriction in 1) Cl− transport across primary sinonasal epithelial monolayers, 2) expression of the apical Cl− channels CFTR and TMEM16A, and 3) the pathogenesis of chronic rhinosinusitis (CRS). Study Design In vitro investigation. Methods Murine nasal septal epithelial (MNSE, wild type) and human sinonasal epithelial (HSNE) cultures were incubated under hypoxic conditions (1% O2, 5% CO2). Cultures were mounted in Ussing chambers for ion transport measurements. CFTR and TMEM16A expression were measured using quantitative RT-PCR. Results The change in short-circuit current (ΔISC (µA/cm2) attributable to CFTR (forskolin-stimulated) was significantly decreased due to a 12 hour hypoxia exposure in both MNSE (13.55+/− 0.46 vs. 19.23+/−0.18) and HSNE (19.55+/−0.56 vs. 25.49+/−1.48 (control); p<0.05. TMEM16A (UTP-stimulated transport) was inhibited by 48 hours of hypoxic exposure in MNSE (15.92+/−2.87 vs. 51.44+/−3.71(control) p<0.05] and by 12 hours of hypoxic exposure in HSNE (16.75+/−0.68 vs. 24.15+/−1.35 (control). Quantitative RT-PCR (reported as relative mRNA levels+/−S.D.) demonstrated significant reductions in both CFTR and TMEM16A mRNA expression in MNSE and HSNE due to airway epithelial hypoxia. Conclusions Sinonasal epithelial CFTR and TMEM16A-mediated Cl− transport and mRNA expression were robustly decreased in an oxygen restricted environment. The findings in the present study indicate persistent hypoxia may lead to acquired defects in sinonasal Cl− transport in a fashion likely to confer mucociliary dysfunction in CRS. Level of Evidence 1b PMID:22024847

  3. Comparison of the efficiency of transplantation of bone marrow multipotent mesenchymal stromal cells cultured under normoxic and hypoxic conditions and their conditioned media on the model of acute lung injury.

    PubMed

    Chailakhyan, R K; Aver'yanov, A V; Zabozlaev, F G; Sobolev, P A; Sorokina, A V; Akul'shin, D A; Gerasimov, Yu V

    2014-05-01

    The therapeutic efficiency of intravenous injection of rat bone marrow multipotent mesenchymal stromal cells grown under conditions of normoxia and hypoxia (3% O2) and conditioned media from these cultures were compared on the rat model of acute lung injury induced by intraperitoneal injection of lipopolysaccharide. The best therapeutic efficiency was demonstrated by cells grown under hypoxic conditions. The effect of conditioned media was less pronounced and did not depend on the culturing conditions.

  4. Self-reported acute health symptoms and exposure to companion animals

    EPA Science Inventory

    Background: In order to understand the etiological burden of disease associated with acute health symptoms (e.g. gastrointestinal [GI], respiratory, dermatological), it is important to understand how common exposures influence these symptoms. Exposures to familiar and unfamiliar ...

  5. Thyroid function during intermittent exposure to hypobaric hypoxia

    NASA Astrophysics Data System (ADS)

    Sawhney, R. C.; Malhotra, A. S.

    1990-09-01

    Circulatory levels of triiodothyronine (T3) and thyroxine (T4) and their kinetics were studied in rabbits exposed to intermittent hypobaric hypoxia (5200 m, 395 mm Hg, PO2 83 mm Hg) 6 h daily for 5 weeks in a decompression chamber maintained at room temperature of 22° 24° C. Kinetics of T3 and T4 were studied on days 21 and 28 of hypoxic exposure. The T3 and T4 values were found to be significantly lower on day 8 of exposure to hypoxia compared to the pre-exposure values. The decreased levels were maintained throughout the entire period of hypoxic stress. The metabolic clearance rate, production rate, distribution space and extrathyroidal T3 and T4 pools were significantly decreased in animals under hypoxic stress compared to the control animals. The decline in thyroid hormone levels and their production in rabbits under hypoxic stress indicate an adaptive phenomenon under conditions of low oxygen availability.

  6. Effects of hypoxic exposure during feeding on SDA and postprandial cardiovascular physiology in the Atlantic cod, Gadus morhua.

    PubMed

    Behrens, Jane W; Axelsson, Michael; Neuenfeldt, Stefan; Seth, Henrik

    2012-01-01

    Some Atlantic cod in the Bornholm Basin undertake vertical foraging migrations into severely hypoxic bottom water. Hypoxic conditions can reduce the postprandial increase in gastrointestinal blood flow (GBF). This could subsequently postpone or reduce the postprandial increase in oxygen consumption (MO(2)), i.e. the SDA, leading to a disturbed digestion. Additionally, a restricted oxygen uptake could result in an oxygen debt that needs to be compensated for upon return to normoxic waters and this may also affect the ability to process the food. Long-term cardio-respiratory measurements were made on fed G. morhua in order to understand how the cardio-respiratory system of feeding fish respond to a period of hypoxia and a subsequent return to normoxia. These were exposed to 35% water oxygen saturation for 90 minutes, equivalent to the time and oxygen level cod voluntarily endure when searching for food in the Bornholm Basin. We found that i) gastric and intestinal blood flows, cardiac output and MO(2) increased after feeding, ii) gastric and intestinal blood flows were spared in hypoxia, and iii) there were no indications of an oxygen debt at the end of the hypoxic period. The magnitude and time course of the measured variables are similar to values obtained from fish not exposed to the hypoxic period. In conclusion, when cod in the field search for and ingest prey under moderate hypoxic conditions they appear to stay within safe limits of oxygen availability as we saw no indications of an oxygen debt, or negative influence on digestive capacity, when simulating field observations.

  7. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exposure to ammonia and acute respiratory effects in a urea fertilizer factory.

    PubMed

    Rahman, Md Hamidur; Bråtveit, Magne; Moen, Bente E

    2007-01-01

    Personal exposures to ammonia and acute respiratory effects were determined in workers at a urea fertilizer factory in Bangladesh. Full-shift personal exposure to ammonia was measured using a PAC III direct reading instrument and Drager diffusion tubes. Respiratory symptoms were elicited by a questionnaire study (n = 113), and preshift and postshift lung function (FVC, FEV1, and PEFR) were tested using spirometry (n = 88). Urea plant workers had higher mean exposure to ammonia and prevalence of acute respiratory symptoms than did workers in the ammonia plant. The symptoms with highest prevalence in the urea plant were chest tightness (33%) and cough (28%). FVC and FEV1 decreased significantly across the work shift among urea plant workers. The higher level of exposure to ammonia in the urea plant was associated with an increased prevalence of respiratory symptoms and an acute decline in lung function.

  9. Effects of emotional exposure on state anxiety after acute exercise.

    PubMed

    Smith, J Carson

    2013-02-01

    Despite the well-known anxiolytic effect of acute exercise, it is unknown if anxiety reductions after acute exercise conditions survive in the face of a subsequently experienced arousing emotional exposure. The purpose of this study was to compare the effects of moderate-intensity cycle ergometer exercise to a seated rest control condition on state anxiety symptoms after exposure to a variety of highly arousing pleasant and unpleasant stimuli. Thirty-seven healthy and normally physically active young adults completed two conditions on separate days: 1) 30 min of seated rest and 2) 30 min of moderate-intensity cycle ergometer exercise (RPE = 13; "somewhat hard"). After each condition, participants viewed 90 arousing pleasant, unpleasant, and neutral pictures from the International Affective Picture System for 30 min. State anxiety was measured before and 15 min after each condition, and again after exposure to the affective pictures. State anxiety significantly decreased from baseline to after the exercise and seated rest conditions (P = 0.003). After the emotional picture-viewing period, state anxiety significantly increased to baseline values after the seated rest condition (P = 0.001) but remained reduced after the exercise condition. These findings suggest that the anxiolytic effects of acute exercise may be resistant to the potentially detrimental effects on mood after exposure to arousing emotional stimuli.

  10. Acute and chronic respiratory effects of sodium borate particulate exposures.

    PubMed Central

    Wegman, D H; Eisen, E A; Hu, X; Woskie, S R; Smith, R G; Garabrant, D H

    1994-01-01

    This study examined work-related chronic abnormality in pulmonary function and work-related acute irritant symptoms associated with exposure to borate dust in mining and processing operations. Chronic effects were examined by pulmonary function at the beginning and end of a 7-year interval. Time-specific estimates of sodium borate particulate exposures were used to estimate cumulative exposure during the study interval. Change in pulmonary function over the 7 years was found unrelated to the estimate of cumulative exposure during that interval. Exposure-response associations also were examined with respect to short-term peak exposures and incidence of five symptoms of acute respiratory irritation. Hourly measures of health outcome and continuous measures of particulate exposure were made on each subject throughout the day. Whenever a subject reported one of the irritant symptoms, a symptom intensity score was also recorded along with the approximate time of onset. The findings indicated that exposure-response relationships were present for each of the specific symptoms at several symptom intensity levels. The associations were present when exposure was estimated by both day-long and short-term (15-min) time-weighted average exposures. Associations persisted after taking account of smoking, age, and the presence of a common cold. No significant difference in response rate was found between workers exposed to different types of sodium borate dusts. PMID:7889871

  11. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins

  12. Influence of Acute Normobaric Hypoxia on Hemostasis in Volunteers with and without Acute Mountain Sickness

    PubMed Central

    Schaber, Marc; Leichtfried, Veronika; Fries, Dietmar; Wille, Maria; Gatterer, Hannes; Faulhaber, Martin; Würtinger, Philipp; Schobersberger, Wolfgang

    2015-01-01

    Introduction. The aim of the present study was to investigate whether a 12-hour exposure in a normobaric hypoxic chamber would induce changes in the hemostatic system and a procoagulant state in volunteers suffering from acute mountain sickness (AMS) and healthy controls. Materials and Methods. 37 healthy participants were passively exposed to 12.6% FiO2 (simulated altitude hypoxia of 4,500 m). AMS development was investigated by the Lake Louise Score (LLS). Prothrombin time, activated partial thromboplastin time, fibrinogen, and platelet count were measured and specific methods (i.e., thromboelastometry and a thrombin generation test) were used. Results. AMS prevalence was 62.2% (LLS cut off of 3). For the whole group, paired sample t-tests showed significant increase in the maximal concentration of generated thrombin. ROTEM measurements revealed a significant shortening of coagulation time and an increase of maximal clot firmness (InTEM test). A significant increase in maximum clot firmness could be shown (FibTEM test). Conclusions. All significant changes in coagulation parameters after exposure remained within normal reference ranges. No differences with regard to measured parameters of the hemostatic system between AMS-positive and -negative subjects were observed. Therefore, the hypothesis of the acute activation of coagulation by hypoxia can be rejected. PMID:26451374

  13. Influence of Acute Normobaric Hypoxia on Hemostasis in Volunteers with and without Acute Mountain Sickness.

    PubMed

    Schaber, Marc; Leichtfried, Veronika; Fries, Dietmar; Wille, Maria; Gatterer, Hannes; Faulhaber, Martin; Würtinger, Philipp; Schobersberger, Wolfgang

    2015-01-01

    The aim of the present study was to investigate whether a 12-hour exposure in a normobaric hypoxic chamber would induce changes in the hemostatic system and a procoagulant state in volunteers suffering from acute mountain sickness (AMS) and healthy controls. 37 healthy participants were passively exposed to 12.6% FiO2 (simulated altitude hypoxia of 4,500 m). AMS development was investigated by the Lake Louise Score (LLS). Prothrombin time, activated partial thromboplastin time, fibrinogen, and platelet count were measured and specific methods (i.e., thromboelastometry and a thrombin generation test) were used. AMS prevalence was 62.2% (LLS cut off of 3). For the whole group, paired sample t-tests showed significant increase in the maximal concentration of generated thrombin. ROTEM measurements revealed a significant shortening of coagulation time and an increase of maximal clot firmness (InTEM test). A significant increase in maximum clot firmness could be shown (FibTEM test). All significant changes in coagulation parameters after exposure remained within normal reference ranges. No differences with regard to measured parameters of the hemostatic system between AMS-positive and -negative subjects were observed. Therefore, the hypothesis of the acute activation of coagulation by hypoxia can be rejected.

  14. Acute decrease in HDL cholesterol associated with exposure to welding fumes.

    PubMed

    Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David

    2011-01-01

    To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.

  15. Acute Decrease in HDL Cholesterol Associated With Exposure to Welding Fumes

    PubMed Central

    Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David

    2011-01-01

    Objective To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Methods Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. Results There was a trend toward decrease in HDL (−2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (−2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (−4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Conclusion Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure. PMID:21187793

  16. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    PubMed

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  17. Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis.

    PubMed

    McMorris, Terry; Hale, Beverley J; Barwood, Martin; Costello, Joseph; Corbett, Jo

    2017-03-01

    A systematic meta-regression analysis of the effects of acute hypoxia on the performance of central executive and non-executive tasks, and the effects of the moderating variables, arterial partial pressure of oxygen (PaO 2 ) and hypobaric versus normobaric hypoxia, was undertaken. Studies were included if they were performed on healthy humans; within-subject design was used; data were reported giving the PaO 2 or that allowed the PaO 2 to be estimated (e.g. arterial oxygen saturation and/or altitude); and the duration of being in a hypoxic state prior to cognitive testing was ≤6days. Twenty-two experiments met the criteria for inclusion and demonstrated a moderate, negative mean effect size (g=-0.49, 95% CI -0.64 to -0.34, p<0.001). There were no significant differences between central executive and non-executive, perception/attention and short-term memory, tasks. Low (35-60mmHg) PaO 2 was the key predictor of cognitive performance (R 2 =0.45, p<0.001) and this was independent of whether the exposure was in hypobaric hypoxic or normobaric hypoxic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hypoxic pulmonary vasoconstriction in isolated mouse pulmonary arterial vessels.

    PubMed

    Strielkov, Ievgen; Krause, Nicole Catherine; Sommer, Natasha; Schermuly, Ralph Theo; Ghofrani, Hossein Ardeschir; Grimminger, Friedrich; Gudermann, Thomas; Dietrich, Alexander; Weissmann, Norbert

    2018-06-19

    What is the central question of this study? Hypoxic pulmonary vasoconstriction has never been characterized in isolated mouse pulmonary arteries of different generations in detail. What is the main finding and its importance? We found that only small intrapulmonary arteries (80 - 200 μm in diameter) exhibit hypoxic pulmonary vasoconstriction. The observed response was sustained, significantly potentiated by depolarization-induced preconstriction, and not dependent on endothelium and TRPC6 channels. Hypoxic pulmonary vasoconstriction (HPV) is a physiological response of pulmonary arteries, which adapts lung perfusion to regional ventilation. Properties of hypoxic pulmonary vasoconstriction (HPV) vary significantly between animal species. Despite extensive use of mouse models in studies of HPV, this physiological response has never been characterized in isolated mouse pulmonary arteries in detail. We investigated the effect of 80-min exposure to hypoxia on tone in mouse pulmonary arteries of different generations in the presence and absence of preconstriction using wire myography. Hypoxia induced a sustained relaxation in non-preconstricted extrapulmonary arteries (500 - 700 μm in diameter), but not in the presence of KCl-induced preconstriction. Large intrapulmonary arteries (450 - 650 μm) did not exhibit a significant response to the hypoxic challenge. By contrast, in small intrapulmonary arteries (80 - 200 μm), hypoxia elicited a slowly developing sustained constriction, which was independent of endothelium. The response was significantly potentiated in arteries preconstricted with KCl, but not with U46619. HPV was not altered in pulmonary arteries of TRPC6-deficient mice, which suggests that this response corresponds to the sustained phase of biphasic HPV observed earlier in isolated, buffer-perfused, and ventilated mouse lungs. In conclusion, we have established the protocol allowing to study sustained HPV in isolated mouse pulmonary arteries. The

  19. Exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed oil has a chronic residual effect on hypoxia tolerance but not aerobic scope.

    PubMed

    Zhang, Yangfan; Mauduit, Florian; Farrell, Anthony P; Chabot, Denis; Ollivier, Hélène; Rio-Cabello, Adrien; Le Floch, Stéphane; Claireaux, Guy

    2017-10-01

    We tested the hypothesis that the chronic residual effects of an acute exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed crude oil is manifest in indices of hypoxic performance rather than aerobic performance. Sea bass were pre-screened with a hypoxia challenge test to establish their incipient lethal oxygen saturation (ILOS), but on discovering a wide breadth for individual ILOS values (2.6-11.0% O 2 saturation), fish were subsequently subdivided into either hypoxia sensitive (HS) or hypoxia tolerant (HT) phenotypes, traits that were shown to be experimentally repeatable. The HT phenotype had a lower ILOS and critical oxygen saturation (O 2crit ) compared with the HS phenotype and switched to glycolytic metabolism at a lower dissolved oxygen, even though both phenotypes accumulated lactate and glucose to the same plasma concentrations at ILOS. As initially hypothesized, and regardless of the phenotype considered, we found no residual effect of oil on any of the indices of aerobic performance. Contrary to our hypothesis, however, oil exposure had no residual effect on any of the indices of hypoxic performance in the HS phenotype. In the HT phenotype, on the other hand, oil exposure had residual effects as illustrated by the impaired repeatability of hypoxia tolerance and also by the 24% increase in O 2crit , the 40% increase in scope for oxygen deficit, the 17% increase in factorial scope for oxygen deficit and the 57% increase in accumulated oxygen deficit. Thus, sea bass with a HT phenotype remained chronically impaired for a minimum of 167days following an acute 24-h oil exposure while the HS phenotypes did not. We reasoned that impaired oxygen extraction at gill due to oil exposure activates glycolytic metabolism at a higher dissolved oxygen, conferring on the HT phenotype an inferior hypoxia resistance that might eventually compromise their ability to survive hypoxic episodes. Crown Copyright © 2017. Published by Elsevier B.V. All

  20. Genome-wide Gene Expression Profiling of Acute Metal Exposures in Male Zebrafish

    DTIC Science & Technology

    2014-10-23

    Data in Brief Genome-wide gene expression profiling of acute metal exposures in male zebrafish Christine E. Baer a,⁎, Danielle L. Ippolito b, Naissan... Zebrafish Whole organism Nickel Chromium Cobalt Toxicogenomics To capture global responses to metal poisoning and mechanistic insights into metal...toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human

  1. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects.

    PubMed

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2016-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m -2 ) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO 2 ), continuously adjusted to reach arterial oxygen saturations (SpO 2 ) of 70-80% for 1 h. IH sessions consisted of 5 min with reduced FiO 2 (SpO 2 = 70-80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results : Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min -1 ) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (-8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH -6 ± 5%, IH -3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (-13 ± 3% vs. -6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in heart

  2. Altered autonomic control of heart rate variability in the chronically hypoxic fetus.

    PubMed

    Shaw, C J; Allison, B J; Itani, N; Botting, K J; Niu, Y; Lees, C C; Giussani, D A

    2018-03-31

    system to record beat-to-beat variation in the fetal heart rate. We determined in vivo longitudinal changes in overall FHRV and the sympathetic and parasympathetic contribution to FHRV in hypoxic (n = 6) and normoxic (n = 6) ovine fetuses with advancing gestational age. Normoxic fetuses show gestational age-related increases in overall indices of FHRV, and in the sympathetic nervous system contribution to FHRV (P < 0.001). Conversely, gestational age-related increases in overall FHRV were impaired by exposure to chronic hypoxia, and there was evidence of suppression of the sympathetic nervous system control of FHRV after 72 h of exposure to hypoxia (P < 0.001). This demonstrates that exposure to late gestation isolated chronic fetal hypoxia has the potential to alter the development of the autonomic nervous system control of FHRV in sheep. This presents a potential mechanism by which a reduction in indices of FHRV in human fetuses affected by uteroplacental dysfunction can predict fetuses at increased risk. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  3. Working Memory Capacity and Surgical Performance While Exposed to Mild Hypoxic Hypoxemia.

    PubMed

    Parker, Paul J; Manley, Andrew J; Shand, Ross; O'Hara, John P; Mellor, Adrian

    2017-10-01

    Medical Emergency Response Team (MERT) helicopters fly at altitudes of 3000 m in Afghanistan (9843 ft). Civilian hospitals and disaster-relief surgical teams may have to operate at such altitudes or even higher. Mild hypoxia has been seen to affect the performance of novel tasks at flight levels as low as 5000 ft. Aeromedical teams frequently work in unpressurized environments; it is important to understand the implications of this mild hypoxia and investigate whether supplementary oxygen systems are required for some or all of the team members. Ten UK orthopedic surgeons were recruited and in a double blind randomized experimental protocol, were acutely exposed for 45 min to normobaric hypoxia [fraction of inspired oxygen (FIo2) ∼14.1%, equivalent to 3000 m (10,000 ft)] or normobaric normoxia (sea-level). Basic physiological parameters were recorded. Subjects completed validated tests of verbal working memory capacity (VWMC) and also applied an orthopedic external fixator (Hoffmann® 3, Stryker, UK) to a plastic tibia under test conditions. Significant hypoxia was induced with the reduction of FIo2 to ∼14.1% (Spo2 87% vs. 98%). No effect of hypoxia on VWMC was observed. The pin-divergence score (a measure of frame asymmetry) was significantly greater in hypoxic conditions (4.6 mm) compared to sea level (3.0 mm); there was no significant difference in the penetrance depth (16.9 vs. 17.2 mm). One hypoxic frame would have failed early. We believe that surgery at an altitude of 3000 m, when unacclimated individuals are acutely exposed to atmospheric hypoxia for 45 min, can likely take place without supplemental oxygen use but further work is required.Parker PJ, Manley AJ, Shand R, O'Hara JP, Mellor A. Working memory capacity and surgical performance while exposed to mild hypoxic hypoxemia. Aerosp Med Hum Perform. 2017; 88(10):918-923.

  4. Chronic vs. Short-Term Acute O 3 Exposure Effects on Nocturnal Transpiration in Two Californian Oaks

    Treesearch

    Nancy Grulke; E. Paoletti; R. L. Heath

    2007-01-01

    We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3 exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3 exposure (70 ppb for 8 h/day) was implemented in open-top chambers for...

  5. Striatal dopamine dynamics in mice following acute and repeated toluene exposure.

    PubMed

    Apawu, Aaron K; Mathews, Tiffany A; Bowen, Scott E

    2015-01-01

    The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.

  6. Nitric oxide (NO) in normal and hypoxic vascular regulation of the spiny dogfish, Squalus acanthias.

    PubMed

    Swenson, Kai E; Eveland, Randy L; Gladwin, Mark T; Swenson, Erik R

    2005-02-01

    Nitric oxide (NO) is a potent vasodilator in terrestrial vertebrates, but whether vascular endothelial-derived NO plays a role in vascular regulation in fish remains controversial. To explore this issue, a study was made of spiny dogfish sharks (Squalus acanthias) in normoxia and acute hypoxia (60 min exposure to seawater equilibrated with 3% oxygen) with various agents known to alter NO metabolism or availability. In normoxia, nitroprusside (a NO donor) reduced blood pressure by 20%, establishing that vascular smooth muscle responds to NO. L-arginine, the substrate for NO synthase, had no hemodynamic effect. Acetylcholine, which stimulates endothelial NO and prostaglandin production in mammals, reduced blood pressure, but also caused marked bradycardia. L-NAME, an inhibitor of all NO synthases, caused a small 10% rise in blood pressure, but cell-free hemoglobin (a potent NO scavenger and hypertensive agent in mammals) had no effect. Acute hypoxia caused a 15% fall in blood pressure, which was blocked by L-NAME and cell-free hemoglobin. Serum nitrite, a marker of NO production, rose with hypoxia, but not with L-NAME. Results suggest that NO is not an endothelial-derived vasodilator in the normoxic elasmobranch. The hypertensive effect of L-NAME may represent inhibition of NO production in the CNS and nerves regulating blood pressure. In acute hypoxia, there is a rapid up-regulation of vascular NO production that appears to be responsible for hypoxic vasodilation.

  7. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  8. The effects of hypoxic bradycardia and extracellular HCO3(-)/CO2 on hypoxic performance in the eel heart.

    PubMed

    Joyce, William; Simonsen, Maj; Gesser, Hans; Wang, Tobias

    2016-02-01

    During hypoxia, fishes exhibit a characteristic hypoxic bradycardia, the functional significance of which remains debated. Here, we investigated the hypothesis that hypoxic bradycardia primarily safeguards cardiac performance. In preparations from the European eel (Anguilla anguilla), a decrease in stimulation frequency from 40 to 15 beats min(-1), which replicates hypoxic bradycardia in vivo, vastly improved cardiac performance during hypoxia in vitro. As eels display dramatic shifts in extracellular HCO3(-)/CO2, we further investigated the effect this has upon hypoxic cardiac performance. Elevations from 10 mmol l(-1) HCO3(-)/1% CO2 to 40 mmol l(-1) HCO3(-)/4% CO2 had few effects on performance; however, further, but still physiologically relevant, increases to 70 mmol l(-1) HCO3(-)/7% CO2 compromised hypoxia tolerance. We revealed a four-way interaction between HCO3(-)/CO2, contraction frequency, hypoxia and performance over time, whereby the benefit of hypoxic bradycardia was most prolonged at 10 mmol l(-1) HCO3(-)/1% CO2. Together, our data suggest that hypoxic bradycardia greatly benefits cardiac performance, but its significance may be context specific. © 2016. Published by The Company of Biologists Ltd.

  9. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.

    PubMed

    Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L

    2015-07-01

    To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.

  10. Acute respiratory symptoms and evacuation-related behavior after exposure to chlorine gas leakage.

    PubMed

    Han, Sung-Woo; Choi, Won-Jun; Yi, Min-Kee; Song, Seng-Ho; Lee, Dong-Hoon; Han, Sang-Hwan

    2016-01-01

    A study was performed on the accidental chlorine gas leakage that occurred in a factory of printed circuit boards manufactured without chlorine. Health examination was performed for all 52 workers suspected of exposure to chlorine gas, and their evacuation-related behaviors were observed in addition to analyzing the factors that affected the duration of their acute respiratory symptoms. Behavioral characteristics during the incidence of the accidental chlorine gas leakage, the estimated time of exposure, and the duration of subjective acute respiratory symptoms were investigated. In addition, clinical examination, chest radiography, and dental erosion test were performed. As variables that affected the duration of respiratory symptoms, dose group, body weight, age, sex, smoking, work period, and wearing a protective gear were included and analyzed by using the Cox proportional hazard model. Of 47 workers exposed to chlorine gas, 36 (77 %) developed more than one subjective symptom. The duration of the subjective symptoms according to exposure level significantly differed, with a median of 1 day (range, 0-5 days) in the low-exposure group and 2 days (range, 0-25 days) in the high-exposure group. Among the variables that affected the duration of the acute respiratory symptoms, which were analyzed by using the Cox proportional hazard model, only exposure level was significant (hazard ratio 2.087, 95 % CI = 1.119, 3.890). Regarding the evacuation-related behaviors, 22 workers (47 %) voluntarily evacuated to a safety zone immediately after recognizing the accidental exposure, but 25 workers (43 %) delayed evacuation until the start of mandatory evacuation (min 5, max 25 min). The duration of the subjective acute respiratory symptoms significantly differed between the low- and high-exposure groups. Among the 27 workers in the high-exposure group, 17 misjudged the toxicity after being aware of the gas leakage, which is a relatively high number.

  11. Hypoxic Episodes in Bronchopulmonary Dysplasia

    PubMed Central

    Martin, Richard J.; Di Fiore, Juliann M.; Walsh, Michele C.

    2015-01-01

    Hypoxic episodes are troublesome components of bronchopulmonary dysplasia in preterm infants. Immature respiratory control appears to be the major contributor, typically superimposed upon abnormal respiratory function. As a result, relatively short respiratory pauses may precipitate desaturation and accompanying bradycardia. As this population is predisposed to pulmonary hypertension, it is likely that pulmonary vasoconstriction may also play a role in hypoxic episodes. The natural history of intermittent hypoxic episodes has been well characterized in the preterm population at risk for BPD. However, the consequences of these episodes are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships. PMID:26593081

  12. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish.

    PubMed

    Mathur, Priya; Guo, Su

    2011-06-01

    Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    PubMed

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  14. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  15. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  16. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  17. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects

    PubMed Central

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A.; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2017-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m−2) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO2), continuously adjusted to reach arterial oxygen saturations (SpO2) of 70–80% for 1 h. IH sessions consisted of 5 min with reduced FiO2 (SpO2 = 70–80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results: Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min−1) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (−8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH −6 ± 5%, IH −3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (−13 ± 3% vs. −6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in

  18. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man.

    PubMed

    Teppema, Luc J; Bijl, Hans; Romberg, Raymonda R; Dahan, Albert

    2006-05-01

    The carbonic anhydrase inhibitor acetazolamide may have both inhibitory and stimulatory effects on breathing. In this placebo-controlled double-blind study we measured the effect of an intravenous dose (4 mg kg(-1)) of this agent on the acute isocapnic hypoxic ventilatory response in 16 healthy volunteers (haemoglobin oxygen saturation 83-85%) and examined whether its inhibitory effects on this response could be reversed by antioxidants (1 g ascorbic acid i.v. and 200 mg alpha-tocopherol p.o.). The subjects were randomly divided into an antioxidant (Aox) and placebo group. In the Aox group, acetazolamide reduced the mean normocapnic and hypercapnic hypoxic responses by 37% (P < 0.01) and 55% (P < 0.01), respectively, and abolished the O2-CO2 interaction, i.e. the increase in O2 sensitivity with rising Pco2. Antioxidants completely reversed this inhibiting effect on the normocapnic hypoxic response, while in hypercapnia the reversal was partial. In the placebo group, acetazolamide reduced the normo- and hypercapnic hypoxic responses by 33 and 47%, respectively (P < 0.01 versus control in both cases), and also abolished the O2-CO2 interaction. Placebo failed to reverse these inhibitory effects of acetazolamide in this group. We hypothesize that either an isoform of carbonic anhydrase may be involved in the regulation of the redox state in the carotid bodies or that acetazolamide and antioxidants exert independent effects on oxygen-sensing cells, in which both carbonic anhydrase and potassium channels may be involved. The novel findings of this study may have clinical implications, for example with regard to a combined use of acetazolamide and antioxidants at high altitude.

  19. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man

    PubMed Central

    Teppema, Luc J; Bijl, Hans; Romberg, Raymonda R; Dahan, Albert

    2006-01-01

    The carbonic anhydrase inhibitor acetazolamide may have both inhibitory and stimulatory effects on breathing. In this placebo-controlled double-blind study we measured the effect of an intravenous dose (4 mg kg−1) of this agent on the acute isocapnic hypoxic ventilatory response in 16 healthy volunteers (haemoglobin oxygen saturation 83–85%) and examined whether its inhibitory effects on this response could be reversed by antioxidants (1 g ascorbic acid i.v. and 200 mg α-tocopherol p.o.). The subjects were randomly divided into an antioxidant (Aox) and placebo group. In the Aox group, acetazolamide reduced the mean normocapnic and hypercapnic hypoxic responses by 37% (P < 0.01) and 55% (P < 0.01), respectively, and abolished the O2–CO2 interaction, i.e. the increase in O2 sensitivity with rising PCO2. Antioxidants completely reversed this inhibiting effect on the normocapnic hypoxic response, while in hypercapnia the reversal was partial. In the placebo group, acetazolamide reduced the normo- and hypercapnic hypoxic responses by 33 and 47%, respectively (P < 0.01 versus control in both cases), and also abolished the O2–CO2 interaction. Placebo failed to reverse these inhibitory effects of acetazolamide in this group. We hypothesize that either an isoform of carbonic anhydrase may be involved in the regulation of the redox state in the carotid bodies or that acetazolamide and antioxidants exert independent effects on oxygen-sensing cells, in which both carbonic anhydrase and potassium channels may be involved. The novel findings of this study may have clinical implications, for example with regard to a combined use of acetazolamide and antioxidants at high altitude. PMID:16439432

  20. The brain is a target organ after acute exposure to depleted uranium.

    PubMed

    Lestaevel, P; Houpert, P; Bussy, C; Dhieux, B; Gourmelon, P; Paquet, F

    2005-09-01

    The health effects of depleted uranium (DU) are mainly caused by its chemical toxicity. Although the kidneys are the main target organs for uranium toxicity, uranium can also reach the brain. In this paper, the central effects of acute exposure to DU were studied in relation to health parameters and the sleep-wake cycle of adult rats. Animals were injected intraperitoneally with 144+/-10 microg DU kg-1 as nitrate. Three days after injection, the amounts of uranium in the kidneys represented 2.6 microg of DU g-1 of tissue, considered as a sub-nephrotoxic dosage. The central effect of uranium could be seen through a decrease in food intake as early as the first day after exposure and shorter paradoxical sleep 3 days after acute DU exposure (-18% of controls). With a lower dosage of DU (70+/-8 microg DU kg-1), no significant effect was observed on the sleep-wake cycle. The present study intends to illustrate the fact that the brain is a target organ, as are the kidneys, after acute exposure to a moderate dosage of DU. The mechanisms by which uranium causes these early neurophysiological perturbations shall be discussed.

  1. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    EPA Science Inventory

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  2. Hypoglycaemia and hypoxic-ischaemic encephalopathy.

    PubMed

    Boardman, James P; Hawdon, Jane M

    2015-04-01

    The transition from fetal to neonatal life requires metabolic adaptation to ensure that energy supply to vital organs and systems is maintained after separation from the placental circulation. Under normal conditions, this is achieved through the mobilization and use of alternative cerebral fuels (fatty acids, ketone bodies, and lactate) when blood glucose concentration falls. Severe hypoxia-ischaemia is associated with impaired metabolic adaptation, and animal and human data suggest that levels of hypoglycaemia that are tolerated under normal conditions can be harmful in association with hypoxia-ischaemia. The optimal target blood glucose level for ensuring adequate energy provision in hypoxic-ischaemic encephalopathy (HIE) remains unknown. However, recent data support guidance to maintain a blood glucose concentration of 2.5 mmol/L or more in neonates with signs of acute neurological dysfunction, which includes those with HIE, and this is higher than the accepted threshold of 2 mmol/L in infants without signs of neurological dysfunction or hyperinsulinism. © The Authors. Journal compilation © 2015 Mac Keith Press.

  3. Self-Reported Acute Health Effects and Exposure to Companion Animals.

    PubMed

    Krueger, W S; Hilborn, E D; Dufour, A P; Sams, E A; Wade, T J

    2016-06-01

    To understand the etiological burden of disease associated with acute health symptoms [e.g. gastrointestinal (GI), respiratory, dermatological], it is important to understand how common exposures influence these symptoms. Exposures to familiar and unfamiliar animals can result in a variety of health symptoms related to infection, irritation and allergy; however, few studies have examined this association in a large-scale cohort setting. Cross-sectional data collected from 50 507 participants in the United States enrolled from 2003 to 2009 were used to examine associations between animal contact and acute health symptoms during a 10-12 day period. Fixed-effects multivariable logistic regression estimated adjusted odds ratios (AORs) and 95% confident intervals (CI) for associations between animal exposures and outcomes of GI illness, respiratory illness and skin/eye symptoms. Two-thirds of the study population (63.2%) reported direct contact with animals, of which 7.7% had contact with at least one unfamiliar animal. Participants exposed to unfamiliar animals had significantly higher odds of self-reporting all three acute health symptoms, when compared to non-animal-exposed participants (GI: AOR = 1.4, CI = 1.2-1.7; respiratory: AOR = 1.5, CI = 1.2-1.8; and skin/eye: AOR = 1.9, CI = 1.6-2.3), as well as when compared to participants who only had contact with familiar animals. Specific contact with dogs, cats or pet birds was also significantly associated with at least one acute health symptom; AORs ranged from 1.1 to 1.5, when compared to participants not exposed to each animal. These results indicate that contact with animals, especially unfamiliar animals, was significantly associated with GI, respiratory and skin/eye symptoms. Such associations could be attributable to zoonotic infections and allergic reactions. Etiological models for acute health symptoms should consider contact with companion animals, particularly exposure to unfamiliar animals

  4. Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure.

    PubMed

    Ottestad, William; Hansen, Tor Are; Pradhan, Gaurav; Stepanek, Jan; Høiseth, Lars Øivind; Kåsin, Jan Ivar

    2017-12-01

    High-Altitude High Opening (HAHO) is a military operational procedure in which parachute jumps are performed at high altitude requiring supplemental oxygen, putting personnel at risk of acute hypoxia in the event of oxygen equipment failure. This study was initiated by the Norwegian Army to evaluate potential outcomes during failure of oxygen supply, and to explore physiology during acute severe hypobaric hypoxia. A simulated HAHO without supplemental oxygen was carried out in a hypobaric chamber with decompression to 30,000 ft (9,144 m) and then recompression to ground level with a descent rate of 1,000 ft/min (305 m/min). Nine subjects were studied. Repeated arterial blood gas samples were drawn throughout the entire hypoxic exposure. Additionally, pulse oximetry, cerebral oximetry, and hemodynamic variables were monitored. Desaturation evolved rapidly and the arterial oxygen tensions are among the lowest ever reported in volunteers during acute hypoxia. Pa O 2 decreased from baseline 18.4 (17.3-19.1) kPa, 138.0 (133.5-143.3) mmHg, to a minimum value of 3.3 (2.9-3.7) kPa, 24.8 (21.6-27.8) mmHg, after 180 (60-210) s, [median (range)], N = 9. Hyperventilation with ensuing hypocapnia was associated with both increased arterial oxygen saturation and cerebral oximetry values, and potentially improved tolerance to severe hypoxia. One subject had a sharp drop in heart rate and cardiac index and lost consciousness 4 min into the hypoxic exposure. A simulated high-altitude airdrop scenario without supplemental oxygen results in extreme hypoxemia and may result in loss of consciousness in some individuals. NEW & NOTEWORTHY This is the first study to investigate physiology and clinical outcome of oxygen system failure in a simulated HAHO scenario. The acquired knowledge is of great value to make valid risk-benefit analyses during HAHO training or operations. The arterial oxygen tensions reported in this hypobaric chamber study are among the lowest ever reported during acute

  5. Prediction of Susceptibility to Acute Mountain Sickness Using Hypoxia-Induced Intrapulmonary Arteriovenous Shunt and Intracardiac Shunt Fractions

    DTIC Science & Technology

    2012-10-31

    intrapulmonary and intracardiac shunt using saline contrast echocardiography to determine bubble/shunt scores. We will also use nuclear medicine imaging to...subjects have completed saline contrast echocardiography while breathing hypoxic gas mixtures. For Task #2 “10 hr hypoxic exposure and AMS... echocardiography while breathing an FIO2=0.14, will be susceptible or resistant to developing AMS after 10 hr hypoxic exposure. For Task #3 “Hypoxia

  6. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy

    PubMed Central

    Gupta, Charu; Massaro, An N.

    2016-01-01

    Background Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. Methods To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Results Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI–KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of <33, <40, and <46 % from birth to days 3, 5, or 7 of life, respectively (delayed rise in estimated SCr clearance group). Compared to the control group, newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. Conclusions The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life. PMID:26857710

  7. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy.

    PubMed

    Gupta, Charu; Massaro, An N; Ray, Patricio E

    2016-07-01

    Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI-KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of <33, <40, and <46 % from birth to days 3, 5, or 7 of life, respectively (delayed rise in estimated SCr clearance group). Compared to the control group, newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life.

  8. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells

    PubMed Central

    Yadav, Vishal R.; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min

    2013-01-01

    An increase in intracellular calcium concentration ([Ca2+]i) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca2+]i in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca2+]i. Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP3) production, which is blocked by U73122. The IP3 receptor (IP3R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca2+]i. PLC-γ1 knockdown or U73122 reduces H2O2-induced increase in [Ca2+]i in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP3 production, IP3R opening, and Ca2+ release, playing an important role in hypoxic Ca2+ and contractile responses in PASMCs. PMID:23204067

  9. [Acute risk assessment of cumulative dietary exposure to organophosphorus pesticide among people in Jiangsu province].

    PubMed

    Zhao, Minxian; Wang, Cannan; Li, Tingting; Yi, Nannan; He, Xiansong; Wu, Hui; Yao, Xinya

    2013-09-01

    To understand the cumulative dietary exposure of Jiangsu residents to organophosphorus (OPs) pesticide and make acute risk assessment. Integrated the data of the nutrition and health status of residents in Jiangsu and the data of monitoring of OPs pesticide in agricultural products. Chlorpyrifos was selected as index compound (index chemical, IC), then use relative potency factor (RPF) approach which commended by EPA and simple distribution evaluation. Caloulated the dietary cumulative exposure of OPs pesticide among Jiangsu residents and compared with acute reference dose (ARfD), then made risk assessment. The exposure of rural group of age 3-6 and 7-11 were 133.84 microg/kg BW and 154.32 microg/kg BW, exceeded ARfD. The exposure level of kids and elder was higher than adults. The exposure level of rural residents were higher than urban residents. The highest contribution to the food of each age group was greengrocery and leek. The average level of exposure was safety in Jiangsu, high exposure children were at acute poisoning risk. High contribution food such as greengrocery and leek should be strengthen monitoring.

  10. Clinical and diagnostic features of delayed hypoxic leukoencephalopathy.

    PubMed

    Shprecher, David R; Flanigan, Kevin M; Smith, A Gordon; Smith, Shawn M; Schenkenberg, Thomas; Steffens, John

    2008-01-01

    Delayed hypoxic leukoencephalopathy is an underrecognized syndrome of delayed demyelination, which is important to consider when delayed onset of neuropsychiatric symptoms follows a hypoxic event. The authors describe clinical and diagnostic features of three such cases, review the pathophysiology of delayed hypoxic leukoencephalopathy, and discuss features which may help distinguish it from toxic leukoencephalopathy.

  11. Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue.

    PubMed

    Gao, Y; Qimuge, N R; Qin, J; Cai, R; Li, X; Chu, G Y; Pang, W J; Yang, G S

    2018-07-01

    Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal's response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.

  12. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  13. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  14. USE OF LETHALITY DATA DURING CATEGORICAL REGRESSION MODELING OF ACUTE REFERENCE EXPOSURES

    EPA Science Inventory

    Categorical regression is being considered by the U.S. EPA as an additional tool for derivation of acute reference exposures (AREs) to be used for human health risk assessment for exposure to inhaled chemicals. Categorical regression is used to calculate probability-response fun...

  15. ACUTE EXPOSURE TO MOLINATE ALTERS NEUROENDOCRINE CONTROL OF OVULATION IN THE RAT

    EPA Science Inventory

    Molinate, a thiocarbamate herbicide, has been shown previously to impair reproductive capability in the male rat. In a two-generation study, molinate exposure to female rats resulted in altered pregnancy outcome. However, published data is lacking on the effects of acute exposure...

  16. Steroid Exposure, Acute Coronary Syndrome, and Inflammatory Bowel Disease: Insights into the Inflammatory Milieu

    PubMed Central

    Deaño, Roderick C.; Basnet, Sandeep; Onandia, Zurine Galvan; Gandhi, Sachin; Tawakol, Ahmed; Min, James K.; Truong, Quynh A.

    2014-01-01

    Background Steroids are anti-inflammatory agents commonly used to treat inflammatory bowel disease. Inflammation plays a critical role in the pathophysiology of both inflammatory bowel disease and acute coronary syndrome. We examined the relationship between steroid use in patients with inflammatory bowel disease and acute coronary syndrome. Methods In 177 patients with inflammatory bowel disease (mean age 67, 75% male, 44% Crohn's disease, 56% ulcerative colitis), we performed a 1:2 case-control study matched for age, sex and inflammatory bowel disease type and compared 59 patients with inflammatory bowel disease with acute coronary syndrome to 118 patients with inflammatory bowel disease without acute coronary syndrome. Steroid use was defined as current or prior exposure. Acute coronary syndrome was defined as myocardial infarction or unstable angina, confirmed by cardiac biomarkers and coronary angiography. Results In patients with inflammatory bowel disease, 34% with acute coronary syndrome had exposure to steroids versus 58% without acute coronary syndrome (p<0.01). Steroid exposure reduced the adjusted odds of acute coronary syndrome by 82% (odds ratio [OR] 0.39, 95% CI 0.20-0.74; adjusted OR 0.18, 95% CI 0.06-0.51) in patients with inflammatory bowel disease, 77% in Crohn's disease (OR 0.36, 95% CI 0.14-0.92; adjusted OR 0.23, 95% CI 0.06-0.98), and 78% in ulcerative colitis (OR 0.41, 95% CI 0.16-1.04; adjusted OR 0.22, 95% CI 0.06-0.90). There was no association between other inflammatory bowel disease medications and acute coronary syndrome. Conclusions In patients with inflammatory bowel disease, steroid use significantly reduces the odds of acute coronary syndrome. These findings provide further mechanistic insight into the inflammatory processes involved in inflammatory bowel disease and acute coronary syndrome. PMID:25446295

  17. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    PubMed Central

    Ward, Catherine L.; Corona, Benjamin T.; Yoo, James J.; Harrison, Benjamin S.; Christ, George J.

    2013-01-01

    Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1–2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2–5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2–5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1–2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under

  18. Critical developmental windows for morphology and hematology revealed by intermittent and continuous hypoxic incubation in embryos of quail (Coturnix coturnix).

    PubMed

    Burggren, Warren W; Elmonoufy, Nourhan A

    2017-01-01

    Hypoxia during embryonic growth in embryos is frequently a powerful determinant of development, but at least in avian embryos the effects appear to show considerable intra- and inter-specific variation. We hypothesized that some of this variation may arise from different protocols that may or may not result in exposure during the embryo's critical window for hypoxic effects. To test this hypothesis, quail embryos (Coturnix coturnix) in the intact egg were exposed to hypoxia (~15% O2) during "early" (Day 0 through Day 5, abbreviated as D0-D5), "middle" (D6-D10) or "late" (D11-D15) incubation or for their entire 16-18 day incubation ("continuous hypoxia") to determine critical windows for viability and growth. Viability, body mass, beak and toe length, heart mass, and hematology (hematocrit and hemoglobin concentration) were measured on D5, D10, D15 and at hatching typically between D16 and D18 Viability rate was ~50-70% immediately following the exposure period in the early, middle and late hypoxic groups, but viability improved in the early and late groups once normoxia was restored. Middle hypoxia groups showed continuing low viability, suggesting a critical period from D6-D10 for embryo viability. The continuous hypoxia group experienced viability reaching <10% after D15. Hypoxia, especially during late and continuous hypoxia, also inhibited growth of body, beak and toe when measured at D15. Full recovery to normal body mass upon hatching occurred in all other groups except for continuous hypoxia. Contrary to previous avian studies, heart mass, hematocrit and hemoglobin concentration were not altered by any hypoxic incubation pattern. Although hypoxia can inhibit embryo viability and organ growth during most incubation periods, the greatest effects result from continuous or middle incubation hypoxic exposure. Hypoxic inhibition of growth can subsequently be "repaired" by catch-up growth if a final period of normoxic development is available. Collectively, these

  19. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    PubMed

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  20. UPLC-QTOFMS-based metabolomic analysis of the serum of hypoxic preconditioning mice

    PubMed Central

    Liu, Jie; Zhang, Gang; Chen, Dewei; Chen, Jian; Yuan, Zhi-Bin; Zhang, Er-Long; Gao, Yi-Xing; Xu, Gang; Sun, Bing-Da; Liao, Wenting; Gao, Yu-Qi

    2017-01-01

    Hypoxic preconditioning (HPC) is well-known to exert a protective effect against hypoxic injury; however, the underlying molecular mechanism remains unclear. The present study utilized a serum metabolomics approach to detect the alterations associated with HPC. In the present study, an animal model of HPC was established by exposing adult BALB/c mice to acute repetitive hypoxia four times. The serum samples were collected by orbital blood sampling. Metabolite profiling was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS), in conjunction with univariate and multivariate statistical analyses. The results of the present study confirmed that the HPC mouse model was established and refined, suggesting significant differences between the control and HPC groups at the molecular levels. HPC caused significant metabolic alterations, as represented by the significant upregulation of valine, methionine, tyrosine, isoleucine, phenylalanine, lysophosphatidylcholine (LysoPC; 16:1), LysoPC (22:6), linoelaidylcarnitine, palmitoylcarnitine, octadecenoylcarnitine, taurine, arachidonic acid, linoleic acid, oleic acid and palmitic acid, and the downregulation of acetylcarnitine, malate, citrate and succinate. Using MetaboAnalyst 3.0, a number of key metabolic pathways were observed to be acutely perturbed, including valine, leucine and isoleucine biosynthesis, in addition to taurine, hypotaurine, phenylalanine, linoleic acid and arachidonic acid metabolism. The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the protective mechanism of HPC. PMID:28901489

  1. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. MEDEX 2015: Heart Rate Variability Predicts Development of Acute Mountain Sickness.

    PubMed

    Sutherland, Angus; Freer, Joseph; Evans, Laura; Dolci, Alberto; Crotti, Matteo; Macdonald, Jamie Hugo

    2017-09-01

    Sutherland, Angus, Joseph Freer, Laura Evans, Alberto Dolci, Matteo Crotti, and Jamie Hugo Macdonald. MEDEX 2015: Heart rate variability predicts development of acute mountain sickness. High Alt Med Biol. 18: 199-208, 2017. Acute mountain sickness (AMS) develops when the body fails to acclimatize to atmospheric changes at altitude. Preascent prediction of susceptibility to AMS would be a useful tool to prevent subsequent harm. Changes to peripheral oxygen saturation (SpO 2 ) on hypoxic exposure have previously been shown to be of poor predictive value. Heart rate variability (HRV) has shown promise in the early prediction of AMS, but its use pre-expedition has not previously been investigated. We aimed to determine whether pre- and intraexpedition HRV assessment could predict susceptibility to AMS at high altitude with better diagnostic accuracy than SpO 2 . Forty-four healthy volunteers undertook an expedition in the Nepali Himalaya to >5000 m. SpO 2 and HRV parameters were recorded at rest in normoxia and in a normobaric hypoxic chamber before the expedition. On the expedition HRV parameters and SpO 2 were collected again at 3841 m. A daily Lake Louise Score was obtained to assess AMS symptomology. Low frequency/high frequency (LF/HF) ratio in normoxia (cutpoint ≤2.28 a.u.) and LF following 15 minutes of exposure to normobaric hypoxia had moderate (area under the curve ≥0.8) diagnostic accuracy. LF/HF ratio in normoxia had the highest sensitivity (85%) and specificity (88%) for predicting AMS on subsequent ascent to altitude. In contrast, pre-expedition SpO 2 measurements had poor (area under the curve <0.7) diagnostic accuracy and inferior sensitivity and specificity. Pre-ascent measurement of HRV in normoxia was found to be of better diagnostic accuracy for AMS prediction than all measures of HRV in hypoxia, and better than peripheral oxygen saturation monitoring.

  3. Acute Exposure to Low-to-Moderate Carbon Dioxide Levels and Submariner Decision Making.

    PubMed

    Rodeheffer, Christopher D; Chabal, Sarah; Clarke, John M; Fothergill, David M

    2018-06-01

    Submarines routinely operate with higher levels of ambient carbon dioxide (CO2) (i.e., 2000 - 5000 ppm) than what is typically considered normal (i.e., 400 - 600 ppm). Although significant cognitive impairments are rarely reported at these elevated CO2 levels, recent studies using the Strategic Management Simulation (SMS) test have found impairments in decision-making performance during acute CO2 exposure at levels as low as 1000 ppm. This is a potential concern for submarine operations, as personnel regularly make mission-critical decisions that affect the safety and efficiency of the vessel and its crew while exposed to similar levels of CO2. The objective of this study was to determine if submariner decision-making performance is impacted by acute exposure to levels of CO2 routinely present in the submarine atmosphere during sea patrols. Using a subject-blinded balanced design, 36 submarine-qualified sailors were randomly assigned to receive 1 of 3 CO2 exposure conditions (600, 2500, or 15,000 ppm). After a 45-min atmospheric acclimation period, participants completed an 80-min computer-administered SMS test as a measure of decision making. There were no significant differences for any of the nine SMS measures of decision making between the CO2 exposure conditions. In contrast to recent research demonstrating cognitive deficits on the SMS test in students and professional-grade office workers, we were unable to replicate this effect in a submariner population-even with acute CO2 exposures more than an order of magnitude greater than those used in previous studies that demonstrated such effects.Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp Med Hum Perform. 2018; 89(6):520-525.

  4. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    PubMed Central

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  5. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    PubMed

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  6. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  7. Cardiac Autonomic Effects of Acute Exposures to Airborne Particulates in Men and Women

    NASA Technical Reports Server (NTRS)

    Howarth, M. S.; Schlegel, T. T.; Knapp, C. F.; Patwardhan, A. R.; Jenkins, R. A.; Ilgner, R. H.; Evans, J. M.

    2007-01-01

    The aim of this research was to investigate cardiac autonomic changes associated with acute exposures to airborne particulates. Methods: High fidelity 12-lead ECG (CardioSoft, Houston, TX) was acquired from 19 (10 male / 9 female) non-smoking volunteers (age 33.6 +/- 6.6 yrs) during 10 minutes pre-exposure, exposure and post-exposure to environmental tobacco smoke (ETS), cooking oil fumes, wood smoke and sham (water vapor). To control exposure levels, noise, subject activity, and temperature, all studies were conducted inside an environmental chamber. Results: The short-term fractal scaling exponent (Alpha-1) and the ratio of low frequency to high frequency Heart Rate Variability (HRV) powers (LF/HF, a purported sympathetic index) were both higher in males (p<0.017 and p<0.05, respectively) whereas approximate entropy (ApEn) and HF/(LF+HF) (a purported parasympathetic index) were both lower in males (p<0.036, and p<0.044, respectively). Compared to pre-exposure (p<0.0002) and sham exposure (p<0.047), male heart rates were elevated during early ETS post-exposure. Our data suggest that, in addition to tonic HRV gender differences, cardiac responses to some acute airborne particulates are gender related.

  8. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats

    PubMed Central

    Fu, Zhenxing; Powell, Frank L.

    2011-01-01

    During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco2 levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO2-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po2 = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH. PMID:21593425

  9. Prior exposure to repeated immobilization or chronic unpredictable stress protects from some negative sequels of an acute immobilization.

    PubMed

    Pastor-Ciurana, Jordi; Rabasa, Cristina; Ortega-Sánchez, Juan A; Sanchís-Ollè, Maria; Gabriel-Salazar, Marina; Ginesta, Marta; Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2014-05-15

    Exposure to chronic unpredictable stress (CUS) is gaining acceptance as a putative animal model of depression. However, there is evidence that chronic exposure to stress can offer non-specific stress protection from some effects of acute superimposed stressors. We then compared in adult male rats the protection afforded by prior exposure to CUS with the one offered by repeated immobilization on boards (IMO) regarding some of the negative consequences of an acute exposure to IMO. Repeated exposure to IMO protected from the negative consequences of an acute IMO on activity in an open-field, saccharin intake and body weight gain. Active coping during IMO (struggling) was markedly reduced by repeated exposure to the same stressor, but it was not affected by a prior history of CUS, suggesting that our CUS protocol does not appear to impair active coping responses. CUS exposure itself caused a strong reduction of activity in the open-field but appeared to protect from the hypo-activity induced by acute IMO. Moreover, prior CUS offered partial protection from acute IMO-induced reduction of saccharin intake and body weight gain. It can be concluded that a prior history of CUS protects from some of the negative consequences of exposure to a novel severe stressor, suggesting the development of partial cross-adaptation whose precise mechanisms remain to be studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Chromosomal bands affected by acute oil exposure and DNA repair errors.

    PubMed

    Monyarch, Gemma; de Castro Reis, Fernanda; Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P; Antó, Josep M; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.

  11. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    PubMed

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil

  12. Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status.

    PubMed

    Harrison, Hannah; Rogerson, Lynsey; Gregson, Hannah J; Brennan, Keith R; Clarke, Robert B; Landberg, Göran

    2013-02-15

    Tumor hypoxia is often linked to decreased survival in patients with breast cancer and current therapeutic strategies aim to target the hypoxic response. One way in which this is done is by blocking hypoxia-induced angiogenesis. Antiangiogenic therapies show some therapeutic potential with increased disease-free survival, but these initial promising results are short lived and followed by tumor progression. We hypothesized that this may be due to altered cancer stem cell (CSC) activity resulting from increased tumor hypoxia. We studied the effects of hypoxia on CSC activity, using in vitro mammosphere and holoclone assays as well as in vivo limiting dilution experiments, in 13 patient-derived samples and four cell lines. There was a HIF-1α-dependent CSC increase in ER-α-positive cancers following hypoxic exposure, which was blocked by inhibition of estrogen and Notch signaling. A contrasting decrease in CSC was seen in ER-α-negative cancers. We next developed a xenograft model of cell lines and patient-derived samples to assess the hypoxic CSC response. Varying sizes of xenografts were collected and analyzed for HIF1-α expression and CSC. The same ER-α-dependent contrasting hypoxic-CSC response was seen validating the initial observation. These data suggest that ER-α-positive and negative breast cancer subtypes respond differently to hypoxia and, as a consequence, antiangiogenic therapies will not be suitable for both subgroups.

  13. Biomarkers of Acute Respiratory Allergen Exposure: Screening For Sensitization Potential

    EPA Science Inventory

    Rationale: An in vitro assay to identify respiratory sensitizers will provide a rapid screen and reduce animal use. The study goal was to identify biomarkers that differentiate allergen versus non-allergen responses following an acute exposure. Methods: Female BALB/c mice rec...

  14. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    EPA Science Inventory

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  15. Cardiovascular effects of linalyl acetate in acute nicotine exposure.

    PubMed

    Kim, Ju Ri; Kang, Purum; Lee, Hui Su; Kim, Ka Young; Seol, Geun Hee

    2017-04-24

    Smoking is a risk factor for cardiovascular diseases as well as pulmonary dysfunction. In particular, adolescent smoking has been reported to have a higher latent risk for cardiovascular disease. Despite the risk to and vulnerability of adolescents to smoking, the mechanisms underlying the effects of acute nicotine exposure on adolescents remain unknown. This study therefore evaluated the mechanism underlying the effects of linalyl acetate on cardiovascular changes in adolescent rats with acute nicotine exposure. Parameters analyzed included heart rate (HR), systolic blood pressure, lactate dehydrogenase (LDH) activity, vascular contractility, and nitric oxide levels. Compared with nicotine alone, those treated with nicotine plus 10 mg/kg (p = 0.036) and 100 mg/kg (p = 0.023) linalyl acetate showed significant reductions in HR. Moreover, the addition of 1 mg/kg (p = 0.011), 10 mg/kg (p = 0.010), and 100 mg/kg (p = 0.011) linalyl acetate to nicotine resulted in significantly lower LDH activity. Nicotine also showed a slight relaxation effect, followed by a sustained recontraction phase, whereas nicotine plus linalyl acetate or nifedipine showed a constant relaxation effect on contraction of mouse aorta (p < 0.001). Furthermore, nicotine-induced increases in nitrite levels were decreased by treatment with linalyl acetate (p < 0.001). Taken together, our findings suggest that linalyl acetate treatment resulted in recovery of cell damage and cardiovascular changes caused by acute nicotine-induced cardiovascular disruption. Our evaluation of the influence of acute nicotine provides potential insights into the effects of environmental tobacco smoke and suggests linalyl acetate as an available mitigating agent.

  16. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  17. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E.

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires themore » cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.« less

  18. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol

    NASA Astrophysics Data System (ADS)

    Laloy, J.; Lozano, O.; Alpan, L.; Masereel, B.; Toussaint, O.; Dogné, J. M.; Lucas, S.

    2015-08-01

    Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.

  19. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauth, A.M.; Mohindra, J.K.

    1981-12-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, highmore » drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC.« less

  20. Case-control study of childhood acute lymphoblastic leukemia and residential radon exposure.

    PubMed

    Lubin, J H; Linet, M S; Boice, J D; Buckley, J; Conrath, S M; Hatch, E E; Kleinerman, R A; Tarone, R E; Wacholder, S; Robison, L L

    1998-02-18

    Several ecologic analyses have shown significant positive associations between mean indoor radon concentrations and risk of leukemia at all ages (acute myeloid leukemia and chronic lymphocytic leukemia) and for children (all leukemia, acute myeloid leukemia, and acute lymphoblastic leukemia [ALL]). As part of an age-matched, case-control study of childhood ALL in the United States, we investigated the association between the incidence of ALL in children under age 15 years and indoor radon exposure. Radon detectors were placed in current and previous homes of subjects where they resided for 6 months or longer. Children were included in analyses if radon measurements covered 70% or more of the 5-year period prior to diagnosis for case subjects (or from birth for case subjects under age 5 years) and the corresponding reference dates for control subjects. Radon levels could be estimated for 97% of the exposure period for the eligible 505 case subjects and 443 control subjects. Mean radon concentration was lower for case subjects (65.4 becquerels per cubic meter [Bqm(-3)]) than for control subjects (79.1 Bqm(-3)). For categories less than 37, 37-73, 74-147, and 148 or more Bqm(-3) of radon exposure, relative risks based on matched case-control pairs were 1.00, 1.22, 0.82, and 1.02, respectively, and were similar to results from an unmatched analysis. There was no association between ALL and radon exposure within subgroups defined by categories of age, income, birth order, birth weight, sex, type of residence, magnetic field exposure, parental age at the subject's birth, parental occupation, or parental smoking habits. In contrast to prior ecologic studies, the results from this analytic study provide no evidence for an association between indoor radon exposure and childhood ALL.

  1. Self-reported acute health symptoms and exposure to companion animals#

    EPA Science Inventory

    Self-reported acute health symptoms and exposure to companion animalsWhitney S. Krueger1,2, Elizabeth D. Hilborn2, Timothy J. Wade21Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA2Environmental Public Health Division, Office of Research and Development, U...

  2. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan; Park, Jun-Ik

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-cateninmore » expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in

  3. Targeting constitutively-activated STAT3 in hypoxic ovarian cancer, using a novel STAT3 inhibitor

    PubMed Central

    McCann, Georgia A.; Naidu, Shan; Rath, Kellie S.; Bid, Hemant K.; Tierney, Brent J.; Suarez, Adrian; Varadharaj, Saradhadevi; Zhang, Jianying; Hideg, Kálmán; Houghton, Peter; Kuppusamy, Periannan; Cohn, David E.; Selvendiran, Karuppaiyah

    2014-01-01

    Tumor hypoxia, a feature of many solid tumors including ovarian cancer, is associated with resistance to therapies. We previously demonstrated that hypoxic exposure results in increased expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3). We hypothesized the activation of STAT3 could lead to chemotherapeutic resistance in ovarian cancer cells in hypoxic conditions. In this study, we demonstrate the level of pSTAT3 Tyr705 is increased in the hypoxic regions of human epithelial ovarian cancer (EOC) specimens, as determined by HIF-1α and CD-31 staining. In vitro mutagenesis studies proved that pSTAT3 Tyr705 is necessary for cell survival and proliferation under hypoxic conditions. In addition, we show that S1PR1, a regulator of STAT3 transcription via the JAK/STAT pathway, is highly expressed in hypoxic ovarian cancer cells (HOCCs). Knock down of S1PR1 in HOCCs reduced pSTAT3 Tyr705 levels and was associated with decreased cell survival. Treatment of HOCCs with the STAT3 inhibitor HO-3867 resulted in a rapid and dramatic decrease in pSTAT3 Tyr705 levels as a result of ubiquitin proteasome degradation. STAT3-target proteins Bcl-xL, cyclin D2 and VEGF showed similar decreases in HO-3867 treated cells. Taken together, these findings suggest that activation of STAT3 Tyr705 promotes cell survival and proliferation in HOCCs, and that S1PR1 is involved in the initiation of STAT3 activation. Targeting hypoxia-mediated STAT3 activation represents a therapeutic option for ovarian cancer and other solid tumors. PMID:25594014

  4. Critical developmental windows for morphology and hematology revealed by intermittent and continuous hypoxic incubation in embryos of quail (Coturnix coturnix)

    PubMed Central

    Elmonoufy, Nourhan A.

    2017-01-01

    Hypoxia during embryonic growth in embryos is frequently a powerful determinant of development, but at least in avian embryos the effects appear to show considerable intra- and inter-specific variation. We hypothesized that some of this variation may arise from different protocols that may or may not result in exposure during the embryo’s critical window for hypoxic effects. To test this hypothesis, quail embryos (Coturnix coturnix) in the intact egg were exposed to hypoxia (~15% O2) during “early” (Day 0 through Day 5, abbreviated as D0-D5), “middle” (D6-D10) or “late” (D11-D15) incubation or for their entire 16–18 day incubation (“continuous hypoxia”) to determine critical windows for viability and growth. Viability, body mass, beak and toe length, heart mass, and hematology (hematocrit and hemoglobin concentration) were measured on D5, D10, D15 and at hatching typically between D16 and D18 Viability rate was ~50–70% immediately following the exposure period in the early, middle and late hypoxic groups, but viability improved in the early and late groups once normoxia was restored. Middle hypoxia groups showed continuing low viability, suggesting a critical period from D6-D10 for embryo viability. The continuous hypoxia group experienced viability reaching <10% after D15. Hypoxia, especially during late and continuous hypoxia, also inhibited growth of body, beak and toe when measured at D15. Full recovery to normal body mass upon hatching occurred in all other groups except for continuous hypoxia. Contrary to previous avian studies, heart mass, hematocrit and hemoglobin concentration were not altered by any hypoxic incubation pattern. Although hypoxia can inhibit embryo viability and organ growth during most incubation periods, the greatest effects result from continuous or middle incubation hypoxic exposure. Hypoxic inhibition of growth can subsequently be “repaired” by catch-up growth if a final period of normoxic development is

  5. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    PubMed Central

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID

  6. Neurobehavorial effects of acute exposure to four solvents: meta-abalyses

    EPA Science Inventory

    Meta-and re-analyses of the available data for the neurobehavioral effects of acute inhalation exposure to toluene were reported by Benignus et al. (2007). The present study was designed to test the generality of the toluene results in as many other solvents as possible by furthe...

  7. Acute lead exposure increases arterial pressure: role of the renin-angiotensin system.

    PubMed

    Simões, Maylla Ronacher; Ribeiro Júnior, Rogério F; Vescovi, Marcos Vinícius A; de Jesus, Honério C; Padilha, Alessandra S; Stefanon, Ivanita; Vassallo, Dalton V; Salaices, Mercedes; Fioresi, Mirian

    2011-04-11

    Chronic lead exposure causes hypertension and cardiovascular disease. Our purpose was to evaluate the effects of acute exposure to lead on arterial pressure and elucidate the early mechanisms involved in the development of lead-induced hypertension. Wistar rats were treated with lead acetate (i.v. bolus dose of 320 µg/Kg), and systolic arterial pressure, diastolic arterial pressure and heart rate were measured during 120 min. An increase in arterial pressure was found, and potential roles of the renin-angiotensin system, Na(+),K(+)-ATPase and the autonomic reflexes in this change in the increase of arterial pressure found were evaluated. In anesthetized rats, lead exposure: 1) produced blood lead levels of 37±1.7 µg/dL, which is below the reference blood concentration (60 µg/dL); 2) increased systolic arterial pressure (Ct: 109±3 mmHg vs Pb: 120±4 mmHg); 3) increased ACE activity (27% compared to Ct) and Na(+),K(+)-ATPase activity (125% compared to Ct); and 4) did not change the protein expression of the α1-subunit of Na(+),K(+)-ATPase, AT(1) and AT(2). Pre-treatment with an AT(1) receptor blocker (losartan, 10 mg/Kg) or an ACE inhibitor (enalapril, 5 mg/Kg) blocked the lead-induced increase of arterial pressure. However, a ganglionic blockade (hexamethonium, 20 mg/Kg) did not prevent lead's hypertensive effect. Acute exposure to lead below the reference blood concentration increases systolic arterial pressure by increasing angiotensin II levels due to ACE activation. These findings offer further evidence that acute exposure to lead can trigger early mechanisms of hypertension development and might be an environmental risk factor for cardiovascular disease.

  8. Novel Models to Study Effect of High-Altitude Hypoxic Exposure and Placental Insufficiency on Fetal Oxygen Metabolism and Congenital Heart Defects

    DTIC Science & Technology

    2017-10-01

    equivalent to O2 in air at altitudes from 25,000-4,000 ft elevation. ODDluc activity is measures in the fetal tissues as an index of hypoxic stress ...inspired O2. This corresponds to elevations of 25,000-7000 feet. The hypoxic stress placed on the embryo organs (heart, liver, brain) in a normal pregnancy...embryo is particularly vulnerable to reductions in the supply of O2 coming from the mother. 3) The combined stress of placental insufficiency plus

  9. Baroreflex sensitivity in acute hypoxia and carbohydrate loading.

    PubMed

    Klemenc, Matjaž; Golja, Petra

    2011-10-01

    Hypoxia decreases baroreflex sensitivity (BRS) and can be a sufficient cause for syncope in healthy individuals. Carbohydrate loading enhances efferent sympathetic activity, which affects cardiac contractility, heart rate and vascular resistance, the main determinants of blood pressure. Thus, in both normoxia and hypoxia, carbohydrate loading may be more than simply metabolically beneficial, as it may affect blood pressure regulation. We hypothesised that carbohydrate loading will, in both normoxia and hypoxia, alter the regulation of blood pressure, as reflected in a change in baroreflex sensitivity. Fourteen subjects participated in two experiments, composed of a 15-min normoxic period, after which the subjects ingested water or an equal amount of water with carbohydrates. A 30-min rest period was then followed by a 10-min second normoxic and a 30-min hypoxic period. Blood pressure and heart rate were monitored continuously during the experiment to determine BRS. Despite an increased sympathetic activation, reflected in increased heart rate (P < 0.001) BRS was lower (P < 0.01) after carbohydrate loading, as compared to the water experiment, in both normoxic [23.7 (12.4) versus 28.8 (13.8) ms/mmHg] and hypoxic [16.8 (11.0) versus 24.3 (12.3) ms/mmHg] phases of the present study. As BRS was decreased in acute hypoxic exposure, the results confirm that hypoxia interferes with blood pressure regulation. However, although oral carbohydrate loading induced sympathoexcitation, it did not improve blood pressure regulation in hypoxia, as evident from the BRS data. Baroreflex effects of other forms of carbohydrate loading, not causing postprandial blood shifts to digestive system, should therefore be investigated.

  10. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions

    PubMed Central

    Arnold, Benjamin F.; Schiff, Kenneth C.; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A.; Griffith, John F.; Steinberg, Steven J.; Smith, Paul; McGee, Charles D.; Wilson, Richard; Nelsen, Chad; Colford, John M.

    2017-01-01

    Abstract Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013–2014 and 2014–2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. PMID:28498895

  11. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    DTIC Science & Technology

    2016-08-01

    Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury

  12. [Follow-up of newborns with hypoxic-ischaemic encephalopathy].

    PubMed

    Martínez-Biarge, M; Blanco, D; García-Alix, A; Salas, S

    2014-07-01

    Hypothermia treatment for newborn infants with hypoxic-ischemic encephalopathy reduces the number of neonates who die or have permanent neurological deficits. Although this therapy is now standard of care, neonatal hypoxic-ischaemic encephalopathy still has a significant impact on the child's neurodevelopment and quality of life. Infants with hypoxic-ischaemic encephalopathy should be enrolled in multidisciplinary follow-up programs in order to detect impairments, to initiate early intervention, and to provide counselling and support for families. This article describes the main neurodevelopmental outcomes after term neonatal hypoxic-ischaemic encephalopathy. We offer recommendations for follow-up based on the infant's clinical condition and other prognostic indicators, mainly neonatal neuroimaging. Other aspects, such as palliative care and medico-legal issues, are also briefly discussed. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Acute effects of cigarette smoke exposure on experimental skin flaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, J.; Jenkins, R.A.; Kurihara, K.

    1985-04-01

    Random vascular patterned caudally based McFarlane-type skin flaps were elevated in groups of Fischer 344 rats. Groups of rats were then acutely exposed on an intermittent basis to smoke generated from well-characterized research filter cigarettes. Previously developed smoke inhalation exposure protocols were employed using a Maddox-ORNL inhalation exposure system. Rats that continued smoke exposure following surgery showed a significantly greater mean percent area of flap necrosis compared with sham-exposed groups or control groups not exposed. The possible pathogenesis of this observation as well as considerations and correlations with chronic human smokers are discussed. Increased risks of flap necrosis by smokingmore » in the perioperative period are suggested by this study.« less

  14. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Exposure to Acute Stress Enhances Decision-Making Competence: Evidence for the Role of DHEA

    PubMed Central

    Shields, Grant S.; Lam, Jovian C. W.; Trainor, Brian C.; Yonelinas, Andrew P.

    2016-01-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  16. Imipenem/cilastatin-induced acute eosinophilic pneumonia.

    PubMed

    Foong, Kap Sum; Lee, Ashley; Pekez, Marijeta; Bin, Wei

    2016-03-04

    Drugs, toxins, and infections are known to cause acute eosinophilic pneumonia. Daptomycin and minocycline are the commonly reported antibiotics associated with acute eosinophilic pneumonia. In this study, we present a case of imipenem/cilastatin-induced acute eosinophilic pneumonia. The patient presented with fever, acute hypoxic respiratory distress, and diffuse ground-glass opacities on the chest CT a day after the initiation of imipenem/cilastatin. Patient also developed peripheral eosinophilia. A reinstitution of imipenem/cilastatin resulted in recurrence of the signs and symptoms. A bronchoscopy with bronchoalveolar lavage showed 780 nucleated cells/mm(3) with 15% eosinophil. The patient's clinical condition improved significantly after the discontinuation of imipenem/cilastatin therapy and the treatment with corticosteroid. 2016 BMJ Publishing Group Ltd.

  17. Evidence of hypoxic foraging forays by yellow perch (Perca flavescens) and potential consequences for prey consumption

    USGS Publications Warehouse

    Roberts, James J.; Grecay, Paul A.; Ludsin, Stuart A.; Pothoven, Steve A.; Vanderploeg, Henry A.; Höök, Tomas O.

    2012-01-01

    Previous studies in a variety of ecosystems have shown that ecologically and economically important benthic and bentho-pelagic fishes avoid hypoxic (−1) habitats by moving vertically or horizontally to more oxygenated areas. While avoidance of hypoxic conditions generally leads to a complete shift away from preferred benthic prey, some individual fish continue to consume benthic prey items in spite of bottom hypoxia, suggesting complex habitat utilisation and foraging patterns. For example, Lake Erie yellow perch (Perca flavescens) continue to consume benthic prey, despite being displaced vertically and horizontally by hypolimnetic hypoxia. We hypothesised that hypolimnetic hypoxia can negatively affect yellow perch by altering their distribution and inducing energetically expensive foraging behaviour. To test this hypothesis, we used drifting hydroacoustics and trawl sampling to quantify water column distribution, sub-daily vertical movement and foraging behaviour of yellow perch within hypoxic and normoxic habitats of Lake Erie’s central basin during August-September 2007. We also investigated the effects of rapid changes in ambient oxygen conditions on yellow perch consumption potential by exposing yellow perch to various static and fluctuating oxygen conditions in a controlled laboratory experiment. Our results indicate that, while yellow perch in general avoid hypoxic conditions, some individuals undertake foraging forays into hypoxic habitats where they experience greater fluctuations in abiotic conditions (pressure, temperature and oxygen concentration) than at normoxic sites. However, laboratory results suggest short-term exposure to low oxygen conditions did not negatively impact consumption potential of yellow perch. Detailed understanding of sub-daily individual behaviours may be crucial for determining interactive individual- and ecosystem-level effects of stressors such as hypoxia.

  18. Early discontinuation of antiseizure medications in neonates with hypoxic-ischemic encephalopathy.

    PubMed

    Fitzgerald, Mark P; Kessler, Sudha Kilaru; Abend, Nicholas S

    2017-06-01

    Neonates with hypoxic-ischemic encephalopathy (HIE) managed with therapeutic hypothermia (TH) often experience acute symptomatic seizures, prompting treatment with antiseizure medications (ASMs). Because the risk of seizure occurrence after hospital discharge is unknown, the optimal ASM treatment duration is unclear. We aimed to determine the risk of seizure occurrence after hospital discharge and the impact of ASM treatment duration on this outcome. We performed a single-center, retrospective study of consecutive neonates with HIE managed with TH who received ASMs for acute symptomatic seizures from June 2010 through December 2014. Neonates were monitored with continuous electroencephalography (EEG) during TH. Follow-up data were available for 59 (82%) of 72 neonates who survived to discharge, with a median follow-up period of 19 months (interquartile range [IQR] 11-25). Acute symptomatic seizures occurred in 35 neonates (59%), including electrographic seizures in 21 neonates (36%). ASMs were continued upon discharge in 17 (49%) of 35 neonates. Seizures occurred in follow-up in four neonates (11%). No patient for whom ASMs were discontinued prior to discharge experienced seizures during the follow-up period. Among neonates with HIE, seizures after hospital discharge were rare in those with acute symptomatic seizures and did not occur in neonates without acute symptomatic seizures. ASM discontinuation prior to discharge did not increase the risk of seizures during the follow-up period, suggesting that ASMs may be discontinued in many neonates prior to discharge. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  19. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions.

    PubMed

    Arnold, Benjamin F; Schiff, Kenneth C; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A; Griffith, John F; Steinberg, Steven J; Smith, Paul; McGee, Charles D; Wilson, Richard; Nelsen, Chad; Weisberg, Stephen B; Colford, John M

    2017-10-01

    Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013-2014 and 2014-2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  20. Acute effects of exposure to 56Fe and 16O particles on learning and memory

    USDA-ARS?s Scientific Manuscript database

    Although it has been shown that exposure to HZE particles disrupts cognitive performance when tested 2-4 weeks after irradiation, it has not been determined whether exposure to HZE particles can exert acute effects on cognitive performance; i.e., effects within 4-48 hrs after exposure. The present ...

  1. The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure.

    PubMed

    Lv, Bin; Chen, Zhiye; Wu, Tongning; Shao, Qing; Yan, Duo; Ma, Lin; Lu, Ke; Xie, Yi

    2014-02-01

    The motivation of this study is to evaluate the possible alteration of regional resting state brain activity induced by the acute radiofrequency electromagnetic field (RF-EMF) exposure (30min) of Long Term Evolution (LTE) signal. We designed a controllable near-field LTE RF-EMF exposure environment. Eighteen subjects participated in a double-blind, crossover, randomized and counterbalanced experiment including two sessions (real and sham exposure). The radiation source was close to the right ear. Then the resting state fMRI signals of human brain were collected before and after the exposure in both sessions. We measured the amplitude of low frequency fluctuation (ALFF) and fractional ALFF (fALFF) to characterize the spontaneous brain activity. We found the decreased ALFF value around in left superior temporal gyrus, left middle temporal gyrus, right superior temporal gyrus, right medial frontal gyrus and right paracentral lobule after the real exposure. And the decreased fALFF value was also detected in right medial frontal gyrus and right paracentral lobule. The study provided the evidences that 30min LTE RF-EMF exposure modulated the spontaneous low frequency fluctuations in some brain regions. With resting state fMRI, we found the alteration of spontaneous low frequency fluctuations induced by the acute LTE RF-EMF exposure. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  3. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study.

    PubMed

    Nadeau, Véronique; Lamoureux, Daniel; Beuter, Anne; Charbonneau, Michel; Tardif, Robert

    2003-07-01

    Ethanol (ETOH) is added to unleaded gasoline to decrease environmental levels of carbon monoxide from automobiles emissions. Therefore, addition of ETOH in reformulated fuel will most likely increase and the involuntarily human exposure to this chemical will also increase. This preliminary study was undertaken to evaluate the possible neuromotor effects resulting from acute ETOH exposure by inhalation in humans. Five healthy non-smoking adult males, with no history of alcohol abuse, were exposed by inhalation, in a dynamic, controlled-environment exposure chamber, to various concentrations of ETOH (0, 250, 500 and 1,000 ppm in air) for six hours. Reaction time, body sway, hand tremor and rapid alternating movements were measured before and after each exposure session by using the CATSYS 7.0 system and a diadochokinesimeter. The concentrations of ETOH in blood and in alveolar air were also measured. ETOH was not detected in blood nor in alveolar air when volunteers were exposed to 250 and 500 ppm, but at the end of exposure to 1,000 ppm, blood and alveolar air concentrations were 0.443 mg/100ml and 253.1 ppm, respectively. The neuromotor tests did not show conclusively significant differences between the exposed and non-exposed conditions. In conclusion, this study suggests that acute exposure to ethanol at 1,000 ppm or lower or to concentrations that could be encountered upon refueling is not likely to cause any significant neuromotor alterations in healthy males.

  4. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

    PubMed Central

    Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.

    2014-01-01

    Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372

  5. Responses of Hyalella azteca to acute and chronic microplastic exposures.

    PubMed

    Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J

    2015-11-01

    Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints. © 2015 SETAC.

  6. [The effect of reamberin and alpha-lipoic acid on the tolerance to acute cerebral ischemia in experimental diabetes mellitus].

    PubMed

    Volchegorskii, I A; Miroshnichenko, I Yu; Rassokhina, L M; Faizullin, R M

    To study an effect of reamberin and α-lipoic acid (α-LA) on the tolerance of mice with experimental diabetes mellitus (DM) to acute cerebrovascular accident (ACVA) in mice experiments. The authors studied mice with alloxan diabetes and subtotal and total brain ischemia. In additional experimental series, an effect of reamberin and α-lipoic acid on the tolerance to acute hypoxic hypoxia and intensity of hyperglycemia in experimental DM was studied. The increased vulnerability of animals to ACVA due to hyperglycemia and increased sensitivity to acute hypoxic hypoxia was established. Reamberin and α-lipoic acid administered for 14 days in doses, which are equivalent to therapeutic range in humans, enhance the tolerance to ACVA and acute hypoxic hypoxia in mice with alloxan diabetes. These medications also decrease the intensity of hyperglycemia during concurrent insulin replacement therapy. The increased tolerance to ACVA in mice with alloxan diabetes caused by reamberin and alpha-lipoic acid is associated with an antihypoxic effect of these medications and does not depend on their effect on the intensity of hyperglycemia. Reamberin outperformed α-lipoic acid in the antihypoxic activity, protection against ACVA and the rate of onset of glucose reducing effect in experimental diabetes mellitus.

  7. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney.

    PubMed

    Engbersen, R; Moons, M M; Wouterse, A C; Dijkman, H B; Kramers, C; Smits, P; Russel, F G

    2000-08-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 microM) and glibenclamide (10 microM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3+/-1.5 for hypoxic perfusions vs 4.9+/-1.6 for normoxic perfusions, mean +/- s.e. mean, P<0.05), which could be completely restored by 200 microM tolbutamide (5.7+/-0.4 for tolbutamide vs 14.3+/-1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220+/-100 mU for tolbutamide vs. 1220+/-160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 microM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations.

  8. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  9. Exposure to Cooking Fumes and Acute Reversible Decrement in Lung Functional Capacity.

    PubMed

    Neghab, Masoud; Delikhoon, Mahdieh; Norouzian Baghani, Abbas; Hassanzadeh, Jafar

    2017-10-01

    Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41), 0.13 (0.1), and 1.56 (0.41) mg/m 3 , respectively. The mean atmospheric concentrations of PM 1 , PM 2.5 , PM 7 , PM 10 , and total volatile organic compounds (TVOCs) was 3.31 (2.6), 12.21 (5.9), 44.16 (16.6), 57 (21.55) μg/m 3 , and 1.31 (1.11) mg/m 3 , respectively. All respiratory symptoms were significantly (p<0.05) more prevalent in exposed group. No significant difference was noted between the pre-shift mean of spirometry parameters of exposed and unexposed group. However, exposed workers showed cross-shift decrease in most spirometry parameters, significantly lower than the pre-shift values and those of the comparison group. Exposure to cooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.

  10. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure.

    PubMed

    Foster, Gary P; Westerdahl, Daniel E; Foster, Laura A; Hsu, Jeffrey V; Anholm, James D

    2011-12-15

    Ischemic pre-condition of an extremity (IPC) induces effects on local and remote tissues that are protective against ischemic injury. To test the effects of IPC on the normal hypoxic increase in pulmonary pressures and exercise performance, 8 amateur cyclists were evaluated under normoxia and hypoxia (13% F(I)O(2)) in a randomized cross-over trial. IPC was induced using an arterial occlusive cuff to one thigh for 5 min followed by deflation for 5 min for 4 cycles. In the control condition, the resting pulmonary artery systolic pressure (PASP) increased from a normoxic value of 25.6±2.3 mmHg to 41.8±7.2 mmHg following 90 min of hypoxia. In the IPC condition, the PASP increased to only 32.4±3.1 mmHg following hypoxia, representing a 72.8% attenuation (p=0.003). No significant difference was detected in cycle ergometer time trial duration between control and IPC conditions with either normoxia or hypoxia. IPC administered prior to hypoxic exposure was associated with profound attenuation of the normal hypoxic increase of pulmonary artery systolic pressure. Published by Elsevier B.V.

  11. Long-Term Follow-up of the Delayed Effects of Acute Radiation Exposure in Primates

    DTIC Science & Technology

    2016-10-01

    MV, Katz BP, Smith CP, Jackson W 3rd, Cohen DM, et al. A nonhuman primate model of the hematopoietic acute radiation syndrome plus medical management...subsyndrome of the acute radiation syndrome : a rhesus macaque model. Health Phys 2012; 103:411–26. 32. Robbins ME, Bourland JD, Cline JM, Wheeler KT, Deadwyler...AD______________ AWARD NUMBER: W81XWH-15-1-0574 TITLE: Long-Term Follow-up of the Delayed Effects of Acute Radiation Exposure in Primates

  12. Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model

    PubMed Central

    Bhatty, Minny; Jan, Basit L; Tan, Wei; Pruett, Stephen B; Nanduri, Bindu

    2011-01-01

    Sepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild type and TLR4 hypo-responsive mice treated with ethanol and then challenged with a non pathogenic strain of Escherichia. coli (E. coli). Ethanol treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at two hours after challenge. Neither ethanol treatment nor a hypo-responsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2 hours post infection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hypo-responsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on LIF (leukemia inhibitory factor) and eotaxin and provide the first evidence that IL-9 is induced through TLR4 in vivo. PMID:21872420

  13. Effects of normoxic and hypoxic exercise regimens on monocyte-mediated thrombin generation in sedentary men.

    PubMed

    Wang, Jong-Shyan; Chang, Ya-Lun; Chen, Yi-Ching; Tsai, Hsing-Hua; Fu, Tieh-Cheng

    2015-08-01

    Exercise and hypoxia paradoxically modulate vascular thrombotic risks. The shedding of procoagulant-rich microparticles from monocytes may accelerate the pathogenesis of atherothrombosis. The present study explores the manner in which normoxic and hypoxic exercise regimens affect procoagulant monocyte-derived microparticle (MDMP) formation and monocyte-promoted thrombin generation (TG). Forty sedentary healthy males were randomized to perform either normoxic (NET; 21% O2, n=20) or hypoxic (HET; 15% O2, n=20) exercise training (60% VO(2max)) for 30 min/day, 5 days/week for 5 weeks. At rest and immediately after HET (100 W under 12% O2 for 30 min), the MDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. The results demonstrated that acute 12% O2 exercise (i) increased the release of coagulant factor V (FV)/FVIII-rich, phosphatidylserine (PS)-exposed and tissue factor (TF)-expressed microparticles from monocytes, (ii) enhanced the peak height and rate of TG in monocyte-rich plasma (MRP) and (iii) elevated concentrations of norepinephrine/epinephrine, myeloperoxidase (MPO) and interleukin-6 (IL-6) in plasma. Following the 5-week intervention, HET exhibited higher enhancements of peak work-rate and cardiopulmonary fitness than NET did. Moreover, both NET and HET decreased the FV/FVIII-rich, PS-exposed and TF-expressed MDMP counts and the peak height and rate of TG in MRP following the HET. However, HET elicited more suppression for the HE (hypoxic exercise)-enhanced procoagulant MDMP formation and dynamic TG in MPR and catecholamine/peroxide/pro-inflammatory cytokine levels in plasma than NET. Hence, we conclude that HET is superior to NET for enhancing aerobic capacity. Furthermore, HET effectively suppresses procoagulant MDMP formation and monocyte-mediated TG under severe hypoxic stress, compared with NET.

  14. Experience with 161 cases of anterior exposure of the thoracic and lumbar spine in an acute care surgery model: impact of exposure level and underlying pathology on morbidity.

    PubMed

    Seoudi, Hani; Laporta, Matthew; Griffen, Margaret; Rizzo, Anne; Pullarkat, Ranjit

    2013-08-15

    Retrospective chart review. To evaluate the outcomes of anterior exposure of the thoracic and lumbar spine by an acute care surgery service. Spine surgeons typically require an "approach surgeon" to provide anterior exposure of the thoracic and lumbar spine. We hypothesized that a dedicated acute care surgery service can perform those operations with acceptable morbidity and mortality. A retrospective review of 161 trauma and nontrauma patients was performed. All cases were performed at a level I trauma center with a dedicated acute care surgery service. In-hospital morbidity and mortality were evaluated. A brief description of the operative techniques used by our group is also provided. Of the 161 patients, 59 (37%) were trauma patients. Ninety-three patients (58%) had anterolateral retroperitoneal exposure of the thoracic and lumbar spine. Sixty-eight patients (42%) had anterior retroperitoneal midline exposure of the lumbar and lumbosacral spine. Total morbidity was 9.3% (7.4% for trauma patients and 1.8% for non trauma patients). Morbidity was highest in patients who had anterolateral exposure of the thoracic and lumbar spine (6.8%). Morbidity in patients who had midline exposure of L4 to S1 was 0%. Total mortality was 1.2% (3.3% for trauma patients and 0% for nontrauma patients). The acute care surgery service gained 3141 physician work relative value units (RVU) by performing those operations. Anterior exposure of the thoracic and lumbar spine both for trauma and nontrauma related indications can be performed with acceptable morbidity and mortality by a dedicated acute care surgery service. Morbidity and mortality were higher in trauma patients and in those who underwent thoracolumbar procedures. Patients who had midline exposure of L4 to S1 for degenerative disc disease had the lowest morbidity. 4.

  15. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy.

    PubMed

    Silveira, Rita C; Procianoy, Renato S

    2015-01-01

    Therapeutic hypothermia reduces cerebral injury and improves the neurological outcome secondary to hypoxic ischemic encephalopathy in newborns. It has been indicated for asphyxiated full-term or near-term newborn infants with clinical signs of hypoxic-ischemic encephalopathy (HIE). A search was performed for articles on therapeutic hypothermia in newborns with perinatal asphyxia in PubMed; the authors chose those considered most significant. There are two therapeutic hypothermia methods: selective head cooling and total body cooling. The target body temperature is 34.5 °C for selective head cooling and 33.5 °C for total body cooling. Temperatures lower than 32 °C are less neuroprotective, and temperatures below 30 °C are very dangerous, with severe complications. Therapeutic hypothermia must start within the first 6h after birth, as studies have shown that this represents the therapeutic window for the hypoxic-ischemic event. Therapy must be maintained for 72 h, with very strict control of the newborn's body temperature. It has been shown that therapeutic hypothermia is effective in reducing neurologic impairment, especially in full-term or near-term newborns with moderate hypoxic-ischemic encephalopathy. Therapeutic hypothermia is a neuroprotective technique indicated for newborn infants with perinatal asphyxia and hypoxic-ischemic encephalopathy. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney

    PubMed Central

    Engbersen, Richard; Moons, Miek M; Wouterse, Alfons C; Dijkman, Henry B; Kramers, Cees; Smits, Paul; Russel, Frans G M

    2000-01-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 μM) and glibenclamide (10 μM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3±1.5 for hypoxic perfusions vs 4.9±1.6 for normoxic perfusions, mean±s.e.mean, P<0.05), which could be completely restored by 200 μM tolbutamide (5.7±0.4 for tolbutamide vs 14.3±1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220±100 mU for tolbutamide vs 1220±160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 μM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations. PMID:10928974

  17. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    PubMed Central

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  18. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.

  19. Glucocorticoid exposure alters the pathogenesis of Theiler’s murine encephalomyelitis virus during acute infection

    PubMed Central

    Young, Erin E.; Prentice, Thomas W.; Satterlee, Danielle; McCullough, Heath; Sieve, Amy N.; Johnson, Robin R.; Welsh, Thomas H.; Welsh, C. Jane R.; Meagher, Mary W.

    2008-01-01

    Previous research has shown that chronic restraint stress exacerbates Theiler’s virus infection, a murine model for CNS inflammation and multiple sclerosis. The current set of experiments was designed to evaluate the potential role of glucocorticoids in the deleterious effects of restraint stress on acute CNS inflammatory disease. Exposure to chronic restraint stress resulted in elevated levels of corticosterone as well as increased clinical scores and weight loss (Experiment 1). In addition, corticosterone administration alone exacerbated behavioral signs of TMEV-induced sickness (i.e. decreased body weight, increased symptoms of encephalitis, and increased mortality) and reduced inflammation in the CNS (Experiment 2). Infected subjects receiving exogenous corticosterone showed exacerbation of acute phase measures of sickness and severe mortality as well as decreased viral clearance from CNS (Experiment 3). These findings indicate that corticosterone exposure alone is sufficient to exacerbate acute CNS inflammatory disease. PMID:18538803

  20. Acute symptoms following exposure to grain dust in farming.

    PubMed Central

    Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P

    1986-01-01

    History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486

  1. Psychological symptoms and intermittent hypertension following acute microwave exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, S.A.; Holmes, C.K.; McManamon, T.V.

    1982-11-01

    Two men who were accidently, acutely irradiated with X-band microwave radiation have been followed up clinically for 12 months. Both men developed similar psychological symptoms, which included emotional lability, irritability, headaches, and insomnia. Several months after the incidents, hypertension was diagnosed in both patients. No organic basis for the psychological problems could be found nor could any secondary cause for the hypertension. A similar syndrome following microwave exposure has been described by the East Europeans. The two cases we report, with comparable subjective symptoms and hypertension following a common exposure, provide further strong, circumstantial evidence of cause and effect. Amore » greater knowledge of the mechanisms involved in bioeffects which may be induced by radiofrequency and microwave radiation is definitely needed.« less

  2. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    EPA Science Inventory

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  3. Short term inhalation exposure to turpentine: toxicokinetics and acute effects in men.

    PubMed Central

    Filipsson, A F

    1996-01-01

    OBJECTIVES: This study describes the toxicokinetics, pulmonary function, and subjective ratings of discomfort in volunteers experimentally exposed to turpentine vapour (a mixture of monoterpenes). The results were compared with similar exposure to single monoterpenes to look in the toxicokinetics and acute effects for signs of interactions between the monoterpenes. METHODS: Eight male volunteers were exposed to 450 mg/m3 turpentine by inhalation (2 h, 50 W) in an exposure chamber. RESULTS: The mean relative uptakes of alpha-pinene, beta-pinene, and 3-carene were 62%, 66%, and 68% respectively, of the amount supplied. Between 2% and 5% of the net uptake was excreted unchanged in the expired air after the end of exposure. The mean blood clearance 21 hours after exposure (CL21h) of alpha-pinene, beta-pinene and 3-carene, were 0.8, 0.5, and 0.4 l.kg-1.h-1, respectively. The mean half lives (t1/2) of the last phase of alpha-pinene, beta-pinene, and 3-carene averaged 32, 25, and 42 hours, respectively. The t1/2s agreed with previously calculated half lives from single exposures. The total blood clearance CL21h of 3-carene found in this turpentine study was lower, and CL4h of 3-carene was significantly lower than the values obtained from similar exposure to pure 3-carene. The subjects attending both exposure to turpentine and to pure alpha-pinene at 450 mg/m3 had lower CL4h during the exposure to turpentine, when they experienced more discomfort of the throat or the airways (F = 5.7, P = 0.048) than during exposure to control concentrations. After experimental exposure to turpentine an increase in airway resistance was found that differed significantly from results of exposure to 3-carene at 10 mg/m3 (P = 0.021) or 450 mg/m3 (P = 0.047). CONCLUSIONS: Toxicokinetics and acute effects show small, if any, interactions between alpha-pinene, beta-pinene, and 3-carene. The subjects experienced discomfort in the throat and airways during exposure to turpentine and airway

  4. Effects of massage under hypoxic conditions on exercise-induced muscle damage and physical strain indices in professional soccer players.

    PubMed

    Gatterer, H; Schenk, K; Wille, M; Murnig, P; Burtscher, M

    2013-06-01

    Reports based on experiences from masseurs and players, mostly without any scientific background, suggest that the combination of a classical regeneration method (i.e. massage) with exposure to hypoxia may enhance regeneration in soccer. The aim of this study was to evaluate whether this specific combination could affect blood parameters related to muscle damage and physical strain after a soccer game. Approximately 15 hours after two separate championship games, 10 professional male outfield players of the first Austrian division were exposed to normobaric hypoxia (FiO2 13.5% ∼ 4000m) or normoxia for 1 hour (30 minutes rest followed by 30 min massage) (cross-over design). Creatine kinase (CK), urea and uric acid (UA) were measured 4 days before the first game, and 15 and 63 hours after the two games. Match play increased CK values independently of the intervention. No effect of the massage in combination with hypoxia was seen. A trend was found between Δ UA ([UA] 48 hours after exposure minus [UA] before exposure) in response to hypoxia and SaO2 measured in hypoxia (r=0.612, p=0.06). Results show that massage under hypoxic conditions had no additional positive effect on the measured parameters compared to massage alone. Solely the trend of a relationship for Δ UA and SaO2 might indicate that redox alterations are a potential consequence of hypoxic exposure.

  5. Hematology from embryo to adult in the bobwhite quail (Colinus virginianus): Differential effects in the adult of clutch, sex and hypoxic incubation.

    PubMed

    Flores-Santin, Josele; Rojas Antich, Maria; Tazawa, Hiroshi; Burggren, Warren W

    2018-04-01

    Hematology and its regulation in developing birds have been primarily investigated in response to relatively short-term environmental challenges in the embryo. Yet, whether any changes induced in the embryo persist into adulthood as a hematological form of "fetal programming" is unknown. We hypothesized that: 1) chronic as opposed to acute hypoxic incubation will alter hematological respiratory variables in embryos of bobwhite quail (Colinus virginianus), and 2) alterations first appearing in the embryo will persist into hatchlings through into adulthood. To test these hypotheses, we first developed an embryo-to-adult profile of normal hematological development by measuring hematocrit (Hct), red blood cell concentration ([RBC]), hemoglobin concentration ([Hb]), mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, as well plasma osmolality. Hct, [RBC] and [Hb] in normoxic-incubated birds (controls) steadily increased from ~22%, ~1.6 × 10 6  μL -1 and ~7 g% in day 12 embryos to almost double the values at maturity in adult birds. Both cohort and sex affected hematology of normoxic-incubated birds. A second population, incubated from day 0 (d0) in 15% O 2 , surprisingly revealed little or no significant difference from controls in hematology in embryos. In hatchlings and adults, hypoxic incubation caused no significant modification to any variables. Compared to major hematological effects caused by hypoxic incubation in chickens, the hematology of the bobwhite quail embryo appears to be minimally affected by hypoxic incubation, with very few effects induced during hypoxic incubation actually persisting into adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  7. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide.

  8. Effects of acute exposure to WIFI signals (2.45GHz) on heart variability and blood pressure in Albinos rabbit.

    PubMed

    Saili, Linda; Hanini, Amel; Smirani, Chiraz; Azzouz, Ines; Azzouz, Amina; Sakly, Mohsen; Abdelmelek, Hafedh; Bouslama, Zihad

    2015-09-01

    Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter maximum amplitude and P waves. After intravenously injection of dopamine (0.50ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that, WIFI alter catecholamines (dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radiofrequency can act directly and/or indirectly on cardiovascular system. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    PubMed Central

    Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J

    2014-01-01

    Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947

  10. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  11. Openness to experience and adapting to change: Cardiovascular stress habituation to change in acute stress exposure.

    PubMed

    Ó Súilleabháin, Páraic S; Howard, Siobhán; Hughes, Brian M

    2018-05-01

    Underlying psychophysiological mechanisms of effect linking openness to experience to health outcomes, and particularly cardiovascular well-being, are unknown. This study examined the role of openness in the context of cardiovascular responsivity to acute psychological stress. Continuous cardiovascular response data were collected for 74 healthy young female adults across an experimental protocol, including differing counterbalanced acute stressors. Openness was measured via self-report questionnaire. Analysis of covariance revealed openness was associated with systolic blood pressure (SBP; p = .016), and diastolic blood pressure (DBP; p = .036) responsivity across the protocol. Openness was also associated with heart rate (HR) responding to the initial stress exposure (p = .044). Examination of cardiovascular adaptation revealed that higher openness was associated with significant SBP (p = .001), DBP (p = .009), and HR (p = .002) habituation in response to the second differing acute stress exposure. Taken together, the findings suggest persons higher in openness are characterized by an adaptive cardiovascular stress response profile within the context of changing acute stress exposures. This study is also the first to demonstrate individual differences in cardiovascular adaptation across a protocol consisting of differing stress exposures. More broadly, this research also suggests that future research may benefit from conceptualizing an adaptive fitness of openness within the context of change. In summary, the present study provides evidence that higher openness stimulates short-term stress responsivity, while ensuring cardiovascular habituation to change in stress across time. © 2017 Society for Psychophysiological Research.

  12. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    PubMed

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  13. Acute and Chronic Ethanol Exposure Differentially Regulate CB1 Receptor Function at Glutamatergic Synapses in the Rat Basolateral Amygdala

    PubMed Central

    Robinson, Stacey L.; Alexander, Nancy J.; Bluett, Rebecca J.; Patel, Sachin; McCool, Brian A.

    2016-01-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  14. Acute exposure to wood smoke from incomplete combustion--indications of cytotoxicity.

    PubMed

    Muala, Ala; Rankin, Gregory; Sehlstedt, Maria; Unosson, Jon; Bosson, Jenny A; Behndig, Annelie; Pourazar, Jamshid; Nyström, Robin; Pettersson, Esbjörn; Bergvall, Christoffer; Westerholm, Roger; Jalava, Pasi I; Happo, Mikko S; Uski, Oskari; Hirvonen, Maija-Riitta; Kelly, Frank J; Mudway, Ian S; Blomberg, Anders; Boman, Christoffer; Sandström, Thomas

    2015-10-29

    Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 μg/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and

  15. Developmental amnesia associated with early hypoxic-ischaemic injury.

    PubMed

    Gadian, D G; Aicardi, J; Watkins, K E; Porter, D A; Mishkin, M; Vargha-Khadem, F

    2000-03-01

    We recently reported on three young patients with severe impairments of episodic memory resulting from brain injury sustained early in life. These findings have led us to hypothesize that such impairments might be a previously unrecognized consequence of perinatal hypoxic-ischaemic injury. Neuropsychological and quantitative magnetic resonance investigations were carried out on five young patients, all of whom had suffered hypoxic-ischaemic episodes at or shortly after birth. All five patients showed severe impairments of episodic memory (memory for events), with relative preservation of semantic memory (memory for facts). However, none had any of the major neurological deficits that are typically associated with hypoxic-ischaemic injury, and all attended mainstream schools. Quantitative magnetic resonance investigations revealed severe bilateral hippocampal atrophy in all cases. As a group, the patients also showed bilateral reductions in grey matter in the regions of the putamen and the ventral part of the thalamus. On the basis of their clinical histories and the pattern of magnetic resonance findings, we attribute the patients' pathology and associated memory impairments primarily to hypoxic-ischaemic episodes sustained very early in life. We suggest that the degree of hypoxia-ischaemia was sufficient to produce selective damage to particularly vulnerable regions of the brain, notably the hippocampi, but was not sufficient to result in the more severe neurological and cognitive deficits that can follow hypoxic-ischaemic injury. The impairments in episodic memory may be difficult to recognize, particularly in early childhood, but this developmental amnesia can have debilitating consequences, both at home and at school, and may preclude independent life in adulthood.

  16. Single-centre experience of radiation exposure in acute surgical patients: assessment of therapeutic impact and future recommendations.

    PubMed

    Fitzmaurice, Gerard J; Brown, Robin; Cranley, Brian; Conlon, Enda F; Todd, R Alan J; O'Donnell, Mark E

    2010-09-01

    Radiological investigations have become a key adjunct in patient management and consequently radiation exposure to patients is increasing. The study objectives were to examine the use of radiological investigations in the management of acute surgical patients and to assess whether a guideline-based radiation exposure risk/benefit analysis can aid in the choice of radiological investigation used. A prospective observational study was completed over a 12-week period from April to July 2008 for all acute surgical admissions. Data recorded included demographics, clinical presentation, differential diagnosis, investigations, surgical interventions, and final clinical outcome. The use of radiological investigative modalities as an adjunct to clinical assessment was then evaluated against The Royal College of Radiologists (RCR) guidelines. A total of 380 acute surgical admissions (M = 174, F = 185, children = 21) were assessed during the study period. Seven hundred thirty-four radiological investigations were performed with a mean of 1.93 investigations per patient. Based on the RCR guidelines, 680 (92.6%) radiological investigations were warranted and included 142 CT scans (19.3%), 129 chest X-rays (17.6%), and 85 abdominal X-rays (11.6%). Clinically, radiological imaging complemented surgical management in 326 patients (85.8%) and the management plan remained unchanged for the remaining 54 patients (14.2%). This accounted for an average radiation dose of 4.18 millisievert (mSv) per patient or 626 days of background radiation exposure. CT imaging was responsible for the majority of the radiation exposure, with a total of 1310 mSv (82.6%) of the total radiation exposure being attributed to CT imaging in 20.8% of acute admissions. Subgroup analysis demonstrated that 92.8% of the CT scans performed were appropriate. Radiation exposure was generally low for the majority of acute surgical admissions. However, it is recommended that CT imaging requests be evaluated carefully

  17. N-Acetyl Cysteine does not prevent liver toxicity from chronic low dose plus sub-acute high dose paracetamol exposure in young or old mice

    PubMed Central

    Kane, Alice-Elizabeth; Huizer-Pajkos, Aniko; Mach, John; McKenzie, Catriona; Mitchell, Sarah-Jayne; de Cabo, Rafael; Jones, Brett; Cogger, Victoria; Le Couteur, David G; Hilmer, Sarah-Nicole

    2016-01-01

    Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute over-exposures. The risk of hepatotoxicity from non-acute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for non-acute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and sub-acute paracetamol over-exposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33g/kg food) or control diet for 6 weeks. Mice were then dosed orally 8 times over 3 days with additional paracetamol (250mg/kg) or saline, followed by either one or two doses of oral NAC (1200mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Sub-acute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from sub-acute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for sub-acute paracetamol toxicity. PMID:26821200

  18. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2016-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  19. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection

    PubMed Central

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G.; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-01-01

    Background and Purpose Hypoperfusion-induced thrombosis is an important mechanism for post-surgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Methods Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-min occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid state NMR and Morris water maze. The effects on infarct size by Edaravone application at different time-points after tHI were also compared. Results Prophylactic administration of Edaravone (4.5 mg/kg × 2, IP, 1 h before and 1 h after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, while reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Conclusions Acute application of Edaravone may be a useful strategy to prevent post-surgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. PMID:26060244

  20. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection.

    PubMed

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-07-01

    Hypoperfusion-induced thrombosis is an important mechanism for postsurgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-minute occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid-state NMR, and Morris water maze. The effects on infarct size by Edaravone application at different time points after tHI were also compared. Prophylactic administration of Edaravone (4.5 mg/kg×2, IP, 1 hour before and 1 hour after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Acute application of Edaravone may be a useful strategy to prevent postsurgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. © 2015 American Heart Association, Inc.

  1. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant.

    PubMed

    Studivan, Michael S; Hatch, Walter I; Mitchelmore, Carys L

    2015-01-01

    Limited toxicology data are available regarding oil dispersant exposure to coral species. Corexit® EC9500A (Corexit) is a commonly applied dispersant most well known for its use after the Deepwater Horizon spill in April, 2010. There is limited evidence that Corexit can cause a bleaching response in corals. The aims of the study were: (1) to determine the extent of bleaching after acute 24 h and 72 h exposures of sublethal concentrations (0-50 ppm) of Corexit to the pulsing soft coral Xenia elongata and (2) to investigate a percent symbiont loss calculation using zooxanthellae density. The percent symbiont loss calculation was compared to a traditional metric of normalizing zooxanthellae density to soluble protein content. Percent symbiont loss was an effective measure of coral stress in acute Corexit exposures, while protein normalized zooxanthellae density was more variable. The bleaching data suggest a positive relationship between dispersant concentration and percent symbiont loss, culminating in excessive tissue necrosis and coral mortality within 72 h in high concentration exposures (p < 0.001). Percent beaching ranged from 25% in 5 ppm exposures to 100% in 50 ppm exposures. Corexit also caused a significant decrease in pulse activity (p < 0.0001) and relative oxygen saturation (p < 0.001), possibly indicating a reduction in photosynthetic efficiency. This study and other similar research indicate that dispersant exposure is highly damaging to marine organisms, including ecologically important coral species.

  2. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  3. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy

    PubMed Central

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-01-01

    Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: “stem cells,” “hypoxic preconditioning,” “ischemic preconditioning,” and “cell transplantation.” Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well

  4. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panicucci, R.; Heal, R.; Laderoute, K.

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 ismore » reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.« less

  5. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus.

    PubMed

    Wang, Xinli; Cai, Jiali; Zhang, Jiliang; Wang, Chonggang; Yu, Ang; Chen, Yixin; Zuo, Zhenghong

    2008-10-20

    Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.

  7. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise

    PubMed Central

    Madery, Brandon D.; Pike, Tasha L.; Eisenach, John H.; Dietz, Niki M.; Joyner, Michael J.; Wilkins, Brad W.

    2009-01-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (α-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml·min−1·100 mmHg−1) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (ΔFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 ± 29 and 314 ± 34 ml·min−1·100 mmHg−1 (10% and 20%, respectively). Aminophylline administration did not affect ΔFVC during hypoxic exercise at 10% (190 ± 29 ml·min−1·100 mmHg−1, P = 0.4) or 20% (287 ± 48 ml·min−1·100 mmHg−1, P = 0.3). In protocol 2, ΔFVC due to hypoxic exercise with phentolamine infusion was 313 ± 30 and 453 ± 41 ml·min−1·100 mmHg−1 (10% and 20% respectively). ΔFVC was similar at 10% (352 ± 39 ml·min−1·100 mmHg−1, P = 0.8) and 20% (528 ± 45 ml·min−1·100 mmHg−1, P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, ΔFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans. PMID:19661449

  8. Effects of acute ozone exposure on the electrophysiological properties of guinea pig trachea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croxton, T.L.; Takahashi, Masahiko; Kokia, Ira

    1994-12-31

    Acute ozone (O{sub 3}) exposures produce an increase in the apparent permeability of the tracheal epithelium, but the mechanism of this response is poorly understood. Comparison of previous studies suggests that qualitative differences may exist between measurements made in vivo or in vitro. To test this possibility we used both in vitro and in vivo electrophysiological techniques to investigate the effects of O{sub 3} exposure on guinea pig tracheal epithelium. Male Hartley guinea pigs were exposed to either 1 or 2 ppm O{sub 3} or to filtered air for 3 h and were studied 0, 6, or 24 h aftermore » exposure. Air-exposed animals had in vitro mean tracheal potential (V{sub T}) -32.0 {+-} 1.5 mV, conductance (G{sub T}{sup L}) 2.18 {+-} 0.22 mS/cm, short-circuit current (I{sub SC}{sup L}) 62.6 {+-} 3.7 {mu}A/cm, and diameter (D) 2.44 {+-} 0.10 mm. In vitro properties after 1 ppm O{sub 3} exposure did not differ at any time point from control. Two parts per million O{sub 3} increased I{sub SC}{sup L}, but only at 6 h postexposure. The effect of O{sub 3} on I{sub SC}{sup L} was abolished by amiloride. There were no significant changes in V{sub T}, G{sub T}{sup L}, or D. In vivo tracheal potential under pentobarbital anesthesia was -19.7 {+-} 1.7 mV. At 6 h postexposure to 2 ppm O{sub 3}, but not at 0 or 24 h, in vivo V{sub I} was increased. Thus, acute exposure of guinea pigs to a high concentration of O{sub 3} caused a delayed increase in Na{sup +} absorption by the trachea with no change in conductance. This indicates that paracellular permeability of guinea pig tracheal epithelium was not substantially increased by acute O{sub 3} and suggests that enhanced macromolecular uptake in this species probably occurs transcellularly. 24 refs., 1 fig., 2 tabs.« less

  9. Stress sensitizes the brain: increased processing of unpleasant pictures after exposure to acute stress.

    PubMed

    Weymar, Mathias; Schwabe, Lars; Löw, Andreas; Hamm, Alfons O

    2012-07-01

    A key component of acute stress is a surge in vigilance that enables a prioritized processing of highly salient information to promote the organism's survival. In this study, we investigated the neural effects of acute stress on emotional picture processing. ERPs were measured during a deep encoding task, in which 40 male participants categorized 50 unpleasant and 50 neutral pictures according to arousal and valence. Before picture encoding, participants were subjected either to the Socially Evaluated Cold Pressor Test (SECPT) or to a warm water control procedure. The exposure to the SECPT resulted in increased subjective and autonomic (heart rate and blood pressure) stress responses relative to the control condition. Viewing of unpleasant relative to neutral pictures evoked enhanced late positive potentials (LPPs) over centro-parietal scalp sites around 400 msec after picture onset. Prior exposure to acute stress selectively increased the LPPs for unpleasant pictures. Moreover, the LPP magnitude for unpleasant pictures following the SECPT was positively associated with incidental free recall performance 24 hr later. The present results suggest that acute stress sensitizes the brain for increased processing of cues in the environment, particularly priming the processing of unpleasant cues. This increased processing is related to later long-term memory performance.

  10. Dexamethasone exposure and asparaginase antibodies affect relapse risk in acute lymphoblastic leukemia

    PubMed Central

    Kawedia, Jitesh D.; Liu, Chengcheng; Pei, Deqing; Cheng, Cheng; Fernandez, Christian A.; Howard, Scott C.; Campana, Dario; Panetta, John C.; Bowman, W. Paul; Evans, William E.; Pui, Ching-Hon

    2012-01-01

    We have previously hypothesized that higher systemic exposure to asparaginase may cause increased exposure to dexamethasone, both critical chemotherapeutic agents for acute lymphoblastic leukemia. Whether interpatient pharmaco-kinetic differences in dexamethasone contribute to relapse risk has never been studied. The impact of plasma clearance of dexamethasone and anti–asparaginase antibody levels on risk of relapse was assessed in 410 children who were treated on a front-line clinical trial for acute lymphoblastic leukemia and were evaluable for all pharmacologic measures, using multivariate analyses, adjusting for standard clinical and biologic prognostic factors. Dexamethasone clearance (mean ± SD) was higher (P = 3 × 10−8) in patients whose sera was positive (17.7 ± 18.6 L/h per m2) versus nega-tive (10.6 ± 5.99 L/h per m2) for anti–asparaginase antibodies. In multivariate analyses, higher dexamethasone clearance was associated with a higher risk of any relapse (P = .01) and of central nervous system relapse (P = .014). Central nervous system relapse was also more common in patients with anti–asparaginase antibodies (P = .019). In conclusion, systemic clearance of dexamethasone is higher in patients with anti–asparaginase antibodies. Lower exposure to both drugs was associated with an increased risk of relapse. PMID:22117041

  11. EFFECTS OF MASSAGE UNDER HYPOXIC CONDITIONS ON EXERCISE-INDUCED MUSCLE DAMAGE AND PHYSICAL STRAIN INDICES IN PROFESSIONAL SOCCER PLAYERS

    PubMed Central

    Schenk, K.; Wille, M.; Murnig, P.; Burtscher, M.

    2013-01-01

    Reports based on experiences from masseurs and players, mostly without any scientific background, suggest that the combination of a classical regeneration method (i.e. massage) with exposure to hypoxia may enhance regeneration in soccer. The aim of this study was to evaluate whether this specific combination could affect blood parameters related to muscle damage and physical strain after a soccer game. Approximately 15 hours after two separate championship games, 10 professional male outfield players of the first Austrian division were exposed to normobaric hypoxia (FiO2 13.5% ∼ 4000m) or normoxia for 1 hour (30 minutes rest followed by 30 min massage) (cross-over design). Creatine kinase (CK), urea and uric acid (UA) were measured 4 days before the first game, and 15 and 63 hours after the two games. Match play increased CK values independently of the intervention. No effect of the massage in combination with hypoxia was seen. A trend was found between Δ UA ([UA] 48 hours after exposure minus [UA] before exposure) in response to hypoxia and SaO2 measured in hypoxia (r=0.612, p=0.06). Results show that massage under hypoxic conditions had no additional positive effect on the measured parameters compared to massage alone. Solely the trend of a relationship for Δ UA and SaO2 might indicate that redox alterations are a potential consequence of hypoxic exposure. PMID:24744471

  12. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome.

    PubMed

    Aggarwal, Neil R; Brower, Roy G; Hager, David N; Thompson, B Taylor; Netzer, Giora; Shanholtz, Carl; Lagakos, Adrian; Checkley, William

    2018-04-01

    High fractions of inspired oxygen may augment lung damage to exacerbate lung injury in patients with acute respiratory distress syndrome. Participants enrolled in Acute Respiratory Distress Syndrome Network trials had a goal partial pressure of oxygen in arterial blood range of 55-80 mm Hg, yet the effect of oxygen exposure above this arterial oxygen tension range on clinical outcomes is unknown. We sought to determine if oxygen exposure that resulted in a partial pressure of oxygen in arterial blood above goal (> 80 mm Hg) was associated with worse outcomes in patients with acute respiratory distress syndrome. Longitudinal analysis of data collected in these trials. Ten clinical trials conducted at Acute Respiratory Distress Syndrome Network hospitals between 1996 and 2013. Critically ill patients with acute respiratory distress syndrome. None. We defined above goal oxygen exposure as the difference between the fraction of inspired oxygen and 0.5 whenever the fraction of inspired oxygen was above 0.5 and when the partial pressure of oxygen in arterial blood was above 80 mm Hg. We then summed above goal oxygen exposures in the first five days to calculate a cumulative above goal oxygen exposure. We determined the effect of a cumulative 5-day above goal oxygen exposure on mortality prior to discharge home at 90 days. Among 2,994 participants (mean age, 51.3 yr; 54% male) with a study-entry partial pressure of oxygen in arterial blood/fraction of inspired oxygen that met acute respiratory distress syndrome criteria, average cumulative above goal oxygen exposure was 0.24 fraction of inspired oxygen-days (interquartile range, 0-0.38). Participants with above goal oxygen exposure were more likely to die (adjusted interquartile range odds ratio, 1.20; 95% CI, 1.11-1.31) and have lower ventilator-free days (adjusted interquartile range mean difference of -0.83; 95% CI, -1.18 to -0.48) and lower hospital-free days (adjusted interquartile range mean difference of -1.38; 95

  13. A scenario and forecast model for Gulf of Mexico hypoxic area and volume

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.

    2013-01-01

    For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.

  14. A Low Protein Diet Increases the Hypoxic Tolerance in Drosophila

    PubMed Central

    Vigne, Paul; Frelin, Christian

    2006-01-01

    Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O2) and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses. PMID:17183686

  15. Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, R.K.

    1986-01-01

    A population-based case-control study of adult acute nonlymphocytic leukemia (ANLL) and residential exposure to power frequency magnetic fields was conducted in King, Pierce and Snohomish Counties in Washington state. Of 164 cases who were diagnosed from January 1, 1981 through December 31, 1984, 114 were interviewed. Controls were selected from the study area on the basis of random digit dialing and frequency matched to the cases by age and sex. Analyses were undertaken to evaluate whether exposure to high levels of power frequency magnetic fields in the residence were associated with an increased risk of ANLL. Neither the directly measuredmore » magnetic fields nor the surrogate values based on the wiring configurations were associated with ANLL. Additional analyses suggested that persons with prior allergies were at decreased risk of acute myelocytic leukemia (AML). Also, persons with prior autoimmune diseases were at increased risk of AML. The increase in AML risk in rheumatoid arthritics was of borderline statistical significance. Finally, cigarette smoking was associated with an increased risk of AML. The risk of AML increased significantly with the number of years of cigarette smoking.« less

  16. Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km(2) hypoxic region in the northern Gulf of Mexico.

    PubMed

    Thomas, Peter; Rahman, Md Saydur; Picha, Matthew E; Tan, Wenxian

    2015-12-15

    The long-term impacts of recent marked increases in the incidence and extent of hypoxia (dissolved oxygen <2 mg/L) in coastal regions worldwide on fisheries and ecosystems are unknown. Reproductive impairment was investigated in Atlantic croaker collected in 2010 from the extensive coastal hypoxic region in the northern Gulf of Mexico. Potential fecundity was significantly lower in croaker collected throughout the ~20,000 km(2) hypoxic region than in croaker from normoxic sites. In vitro bioassays of gamete viability showed reductions in oocyte maturation and sperm motility in croaker collected from the hypoxic sites in response to reproductive hormones which were accompanied by decreases in gonadal levels of membrane progestin receptor alpha, the receptor regulating these processes. The finding that environmental hypoxia exposure reduces oocyte viability in addition to decreasing oocyte production in croaker suggests that fecundity estimates need to be adjusted to account for the decrease in oocyte maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acute pulmonary effects of nitrogen dioxide exposure during exercise in competitive athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.U.; Koenig, J.Q.; Pierson, W.E.

    The acute pulmonary responses of athletes after short-term exposure to ambient concentrations of NO{sub 2} during heavy exercise have been examined. Intercollegiate male athletes were screened for history of cardiac disease, respiratory disease, allergic conditions and extensive exposure to pollutants. After completion of serum IgE level determination, exercise tolerance test and methacholine challenge test with normal results, nine healthy subjects 18 to 23 years of age were exposed to filtered air and to 0.18 and 0.30 ppm NO{sub 2} for 30 min on different days while exercising on a treadmill. Pulmonary function parameters were measured before and after each exposure.more » In this study, no statistically significant changes were observed in FEV1, RT PEFR, and Vmax50% after exposure to 0.18 and 0.30 ppm NO{sub 2}. For these selected healthy athletes, short-term exposure to ambient NO{sub 2} levels during heavy exercise does not affect adversely the pulmonary function.« less

  18. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners.

    PubMed

    Friedmann, Birgit; Frese, Falko; Menold, Elmar; Bärtsch, Peter

    2007-09-01

    While there is some controversy whether anaerobic capacity might be improved after altitude training little is known about changes in anaerobic capacity during hypoxic exposure in highly trained athletes. In order to analyze the effects of acute moderate normobaric hypoxia on anaerobic capacity, 18 male competitive triathletes, middle- and long-distance runners VO2max 67.4 +/- 3.8 ml kg min(-1) performed 2 supra-VO2max treadmill runs with the same speed, one in normoxia and one after 4 h exposure to normobaric hypoxia (FiO(2) 0.15), for estimation of their maximal accumulated oxygen deficit (MAOD) and measurement of peak capillary lactate and peak capillary ammonia concentration. MAOD was not significantly different in normoxia and in moderate hypoxia while time to exhaustion and accumulated O(2) uptake were significantly (P < 0.001) reduced in hypoxia compared to normoxia by 28 and 45%, respectively. The reduction in time to exhaustion was significantly correlated to the decrement in accumulated O(2) uptake (R = 0.730, P = 0.001). In hypoxia, there was a tendency for peak capillary lactate concentration to be decreased compared to normoxia (12.9 +/- 2.1 vs. 13.8 +/- 2.2 mmol l(-1), P = 0.082); peak capillary ammonia concentration was significantly decreased in hypoxia (97 +/- 52 vs. 121 +/- 44 micromol l(-1), P = 0.032). In conclusion, anaerobic capacity is not significantly changed during acute exposure to moderate hypoxia in endurance-trained athletes. The performance reduction during all-out exercise of short duration has to be attributed to the decrement in aerobic capacity.

  19. Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure.

    PubMed

    Garth, Jaleesa M; Mackel, Joseph J; Reeder, Kristen M; Blackburn, Jonathan P; Dunaway, Chad W; Yu, Zhihong; Matalon, Sadis; Fitz, Lori; Steele, Chad

    2018-07-01

    Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) ( Chia ) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus -associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia -/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E 2 (PGE 2 ) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses. Copyright © 2018 American Society for Microbiology.

  20. Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.

    2004-04-01

    There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. Themore » system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk.« less

  1. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  2. Microbial mineralization of dichloroethene and vinyl chloride under hypoxic conditions

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.

    2011-01-01

    Mineralization of 14C-radiolabled vinyl chloride ([1,2-14C] VC) and cis-dichloroethene ([1,2-14C] cis-DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene-exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo-first-order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First-order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen-linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen-linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.

  3. The effects of acute pesticide exposure on neuroblastoma cells chronically exposed to diazinon.

    PubMed

    Axelrad, J C; Howard, C V; McLean, W G

    2003-03-14

    Speculation about potential neurotoxicity due to chronic exposure to low doses of organophosphate (OP) pesticides is not yet supported by experimental evidence. The objective of this work was to use a cell culture model of chronic OP exposure to determine if such exposure can alter the sensitivity of nerve cells to subsequent acute exposure to OPs or other compounds. NB2a neuroblastoma cells were grown in the presence of 25 microM diazinon for 8 weeks. The OP was then withdrawn and the cells were induced to differentiate in the presence of various other pesticides or herbicides, including OPs and OP-containing formulations. The resulting outgrowth of neurite-like structures was measured by light microscopy and quantitative image analysis and the IC(50) for each OP or formulation was calculated. The IC(50) values in diazinon-pre-exposed cells were compared with the equivalent values in cells not pre-exposed to diazinon. The IC(50) for inhibition of neurite outgrowth by acute application of diazinon, pyrethrum, glyphosate or a commercial formulation of glyphosate was decreased by between 20 and 90% after pre-treatment with diazinon. In contrast, the IC(50) for pirimiphos methyl was unaffected and those for phosmet or chlorpyrifos were increased by between 1.5- and 3-fold. Treatment of cells with chlorpyrifos or with a second glyphosate-containing formulation led to the formation of abnormal neurite-like structures in diazinon-pre-exposed cells. The data support the view that chronic exposure to an OP may reduce the threshold for toxicity of some, but by no means all, environmental agents.

  4. Does “Live High-Train Low (and High)” Hypoxic Training Alter Running Mechanics In Elite Team-sport Players?

    PubMed Central

    Girard, Olivier; Millet, Grégoire P.; Morin, Jean-Benoit; Brocherie, Franck

    2017-01-01

    This study aimed to investigate if “Live High-Train Low (and High)” hypoxic training alters constant-velocity running mechanics. While residing under normobaric hypoxia (≥14 h·d-1; FiO2 14.5-14.2%) for 14 days, twenty field hockey players performed, in addition to their usual training in normoxia, six sessions (4 × 5 × 5-s maximal sprints; 25 s passive recovery; 5 min rest) under either normobaric hypoxia (FiO2 ~14.5%, n = 9) or normoxia (FiO2 20.9%, n = 11). Before and immediately after the intervention, their running pattern was assessed at 10 and 15 km·h-1 as well as during six 30-s runs at ~20 km·h-1 with 30-s passive recovery on an instrumented motorised treadmill. No clear changes in running kinematics and spring-mass parameters occurred globally either at 10, 15 or ~20 km·h-1, with also no significant time × condition interaction for any parameters (p > 0.14). Independently of the condition, heart rate (all p < 0.05) and ratings of perceived exertion decreased post-intervention (only at 15 km·h-1, p < 0.05). Despite indirect signs for improved psycho-physiological responses, no forthright change in stride mechanical pattern occurred after “Live High-Train Low (and High)” hypoxic training. Key points There are indirect signs for improved psycho-physiological responses in responses to “Live High-Train Low (and High)” hypoxic training. This hypoxic training regimen, however, does not modify the running mechanics of elite team-sport players at low and high velocities. Coaches can be confident that this intervention, known for inducing significant metabolic benefits, is appropriate for athletes since their running kinetics and kinematics are not negatively affected by chronic hypoxic exposure. PMID:28912649

  5. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    PubMed

    Debevec, Tadej; Simpson, Elizabeth J; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-01-01

    Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2)) or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2)). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. While body mass decreased in both groups (-1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01) and postprandial plasma glucose in the Exercise group (-19%; p = 0.03). Fasting serum total cholesterol levels were reduced (-12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can

  6. Bemithyl potentiates the antioxidant effect of intermittent hypoxic training.

    PubMed

    Zarubina, I V; Nurmanbetova, F N; Shabanov, P D

    2005-08-01

    The rats were adapted to hypoxic hypoxia by intermittent training in a flow pressure chamber for 3 days. The course of bemithyl treatment (25 mg/kg intraperitoneally, 3 days) started immediately after the 1st day of training. Bemithyl potentiated the adaptive metabolic changes in rat brain induced by repeated hypoxic hypoxia, increased the individual resistance to hypoxia, and produced a long-lasting effect.

  7. Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

    PubMed

    Peng, Xinqi; Perkins, Michael W; Simons, Jannitt; Witriol, Alicia M; Rodriguez, Ashley M; Benjamin, Brittany M; Devorak, Jennifer; Sciuto, Alfred M

    2014-06-01

    This study evaluated acute toxicity and pulmonary injury in rats at 3, 6 and 24 h after an inhalation exposure to aerosolized O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX). Anesthetized male Sprague-Dawley rats (250-300 g) were incubated with a glass endotracheal tube and exposed to saline or VX (171, 343 and 514 mg×min/m³ or 0.2, 0.5 and 0.8 LCt₅₀, respectively) for 10 min. VX was delivered by a small animal ventilator at a volume of 2.5 ml × 70 breaths/minute. All VX-exposed animals experienced a significant loss in percentage body weight at 3, 6, and 24 h post-exposure. In comparison to controls, animals exposed to 514 mg×min/m³ of VX had significant increases in bronchoalveolar lavage (BAL) protein concentrations at 6 and 24 h post-exposure. Blood acetylcholinesterase (AChE) activity was inhibited dose dependently at each of the times points for all VX-exposed groups. AChE activity in lung homogenates was significantly inhibited in all VX-exposed groups at each time point. All VX-exposed animals assessed at 20 min and 3, 6 and 24 h post-exposure showed increases in lung resistance, which was prominent at 20 min and 3 h post-exposure. Histopathologic evaluation of lung tissue of the 514 mg×min/m³ VX-exposed animals at 3, 6 and 24 h indicated morphological changes, including perivascular inflammation, alveolar exudate and histiocytosis, alveolar septal inflammation and edema, alveolar epithelial necrosis, and bronchiolar inflammatory infiltrates, in comparison to controls. These results suggest that aerosolization of the highly toxic, persistent chemical warfare nerve agent VX results in acute pulmonary toxicity and lung injury in rats.

  8. Chronic hypoxic incubation blunts a cardiovascular reflex loop in embryonic American alligator (Alligator mississippiensis).

    PubMed

    Eme, John; Hicks, James W; Crossley, Dane A

    2011-10-01

    Hypoxia is a naturally occurring environmental challenge for embryonic non-avian reptiles, and this study is the first to investigate the impact of chronic hypoxia on a possible chemoreflex loop in a developing non-avian reptile. We measured heart rate and blood pressure in normoxic and hypoxic-incubated (10% O(2)) American alligator embryos (Alligator mississippiensis) at 70 and 90/95% of development. We hypothesized that hypoxic incubation would blunt embryonic alligators' response to a reflex loop stimulated by phenylbiguanide (PBG), a 5-HT(3) receptor agonist that stimulates vagal pulmonary C-fiber afferents. PBG injection caused a hypotensive bradycardia in 70 and 95% of development embryos (paired t tests, P < 0.05), a response similar to mammals breathing inspired air (all injections made through occlusive catheter in tertiary chorioallantoic membrane artery). Hypoxic incubation blunted the bradycardic response to PBG in embryos at 95% of development (two-way ANOVA, P < 0.01). We also demonstrated that the vagally mediated afferent limb of this reflex can be partially or completely blocked in ovo with a 5-HT(3) receptor blockade using ondansetron hydrochloride dihydrate (OHD), with a ganglionic blockade using hexamethonium, or with a cholinergic blockade using atropine. Atropine eliminated the hypotensive and bradycardic responses to PBG, and OHD and hexamethonium significantly blunted these responses. This cardiovascular reflex mediated by the vagus was affected by hypoxic incubation, suggesting that reptilian sympathetic and parasympathetic reflex loops have the potential for developmental plasticity in response to hypoxia. We suggest that the American alligator, with an extended length of time between each developmental stage relative to avian species, may provide an excellent model to test the cardiorespiratory effects of prolonged exposure to changes in atmospheric gases. This extended period allows for lengthy studies at each stage without the

  9. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  10. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβmore » phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a

  11. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise

    PubMed Central

    Casey, Darren P; Madery, Brandon D; Curry, Timothy B; Eisenach, John H; Wilkins, Brad W; Joyner, Michael J

    2010-01-01

    We tested the hypotheses that (1) nitric oxide (NO) contributes to augmented skeletal muscle vasodilatation during hypoxic exercise and (2) the combined inhibition of NO production and adenosine receptor activation would attenuate the augmented vasodilatation during hypoxic exercise more than NO inhibition alone. In separate protocols subjects performed forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n= 12), subjects received intra-arterial administration of saline (control) and the NO synthase inhibitor NG-monomethyl-l-arginine (l-NMMA). In protocol 2 (n= 10), subjects received intra-arterial saline (control) and combined l-NMMA–aminophylline (adenosine receptor antagonist) administration. Forearm vascular conductance (FVC; ml min−1 (100 mmHg)−1) was calculated from forearm blood flow (ml min−1) and blood pressure (mmHg). In protocol 1, the change in FVC (Δ from normoxic baseline) due to hypoxia under resting conditions and during hypoxic exercise was substantially lower with l-NMMA administration compared to saline (control; P < 0.01). In protocol 2, administration of combined l-NMMA–aminophylline reduced the ΔFVC due to hypoxic exercise compared to saline (control; P < 0.01). However, the relative reduction in ΔFVC compared to the respective control (saline) conditions was similar between l-NMMA only (protocol 1) and combined l-NMMA–aminophylline (protocol 2) at 10% (−17.5 ± 3.7 vs.−21.4 ± 5.2%; P= 0.28) and 20% (−13.4 ± 3.5 vs.−18.8 ± 4.5%; P= 0.18) hypoxic exercise. These findings suggest that NO contributes to the augmented vasodilatation observed during hypoxic exercise independent of adenosine. PMID:19948661

  12. The significance of nanomaterial post-exposure responses in Daphnia magna standard acute immobilisation assay: Example with testing TiO2 nanoparticles.

    PubMed

    Novak, Sara; Jemec Kokalj, Anita; Hočevar, Matej; Godec, Matjaž; Drobne, Damjana

    2018-05-15

    One of the most widely used aquatic standarized tests for the toxicity screening of chemicals is the acute toxicity test with the freshwater crustacean Daphnia magna, which has also been applied in the toxicity screening of manufactured nanoparticles (NPs). However, in the case of non-soluble NPs most of the results of this test have showed no effect. The aim of the work presented here was to modify the standardized test by the least possible extent to make it more sensitive for non-soluble particles. The standard acute immobilisation assay with daphnids was modified by prolonging the exposure period and by measuring additional endpoints. Daphnids were exposed to TiO 2 NPs in a standard acute test (48h of exposure), a standard acute test (48h of exposure) followed by 24h recovery period in clean medium or a prolonged exposure in the NPs solutions totaling 72h. Together with immobility, the adsorption of NPs to body surfaces was also observed as an alternative measure of the NPs effects. Our results showed almost no effect of TiO 2 NPs on D. magna after the 48h standard acute test, while immobility was increased when the exposure period to TiO 2 NPs was prolonged from 48h to 72h. Even when daphnids were transferred to clean medium for additional 24h after 48h of exposure to TiO 2 NPs the immobility increased. We conclude that by transferring the daphnids to clean medium at the end of the 48h exposure to TiO 2 NPs, the delayed effects of the tested material can be seen. This methodological step could improve the sensitivity of D. magna test as a model in nanomaterial environmental risk assessment. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review.

    PubMed

    Hobbins, L; Hunter, S; Gaoua, N; Girard, O

    2017-09-01

    Normobaric hypoxic conditioning (HC) is defined as exposure to systemic and/or local hypoxia at rest (passive) or combined with exercise training (active). HC has been previously used by healthy and athletic populations to enhance their physical capacity and improve performance in the lead up to competition. Recently, HC has also been applied acutely (single exposure) and chronically (repeated exposure over several weeks) to overweight and obese populations with the intention of managing and potentially increasing cardio-metabolic health and weight loss. At present, it is unclear what the cardio-metabolic health and weight loss responses of obese populations are in response to passive and active HC. Exploration of potential benefits of exposure to both passive and active HC may provide pivotal findings for improving health and well being in these individuals. A systematic literature search for articles published between 2000 and 2017 was carried out. Studies investigating the effects of normobaric HC as a novel therapeutic approach to elicit improvements in the cardio-metabolic health and weight loss of obese populations were included. Studies investigated passive ( n = 7; 5 animals, 2 humans), active ( n = 4; all humans) and a combination of passive and active ( n = 4; 3 animals, 1 human) HC to an inspired oxygen fraction ([Formula: see text]) between 4.8 and 15.0%, ranging between a single session and daily sessions per week, lasting from 5 days up to 8 mo. Passive HC led to reduced insulin concentrations (-37 to -22%) in obese animals and increased energy expenditure (+12 to +16%) in obese humans, whereas active HC lead to reductions in body weight (-4 to -2%) in obese animals and humans, and blood pressure (-8 to -3%) in obese humans compared with a matched workload in normoxic conditions. Inconclusive findings, however, exist in determining the impact of acute and chronic HC on markers such as triglycerides, cholesterol levels, and fitness capacity

  14. Father's occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study)

    PubMed Central

    Perez-Saldivar, Maria Luisa; Ortega-Alvarez, Manuel Carlos; Fajardo-Gutierrez, Arturo; Bernaldez-Rios, Roberto; del Campo-Martinez, Maria de los Angeles; Medina-Sanson, Aurora; Palomo-Colli, Miguel Angel; Paredes-Aguilera, Rogelio; Martínez-Avalos, Armando; Borja-Aburto, Victor Hugo; Rodriguez-Rivera, Maria de Jesus; Vargas-Garcia, Victor Manuel; Zarco-Contreras, Jesus; Flores-Lujano, Janet; Mejia-Arangure, Juan Manuel

    2008-01-01

    Background Medical research has not been able to establish whether a father's occupational exposures are associated with the development of acute leukemia (AL) in their offspring. The studies conducted have weaknesses that have generated a misclassification of such exposure. Occupations and exposures to substances associated with childhood cancer are not very frequently encountered in the general population; thus, the reported risks are both inconsistent and inaccurate. In this study, to assess exposure we used a new method, an exposure index, which took into consideration the industrial branch, specific position, use of protective equipment, substances at work, degree of contact with such substances, and time of exposure. This index allowed us to obtain a grade, which permitted the identification of individuals according to their level of exposure to known or potentially carcinogenic agents that are not necessarily specifically identified as risk factors for leukemia. The aim of this study was to determine the association between a father's occupational exposure to carcinogenic agents and the presence of AL in their offspring. Methods From 1999 to 2000, a case-control study was performed with 193 children who reside in Mexico City and had been diagnosed with AL. The initial sample-size calculation was 150 children per group, assessed with an expected odds ratio (OR) of three and a minimum exposure frequency of 15.8%. These children were matched by age, sex, and institution with 193 pediatric surgical patients at secondary-care hospitals. A questionnaire was used to determine each child's background and the characteristics of the father's occupation(s). In order to determine the level of exposure to carcinogenic agents, a previously validated exposure index (occupational exposure index, OEI) was used. The consistency and validity of the index were assessed by a questionnaire comparison, the sensory recognition of the work area, and an expert's opinion. Results The

  15. Occupational exposure levels of bioaerosol components are associated with serum levels of the acute phase protein Serum Amyloid A in greenhouse workers.

    PubMed

    Madsen, Anne Mette; Thilsing, Trine; Bælum, Jesper; Garde, Anne Helene; Vogel, Ulla

    2016-01-20

    Occupational exposure to particles may be associated with increased inflammation of the airways. Animal experiments suggest that inhaled particles also induce a pulmonary acute phase response, leading to systemic circulation of acute phase proteins. Greenhouse workers are exposed to elevated levels of bioaerosols. The objective of this study is to assess whether greenhouse workers personal exposure to bioaerosol components was associated with serum levels of the acute phase proteins Serum Amyloid A (SAA) and C-reactive protein (CRP). SAA and CRP levels were determined in serum sampled repeatedly from 33 greenhouse workers. Blood was drawn repeatedly on Mondays and Thursdays during work weeks. Acute phase protein levels were compared to levels in a comparison group of 42 people and related to individual exposure levels to endotoxin, dust, bacteria, fungi and β-glucan. Serum levels of SAA and CRP were not significantly different in greenhouse workers and a reference group, or on the two work days. In a mixed model, SAA levels were positively associated with endotoxin exposure levels (p = 0.0007). Results for fungi were not clear. CRP levels were positively associated with endotoxin exposures (p = 0.022). Furthermore, when workers were categorized into three groups based on SAA and CRP serum levels endotoxin exposure was highest in the group with the highest SAA levels and in the group with middle and highest CRP levels. SAA and CRP levels were elevated in workers with asthma. Greenhouse workers did not have elevated serum levels of SAA and CRP compared to a reference group. However, occupational exposure to endotoxin was positively associated with serum levels of the acute phase proteins SAA and CRP. Preventive measures to reduce endotoxin exposure may be beneficial.

  16. Video-based heart rate monitoring across a range of skin pigmentations during an acute hypoxic challenge.

    PubMed

    Addison, Paul S; Jacquel, Dominique; Foo, David M H; Borg, Ulf R

    2017-11-09

    The robust monitoring of heart rate from the video-photoplethysmogram (video-PPG) during challenging conditions requires new analysis techniques. The work reported here extends current research in this area by applying a motion tolerant algorithm to extract high quality video-PPGs from a cohort of subjects undergoing marked heart rate changes during a hypoxic challenge, and exhibiting a full range of skin pigmentation types. High uptimes in reported video-based heart rate (HR vid ) were targeted, while retaining high accuracy in the results. Ten healthy volunteers were studied during a double desaturation hypoxic challenge. Video-PPGs were generated from the acquired video image stream and processed to generate heart rate. HR vid was compared to the pulse rate posted by a reference pulse oximeter device (HR p ). Agreement between video-based heart rate and that provided by the pulse oximeter was as follows: Bias = - 0.21 bpm, RMSD = 2.15 bpm, least squares fit gradient = 1.00 (Pearson R = 0.99, p < 0.0001), with a 98.78% reporting uptime. The difference between the HR vid and HR p exceeded 5 and 10 bpm, for 3.59 and 0.35% of the reporting time respectively, and at no point did these differences exceed 25 bpm. Excellent agreement was found between the HR vid and HR p in a study covering the whole range of skin pigmentation types (Fitzpatrick scales I-VI), using standard room lighting and with moderate subject motion. Although promising, further work should include a larger cohort with multiple subjects per Fitzpatrick class combined with a more rigorous motion and lighting protocol.

  17. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    PubMed

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Acute neurological symptoms during hypobaric exposure: consider cerebral air embolism.

    PubMed

    Weenink, Robert P; Hollmann, Markus W; van Hulst, Robert A

    2012-11-01

    Cerebral arterial gas embolism (CAGE) is well known as a complication of invasive medical procedures and as a risk in diving and submarine escape. In the underwater environment, CAGE is caused by trapped air, which expands and leads to lung vessel rupture when ambient pressure decreases during ascent. Pressure decrease also occurs during hypobaric activities such as flying and, therefore, CAGE may theoretically be a risk in hypobaric exposure. We reviewed the available literature on this subject. Identified were 12 cases of CAGE due to hypobaric exposure. Based on these cases, we discuss pathophysiology, diagnosis, and treatment of CAGE due to hypobaric exposure. The low and slow pressure decrease during most hypobaric activities (as opposed to diving) account for the low incidence of CAGE during these exposures and suggest that severe air trapping must be present to cause barotrauma. This is also suggested by the large prevalence of air filled cysts in the case reports reviewed. We recommend considering CAGE in all patients presenting with acute central neurological injury during or shortly after pressure decrease such as flying. A CT scan of head and chest should be performed in these patients. Treatment with hyperbaric oxygen therapy should be initiated as soon as possible in cases of proven or probable CAGE.

  19. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  20. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors.

    PubMed

    Szablowski, Jerzy O; Raskatov, Jevgenij A; Dervan, Peter B

    2016-04-01

    Hypoxic gene expression contributes to the pathogenesis of many diseases, including organ fibrosis, age-related macular degeneration, and cancer. Hypoxia-inducible factor-1 (HIF1), a transcription factor central to the hypoxic gene expression, mediates multiple processes including neovascularization, cancer metastasis, and cell survival. Pyrrole-imidazole polyamide 1: has been shown to inhibit HIF1-mediated gene expression in cell culture but its activity in vivo was unknown. This study reports activity of polyamide 1: in subcutaneous tumors capable of mounting a hypoxic response and showing neovascularization. We show that 1: distributes into subcutaneous tumor xenografts and normal tissues, reduces the expression of proangiogenic and prometastatic factors, inhibits the formation of new tumor blood vessels, and suppresses tumor growth. Tumors treated with 1: show no increase in HIF1α and have reduced ability to adapt to the hypoxic conditions, as evidenced by increased apoptosis in HIF1α-positive regions and the increased proximity of necrotic regions to vasculature. Overall, these results show that a molecule designed to block the transcriptional activity of HIF1 has potent antitumor activity in vivo, consistent with partial inhibition of the tumor hypoxic response. Mol Cancer Ther; 15(4); 608-17. ©2015 AACR. ©2015 American Association for Cancer Research.

  1. Hypoxic events and concomitant factors in preterm infants on non-invasive ventilation.

    PubMed

    Fathabadi, Omid Sadeghi; Gale, Timothy; Wheeler, Kevin; Plottier, Gemma; Owen, Louise S; Olivier, J C; Dargaville, Peter A

    2017-04-01

    Automated control of inspired oxygen for newborn infants is an emerging technology, currently limited by reliance on a single input signal (oxygen saturation, SpO 2 ). This is while other signals that may herald the onset of hypoxic events or identify spurious hypoxia are not usually utilised. We wished to assess the frequency of apnoea, loss of circuit pressure and/or motion artefact in proximity to hypoxic events in preterm infants on non-invasive ventilation. Hypoxic events (SpO 2  < 80 %) were identified using a previously acquired dataset obtained from preterm infants receiving non-invasive ventilation. Events with concomitant apnoea, loss of circuit pressure or oximetry motion artefact were annotated, and the frequency of each of these factors was determined. The effect of duration and timing of apnoea on the characteristics of the associated hypoxic events was studied. Among 1224 hypoxic events, 555 (45 %) were accompanied by apnoea, 31 (2.5 %) by loss of circuit pressure and 696 (57 %) by motion artefact, while for 224 (18 %) there were no concomitant factors identified. Respiratory pauses of longer duration (>15 s) preceding hypoxic events, were associated with a relatively slow decline in SpO 2 and more prolonged hypoxia compared to shorter pauses. Hypoxic events are frequently accompanied by respiratory pauses and/or motion artefact. Real-time monitoring and input of respiratory waveform may thus improve the function of automated oxygen controllers, allowing pre-emptive responses to respiratory pauses. Furthermore, use of motion-resistant oximeters and plethysmographic waveform assessment procedures will help to optimise feedback control of inspired oxygen delivery.

  2. Chronic and acute exposures to the world trade center disaster and lower respiratory symptoms: area residents and workers.

    PubMed

    Maslow, Carey B; Friedman, Stephen M; Pillai, Parul S; Reibman, Joan; Berger, Kenneth I; Goldring, Roberta; Stellman, Steven D; Farfel, Mark

    2012-06-01

    We assessed associations between new-onset (post-September 11, 2001 [9/11]) lower respiratory symptoms reported on 2 surveys, administered 3 years apart, and acute and chronic 9/11-related exposures among New York City World Trade Center-area residents and workers enrolled in the World Trade Center Health Registry. World Trade Center-area residents and workers were categorized as case participants or control participants on the basis of lower respiratory symptoms reported in surveys administered 2 to 3 and 5 to 6 years after 9/11. We created composite exposure scales after principal components analyses of detailed exposure histories obtained during face-to-face interviews. We used multivariate logistic regression models to determine associations between lower respiratory symptoms and composite exposure scales. Both acute and chronic exposures to the events of 9/11 were independently associated, often in a dose-dependent manner, with lower respiratory symptoms among individuals who lived and worked in the area of the World Trade Center. Study findings argue for detailed assessments of exposure during and after events in the future from which potentially toxic materials may be released and for rapid interventions to minimize exposures and screen for potential adverse health effects.

  3. Acute inhalative exposure assessment: derivation of guideline levels with special regard to sensitive subpopulations and time scaling.

    PubMed

    Mielke, Hans; Gundert, Anna; Abraham, Klaus; Gundert-Remy, Ursula

    2005-10-30

    Risk assessment for acute airborne exposure to volatile organic compounds (VOCs), including exposure to chemical warfare agents, requires consideration of local and systemic effects at high concentrations. The operating procedure developed by the US Acute Exposure Guideline Level (AEGL) committee has gained special attention, in part because of the international collaboration in the project. The procedure defines three levels (AEGL-1: discomfort; AEGL-2: irreversible or other serious, long-lasting adverse effects; AEGL-3: life-threatening effects or death) for different exposure times (10 and 30 min, and 1, 4 and 8 h). In this article, the methodology for deriving AEGL values is reported. Extending the areas covered by the existing AEGL methodology, sensitive subpopulations are dealt with in more detail. Sensitive persons are expected to suffer from stronger effects when exposed to a given external concentration. Using a kinetic model with the sample substance dichloromethane (DCM), the higher internal exposure of children is quantified and compared to a healthy, young adult. The difference is shown to depend on age, on dose, and on duration of exposure. Furthermore, several ways are presented to derive AEGL values for exposure times which differ from the exposure duration in animal studies ('time scaling'). In comparison to the conventional procedure, the alternative approaches are based on mechanistic models of the toxicodynamic effect. Use of these models results in AEGL values which are biologically justified.

  4. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.tewari-singh@uc

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanchingmore » of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality.

  5. [Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats].

    PubMed

    Li, Wenbin; Jia, Zhengping; Xie, Hua; Zhang, Juanhong; Wang, Yanling; Hao, Ying; Wang, Rong

    2014-07-01

    To investigate the changes in hepatic functions and activities of CYP1A2 and CYP3A4 in rats after acute exposure to high altitude. Twelve healthy male Wistar rats were randomly divided into control group and exposure group for acute exposure to normal and high altitude (4010 m) environment. Blood samples were collected from the vena orbitalis posterior for detection of the hepatic function. Hepatic pathologies of the rats were examined microscopically with HE staining. Liver microsomes were extracted by differential centrifugation to assess the activities of CYP1A2 and 3A4 using P450-GloTM kit. In rats with acute exposure to high altitude, AST, ALT, and ALP all increased significantly by 48.50%, 47.90%, and 103.02%, respectively, and TP decreased significantly by 17.80% as compared with those in rats maintained in normal altitude environment (P<0.05). Pathological examination of the liver revealed edema of the central vein of the liver and hepatocyte karyopyknosis in rats after acute exposure to high altitude, which also resulted in significantly lowered activities of CYP1A2 and 3A4 in the liver (by 96.56% and 43.53%, respectively). Acute exposure to high altitude can cause obvious liver injuries and lowered activities of CYP1A2 and 3A4 in rats to severely affect drug metabolism in the liver and result in increased concentration, prolonged half-life and reduced clearance of drugs.

  6. In utero exposure to lipopolysaccharide alters the postnatal acute phase response in beef heifers

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  7. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    PubMed Central

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  8. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

    PubMed Central

    Xie, Yufen; Zhou, Sichang; Jiang, Zhongliang; Dai, Jing; Puscheck, Elizabeth E; Lee, Icksoo; Parker, Graham; Hüttemann, Maik; Rappolee, Daniel A

    2014-01-01

    Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. Implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor (FGF)4 enabled highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24 hr despite FGF4. However, hypoxic stress supported differentiation poorly after 4–7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential, maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited differentiation at the differentiation optimum at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5–2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation. PMID:25239494

  9. Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia.

    PubMed

    Lewis, Johanne M; Driedzic, William R

    2010-02-01

    The cunner, Tautogolabrus adspersus, is a north-temperate teleost which relies upon metabolic depression to survive the extreme low water temperatures of its habitat during the winter. Previous study has demonstrated a decrease in protein synthesis accompanies the metabolic depression observed at the whole animal level during seasonal low temperature exposure. As such, the objective of the current study was to determine: (i) if the response of decreased protein synthesis is conserved across environmental stressors and (ii) if the response of metabolic depression is conserved across levels of cellular organization. This was accomplished through the measurement of in vivo protein synthesis rates in the whole tissue, cytosolic and mitochondrial protein pools (reflective of nuclear encoded proteins imported into mitochondria) of heart and gill in cunner exposed to either acute low temperature (8-4 degrees C) or acute hypoxia (10% O(2) saturation). In both heart and gill, rates of protein synthesis in the whole tissue and cytosolic protein pools were substantially depressed by 80% in response to acute hypothermia. In hypoxic heart, protein synthesis was significantly decreased by 50-60% in the whole tissue, cytosolic and mitochondrial pools; however, in gill there was no significant difference in rates of protein synthesis in any cellular fraction between normoxic and hypoxic groups. Most strikingly the rate of new protein accumulation in the mitochondrial fraction of gill did not change in response to either a decrease in temperature or hypoxia. The defense of protein synthesis in the gill is most likely associated with the importance of maintaining ionic regulation and the oxidative capacity in this front line organ for gas and ion exchange.

  10. Participation of the dorsal periaqueductal grey matter in the hypoxic ventilatory response in unanaesthetized rats.

    PubMed

    Lopes, L T; Biancardi, V; Vieira, E B; Leite-Panissi, C; Bícego, K C; Gargaglioni, L H

    2014-07-01

    Although periaqueductal grey matter activation is known to elicit respiratory and cardiovascular responses, the role of this midbrain area in the compensatory responses to hypoxia is still unknown. To test the participation of the periaqueductal grey matter in cardiorespiratory and thermal responses to hypoxia in adult male Wistar rats, we performed a chemical lesion of the dorsolateral/dorsomedial or the ventrolateral/lateral periaqueductal grey matter using ibotenic acid. Pulmonary ventilation, mean arterial pressure, heart rate and body temperature were measured in unanaesthetized rats during normoxic and hypoxic exposure (5, 15, 30 min, 7% O2). An ibotenic acid lesion of the dorsolateral/dorsomedial periaqueductal grey matter caused a higher increase in pulmonary ventilation (67.1%, 1730±282.5 mL kg(-1) min(-1)) compared to the Sham group (991.4±194 mL kg(-1) min(-1)) after 15 min in hypoxia, whereas for the ventrolateral/Lateral periaqueductal grey matter lesion, no differences were observed between groups. Mean arterial pressure, heart rate and body temperature were not affected by a dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter lesion. Middle to caudal portions of the dorsolateral/dorsomedial periaqueductal grey matter neurones modulate the hypoxic ventilatory response, exerting an inhibitory modulation during low O2 situations. In addition, the middle to caudal portions of the dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter do not appear to exert a tonic role on cardiovascular or thermal parameters during normoxic and hypoxic conditions. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  12. Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone.

    PubMed

    Seibel, Brad A; Häfker, N Sören; Trübenbach, Katja; Zhang, Jing; Tessier, Shannon N; Pörtner, Hans-Otto; Rosa, Rui; Storey, Kenneth B

    2014-07-15

    The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2 =0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g(-1) after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must

  13. ESTIMATED RATE OF FATAL AUTOMOBILE ACCIDENTS ATTRIBUTABLE TO ACUTE SOLVENT EXPOSURE AT LOW INHALED CONCENTRATIONS

    EPA Science Inventory

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mecha...

  14. Hypoxic pulmonary vasoconstriction does not affect hydrostatic pulmonary edema formation.

    PubMed

    Cheney, F W; Bishop, M J; Eisenstein, B L; Artman, L D

    1987-02-01

    We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.

  15. Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions.

    PubMed

    Nestler, Holger; Kiesel, Bärbel; Kaschabek, Stefan R; Mau, Margit; Schlömann, Michael; Balcke, Gerd Ulrich

    2007-12-01

    Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the beta-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.

  16. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    PubMed Central

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed. PMID:25091891

  17. Acute spill-mimicking exposure effect of hexavalent chromium on the pituitary-ovarian axis of a teleost, Channa punctatus (Bloch).

    PubMed

    Mishra, Ashish K; Mohanty, Banalata

    2014-05-01

    Acute exposure to hexavalent chromium (as 10, 20, and 40 mg/L potassium dichromate for 96 h) adversely affected the pituitary-ovarian axis of a teleost Channa punctatus. The toxic impact of metal exposure on fish ovary was revealed in the form of increased percentage of atretic follicles, significantly in 20 mg/L and 40 mg/L exposure groups. The follicular atresia mostly occurred in vitellogenic (stage II and stage III) oocytes. Reduction of serum level of 17β-estradiol was also significant in 20 mg/L and 40 mg/L exposure groups. The increase of LH-immunointensity of pituitary gonadotrophs (LHβ-immunoreactive cells) and their hypertrophy was evident, significantly in fish of 40 mg/L exposed group. Thus, the present acute metal spill-mimicking laboratory study clearly demonstrated that short-term exposures to high doses of hexavalent chromium may disrupt reproduction of the fish and affect their population. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  18. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  19. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation.

    PubMed

    Kagaya, Hideaki; Miura, Masatomo; Saito, Mitsuru; Habuchi, Tomonori; Satoh, Shigeru

    2010-08-01

    The risk of acute rejection in patients with higher exposure to mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), might be due to inosine 5'-monophosphate dehydrogenase (IMPDH) polymorphisms. The correlations with subclinical acute rejection, IMPDH1 polymorphisms and MPA exposure on day 28 post-transplantation were investigated in 82 Japanese recipients. Renal transplant recipients were given combination immunosuppressive therapy consisting of tacrolimus and 1.0, 1.5 or 2.0 g/day of MMF in equally divided doses every 12 hr at designated times. There were no significant differences in the incidence of subclinical acute rejection between IMPDH1 rs2278293 or rs2278294 polymorphisms (p = 0.243 and 0.735, respectively). However, in the high MPA night-time exposure range (AUC > 60 microg x h/ml and C(0 )> or = 1.9 microg/ml), there was a significant difference in the incidence of subclinical acute rejection between IMPDH1 rs2278293 A/A, A/G and G/G genotypes (each p = 0.019), but not the IMPDH1 rs2278294 genotype. In the higher daytime MPA exposure range, patients with the IMPDH1 rs2278293 G/G genotype also tended to develop subclinical acute rejection. In patients with the IMPDH rs2278293 A/A genotype, the risk of subclinical acute rejection episode tends to be low and the administration of MMF was effective. The risk of subclinical acute rejection for recipients who cannot adapt in therapeutic drug monitoring (TDM) of MPA seems to be influenced by IMPDH1 rs2278293 polymorphism. The prospective analysis of IMPDH1 rs2278293 polymorphism as well as monitoring of MPA plasma concentration after transplantation might help to improve MMF therapy.

  20. Acute Exposure of College Basketball Players to Moderate Altitude: Selected Physiological Responses.

    ERIC Educational Resources Information Center

    Noble, Bruce J.; Maresh, Carl M.

    1979-01-01

    In general, basketball players with moderately high aerobic power who reside at an altitude of 1,000 m do not display the hypoxic response to an altitude of 2,200 m expected of sea level residents and aerobically trained athletes. (JD)

  1. The Effect of a Hypobaric, Hypoxic Environment on Acute Skeletal Muscle Edema After Ischemia-Reperfusion Injury in Rats

    DTIC Science & Technology

    2010-05-15

    groups ( P < 0.05). Normobaric normoxia caused greater edema in the gastrocnemius compared with hypobaric hypoxia; the tibialis anterior was not signif...icantly different between groups. The decrease in body weight for NB and HB was 3.4 ± 1.4 and 10.7 ± 1.2 g, respectively ( P < 0.05). Hematocrit was...44.7 ± 0.5 and 42.6 ± 0.6 ( P < 0.05). Conclusions. The hypobaric, hypoxic conditions of simulated medical air evacuation were not associated with

  2. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    PubMed

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  3. Chronic and Acute Exposures to the World Trade Center Disaster and Lower Respiratory Symptoms: Area Residents and Workers

    PubMed Central

    Friedman, Stephen M.; Pillai, Parul S.; Reibman, Joan; Berger, Kenneth I.; Goldring, Roberta; Stellman, Steven D.; Farfel, Mark

    2012-01-01

    Objectives. We assessed associations between new-onset (post–September 11, 2001 [9/11]) lower respiratory symptoms reported on 2 surveys, administered 3 years apart, and acute and chronic 9/11-related exposures among New York City World Trade Center–area residents and workers enrolled in the World Trade Center Health Registry. Methods. World Trade Center–area residents and workers were categorized as case participants or control participants on the basis of lower respiratory symptoms reported in surveys administered 2 to 3 and 5 to 6 years after 9/11. We created composite exposure scales after principal components analyses of detailed exposure histories obtained during face-to-face interviews. We used multivariate logistic regression models to determine associations between lower respiratory symptoms and composite exposure scales. Results. Both acute and chronic exposures to the events of 9/11 were independently associated, often in a dose-dependent manner, with lower respiratory symptoms among individuals who lived and worked in the area of the World Trade Center. Conclusions. Study findings argue for detailed assessments of exposure during and after events in the future from which potentially toxic materials may be released and for rapid interventions to minimize exposures and screen for potential adverse health effects. PMID:22515865

  4. Adverse Cardiovascular Effects with Acute Particulate Matter and Ozone Exposures: Interstrain Variation in Mice

    PubMed Central

    Hamade, Ali K.; Rabold, Richard; Tankersley, Clarke G.

    2008-01-01

    Objectives Increased ambient particulate matter (PM) levels are associated with cardiovascular morbidity and mortality, as shown by numerous epidemiology studies. Few studies have investigated the role of copollutants, such as ozone, in this association. Furthermore, the mechanisms by which PM affects cardiac function remain uncertain. We hypothesized that PM and O3 induce adverse cardiovascular effects in mice and that these effects are strain dependent. Study design After implanting radiotelemeters to measure heart rate (HR) and HR variability (HRV) parameters, we exposed C57Bl/6J (B6), C3H/HeJ (HeJ), and C3H/HeOuJ (OuJ) inbred mouse strains to three different daily exposures of filtered air (FA), carbon black particles (CB), or O3 and CB sequentially [O3CB; for CB, 536 ± 24 μg/m3; for O3, 584 ± 35 ppb (mean ± SE)]. Results We observed significant changes in HR and HRV in all strains due to O3CB exposure, but not due to sequential FA and CB exposure (FACB). The data suggest that primarily acute HR and HRV effects occur during O3CB exposure, especially in HeJ and OuJ mice. For example, HeJ and OuJ mice demonstrated dramatic increases in HRV parameters associated with marked brady-cardia during O3CB exposure. In contrast, depressed HR responses occurred in B6 mice without detectable changes in HRV parameters. Conclusions These findings demonstrate that important interstrain differences exist with respect to PM- and O3-induced cardiac effects. This interstrain variation suggests that genetic factors may modulate HR regulation in response to and recuperation from acute copollutant exposures. PMID:18709144

  5. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations.

    PubMed

    Benignus, Vernon A; Bushnell, Philip J; Boyes, William K

    2011-12-01

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mechanisms. These observations, along with the extensive data on the relationship between ethanol consumption and fatal automobile accidents, suggested a way to estimate the probability of fatal automobile accidents from solvent inhalation. The problem can be approached using the logic of the algebraic transitive postulate of equality: if A=B and B=C, then A=C. We first calculated a function describing the internal doses of solvent vapors that cause the same magnitude of behavioral impairment as ingestion of ethanol (A=B). Next, we fit a function to data from the literature describing the probability of fatal car crashes for a given internal dose of ethanol (B=C). Finally, we used these two functions to generate a third function to estimate the probability of a fatal car crash for any internal dose of organic solvent vapor (A=C). This latter function showed quantitatively (1) that the likelihood of a fatal car crash is increased by acute exposure to organic solvent vapors at concentrations less than 1.0 ppm, and (2) that this likelihood is similar in magnitude to the probability of developing leukemia from exposure to benzene. This approach could also be applied to other potentially adverse consequences of acute exposure to solvents (e.g., nonfatal car crashes, property damage, and workplace accidents), if appropriate data were available. © 2011 Society for Risk Analysis Published 2011. This article is a U.S. Government work and is in the public domain for the U.S.A.

  6. [Myocardial ultrastructural changes in rats following different levels of acute +Gz exposure].

    PubMed

    Zheng, Jun; Liu, Cheng-gang; Ren, Li; Xiao, Xiao-guang; Xu, Shu-xuan; Wang, Ping; Ji, Gui-ying

    2004-06-01

    To observe the effects of different levels of acute +Gz exposure on myocardial ultrastructure of rats and provide experimental basis for further development of anti-G measures. Twenty male Wistar rats were randomly divided into 4 groups (n=5): normal control group, +20 Gz group, +10 Gz group and +5 Gz group. Profile of the centrifuge +Gz exposure was trapezoidal, in which +20 Gz lasted for 30 s, +10 Gz for 1.5 min. +5 Gz exposure was repeated for 3 times with 30 min interval and each for 1.5 min. Myocardial tissue of left ventricle was sampled for transmission electron microscopy 5 h after exposure. +20 Gz and +10 Gz exposure caused obvious edema of myocardial and endothelial cells, myofibril disorder and injuries of mitochondria and nucleus. Breaks of myocardial fiber, formation of contraction bands and rupture of mitochondria were also observed in +20 Gz group. In +5 Gz group, there was still slight edema of myocardial and endothelial cells, while organic changes of myocardial ultrastructure were not observed. High +Gz exposure can cause myocardial ultrastructural injury in rats. Slight reversible injured response can also be observed in myocardial cell after repeated moderate level of +Gz exposure. This indicates that attention should be paid to the study of the effect of high +Gz on heart in pilots.

  7. Acute and subchronic inhalation exposures of hamsters to nickel-enriched fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, A.P.; Moss, O.R.; Milliman, E.M.

    1979-08-01

    One 6-h inhalation exposure of hamsters to Ni-enriched fly ash (NEFA) aerosol (respirable aerosol concentration approx. 200 ..mu..g/liter) deposited about 80 ..mu..g in the deep lung, of which 75 ..mu..g was still present 30 days postexposure. The animals tolerated the exposure well during the 30-day postexposure observation period. Two-month exposures of hamsters to NEFA or fly ash (FA) aerosols (approx. 185 ..mu..g/liter) resuled in a deep lung burden of about 5.7 mg, dark discoloration of lungs, heavily dust-laden macrophages, and significantly higher lung weights than in controls, but only minimal inflammatory reaction and no deaths. There was no difference betweenmore » NEFA and FA effects. The NEFA contained 9% Ni; FA contained 0.03% Ni. The results of this study indicate low acute and subchronic toxicity and slow lung clearance of NEFA and FA.« less

  8. The effects of ROS in prostatic stromal cells under hypoxic environment.

    PubMed

    Ren, Hailin; Li, Xiaona; Cheng, Guojun; Li, Ning; Hou, Zhi; Suo, Jiming; Wang, Jian; Za, Xi

    2015-06-01

    The objective of this study is to explore the effects of reactive oxygen species (ROS) under hypoxic environment in prostatic stromal cells (PSC). To detect the expression of ROS in PSC and the tissues of benign prostatic hyperplasia (BPH) by flow cytometry; under hypoxic conditions, to observe the changes of cells growth and ROS in PSC; quantitative PCR was used to detect hypoxia inducible factor-1α (HIF-1α), androgen receptors (AR), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in PSC; After edaravone intervening, to examine the changes of cells growth, ROS, HIF-1α, AR, VEGF, and IL-8 under hypoxic conditions. The expression of ROS in tissues and cells which under hypoxic condition was significantly increased. 3% O2 promoted the proliferation. The HIF-1α, AR, VEGF, and IL-8 were upregulated under 3% O2. After edaravone intervening, ROS significantly decreased, HIF-1α and VEGF were downregulated, and cell proliferation declined. Hypoxia stimulates the generation of ROS, and the ROS may play a key role in BPH.

  9. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions

    NASA Astrophysics Data System (ADS)

    Felfoul, Ouajdi; Mohammadi, Mahmood; Taherkhani, Samira; de Lanauze, Dominic; Zhong Xu, Yong; Loghin, Dumitru; Essa, Sherief; Jancik, Sylwia; Houle, Daniel; Lafleur, Michel; Gaboury, Louis; Tabrizian, Maryam; Kaou, Neila; Atkin, Michael; Vuong, Té; Batist, Gerald; Beauchemin, Nicole; Radzioch, Danuta; Martel, Sylvain

    2016-11-01

    Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

  10. Cigarette Smoke Exposure and the Acute Respiratory Distress Syndrome

    PubMed Central

    Calfee, Carolyn S.; Matthay, Michael A.; Kangelaris, Kirsten N.; Siew, Edward D.; Janz, David R; Bernard, Gordon R.; May, Addison K; Jacob, Peyton; Havel, Christopher; Benowitz, Neal L.; Ware, Lorraine B.

    2016-01-01

    Objective The association between cigarette smoke exposure and the acute respiratory distress syndrome (ARDS) in patients with the most common ARDS risk factors of sepsis, pneumonia, and aspiration has not been well-studied. The goal of this study was to test the association between biomarker-confirmed cigarette smoking and ARDS in a diverse cohort. Design, Setting, Patients We obtained smoking histories and measured urine NNAL (a biomarker of cigarette smoke exposure) in 426 patients with ARDS risk factors (excluding trauma and transfusion) in a prospective cohort of critically ill patients at a single tertiary care center and tested the association between smoking and ARDS. Interventions None. Measurements and Main Results The association between cigarette smoke exposure and ARDS differed based on ARDS risk factor (p<0.02 for interaction). In patients with non-pulmonary sepsis as the primary ARDS risk factor (n=212), 39% of those with ARDS were current smokers by history, compared with 22% of those without ARDS (odds ratio 2.28 (95% CI 1.24–4.18); p=0.007). Likewise, cigarette smoke exposure as measured by urine NNAL was significantly associated with ARDS in this group. The increased risk of ARDS in non-pulmonary sepsis was restricted to patients with NNAL levels consistent with active smoking and was robust to adjustment for other ARDS predictors. Cigarette smoke exposure as measured by history or NNAL was not associated with ARDS in patients with other risk factors (e.g. pneumonia, aspiration). Conclusions Cigarette smoking measured both by history and by biomarker is associated with an increased risk of ARDS in patients with non-pulmonary sepsis. This finding has important implications for tobacco product regulation and for understanding the pathogenesis of ARDS. PMID:26010690

  11. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals.

    PubMed

    Faulhaber, Martin; Pocecco, Elena; Gatterer, Hannes; Niedermeier, Martin; Huth, Maike; Dünnwald, Tobias; Menz, Verena; Bernardi, Luciano; Burtscher, Martin

    2016-12-01

    The present study evaluated the effects of a preacclimatization program comprising seven passive 1-h exposures to 4500-m normobaric hypoxia on the prevalence and severity of acute mountain sickness (AMS) during a subsequent exposure to real high altitude in persons susceptible to AMS. The project was designed as a randomized controlled trial including 32 healthy female and male participants with known susceptibility to AMS symptoms. After baseline measurements, participants were randomly assigned to the hypoxia or the control group to receive the preacclimatization program (seven passive 1-h exposures within 7 d to normobaric hypoxia or sham hypoxia). After completing preacclimatization, participants were transported (bus, cog railway) to real high altitude (3650 m, Mönchsjoch Hut, Switzerland) and stayed there for 45 h (two nights). Symptoms of AMS and physiological responses were determined repeatedly. AMS incidence and severity did not significantly differ between groups during the high-altitude exposure. In total, 59% of the hypoxia and 67% of the control group suffered from AMS at one or more time points during the high-altitude exposure. Hypoxic and hypercapnic ventilatory responses were not affected by the preacclimatization program. Resting ventilation at high altitude tended to be higher (P = 0.06) in the hypoxia group compared with the control group. No significant between-group differences were detected for heart rate variability, arterial oxygen saturation, and hematological and ventilatory parameters during the high-altitude exposure. Preacclimatization using seven passive 1-h exposures to normobaric hypoxia corresponding to 4500 m did not prevent AMS development during a subsequent high-altitude exposure in AMS-susceptible persons.

  12. Molecular and cellular profiling of acute responses to total body radiation exposure in ovariectomized female cynomolgus macaques.

    PubMed

    DeBo, Ryne J; Register, Thomas C; Caudell, David L; Sempowski, Gregory D; Dugan, Gregory; Gray, Shauna; Owzar, Kouros; Jiang, Chen; Bourland, J Daniel; Chao, Nelson J; Cline, J Mark

    2015-06-01

    The threat of radiation exposure requires a mechanistic understanding of radiation-induced immune injury and recovery. The study objective was to evaluate responses to ionizing radiation in ovariectomized (surgically post-menopausal) female cynomolgus macaques. Animals received a single total-body irradiation (TBI) exposure at doses of 0, 2 or 5 Gy with scheduled necropsies at 5 days, 8 weeks and 24 weeks post-exposure. Blood and lymphoid tissues were evaluated for morphologic, cellular, and molecular responses. Irradiated animals developed symptoms of acute hematopoietic syndrome, and reductions in thymus weight, thymopoiesis, and bone marrow cellularity. Acute, transient increases in plasma monocyte chemoattractant protein 1 (MCP-1) were observed in 5 Gy animals along with dose-dependent alterations in messenger ribonucleic acid (mRNA) signatures in thymus, spleen, and lymph node. Expression of T cell markers was lower in thymus and spleen, while expression of macrophage marker CD68 (cluster of differentiation 68) was relatively elevated in lymphoid tissues from irradiated animals. Ovariectomized female macaques exposed to moderate doses of radiation experienced increased morbidity, including acute, dose-dependent alterations in systemic and tissue-specific biomarkers, and increased macrophage/T cell ratios. The effects on mortality exceeded expectations based on previous studies in males, warranting further investigation.

  13. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance.

    PubMed

    Yang, Wei; Wei, Jing; Guo, Tiantian; Shen, Yueming; Liu, Fenju

    2014-08-01

    Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia.

    PubMed

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-11-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case-control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7-1.8) for 37-100 Bq m(-3) and 1.1 (95% CI 0.6-2.0) for > 100 Bq m(-3) compared with < 37 Bq m(-3). Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children > or = 2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML.

  15. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia

    PubMed Central

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-01-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case–control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7–1.8) for 37–100 Bq m–3 and 1.1 (95% CI 0.6–2.0) for > 100 Bq m–3 compared with < 37 Bq m–3. Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children ≥2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML. © 1999 Cancer Research Campaign PMID:10555766

  16. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome.

    PubMed

    Nava, Stefano; Schreiber, Ania; Domenighetti, Guido

    2011-10-01

    Few studies have been performed on noninvasive ventilation (NIV) to treat hypoxic acute respiratory failure in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The outcomes of these patients, for whom endotracheal intubation is not mandatory, depend on the degree of hypoxia, the presence of comorbidities and complications, and their illness severity. The use of NIV as an alternative to invasive ventilation in severely hypoxemic patients with ARDS (ie, P(aO(2))/F(IO(2)) < 200) is not generally advisable and should be limited to hemodynamically stable patients who can be closely monitored in an intensive care unit by highly skilled staff. Early NIV application may be extremely helpful in immunocompromised patients with pulmonary infiltrates, in whom intubation dramatically increases the risk of infection, pneumonia, and death. The use of NIV in patients with severe acute respiratory syndrome and other airborne diseases has generated debate, despite encouraging clinical results, mainly because of safety issues. Overall, the high rate of NIV failure suggests a cautious approach to NIV use in patients with ALI/ARDS, including early initiation, intensive monitoring, and prompt intubation if signs of NIV failure emerge.

  17. Modeling Acute Health Effects of Astronauts from Exposure to Large Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    In space exploration outside the Earth s geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possible failure of the mission. Acute risks are of special concern during extra-vehicular activities because of the rapid onset of SPE. However, most SPEs will not lead to acute risks but can lead to mission disruption if accurate projection methods are not available. Acute Radiation Sickness (ARS) is a group of clinical syndromes developing acutely (within several seconds to 3 days) after high dose whole-body or significant partial-body ionizing radiation exposures. The manifestation of these syndromes reflects the disturbance of physiological processes of various cellular groups damaged by radiation. Hematopoietic cells, skin, epithelium, intestine, and vascular endothelium are among the most sensitive tissues of human body to ionizing radiation. Most ARS symptoms are directly related to these tissues and other systems (nervous, endocrine, and cardiovascular, etc.) with coupled regulations. Here we report the progress in bio-mathematical models to describe the dose and time-dependent early human responses to ionizing radiation. The responses include lymphocyte depression, granulocyte modulation, fatigue and weakness syndrome, and upper gastrointestinal distress. The modest dose and dose-rates of SPEs are predicted to lead to large sparing of ARS, however detailed experimental data on a range of proton dose-rates for organ doses from 0.5 to 2 Gy is needed to validate the models. We also report on the ARRBOD code that integrates the BRYNTRN and SUMDOSE codes, which are used to estimate the SPE organ doses for astronauts under various space travel scenarios, with our models of ARS. The more recent effort is to provide easy web access to space radiation risk assessment using the ARRBOD code.

  18. Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation

    PubMed Central

    Debevec, Tadej; Simpson, Elizabeth J.; Macdonald, Ian A.; Eiken, Ola; Mekjavic, Igor B.

    2014-01-01

    Background Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Methods Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼4000 m simulated altitude (FIO2 = 0.139±0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8±2.4 yrs, BMI = 22.9±1.2 kg·m−2) or without any exercise (Sedentary group; N = 6 Age = 24.8±3.1 yrs, BMI = 22.3±2.5 kg·m−2). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postprandial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. Results While body mass decreased in both groups (−1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (−1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (−49%; p = 0.01) and postprandial plasma glucose in the Exercise group (−19%; p = 0.03). Fasting serum total cholesterol levels were reduced (−12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (−16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). Conclusion These findings suggest that performing daily moderate intensity exercise training

  19. Rapid onset of hypoxic vasoconstriction in isolated lungs.

    PubMed

    Jensen, K S; Micco, A J; Czartolomna, J; Latham, L; Voelkel, N F

    1992-05-01

    A fast-response O2 analyzer that samples air at low flow rates allows the quasi-instantaneous measurement of O2 concentration change in the airways of isolated blood-perfused rat lungs. This instrument and an oximeter were used to measure the stimulus-response delay time of hypoxic pulmonary vasoconstriction when the lungs were challenged with 10, 5, or 3% O2. The estimate for the shortest delay time between accomplished fall in airway O2 concentration and the onset of hypoxia-induced vasoconstriction was approximately 7 s. We found that the slope of pressure rise, but not the stimulus-response delay time, correlated with the magnitude of hypoxic vasoconstriction. Oscillations in pulmonary arterial pressure were observed when the lungs were challenged with 10% O2 but not when the challenge was 12, 5, or 3%, indicating perhaps that these oscillations were a threshold phenomenon. Established hypoxic vasoconstriction was sensitive to brief changes in airway O2 concentration. Vasodilation occurred when the gas mixture was switched from 3 to 21% O2 for two to five breaths, and vasoconstriction occurred when the gas was changed during a single breath from 5 to 3% O2.

  20. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar).

    PubMed

    Lund, Morten; Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes.

  1. Hypoxia tolerance and responses to hypoxic stress during heart and skeletal muscle inflammation in Atlantic salmon (Salmo salar)

    PubMed Central

    Krudtaa Dahle, Maria; Timmerhaus, Gerrit; Alarcon, Marta; Powell, Mark; Aspehaug, Vidar; Rimstad, Espen; Jørgensen, Sven Martin

    2017-01-01

    Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes. PMID:28700748

  2. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions.

    PubMed

    Harper, Jamie; Skerry, Ciaran; Davis, Stephanie L; Tasneen, Rokeya; Weir, Mariah; Kramnik, Igor; Bishai, William R; Pomper, Martin G; Nuermberger, Eric L; Jain, Sanjay K

    2012-02-15

    Preclinical evaluation of tuberculosis drugs is generally limited to mice. However, necrosis and hypoxia, key features of human tuberculosis lesions, are lacking in conventional mouse strains. We used C3HeB/FeJ mice, which develop necrotic lesions in response to Mycobacterium tuberculosis infection. Positron emission tomography in live infected animals, postmortem pimonidazole immunohistochemistry, and bacterial gene expression analyses were used to assess whether tuberculosis lesions in C3HeB/FeJ are hypoxic. Efficacy of combination drug treatment, including PA-824, active against M. tuberculosis under hypoxic conditions, was also evaluated. Tuberculosis lesions in C3HeB/FeJ (but not BALB/c) were found to be hypoxic and associated with up-regulation of known hypoxia-associated bacterial genes (P < .001). Contrary to sustained activity reported elsewhere in BALB/c mice, moxifloxacin and pyrazinamide (MZ) combination was not bactericidal beyond 3 weeks in C3HeB/FeJ. Although PA-824 added significant activity, the novel combination of PA-824 and MZ was less effective than the standard first-line regimen in C3HeB/FeJ. We demonstrate that tuberculosis lesions in C3HeB/FeJ are hypoxic. Activities of some key tuberculosis drug regimens in development are represented differently in C3HeB/FeJ versus BALB/c mice. Because C3HeB/FeJ display key features of human tuberculosis, this strain warrants evaluation as a more pathologically relevant model for preclinical studies.

  3. Associations between chronic community noise exposure and blood pressure at rest and during acute noise and non-noise stressors among urban school children in India.

    PubMed

    Lepore, Stephen J; Shejwal, Bhaskar; Kim, Bang Hyun; Evans, Gary W

    2010-09-01

    The present study builds on prior research that has examined the association between children's chronic exposure to community noise and resting blood pressure and blood pressure dysregulation during exposure to acute stressors. A novel contribution of the study is that it examines how chronic noise exposure relates to blood pressure responses during exposure to both noise and non-noise acute stressors. The acute noise stressor was recorded street noise and the non-noise stressor was mental arithmetic. The sample consisted of 189 3rd and 6th grade children (51.9% percent boys; 52.9% 3rd graders) from a noisy (n = 95) or relatively quiet (n = 94) public school in the city of Pune, India. There were no statistically significant differences between chronic noise levels and resting blood pressure levels. However, relative to quiet-school children, noisy-school children had significantly lower increases in blood pressure when exposed to either an acute noise or non-noise stressor. This finding suggests that chronic noise exposure may result in hypo-reactivity to a variety of stressors and not just habituation to noise stressors.

  4. Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis.

    PubMed

    Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan

    2012-09-04

    The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).

  5. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    PubMed Central

    Bengtson, Stefan; Knudsen, Kristina B.; Kyjovska, Zdenka O.; Berthing, Trine; Skaug, Vidar; Levin, Marcus; Koponen, Ismo K.; Shivayogimath, Abhay; Booth, Timothy J.; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Thomsen, Birthe L.; Troelsen, Jesper T.; Jacobsen, Nicklas R.

    2017-01-01

    We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis. PMID:28570647

  6. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    PubMed

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  7. The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    PubMed Central

    Hashimoto, Yuuri; Tazawa, Hiroshi; Teraishi, Fuminori; Kojima, Toru; Watanabe, Yuichi; Uno, Futoshi; Yano, Shuya; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2012-01-01

    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells. PMID:22720091

  8. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    PubMed

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC

    EPA Science Inventory

    CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC. UP Kodavanti, MC Schladweiler, AD Ledbetter, RH Jaskot, PS Gilmour, DC Christiani, WP Watkinson, DL Costa, JK McGee, A Nyska. NHEERL, USEPA, RTP, NC; CEMALB, UNC, Chapel Hil...

  10. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    PubMed

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Chronic marijuana smoke exposure in the rhesus monkey. IV: Neurochemical effects and comparison to acute and chronic exposure to delta-9-tetrahydrocannabinol (THC) in rats.

    PubMed

    Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W

    1991-11-01

    THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters.

    PubMed

    Sarnat, Jeremy A; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E; Dana Flanders, W; Mirabelli, Maria C; Zora, Jennifer E; Bergin, Michael H; Yip, Fuyuen

    2014-08-01

    Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects' private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. At measurement time points within 3h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p<0.0001). Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  14. Acute respiratory toxicity following inhalation exposure to soman in guinea pigs.

    PubMed

    Perkins, Michael W; Pierre, Zdenka; Rezk, Peter; Sabnekar, Praveena; Kabra, Kareem; Chanda, Soma; Oguntayo, Samuel; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2010-06-01

    Respiratory toxicity and lung injury following inhalation exposure to chemical warfare nerve agent soman was examined in guinea pigs without therapeutics to improve survival. A microinstillation inhalation exposure technique that aerosolizes the agent in the trachea was used to administer soman to anesthetized age and weight matched male guinea pigs. Animals were exposed to 280, 561, 841, and 1121 mg/m(3) concentrations of soman for 4 min. Survival data showed that all saline controls and animals exposed to 280 and 561 mg/m(3) soman survived, while animals exposed to 841, and 1121 mg/m(3) resulted in 38% and 13% survival, respectively. The microinstillation inhalation exposure LCt(50) for soman determined by probit analysis was 827.2mg/m(3). A majority of the animals that died at 1121 mg/m(3) developed seizures and died within 15-30 min post-exposure. There was a dose-dependent decrease in pulse rate and blood oxygen saturation of animals exposed to soman at 5-6.5 min post-exposure. Body weight loss increased with the dose of soman exposure. Bronchoalveolar lavage (BAL) fluid and blood acetylcholinesterase and butyrylcholinesterase activity was inhibited dose-dependently in soman treated groups at 24h. BAL cells showed a dose-dependent increase in cell death and total cell counts following soman exposure. Edema by wet/dry weight ratio of the accessory lung lobe and trachea was increased slightly in soman exposed animals. An increase in total bronchoalveolar lavage fluid protein was observed in soman exposed animals at all doses. Differential cell counts of BAL and blood showed an increase in total lymphocyte counts and percentage of neutrophils. These results indicate that microinstillation inhalation exposure to soman causes respiratory toxicity and acute lung injury in guinea pigs. (c) 2010 Elsevier Inc. All rights reserved.

  15. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress

    PubMed Central

    Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Zenkoh, Junko; Moritake, Takashi; Tsuboi, Koji

    2013-01-01

    Background Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. Methods Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic and hypoxic conditions. Radiosensitizing effects were analyzed by clonogenic survival assays and cell growth assays and by assessing apoptosis and autophagy. Expression of apoptosis-, autophagy-, and endoplasmic reticulum (ER) stress–related genes was analyzed by immunoblotting. Results Celecoxib significantly enhanced the radiosensitivity of GBM cells under both normoxic and hypoxic conditions. In addition, combined treatment with celecoxib and γ-irradiation induced marked autophagy, particularly in hypoxic cells. The mechanism underlying the radiosensitizing effect of celecoxib was determined to be ER stress loading on GBM cells. Conclusion Celecoxib enhances the radiosensitivity of GBM cells by a mechanism that is different from cyclooxygenase-2 inhibition. Our results indicate that celecoxib may be a promising radiosensitizing drug for clinical use in patients with GBM. PMID:23658321

  16. DISTRIBUTION OF 14C-ATRAZINE FOLLOWING AN ACUTE LACTATIONAL EXPOSURE IN THE WISTAR RAT.

    EPA Science Inventory

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4 mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavag...

  17. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts.

    PubMed

    Shi, Huairui; Zhang, Xuehong; He, Zekun; Wu, Zhiyong; Rao, Liya; Li, Yushu

    2017-01-01

    The migration of cardiac fibroblasts to the infarct region plays a major role in the repair process after myocardial necrosis or damage. However, few studies investigated whether early hypoxia in cardiomyocytes induces the migration of cardiac fibroblasts. The purpose of this study was to assess the role of metabolites of early hypoxic cardiomyocytes in the induction of cardiac fibroblast migration. Neonatal rat heart tissue was digested with a mixture of trypsin and collagenase at an appropriate ratio. Cardiomyocytes and cardiac fibroblasts were cultured via differential adhesion. The cardiomyocyte cultures were subjected to hypoxia for 2, 4, 6, 8, 10, and 12 h. The supernatants of the cardiomyocyte cultures were collected to determine the differences in cardiac fibroblast migration induced by hypoxic cardiomyocyte metabolites at various time points using a Transwell apparatus. Meanwhile, ELISA was performed to measure TNF-α, IL-1β and TGF-β expression levels in the cardiomyocyte metabolites at various time points. The metabolites of hypoxic cardiomyocytes significantly induced the migration of cardiac fibroblasts. The induction of cardiac fibroblast migration was significantly enhanced by cardiomyocyte metabolites in comparison to the control after 2, 4, and 6 h of hypoxia, and the effect was most significant after 2 h. The expression levels of TNF-α, IL-1β, IL-6, and TGF-β were substantially increased in the metabolites of cardiomyocytes, and neutralization with anti-TNF-α and anti-IL-1β antibodies markedly reduced the induction of cardiac fibroblast migration by the metabolites of hypoxic cardiomyocytes. The metabolites of early hypoxic cardiomyocytes can induce the migration of cardiac fibroblasts, and TNF-α and IL-1β may act as the initial chemotactic inducers. © 2017 The Author(s) Published by S. Karger AG, Basel.

  18. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

    PubMed

    Gökçek-Saraç, Çiğdem; Er, Hakan; Kencebay Manas, Ceren; Kantar Gok, Deniz; Özen, Şükrü; Derin, Narin

    2017-09-01

    To demonstrate the molecular effects of acute and chronic exposure to both 900 and 2100 MHz radiofrequency electromagnetic radiation (RF-EMR) on the hippocampal level/activity of some of the enzymes - including PKA, CaMKIIα, CREB, and p44/42 MAPK - from N-methyl-D-aspartate receptor (NMDAR)-related signaling pathways. Rats were divided into the following groups: sham rats, and rats exposed to 900 and 2100 MHz RF-EMR for 2 h/day for acute (1 week) or chronic (10 weeks), respectively. Western blotting and activity measurement assays were used to assess the level/activity of the selected enzymes. The obtained results revealed that the hippocampal level/activity of selected enzymes was significantly higher in the chronic groups as compared to the acute groups at both 900 and 2100 MHz RF-EMR exposure. In addition, hippocampal level/activity of selected enzymes was significantly higher at 2100 MHz RF-EMR than 900 MHz RF-EMR in both acute and chronic groups. The present study provides experimental evidence that both exposure duration (1 week versus 10 weeks) and different carrier frequencies (900 vs. 2100 MHz) had different effects on the protein expression of hippocampus in Wistar rats, which might encourage further research on protection against RF-EMR exposure.

  19. Effects of high-altitude exposure on supraspinal fatigue and corticospinal excitability and inhibition.

    PubMed

    Marillier, Mathieu; Arnal, Pierrick J; Le Roux Mallouf, Thibault; Rupp, Thomas; Millet, Guillaume Y; Verges, Samuel

    2017-08-01

    While acute hypoxic exposure enhances exercise-induced central fatigue and can alter corticospinal excitability and inhibition, the effect of prolonged hypoxic exposure on these parameters remains to be clarified. We hypothesized that 5 days of altitude exposure would (i) normalize exercise-induced supraspinal fatigue during isolated muscle exercise to sea level (SL) values and (ii) increase corticospinal excitability and inhibition. Eleven male subjects performed intermittent isometric elbow flexions at 50% of maximal voluntary contraction to task failure at SL and after 1 (D1) and 5 (D5) days at 4350 m. Transcranial magnetic stimulation and peripheral electrical stimulation were used to assess supraspinal and peripheral fatigues. Pre-frontal cortex and biceps brachii oxygenation was monitored by near-infrared spectroscopy. Exercise duration was not statistically different between SL (1095 ± 562 s), D1 (1132 ± 516 s), and D5 (1440 ± 689 s). No significant differences were found between the three experimental conditions in maximal voluntary activation declines at task failure (SL -16.8 ± 9.5%; D1 -25.5 ± 11.2%; D5 -21.8 ± 7.0%; p > 0.05). Exercise-induced peripheral fatigue was larger at D5 versus SL (100 Hz doublet at task failure: -58.8 ± 16.6 versus -41.8 ± 20.1%; p < 0.05). Corticospinal excitability at 50% maximal voluntary contraction was lower at D5 versus SL (brachioradialis p < 0.05, biceps brachii p = 0.055). Cortical silent periods were shorter at SL versus D1 and D5 (p < 0.05). The present results show similar patterns of supraspinal fatigue development during isometric elbow flexions at SL and after 1 and 5 days at high altitude, despite larger amount of peripheral fatigue at D5, lowered corticospinal excitability and enhanced corticospinal inhibition at altitude.

  20. Options for managing hypoxic blackwater events in river systems: a review.

    PubMed

    Kerr, Janice L; Baldwin, Darren S; Whitworth, Kerry L

    2013-01-15

    Blackwater events are characterised by a high concentration of dissolved organic carbon in the water column. They occur naturally in lowland rivers with forested floodplains and bring a variety of benefits to both aquatic and floodplain biota. However, particularly when accompanied by high temperatures, respiration of the organic carbon may cause blackwater to become hypoxic. This may lead to a range of lethal and sub-lethal effects on the aquatic biota. We review the current scientific knowledge concerning the management of blackwater and hypoxia, and examine how this knowledge may be applied to the management of hypoxic blackwater events in lowland river systems. A range of management options, which aim to either prevent the development of hypoxic blackwater or to reintroduce oxygen into deoxygenated waters, are reported. Mitigation options that may be applicable to lowland river systems include manipulating the season and magnitude of floods in regulated rivers, increasing roughness in flow paths, establishing oxygenated refugia for aquatic biota and introducing hydraulic structures that promote turbulence and re-aeration. With climatic changes trending towards a scenario where extreme events leading to the development of hypoxic blackwater are more probable, it is now vital to validate and optimise management options on local and regional scales and work towards closing knowledge gaps. With judicious management of regulated rivers, it is possible to minimise the impacts of hypoxic flows while preserving the benefits brought to floodplain and river ecosystems by seasonal flooding and carbon exchange. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Acute Changes in Heart Rate Variability in Subjects With Diabetes Following a Highway Traffic Exposure

    PubMed Central

    Laumbach, Robert J.; Rich, David Q.; Gandhi, Sampada; Amorosa, Louis; Schneider, Stephen; Zhang, Junfeng; Ohman-Strickland, Pamela; Gong, Jicheng; Lelyanov, Oleksiy; Kipen, Howard M.

    2014-01-01

    Objective To pilot a protocol to evaluate acute cardiovascular effects in in-vehicle exposure to traffic air pollutants in people with diabetes. Methods Twenty-one volunteers with type 2 diabetes were passengers on 90- to 110-minute car rides on a busy highway. We measured in-vehicle particle number and mass (PM2.5) nitrogen dioxide, and carbon monoxide and heart rate, heart rate variability (HRV), and blood pressure. Results Compared with pre-ride measurements, we found a decrease in high frequency (HF) HRV from pre-ride to next day (ratio 0.66, 95% CI = 0.47 to 0.93) and an increase in low frequency to HF ratio at post-ride (ratio 1.92, 95% CI = 1.21 to 3.05) at post-ride. Interquartile range increases in measured pollutants were associated with next-day decreases in HR HRV. Conclusions This protocol appears useful for assessing acute adverse cardiovascular effects of in-vehicle exposures among people who have diabetes. PMID:20190650

  2. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-12-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted withmore » two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 {+-} 0.04 for B16F1, 0.08 {+-} 0.04 for KHT-LP1, 0.17 {+-} 0.04 for RIF-1 and 0.04 {+-} 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO{sub 2} values, or [{sup 3}H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs.« less

  3. Acute invasive pulmonary aspergillosis, shortly after occupational exposure to polluted muddy water, in a previously healthy subject

    PubMed Central

    Pilaniya, Vikas; Gera, Kamal; Gothi, Rajesh; Shah, Ashok

    2015-01-01

    Invasive pulmonary aspergillosis (IPA) predominantly occurs in severely neutropenic immunocompromised subjects. The occurrence of acute IPA after brief but massive exposure to Aspergillus conidia in previously healthy subjects has been documented, although only six such cases have been reported. The diagnosis was delayed in all six of the affected patients, five of whom died. We report the case of a 50-year-old HIV-negative male, a water pipeline maintenance worker, who presented with acute-onset dyspnea and fever one day after working for 2 h in a deep pit containing polluted, muddy water. Over a one-month period, his general condition deteriorated markedly, despite antibiotic therapy. Imaging showed bilateral diffuse nodules with cavitation, some of which were surrounded by ground-glass opacity suggestive of a halo sign (a hallmark of IPA). Cultures (of sputum/bronchial aspirate samples) and serology were positive for Aspergillus fumigatus. After being started on itraconazole, the patient improved. We conclude that massive exposure to Aspergillus conidia can lead to acute IPA in immunocompetent subjects. PMID:26578140

  4. Studies of young female responses to acute ozone exposure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.C.

    The primary purposes of this research were to determine if: (1) young adult females respond with greater acute effects of ozone (O3) than their male counterparts at a dose relative to lung size as well as at the same total dose; (2) O3 response in females is influenced by the disparate levels of progesterone (a steroid hormone) that they experience during the various phases of their menstrual cycles; and (3) O3 exposure has an effect on the integrity of normal menstrual cycles of healthy young adult females.

  5. Bittersweet: Real-Time, Dynamic Changes in Blood Glucose Levels during an Acute Ozone Exposure in Rats

    EPA Science Inventory

    In humans and rats, acute exposures to ozone have been shown to activate the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axes to induce multi-organ metabolic alterations including impaired glucose homeostasis. These findings have largely been gleaned from on...

  6. Immune status influences fear and anxiety responses in mice after acute stress exposure

    PubMed Central

    Clark, Sarah M.; Sand, Joseph; Francis, T. Chase; Nagaraju, Anitha; Michael, Kerry C.; Keegan, Achsah D.; Kusnecov, Alexander; Gould, Todd D.; Tonelli, Leonardo H.

    2014-01-01

    Significant evidence suggests that exposure to traumatic and/or acute stress in both mice and humans results in compromised immune function that in turn may affect associated brain processes. Additionally, recent studies in mouse models of immune deficiency have suggested that adaptive immunity may play a role during traumatic stress exposure and that impairments in lymphocyte function may contribute to increased susceptibility to various psychogenic stressors. However, rodent studies on the relationship between maladaptive stress responses and lymphocyte deficiency have been complicated by the fact that genetic manipulations in these models may also result in changes in CNS function due to the expression of targeted genes in tissues other than lymphocytes, including the brain. To address these issues we utilized mice with a deletion of recombination-activating gene 2 (Rag2), which has no confirmed expression in the CNS; thus, its loss should result in the absence of mature lymphocytes without altering CNS function directly. Stress responsiveness of immune deficient Rag2−/− mice on a BALB/c background was evaluated in three different paradigms: predator odor exposure (POE), fear conditioning (FC) and learned helplessness (LH). These models are often used to study different aspects of stress responsiveness after the exposure to an acute stressor. In addition, immunoblot analysis was used to assess hippocampal BDNF expression under both stressed and non-stressed conditions. Subsequent to POE, Rag2−/− mice exhibited a reduced acoustic startle response compared to BALB/c mice; no significant differences in behavior were observed in either FC or LH. Furthermore, analysis of hippocampal BDNF indicated that Rag2−/− mice have elevated levels of the mature form of BDNF compared to BALB/c mice. Results from our studies suggest that the absence of mature lymphocytes is associated with increased resilience to stress exposure in the POE and does not affect

  7. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  8. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  9. More than meets the eye: infant presenting with hypoxic ischaemic encephalopathy.

    PubMed

    Sen, Kuntal; Agarwal, Rajkumar

    2018-04-05

    We report a newborn infant who presented with poor Apgar scores and umbilical artery acidosis leading to the diagnosis of hypoxic ischaemic encephalopathy. During the course of the infant's hospitalisation, subsequent workup revealed an underlying genetic cause that masqueraded as hypoxic ischaemic encephalopathy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Flows and hypoxic blackwater events in managed ephemeral river channels

    NASA Astrophysics Data System (ADS)

    Hladyz, Sally; Watkins, Susanne C.; Whitworth, Kerry L.; Baldwin, Darren S.

    2011-04-01

    SummaryAs pressure increases on the availability of water resources worldwide, especially in the face of climatic change, it is probable that the likelihood of streams undergoing at least some periods of drying will increase in arid and semi-arid regions. This has implications for the ongoing management of waterways in these areas. One area of concern is the potential occurrence of hypoxic blackwater events upon re-instatement of flows in creek and river channels following periods of drying. Hypoxic blackwater events are characterised by high levels of dissolved organic carbon (DOC), the metabolism of which results in low dissolved oxygen (DO) in the water column, which can cause fish and crustacean mortality. Therefore, understanding hypoxic blackwater events is important in order to reduce the potential for fish mortalities and other water quality impacts from both managed and natural flows. In this study, we set out to determine the factors that influenced the occurrence of a hypoxic blackwater event in the Edward-Wakool river system, in southern NSW, Australia during the previous austral summer (2008-2009). Standing stocks of plant litter, emergent macrophytes and river red gum saplings ( Eucalyptus camaldulensis Dehn.), as well as rates of litterfall, were determined in dry and inundated channels. A series of mesocosm experiments were undertaken to determine which carbon source was the greatest contributor to DOC and to DO depletion, and what loadings could result in hypoxia. These experiments were then used to create a simple algorithm relating carbon loading in a dry channel to DOC in the overlying water column following inundation. Results revealed that plant litter was the main contributor to water column DOC and to DO depletion. Litter loadings equal to or greater than 370 g m -2 were found to cause DO in a shallow (20 cm) water column at 20 °C to fall to zero within two days. This loading was approximately half of that found in dry channels in the

  11. Acute posttraumatic stress symptoms and depression after exposure to the 2005 Saskatchewan Centennial Air Show disaster: prevalence and predictors.

    PubMed

    Taylor, Steven; Asmundson, Gordon J G; Carleton, R Nicholas; Brundin, Peter

    2007-01-01

    The purpose of this study was to determine the prevalence of acute distress-that is, clinically significant posttraumatic stress symptoms (PTSS) and depression-and to identify predictors of each in a sample of people who witnessed a fatal aircraft collision at the 2005 Saskatchewan Centennial Air Show. Air Show attendees (N = 157) were recruited by advertisements in the local media and completed an Internet-administered battery of questionnaires. Based on previously established cut-offs, 22 percent respondents had clinically significant PTSS and 24 percent had clinically significant depressive symptoms. Clinically significant symptoms were associated with posttrauma impairment in social and occupational functioning. Acute distress was associated with several variables, including aspects of Air Show trauma exposure, severity of prior trauma exposure, low posttrauma social support (ie, negative responses by others), indices of poor coping (eg, intolerance of uncertainty, rumination about the trauma), and elevated scores on anxiety sensitivity, the personality trait of absorption, and dissociative tendencies. Results suggest that clinically significant acute distress is common in the aftermath of witnessed trauma. The statistical predictors (correlates) of acute distress were generally consistent with the results of studies of other forms of trauma. People with elevated scores on theoretical vulnerability factors (eg, elevated anxiety sensitivity) were particularly likely to develop acute distress.

  12. EFFECT OF AN ACUTE EXPOSURE TO MOLINATE ON OVULATION IN THE LONG-EVANS HOODED RAT

    EPA Science Inventory

    EFFECT OF AN ACUTE EXPOSURE TO MOLINATE ON OVULATION IN THE LONG-EVANS HOODED RAT. T E Stoker, D L Guidici, S C Jeffay, W K McElroy, S D Perreault and R L Cooper. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC. Sponsor: RJ Kavlock.
    Molinate, a thiocarbamate ...

  13. Acute fatal posthypoxic leukoencephalopathy following benzodiazepine overdose: a case report and review of the literature.

    PubMed

    Aljarallah, Salman; Al-Hussain, Fawaz

    2015-04-30

    Among the rare neurological complications of substances of abuse is the selective cerebral white matter injury (leukoencephalopathy). Of which, the syndrome of delayed post hypoxic encephalopathy (DPHL) that follows an acute drug overdose, in addition to "chasing the dragon" toxicity which results from chronic heroin vapor inhalation remain the most commonly described syndromes of toxic leukoencephalopathy. These syndromes are reported in association with opioid use. There are very few cases in the literature that described leukoencephalopathy following benzodiazepines, especially with an acute and progressive course. In this paper, we present a patient who developed an acute severe fatal leukoencephalopathy following hypoxic coma and systemic shock induced by benzodiazepine overdose. A 19-year-old male was found comatose at home and brought to hospital in a deep coma, shock, hypoxia, and acidosis. Brain magnetic resonant imaging (MRI) revealed a strikingly selective white matter injury early in the course of the disease. The patient remained in a comatose state with no signs of neurologic recovery until he died few weeks later following an increase in the brain edema and herniation. Toxic leukoencephalopathy can occur acutely following an overdose of benzodiazepine and respiratory failure. This is unlike the usual cases of toxic leukoencephalopathy where there is a period of lucidity between the overdose and the development of white matter disease. Unfortunately, this syndrome remains of an unclear pathophysiology and with no successful treatment.

  14. The Acute Effects of Intermittent Light Exposure in the Evening on Alertness and Subsequent Sleep Architecture.

    PubMed

    Yang, Minqi; Ma, Ning; Zhu, Yingying; Su, Ying-Chu; Chen, Qingwei; Hsiao, Fan-Chi; Ji, Yanran; Yang, Chien-Ming; Zhou, Guofu

    2018-03-15

    Exposure to bright light is typically intermittent in our daily life. However, the acute effects of intermittent light on alertness and sleep have seldom been explored. To investigate this issue, we employed within-subject design and compared the effects of three light conditions: intermittent bright light (30-min pulse of blue-enriched bright light (~1000 lux, ~6000 K) alternating with 30-min dim normal light (~5 lux, ~3600 K) three times); continuous bright light; and continuous dim light on subjective and objective alertness and subsequent sleep structure. Each light exposure was conducted during the three hours before bedtime. Fifteen healthy volunteers (20 ± 3.4 years; seven males) were scheduled to stay in the sleep laboratory for four separated nights (one for adaptation and the others for the light exposures) with a period of at least one week between nights. The results showed that when compared with dim light, both intermittent light and continuous bright light significantly increased subjective alertness and decreased sleep efficiency (SE) and total sleep time (TST). Intermittent light significantly increased objective alertness than dim light did during the second half of the light-exposure period. Our results suggested that intermittent light was as effective as continuous bright light in their acute effects in enhancing subjective and objective alertness and in negatively impacting subsequent sleep.

  15. Heart rate variability of human in hypoxic oxygen-argon environment

    NASA Astrophysics Data System (ADS)

    Khayrullina, Rezeda; Smoleevskiy, Alexandr; Bubeev, Yuri

    sufficient. However, the opposite dynamic test 02 - accompanied by a decrease heart rate increase SDNN. The survey detected that all subjects marked signs of increased activity of the sympathetic nervous system. Besides when short-term exposure (up to 10 days) in most researched factor in the majority of patients was enough functional reserves to adapt to the conditions of a changed atmosphere. However, the adaptation process was accompanied by severe stress and compensatory mechanisms for longer stay in hypoxic conditions, oxygen-argon environment may develop adverse effects associated with sympathicotony.

  16. Virtual reality jogging as a novel exposure paradigm for the acute urge to be physically active in patients with eating disorders: Implications for treatment.

    PubMed

    Paslakis, Georgios; Fauck, Vanessa; Röder, Kathrin; Rauh, Elisabeth; Rauh, Manfred; Erim, Yesim

    2017-11-01

    The acute urge to be physically active is a relevant clinical phenomenon in patients suffering from eating disorders. In this study with n = 20 female patients with anorexia nervosa and n = 10 female patients with bulimia nervosa, a virtual reality (VR) jogging paradigm was applied as a novel highly immersive 3D exposure paradigm. Patients were asked to rate their acute urge to be physically active during the exposure procedure. A 10-item self-report questionnaire (smQ) was developed to capture the cognitive, emotional, and behavioral aspects of the acute urge to move. We hypothesized that exposure would lead to habituation of the urge to be physically active. We also hypothesized that leptin levels would be associated with the degree of the subjective urge to be physically active, while habituation would be associated with a decrease in stress hormones (α-amylase, cortisol, and cortisone in saliva). A statistically significant change in subjective scores in the smQ from baseline to postexposure was seen. Our novel VR paradigm may serve as a therapeutic tool for exposure and habituation of the urge of acutely engaging in physical activity in patients with eating disorders. © 2017 Wiley Periodicals, Inc.

  17. Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3,658 m.

    PubMed

    Curran, L S; Zhuang, J; Sun, S F; Moore, L G

    1997-12-01

    When breathing ambient air at rest at 3,658 m altitude, Tibetan lifelong residents of 3,658 m ventilate as much as newcomers acclimatized to high altitude; they also ventilate more and have greater hypoxic ventilatory responses (HVRs) than do Han ("Chinese") long-term residents at 3,658 m. This suggests that Tibetan ancestry is advantageous in protecting resting ventilation levels during years of hypoxic exposure and is of interest in light of the permissive role of hypoventilation in the development of chronic mountain sickness, which is nearly absent among Tibetans. The existence of individuals with mixed Tibetan-Chinese ancestry (Han-Tibetans) residing at 3,658 m affords an opportunity to test this hypothesis. Eighteen men born in Lhasa, Tibet, China (3,658 m) to Tibetan mothers and Han fathers were compared with 27 Tibetan men and 30 Han men residing at 3,658 m who were previously studied. We used the same study procedures (minute ventilation was measured with a dry-gas flowmeter during room air breathing and hyperoxia and with a 13-liter spirometer-rebreathing system during the hypoxic and hypercapnic tests). During room air breathing at 3,658 m (inspired O2 pressure = 93 Torr), Han-Tibetans resembled Tibetans in ventilation (12.1 +/- 0.6 vs. 11.5+/- 0.5 l/min BTPS, respectively) but had HVR that were blunted (63 +/- 16 vs. 121 +/- 13, respectively, for HVR shape parameter A) and declined with increasing duration of high-altitude residence. During administered hyperoxia (inspired O2 pressure = 310 Torr) at 3,658 m, the paradoxical hyperventilation previously seen in Tibetan but not Han residents at 3,658 m (11.8 +/- 0.5 vs. 10.1 +/- 0.5 l/min BTPS) was absent in these Han-Tibetans (9.8 +/- 0.6 l/min BTPS). Thus, although longer duration of high-altitude residence appears to progressively blunt HVR among Han-Tibetans born and residing at 3, 658 m, their Tibetan ancestry appears protective in their maintenance of high resting ventilation levels despite

  18. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002

    PubMed Central

    2013-01-01

    Background Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. Methods We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. Results We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. Conclusions There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna. PMID:23924394

  19. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002.

    PubMed

    Lombardo, Daniele; Ciancio, Nicola; Campisi, Raffaele; Di Maria, Annalisa; Bivona, Laura; Poletti, Venerino; Mistretta, Antonio; Biggeri, Annibale; Di Maria, Giuseppe

    2013-08-07

    Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna.

  20. Flight Performance During Exposure to Acute Hypobaric Hypoxia.

    PubMed

    Steinman, Yuval; van den Oord, Marieke H A H; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-08-01

    The purpose of the present study was to examine the influence of hypobaric hypoxia (HH) on a pilot's flight performance during exposure to simulated altitudes of 91, 3048, and 4572 m (300, 10,000, and 15,000 ft) and to monitor the pilot's physiological reactions. In a single-blinded counter-balanced design, 12 male pilots were exposed to HH while flying in a flight simulator that had been placed in a hypobaric chamber. Flight performance of the pilots, pilot's alertness level, Spo2, heart rate (HR), minute ventilation (VE), and breathing frequency (BF) were measured. A significant difference was found in Flight Profile Accuracy (FPA) between the three altitudes. Post hoc analysis showed no significant difference in performance between 91 m and 3048 m. A trend was observed at 4572 m, suggesting a decrease in flight performance at that altitude. Significantly lower alertness levels were observed at the start of the flight at 4572 m compared to 91 m, and at the end of the flight at 4572 m compared to the start at that altitude. Spo2 and BF decreased, and HR increased significantly with altitude. The present study did not provide decisive evidence for a decrease in flight performance during exposure to simulated altitudes of 3048 and 4572 m. However, large interindividual variation in pilots' flight performance combined with a gradual decrease in alertness levels observed in the present study puts into question the ability of pilots to safely fly an aircraft while exposed to these altitudes without supplemental oxygen.Steinman Y, van den Oord MHAH, Frings-Dresen MHW, Sluiter JK. Flight performance during exposure to acute hypobaric hypoxia. Aerosp Med Hum Perform. 2017; 88(8):760-767.

  1. Acute lion's mane jellyfish, Cyanea capillata (Cnideria: Scyphozoa), exposure to Atlantic salmon (Salmo salar L.).

    PubMed

    Powell, M D; Åtland, Å; Dale, T

    2018-05-01

    Jellyfish-induced gill pathology relies upon occasional diagnostic observations yet the extent and impact of jellyfish blooms on aquaculture may be significant. Idiopathic gill lesions are often observed in apparently healthy fish. This study exposed Atlantic salmon (Salmo salar L.) smolts to macerated Cyanea capillata at 2.5 and 5 g/L for 2 hr under controlled laboratory conditions. Blood chemistry and gill histopathology were examined over a subsequent 4-week period. Fish showed an acute response to the presence of jellyfish, including characteristic external "whiplash" discoloration of the skin and acute increases in blood electrolytes and CO 2 concentration; however, these were resolved within 4 days after exposure. Histopathologically, gills showed first an acute oedema with epithelial separation followed by focal haemorrhage and thrombus formation, and then progressive inflammatory epithelial hyperplasia that progressively resolved over the 4 weeks post-exposure. Results were consistent with the envenomation of gills with cytotoxic neurotoxins and haemolysins known to be produced by C. capillata. This study suggests that many focal hyperplastic lesions on gills, especially those involving focal thrombi, may be the result of jellyfish stings. Thus, the presence of jellyfish and their impact may be severe and understated in terms of marine fish aquaculture and fish welfare. © 2018 John Wiley & Sons Ltd.

  2. Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat

    PubMed Central

    Bruder, Eric D.; Taylor, Jennifer K.; Kamer, Kimberli J.; Raff, Hershel

    2008-01-01

    Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O2 for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O2 for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response (∼3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O2 saturation (SPo2) to ∼80% and also decreased body temperature by 5–6°C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8). PMID:18703410

  3. The Hog1 Mitogen-Activated Protein Kinase Mediates a Hypoxic Response in Saccharomyces cerevisiae

    PubMed Central

    Hickman, Mark J.; Spatt, Dan; Winston, Fred

    2011-01-01

    We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes. PMID:21467572

  4. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells.

    PubMed

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4-5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba(2+)-sensitive inward rectifier K(+) current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca(2+) imaging study revealed that the hypoxic stress enhanced store-operated Ca(2+) (SOC) entry, which was significantly reduced in the presence of 100 μM Ba(2+). On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba(2+). We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca(2+) entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis. © 2014 by the Society for Experimental Biology and Medicine.

  6. Reducing intratumour acute hypoxia through bevacizumab treatment, referring to the response of quiescent tumour cells and metastatic potential

    PubMed Central

    Masunaga, S; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kondo, N; Maruhashi, A; Ono, K

    2011-01-01

    Objectives The aim was to evaluate the influence of bevacizumab on intratumour oxygenation status and lung metastasis following radiotherapy, with specific reference to the response of quiescent (Q) cell populations within irradiated tumours. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation following treatment with the acute hypoxia-releasing agent nicotinamide or local mild temperature hyperthermia (MTH) with or without the administration of bevacizumab under aerobic conditions or totally hypoxic conditions, achieved by clamping the proximal end of the tumours. Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In the other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results 3 days after bevacizumab administration, acute hypoxia-rich total cell population in the tumour showed a remarkably enhanced radiosensitivity to γ-rays, and the hypoxic fraction (HF) was reduced, even after MTH treatment. However, the hypoxic fraction was not reduced after nicotinamide treatment. With or without γ-ray irradiation, bevacizumab administration showed some potential to reduce the number of lung metastases as well as nicotinamide treatment. Conclusion Bevacizumab has the potential to reduce perfusion-limited acute hypoxia and some potential to cause a decrease in the number of lung metastases as well as nicotinamide. PMID:21586505

  7. Mental- and physical-health effects of acute exposure to media images of the September 11, 2001, attacks and the Iraq War.

    PubMed

    Silver, Roxane Cohen; Holman, E Alison; Andersen, Judith Pizarro; Poulin, Michael; McIntosh, Daniel N; Gil-Rivas, Virginia

    2013-09-01

    Millions of people witnessed early, repeated television coverage of the September 11 (9/11), 2001, terrorist attacks and were subsequently exposed to graphic media images of the Iraq War. In the present study, we examined psychological- and physical-health impacts of exposure to these collective traumas. A U.S. national sample (N = 2,189) completed Web-based surveys 1 to 3 weeks after 9/11; a subsample (n = 1,322) also completed surveys at the initiation of the Iraq War. These surveys measured media exposure and acute stress responses. Posttraumatic stress symptoms related to 9/11 and physician-diagnosed health ailments were assessed annually for 3 years. Early 9/11- and Iraq War-related television exposure and frequency of exposure to war images predicted increased posttraumatic stress symptoms 2 to 3 years after 9/11. Exposure to 4 or more hr daily of early 9/11-related television and cumulative acute stress predicted increased incidence of health ailments 2 to 3 years later. These findings suggest that exposure to graphic media images may result in physical and psychological effects previously assumed to require direct trauma exposure.

  8. Consumption of fruits and vegetables and probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate pesticides of schoolchildren in Slovenia.

    PubMed

    Blaznik, Urška; Yngve, Agneta; Eržen, Ivan; Hlastan Ribič, Cirila

    2016-02-01

    Adequate consumption of fruits and vegetables is a part of recommendations for a healthy diet. The aim of the present study was to assess acute cumulative dietary exposure to organophosphorus and carbamate pesticides via fruit and vegetable consumption by the population of schoolchildren aged 11-12 years and the level of risk for their health. Cumulative probabilistic risk assessment methodology with the index compound approach was applied. Slovenia, primary schools. Schoolchildren (n 1145) from thirty-one primary schools in Slovenia. Children were part of the PRO GREENS study 2009/10 which assessed 11-year-olds' consumption of fruit and vegetables in ten European countries. The cumulative acute exposure amounted to 8.3 (95% CI 7.7, 10.6) % of the acute reference dose (ARfD) for acephate as index compound (100 µg/kg body weight per d) at the 99.9th percentile for daily intake and to 4.5 (95% CI 3.5, 4.7) % of the ARfD at the 99.9th percentile for intakes during school time and at lunch. Apples, bananas, oranges and lettuce contributed most to the total acute pesticides intake. The estimations showed that acute dietary exposure to organophosphorus and carbamate pesticides is not a health concern for schoolchildren with the assessed dietary patterns of fruit and vegetable consumption.

  9. Cardiac beta-adrenergic receptors and coronary hemodynamics in the conscious dog during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    The mechanisms by which acute hypoxia (10% and 5% oxygen) mediates changes in coronary blood flow and cardiac function were investigated in the conscious dog. When the dogs breathed hypoxic gas mixtures through a tracheostomy, both arterial and coronary sinus oxygen tensions were significantly decreased. With 5% oxygen, there were significant increases in heart rate (25%), maximum left ventricular dP/dt (39%), left circumflex coronary artery blood flow (163%), and left ventricular oxygen consumption (52%), which were attenuated by beta-adrenergic blockage with propranolol. When electrical pacing was used to keep the ventricular rate constant during hypoxia, there was no significant difference in coronary blood flow before and after beta blockade. Beta-adrenergic receptor activity in the myocardium participates in the integrated response to hypoxia although it may not cause active vasodilation of the coronary vessels.

  10. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    PubMed Central

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  11. Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.

  12. Nitric oxide-mediated vasodilation becomes independent of β-adrenergic receptor activation with increased intensity of hypoxic exercise

    PubMed Central

    Curry, Timothy B.; Wilkins, Brad W.; Joyner, Michael J.

    2011-01-01

    Hypoxic vasodilation in skeletal muscle at rest is known to include β-adrenergic receptor-stimulated nitric oxide (NO) release. We previously reported that the augmented skeletal muscle vasodilation during mild hypoxic forearm exercise includes β-adrenergic mechanisms. However, it is unclear whether a β-adrenergic receptor-stimulated NO component exists during hypoxic exercise. We hypothesized that NO-mediated vasodilation becomes independent of β-adrenergic receptor activation with increased exercise intensity during hypoxic exercise. Ten subjects (7 men, 3 women; 23 ± 1 yr) breathed hypoxic gas to titrate arterial O2 saturation to 80% while remaining normocapnic. Subjects performed two consecutive bouts of incremental rhythmic forearm exercise (10% and 20% of maximum) with local administration (via a brachial artery catheter) of propranolol (β-adrenergic receptor inhibition) alone and with the combination of propranolol and nitric oxide synthase inhibition [NG-monomethyl-l-arginine (l-NMMA)] under normoxic and hypoxic conditions. Forearm blood flow (FBF, ml/min; Doppler ultrasound) and blood pressure [mean arterial pressure (MAP), mmHg; brachial artery catheter] were assessed, and forearm vascular conductance (FVC, ml·min−1·100 mmHg−1) was calculated (FBF/MAP). During propranolol alone, the rise in FVC (Δ from normoxic baseline) due to hypoxic exercise was 217 ± 29 and 415 ± 41 ml·min−1·100 mmHg−1 (10% and 20% of maximum, respectively). Combined propranolol-l-NMMA infusion during hypoxic exercise attenuated ΔFVC at 20% (352 ± 44 ml·min−1·100 mmHg−1; P < 0.001) but not at 10% (202 ± 28 ml·min−1·100 mmHg−1; P = 0.08) of maximum compared with propranolol alone. These data, when integrated with earlier findings, demonstrate that NO contributes to the compensatory vasodilation during mild and moderate hypoxic exercise; a β-adrenergic receptor-stimulated NO component exists during low-intensity hypoxic exercise. However, the source

  13. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers

    PubMed Central

    Rushton, L; Schnatter, A R; Tang, G; Glass, D C

    2014-01-01

    Background: High benzene exposure causes acute myeloid leukaemia (AML). Three petroleum case–control studies identified 60 cases (241 matched controls) for AML and 80 cases (345 matched controls) for chronic lymphoid leukaemia (CLL). Methods: Cases were classified and scored regarding uncertainty by two haematologists using available diagnostic information. Blinded quantitative benzene exposure assessment used work histories and exposure measurements adjusted for era-specific circumstances. Statistical analyses included conditional logistic regression and penalised smoothing splines. Results: Benzene exposures were much lower than previous studies. Categorical analyses showed increased ORs for AML with several exposure metrics, although patterns were unclear; neither continuous exposure metrics nor spline analyses gave increased risks. ORs were highest in terminal workers, particularly for Tanker Drivers. No relationship was found between benzene exposure and risk of CLL, although the Australian study showed increased risks in refinery workers. Conclusion: Overall, this study does not persuasively demonstrate a risk between benzene and AML. A previously reported strong relationship between myelodysplastic syndrome (MDS) (potentially previously reported as AML) at our study's low benzene levels suggests that MDS may be the more relevant health risk for lower exposure. Higher CLL risks in refinery workers may be due to more diverse exposures than benzene alone. PMID:24357793

  14. Effect of Hypohydration and Altitude Exposure on Aerobic Exercise Performance and Acute Mountain Sickness

    DTIC Science & Technology

    2010-09-01

    code) 2010 Journal Article-Journal of Applied Physiology Effect of hypohydration and altitude exposure on aerobic exercise performance and acute...1563. Visit our website at http://www.the-aps.org/. Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2010 by the American... Physiological Society. those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American

  15. Effect of hypoxic breathing on cutaneous temperature recovery in man

    NASA Astrophysics Data System (ADS)

    Fahim, Mohammad

    1992-03-01

    Effect of hypoxia (12% O2) on skin temperature recovery was studied on healthy young men. Forty male volunteers free of any respiratory disorder were randomly selected to participate in the study. Skin temperature, peripheral blood flow, heart rate and end expiratory PO2 and PCO2 were measured. During hyoxic ventilation the peripheral blood flow was reduced and a corresponding drop in skin temperature occurred. This was partly due to hyperventilation associated with hypoxic ventilation. The recovery of skin temperature after cooling the hand for 2 min in cold water (10 12° C) took 5.5±0.1 min during normal air breathing; during hypoxic ventilation even after 9.1±0.3 min when the skin temperature recovery curve plateaued, the skin temperature remained about 2° C below control. The results of the present investigation indicate that hypoxia interferes with the normal functioning of the thermoregulatory mechanism in man. Hyperventilation associated with hypoxic ventilation is also partly responsible for incomplete recovery of skin temperature.

  16. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study

    PubMed Central

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  17. Clozapine-induced acute gastrointestinal necrosis: a case report.

    PubMed

    Osterman, Mark T; Foley, Caitlin; Matthias, Isaac

    2017-09-23

    Clozapine is known to cause fecal impaction and ileus with resultant colonic necrosis due to compression of colonic mucosa. There are rare reports of clozapine causing necrosis of other portions of the gastrointestinal tract unrelated to constipation. We describe a case of acute necrosis of the upper gastrointestinal tract and small bowel to due to clozapine and quetiapine. A 66-year-old white man with a past medical history of schizophrenia, maintained on clozapine and quetiapine, presented with hypoxic respiratory failure caused by aspiration of feculent emesis due to impacted stool throughout his colon. His constipation resolved with discontinuation of clozapine and quetiapine, and his clinical condition improved. These medicines were restarted after 2 weeks, resulting in acute gastrointestinal necrosis from the mid esophagus through his entire small bowel. He died due to septic shock with Gram-negative rod bacteremia. Clozapine may cause acute gastrointestinal necrosis.

  18. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights

  19. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302

    PubMed Central

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P.; Hedley, David W.

    2016-01-01

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX). The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche. PMID:27248663

  20. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    PubMed

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  1. Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators.

    PubMed

    Eme, John; Altimiras, Jordi; Hicks, James W; Crossley, Dane A

    2011-11-01

    Hypoxia is a naturally occurring environmental challenge for embryonic reptiles, and this is the first study to investigate the impact of chronic hypoxia on the in ovo development of autonomic cardiovascular regulation and circulating catecholamine levels in a reptile. We measured heart rate (f(H)) and chorioallantoic arterial blood pressure (MAP) in normoxic ('N21') and hypoxic-incubated ('H10'; 10% O(2)) American alligator embryos (Alligator mississippiensis) at 70, 80 and 90% of development. Embryonic alligator responses to adrenergic blockade with propranolol and phentolamine were very similar to previously reported responses of embryonic chicken, and demonstrated that embryonic alligator has α and β-adrenergic tone over the final third of development. However, adrenergic tone originates entirely from circulating catecholamines and is not altered by chronic hypoxic incubation, as neither cholinergic blockade with atropine nor ganglionic blockade with hexamethonium altered baseline cardiovascular variables in N21 or H10 embryos. In addition, both atropine and hexamethonium injection did not alter the generally depressive effects of acute hypoxia - bradycardia and hypotension. However, H10 embryos showed significantly higher levels of noradrenaline and adrenaline at 70% of development, as well as higher noradrenaline at 80% of development, suggesting that circulating catecholamines reach maximal levels earlier in incubation for H10 embryos, compared to N21 embryos. Chronically elevated levels of catecholamines may alter the normal balance between α and β-adrenoreceptors in H10 alligator embryos, causing chronic bradycardia and hypotension of H10 embryos measured in normoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Nerve fiber layer (NFL) degeneration associated with acute q-switched laser exposure in the nonhuman primate

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.

    1995-01-01

    We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.

  4. Adolescent mice are less sensitive to the effects of acute nicotine on context pre-exposure than adults.

    PubMed

    Kutlu, Munir Gunes; Braak, David C; Tumolo, Jessica M; Gould, Thomas J

    2016-07-01

    Adolescence is a critical developmental period associated with both increased vulnerability to substance abuse and maturation of certain brain regions important for learning and memory such as the hippocampus. In this study, we employed a hippocampus-dependent learning context pre-exposure facilitation effect (CPFE) paradigm in order to test the effects of acute nicotine on contextual processing during adolescence (post-natal day (PND) 38) and adulthood (PND 53). In Experiment 1, adolescent or adult C57BL6/J mice received either saline or one of three nicotine doses (0.09, 0.18, and 0.36mg/kg) prior to contextual pre-exposure and testing. Our results demonstrated that both adolescent and adult mice showed CPFE in the saline groups. However, adolescent mice only showed acute nicotine enhancement of CPFE with the highest nicotine dose whereas adult mice showed the enhancing effects of acute nicotine with all three doses. In Experiment 2, to determine if the lack of nicotine's effects on CPFE shown by adolescent mice is specific to the age when they are tested, mice were either given contextual pre-exposure during adolescence or adulthood and received immediate shock and testing during adulthood after a 15day delay. We found that both adolescent and adult mice showed CPFE in the saline groups when tested during adulthood. However, like Experiment 1, mice that received contextual pre-exposure during adolescence did not show acute nicotine enhancement except at the highest dose (0.36mg/kg) whereas both low (0.09mg/kg) and high (0.36mg/kg) doses enhanced CPFE in adult mice. Finally, we showed that the enhanced freezing response found with 0.36mg/kg nicotine in the 15-day experiment may be a result of decreased locomotor activity as mice that received this dose of nicotine traveled shorter distances in an open field paradigm. Overall, our results indicate that while adolescent mice showed normal contextual processing when tested both during adolescence and adulthood, they

  5. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions.

    PubMed

    Bache, Matthias; Zschornak, Martin P; Passin, Sarina; Kessler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish; Taubert, Helge; Vordermark, Dirk

    2011-09-09

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable of

  6. Prolonged Delirium Secondary to Hypoxic-ischemic Encephalopathy Following Cardiac Arrest

    PubMed Central

    Yogaratnam, Jegan; Jacob, Rajesh; Naik, Sandeep; Magadi, Harish

    2013-01-01

    Hypoxic-ischemic brain injury encompasses a complex constellation of pathophysiological and cellular brain injury induced by hypoxia, ischemia, cytotoxicity, or combinations of these mechanisms and can result in poor outcomes including significant changes in personality and cognitive impairments in memory, cognition, and attention. We report a case of a male patient with normal premorbid functioning who developed prolonged delirium following hypoxic-ischemic brain insults subsequent to cardiac arrest. The case highlights the importance of adopting a multidisciplinary treatment approach involving the coordinated care of medical and nursing teams to optimise management of patients suffering from such a debilitating organic brain syndrome. PMID:23678354

  7. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2

    PubMed Central

    Zhao, Hailin; Mitchell, Sian; Ciechanowicz, Sarah; Savage, Sinead; Wang, Tianlong; Ji, Xunming; Ma, Daqing

    2016-01-01

    Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of argon as a neuroprotectant in HIE. PMID:27016422

  8. Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal rat ovaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Jill A.; Hoyer, Patricia B.; Devine, Patrick J.

    2014-05-01

    Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). Aftermore » four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT{sup Thr308} protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures. - Highlights: • Acute DMBA exposures induce large primary and/or secondary follicle loss. • Acute DMBA exposure did not

  9. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    NASA Astrophysics Data System (ADS)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  10. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    PubMed Central

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  11. Honey dilution impact on in vitro wound healing: Normoxic and hypoxic condition.

    PubMed

    Chaudhary, Amrita; Bag, Swarnendu; Barui, Ananya; Banerjee, Provas; Chatterjee, Jyotirmoy

    2015-01-01

    Honey is known as a popular healing agent against tropical infections and wounds. However, the effects of honey dilutions on keratinocyte (HaCaT) wound healing under hypoxic condition is still not explored. In this study, we examined whether honey dilution have wound healing potential under hypoxic stress. The antioxidant potential and healing efficacy of honey dilution on in vitro wound of human epidermal keratinocyte (HaCaT cells) under hypoxia (3% O2 ), and normoxia is explored by nitro blue tetrazolium assay. The cell survival % quantified by MTT assay to select four honey dilutions like 10, 1, 0.1, and 0.01 v/v% and the changes in cellular function was observed microscopically. Further, the cell proliferation, migration, cell-cell adhesion, and relevant gene expression were studied by flow cytometry, migration/scratch assay, immunocytochemistry, and reverse transcription-polymerase chain reaction, respectively. The expression pattern of cardinal molecular features viz. E-cadherin, cytoskeletal protein F-actin, p63, and hypoxia marker Hif 1α were examined. Honey dilution in 0.1% v/v combat wound healing limitations in vitro under normoxia and hypoxia (3%). Its wound healing potential was quantified by immunocytochemistry and real-time PCR for the associated molecular features that were responsible for cell proliferation and migration. Our data showed that honey dilution can be effective in hypoxic wound healing. Additionally, it reduced superoxide generation and supplied favorable bioambience for cell proliferation, migration, and differentiation during hypoxic wound healing. These findings may reveal the importance of honey as an alternative and cost effective therapeutic natural product for wound healing in hypoxic condition. © 2015 by the Wound Healing Society.

  12. Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats

    PubMed Central

    Sugimura, Mitsutaka; Hirose, Yohsuke; Hanamoto, Hiroshi; Okada, Kenji; Boku, Aiji; Morimoto, Yoshinari; Taki, Kunitaka; Niwa, Hitoshi

    2008-01-01

    The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY. PMID:18599365

  13. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice

    PubMed Central

    Reece, Stephen T.; Loddenkemper, Christoph; Askew, David J.; Zedler, Ulrike; Schommer-Leitner, Sandra; Stein, Maik; Mir, Fayaz Ahmad; Dorhoi, Anca; Mollenkopf, Hans-Joachim; Silverman, Gary A.; Kaufmann, Stefan H.E.

    2010-01-01

    The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2–/– mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2–/– mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis. PMID:20679732

  14. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level butmore » not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative

  15. [Effect of progesterone on the expression of GLUT in the brain following hypoxic-ischemia in newborn rats].

    PubMed

    Li, Dong-Liang; Han, Hua

    2008-08-01

    To investigate the expression of GLUT1 and GLUT3 in the hippocampus after cerebral hypoxic-ischemia (HI) in newborn rats and the effect of progesterone (PROG) on them. Forty newborn SD rats were randomly divided into four groups: normal group, sham-operated group, hypoxic-ischemic group and progesterone group. Model of hypoxic-ischemia encephalopathy (HIE) was established in the 7-day-old newborn SD rats. Immunohistochemical method was applied to detect the expression of GLUT1 and GLUT3 in hippocampus. GLUT1 and GLUT3 were slightly seen in normal and sham operation group, there was no obviously difference between the two groups (P > 0.05). The expression of GLUT1 and GLUT3 in hypoxic-ischemia group were all higher than that in sham operated group (P < 0.05). Not only the expression of GLUT in progesterone group were significantly higher than that in sham operated group (P < 0.01), but also than that in hypoxic-ischemia group (P < 0.05). PROG could increase the tolerance of neuron to hypoxic-ischemia with maintaining the energy supply in the brain by up-regulating GLUT expression.

  16. OUTCOMES in CHILDHOOD FOLLOWING THERAPEUTIC HYPOTHERMIA for NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY (HIE)

    PubMed Central

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2017-01-01

    In this chapter we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. PMID:27863707

  17. A population-based case-control study on statin exposure and risk of acute diverticular disease.

    PubMed

    Sköldberg, Filip; Svensson, Tobias; Olén, Ola; Hjern, Fredrik; Schmidt, Peter T; Ljung, Rickard

    2016-01-01

    A reduced risk of perforated diverticular disease among individuals with current statin exposure has been reported. The aim of the present study was to investigate whether statins reduce the risk of acute diverticular disease. A nation-wide population-based case-control study was performed, including 13,127 cases hospitalised during 2006-2010 with a first-time diagnosis of colonic diverticular disease, and 128,442 control subjects (matched for sex, age, county of residence and calendar year). Emergency surgery, assumed to be a proxy for complicated diverticulitis, was performed on 906 of the cases during the index admission, with 8818 matched controls. Statin exposure was classified as "current" or "former" if a statin prescription was last dispensed ≤ 125 days or >125 days before index date, respectively. The association between statin exposure and acute diverticular disease was investigated by conditional logistic regression, including models adjusting for country of birth, educational level, marital status, comorbidities, nonsteroidal anti-inflammatory drug/steroid exposure and healthcare utilisation. A total of 1959 cases (14.9%) and 16,456 controls (12.8%) were current statin users (crude OR 1.23 [95% CI 1.17-1.30]; fully adjusted OR 1.00 [0.94-1.06]). One hundred and thirty-two of the cases subjected to surgery (14.6%), and 1441 of the corresponding controls (16.3%) were current statin users (crude OR 0.89 [95% CI 0.73-1.08]; fully adjusted OR 0.70 [0.55-0.89]). The results do not indicate that statins affect the development of symptomatic diverticular disease in general. However, current statin use was associated with a reduced risk of emergency surgery for diverticular disease.

  18. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    PubMed

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  19. The effect of chronic ammonia exposure on acute phase proteins, immunoglobulin and cytokines in laying hens

    USDA-ARS?s Scientific Manuscript database

    Ammonia is a potential health hazard to both humans and animals, causing systemic low-grade inflammation based on its levels and durations. The objective of this study was to examine the effect of 45 weeks of exposure to 30 ppm NH3 on the concentrations of acute phase proteins, immunoglobulins and c...

  20. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder

    PubMed Central

    Zoladz, Phillip R.; Conrad, Cheryl D.; Fleshner, Monika; Diamond, David M.

    2008-01-01

    People who are exposed to horrific, life-threatening experiences are at risk for developing post-traumatic stress disorder (PTSD). Some of the symptoms of PTSD include persistent anxiety, exaggerated startle, cognitive impairments and increased sensitivity to yohimbine, an α2-adrenergic receptor antagonist. We have taken into account the conditions known to induce PTSD, as well as factors responsible for long-term maintenance of the disorder, to develop an animal model of PTSD. Adult male Sprague–Dawley rats were administered a total of 31 days of psychosocial stress, composed of acute and chronic components. The acute component was a 1-h stress session (immobilization during cat exposure), which occurred on Days 1 and 11. The chronic component was that on all 31 days the rats were given unstable housing conditions. We found that psychosocially stressed rats had reduced growth rate, reduced thymus weight, increased adrenal gland weight, increased anxiety, an exaggerated startle response, cognitive impairments, greater cardiovascular and corticosterone reactivity to an acute stressor and heightened responsivity to yohimbine. This work demonstrates the effectiveness of acute inescapable episodes of predator exposure administered in conjunction with daily social instability as an animal model of PTSD. PMID:18574787

  1. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009

    PubMed Central

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2016-01-01

    Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J

  2. Acute Assessment of Traumatic Brain Injury and Post-Traumatic Stress After Exposure to a Deployment-Related Explosive Blast.

    PubMed

    Baker, Monty T; Moring, John C; Hale, Willie J; Mintz, Jim; Young-McCaughan, Stacey; Bryant, Richard A; Broshek, Donna K; Barth, Jeffrey T; Villarreal, Robert; Lancaster, Cynthia L; Malach, Steffany L; Lara-Ruiz, Jose M; Isler, William; Peterson, Alan L

    2018-05-18

    Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are two of the signature injuries in military service members who have been exposed to explosive blasts during deployments to Iraq and Afghanistan. Acute stress disorder (ASD), which occurs within 2-30 d after trauma exposure, is a more immediate psychological reaction predictive of the later development of PTSD. Most previous studies have evaluated service members after their return from deployment, which is often months or years after the initial blast exposure. The current study is the first large study to collect psychological and neuropsychological data from active duty service members within a few days after blast exposure. Recruitment for blast-injured TBI patients occurred at the Air Force Theater Hospital, 332nd Air Expeditionary Wing, Joint Base Balad, Iraq. Patients were referred from across the combat theater and evaluated as part of routine clinical assessment of psychiatric and neuropsychological symptoms after exposure to an explosive blast. Four measures of neuropsychological functioning were used: the Military Acute Concussion Evaluation (MACE); the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS); the Headminder Cognitive Stability Index (CSI); and the Automated Neuropsychological Assessment Metrics, Version 4.0 (ANAM4). Three measures of combat exposure and psychological functioning were used: the Combat Experiences Scale (CES); the PTSD Checklist-Military Version (PCL-M); and the Acute Stress Disorder Scale (ASDS). Assessments were completed by a deployed clinical psychologist, clinical social worker, or mental health technician. A total of 894 patients were evaluated. Data from 93 patients were removed from the data set for analysis because they experienced a head injury due to an event that was not an explosive blast (n = 84) or they were only assessed for psychiatric symptoms (n = 9). This resulted in a total of 801 blast-exposed patients for data

  3. Differential effects of 5-HTTLPR genotypes on mood, memory, and attention bias following acute tryptophan depletion and stress exposure.

    PubMed

    Firk, Christine; Markus, C Rob

    2009-05-01

    Polymorphisms of the serotonin transporter gene (5-HTTLPR) may be associated with increased vulnerability to acute tryptophan depletion (ATD) and depression vulnerability especially following stressful life events. The aim of the present study was to investigate the effects of ATD in subjects with different 5-HTTLPR profiles before and after stress exposure on affective and cognitive-attentional changes. Eighteen subjects with homozygotic short alleles (S'/S') and 17 subjects with homozygotic long alleles (L'/L') of the 5-HTTLPR participated in a double-blind, placebo-controlled, crossover design to measure the effects of ATD on mood, memory, and attention before and after acute stress exposure. ATD lowered mood in all subjects independent of genotype. In S'/S' genotypes, mild acute stress increased depressive mood and in L'/L' genotypes increased feelings of vigor. Furthermore, S'/S' genotypes differed from L'/L' genotypes on measures of attention independent of treatment and memory following ATD. Polymorphisms of the 5-HTTLPR differentially affect responses to mild stress and ATD, suggesting greater vulnerability of S'/S' carriers to serotonergic manipulations and supporting increased depression vulnerability.

  4. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less

  5. Vascular parameters continue to decrease post-exposure with simultaneous, but not individual exposure to BPA and hypoxia in zebrafish larvae.

    PubMed

    Cypher, Alysha D; Fetterman, Bryce; Bagatto, Brian

    2018-04-01

    How fish respond to hypoxia, a common stressor, can be altered by simultaneous exposure to pollutants like bisphenol A (BPA), a plasticizer. BPA is cardiotoxic and interferes with the hypoxia inducible factor pathway (HIF-1α), therefore disrupting the hypoxic response. Co-exposure to hypoxia and BPA also causes severe bradycardia and reduced cardiac output in zebrafish larvae. The purpose of this work was to determine how the cardiovascular effects of co-exposure vary with BPA concentration and persist beyond exposure. Zebrafish embryos were exposed to 0, 0.01, 0.1, 1, and 100 μg/L of BPA during normoxia (>6.0 mg/L O 2 ) and hypoxia (2.0 ± 0.5 mg/L O 2 ) between 1 h post fertilization (hpf) and late hatching (72-96 hpf). Heart rate, cardiac output, and red blood cell (RBC) velocity were determined through video microscopy and digital motion analysis at late hatching and 10 days post fertilization (dpf), several days post exposure. In comparison to the hypoxic control, RBC velocity was 25% lower with 0.01 μg/L BPA and hypoxia at late hatching. At 10 dpf, the difference in RBC velocity between these treatments doubled, despite several days of recovery. This coincided with a 24% thinner outer diameter for caudal vein but no effect on cardiac or developmental parameters. Statistical interactions between BPA and oxygen concentration were found for arterial RBC velocity at both ages. Because the co-occurrence of both stressors is extremely common, it would be beneficial to understand how BPA and hypoxia interact to affect cardiovascular function during and after exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Physiological responses to acute cold exposure in young lean men

    PubMed Central

    Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan

    2018-01-01

    The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360

  7. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone

    USDA-ARS?s Scientific Manuscript database

    In 2007, the hypoxic zone in the Gulf of Mexico, measuring 20,720 km**2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This stud...

  8. Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios.

    PubMed

    Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-11-01

    Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture

  9. Flight assessment in patients with respiratory disease: hypoxic challenge testing vs. predictive equations.

    PubMed

    Martin, S E; Bradley, J M; Buick, J B; Bradbury, I; Elborn, J S

    2007-06-01

    Predictive equations have been proposed as a simpler alternative to hypoxic challenge testing (HCT) for determining the risk of in-flight hypoxia. To assess agreement between hypoxic challenge testing (HCT) and predictive equations for assessment of in-flight hypoxia. Retrospective study. Patients with chronic obstructive pulmonary disease (COPD) (n = 15), interstitial lung disease (ILD) (n = 15) and cystic fibrosis (CF) (n = 15) were studied. Spirometry was recorded prior to hypoxic inhalation and oxygen saturations (SpO2) were recorded before, after and during hypoxic inhalation. Blood gases were analysed before and after hypoxic inhalation and when SpO2 = 85%. An HCT was performed using the Ventimask method. The PaO2 at altitude was estimated for each group using four published predictive equations, which use values of PaO2 (ground) and lung function measurements to predict altitude PaO2. Results were interpreted using the BTS recommendations for prescription of in-flight oxygen post HCT. The Stuart Maxwell test of overall homogeneity was used to assess agreement between HCT results and each of the predictive equations. Ground PaO2 was significantly greater in patients with CF than either ILD or COPD (p < 0.05). PaO2 in all three groups significantly decreased following HCT. With the exception of equation 3, significantly fewer patients in each group would require in-flight O2 if prescription was based on HCT, compared to predictive equations (p < 0.05). Predictive equations considerably overestimate the need for in-flight O2, compared to HCT.

  10. Hypoxic ventilatory sensitivity in men is not reduced by prolonged hyperoxia (Predictive Studies V and VI)

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Clark, J. M.; Hopkin, E.

    1998-01-01

    Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared with preexposure controls. The hyperbolas were temporarily elevated to higher ventilations than controls due to increments in respiratory frequency that were proportional to O2 exposure time, not O2 pressure. In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.

  11. Haemodynamic changes in ipsilateral and contralateral fingers caused by acute exposures to hand transmitted vibration.

    PubMed Central

    Bovenzi, M; Griffin, M J

    1997-01-01

    OBJECTIVES: To investigate changes in digital circulation during and after exposure to hand transmitted vibration. By studying two frequencies and two magnitudes of vibration, to investigate the extent to which haemodynamic changes depend on the vibration frequency, the vibration acceleration, and the vibration velocity. METHODS: Finger skin temperature (FST), finger blood flow (FBF), and finger systolic pressure were measured in the fingers of both hands in eight healthy men. Indices of digital vasomotor tone-such as critical closing pressure and vascular resistance-were estimated by pressure-flow curves obtained with different hand heights. With a static load of 10 N, the right hand was exposed for 30 minutes to each of the following root mean squared (rms) acceleration magnitudes and frequencies of vertical vibration: 22 m.s-2 at 31.5 Hz, 22 m.s-2 at 125 Hz, and 87 m.s-2 at 125 Hz. A control condition consisted of exposure to the static load only. The measures of digital circulation and vasomotor tone were taken before exposure to the vibration and the static load, and at 0, 20, 40, and 60 minutes after the end of each exposure. RESULTS: Exposure to static load caused no significant changes in FST, FBF, or indices of vasomotor tone in either the vibrated right middle finger or the non-vibrated left middle finger. In both fingers, exposure to vibration of 125 Hz and 22 m.s-2 produced a greater reduction in FBF and a greater increase in vasomotor tone than did vibration of 31.5 Hz and 22 m.s-2. In the vibrated right finger, exposure to vibration of 125 Hz and 87 m.s-2 provoked an immediate vasodilation which was followed by vasoconstriction during recovery. The non-vibrated left finger showed a significant increase in vasomotor tone throughout the 60 minute period after the end of vibration exposure. CONCLUSIONS: The digital circulatory response to acute vibration depends upon the magnitude and frequency of the vibration stimulus. Vasomotor mechanisms, mediated

  12. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner

    PubMed Central

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  13. Influence of dissolved organic carbon on toxicity of copper to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) in acute and chronic water exposures

    USGS Publications Warehouse

    Wang, Ning; Mebane, Christopher A.; Kunz, James L.; Ingersoll, Christopher G.; Brumbaugh, William G.; Santore, Robert C.; Gorsuch, Joseph W.; Arnold, W. Ray

    2011-01-01

    Acute and chronic toxicity of copper (Cu) to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) were determined in water exposures at four concentrations of dissolved organic carbon (DOC; nominally 0.5, 2.5, 5, and 10 mg/L as carbon [C]). Test waters with DOC concentrations of 2.5 to 10 mg C/L were prepared by mixing a concentrate of natural organic matter (Suwannee River, GA, USA) in diluted well water (hardness 100 mg/L as CaCO3, pH 8.3, DOC 0.5 mg C/L). Acute median effect concentrations (EC50s) for dissolved Cu increased approximately fivefold (15–72 μg Cu/L) for mussel survival in 4-d exposures and increased about 11-fold (25–267 μg Cu/L) for cladoceran survival in 2-d exposures across DOC concentrations from 0.5 to 10 mg C/L. Similarly, chronic 20% effect concentrations (EC20s) for the mussel in 28-d exposures increased about fivefold (13–61 μg Cu/L for survival; 8.8–38 μg Cu/L for biomass), and the EC20s for the cladoceran in 7-d exposures increased approximately 17-fold (13–215 μg Cu/L) for survival or approximately fourfold (12–42 μg Cu/L) for reproduction across DOC concentrations from 0.5 to 10 mg C/L. The acute and chronic values for the mussel were less than or approximately equal to the values for the cladoceran. Predictions from the biotic ligand model (BLM) used to derive the U.S. Environmental Protection Agency's ambient water quality criteria (AWQC) for Cu explained more than 90% of the variation in the acute and chronic endpoints for the two species, with the exception of the EC20 for cladoceran reproduction (only 46% of variation explained). The BLM-normalized acute EC50s and chronic EC20s for the mussel and BLM-normalized chronic EC20s for the cladoceran in waters with DOC concentrations of 2.5 to 10 mg C/L were equal to or less than the final acute value and final chronic value in the BLM-based AWQC for Cu, respectively, indicating that the Cu AWQC might not adequately protect the mussel from acute and

  14. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    PubMed

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  15. Hydroethidine: a fluorescent redox probe for locating hypoxic cells in spheroids and murine tumours.

    PubMed

    Olive, P L

    1989-09-01

    The fluorescent redox probe hydroethidine was accumulated and metabolised about five times faster in aerobic than in hypoxic mammalian cells. Patterns of fluorescence in Chinese hamster V79 spheroids also indicated that internal hypoxic cells were less able to metabolise the drug; toxicity was observed in cells only when cell fluorescence exceeded about 500 times background. In medium equilibrated with air or nitrogen, cell accumulation of the stain was rapid, and began to plateau after 30 min; loss of ethidium was initially rapid, with a slower component after 30 min, and transfer of the metabolite ethidium between stained and unstained cells was observed after 2 h co-incubation. Sorting cells from irradiated spheroids on the basis of ethidium fluorescence provided good separation of aerobic radiosensitive and hypoxic radioresistant cells, although separation using the perfusion probe, Hoechst 33342, was superior. Similar experiments with the murine SCCVII squamous cell carcinoma suggested that hydroethidine might be a useful indirect stain for locating hypoxic cells in experimental tumours when used in combination with a perfusion probe such as Hoechst 33342.

  16. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers includingmore » HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.« less

  17. Pesticide exposure in children.

    PubMed

    Roberts, James R; Karr, Catherine J

    2012-12-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children's exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  18. Pesticide Exposure in Children

    PubMed Central

    Roberts, James R.; Karr, Catherine J.

    2018-01-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  19. Biphasic changes in fetal heart rate variability in preterm fetal sheep developing hypotension after acute on chronic lipopolysaccharide exposure.

    PubMed

    Lear, Christopher A; Davidson, Joanne O; Booth, Lindsea C; Wassink, Guido; Galinsky, Robert; Drury, Paul P; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair J

    2014-08-15

    Perinatal exposure to infection is highly associated with adverse outcomes. Experimentally, acute, severe exposure to gram-negative bacterial lipopolysaccharide (LPS) is associated with increased fetal heart rate variability (FHRV). It is unknown whether FHRV is affected by subclinical infection with or without acute exacerbations. We therefore tested the hypothesis that FHRV would be associated with hypotension after acute on chronic exposure to LPS. Chronically instrumented fetal sheep at 0.7 gestation were exposed to a continuous low-dose LPS infusion (n = 12, 100 ng/kg over 24 h, followed by 250 ng·kg(-1)·24 h(-1) for a further 96 h) or the same volume of saline (n = 10). Boluses of either 1 μg LPS or saline were given at 48, 72, and 96 h. Low-dose infusion was not associated with hemodynamic or FHRV changes. The first LPS bolus was associated with tachycardia and suppression of nuchal electromyographic activity in all fetuses. Seven of twelve fetuses developed hypotension (a fall in mean arterial blood pressure ≥5 mmHg). FHRV was transiently increased only at the onset of hypotension, in association with increased cytokine induction and electroencephalogram suppression. FHRV then fell before the nadir of hypotension, with transient suppression of short-term FHRV. After the second LPS bolus, the hypotension group showed a biphasic pattern of a transient increase in FHRV followed by more prolonged suppression. These findings suggest that infection-related hypotension in the preterm fetus mediates the transient increase in FHRV and that repeated exposure to LPS leads to progressive loss of FHRV. Copyright © 2014 the American Physiological Society.

  20. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE).

    PubMed

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2016-12-01

    In this article, we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Multicenter field trial on possible health effects of toluene. II. Cross-sectional evaluation of acute low-level exposure.

    PubMed

    Neubert, D; Gericke, C; Hanke, B; Beckmann, G; Baltes, M M; Kühl, K P; Bochert, G; Hartmann, J

    2001-11-15

    Data on possible acute effects of today's relevant low-level exposure to toluene are contradictory, and information on possible effects of exposure under occupational conditions is largely lacking. In a controlled, multi-center, blinded field trial, effects possibly associated with acute toluene exposure were evaluated in workers of 12 German rotogravure factories. Medical examinations (inquiries on subjective symptoms, and standard tests of psycho-physiological and psycho-motor functions) were performed on almost 1500 volunteers, of whom 1290 were toluene-exposed (1178 men and 112 women), and about 200 participants served as references (157 men and 37 women), but the main aim of the trial was to reveal dose-response relationships. All volunteers were of the morning work-shift (6 h exposure). Both individual ambient air concentrations (time-weighted average) during the work-shift, as well as blood toluene concentrations after the work-shift were measured. Therefore, the medical data could for the first time be correlated with the actual individual body burden (blood toluene level) at the time of testing. In order to largely exclude confounding by chronic toluene exposure, kinetic measurements as well as the psycho-physiological and psycho-motoric tests were performed before and after the work-shift. Except for minor statistical deviations, neither convincing dose-dependent acute effects could be demonstrated with regression analyses in male volunteers at the exposure levels evaluated, nor were significant differences found when applying group statistics (highly toluene-exposed group versus volunteers with negligible exposure). Due to the rather large number of participants, the predictive power of the study is high, especially when compared with previous publications. In two psycho-physiological tests, a few more female volunteers with quite low toluene body burdens (<340 microg/l blood) showed relatively low scores when compared with participants of the reference

  2. Inability of populations of Callosobruchus maculatus to develop tolerance to exposures of acute gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, J.H.

    1974-03-01

    The reproductive capacity and resistance to an acute dose of gamma irradiation were determined for populations of Callosobruchus maculatus treated with substerilizing doses of irradiation each generation for 30 generations. Reproductive capacity was decreased by an ancestral history of irradiation, the reduction being positively correlated with both the size of dose per generation and the number of ancestral generations treated. Irradiation of the selected populations with an acute dose revealed no increase in tolerance, even after 30 generations. In general, the greater the amount of accumulated ancestral exposure to irradiation, the greater the sensitivity to further irradiation. The ability tomore » develop a tolerance to ionizing irradiation may not be a general phenomenon in insects. (auth)« less

  3. Rhabdomyolysis, acute renal failure, and cardiac arrest secondary to status dystonicus in a child with glutaric aciduria type I.

    PubMed

    Jamuar, Saumya S; Newton, Stephanie A; Prabhu, Sanjay P; Hecht, Leah; Costas, Karen C; Wessel, Ann E; Harris, David J; Anselm, Irina; Berry, Gerard T

    2012-08-01

    An 8-½ year old boy with glutaric aciduria type I (GA1) and chronic dystonia presented with severe rhabdomyolysis in association with a febrile illness. His clinical course was complicated by acute renal failure, cardiac arrest and hypoxic ischemic encephalopathy. As acute neurological decompensation is typically not seen in patients with GA1 beyond early childhood, this case report serves as an important reminder that patients with GA1 and status dystonicus may be at risk for acute life-threatening rhabdomyolysis, renal failure and further neurological injury at any age. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. SU-F-T-685: Evaluation of Tumor Hypoxic Fraction Using Serial Volumetric Imaging During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less

  5. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria.

    PubMed

    Tripathi, K K

    2011-06-01

    The origin of very low frequency (VLF) oscillations in the power spectra of heart rate variability (HRV) is controversial with possible mechanisms involving thermoregulation and/or renin-angiotensin-aldosterone system. Recently, a major contribution from vagal influences has been suggested. The present study investigated the behaviour of VLF (0.004-0.040 Hz) components of HRV power spectra in a group of healthy male volunteers during their exposure to (1) dry, supine, immersion in thermo-neutral water for 6 h (n = 7) and (2) non-hypoxic hypobaria (breathing 40-60% oxygen at 15,000' simulated in a decompression chamber) for 5 h (n = 15). The two manoeuvres are established to increase vagal outflow. During both the manoeuvres, all the frequency domain indices of HRV exhibited a significant increase. Increase in HRV was much more than that in the R-R interval. At 6 h of immersion, the R-R interval increased by ∼ 15% but the total power increased ∼ fourfold. Similarly, at 5 h of exposure to hypobaria, total power increased ∼ twofold with a very modest increase in an R-R of ∼ 9%. Increase in spectral power was appreciable even after normalization with mean R-R(2). Increase in VLF during immersion was more than reported during enalaprilat blockade of angiotensin convertase enzyme. Plasma renin activity did not vary during hypobaria. There was a significant increase in pNN50, an established marker of cardiac vagal activity. Centre frequencies of the spectra and slope (β) of the relation between log(PSD) and log(frequency) did not change. Results were supportive of the notion that the parasympathetic system is pre-potent to influence slower (than respiratory) frequency components in HRV spectrum. Additionally, such an effect was without a change in the time constant of effector responses or pacemaker frequencies of VLF and LF periodicities and HRV was not a simple linear surrogate for cardiac vagal effects. An invariance of spectral exponent (β) ruled out

  6. Effects of Acute Exposures to Carbon Dioxide upon Cognitive Functions

    NASA Technical Reports Server (NTRS)

    Ryder, V. E.; Scully, R. R.; Alexander, D. J.; Lam, C. W.; Young, M.; Satish, U.; Basner, M.

    2017-01-01

    Carbon dioxide (CO2) originates from human metabolism and typically remains about 10-fold higher in concentration on the International Space Station (ISS) than at the earth's surface. There have been recurring complaints by crew members of episodes of "mental viscosity" adversely affecting their performance, and there is evidence from the ISS that associates CO2 levels with reports of headaches by crewmembers. Consequently, flight rules have been employed to control CO2 below 3 mm Hg, which is well below the existing Spacecraft Maximum Allowable Concentration (SMAC) of 10 mm Hg for 24-hour exposures, and 5.3 mm Hg for exposures of 7 to 180 days. Headaches, while sometime debilitating themselves, are also symptoms that can provide evidence that physiological defense mechanisms have been breached, and there is evidence that CO2 has effects at levels below the threshold for headaches. This concern appears to be substantiated in reports that CO2 at concentrations below 2 mm Hg substantially reduced some cognitive functions that are associated with the ability to make complex decisions in conditions that are characterized by volatility, uncertainty, complexity, ambiguity, and delayed feedback. These are conditions that could be encountered by crews in off-nominal situations or during the first missions beyond low earth orbit. Therefore, we set out to determine if decision-making under volatile, uncertain, confusing and ambiguous circumstances, where feedback is delayed or absent, is correlated with low levels of CO2 during acute exposures (several hours) in crew-like subjects and to determine if additional cognitive domains are sensitive to concentrations of CO2 at, or below, current ISS levels by using a test battery that is currently available onboard ISS. We enrolled 22 volunteers (8 females, 14 males) between the ages of 30-55 (38.8 +/- 7.0) years whose training and professional experience reflect that of the astronaut corps. Subjects were divided among 4 study

  7. Chronic and Acute Ozone Exposure in the Week Prior to Delivery Is Associated with the Risk of Stillbirth

    PubMed Central

    Ha, Sandie; Pollack, Anna Z.; Zhu, Yeyi; Seeni, Indulaxmi; Kim, Sung Soo; Sherman, Seth; Liu, Danping

    2017-01-01

    Chronic and acute air pollution has been studied in relation to stillbirth with inconsistent findings. We examined stillbirth risk in a retrospective cohort of 223,375 singleton deliveries from 12 clinical sites across the United States. Average criteria air pollutant exposure was calculated using modified Community Multiscale Air Quality models for the day of delivery and each of the seven days prior, whole pregnancy, and first trimester. Poisson regression models using generalized estimating equations estimated the relative risk (RR) of stillbirth and 95% confidence intervals (CI) in relation to an interquartile range increase in pollutant with adjustment for temperature, clinical, and demographic factors. Ozone (O3) was associated with a 13–22% increased risk of stillbirth on days 2, 3, and 5–7 prior to delivery in single pollutant models, and these findings persisted in multi-pollutant models for days 5 (RR = 1.22, CI = 1.07–1.38) and 6 (RR = 1.18, CI = 1.04–1.33). Whole pregnancy and first trimester O3 increased risk 18–39% in single pollutant models. Maternal asthma increased stillbirth risk associated with chronic PM2.5 and carbon monoxide exposures. Both chronic and acute O3 exposure consistently increased stillbirth risk, while the role of other pollutants varied. Approximately 8000 stillbirths per year in the US may be attributable to O3 exposure. PMID:28684711

  8. Malondialdehyde-Derived Epitopes In Human Skin Result From Acute Exposure To Solar UV And Occur In Nonmelanoma Skin Cancer Tissue

    PubMed Central

    Williams, Joshua D.; Bermudez, Yira; Park, Sophia L.; Stratton, Steven P.; Uchida, Koji; Hurst, Craig A.; Wondrak, Georg T.

    2014-01-01

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than three-fold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. PMID:24584085

  9. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue.

    PubMed

    Williams, Joshua D; Bermudez, Yira; Park, Sophia L; Stratton, Steven P; Uchida, Koji; Hurst, Craig A; Wondrak, Georg T

    2014-03-05

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi)

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.

    2000-01-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  12. Acute mobile phones exposure affects frontal cortex hemodynamics as evidenced by functional near-infrared spectroscopy.

    PubMed

    Curcio, Giuseppe; Ferrara, Michele; Limongi, Tania; Tempesta, Daniela; Di Sante, Gabriele; De Gennaro, Luigi; Quaresima, Valentina; Ferrari, Marco

    2009-05-01

    This study aimed to evaluate by functional near-infrared spectroscopy (fNIRS), the effects induced by an acute exposure (40 mins) to a GSM (Global System for Mobile Communications) signal emitted by a mobile phone (MP) on the oxygenation of the frontal cortex. Eleven healthy volunteers underwent two sessions (Real and Sham exposure) after a crossover, randomized, double-blind paradigm. The whole procedure lasted 60 mins: 10-mins baseline (Bsl), 40-mins (Exposure), and 10-mins recovery (Post-Exp). Together with frontal hemodynamics, heart rate, objective and subjective vigilance, and self-evaluation of subjective symptoms were also assessed. The fNIRS results showed a slight influence of the GSM signal on frontal cortex, with a linear increase in [HHb] as a function of time in the Real exposure condition (F(4,40)=2.67; P=0.04). No other measure showed any GSM exposure-dependent changes. These results suggest that fNIRS is a convenient tool for safely and noninvasively investigating the cortical activation in MP exposure experimental settings. Given the short-term effects observed in this study, the results should be confirmed on a larger sample size and using a multichannel instrument that allows the investigation of a wider portion of the frontal cortex.

  13. El Salvador earthquakes: relationships among acute stress disorder symptoms, depression, traumatic event exposure, and resource loss.

    PubMed

    Sattler, David N; de Alvarado, Ana Maria Glower; de Castro, Norma Blandon; Male, Robert Van; Zetino, A M; Vega, Raphael

    2006-12-01

    Four and seven weeks after powerful earthquakes in El Salvador, the authors examined the relationships among demographics, traumatic event exposure, social support, resource loss, acute stress disorder (ASD) symptoms, depression, and posttraumatic growth. Participants were 253 college students (Study 1) and 83 people in the community (Study 2). In Study 1, female gender, traumatic event exposure, low social support, and loss of personal characteristic, condition, and energy resources contributed to ASD symptoms and depression. In Study 2, damage to home and loss of personal characteristic and object resources contributed to ASD symptoms and depression. Posttraumatic growth was not associated with ASD symptoms or depression. Findings support the conservation of resources stress theory (Hobfoll, 1998). Resource loss spirals, excessive demands on coping, and exposure to multiple disasters are discussed.

  14. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  15. Absence of acute ocular damage in humans after prolonged exposure to intense RF EMF

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; van Rhoon, G. C.; Verduijn, G. M.; Naus-Postema, N. C.; Paulides, M. M.

    2016-01-01

    The eye is considered to be a critical organ when determining safety standards for radio frequency (RF) radiation. Experimental data obtained using animals showed that RF heating of the eye, particularly over a specific threshold, can induce cataracts. During the treatment of cancer in the head and neck by hyperthermia, the eyes receive a considerable dose of RF radiation due to stray radiation from the prolonged (60 min) and intense exposure at 434 MHz of this region. In the current study, we verified the exposure guidelines for humans by determining the association between the electromagnetic and thermal dose in the eyes with the reported ocular effects. We performed a simulation study to retrospectively assess the specific absorption rate (SAR) and temperature increase in the eyes of 16 selected patients (encompassing a total of 74 treatment sessions) whose treatment involved high power delivery as well as a minimal distance between the tumor site and the eye. Our results show that the basic restrictions on the peak 10 g spatial-averaged SAR (10 W kg-1) and peak tissue temperature increase (1 °C) are exceeded by up to 10.4 and 4.6 times, on average, and by at least 6.2 and 1.8 times when considering the lower limit of the 95% confidence interval. Evaluation of the acute effects according to patients’ feedback (all patients), the common toxicity criteria scores (all patients) and an ophthalmology investigation (one patient with the highest exposure) revealed no indication of any serious acute ocular effect, even though the eyes were exposed to high electromagnetic fields, leading to a high thermal dose. We also found that, although there is a strong correlation (R 2  =  0.88) between the predicted induced SAR and temperature in the eye, there are large uncertainties regarding the temperature-SAR relationship. Given this large uncertainty (129%) compared with the uncertainty of 3D temperature simulations (61%), we recommend using temperature

  16. Lower hypoxic ventilatory response in smokers compared to non-smokers during abstinence from cigarettes.

    PubMed

    Hildebrandt, Wulf; Sauer, Roland; Koehler, Ulrich; Bärtsch, Peter; Kinscherf, Ralf

    2016-11-24

    Carotid body O 2 -chemosensitivity determines the hypoxic ventilatory response (HVR) as part of crucial regulatory reflex within oxygen homeostasis. Nicotine has been suggested to attenuate HVR in neonates of smoking mothers. However, whether smoking affects HVR in adulthood has remained unclear and probably blurred by acute ventilatory stimulation through cigarette smoke. We hypothesized that HVR is substantially reduced in smokers when studied after an overnight abstinence from cigarettes i.e. after nicotine elimination. We therefore determined the isocapnic HVR of 23 healthy male smokers (age 33.9 ± 2.0 years, BMI 24.2 ± 0.5 kg m -2 , mean ± SEM) with a smoking history of >8 years after 12 h of abstinence and compared it to that of 23 healthy male non-smokers matched for age and BMI. Smokers and non-smokers were comparable with regard to factors known to affect isocapnic HVR such as plasma levels of glucose and thiols as well as intracellular levels of glutathione in blood mononuclear cells. As a new finding, abstinent smokers had a significantly lower isocapnic HVR (0.024 ± 0.002 vs. 0.037 ± 0.003 l min -1 % -1 BMI -1 , P = 0.002) compared to non-smokers. However, upon re-exposure to cigarettes the smokers' HVR increased immediately to the non-smokers' level. This is the first report of a substantial HVR reduction in abstinent adult smokers which appears to be masked by daily smoking routine and may therefore have been previously overlooked. A low HVR may be suggested as a novel link between smoking and aggravated hypoxemia during sleep especially in relevant clinical conditions such as COPD.

  17. Experimental exposure of male volunteers to N-methyl-2-pyrrolidone (NMP): acute effects and pharmacokinetics of NMP in plasma and urine.

    PubMed Central

    Akesson, B; Paulsson, K

    1997-01-01

    OBJECTIVES: To study the acute effects of exposure to the increasingly used solvent, N-methyl-2-pyrrolidone (NMP) in male volunteers. Further, to determine the NMP concentration in plasma and urine during and after the exposure. METHODS: Six male volunteers were exposed for eight hours on four different days to 0, 10, 25, and 50 mg/m3 NMP. Plasma was collected and urine was sampled during and after the exposure. Changes in nasal volume were measured by acoustic rhinometry and in airway resistance by spirometry. RESULTS: The eight-hour experimental exposure to 10, 25, and 50 mg/m3 did not induce discomfort to eyes or upper airways. Acute changes in nasal volume were not found, and no changes in the spirometric data could be registered. The elimination curves suggested a non-linear pattern and at the end of exposure showed mean (range) half lifes of NMP in plasma of about 4.0 (2.9-5.8) hours and in urine 4.5 (3.5-6.6) hours. The unmetabolised NMP found in urine samples collected during exposure and at the subsequent 44 hours corresponded to about 2% of the calculated absorbed dose. At the end of the exposure there was a close correlation between exposures and the plasma concentration and urinary excretion of NMP. CONCLUSIONS: NMP was absorbed through the respiratory tract and readily eliminated from the body, mainly by biotransformation to other compounds. Exposure to 10, 25, or 50 mg/m3 NMP did not cause nose, eye, or airway irritation. Thus, NMP is a mild irritant. PMID:9166128

  18. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  19. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2015-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  20. Acute Exposure to Air Pollution Triggers Atrial Fibrillation

    PubMed Central

    Link, Mark S.; Luttmann-Gibson, Heike; Schwartz, Joel; Mittleman, Murray A.; Wessler, Benjamin; Gold, Diane R.; Dockery, Douglas W.; Laden, Francine

    2013-01-01

    Objective The aim of the present study is to evaluate the association of air pollution with the onset of atrial fibrillation (AF). Background Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. Methods Patients with dual chamber implantable cardioverter defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient PM2.5, black carbon, sulfate, particle number, NO2, SO2, and O3 in the 24 hours prior to the arrhythmia was examined utilizing a case-crossover analysis. In sensitivity analyses, associations with air pollution between 2 and 48 hours prior to the AF were examined. Results Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 seconds. Positive but nonsignificant associations were found for PM2.5 in the prior 24 hours, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% CI 8% to 47%) for each 6.0 µg/m3 increase in PM2.5 in the 2 hours prior to the event (p=0.004). The odds of AF was highest at the upper quartile of mean PM2.5. Conclusion Particulate matter was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies. PMID:23770178

  1. Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure

    PubMed Central

    Claussen, Catherine M; Dafny, Nachum

    2016-01-01

    The misuse and abuse of the psychostimulant, methylphenidate (MPD) the drug of choice in the treatment of attention deficit hyperactivity disorder (ADHD) has seen a sharp uprising in recent years among both youth and adults for its cognitive enhancing effects and for recreational purposes. This uprise in illicit use has lead to many questions concerning the long term consequences of MPD exposure. The objective of this study was to record animal behavior concomitantly with the caudate nucleus (CN) neuronal activity following acute and repetitive (chronic) dose response exposure to methylphenidate (MPD). A saline control and three MPD dose (0.6, 2.5, and 10.0 mg/kg) groups were used. Behaviorally, the same MPD dose in some animals following chronic MPD exposure elicited behavioral sensitization and other animals elicited behavioral tolerance. Based on this finding, the CN neuronal population recorded from animals expressing behavioral sensitization were also evaluated separately from CN neurons recorded from animals expressing behavioral tolerance to chronic MPD exposure, respectively. Significant differences in CN neuronal population responses between the behaviorally sensitized and the behaviorally tolerant animals was observed for the 2.5 and 10.0 mg/kg MPD exposed groups. For 2.5 mg/kg MPD, behaviorally sensitized animals responded by decreasing their firing rates while behaviorally tolerant animals showed mainly an increase in their firing rates. The CN neuronal responses recorded from the behaviorally sensitized animals following 10.0 mg/kg MPD responded by increasing their firing rates whereas the CN neuronal recordings from the behaviorally tolerant animals showed that approximately half decreased their firing rates in response to 10.0 mg/kg MPD exposure. The comparison of percentage change in neuronal firing rates showed that the behaviorally tolerant animals trended to exhibit increases in their neuronal firing rates at ED1 following initial MPD exposure

  2. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways.

    PubMed

    Lee, Kheun Byeol; Kim, Kye-Ryung; Huh, Tae-Lin; Lee, You Mie

    2008-12-01

    Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation. Hypoxic cells exposed to the proton beam underwent a typical apoptotic program, showing condensed nuclei, fragmented DNA ladders, and poly-ADP-ribose polymerase (PARP) cleavage. Fluorescence-activated cell sorter analysis revealed a significant increase in Annexin-V-positive cells. Cells treated with the proton beam and hypoxia displayed increased expression of p53, p21 and Bax, but decreased levels of phospho-Rb, Bcl-2 and XIAP, as well as activated caspase-9 and -3. The proton beam with hypoxia induced cell death in wild-type HCT116 cells, but not in a p53 knockout cell line, demonstrating a requirement for p53. As reactive oxygen species (ROS) were also significantly increased, apoptosis could also be abolished by treatment with the anti-oxidant N-acetyl cysteine (NAC). P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) were activated by the treatment, and their respective DN mutants restored the cell death induced by either proton therapy alone or with hypoxia. In conclusion, proton beam treatment did not differently regulate cancer cell apoptosis either in normoxic or hypoxic conditions via a p53-dependent mechanism and by the activation of p38/JNK MAPK pathways through ROS.

  3. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer.

    PubMed

    Berchem, Guy; Noman, Muhammad Zaeem; Bosseler, Manon; Paggetti, Jerome; Baconnais, Sonia; Le Cam, Eric; Nanbakhsh, Arash; Moussay, Etienne; Mami-Chouaib, Fathia; Janji, Bassam; Chouaib, Salem

    2016-04-01

    Tumor-derived microvesicles (TD-MVs) are key mediators which are shed by cancer cells and can sensitize neighboring cells in the tumor microenvironment. TD-MVs are extracellular vesicles composed of exosomes and MVs and promote cancer invasion and metastasis. Intratumoral hypoxia is an integral component of all solid tumors. The relationship between hypoxic tumor-shed MVs and NK-mediated cytotoxicity remains unknown. In this paper, we reported that MVs derived from hypoxic tumor cells qualitatively differ from those derived from normoxic tumor cells. Using multiple tumor models, we showed that hypoxic MVs inhibit more NK cell function as compared to normoxic MVs. Hypoxic TD-MVs package two immunosuppressive factors involved in the impairment of natural killer (NK) cell cytotoxicity against different tumor cells in vitro and in vivo . We showed that following their uptake by NK cells, hypoxic TD-MVs transfer TGF-β1 to NK cells, decreasing the cell surface expression of the activating receptor NKG2D, thereby inhibiting NK cell function. MicroRNA profiling revealed the presence of high levels of miR-210 and miR-23a in hypoxic TD-MVs. We demonstrated that miR-23a in hypoxic TD-MVs operates as an additional immunomosuppressive factor, since it directly targets the expression of CD107a in NK cells. To our knowledge, this is the first study to show that hypoxic tumor cells by secreting MVs can educate NK cells and decrease their antitumor immune response. This study highlights the existence of a novel mechanism of immune suppression mediated by hypoxic TD-MVs and further improves our understanding of the immunosuppressive mechanisms prevailing in the hypoxic tumor microenvironment.

  4. Endothelial nitric oxide synthase in hypoxic newborn porcine pulmonary vessels

    PubMed Central

    Hislop, A; Springall, D; Oliveira, H; Pollock, J; Polak, J; Haworth, S

    1997-01-01

    AIMS—To determine if the failure of neonatal pulmonary arteries to dilate is due to a lack of nitric oxide synthase (NOS).
METHODS—A monoclonal antibody to endothelial NOS was used to demonstrate the distribution and density of NOS in the developing porcine lung after a period in hypobaric hypoxia. Newborn piglets were made hypertensive by exposure to hypobaric hypoxia (50.8 kPa) from < 5 minutes of age to 2.5 days of age, 3-6 days of age or 14-17 days of age. A semiquantitative scoring system was used to assess the distribution of endothelial NOS by light microscopy.
RESULTS—NOS was present in the arteries in all hypoxic animals. However, hypoxia from birth caused a reduction in NOS compared with those lungs normal at birth and those normal at 3 days. Hypoxia from 3-6 days led to a high density of NOS compared with normal lungs at 6 days. Hypoxia from 14-17 days had little effect on the amount of NOS. On recovery in room air after exposure to hypoxia from birth there was a transient increase in endothelial NOS after three days of recovery, mirroring that seen at three days in normal animals.
CONCLUSIONS—Suppression of NOS production in the first few days of life may contribute to pulmonary hypertension in neonates.

 Keywords: pulmonary circulation; nitric oxide synthase; hypoxia; endothelium; piglets PMID:9279177

  5. Heart rate variability, hemostatic and acute inflammatory blood parameters in healthy adults after short-term exposure to welding fume.

    PubMed

    Scharrer, E; Hessel, H; Kronseder, A; Guth, W; Rolinski, B; Jörres, R A; Radon, K; Schierl, R; Angerer, P; Nowak, D

    2007-02-01

    The present study aimed to investigate, whether short-term experimental exposure to high levels of welding fumes would be capable of exerting acute effects in healthy subjects. Specifically, we assessed cardiovascular function in terms of heart rate variability (HRV) as well as the concentrations of inflammatory mediators and hemostatic proteins in blood as outcome measures. Twenty subjects without a history of airway and cardiovascular diseases were exposed to either control air or welding fume for 1 h on 2 separate days under standardized conditions. The median concentration of the alveolar particle fraction during welding was 3.5 mg/m(3 )(quartiles: 1.4-6.3 mg/m(3); range 1.0-25.3 mg/m(3)). Five hours later a panel of clinical assessments was performed, including HRV measurement and drawing of blood samples. There were no changes in symptom ratings or lung function after welding fume exposure. Exposures did also not differ regarding effects on time- and frequency-domain parameters of HRV. Similarly, blood leukocyte numbers, cell differentials and the blood levels of fibrinogen, C-reactive protein, antithrombin III, factor VIII, von Willebrand factor, ristocetin cofactor, sICAM-1, tumor necrosis factor alpha, interleukin 6, interleukin 8 and epithelial neutrophil activating peptide 78 were not altered by welding fume inhalation. However, there was a significant fall in the level of endothelin-1 (P < 0.01). In conclusion, the data did not indicate effects of clinical significance of a short-term high-level exposure to welding fumes on HRV or a set of blood hemostatic and acute inflammatory parameters in healthy subjects. The small but statistically significant effect on endothelin levels demonstrated that measurable effects could be elicited even in these individuals. Overall, welding fumes are not likely to exert acute cardiovascular effects in healthy individuals.

  6. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes

    PubMed Central

    Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S

    2011-01-01

    BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177

  7. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    PubMed

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    PubMed

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  9. Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship.

    PubMed

    Liu, Tao; Ivaturi, Vijay; Sabato, Philip; Gobburu, Jogarao V S; Greer, Jacqueline M; Wright, John J; Smith, B Douglas; Pratz, Keith W; Rudek, Michelle A

    2018-04-27

    Sorafenib administered at the approved dose continuously is not tolerated long-term in patients with acute myeloid leukemia (AML). The purpose of this study was to optimize the dosing regimen by characterizing the sorafenib exposure-response relationship in patients with AML. A one-compartment model with a transit absorption compartment and enterohepatic recirculation described the exposure. The relationship between sorafenib exposure and target modulation of kinase targets (FMS-like tyrosine kinase 3 (FLT3)-ITD and extracellular signal-regulated kinase (ERK)) were described by an inhibitory maximum effect (E max ) model. Sorafenib could inhibit FLT3-ITD activity by 100% with an IC 50 of 69.3 ng/mL and ERK activity by 84% with an IC 50 of 85.7 ng/mL (both adjusted for metabolite potency). Different dosing regimens utilizing 200 or 400 mg at varying frequencies were simulated based on the exposure-response relationship. Simulations demonstrate that a 200 mg twice daily (b.i.d.) dosing regimen showed similar FLT3-ITD and ERK inhibitory activity compared with 400 mg b.i.d. and is recommended in further clinical trials in patients with AML. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  10. REDUCING UNCERTAINTY IN AIR TOXICS RISK ASSESSMENT: A MECHANISTIC EXPOSURE-DOSE-RESPONSE (EDR) MODEL FOR ASSESSING THE ACUTE NEUROTOXICITY OF VOLATILE ORGANIC COMPOUNDS (VOCS) BASED UPON A RECEPTOR-MEDIATED MODE OF ACTION

    EPA Science Inventory

    SUMMARY: The major accomplishment of NTD’s air toxics program is the development of an exposure-dose- response model for acute exposure to volatile organic compounds (VOCs), based on momentary brain concentration as the dose metric associated with acute neurological impairments...

  11. Notification: Evaluate the Gulf of Mexico Hypoxic Zone Reduction

    EPA Pesticide Factsheets

    Project #OPE-FY13-0012, January 30, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) and states’ efforts to reduce the Gulf of Mexico hypoxic zone.

  12. Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells

    PubMed Central

    Rosová, Ivana; Dao, Mo; Capoccia, Ben; Link, Daniel; Nolta, Jan A.

    2010-01-01

    Mesenchymal stem cells (MSC) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSC have been shown to improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSC are cultured under ambient, or normoxic, conditions (21% oxygen). However, the physiological niches for MSC in the bone marrow and other sites have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSC cultured in standard conditions must adapt from 21% oxygen in culture to less than 1% oxygen in the ischemic tissue. We therefore examined the effects of preculturing human bone marrow-derived MSC in hypoxic conditions (1%–3% oxygen) to elucidate the best conditions that enhance their tissue regenerative potential. We demonstrated that MSC cultured in hypoxia activate the Akt signaling pathway while maintaining their viability and cell cycle rates. We also showed that MSC cultured in hypoxia induced expression of cMet, the major receptor for hepatocyte growth factor (HGF), and enhanced cMet signaling. MSC cultured in hypoxic conditions increased their migration rates. Since migration and HGF responsiveness are thought to be key mediators of MSC recruitment and/or activation in vivo, we next examined the tissue regenerative potential of MSC cultured under hypoxic conditions, using a murine hind limb ischemia model. We showed that local expression of HGF is increased in ischemic muscle in this model. Intra-arterial injection of MSC cultured in either normoxic or hypoxic conditions 24 hours after surgical induction of hind limb ischemia enhanced revascularization compared with saline controls. However, restoration of blood flow was observed significantly earlier in mice that had been injected with hypoxic preconditioned MSC. Collectively, these data suggest that preculturing MSC under hypoxic conditions prior to transplantation improves their tissue regenerative potential. PMID:18511601

  13. Bidirectional signalling between EphA2 and ephrinA1 increases tubular cell attachment, laminin secretion and modulates erythropoietin expression after renal hypoxic injury.

    PubMed

    Rodriguez, Stéphane; Rudloff, Stefan; Koenig, Katrin Franziska; Karthik, Swapna; Hoogewijs, David; Huynh-Do, Uyen

    2016-08-01

    Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular

  14. Effects of posture on blood flow diversion by hypoxic pulmonary vasoconstriction in dogs

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Hlastala, M. P.

    1998-01-01

    We used differential excretion of sulphur hexafluoride from the left and right lung to measure blood flow diversion by hypoxic pulmonary vasoconstriction (HPV) in the prone and supine positions in dogs (n = 9). Gas exchange was assessed using the multiple inert gas elimination technique. Blood flow diversion from the hypoxic (3% oxygen) left lung was mean 70.7 (SD 11.2)% in the supine compared with 57.0 (12.1)% in the prone position (P < 0.02). The supine position was associated with increased perfusion to low VA/Q regions (P < 0.05). The increased flow diversion with hypoxia in the supine position was associated with more ventilation to high VA/Q regions (P < 0.05). We conclude that flow diversion by hypoxic pulmonary vasoconstriction is greater in the supine position. This effect could contribute to the variable response in gas exchange with positioning in patients with ARDS.

  15. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucheu-Haston, Cherie M., E-mail: Pucheu-Haston.Cherie@epa.go; Copeland, Lisa B.; Vallanat, Beena

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total proteinmore » concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approx 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.« less

  16. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    PubMed Central

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  17. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆

    PubMed Central

    Sun, Bin; Feng, Xing; Ding, Xin; Bao, Li; Li, Yongfu; He, Jun; Jin, Meifang

    2012-01-01

    Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage. PMID:25538743

  18. Effects of different periods of hypoxic training on glucose metabolism and insulin sensitivity.

    PubMed

    Morishima, Takuma; Hasegawa, Yuta; Sasaki, Hiroto; Kurihara, Toshiyuki; Hamaoka, Takafumi; Goto, Kazushige

    2015-03-01

    This study examined the effects of different periods of hypoxic training on glucose metabolism. Sedentary subjects underwent hypoxic training (FiO2 = 15.0%) for either 2 weeks (2-week group; n = 11) or 4 weeks (4-week group; n = 10). The 2-week group conducted training sessions on 6 days week(-1) for 2 weeks, whereas the 4-week group conducted training sessions on 3 days week(-1) for 4 weeks. Body fat mass or abdominal fat area did not change after training period in either group. VO2max increased in both groups after training period (42 ± 2 versus 43 ± 2 ml min(-1) kg(-1) in 2-week group, 41 ± 1 versus 42 ± 2 ml min(-1) kg(-1) in 4-week group). Both groups showed a reduction in mean blood pressure after training period (92 ± 3 versus 90 ± 3 mmHg in 2-week group, 91 ± 2 versus 87 ± 2 mmHg in 4-week group, P ≤ 0.05). No change was observed in blood glucose response after glucose ingestion after training period. However, area under the curve for serum insulin concentrations after glucose ingestion significantly decreased in only 4-week group (6910 ± 763 versus 5812 ± 872 μIU ml(-1) 120 min, P ≤ 0.05). In conclusion, hypoxic training reduced blood pressure with independent on training duration. However, a longer period of hypoxic training led to greater improvements in insulin sensitivity compared with equivalent training over a shorter period, suggesting that hypoxic training programmes for more than 4 weeks might be more beneficial for improving insulin sensitivity. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Hypoxic stress, brain vascular system, and β-amyloid: a primary cell culture study.

    PubMed

    Muche, Abebe; Bürger, Susanne; Arendt, Thomas; Schliebs, Reinhard

    2015-01-01

    This study stresses the hypothesis whether hypoxic events contribute to formation and deposition of β-amyloid (Aβ) in cerebral blood vessels by affecting the processing of endothelial amyloid precursor protein (APP). Therefore, cerebral endothelial cells (ECs) derived from transgenic Tg2576 mouse brain, were subjected to short periods of hypoxic stress, followed by assessment of formation and secretion of APP cleavage products sAPPα, sAPPβ, and Aβ as well as the expression of endothelial APP. Hypoxic stress of EC leads to enhanced secretion of sAPPβ into the culture medium as compared to normoxic controls, which is accompanied by increased APP expression, induction of vascular endothelial growth factor (VEGF) synthesis, nitric oxide production, and differential changes in endothelial p42/44 (ERK1/2) expression. The hypoxia-mediated up-regulation of p42/44 at a particular time of incubation was accompanied by a corresponding down-regulation of the phosphorylated form of p42/44. To reveal any role of hypoxia-induced VEGF in endothelial APP processing, ECs were exposed by VEGF. VEGF hardly affected the amount of sAPPβ and Aβ(1-40) secreted into the culture medium, whereas the suppression of the VEGF receptor action by SU-5416 resulted in decreased release of sAPPβ and Aβ(1-40) in comparison to control incubations, suggesting a role of VEGF in controlling the activity of γ-secretase, presumably via the VEGF receptor-associated tyrosine kinase. The data suggest that hypoxic stress represents a mayor risk factor in causing Aβ deposition in the brain vascular system by favoring the amyloidogenic route of endothelial APP processing. The hypoxic-stress-induced changes in β-secretase activity are presumably mediated by altering the phosphorylation status of p42/44, whereas the stress-induced up-regulation of VEGF appears to play a counteracting role by maintaining the balance of physiological APP processing.

  20. Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque

    USGS Publications Warehouse

    Klaper, R.; Carter, Barbara J.; Richter, C.A.; Drevnick, P.E.; Sandheinrich, M.B.; Tillitt, D.E.

    2008-01-01

    This study describes the use of a 15 000 gene microarray developed for the toxicological model species, Pimephales promelas, in investigating the impact of acute and chronic methylmercury exposures in male gonad and liver tissues. The results show significant differences in the individual genes that were differentially expressed in response to each treatment. In liver, a total of 650 genes exhibited significantly (P < 0.05) altered expression with greater than two-fold differences from the controls in response to acute exposure and a total of 267 genes were differentially expressed in response to chronic exposure. A majority of these genes were downregulated rather than upregulated. Fewer genes were altered in gonad than in liver at both timepoints. A total of 212 genes were differentially expressed in response to acute exposure and 155 genes were altered in response to chronic exposure. Despite the differences in individual genes expressed across treatments, the functional categories that altered genes were associated with showed some similarities. Of interest in light of other studies involving the effects of methylmercury on fish, several genes associated with apoptosis were upregulated in response to both acute and chronic exposures. Induction of apoptosis has been associated with effects on reproduction seen in the previous studies. This study demonstrates the utility of microarray analysis for investigations of the physiological effects of toxicants as well as the time-course of effects that may take place. In addition, it is the first publication to demonstrate the use of this new 15 000 gene microarray for fish biology and toxicology. ?? 2008 The Authors.

  1. Impact of acute exposure to air pollution on the cardiorespiratory performance of military firemen.

    PubMed

    Oliveira, R S; Barros Neto, T L; Braga, A L F; Raso, V; Pereira, L A A; Morette, S R; Carneiro, R C

    2006-12-01

    The objective of the present study was to determine the impact of acute short-term exposure to air pollution on the cardiorespiratory performance of military firemen living and working in the city of Guarujá, São Paulo, Brazil. Twenty-five healthy non-smoking firemen aged 24 to 45 years had about 1 h of exposure to low and high levels of air pollution. The tests consisted of two phases: phase A, in Bertioga, a town with low levels of air pollution, and phase B, in Cubatão, a polluted town, with a 7-day interval between phases. The volunteers remained in the cities (Bertioga/Cubatão) only for the time required to perform the tests. Cumulative load 10 +/- 2 min-long exertion tests were performed on a treadmill, consisting of a 2-min stage at a load of 7 km/h, followed by increasing exertion of 1 km h-1 min-1 until the maximum individual limit. There were statistically significant differences (P < 0.05) in anaerobic threshold (AT) between Cubatão (35.04 +/- 4.91 mL kg-1 min-1) and Bertioga (36.98 +/- 5.62 mL kg-1 min-1; P = 0.01), in the heart rate at AT (AT HR; Cubatão 152.08 +/- 14.86 bpm, Bertioga 157.44 +/- 13.64 bpm; P = 0.001), and in percent maximal oxygen consumption at AT (AT%VO2max; Cubatão 64.56 +/- 6.55%, Bertioga 67.40 +/- 5.35%; P = 0.03). However, there were no differences in VO2max, maximal heart rate or velocity at AT (ATvel) observed in firemen between towns. The acute exposure to pollutants in Cubatão, SP, caused a significant reduction in the performance at submaximal levels of physical exertion.

  2. Acute Exposure to Stress Improves Performance in Trace Eyeblink Conditioning and Spatial Learning Tasks in Healthy Men

    ERIC Educational Resources Information Center

    Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian

    2007-01-01

    The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…

  3. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.

    PubMed

    Mao, Tso-Yen; Fu, Li-Lan; Wang, Jong-Shyan

    2011-08-01

    Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O(2) condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H(2)O(2) that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H(2)O(2). However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H(2)O(2) was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.

  4. Does acute radio-frequency electromagnetic field exposure affect visual event-related potentials in healthy adults?

    PubMed

    Dalecki, Anna; Loughran, Sarah P; Verrender, Adam; Burdon, Catriona A; Taylor, Nigel A S; Croft, Rodney J

    2018-05-01

    To use improved methods to address the question of whether acute exposure to radio-frequency (RF) electromagnetic fields (RF-EMF) affects early (80-200 ms) sensory and later (180-600 ms) cognitive processes as indexed by event-related potentials (ERPs). Thirty-six healthy subjects completed a visual discrimination task during concurrent exposure to a Global System for Mobile Communications (GSM)-like, 920 MHz signal with peak-spatial specific absorption rate for 10 g of tissue of 0 W/kg of body mass (Sham), 1 W/kg (Low RF) and 2 W/kg (High RF). A fully randomised, counterbalanced, double-blind design was used. P1 amplitude was reduced (p = .02) and anterior N1 latency was increased (p = .04) during Exposure compared to Sham. There were no effects on any other ERP latencies or amplitudes. RF-EMF exposure may affect early perceptual (P1) and preparatory motor (anterior N1) processes. However, only two ERP indices, out of 56 comparisons, were observed to differ between RF-EMF exposure and Sham, suggesting that these observations may be due to chance. These observations are consistent with previous findings that RF-EMF exposure has no reliable impact on cognition (e.g., accuracy and response speed). Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Acute and recent air pollution exposure and cardiovascular events at labour and delivery

    PubMed Central

    Männistö, Tuija; Mendola, Pauline; Grantz, Katherine Laughon; Leishear, Kira; Sundaram, Rajeshwari; Sherman, Seth; Ying, Qi; Liu, Danping

    2017-01-01

    Objective To study the relationship between acute air pollution exposure and cardiovascular events during labour/delivery. Methods The Consortium on Safe Labor (2002–2008), an observational US cohort with 223 502 singleton deliveries provided electronic medical records. Air pollution exposure was estimated by modified Community Multiscale Air Quality models. Cardiovascular events (cardiac failure/arrest, stroke, myocardial infarcts and other events) were recorded in the hospital discharge records for 687 pregnancies (0.3%). Logistic regression with generalised estimating equations estimated the relationship between cardiovascular events and daily air pollutant levels for delivery day and the 7 days preceding delivery. Results Increased odds of cardiovascular events were observed for each IQR increase in exposure to nitric oxides at 5 and 6 days prior to delivery (OR=1.17, 99% CI 1.04 to 1.30 and OR=1.15, 1.03 to 1.28, respectively). High exposure to toxic air pollution species such as ethylbenzene (OR=1.50, 1.08 to 2.09), m-xylene (OR=1.54, 1.11 to 2.13), o-xylene (OR=1.51, 1.09 to 2.09), p-xylene (OR=1.43, 1.03 to 1.99) and toluene (OR=1.42, 1.02 to 1.97) at 5 days prior to delivery were also associated with cardiovascular events. Decreased odds of events were observed with exposure to ozone. Conclusions Air pollution in the days prior to delivery, especially nitrogen oxides and some toxic air pollution species, was associated with increased risk of cardiovascular events during the labour/delivery admission. PMID:26105036

  6. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia

    PubMed Central

    Goyal, Ravi; Longo, Lawrence D.

    2015-01-01

    Background Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death. Aim LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups. Results Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation. PMID:26110419

  7. Perceived Chronic Stress Exposure Modulates Reward-Related Medial Prefrontal Cortex Responses to Acute Stress in Depression

    PubMed Central

    Kumar, Poornima; Slavich, George M.; Berghorst, Lisa H.; Treadway, Michael T.; Brooks, Nancy H.; Dutra, Sunny J.; Greve, Douglas N.; O'Donovan, Aoife; Bleil, Maria E.; Maninger, Nicole; Pizzagalli, Diego A.

    2015-01-01

    Introduction Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. Methods In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Results Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r = 0.79, p = 0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r = 0.79) and no-stress (r = −0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC grey matter, but functional findings remained when accounting for structural differences. Limitation Small sample size, which warrants replication. Conclusion Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. PMID:25898329

  8. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    PubMed

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  9. Accelerated acidosis in response to variable fetal heart rate decelerations in chronically hypoxic ovine fetuses.

    PubMed

    Amaya, Kevin E; Matushewski, Brad; Durosier, L Daniel; Frasch, Martin G; Richardson, Bryan S; Ross, Michael G

    2016-02-01

    Due to limitations of technology, clinicians are typically unable to determine if human fetuses are normoxic or moderately, chronically hypoxic. Risk factors for chronic hypoxia include fetal growth restriction, which is associated with an increased incidence of oligohydramnios and thus a risk for umbilical cord occlusion (UCO) and variable fetal heart rate (FHR) decelerations. At delivery, fetal growth restriction infants (<3rd percentile) have nearly twice the incidence of low Apgar scores and umbilical pH <7.0. Despite the risks of oligohydramnios and intermittent UCO, there is little understanding of the acid/base responses rates of chronically hypoxic fetuses to variable FHR decelerations as might occur during human labor. We sought to compare the increase in base deficit (BD) among chronically hypoxic as compared to normoxic ovine fetuses in response to simulated mild, moderate, and severe variable FHR decelerations. Near-term ovine fetuses were chronically prepared with brachial artery catheters and an inflatable umbilical cuff occluder. Following a recovery period, normoxic (n = 9) and spontaneously hypoxic (n = 5) fetuses were identified (arterial O2 saturation ≤55%). Both animal groups underwent graded, 1-minute occlusions every 2.5 minutes with 1 hour of mild (∼30 beats/min [bpm] decrease from baseline), 1 hour of moderate (∼60 bpm decrease from baseline), and up to 2 hours of severe (∼90 bpm decrease from baseline) variable FHR decelerations until fetal arterial pH reached 7.00, when occlusions were stopped. Repetitive UCO resulted in development of acidosis (pH <7.0) in both groups. Hypoxic and normoxic fetuses demonstrated similar BD increases in response to both mild (0.39, interquartile range [IQR] 0.28-0.45 vs 0.26, IQR 0.01-0.30 mEq/L/10 min, P = .25) and severe (1.97, IQR 1.50-2.43 vs 1.51, IQR 0.97-2.45 mEq/L/10 min, P = .63) variable decelerations. However, moderate variable decelerations increased BD in hypoxic fetuses at 2.5 times the

  10. FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Tamaki, Nagara; Kuge, Yuji

    2017-10-01

    18 F-fluoromisonidazole (FMISO), a well-known PET imaging probe for diagnosis of hypoxia, is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of the nitro group. Previously, we showed the majority of 18 F-FMISO was incorporated into low-molecular-weight metabolites in hypoxic tumors, and the glutathione conjugate of reduced FMISO (amino-FMISO-GS) distributed in the tumor hypoxic regions as revealed by imaging mass spectrometry (IMS). The present study was conducted to clarify whether FMISO is metabolized to amino-FMISO-GS within tumor cells and how amino-FMISO-GS contributes to FMISO accumulation in hypoxic cells. We also evaluated the relationship between FMISO accumulation and the glutathione conjugation-related factors in the cells. Tumor cells (FaDu, LOVO, and T24) were treated with 18 F-FMISO and incubated under normoxic or hypoxic conditions for 4 h. The FMISO metabolites were analyzed with LC-ESI-MS. Several glutathione conjugation-related factors of tumor cells were evaluated in vitro. FaDu tumor-bearing mice were intravenously injected with 18 F-FMISO and the tumors were excised at 4 h post-injection. Autoradiography, IMS and histologic studies were performed. Amino-FMISO-GS was the main contributor to FMISO incorporated in hypoxic FaDu cells in vitro and in vivo. Total FMISO uptake levels and amino-FMISO-GS levels were highest in FaDu, followed by LOVO, and then T24 (total uptake: 0.851 ± 0.009 (FaDu), 0.617 ± 0.021 (LOVO) and 0.167 ± 0.006 (T24) % dose/mg protein; amino-FMISO-GS: 0.502 ± 0.035 (FaDu), 0.158 ± 0.013 (LOVO), and 0.007 ± 0.001 (T24) % dose/mg protein). The glutathione level of FaDu was significantly higher than those of LOVO and T24. The enzyme activity of glutathione-S-transferase catalyzing the glutathione conjugation reaction in FaDu was similar levels to that in LOVO, and was higher than that in T24. Quantitative RT-PCR analysis revealed that the expression levels of

  11. The Effect of Normobaric Hypoxic Confinement on Metabolism, Gut Hormones, and Body Composition

    PubMed Central

    Mekjavic, Igor B.; Amon, Mojca; Kölegård, Roger; Kounalakis, Stylianos N.; Simpson, Liz; Eiken, Ola; Keramidas, Michail E.; Macdonald, Ian A.

    2016-01-01

    To assess the effect of normobaric hypoxia on metabolism, gut hormones, and body composition, 11 normal weight, aerobically trained (O2peak: 60.6 ± 9.5 ml·kg−1·min−1) men (73.0 ± 7.7 kg; 23.7 ± 4.0 years, BMI 22.2 ± 2.4 kg·m−2) were confined to a normobaric (altitude ≃ 940 m) normoxic (NORMOXIA; PIO2 ≃ 133.2 mmHg) or normobaric hypoxic (HYPOXIA; PIO was reduced from 105.6 to 97.7 mmHg over 10 days) environment for 10 days in a randomized cross-over design. The wash-out period between confinements was 3 weeks. During each 10-day period, subjects avoided strenuous physical activity and were under continuous nutritional control. Before, and at the end of each exposure, subjects completed a meal tolerance test (MTT), during which blood glucose, insulin, GLP-1, ghrelin, peptide-YY, adrenaline, noradrenaline, leptin, and gastro-intestinal blood flow and appetite sensations were measured. There was no significant change in body weight in either of the confinements (NORMOXIA: −0.7 ± 0.2 kg; HYPOXIA: −0.9 ± 0.2 kg), but a significant increase in fat mass in NORMOXIA (0.23 ± 0.45 kg), but not in HYPOXIA (0.08 ± 0.08 kg). HYPOXIA confinement increased fasting noradrenaline and decreased energy intake, the latter most likely associated with increased fasting leptin. The majority of all other measured variables/responses were similar in NORMOXIA and HYPOXIA. To conclude, normobaric hypoxic confinement without exercise training results in negative energy balance due to primarily reduced energy intake. PMID:27313541

  12. Induction of dormancy in hypoxic human papillomavirus-positive cancer cells

    PubMed Central

    Hoppe-Seyler, Karin; Bossler, Felicitas; Lohrey, Claudia; Bulkescher, Julia; Rösl, Frank; Jansen, Lars; Mayer, Arnulf; Vaupel, Peter; Dürst, Matthias; Hoppe-Seyler, Felix

    2017-01-01

    Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under hypoxia does not result in cellular senescence, owing to hypoxia-associated impaired mechanistic target of rapamycin (mTOR) signaling via the inhibitory REDD1/TSC2 axis. Instead, a reversible growth arrest is induced that can be overcome by reoxygenation. Impairment of mTOR signaling also interfered with the senescence response of hypoxic HPV-positive cancer cells toward prosenescent chemotherapy in vitro. Collectively, these findings indicate that hypoxic HPV-positive cancer cells can induce a reversible state of dormancy, with decreased viral antigen synthesis and increased therapeutic resistance, and may serve as reservoirs for tumor recurrence on reoxygenation. PMID:28115701

  13. Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments

    PubMed Central

    Liu, Wei; Glunde, Kristine; Bhujwalla, Zaver M.; Raman, Venu; Sharma, Anit; Phang, James M.

    2012-01-01

    Proline is a readily released stress substrate that can be metabolized by proline oxidase (POX) to generate either reactive oxygen species to induce apoptosis or autophagy or ATP during times of nutrient stress. However, the contribution of proline metabolism to tumorigenesis in hypoxic microenvironments has not been explored. In this study, we investigated the different functions of POX under hypoxia and glucose depletion. We found that hypoxia induced POX expression in cancer cells in vitro and that POX upregulation co-localized with hypoxic tissues in vivo. In addition, the combination of hypoxia and low-glucose showed additive effects on POX expression. Similar to conditions of low glucose, hypoxia-mediated POX induction was dependent on AMP-activated protein kinase (AMPK) activation, but was independent of HIF-1α and HIF-2α. Under low-glucose and combined low-glucose and hypoxic conditions, proline catabolized by POX was used preferentially for ATP production, whereas under hypoxia, POX mediated autophagic signaling for survival by generating ROS. Although the specific mechanism was different for hypoxia and glucose deprivation, POX consistently contributed to tumor cell survival under these conditions. Together, our findings offer new insights into the metabolic reprogramming of tumor cells present within a hostile microenvironment and suggest that proline metabolism is a potential target for cancer therapeutics. PMID:22609800

  14. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

    PubMed Central

    Guo, Xiaowei; Jiang, Xupin; Ren, Xi; Sun, Huanbo; Zhang, Dongxia; Zhang, Qiong; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing. PMID:25988491

  15. Induction of dormancy in hypoxic human papillomavirus-positive cancer cells.

    PubMed

    Hoppe-Seyler, Karin; Bossler, Felicitas; Lohrey, Claudia; Bulkescher, Julia; Rösl, Frank; Jansen, Lars; Mayer, Arnulf; Vaupel, Peter; Dürst, Matthias; Hoppe-Seyler, Felix

    2017-02-07

    Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under hypoxia does not result in cellular senescence, owing to hypoxia-associated impaired mechanistic target of rapamycin (mTOR) signaling via the inhibitory REDD1/TSC2 axis. Instead, a reversible growth arrest is induced that can be overcome by reoxygenation. Impairment of mTOR signaling also interfered with the senescence response of hypoxic HPV-positive cancer cells toward prosenescent chemotherapy in vitro. Collectively, these findings indicate that hypoxic HPV-positive cancer cells can induce a reversible state of dormancy, with decreased viral antigen synthesis and increased therapeutic resistance, and may serve as reservoirs for tumor recurrence on reoxygenation.

  16. Short-term and persistent impacts on behaviors related to locomotion, anxiety, and startle responses of Japanese medaka (Oryzias latipes) induced by acute, sublethal exposure to chlorpyrifos.

    PubMed

    Qiu, Xuchun; Nomichi, Sayaka; Chen, Kun; Honda, Masato; Kang, Ik Joon; Shimasaki, Yohei; Oshima, Yuji

    2017-11-01

    Although most exposures to chlorpyrifos (CPF) in natural flowing waters are brief and episodic, there have been a few reports of the persistence of abnormal fish behaviors caused by such acute exposure. The present study focused on the behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute, sublethal exposure to CPF, as well as the persistence of the effects during a 3-week recovery test in CPF-free water. The medaka became hyperactive and exhibited an elevated anxiety state after a 4-day exposure to 0.024mg/L of CPF, but they recovered from these abnormal behavioral responses within 7days of recovery treatment. In contrast, persistent impacts on some startle responses to a sudden stimulation (induced by a ball drop) were observed in medaka exposed to CPF. The reaction latency did not change immediately after the 4-day exposure, but was significantly prolonged by as much as 21days after the termination of exposure. The post-stimulus swimming distance within 5s significantly decreased on the day immediately after the 4-day exposure, but it significantly increased after 7days of recovery treatment. The activity of acetylcholinesterase (AChE) in the brains of medaka was significantly inhibited on the day immediately after the 4-day exposure, but it returned to 80% and 110% of that in control fish on days 7 and 21 of the recovery period, respectively. However, AChE activities in the eyes of exposed medaka were persistently inhibited and declined to 33%, 71%, and 72% of that in control fish on days 0 (immediately after the 4-day exposure), 7, and 21 of recovery, respectively. Correlation analysis suggested that the changes of AChE activities in the brains of medaka may underlie some of the observed acute behavioral changes, and the changes of AChE activities in the eyes may contribute to the persistence of the abnormalities in the reaction latency of the startle response. Our findings suggest that medaka need a long time to recover from acute

  17. EFFECTS OF ACUTE EXPOSURE TO CONCENTRATED AMBIENT PARTICULATES ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN OLD SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory


    EFFECTS OF ACUTE EXPOSURE TO CONCENTRATED AMBIENT PARTICULATES ON CARDIOPULMONARY, THERMOREGULATORY, AND BIOCHEMICAL PARAMETERS IN OLD SPONTANEOUSLY HYPERTENSIVE RATS. JP Nolan1, LB Wichers2, DW Winsett1, UP Kodavanti1, MCJ Schladweiler1, DL Costa1, and WP Watkinson1. 1US E...

  18. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  19. QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    PubMed Central

    Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander

    2009-01-01

    Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371

  20. Acute exposure to air pollution triggers atrial fibrillation.

    PubMed

    Link, Mark S; Luttmann-Gibson, Heike; Schwartz, Joel; Mittleman, Murray A; Wessler, Benjamin; Gold, Diane R; Dockery, Douglas W; Laden, Francine

    2013-08-27

    This study sought to evaluate the association of air pollution with the onset of atrial fibrillation (AF). Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. Patients with dual chamber implantable cardioverter-defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient particulate matter <2.5 μm aerodynamic diameter (PM2.5), black carbon, sulfate, particle number, NO2, SO2, and O3 in the 24 h prior to the arrhythmia was examined utilizing a case-crossover analysis. In sensitivity analyses, associations with air pollution between 2 and 48 h prior to the AF were examined. Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 s. Positive but nonsignificant associations were found for PM2.5 in the prior 24 h, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% confidence interval: 8% to 47%) for each 6.0 μg/m(3) increase in PM2.5 in the 2 h prior to the event (p = 0.004). The odds of AF were highest at the upper quartile of mean PM2.5. PM was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life. PMID:26973537

  2. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia.

    PubMed

    Faiss, Raphaël; Girard, Olivier; Millet, Grégoire P

    2013-12-01

    Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.

  3. Sirtuin 6 protects the heart from hypoxic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksin-Matveev, Anna; Kanfi, Yariv; Hochhauser, Edith

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH)more » and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension.« less

  4. A comparison of the cytological effects of three hypoxic cell radiosensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spunberg, J.J.; Geard, C.R.; Rutledge-Freeman, M.H.

    1982-07-01

    Misonidazole has entered Phase III clinical trials as a hypoxic cell radiosensitizer. Neurotoxocity is the major dose-limiting factor and has prompted the development of two further compounds with reduced lipophilicity and shorter half-life in vivo. Aside from the short-term problem of neurotoxicity, other potential long-term consequences should be considered. Such is the purpose of this investigation where the cytological effects of three radiosensitizers upon oxic and hypoxic Chinese hamster V-79 cells have been examined. Two newer compounds, desmethylmisonidazole and Stanford Research compound 2508, were compared with their clinically used predecessor misonidazole. Under aerated conditions, cell killing was increased with SR-2508more » in a concentration and time dependent manner, so as to exceed by more than three times the level produced by the other two drugs at 5 mM for 72 hours.Cell progression into mitosis was also markedly reduced by as much as 1/10,000 of control values. However, as the three compounds induced similar frequencies of sister chromatid exchange (SCE) and chromosome aberration, the enhanced cytotoxic effect of SR-2508 appears to be mediated via an interphase rather than a post-mitotic cell death. Cells were made hypoxic and treated with the three drugs for 4 hr, then mitoses sequentially collected for 16 hr. The three compounds produced similar levels of cell killing, slowing of cell cycle progression, SCE's and chromosome aberrations, with cycle-specific effect on S and G-I phase cells for SCE induction. These results indicate that desmethylmisonidazole and misonidazole have similar cytotoxic and clastogenic properties under oxic and hypoxic conditions. SR-2508 is relatively more toxic to aerated cells and may deserve close clinical observation for toxicity to normal tissues.« less

  5. Exposure to Discrimination and Heart Rate Variability Reactivity to Acute Stress among Women with Diabetes.

    PubMed

    Wagner, Julie; Lampert, Rachel; Tennen, Howard; Feinn, Richard

    2015-08-01

    Exposure to racial discrimination has been linked to physiological reactivity. This study investigated self-reported exposure to racial discrimination and parasympathetic [high-frequency heart rate variability (HF-HRV)] and sympathetic (norepinephrine and cortisol) activity at baseline and then again after acute laboratory stress. Lifetime exposure to racial discrimination was measured with the Schedule of Racist Events scale. Thirty-two women (16 Black and 16 White) with type 2 diabetes performed a public speaking stressor. Beat-to-beat intervals were recorded on electrocardiograph recorders, and HF-HRV was calculated using spectral analysis and natural log transformed. Norepinephrine and cortisol were measured in blood. Higher discrimination predicted lower stressor HF-HRV, even after controlling for baseline HF-HRV. When race, age, A1c and baseline systolic blood pressure were also controlled, racial discrimination remained a significant independent predictor of stressor HF-HRV. There was no association between lifetime discrimination and sympathetic markers. In conclusion, preliminary data suggest that among women with type 2 diabetes mellitus (T2DM), exposure to racial discrimination is adversely associated with parasympathetic, but not sympathetic, reactivity. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Phylogenetic composition and distribution of picoeukaryotes in the hypoxic northwestern coast of the Gulf of Mexico

    PubMed Central

    Rocke, Emma; Jing, Hongmei; Liu, Hongbin

    2013-01-01

    Coastal marine hypoxic, or low-oxygen, episodes are an increasing worldwide phenomenon, but its effect on the microbial community is virtually unknown by far. In this study, the community structure and phylogeny of picoeukaryotes in the Gulf of Mexico, which are exposed to severe hypoxia in these areas was explored through a clone library approach. Both oxic surface waters and suboxic bottom waters were collected in August 2010 from three representative stations on the inner Louisiana shelf near the Atchafalaya and Mississippi River plumes. The bottom waters of the two more western stations were much more hypoxic in comparison to those of the station closest to the Mississippi River plume, which were only moderately hypoxic. A phylogenetic analysis of a total 175 sequences, generated from six 18S rDNA clone libraries, demonstrated a clear dominance of parasitic dinoflagellates from Marine alveolate clades I and II in all hypoxic waters as well as in the surface layer at the more western station closest to the Atchafalaya River plume. Species diversity was significantly higher at the most hypoxic sites, and many novel species were present among the dinoflagellate and stramenopile clades. We concluded that hypoxia in the Gulf of Mexico causes a significant shift in picoeukaryote communities, and that hypoxia may cause a shift in microbial food webs from grazing to parasitism. PMID:23281331

  7. Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report

    PubMed Central

    Townley, Nick; McNellis, Emily; Sampath, Venkatesh

    2017-01-01

    We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures. PMID:28852582

  8. Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report.

    PubMed

    Townley, Nick; McNellis, Emily; Sampath, Venkatesh

    2017-07-01

    We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures.

  9. Analysis of Dextromethorphan and Dextrorphan in Skeletal Remains Following Differential Microclimate Exposure: Comparison of Acute vs. Repeated Drug Exposure.

    PubMed

    Morrison, Lucas M; Unger, Kirk A; Watterson, James H

    2017-07-01

    Analysis of dextromethorphan (DXM) and its metabolite dextrorphan (DXT) in skeletal remains of rats following acute (ACU, 75 mg/kg, IP, n = 10) or three repeated (REP, 25 mg/kg, IP, n = 10, 40-min interval) doses of DXM is described. Following dosing and euthanasia, rats decomposed outdoors to skeleton in two different microclimate environments (n = 5 ACU and n = 5 REP at each site): Site A (shaded forest microenvironment) and Site B (rocky substrate exposed to direct sunlight, 600 m from Site A). Two drug-free rats at each site served as negative controls. Skeletal elements (vertebrae, ribs, pelvic girdles, femora, tibiae, skulls and scapulae) were recovered, pulverized and underwent methanolic microwave assisted extraction (MAE). Extracts were analyzed by GC-MS following clean-up by solid-phase extraction (SPE). Drug levels, expressed as mass-normalized response ratios and the ratios of DXT and DXM levels (RRDXT/RRDXM) were compared between drug exposures, microclimate sites, and across skeletal elements. DXM levels differed significantly (P < 0.05) between corresponding bone elements across exposure groups (5/7-site A; 4/7-site B), but no significant differences in DXT levels were observed between corresponding elements. RRDXT/RRDXM differed significantly (P < 0.05) between corresponding bone elements across exposure groups (6/7-site A; 5/7-site B). No significant differences were observed in levels of DXM, DXT or RRDXT/RRDXM between corresponding elements from either group between sites. When data from all bone elements was pooled, levels of DXM and RRDXT/RRDXM differed significantly between exposure groups at each site, while those of DXT did not. For both exposure groups, comparison of pooled data between sites showed no significant differences in levels of DXM, DXT or RRDXT/RRDXM. Different decomposition microclimates did not impede the discrimination of DXM exposure patterns from the analyses of DXM, DXT and RRDXT/RRDXM in bone samples. © The Author 2017

  10. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish.

    PubMed

    Li, Xiang; Li, Xu; Li, Yi-Xiang; Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2015-01-01

    We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.

  11. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish

    PubMed Central

    Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2015-01-01

    We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an “inverted V” dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure. PMID:26558894

  12. Human muscle net K(+) release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4,100 m.

    PubMed

    Nordsborg, Nikolai B; Calbet, José A L; Sander, Mikael; van Hall, Gerrit; Juel, Carsten; Saltin, Bengt; Lundby, Carsten

    2010-07-01

    It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

  13. Behavioral, Ventilatory and Thermoregulatory Responses to Hypercapnia and Hypoxia in the Wistar Audiogenic Rat (WAR) Strain

    PubMed Central

    Giusti, Humberto; Oliveira, José Antonio; Glass, Mogens Lesner; Garcia-Cairasco, Norberto

    2016-01-01

    Introduction We investigated the behavioral, respiratory, and thermoregulatory responses elicited by acute exposure to both hypercapnic and hypoxic environments in Wistar audiogenic rats (WARs). The WAR strain represents a genetic animal model of epilepsy. Methods Behavioral analyses were performed using neuroethological methods, and flowcharts were constructed to illustrate behavioral findings. The body plethysmography method was used to obtain pulmonary ventilation (VE) measurements, and body temperature (Tb) measurements were taken via temperature sensors implanted in the abdominal cavities of the animals. Results No significant difference was observed between the WAR and Wistar control group with respect to the thermoregulatory response elicited by exposure to both acute hypercapnia and acute hypoxia (p>0.05). However, we found that the VE of WARs was attenuated relative to that of Wistar control animals during exposure to both hypercapnic (WAR: 133 ± 11% vs. Wistar: 243 ± 23%, p<0.01) and hypoxic conditions (WAR: 138 ± 8% vs. Wistar: 177 ± 8%; p<0.01). In addition, we noted that this ventilatory attenuation was followed by alterations in the behavioral responses of these animals. Conclusions Our results indicate that WARs, a genetic model of epilepsy, have important alterations in their ability to compensate for changes in levels of various arterial blood gasses. WARs present an attenuated ventilatory response to an increased PaCO2 or decreased PaO2, coupled to behavioral changes, which make them a suitable model to further study respiratory risks associated to epilepsy. PMID:27149672

  14. Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    PubMed

    Takakura, Hisashi; Ojino, Minoru; Jue, Thomas; Yamada, Tatsuya; Furuichi, Yasuro; Hashimoto, Takeshi; Iwase, Satoshi; Masuda, Kazumi

    2017-01-01

    Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O 2 ) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O 2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O 2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆P mb O 2 ) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O 2 gas: 95.0%O 2 , 71.3%O 2 , and 47.5%O 2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (S mb O 2 ), and the P mb O 2 was then calculated based on the S mb O 2 and the O 2 dissociation curve of the Mb. The S mb O 2 and P mb O 2 at rest decreased with the decrease in O 2 supply, and the muscle contraction caused a further decrease in S mb O 2 and P mb O 2 under all O 2 conditions. The net increase in mV˙O 2 from the muscle contraction (∆mV˙O 2 ) gradually decreased as the ∆P mb O 2 decreased during muscle contraction. The results of this study suggest that ΔP mb O 2 is a key determinant of the ΔmV˙O 2 . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Acute nonhypothermic exposure to cold impedes motor skill performance in video gaming compared to thermo-neutral and hot conditions.

    PubMed

    Edwards, Andrew M; Crowther, Robert G; Morton, R Hugh; Polman, Remco C

    2011-02-01

    The study examined whether or not acute exposure to unfamiliar hot or cold conditions impairs performance of highly skilled coordinative activities and whether prior physical self-efficacy beliefs were associated with task completion. Nineteen volunteers completed both Guitar Hero and Archery activities as a test battery using the Nintendo Wii console in cold (2 degrees C), neutral (20 degrees C), and hot (38 degrees C) conditions. Participants all completed physical self-efficacy questionnaires following experimental familiarization. Performances of both Guitar Hero and Archery significantly decreased in the cold compared with the neutral condition. The cold trial was also perceived as the condition requiring both greater concentration and effort. There was no association between performance and physical self-efficacy. Performance of these coordinative tasks was compromised by acute (nonhypothermic) exposure to cold; the most likely explanation is that the cold condition presented a greater challenge to attentional processes as a form of environmental distraction.

  16. Elemental carbon exposure at residence and survival after acute myocardial infarction.

    PubMed

    von Klot, Stephanie; Gryparis, Alexandros; Tonne, Cathryn; Yanosky, Jeffrey; Coull, Brent A; Goldberg, Robert J; Lessard, Darleen; Melly, Steven J; Suh, Helen H; Schwartz, Joel

    2009-07-01

    Particulate air pollution has been consistently related to cardiovascular mortality. Some evidence suggests that particulate matter may accelerate the atherosclerotic process. Effects of within-city variations of particulate air pollution on survival after an acute cardiovascular event have been little explored. We conducted a cohort study of hospital survivors of acute myocardial infarction (MI) from the Worcester, MA, metropolitan area to investigate the long-term effects of within-city variation in traffic-related air pollution on mortality. The study builds on an ongoing community-wide investigation examining changes over time in MI incidence and case-fatality rates. We included confirmed cases of MI in 1995, 1997, 1999, 2001, and 2003. Long-term survival status was ascertained through 2005. A validated spatiotemporal land use regression model for traffic-related air pollution was developed and annual averages of elemental carbon at residence estimated. The effect of estimated elemental carbon on the long-term mortality of patients discharged after MI was analyzed using a Cox proportional hazards model, controlling for a variety of demographic, medical history, and clinical variables. Of the 3895 patients with validated MI, 44% died during follow-up. Exposure to estimated elemental carbon in the year of entry into the study was 0.44 microg/m on average. All-cause mortality increased by 15% (95% confidence interval = 0.03%-29%) per interquartile range increase in estimated yearly elemental carbon (0.24 microg/m) after the second year of survival. No association between traffic-related pollution and all-cause mortality was observed during the first 2 years of follow-up. Chronic traffic-related particulate air pollution is associated with increased mortality in hospital survivors of acute MI after the second year of survival.

  17. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival

    PubMed Central

    Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  18. The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat.

    PubMed

    Rubini, Alessandro; Porzionato, Andrea; Zara, Susi; Cataldi, Amelia; Garetto, Giacomo; Bosco, Gerardo

    2013-10-01

    This study was designed to investigate the possible effects of acute hyperbaric hyperoxia on respiratory mechanics of anaesthetised, positive-pressure ventilated rats. We measured respiratory mechanics by the end-inflation occlusion method in nine rats previously acutely exposed to hyperbaric hyperoxia in a standard fashion. The method allows the measurements of respiratory system elastance and of both the "ohmic" and of the viscoelastic components of airway resistance, which respectively depend on the newtonian pressure dissipation due to the ohmic airway resistance to air flow, and on the viscoelastic pressure dissipation caused by respiratory system tissues stress-relaxation. The activities of inducible and endothelial NO-synthase in the lung's tissues (iNOS and eNOS respectively) also were investigated. Data were compared with those obtained in control animals. We found that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances. These changes were accompanied by increased iNOS but not eNOS activities. Hyperbaric hyperoxia was shown to acutely induce detrimental effects on respiratory mechanics. A possible causative role was suggested for increased nitrogen reactive species production because of increased iNOS activity.

  19. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita

    2006-02-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficientmore » line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.« less

  20. Indomethacin reduces short-circuit current and oxygen consumption in normal and chronically hypoxic rat colon.

    PubMed

    Saraví, Fernando D; Cincunegui, Liliana M; Saldeña, Teobaldo A; Carra, Graciela E; Ibáñez, Jorge E; Grzona, Esteban

    2006-09-01

    Chronic hypobaric hypoxia is a physiological environmental stressor. While its effects on most major organ systems have been extensively studied, few works have addressed hypoxia-induced changes in intestinal transport. The effects of cyclooxygenase blockade with indomethacin on short-circuit current (Isc) and oxygen consumption (QO2) of the distal colonic epithelium of control rats and rats submitted to hypoxia for 10 days at 0.52 atm were studied. Isolated mucosae were mounted in an Ussing chamber modified for measuring QO2 while preserving transepithelial vectorial transport. Amiloride was added to the mucosal hemichamber to block a sodium component of Isc present in hypoxic rats. In this condition, basal Isc did not differ between the hypoxic and the control group, but QO2 was higher in the former. Indomethacin (30 micromol/L) reduced Isc to the same extent in both groups, but QO2 reduction was larger in the hypoxic group. Pharmacological blockade of chloride secretion and a low-chloride solution abolished the indomethacin-induced reductions of Isc in both groups, and the reduction of QO2 in controls, and attenuated but did not suppress the QO2 reduction in the hypoxic group. Linear regression analysis of QO2 changes versus Isc changes yielded a significant correlation for both groups, with regression lines with the same slope, but a higher position in bypoxic animals. Results suggest that spontaneously releasedprostaglandins are equally important for maintaining colonic chloride secretion in hypoxic as in normoxic rats, but that, in the former, indomethacin has an additional effect on QO2 which is unrelated to ion transport.

  1. Caffeine in the milk prevents respiratory disorders caused by in utero caffeine exposure in rats.

    PubMed

    Bodineau, Laurence; Saadani-Makki, Fadoua; Jullien, Hugues; Frugière, Alain

    2006-01-25

    Consequences of postnatal caffeine exposure by the milk on ponto-medullary respiratory disturbances observed following an in utero caffeine exposure were analysed. Ponto-medullary-spinal cord preparations from newborn rats exposed to caffeine during gestation but not after the birth display an increase in respiratory frequency and an exaggeration of the hypoxic respiratory depression compared to not treated preparations. These data suggest that tachypneic and apneic episodes encountered in human newborns whose mother consumed caffeine during pregnancy are due in large part to central effect of caffeine at the ponto-medullary level. Both baseline respiratory frequency increase and emphasis of hypoxic respiratory depression are not encountered if rat dams consumed caffeine during nursing. Our hypothesis is that newborn rats exposed to caffeine during gestation but not after the birth would be in withdrawal situation whereas, when caffeine is present in drinking fluid of lactating dams, it goes down the milk and is able to prevent ponto-medullary respiratory disturbances.

  2. [Construction of a general AAV vector regulated by minimal and artificial hypoxic-responsive element].

    PubMed

    Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying

    2011-03-01

    To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed

  3. Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas.

    PubMed

    Li, Hong; Byers, Heather M; Diaz-Kuan, Alicia; Vos, Miriam B; Hall, Patricia L; Tortorelli, Silvia; Singh, Rani; Wallenstein, Matthew B; Allain, Meredith; Dimmock, David P; Farrell, Ryan M; McCandless, Shawn; Gambello, Michael J

    2018-04-01

    Hereditary fructose intolerance (HFI) is an autosomal recessive disorder caused by aldolase B (ALDOB) deficiency resulting in an inability to metabolize fructose. The toxic accumulation of intermediate fructose-1-phosphate causes multiple metabolic disturbances, including postprandial hypoglycemia, lactic acidosis, electrolyte disturbance, and liver/kidney dysfunction. The clinical presentation varies depending on the age of exposure and the load of fructose. Some common infant formulas contain fructose in various forms, such as sucrose, a disaccharide of fructose and glucose. Exposure to formula containing fructogenic compounds is an important, but often overlooked trigger for severe metabolic disturbances in HFI. Here we report four neonates with undiagnosed HFI, all caused by the common, homozygous mutation c.448G>C (p.A150P) in ALDOB, who developed life-threatening acute liver failure due to fructose-containing formulas. These cases underscore the importance of dietary history and consideration of HFI in cases of neonatal or infantile acute liver failure for prompt diagnosis and treatment of HFI. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated bymore » hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  5. Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis

    NASA Astrophysics Data System (ADS)

    Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham

    2005-04-01

    The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).

  6. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells.

    PubMed

    Johansson, Elinn; Grassi, Elisa S; Pantazopoulou, Vasiliki; Tong, Bei; Lindgren, David; Berg, Tracy J; Pietras, Elin J; Axelson, Håkan; Pietras, Alexander

    2017-08-15

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic phenotype of stem-like glioma cells is achieved by stabilization of HIF-2α through interaction with CD44, independently of oxygen. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Hemin offers neuroprotection through inducing exogenous neuroglobin in focal cerebral hypoxic-ischemia in rats

    PubMed Central

    Song, Xue; Xu, Rui; Xie, Fei; Zhu, Haiyuan; Zhu, Ji; Wang, Xin

    2014-01-01

    Objective: To investigate the inducible effect of hemin on exogenous neuroglobin (Ngb) in focal cerebral hypoxic-ischemia in rats. Methods: 125 healthy SD rats were randomly divided into five groups: sham-operation control group, operation group, hemin treatment group, exogenous Ngb treatment group, and hemin and exogenous Ngb joint treatment group. Twenty-four hours after focal cerebral hypoxic-ischemia, Ngb expression was evaluated by immunocytochemistry, RT-PCR, and western blot analyses, while the brain water content and infarct volume were examined. Results: Immunocytochemistry, RT-PCR, and western blot analyses showed more pronounced Ngb expression in the hemin and exogenous Ngb joint operation group than in the hemin or exogenous Ngb individual treatment groups, thus producing significant differences in brain water content and infarct volume (p < 0.05). Conclusions: Hemin may be beneficial in protecting against focal cerebral hypoxic-ischemia through inducing the expression of exogenous Ngb. PMID:24966924

  8. Perceived life stress exposure modulates reward-related medial prefrontal cortex responses to acute stress in depression.

    PubMed

    Kumar, Poornima; Slavich, George M; Berghorst, Lisa H; Treadway, Michael T; Brooks, Nancy H; Dutra, Sunny J; Greve, Douglas N; O'Donovan, Aoife; Bleil, Maria E; Maninger, Nicole; Pizzagalli, Diego A

    2015-07-15

    Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r=0.79, p=0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r=0.79) and no-stress (r=-0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC gray matter, but functional findings remained robust while accounting for structural differences. Small sample size, which warrants replication. Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hypoxia monitoring activities within the FP7 EU-project HYPOX: diverse approaches to understand a complex phenomenon

    NASA Astrophysics Data System (ADS)

    Janssen, F.; Waldmann, C.; Boetius, A.

    2012-04-01

    Hypoxic conditions in aquatic systems and the occurrence of 'dead zones' increase worldwide due to man-made eutrophication and global warming with consequences for biodiversity, ecosystem functions and services such as fisheries, aquaculture and tourism. Monitoring of hypoxia and its consequences has to (1) account for the appropriate temporal and spatial scales, (2) separate anthropogenic from natural drivers and long-term trends from natural variations, (3) assess ecosystem response, (4) use modeling tools for generalization and prediction, and (5) share data and obtained knowledge. In 2009 the EU FP7 project HYPOX (www.hypox.net) started out as a pioneering attempt to improve and integrate hypoxia observation capacities addressing these requirements. Target ecosystems selected for HYPOX cover a broad range of settings (e.g., hydrography, oxygenation status, biological activity, anthropogenic impact) and differ in their sensitivity towards change. Semi-enclosed basins with permanent anoxia (Black Sea, Baltic Sea), are included as well as seasonally or locally hypoxic land-locked systems (fjords, lagoons, lakes) and open ocean systems with high sensitivity to global warming (North Atlantic - Arctic transition). Adopted monitoring approaches involve autonomous, cabled, and shipboard instruments and include static and profiling moorings, benthic observatories, drifters, as well as classical CTD surveys. In order to improve observatory performance, project activities encompass developments of oxygen sensors as well as calibration procedures and technologies to reduce biofouling. Modeling and data assimilation are used to synthesize findings, to obtain an in-depth understanding of hypoxia causes and consequences, and to improve forecasting capacities. For integration of the collected information into a global oxygen observing system, results are disseminated through the HYPOX portal following GEOSS data sharing principles. This presentation will give an overview of

  10. Life-long impairment of hypoxic phrenic responses in rats following 1 month of developmental hyperoxia

    PubMed Central

    Fuller, D D; Bavis, R W; Vidruk, E H; Wang, Z-Y; Olson, E B; Bisgard, G E; Mitchell, G S

    2002-01-01

    Hypoxic ventilatory and phrenic responses are reduced in adult rats (3–5 months old) exposed to hyperoxia for the first month of life (hyperoxia treated). We previously reported that hypoxic phrenic responses were normal in a small sample of 14- to 15-month-old hyperoxia-treated rats, suggesting slow, spontaneous recovery. Subsequent attempts to identify the mechanism(s) underlying this spontaneous recovery of hypoxic phrenic responses led us to re-evaluate our earlier conclusion. Experiments were conducted in two groups of aged Sprague-Dawley rats (14–15 months old) which were anaesthetized, vagotomized, neuromuscularly blocked and ventilated: (1) a hyperoxia-treated group raised in 60 % O2 for the first 28 postnatal days; and (2) an age-matched control group raised in normoxia. Increases in minute phrenic activity and integrated phrenic nerve amplitude (∫Phr) during isocapnic hypoxia (arterial partial pressures of O2, 60, 50 and 40 ± 1 mmHg) were greater in aged control (n = 15) than hyperoxia-treated rats (n = 11; P≤ 0.01). Phrenic burst frequency during hypoxia was not different between groups. To examine the central integration of carotid chemoafferent inputs, steady-state relationships between carotid sinus nerve (electrical) stimulation frequency and phrenic nerve activity were compared in aged control (n = 7) and hyperoxia-treated rats (n = 7). Minute phrenic activity, ∫Phr and burst frequency were not different between groups at any stimulation frequency between 0.5 and 20 Hz. Carotid body chemoreceptor function was examined by recording whole carotid sinus nerve responses to cessation of ventilation or injection of cyanide in aged control and hyperoxia-treated rats. Electrical activity of the carotid sinus nerve did not change in five out of five hyperoxia-treated rats in response to stimuli that evoked robust increases in carotid sinus nerve activity in five out of five control rats. Estimates of carotid body volume were lower in aged

  11. Neuro-overprotection? A functional evaluation of clomethiazole-induced neuroprotection following hypoxic-ischemic injury.

    PubMed

    Gilby, K L; Kelly, M E; McIntyre, D C; Robertson, H A

    2005-01-01

    Hypoxic-ischemic (H-I) injury produces extensive damage to the hippocampus of young rats. We have recently shown that administration of 125 mg kg-1 clomethiazole (CMZ), a GABA(A)-agonist, provides complete histological protection against H-I injury if administered 3 h post-H-I (Brain Res 1035 (2005) 194). However, whether that histological protection translates into lasting functional preservation is unclear. To determine whether hippocampal-based circuits remain functionally intact in CMZ-protected H-I rats, we administered 125 mg kg-1 (high dose [CMZ-HD]) or 65 mg kg-1 (low dose [CMZ-LD]) CMZ, 3 h post-H-I, and examined numerous kindling parameters in the dorsal hippocampus 60 days following H-I. Kindling parameters included afterdischarge (AD) thresholds (ADTs), AD durations and kindling rates. Additional groups assessed included vehicle-injected H-I (VIH), hypoxic, ligated and naive rats. VIH, CMZ-HD, CMZ-LD and hypoxic rats all exhibited significantly faster kindling rates than naive rats. Thus, a previous traumatic event, even hypoxia alone, facilitated subsequent seizure propagation. Still, a significantly slower kindling rate was evident in CMZ-HD rats than in hypoxic, VIH or CMZ-LD rats. Moreover, while longer pre-kindling AD durations were observed in the damaged hippocampus of VIH compared with naive rats, this was not true for either CMZ-treated groups, hypoxic or ligated rats. Collectively, these findings suggest CMZ can suppress the epileptogenic effects of H-I. Surprisingly, however, both groups of CMZ-treated rats exhibited a four to nine times greater ADT than any other group and this effect was most profound in the CMZ-protected hippocampus. Thus, CMZ administration protected local neurons against terminal insult and left network excitability relatively normal with respect to seizure offset mechanisms but also caused profound elevation of local ADTs, which suggests a local hypoexcitability/increased inhibition. Finally, this study demonstrates

  12. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity.

    PubMed

    Zahoor, Muhammad Atif; Woods, Matthew William; Dizzell, Sara; Nazli, Aisha; Mueller, Kristen M; Nguyen, Philip V; Verschoor, Chris P; Kaushic, Charu

    2018-04-01

    Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10 -9  mol/L) or P4 (10 -7  mol/L) following acute exposure to HIV-1 for 6 hours. Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    USGS Publications Warehouse

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  14. Quantifying Fish Swimming Behavior in Response to Acute Exposure of Aqueous Copper Using Computer Assisted Video and Digital Image Analysis

    PubMed Central

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors. PMID:26967350

  15. Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures

    PubMed Central

    Cleary, Ryan T.; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M.; Li, Yijun; Rotenberg, Alexander; Talos, Delia M.; Kahle, Kristopher T.; Jackson, Michele; Rakhade, Sanjay N.; Berry, Gerard; Jensen, Frances E.

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl− cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures. PMID:23536761

  16. ACUTE CHANGES IN PASSIVE GLENOHUMERAL ROTATION FOLLOWING TENNIS PLAY EXPOSURE IN ELITE FEMALE PLAYERS

    PubMed Central

    Kibler, W. Ben; Myers, Natalie L.; Smith, Belinda J.

    2016-01-01

    Background Alterations in glenohumeral (GH) rotation especially internal rotation and total range of motion have been associated with altered GH kinematics and susceptibility to injury. Researchers have evaluated long-term change in baseball and tennis players, and short-term changes in baseball players. However, acute (short-term) changes in GH rotation have not been evaluated in tennis players. Hypotheses/Purpose The purpose of this study was to quantify short-term glenohumeral rotational changes within a group of professional women's tennis players following competitive play. It was hypothesized that there would be acute alterations in passive glenohumeral internal rotation and total range of motion following episodes of tennis play. Study Design Cohort Study Methods Passive glenohumeral external rotation (GER), glenohumeral internal rotation (GIR), and total range of motion (TROM) were evaluated in a cohort of 79 professional adult female tennis players. Measurements were taken at three different time points (TP): baseline before match play (TP1), immediately after match play (TP2), and 24-hours after baseline (TP3). Results There was a statistically significant decrease in the mean GIR from TP1 (43 ± 11 °) to TP2 (39 ± 9 °) (p=0.002) and from TP1 to TP3 (38 ± 10 °) (p=0.001). All measures were at the level of minimal detectable change (MDC) (4 °) indicating clinical significance. There was a decrease in mean TROM from TP1 (146 ± 11 °) to TP2 (142 ± 12 °) (p=0.04), which was not above MDC (7 °). Subgroup analysis showed that 47% of the players demonstrated a decrease in GIR beyond MDC, and 37% demonstrated a decrease in TROM beyond MDC. GER remained unchanged across all time points (p>0.05). Conclusion Both GIR and TROM were reduced after acute exposure to tennis play. In a large subgroup of the cohort, the changes were clinically significant and approached values previously demonstrated to be associated with

  17. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: Meta-analysis of controlled clinical trials.

    PubMed

    Morales, Daniel R; Lipworth, Brian J; Guthrie, Bruce; Jackson, Cathy; Donnan, Peter T; Santiago, Virginia H

    2014-07-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) cause bronchospasm in susceptible patients with asthma, often termed aspirin-exacerbated respiratory disease (AERD), with the risk being greatest after acute exposure. Selective NSAIDs that preferentially inhibit COX-2 might be safer. We sought to systematically evaluate changes in symptoms and pulmonary function after acute selective NSAID or COX-2 inhibitor exposure in patients with the AERD phenotype. A systematic review of databases was performed to identify all blinded, placebo-controlled clinical trials evaluating acute selective NSAID or COX-2 inhibitor exposure in patients with AERD. Effect estimates for changes in respiratory function and symptoms were pooled by using fixed-effects meta-analysis, with heterogeneity investigated. No significant difference in respiratory symptoms (risk difference, -0.01; 95% CI, -0.03 to 0.01; P = .57), decrease in FEV1 of 20% or greater (RD, 0.00; 95% CI, -0.02 to 0.02; P = .77), or nasal symptoms (RD, -0.01; 95% CI, -0.04 to 0.02; P = .42) occurred with COX-2 inhibitors (eg, celecoxib). Selective NSAID exposure caused respiratory symptoms in approximately 1 in 13 patients with AERD (RD, 0.08; 95% CI, 0.02 to 0.14; P = .01). No significant differences were found according to leukotriene antagonist exposure or whether NSAIDs were randomly allocated. According to clinical trial evidence in patients with stable mild-to-moderate asthma with AERD, acute exposure to COX-2 inhibitors is safe, and selective NSAIDs exhibit a small risk. Thus COX-2 inhibitors could be used in patients with AERD or in patients with general asthma unwilling to risk nonselective NSAID exposure when oral challenge tests are unavailable. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  19. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  20. Long-term exposure to air pollution is associated with survival following acute coronary syndrome

    PubMed Central

    Tonne, Cathryn; Wilkinson, Paul

    2013-01-01

    Aims The aim of this study was to determine (i) whether long-term exposure to air pollution was associated with all-cause mortality using the Myocardial Ischaemia National Audit Project (MINAP) data for England and Wales, and (ii) the extent to which exposure to air pollution contributed to socioeconomic inequalities in prognosis. Methods and results Records of patients admitted to hospital with acute coronary syndrome (ACS) in MINAP collected under the National Institute for Cardiovascular Outcomes Research were linked to modelled annual average air pollution concentrations for 2004–10. Hazard ratios for mortality starting 28 days after admission were estimated using Cox proportional hazards models. Among the 154 204 patients included in the cohort, the average follow-up was 3.7 years and there were 39 863 deaths. Mortality rates were higher for individuals exposed to higher levels of particles with a diameter of ≤2.5 µm (PM2.5; PM, particulate matter): the fully adjusted hazard ratio for a 10 µg/m3 increase in PM2.5 was 1.20 (95% CI 1.04–1.38). No associations were observed for larger particles or oxides of nitrogen. Air pollution explained socioeconomic inequalities in survival to only a small extent. Conclusion Mortality from all causes was higher among individuals with greater exposure to PM2.5 in survivors of hospital admission for ACS in England and Wales. Despite higher exposure to PM2.5 among those from more deprived areas, such exposure was a minor contribution to the socioeconomic inequalities in prognosis following ACS. Our findings add to the evidence of mortality associated with long-term exposure to fine particles. PMID:23423735