Science.gov

Sample records for acute inflammatory lung

  1. Novel Role for Aldose Reductase in Mediating Acute Inflammatory Responses in the Lung1

    PubMed Central

    Ravindranath, Thyyar M.; Mong, Phyllus Y.; Ananthakrishnan, Radha; Li, Qing; Quadri, Nosirudeen; Schmidt, Ann Marie; Ramasamy, Ravichandran; Wang, Qin

    2011-01-01

    Exaggerated inflammatory responses and the resultant increases in alveolar-capillary permeability underlie the pathogenesis of acute lung injury during sepsis. This study examined the functions of aldose reductase (AR) in mediating acute lung inflammation. Transgenic mice expressing human AR (ARTg) were used to study the functions of AR since mice have low intrinsic AR activity. In a mild cecal ligation and puncture model, ARTg mice demonstrated an enhanced AR activity and a greater inflammatory response as evaluated by circulating cytokine levels, neutrophil accumulation in the lungs, and activation of Rho kinase in lung endothelial cells (ECs). Compared with WT lung cells, ARTg lung cells produced more IL-6 and showed augmented JNK activation in response to LPS stimulation ex vivo. In human neutrophils, AR activity was required for fMLP-included CD11b activation and up-regulation, respiratory burst, and shape changes. In human pulmonary microvascular ECs, AR activity was required for TNF-α-induced activation of the Rho kinase/MKK4/JNK pathway and IL-6 production, but not p38 activation or ICAM-1 expression. Importantly, AR activity in both human neutrophils and ECs was required for neutrophil adhesion to TNF-α-stimulated ECs. These data demonstrate a novel role for AR in regulating the signaling pathways leading to neutrophil-EC adhesion during acute lung inflammation. PMID:20007578

  2. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  3. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  4. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.

  5. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury. PMID:27216047

  6. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury.

    PubMed

    Joe, Yeonsoo; Kim, Seul-Ki; Chen, Yingqing; Yang, Jung Wook; Lee, Jeong-Hee; Cho, Gyeong Jae; Park, Jeong Woo; Chung, Hun Taeg

    2015-11-01

    Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.

  7. Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice

    PubMed Central

    Cornélio Favarin, Daniely; Martins Teixeira, Maxelle; Lemos de Andrade, Ednéia; de Freitas Alves, Claudiney; Lazo Chica, Javier Emilio; Artério Sorgi, Carlos; Paula Rogerio, Alexandre

    2013-01-01

    Acute lung injury (ALI) is characterized by alveolar edema and uncontrolled neutrophil migration to the lung, and no specific therapy is still available. Ellagic acid, a compound present in several fruits and medicinal plants, has shown anti-inflammatory activity in several experimental disease models. We used the nonlethal acid aspiration model of ALI in mice to determine whether preventive or therapeutic administration of ellagic acid (10 mg/kg; oral route) could interfere with the development or establishment of ALI inflammation. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. In both preventive and therapeutic treatments, ellagic acid reduced the vascular permeability changes and neutrophil recruitment to the bronchoalveolar lavage fluid (BALF) and to lung compared to the vehicle. In addition, the ellagic acid accelerated the resolution for lung neutrophilia. Moreover, ellagic acid reduced the COX-2-induced exacerbation of inflammation. These results were similar to the dexamethasone. However, while the anti-inflammatory effects of dexamethasone treatment were due to the reduced activation of NF-κB and AP-1, the ellagic acid treatment led to reduced BALF levels of IL-6 and increased levels of IL-10. In addition, dexamethasone treatment reduced IL-1β. Together, these findings identify ellagic acid as a potential therapeutic agent for ALI-associated inflammation. PMID:23533300

  8. The serpentine path to a novel mechanism-based inhibitor of acute inflammatory lung injury

    PubMed Central

    2014-01-01

    The Comroe lecture on which this review is based described my research path during the past 45 years, beginning with studies of oxidant stress (hyperoxia) and eventuating in the discovery of a synthetic inhibitor of phospholipase A2 activity (called MJ33) that prevents acute lung injury in mice exposed to lipopolysaccharide. In between were studies of lung ischemia, lung surfactant metabolism, the protein peroxiredoxin 6 and its phospholipase A2 activity, and mechanisms for NADPH oxidase activation. These seemingly unrelated research activities provided the nexus for identification of a novel target and a potentially novel therapeutic agent for prevention or treatment of acute lung injury. PMID:24744383

  9. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  10. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress.

    PubMed

    Su, Zu-Qing; Mo, Zhi-Zhun; Liao, Jin-Bin; Feng, Xue-Xuan; Liang, Yong-Zhuo; Zhang, Xie; Liu, Yu-Hong; Chen, Xiao-Ying; Chen, Zhi-Wei; Su, Zi-Ren; Lai, Xiao-Ping

    2014-10-01

    Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.

  11. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    PubMed

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  12. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities. PMID:27469104

  13. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1

    PubMed Central

    Vettorazzi, Sabine; Bode, Constantin; Dejager, Lien; Frappart, Lucien; Shelest, Ekaterina; Klaßen, Carina; Tasdogan, Alpaslan; Reichardt, Holger M.; Libert, Claude; Schneider, Marion; Weih, Falk; Henriette Uhlenhaut, N.; David, Jean-Pierre; Gräler, Markus; Kleiman, Anna; Tuckermann, Jan P.

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory disease for which no specific treatment exists. As glucocorticoids have potent immunosuppressive effects, their application in ALI is currently being tested in clinical trials. However, the benefits of this type of regimen remain unclear. Here we identify a mechanism of glucocorticoid action that challenges the long-standing dogma of cytokine repression by the glucocorticoid receptor. Contrarily, synergistic gene induction of sphingosine kinase 1 (SphK1) by glucocorticoids and pro-inflammatory stimuli via the glucocorticoid receptor in macrophages increases circulating sphingosine 1-phosphate levels, which proves essential for the inhibition of inflammation. Chemical or genetic inhibition of SphK1 abrogates the therapeutic effects of glucocorticoids. Inflammatory p38 MAPK- and mitogen- and stress-activated protein kinase 1 (MSK1)-dependent pathways cooperate with glucocorticoids to upregulate SphK1 expression. Our findings support a critical role for SphK1 induction in the suppression of lung inflammation by glucocorticoids, and therefore provide rationales for effective anti-inflammatory therapies. PMID:26183376

  14. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  15. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs

    PubMed Central

    Petersen, Rebecca Y.; Royse, Emily; Kemp, Matthew W.; Miura, Yuichiro; Noe, Andres; Jobe, Alan H.; Hillman, Noah H.

    2016-01-01

    Background Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP) is being increasingly used clinically to transition preterm infants at birth. Objective To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs. Methods The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF), bronchoalveolar lavage fluid (BAL), right mainstem bronchi and peripheral lung tissue were evaluated for inflammation. Results Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used. Conclusion Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep. PMID:27463520

  16. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury.

    PubMed

    Chen, Wenbo; Ge, Xiangting; Xu, Fengli; Zhang, Yali; Liu, Zhiguo; Pan, Jialing; Song, Jiao; Dai, Yuanrong; Zhou, Jianmin; Feng, Jianpeng; Liang, Guang

    2015-08-01

    Acute lung injury (ALI) is a major cause of acute respiratory failure in critically-ill patients. It has been reported that both resveratrol and chalcone derivatives could ameliorate lung injury induced by inflammation. A series of paralleled Aza resveratrol-chalcone compounds (5a-5m, 6a-6i) were designed, synthesized and screened for anti-inflammatory activity. A majority showed potent inhibition on the IL-6 and TNF-α expression-stimulated by LPS in macrophages, of which compound 6b is the most potent analog by inhibition of LPS-induced IL-6 release in a dose-dependent manner. Moreover, 6b exhibited protection against LPS-induced acute lung injury in vivo. These results offer further insight into the use of Aza resveratrol-chalcone compounds for the treatment of inflammatory diseases, and the use of compound 6b as a lead compound for the development of anti-ALI agents.

  17. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load.

    PubMed

    Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar

    2015-10-15

    Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. PMID:26375251

  18. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  19. Characterization of the oxidant generation by inflammatory cells lavaged from rat lungs following acute exposure to ozone

    SciTech Connect

    Esterline, R.L.; Bassett, D.J.; Trush, M.A.

    1989-06-15

    Following exposure to 2 ppm ozone for 4 hr, two distinct effects on rat lung inflammatory cell oxidant generation were observed. TPA- and opsonized zymosan-stimulated superoxide production by the inflammatory cell population was found to be maximally inhibited 24 hr following ozone exposure. In contrast, luminol-amplified chemiluminescence increased 24 hr following ozone exposure, coinciding with an increase in the percentage of neutrophils and myeloperoxidase in the inflammatory cell population. Supporting the involvement of myeloperoxidase in the enhanced oxidant-generating status of these cells, the luminol-amplified chemiluminescence was found to be azide-, but not superoxide dismutase-inhibitable. Additionally, this cell population was found to generate taurine chloramines, a myeloperoxidase-dependent function which was absent prior to the ozone exposure and also demonstrated enhanced activation of benzo(a)pyrene-7,8-dihydrodiol to its light-emitting dioxetane intermediate. Addition of myeloperoxidase to control alveolar macrophages resulted in enhanced luminol-amplified chemiluminescence, taurine chloramine generation, and enhanced chemiluminescence from benzo(a)pyrene-7,8-dihydrodiol demonstrating that, in the presence of myeloperoxidase, alveolar macrophages are capable of supporting myeloperoxidase-dependent reactions. The possibility of such an interaction occurring in vivo is suggested by the detection of myeloperoxidase activity in the cell-free lavagates of ozone-exposed rats. These studies suggest that neutrophils recruited to ozone-exposed lungs alter the oxidant-generating capabilities in the lung which could further contribute to lung injury or to the metabolism of inhaled xenobiotics.

  20. Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.

    PubMed

    Yao, Xin; Chen, Nan; Ma, Chun-Hua; Tao, Jing; Bao, Jian-An; Zong-Qi, Cheng; Chen, Zu-Tao; Miao, Li-Yan

    2015-01-01

    In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.

  1. Sickle erythrocytes and platelets augment lung leukotriene synthesis with downregulation of anti-inflammatory proteins: relevance in the pathology of the acute chest syndrome

    PubMed Central

    Opene, Michael; Kurantsin-Mills, Joseph; Husain, Sumair

    2014-01-01

    Abstract Initiation, progression, and resolution of vaso-occlusive pain episodes in sickle cell disease (SCD) have been recognized as reperfusion injury, which provokes an inflammatory response in the pulmonary circulation. Some 5-lipoxygenase (5-lox) metabolites are potent vasoconstrictors in the pulmonary circulation. We studied stimulation of production of the inflammatory eicosanoids leukotrienes (LTs) and prostaglandin E2 (PGE2) by isolated rat lungs perfused with sickle (HbSS) erythrocytes. Our hypothesis is that HbSS erythrocytes produce more LTs than normal (HbAA) erythrocytes, which can induce vaso-occlusive episodes in SCD patients. Lung perfusates were collected at specific time points and purified by high-pressure liquid chromatography, and LTC4 and PGE2 contents were measured by enzyme-linked immunosorbent assay (ELISA). Rat lung explants were also cultured with purified HbAA and HbSS peptides, and 5-lox, cyclooxygenase 1/2, and platelet-activating factor receptor (PAFR) proteins were measured by Western blotting, while prostacyclin and LTs produced by cultured lung explants were measured by ELISA. Lung weight gain and blood gas data were not different among the groups. HbSS-perfused lungs produced more LTC4 and PGE2 than HbAA-perfused lungs: 10.40 ± 0.62 versus 0.92 ± 0.2 ng/g dry lung weight (mean ± SEM; P = 0.0001) for LTC4. Inclusion of autologous platelets (platelet-rich plasma) elevated LTC4 production to 12.6 ± 0.96 and 7 ± 0.60 ng/g dry lung weight in HbSS and HbAA perfusates, respectively. HbSS lungs also expressed more 5-lox and PAFR. The data suggest that HbSS erythrocytes and activated platelets in patient’s pulmonary microcirculation will enhance the synthesis and release of the proinflammatory mediators LTC4 and PGE2, both of which may contribute to onset of the acute chest syndrome in SCD. PMID:25621162

  2. Inflammatory mediators in acute pancreatitis.

    PubMed

    Bhatia, M; Brady, M; Shokuhi, S; Christmas, S; Neoptolemos, J P; Slavin, J

    2000-02-01

    Inflammatory mediators play a key role in acute pancreatitis and the resultant multiple organ dysfunction syndrome, which is the primary cause of death in this condition. Recent studies have confirmed the critical role played by inflammatory mediators such as TNF-alpha, IL-1beta, IL-6, IL-8, PAF, IL-10, C5a, ICAM-1, and substance P. The systemic effects of acute pancreatitis have many similarities to those of other conditions such as septicaemia, severe burns, and trauma. The delay between the onset of inflammation in the pancreas and the development of the systemic response makes acute pancreatitis an ideal experimental and clinical model with which to study the role of inflammatory mediators and to test novel therapies. Elucidation of the key mediators involved in the pathogenesis of acute pancreatitis will facilitate the development of clinically effective anti-inflammatory therapy.

  3. Removal of Inflammatory Ascites is Associated with Dynamic Modification of Local and Systemic Inflammation along with Prevention of Acute Lung Injury: In Vivo and In Silico Studies

    PubMed Central

    Emr, Bryanna; Sadowsky, David; Azhar, Nabil; Gatto, Louis A.; An, Gary; Nieman, Gary; Vodovotz, Yoram

    2014-01-01

    Background Sepsis-induced inflammation in the gut/peritoneal compartment occurs early in sepsis, and can lead to acute lung injury (ALI). We have suggested that inflammatory ascites drives the pathogenesis of ALI, and that removal of ascites with an abdominal wound vacuum prevents ALI. We hypothesized that the time- and compartment-dependent changes in inflammation that determine this process can be discerned using Principal Component Analysis (PCA) and Dynamic Bayesian Network (DBN) inference. Methods To test this hypothesis, data from a previous study were analyzed using PCA and DBN. In that study, two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via intestinal ischemia/reperfusion and placement of a peritoneal fecal clot. The Control Group (n=6) had the abdomen opened at 12 hrs post injury (T12) with attachment of a passive drain. The Peritoneal Suction Treatment (PST) Group (n=6) was treated in an identical fashion except that a vacuum was applied to the peritoneal cavity at T12 to remove ascites and maintained until T48. Multiple inflammatory mediators were measured in ascites and plasma and related to lung function (PaO2/FiO2 ratio [PF] and Oxygen Index [OI]) using PCA and DBN. Results PST prevented ALI based on lung histopathology, whereas Control animals developed ALI. Principal Component Analysis revealed that local to the insult (i.e. ascites), primary pro-inflammatory cytokines play a decreased role in the overall response in the treatment group as compared to control. In both groups, multiple, nested positive feedback loops were inferred from DBN, which included interrelated roles for bacterial endotoxin, interleukin-6, transforming growth factor-β1, C-reactive protein, PF, and OI. Von Willebrand Factor was an output in Control, but not PST, ascites. Conclusions These combined in vivo and in silico studies suggest that in this clinically realistic paradigm of sepsis, endotoxin drives the inflammatory response in the

  4. Acute lung injury review.

    PubMed

    Tsushima, Kenji; King, Landon S; Aggarwal, Neil R; De Gorordo, Antonio; D'Alessio, Franco R; Kubo, Keishi

    2009-01-01

    The first report of acute respiratory distress syndrome (ARDS) was published in 1967, and even now acute lung injury (ALI) and ARDS are severe forms of diffuse lung disease that impose a substantial health burden all over the world. Recent estimates indicate approximately 190,000 cases per year of ALI in the United States each year, with an associated 74,500 deaths per year. Common causes of ALI/ARDS are sepsis, pneumonia, trauma, aspiration pneumonia, pancreatitis, and so on. Several pathologic stages of ALI/ARDS have been described: acute inflammation with neutrophil infiltration, fibroproliferative phase with hyaline membranes, with varying degrees of interstitial fibrosis, and resolution phase. There has been intense investigation into the pathophysiologic events relevant to each stage of ALI/ARDS, and much has been learned in the alveolar epithelial, endobronchial homeostasis, and alveolar cell immune responses, especially neutrophils and alveolar macrophages in an animal model. However, these effective results in the animal models are not equally adoptive to those in randomized, controlled trials. The clinical course of ALI/ARDS is variable with the likely pathophysiologic complexity of human ALI/ARDS. In 1994, the definition was recommended by the American-European Consensus Conference Committee, which facilitated easy nomination of patients with ALI/ARDS for a randomized, clinical trial. Here, we review the recent randomized, clinical trials of ALI/ARDS.

  5. ACUTE OZONE-INDUCED INFLAMMATORY GENE EXPRESSION IN THE RAT LUNG IS NOT RELATED TO LEVELS OF ANTIOXIDANTS IN THE LAVAGE FLUID

    EPA Science Inventory

    ABSTRACT BODY: Ozone causes oxidative stress and lung inflammation. We hypothesized that rat strains with or without genetic susceptibility to cardiovascular disease will have different antioxidant levels in alveolar lining, and that ozone induced inflammatory gene expression wil...

  6. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway.

    PubMed

    Qi, Tianjie; Xu, Fei; Yan, Xixin; Li, Shuai; Li, Haitao

    2016-01-01

    Sulforaphane (1-isothiocyanate-4-methyl sulfonyl butane) is a plant extract (obtained from cruciferous vegetables, such as broccoli and cabbage) and is known to exert anticancer, antioxidant and anti-inflammatory effects. It stimulates the generation of human or animal cells, which is beneficial to the body. The aim of the current study was to determine whether sulforaphane protects against lipopolysaccharide (LPS)‑induced acute lung injury (ALI) through its anti-inflammatory effects, and to investigate the signaling pathways involved. For this purpose, male BALB/c mice were treated with sulforaphane (50 mg/kg) and 3 days later, ALI was induced by the administration of LPS (5 mg/kg) and we thus established the model of ALI. Our results revealed that sulforaphane significantly decreased lactate dehydrogenase (LDH) activity (as shown by LDH assay), the wet-to-dry ratio of the lungs and the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (measured by ELISA), as well as nuclear factor-κB protein expression in mice with LPS-induced ALI. Moreover, treatment with sulforaphane significantly inhibited prostaglandin E2 (PGE2) production, and cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9) protein expression (as shown by western blot analysis), as well as inducible nitric oxide synthase (iNOS) activity in mice with LPS-induced ALI. Lastly, we noted that pre-treatment with sulforaphane activated the nuclear factor-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in the mice with LPS-induced ALI. These findings demonstrate that sulforaphane exerts protective effects against LPS-induced ALI through the Nrf2/ARE pathway. Thus, sulforaphane may be a potential a candidate for use in the treatment of ALI.

  7. Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping.

    PubMed

    Sun, Bingbing; Pokhrel, Suman; Dunphy, Darren R; Zhang, Haiyuan; Ji, Zhaoxia; Wang, Xiang; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Dong, Juyao; Li, Ruibin; Mädler, Lutz; Brinker, C Jeffrey; Nel, André E; Xia, Tian

    2015-09-22

    The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. PMID:26200133

  8. Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping

    PubMed Central

    Sun, Bingbing; Pokhrel, Suman; Dunphy, Darren R.; Zhang, Haiyuan; Ji, Zhaoxia; Wang, Xiang; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Dong, Juyao; Li, Ruibin; Mädler, Lutz; Brinker, C. Jeffrey; Nel, André E.; Xia, Tian

    2015-01-01

    The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe (GRAS) for use in food products by the Food and Drug Administration (FDA). However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium (Ti) and aluminum (Al) doping (0–7%), using flame spray pyrolysis (FSP). Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone marrow-derived macrophages (BMDMs). Ti- and to a lesser extent Al-doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. PMID:26200133

  9. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  10. Sevoflurane Inhibits Nuclear Factor-κB Activation in Lipopolysaccharide-Induced Acute Inflammatory Lung Injury via Toll-Like Receptor 4 Signaling

    PubMed Central

    Sun, Xi Jia; Li, Xiao Qian; Wang, Xiao Long; Tan, Wen Fei; Wang, Jun Ke

    2015-01-01

    Background Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms. Methods In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards. Results The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol. Conclusions This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo

  11. Biomarkers in acute lung injury.

    PubMed

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  12. Acute lung injury after thoracic surgery.

    PubMed

    Eichenbaum, Kenneth D; Neustein, Steven M

    2010-08-01

    In this review, the authors discussed criteria for diagnosing ALI; incidence, etiology, preoperative risk factors, intraoperative management, risk-reduction strategies, treatment, and prognosis. The anesthesiologist needs to maintain an index of suspicion for ALI in the perioperative period of thoracic surgery, particularly after lung resection on the right side. Acute hypoxemia, imaging analysis for diffuse infiltrates, and detecting a noncardiogenic origin for pulmonary edema are important hallmarks of acute lung injury. Conservative intraoperative fluid administration of neutral to slightly negative fluid balance over the postoperative first week can reduce the number of ventilator days. Fluid management may be optimized with the assistance of new imaging techniques, and the anesthesiologist should monitor for transfusion-related lung injuries. Small tidal volumes of 6 mL/kg and low plateau pressures of < or =30 cmH2O may reduce organ and systemic failure. PEEP may improve oxygenation and increases organ failure-free days but has not shown a mortality benefit. The optimal mode of ventilation has not been shown in perioperative studies. Permissive hypercapnia may be needed in order to reduce lung injury from positive-pressure ventilation. NO is not recommended as a treatment. Strategies such as bronchodilation, smoking cessation, steroids, and recruitment maneuvers are unproven to benefit mortality although symptomatically they often have been shown to help ALI patients. Further studies to isolate biomarkers active in the acute setting of lung injury and pharmacologic agents to inhibit inflammatory intermediates may help improve management of this complex disease.

  13. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus.

    PubMed

    Khatri, Mahesh; Dwivedi, Varun; Krakowka, Steven; Manickam, Cordelia; Ali, Ahmed; Wang, Leyi; Qin, Zhuoming; Renukaradhya, Gourapura J; Lee, Chang-Won

    2010-11-01

    Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.

  14. Interstitial Lung Disease in Idiopathic Inflammatory Myopathy

    PubMed Central

    Saketkoo, Lesley Ann; Ascherman, Dana P.; Cottin, Vincent; Christopher-Stine, Lisa; Danoff, Sonye K.; Oddis, Chester V.

    2011-01-01

    The lung is one of the most common extra-muscular targets in idiopathic inflammatory myopathies (IIM) and interstitial lung disease (ILD) is a prevalent and often devastating manifestation of IIM. IIM-associated ILD (IIM-ILD) contributes to nearly 80% of the mortality in IIM with a reported prevalence of 65% of newly diagnosed IIM cases. Although ILD frequently accompanies clinical and laboratory findings of myositis, overt signs of muscle disease may be absent in the setting of significant lung disease. Understanding the varied scope of presentation of these diseases is essential to providing optimal patient care. This review will provide an in depth examination of ILD in IIM both from a rheumatologic and pulmonary perspective and will discuss the scope of disease, presenting features, genetic associations, pathogenesis, diagnosis, radiographic and histopathologic findings, along with biomarker assessment and a rationale for therapeutic intervention. PMID:21941374

  15. Diverse macrophage populations mediate acute lung inflammation and resolution

    PubMed Central

    King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS. PMID:24508730

  16. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  17. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    PubMed Central

    Lai, Chih-Cheng; Liu, Wei-Lun; Chen, Chin-Ming

    2014-01-01

    Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory. PMID:25100435

  18. Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury.

    PubMed

    Akbarshahi, Hamid; Menzel, Mandy; Posaric Bauden, Monika; Rosendahl, Ann; Andersson, Roland

    2012-01-01

    Acute lung injury (ALI) is an important cause of mortality in critically ill patients. Acute pancreatitis (AP) is one of the risk factors for developing this syndrome. Among the inflammatory cells, macrophages have a key role in determining the severity of the acute lung injury. In the lungs, macrophages constitute a heterogeneous cell population distributed in different compartments. Changes in not only the macrophage count, but also in their phenotype have been seen during the course of lung injury. A murine ductal ligation model of acute pancreatitis showed substantial morphological changes in the pancreas and lungs. Immunohistochemistry showed neutrophil recruitment into both organs after 9 hours and later on. F4/80(+) cells in the pancreas increased in the ligated animals, though there was not a significant difference in their number in the lungs as compared to sham operated animals. Flow cytometry analysis of lung macrophages demonstrated an enrichment of F4/80(-) CD68(+)CCR2(+) and F4/80(-) CD68(+)CD206(+) lung macrophages in ligated animals (AP) as compared to the sham operated group. The level of interleukin-6 in plasma increased 3 hours after ligation compared to the sham operated group, as a first indicator of a systemic inflammatory response.This study suggests a role for F4/80(-) CD68(+) macrophages in the pathogenesis of acute lung injury in acute pancreatitis. Studying lung macrophages for different phenotypic markers, their polarization, activation and recruitment, in the context of acute lung injury, is a novel area to potentially identify interventions which may improve the outcome of acute lung injury.

  19. Lung Ischemia Reperfusion (IR) is a Sterile Inflammatory Process influenced by Commensal Microbiota in Mice

    PubMed Central

    Prakash, Arun; Sundar, Shirin V.; Zhu, Ying-gang; Tran, Alphonso; Lee, Jae-Woo; Lowell, Clifford; Hellman, Judith

    2015-01-01

    Background Lung ischemia reperfusion (IR) complicates numerous clinical processes, such as cardiac arrest, transplantation, and major trauma. These conditions generate sterile inflammation, which can cause or augment acute lung injury. We previously reported that lung and systemic inflammation in a mouse model of ventilated lung IR depends on Toll-like receptor (TLR) 4 signaling and the presence of alveolar macrophages. Here, we tested the hypothesis that the intestinal microbiome has a role in influencing the inflammatory response to lung IR. Methods Lung IR was created in intubated mechanically ventilated mice via reversible left pulmonary artery occlusion followed by reperfusion. Inflammatory markers and histology were tracked over varying periods of reperfusion (from 1h to 24h). Separate groups of mice were given intestinally-localized antibiotics for 8-10 weeks, and then were subjected to left lung IR and analysis of lungs and plasma for markers of inflammation. Alveolar macrophages from antibiotic-treated or control mice were tested ex vivo for inflammatory responses to bacterial TLR agonists, namely LPS and Pam3Cys. Results Inflammation generated by left lung IR was rapid in onset and dissipated within 12-24h. Treatment of mice with intestinally localized antibiotics was associated with a marked attenuation of circulating and lung inflammatory markers, and histologic evidence of infiltrating cells and edema in the lung following IR. Alveolar macrophages from antibiotic-treated mice produced less cytokines ex vivo when stimulated with TLR agonists as compared to those from control mice. Conclusions Our data indicate that the inflammatory response induced by lung IR is transient and is strongly influenced by intestinal microbiota. These data suggest that the intestinal microbiome could potentially be manipulated to attenuate the post-IR pulmonary inflammatory response. PMID:26196836

  20. Lung inflammatory responses and hyperinflation induced by an intratracheal exposure to lipopolysaccharide in rats.

    PubMed

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2004-01-01

    Exposure of the respiratory tract to lipopolysaccharide (LPS) induces acute local inflammation and tissue injury associated with the various deliveries of LPS. To determine potential association of local inflammatory responses with respiratory tract dysfunction, infiltration of inflammatory cells, production of inflammatory mediators, lung hyperinflation and edema were measured in Wister rats 2, 4, and 24 h after an intratracheal administration of LPS at different doses (5, 50, 500 and 5000 microg/ml/kg). Lung hyperinflation determined by an increased excised lung gas volume was significantly increased 2 and 4 h after LPS instillation and lung edema occurred from 2 h onward. Peak BAL levels of TNFalpha appeared at 2 h, MCP-1 at 4 h, and IL-6 at 2 and 4 h, while BAL levels of IL-1beta were increased during 24 h after the intratracheal instillation of LPS. Neutrophilia in BAL fluid was noted from 2 h post-challenge. Our results demonstrate a clear dose-related change in the lung weight at 4 and 24 h, in the BAL levels of MCP-1 at 4 h, and IL-6 and IL-1beta at 2 and 4 h. It seems important to understand polymorphisms of LPS-induced lung hyperinflation and inflammation. Lung hyperinflation and inflammation may be independent during the development of acute lung injury.

  1. Inflammatory pathways and microvascular responses in the lung.

    PubMed

    Kuebler, Wolfgang M

    2005-01-01

    Neutrophil granulocytes constitute an important host defense mechanism, but may at the same time damage functional tissue and propagate acute organ failure. This balance is particularly vulnerable in the lung which provides a large surface area for invading pathogens and microorganisms, and simultaneously harbors a large pool of physiologically marginated neutrophils within its microvascular bed. Pathophysiological stimuli further amplify this accumulation of blood cells and promote the emigration of neutrophils into the pulmonary interstitium and the airspaces by different mechanisms depending on the pathophysiological stimulus, its route of entry into or site of production in the lung, and the time course of its action. Importantly, the pulmonary microvascular endothelium plays a key role in regulating not only sequestration and emigration of neutrophils, but by initiating the inflammatory response to a variety of diverse stimuli many of which do not directly target the circulating neutrophil, but elicit microvascular reactions by primarily acting on the endothelium. This review highlights the inflammatory process in the pulmonary microvasculature with special emphasis on the role of the pulmonary endothelium.

  2. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells

  3. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  4. [Acute-Onset Chronic Inflammatory Demyelinating Polyradiculoneuropathy].

    PubMed

    Kanbayashi, Takamichi; Sonoo, Masahiro

    2015-11-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is characterized by an insidious onset showing progression over two months. However, up to 16% of CIDP patients may show acute presentation similar to Guillain-Barré syndrome (GBS). Such cases are termed acute-onset CIDP (A-CIDP). Distinguishing A-CIDP from GBS, especially the acute inflammatory demyelinating polyneuropathy (AIDP) subtype, is critical because therapeutic strategies and outcomes may differ between the two syndromes. Regarding clinical features, A-CIDP is less likely to have autonomic nervous system involvement, facial weakness, a preceding infectious illness, or the need for mechanical ventilation, in comparison with AIDP. Electrophysiological features are usually quite similar between the two, although follow-up studies may elucidate key differences. Around 8%-16% of GBS patients may show clinical deterioration shortly after improvement or stabilization following initial immunological therapy. Such a situation is termed treatment-related fluctuation (TRF; GBS-TRF). The distinction between GBS-TRF and A-CIDP is an important clinical issue because maintenance treatment is often required in CIDP. The diagnosis of A-CIDP should be considered when the condition of a patient with GBS deteriorates after nine weeks from onset, or when deterioration occurs three times or more.

  5. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    PubMed Central

    Wang, Jian; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; Li, Xiaofei; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematoxylineosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitric oxide (NO), and myeloperoxidase (MPO) activity were measured by enzymelinked immunosorbent assay. Expression of inducible nitric oxide synthase (iNOS) in lung tissues was determined by Western blot analysis. Crocin pretreatment significantly alleviated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by crocin pretreatment. Crocin pretreatment also reduced the concentrations of NO in lung tissues. Furthermore, the expression of iNOS was significantly suppressed by crocin pretreatment. Croncin potently protected against LPS-induced ALI and the protective effects of crocin may attribute partly to the suppression of iNOS expression. PMID:26191176

  6. The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome.

    PubMed

    Tianzhu, Zhang; Shihai, Yang; Juan, Du

    2014-12-01

    In previous study, the anti-inflammatory effect of morin had been found. In this study, we investigated anti-inflammatory effects of morin on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, and IL-6 were assayed by enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed by hematoxylin and eosin (HE) staining. The protein level of lung NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome was measured by Western blotting. The data showed that treatment with the morin markedly attenuated inflammatory cell numbers in the BALF, decreased lung NLRP3 inflammasome protein level, and improved SOD activity and inhibited MPO activity. Histological studies demonstrated that morin substantially inhibited LPS-induced neutrophils in lung tissue compared with model group. The results indicated that the morin had a protective effect on LPS-induced ALI in mice.

  7. Acute exacerbations of fibrotic interstitial lung disease.

    PubMed

    Churg, Andrew; Wright, Joanne L; Tazelaar, Henry D

    2011-03-01

    An acute exacerbation is the development of acute lung injury, usually resulting in acute respiratory distress syndrome, in a patient with a pre-existing fibrosing interstitial pneumonia. By definition, acute exacerbations are not caused by infection, heart failure, aspiration or drug reaction. Most patients with acute exacerbations have underlying usual interstitial pneumonia, either idiopathic or in association with a connective tissue disease, but the same process has been reported in patients with fibrotic non-specific interstitial pneumonia, fibrotic hypersensitivity pneumonitis, desquamative interstitial pneumonia and asbestosis. Occasionally an acute exacerbation is the initial manifestation of underlying interstitial lung disease. On biopsy, acute exacerbations appear as diffuse alveolar damage or bronchiolitis obliterans organizing pneumonia (BOOP) superimposed upon the fibrosing interstitial pneumonia. Biopsies may be extremely confusing, because the acute injury pattern can completely obscure the underlying disease; a useful clue is that diffuse alveolar damage and organizing pneumonia should not be associated with old dense fibrosis and peripheral honeycomb change. Consultation with radiology can also be extremely helpful, because the fibrosing disease may be evident on old or concurrent computed tomography scans. The aetiology of acute exacerbations is unknown, and the prognosis is poor; however, some patients survive with high-dose steroid therapy.

  8. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    PubMed

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  9. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis.

    PubMed

    Lin, Ze-Si; Ku, Chuen Fai; Guan, Yi-Fu; Xiao, Hai-Tao; Shi, Xiao-Ke; Wang, Hong-Qi; Bian, Zhao-Xiang; Tsang, Siu Wai; Zhang, Hong-Jie

    2016-04-01

    Acute pancreatitis is an inflammatory process originated in the pancreas; however, it often leads to systemic complications that affect distant organs. Acute respiratory distress syndrome is indeed the predominant cause of death in patients with severe acute pancreatitis. In this study, we aimed to delineate the ameliorative effect of dihydro-resveratrol, a prominent analog of trans-resveratrol, against acute pancreatitis-associated lung injury and the underlying molecular actions. Acute pancreatitis was induced in rats with repetitive injections of cerulein (50 µg/kg/h) and a shot of lipopolysaccharide (7.5 mg/kg). By means of histological examination and biochemical assays, the severity of lung injury was assessed in the aspects of tissue damages, myeloperoxidase activity, and levels of pro-inflammatory cytokines. When treated with dihydro-resveratrol, pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening were significantly reduced in rats with acute pancreatitis. In addition, the production of pro-inflammatory cytokines and the activity of myeloperoxidase in pulmonary tissues were notably repressed. Importantly, nuclear factor-kappaB (NF-κB) activation was attenuated. This study is the first to report the oral administration of dihydro-resveratrol ameliorated acute pancreatitis-associated lung injury via an inhibitory modulation of pro-inflammatory response, which was associated with a suppression of the NF-κB signaling pathway.

  10. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  11. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  12. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  13. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats.

    PubMed

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2005-08-01

    Leukocyte activation and production of inflammatory mediators and reactive oxygen species are important in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. The present study investigated acute lung hyperinflation, edema, and lung inflammation 4 h after an intratracheal instillation of LPS (0.5, 2.5, 5, 10, 50, 100, 500, 1000, and 5000 microg/ml/kg). Effects of budesonide, an inhaled anti-inflammatory corticosteroids, and N-acetylcysteine (NAC), an antioxidant, were evaluated in Wistar rats receiving either low (2.5 microg/ml/kg) or high (50 microg/ml/kg) concentrations of LPS. This study demonstrates that LPS in a concentration-dependent pattern induces acute lung hyperinflation measured by excised lung gas volume (25-45% above control), lung injury indicated by increased lung weight (10-60%), and lung inflammation characterized by the infiltration of leukocytes (40-14000%) and neutrophils (80-17000%) and the production of cytokines (up to 2700%) and chemokines (up to 350%) in bronchoalveolar lavage fluid (BALF). Pretreatment with NAC partially prevented tumor necrosis factor alpha (TNFalpha) production induced by the low concentration of LPS, while pretreatment with budesonide totally prevented the increased production of TNFalpha, interleukin (IL)-1beta, IL-6, and monocyte chemoattractive protein (MCP)-1 after LPS challenge at both low and high concentrations. Budesonide failed to prevent BALF levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant 1 (GRO/CINC-1) as well as lung hyperinflation induced by both low and high concentrations of LPS. Pretreatment with budesonide totally prevented the formation of lung edema at the low concentration of LPS and had partial effects on acute lung injury and leukocyte influx at the high concentrations. Thus, our data indicate that therapeutic effects of budesonide and NAC are dependent upon the severity of the disease.

  14. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

    PubMed Central

    Togbe, Dieudonnée; Schnyder-Candrian, Silvia; Schnyder, Bruno; Doz, Emilie; Noulin, Nicolas; Janot, Laure; Secher, Thomas; Gasse, Pamela; Lima, Carla; Coelho, Fernando Rodrigues; Vasseur, Virginie; Erard, François; Ryffel, Bernhard; Couillin, Isabelle; Moser, Rene

    2007-01-01

    Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. PMID:18039275

  15. Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome

    PubMed Central

    Raghavendran, Krishnan; Pryhuber, Gloria S.; Chess, Patricia R.; Davidson, Bruce A.; Knight, Paul R.; Notter, Robert H.

    2009-01-01

    Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article. PMID:18691048

  16. Bronchoalveolar hemostasis in lung injury and acute respiratory distress syndrome.

    PubMed

    Glas, G J; Van Der Sluijs, K F; Schultz, M J; Hofstra, J-J H; Van Der Poll, T; Levi, M

    2013-01-01

    Enhanced intrapulmonary fibrin deposition as a result of abnormal broncho-alveolar fibrin turnover is a hallmark of acute respiratory distress syndrome (ARDS), pneumonia and ventilator-induced lung injury (VILI), and is important to the pathogenesis of these conditions. The mechanisms that contribute to alveolar coagulopathy are localized tissue factor-mediated thrombin generation, impaired activity of natural coagulation inhibitors and depression of bronchoalveolar urokinase plasminogen activator-mediated fibrinolysis, caused by the increase of plasminogen activator inhibitors. There is an intense and bidirectional interaction between coagulation and inflammatory pathways in the bronchoalveolar compartment. Systemic or local administration of anticoagulant agents (including activated protein C, antithrombin and heparin) and profibrinolytic agents (such as plasminogen activators) attenuate pulmonary coagulopathy. Several preclinical studies show additional anti-inflammatory effects of these therapies in ARDS and pneumonia. PMID:23114008

  17. Surfactant for pediatric acute lung injury.

    PubMed

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  18. The Bacterial Microbiota in Inflammatory Lung Diseases

    PubMed Central

    Huffnagle, Gary B.; Dickson, Robert P.

    2016-01-01

    Numerous lines of evidence, ranging from recent studies back to those in the 1920's, have demonstrated that the lungs are NOT bacteria-free during health. We have recently proposed that the entire respiratory tract should be considered a single ecosystem extending from the nasal and oral cavities to the alveoli, which includes gradients and niches that modulate microbiome dispersion, retention, survival and proliferation. Bacterial exposure and colonization of the lungs during health is most likely constant and transient, respectively. Host microanatomy, cell biology and innate defenses are altered during chronic lung disease, which in turn, alters the dynamics of bacterial turnover in the lungs and can lead to longer term bacterial colonization, as well as blooms of well-recognized respiratory bacterial pathogens. A few new respiratory colonizers have been identified by culture-independent methods, such as Pseudomonas fluorescens; however, the role of these bacteria in respiratory disease remains to be determined. PMID:26122174

  19. Effect of corticosteroid treatment on cell recovery by lung lavage in acute radiation-induced lung injury

    SciTech Connect

    Wesselius, L.J.; Floreani, A.A.; Kimler, B.F.; Papasian, C.J.; Dixon, A.Y. )

    1989-11-01

    The purpose of this study was to quantitate cell populations recovered by lung lavage up to 6 weeks following thoracic irradiation (24 Gy) as an index of the acute inflammatory response within lung structures. Additionally, rats were treated five times weekly with intraperitoneal saline (0.3 cc) or methylprednisolone (7.5 mg/kg/week). Lung lavage of irradiated rats recovered increased numbers of total cells compared to controls beginning 3 weeks after irradiation (P less than 0.05). The initial increase in number of cells recovered was attributable to an influx of neutrophils (P less than 0.05), and further increases at 4 and 6 weeks were associated with increased numbers of recovered macrophages (P less than 0.05). Lung lavage of steroid-treated rats at 6 weeks after irradiation recovered increased numbers of all cell populations compared to controls (P less than 0.05); however, numbers of recovered total cells, macrophages, neutrophils, and lymphocytes were all significantly decreased compared to saline-treated rats (P less than 0.05). The number of inflammatory cells recovered by lung lavage during acute radiation-induced lung injury is significantly diminished by corticosteroid treatment. Changes in cells recovered by lung lavage can also be correlated with alteration in body weight and respiration rate subsequent to treatment with thoracic irradiation and/or corticosteroids.

  20. Sex differences in the expression of lung inflammatory mediators in response to ozone.

    PubMed

    Cabello, Noe; Mishra, Vikas; Sinha, Utkarshna; DiAngelo, Susan L; Chroneos, Zissis C; Ekpa, Ndifreke A; Cooper, Timothy K; Caruso, Carla R; Silveyra, Patricia

    2015-11-15

    Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men.

  1. [Fundamentals of chronic inflammatory lung diseases (asthma, COPD, fibrosis)].

    PubMed

    Roth, Michael

    2014-05-01

    Since three decades the prevalence of chronic inflammatory lung diseases (asthma, COPD, fibrosis) are worldwide increasing. In Switzerland about 5 % of the population develops asthma, while in other countries it affects up to 20 % (Maori: New Zealand). Today, asthma is the most frequent cause from absence from school and work, and significantly reduces life quality of the patients and their families. COPD, or the smoker's lung, is the 4th most frequent cause of death worldwide and in the Western society affects mainly cigarette smokers and ex-smokers, while in developing countries it is a diseases linked to open fire cocking with most patients being middle aged women. In both diseases only the symptoms can be controlled by muscle relaxing and anti-inflammatory drugs, but there is no cure available. The third chronic inflammatory lung disease is fibrosis which is increasing with the aging population. As indicated by the terminology "chronic inflammatory lung disease" it is widely assumed that the major cause of these diseases is chronic inflammation occurring in different segments of the lung. This hypothesis is now challenged as increasing evidence from clinical and experimental studies that suggest a much different pathogenesis. There is evidence that the inflammation may come second and tissue structural changes are already pre-set during embryogenesis and may become the major driver for the development of chronic inflammatory lung diseases later in life. The mechanism of this pre-disposition is largely unknown and the difficult to perform investigations have only started in recent years. This review aims to provide an overview of key studies published in the past 2 years on clinical and experimental research.

  2. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    PubMed Central

    van Eeden, Stephan F.

    2013-01-01

    Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic (bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants. PMID:24058272

  3. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-04

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.

  4. Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice

    PubMed Central

    Costola-de-Souza, Carolina; Ribeiro, Alison; Ferraz-de-Paula, Viviane; Calefi, Atilio Sersun; Aloia, Thiago Pinheiro Arrais; Gimenes-Júnior, João Antonio; de Almeida, Vinicius Izidio; Pinheiro, Milena Lobão; Palermo-Neto, João

    2013-01-01

    Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG), is mediated by monoacylglycerol lipase (MAGL). The piperidine carbamate, 4-​nitrophenyl- ​4-​(dibenzo[d] [1,3]dioxol-​5-​yl (hydroxy) methyl) piperidine- 1-​carboxylate (JZL184), is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p.)) of JZL184, in a murine model of lipopolysaccharide (LPS) -induced acute lung injury (ALI) 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL) and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) and the AM630 selective CB2 receptor antagonist ([6-​iodo-​2-​methyl-​1-​[2-​(4-​morpholinyl)ethyl]-​1H-​indol-​3-​yl](4-​methoxyphenyl)-​methanone) blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors. PMID:24204926

  5. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Shen, Jianliang; Reimer, David; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  6. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  7. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    PubMed Central

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  8. Integrating acute lung injury and regulation of alveolar fluid clearance.

    PubMed

    Guidot, David M; Folkesson, Hans G; Jain, Lucky; Sznajder, Jacob I; Pittet, Jean-François; Matthay, Michael A

    2006-09-01

    The acute respiratory distress syndrome (ARDS) is characterized by non-cardiogenic pulmonary edema and flooding of the alveolar air spaces with proteinaceous fluid. ARDS develops in response to inflammatory stresses including sepsis, trauma, and severe pneumonia, and despite aggressive critical care management, it still has a mortality of 30-50%. At the time of its original description in 1967, relatively little was known about the specific mechanisms by which the alveolar epithelium regulated lung fluid balance. Over the last 20 years, substantial advances in our understanding of the alveolar epithelium have provided major new insights into how molecular and cellular mechanisms regulate the active transport of solutes and fluid across the alveolar epithelium under both normal and pathological conditions. Beginning with the elucidation of active sodium transport as a major driving force for the transport of water from the air space to the interstitium, elegant work by multiple investigators has revealed a complex and integrated network of membrane channels and pumps that coordinately regulates sodium, chloride, and water flux in both a cell- and condition-specific manner. At the Experimental Biology Meeting in San Francisco on April 4, 2006, a symposium was held to discuss some of the most recent advances. Although there is still much to learn about the mechanisms that impair normal alveolar fluid clearance under pathological conditions, the compelling experimental findings presented in this symposium raise the prospect that we are now poised to test and develop therapeutic strategies to improve outcome in patients with acute lung injury. PMID:16698856

  9. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  10. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  11. Acute- or subacute-onset lung complications in treating patients with rheumatoid arthritis.

    PubMed

    Nakajima, Reiko; Sakai, Fumikazu; Mimura, Toshihide; Tokuda, Hitoshi; Takahashi, Masahiro; Kimura, Fumiko

    2013-08-01

    Rheumatoid arthritis (RA) is a common systemic disease that manifests as inflammatory arthritis of multiple joints and produces a wide variety of intrathoracic lesions, including pleural diseases, diffuse interstitial pneumonia, rheumatoid nodules, and airway disease. Patients treated for RA can have associated lung disease that commonly manifests as diffuse interstitial pneumonia, drug-induced lung injury, and infection. The purpose of this pictorial review is to illustrate the radiographic and clinical features of lung complications of acute or subacute onset in patients treated for RA and to show the computed tomography features of these complications.

  12. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome.

    PubMed

    Sebag, Sara C; Bastarache, Julie A; Ware, Lorraine B

    2011-09-01

    Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS. PMID:21401517

  13. [Clinico-roentgenological characteristics of acute lung abscess].

    PubMed

    Gadzhiev, S A; Anan'ina, G V; Abramov, Sh I

    1976-01-01

    Based on an analysis of the clinico-roentgenological picture of the disease in 48 patients with acute lung suppuration, the authors have detected some peculiarities in clinical manifestations of the disease, and also characteristic features of the roentgenological semiotics, which enabled them to define the pathological process as "a primary" acute abscess of the lung.

  14. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury.

    PubMed

    Yu, Wen-wen; Lu, Zhe; Zhang, Hang; Kang, Yan-hua; Mao, Yun; Wang, Huan-huan; Ge, Wei-hong; Shi, Li-yun

    2014-12-24

    Uncontrolled inflammatory responses cause tissue injury and severe immunopathology. Pharmacological interference of intracellular pro-inflammatory signaling may confer a therapeutic benefit under these conditions. Daphnetin, a natural coumarin derivative, has been used to treat inflammatory diseases including bronchitis. However, the protective effect of daphnetin in inflammatory airway disorders has yet to be determined, and the molecular basis for its anti-inflammatory properties is unknown. This paper shows that daphnetin treatment conferred substantial protection from endotoxin-induced acute lung injury (ALI), in parallel with reductions in the production of inflammatory mediators, symptoms of airway response, and infiltration of inflammatory cells. Further studies indicate that activation of macrophage and human alveolar epithelial cells in response to lipopolysaccharide (LPS) was remarkably suppressed by daphnetin, which was related to the down-regulation of NF-κB-dependent signaling events. Importantly, this study demonstrates that TNF-α-induced protein 3 (TNFAIP3), also known as A20, was significantly induced by daphnetin, which appeared to be largely responsible for the down-regulation of NF-κB activity through modulation of nondegradative TRAF6 ubiquitination. Accordingly, the deletion of TNFAIP3 in primary macrophages reversed daphnetin-elicited inhibition of immune response, and the beneficial effect of daphnetin in the pathogenesis of ALI was, partially at least, abrogated by TNFAIP3 knockdown. These findings demonstrate the anti-inflammatory and protective functions of daphnetin in endotoxin-induced lung inflammation and injury and also reveal the key mechanism underlying its action in vitro as well as in vivo.

  15. Plasma cell granuloma of the lung (inflammatory pseudotumor).

    PubMed

    Fassina, A S; Rugge, M; Scapinello, A; Viale, G; Dell'Orto, P; Ninfo, V

    1986-10-31

    A case of plasma cell granuloma (PCG) of the lung in a 54-year old man is reported. PCG is a rare benign lesion that usually presents as a solitary nodule in the lung (coin lesion) at routine X-ray examination. Microscopically it consists of a granulomatous tissue where the major components are mature plasma cells. The immunohistochemical demonstration of polyclonality of plasma cells, excluding the diagnosis of plasmacytoma, confirms the inflammatory pseudotumoral nature of this lesion, although the etiology remains obscure. The presence of lymphocytes, histiocytes, macrophages, blood vessels with prominent endothelial cells and peripheral sclero-hyalinized connective tissue may pose problems in the differential diagnosis with sclerosing hemangioma, pseudolymphoma, nodular amyloidosis, pulmonary hyalinizing granuloma, chronic abscess and neoplasms of true histiocytic origin. The term inflammatory pseudotumor is preferable in describing this type of lesion. PMID:3798575

  16. CLOCK modulates survival and acute lung injury in mice with polymicrobial sepsis.

    PubMed

    Wang, Chao-Yung; Hsieh, Ming-Jer; Hsieh, I-Chang; Shie, Shian-Sen; Ho, Ming-Yun; Yeh, Jih-Kai; Tsai, Ming-Lung; Yang, Chia-Hung; Hung, Kuo-Chun; Wang, Chun-Chieh; Wen, Ming-Shien

    2016-09-16

    Polymicrobial sepsis is a potentially fatal condition and a significant burden on health care systems. Acute lung injury is the most common complication of sepsis and results in high mortality. However, there has been no recent significant progress in the treatment of sepsis or acute lung injury induced by sepsis. Here we show that mice deficient in the circadian protein CLOCK had better survival than wild-type mice after induction of polymicrobial sepsis by cecal ligation and puncture. Inflammatory cytokine production was attenuated and bacterial clearance was improved in CLOCK-deficient mice. Moreover, acute lung injury after induction of sepsis was significantly decreased in CLOCK-deficient mice. Genome-wide profiling analysis showed that inhibin signaling was reduced in CLOCK-deficient mice. These data establish the importance of circadian CLOCK-inhibin signaling in sepsis, which may have potential therapeutic implications. PMID:27520377

  17. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-01

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  18. Acute respiratory distress syndrome and acute lung injury.

    PubMed

    Dushianthan, A; Grocott, M P W; Postle, A D; Cusack, R

    2011-09-01

    Acute respiratory distress syndrome (ARDS) is a life threatening respiratory failure due to lung injury from a variety of precipitants. Pathologically ARDS is characterised by diffuse alveolar damage, alveolar capillary leakage, and protein rich pulmonary oedema leading to the clinical manifestation of poor lung compliance, severe hypoxaemia, and bilateral infiltrates on chest radiograph. Several aetiological factors associated with the development of ARDS are identified with sepsis, pneumonia, and trauma with multiple transfusions accounting for most cases. Despite the absence of a robust diagnostic definition, extensive epidemiological investigations suggest ARDS remains a significant health burden with substantial morbidity and mortality. Improvements in outcome following ARDS over the past decade are in part due to improved strategies of mechanical ventilation and advanced support of other failing organs. Optimal treatment involves judicious fluid management, protective lung ventilation with low tidal volumes and moderate positive end expiratory pressure, multi-organ support, and treatment where possible of the underlying cause. Moreover, advances in general supportive measures such as appropriate antimicrobial therapy, early enteral nutrition, prophylaxis against venous thromboembolism and gastrointestinal ulceration are likely contributory reasons for the improved outcomes. Although therapies such as corticosteroids, nitric oxide, prostacyclins, exogenous surfactants, ketoconazole and antioxidants have shown promising clinical effects in animal models, these have failed to translate positively in human studies. Most recently, clinical trials with β2 agonists aiding alveolar fluid clearance and immunonutrition with omega-3 fatty acids have also provided disappointing results. Despite these negative studies, mortality seems to be in decline due to advances in overall patient care. Future directions of research are likely to concentrate on identifying potential

  19. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus.

    PubMed

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Kwit, Krzysztof; Czyżewska, Ewelina; Dors, Arkadiusz; Rachubik, Jarosław; Pejsak, Zygmunt

    2014-10-01

    Swine influenza (SI) is an acute respiratory disease of pigs, caused by swine influenza virus (SIV). Little is known about the inflammatory response in the lung during acute SI and its correlation with clinical signs or lung pathology. Moreover, until now there has been a limited amount of data available on the relationship between the concentrations of pro- and anti-inflammatory cytokines in the lungs and the serum concentration of acute-phase proteins (APPs) in SIV-infected pigs. In the present study, the porcine inflammatory and immune responses during acute influenza caused by H1N1 SIV (SwH1N1) were studied. Nine pigs were infected intratracheally, and five served as controls. Antibodies against SIV were measured by haemagglutination inhibition assay, and the influenza-virus-specific T-cell response was measured using a proliferation assay. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA), and pig major acute-phase protein (Pig-MAP) the concentrations in serum and concentration of IL-1β, IL-6, IL-8, IL-10, TNF-α and IFN-γ in lung tissues were measured using commercial ELISAs.

  20. The effect of ozone on inflammatory cell infiltration and airway hyperresponsiveness in the guinea pig lung

    SciTech Connect

    Schultheis, A.J.H.

    1993-01-01

    Inflammatory cells may contribute to the development of exaggerated bronchoconstrictor responses since a persistent link has been noted between pulmonary inflammation and airway hyperresponsiveness. In these studies guinea pigs were exposed to 2.0 ppm ozone for 4 hours, then immediately sacrificed or allowed to breathe filtered air for up to 14 days. Following ozone exposure there was an immediate massive neutrophil infiltration into the lung. Neutrophils in lung digest dropped to control values within 3-12 hours post-ozone but remained elevated in BAL fluid for 3 days. There was probable eosinophil degranulation within the first 24 hours post-ozone. Guinea pigs were hyperresponsive to vigal stimulation through 3 days post-ozone. Although they were also hyperresponsive to ACh, responses to MCh were unchanged. Neuronal M[sub 2] receptors were dysfunctional through 3 days post-ozone. There was resolution of inflammation, airway responsiveness, and neuronal M[sub 2] receptor function by 14 days post-exposure. This investigation has (1) confirmed an immediate lung inflammation following acute ozone exposure; (2) established that cells in BAL give a distorted reflection of inflammatory events in lung digest; (3) demonstrated that ozone-induced hyperresponsiveness is at least partially due to efferent cholinergic mechanisms without functional changes of muscarinic receptors on airway smooth muscle; (4) shown that ACh may not be an appropriate agent to test ozone-induced airway hyperresponsiveness; and (5) demonstrated that inhibitory neuronal M[sub 2] receptors are dysfunctional following ozone exposure. There was close linkage between these events, suggesting that they may be causally related. This investigation proposes a specific mechanism, dysfunction of neuronal M[sub 2] receptors, by which inflammatory cells could cause airway hyperresponsiveness following acute ozone exposure.

  1. Effect on extrapulmonary sepsis-induced acute lung injury by hemoperfusion with neutral microporous resin column.

    PubMed

    Huang, Zhao; Wang, Si-rong; Yang, Zi-li; Liu, Ji-yun

    2013-08-01

    The aim of this study was to investigate the effect of neutral microporous resin hemoperfusion on oxygenation improvement, removal of inflammatory cytokines in plasma and bronchoalveolar lavage, and mortality in acute lung injury induced by extrapulmonary sepsis. Forty-six patients with acute lung injury induced by extrapulmonary sepsis were randomized to HA type hemoperfusion treatment (N=25) or standard therapy (N=21). Those undergoing hemoperfusion treatment received HA330 hemoperfusion. We measured the plasma and bronchoalveolar lavage concentrations of TNF-α and IL-1, and the following parameters were compared between the control group and the hemoperfusion group on days 0, 3 and 7: lung injury measurements (arterial oxygen tension/fractional inspired oxygen ratio, lung injury score, chest X-ray score); interstitial edema of lung (extravascular lung water). Duration of mechanical ventilation, hospital, 28-day, and intensive care unit mortality were also observed. Patients treated with HA hemoperfusion showed a significant removal of plasma and bronchoalveolar lavage TNF-α and IL-1 over time while in the study. Patients in the HA group also demonstrated not only significant improvement of PaO2 /FiO2 , but also decreased Lung Injury Score and chest X-ray score at days 3 and 7. Furthermore, the measurements of the arterial oxygen tension/fractional inspired oxygen ratio, lung injury score and extravascular lung water (EVLWI) significantly correlated with and the concentration of cytokines in the plasma (all P<0.05). The HA hemoperfusion treatment group had a significant reduction in duration of mechanical ventilation, length of intensive care unit stay, and intensive care unit mortality. Significant removal of inflammatory cytokines from circulation and lung by hemoperfusion treatment using the HA type cartridge may contribute to the improvement of lung injury and intensive care unit outcome in extrapulmonary septic patients. PMID:23931889

  2. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    SciTech Connect

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  3. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury.

    PubMed

    Moodley, Yuben; Sturm, Marian; Shaw, Kathryn; Shimbori, Chiko; Tan, Dino B A; Kolb, Martin; Graham, Ruth

    2016-07-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.

  4. Viola yedoensis liposoluble fraction ameliorates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Li, Wen; Xie, Jun-Yun; Li, Hong; Zhang, Yun-Yi; Cao, Jie; Cheng, Zhi-Hong; Chen, Dao-Feng

    2012-01-01

    Viola yedoensis is a component of traditional Chinese herb medicine for inflammatory diseases. Chemical constituents of V. yedoensis have been shown to possess antibacterial, anti-HIV, and anticoagulant effects in experimental research; however, their anti-inflammatory properties remain to be demonstrated. In this study, a mouse model of lipopolysaccharide (LPS)-induced acute lung injury was used to investigate the effect of petroleum ether fraction of V. yedoensis (PEVY) on inflammation in vivo. After being shown to have anti-complementary activity in vitro, PEVY was orally administered to the mice at doses of 2, 4, and 8 mg/kg. Treatment with PEVY significantly decreased the wet-to-dry weight ratio of the lung, total cells, red blood cells, protein concentration, and myeloperoxidase activity in bronchoalveolar lavage fluid. PEVY markedly attenuated lung injury with improved lung morphology and reduced complement deposition. In addition, PEVY suppressed the expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. Taken together, PEVY protects the lung from acute injury, potentially via inhibiting the activation of the complement system and excessive production of proinflammatory mediators.

  5. Apios americana Medik Extract Alleviates Lung Inflammation in Influenza Virus H1N1- and Endotoxin-Induced Acute Lung Injury.

    PubMed

    Sohn, Sung-Hwa; Lee, Sang-Yeon; Cui, Jun; Jang, Ho Hee; Kang, Tae-Hoon; Kim, Jong-Keun; Kim, In-Kyoung; Lee, Deuk-Ki; Choi, Seulgi; Yoon, Il-Sub; Chung, Ji-Woo; Nam, Jae-Hwan

    2015-12-28

    Apios americana Medik (hereinafter Apios) has been reported to treat diseases, including cancer, hypertension, obesity, and diabetes. The therapeutic effect of Apios is likely to be associated with its anti-inflammatory activity. This study was conducted to evaluate the protective effects of Apios in animal models of acute lung injury induced by lipopolysaccharide (LPS) or pandemic H1N1 2009 influenza A virus (H1N1). Mice were exposed to LPS or H1N1 for 2-4 days to induce acute lung injury. The treatment groups were administered Apios extracts via oral injection for 8 weeks before LPS treatment or H1N1 infection. To investigate the effects of Apios, we assessed the mice for in vivo effects of Apios on immune cell infiltration and the level of pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid, and histopathological changes in the lung. After induction of acute lung injury, the numbers of neutrophils and total cells were lower in the Apios-treated groups than in the non-Apios-treated LPS and H1N1 groups. The Apios groups tended to have lower levels of tumor necrosis factor-a and interleukin-6 in BAL fluid. In addition, the histopathological changes in the lungs were markedly reduced in the Apios-treated groups. These data suggest that Apios treatment reduces LPS- and H1N1-induced lung inflammation. These protective effects of Apios suggest that it may have therapeutic potential in acute lung injury.

  6. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model.

    PubMed

    Armstead, Andrea L; Minarchick, Valerie C; Porter, Dale W; Nurkiewicz, Timothy R; Li, Bingyun

    2015-01-01

    Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.

  7. Acute Inflammatory Responses of Nanoparticles in an Intra-Tracheal Instillation Rat Model

    PubMed Central

    Armstead, Andrea L.; Minarchick, Valerie C.; Porter, Dale W.; Nurkiewicz, Timothy R.; Li, Bingyun

    2015-01-01

    Exposure to hard metal tungsten carbide cobalt (WC-Co) “dusts” in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs. PMID:25738830

  8. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  9. Inflammatory markers in ST-elevation acute myocardial infarction.

    PubMed

    Seropian, Ignacio M; Sonnino, Chiara; Van Tassell, Benjamin W; Biasucci, Luigi M; Abbate, Antonio

    2016-08-01

    After acute myocardial infarction, ventricular remodeling is characterized by changes at the molecular, structural, geometrical and functional level that determine progression to heart failure. Inflammation plays a key role in wound healing and scar formation, affecting ventricular remodeling. Several, rather different, components of the inflammatory response were studied as biomarkers in ST-elevation acute myocardial infarction. Widely available and inexpensive tests, such as leukocyte count at admission, as well as more sophisticated immunoassays provide powerful predictors of adverse outcome in patients with ST-elevation acute myocardial infarction. We review the value of inflammatory markers in ST-elevation acute myocardial infarction and their association with ventricular remodeling, heart failure and sudden death. In conclusion, the use of these biomarkers may identify subjects at greater risk of adverse events and perhaps provide an insight into the mechanisms of disease progression.

  10. Therapeutic Strategies for Severe Acute Lung Injury

    PubMed Central

    Diaz, Janet. V.; Brower, Roy; Calfee, Carolyn S.; Matthay, Michael A.

    2015-01-01

    Objective In the management of patients with severe Acute Lung Injury and the Acute Respiratory Distress Syndrome (ALI/ARDS), clinicians are sometimes challenged to maintain acceptable gas exchange while avoiding harmful mechanical ventilation practices. In some of these patients, physicians may consider the use of “rescue therapies” to sustain life. Our goal is to provide a practical, evidence-based review to assist critical care physicians’ care for patients with severe ALI/ARDS. Data Sources and Study Selection We searched the Pub Med database for clinical trials examining the use of the following therapies in ALI/ARDS: recruitment maneuvers, high positive end expiratory pressure, prone position, high frequency oscillatory ventilation, glucocorticoids, inhaled nitric oxide, buffer therapy and extracorporeal life support. Study selection All clinical trials that included patients with severe ALI/ARDS were included in the review. Data Synthesis The primary author reviewed the aforementioned trials in depth and then disputed findings and conclusions with other authors until consensus was achieved. Conclusions This article is designed to: a) provide clinicians with a simple, bedside definition for the diagnosis of severe ARDS; b) describe several therapies that can be used in severe ARDS with an emphasis on the potential risks as well as the indications and benefits; and c) to offer practical guidelines for implementation of these therapies. PMID:20562704

  11. Hesperetin attenuates ventilator-induced acute lung injury through inhibition of NF-κB-mediated inflammation.

    PubMed

    Ma, Hongzhong; Feng, Xiaoli; Ding, Suchun

    2015-12-15

    Hesperetin, a major bioflavonoid in sweet oranges and lemons, has been reported to have anti-inflammatory properties. However, the effect of hesperetin on ventilator-induced acute lung injury has not been studied. In present study, we investigated the protective effect of hesperetin on ventilator-induced acute lung injury in rats. Rats were orally administered hesperetin (10, 20, or 40mg/kg) two hour before acute lung injury was induced by mechanical ventilation. Rats were then randomly divided into six groups: the lung protective ventilation group (n=20, LV group), injurious ventilation group (n=20, HV group), vehicle-treated injurious ventilation group (n=20, LV+vehicle group), hesperetin (10mg/kg)-treated acute lung injury group (n=20, HV+Hsp (10mg)), hesperetin (20mg/kg)-treated acute lung injury group (n=20, HV+Hsp (20mg)), and hesperetin (40mg/kg)-treated acute lung injury group (n=20, HV+Hsp (40mg)). The lung tissues and bronchoalveolar lavage fluid were isolated for subsequent measurements. Treatment with hesperetin dramatically improved the histology of lung tissue, and reduced the wet/dry ratio, myeloperoxidase activity, protein concentration, and production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and MIP-2 in the bronchoalveolar lavage fluid of rats with ventilator-induced acute lung injury. Additionally, our study indicated that this protective effect of hesperetin results from its ability to increase the expression of peroxisome proliferator-activated receptor (PPAR)-γ and inhibit the activation of the nuclear factor (NF)-κB pathway. These results suggest that hesperetin may be a potential novel therapeutic candidate for protection against ventilator-induced acute lung injury.

  12. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    PubMed

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production. PMID:24577726

  13. Inflammatory effects of inhaled sulfur mustard in rat lung

    SciTech Connect

    Malaviya, Rama; Sunil, Vasanthi R.; Cervelli, Jessica; Anderson, Dana R.; Holmes, Wesley W.; Conti, Michele L.; Gordon, Ronald E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-10-15

    Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4 mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48 h or 7 days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-{alpha} (TNF{alpha}), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNF{alpha} and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.

  14. Inflammatory effects of inhaled sulfur mustard in rat lung

    PubMed Central

    Malaviya, Rama; Sunil, Vasanthi R.; Cervelli, Jessica; Anderson, Dana R.; Holmes, Wesley W.; Conti, Michele L.; Gordon, Ronald E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2013-01-01

    Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7–1.4 mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48 h or 7 days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNFα), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNFα and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant. PMID:20659490

  15. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  16. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  17. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  18. [Potentialities of MRI in the differential diagnosis of peripheral lung cancer and inflammatory changes].

    PubMed

    Gamova, E V; Nudnov, N V

    2006-01-01

    The paper analyzes the authors' own data of chest magnetic resonance imaging (MRI) in 62 patients with verified peripheral lung cancer and different inflammatory changes (round pneumonic focuses, abscesses, etc.). The MRI signs of peripheral lung cancer are systematized. The additional capacities of contrast enhancement are analyzed. The MRI semiotics of different inflammatory changes has been developed. The differential diagnostic criteria for recognizing peripheral lung cancer and inflammatory changes have been also elaborated.

  19. On the Pathogenesis of Acute Exacerbations of Mucoobstructive Lung Diseases.

    PubMed

    Boucher, Richard C

    2015-11-01

    Mucoobstructive lung diseases have highlighted the importance of a proper description of the normal mucus clearance system. A useful description of the normal mucus clearance apparatus requires the presence of two gels on the airway surface (i.e., a mucus layer gel and a periciliary gel). Importantly, most mucoobstructive lung diseases are distributed heterogeneously in the lung, and exacerbations may reflect spread of the disease to previously normal areas. The spread may reflect disturbances in the balance of water between the two gel layers, producing heterogeneous mucus adhesion and infection within the lung. Ultimately, spread can produce losses of lung function that may be associated with acute exacerbation frequency.

  20. On the Pathogenesis of Acute Exacerbations of Mucoobstructive Lung Diseases

    PubMed Central

    2015-01-01

    Mucoobstructive lung diseases have highlighted the importance of a proper description of the normal mucus clearance system. A useful description of the normal mucus clearance apparatus requires the presence of two gels on the airway surface (i.e., a mucus layer gel and a periciliary gel). Importantly, most mucoobstructive lung diseases are distributed heterogeneously in the lung, and exacerbations may reflect spread of the disease to previously normal areas. The spread may reflect disturbances in the balance of water between the two gel layers, producing heterogeneous mucus adhesion and infection within the lung. Ultimately, spread can produce losses of lung function that may be associated with acute exacerbation frequency. PMID:26595733

  1. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  2. Immunohistochemical expression of MPO, CD163 and VEGF in inflammatory cells in acute respiratory distress syndrome: a case report

    PubMed Central

    Maretta, Milan; Toth, Stefan; Jonecova, Zuzana; Kruzliak, Peter; Kubatka, Peter; Pingorova, Stanislava; Vesela, Jarmila

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a serious medical condition occurring in patients with polytrauma, pulmonary or non-pulmonary sepsis, pneumonia and many other circumstances. It causes inflammation of the lung parenchyma leading to impaired gas exchange with a systemic release of inflammatory mediators, causing consequential lung tissue injury, hypoxemia and frequently multiple organ failure. The aim of current study was to describe expression of inflammatory markers (myeloperoxidase, CD163 and vascular endothelial growth factor) by the cells in acute phase of ARDS. The lung samples of a 20-year-old man who had suffered a serious motorbike accident were obtained for histological examination. He died on the seventh day as a consequence of respiratory failure. Our results imply that expression of CD163 was restricted to activated alveolar macrophages and monocytes. Immunopositivityof MPO was observed in neutrophil granulocytes within lung alveoli and lung blood vessels. Myeloperoxidase positivity was observed in alveolar macrophages, too. Vascular endothelial growth factor was expressed in cytoplasm of neutrophil granulocytes, monocytes, small-sized alveolar macrophages and type II pneumocytes localized mostly inside lung alveoli. On the contrary, no positivity was observed in lung endothelial cells of blood vessels. PMID:25120850

  3. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice

    PubMed Central

    Jia, Chun-E; Jiang, Dingyuan; Dai, Huaping; Xiao, Fei; Wang, Chen

    2016-01-01

    Objective: The aim of this study is to evaluate the role of pendrin in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and to explore whether pendrin expression existing on alveolar cells. Methods: ALI C57BL/6 mice model induced by lipopolysaccharide (LPS) was established. The expression of pendrin in lung was analyzed by RT-PCR and western blotting methods, the changes of lung inflammatory parameters and pathology were observed, the cellular distribution of pendrin in the lung was determined using immunofluorescence. Statistical comparisons between groups were made by two-tailed Student’s t-test. Results: Enhanced expression of the slc26a4 gene and production of pendrin in lungs of LPS-induced ALI mice were confirmed. In comparison with vehicle-control mice, methazolamide treatment mitigated lung inflammatory parameters and pathology. IL-6 and MCP-1 in lung tissues and BALF in methazolamide-treated mice were statistically decreased. Methazolamide treatment had significant effect on the total protein concentration in the BALF and the ratio of lung wet/dry weight. The percentage of macrophages in the BALF was increased. There was a low expression of pendrin in ATII. Conclusions: Pendrin may be involved in pathological process of LPS-induced ALI. Inhibition of the pendrin function could be used to treat ALI. Airway epithelial cell may be a valuable therapeutic target for discovering and developing new drugs and/or new therapeutic strategies for the treatment of ALI/ARDS. PMID:27158384

  4. Silencing of Paralemmin-3 Protects Mice from lipopolysaccharide-induced acute lung injury.

    PubMed

    Li, Shaoying; Guo, Liang; Zhao, Yunfeng; Qian, Pin; Lv, Xuejun; Qian, Lanlan; Wang, Qin; Qian, Guisheng; Yao, Wei; Wu, Xueling

    2016-02-01

    Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.

  5. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Li, Zhiling; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Asiatic acid (AA), a major triterpene isolated from Centella asiatica (L.) Urban, is known to exert various pharmacological activities, including anti-inflammatory and antioxidant effects. The aim of this study was to evaluate the anti-inflammatory effects of AA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the underlying mechanisms. Lung pathological changes were assessed by H&E staining. The myeloperoxidase (MPO) activity was detected by MPO assay. The levels of inflammatory cytokines were measured by ELISA. TLR4 and NF-kB expression was detected by Western blot analysis. AA obviously inhibited LPS-induced lung histopathological changes, MPO activity, and inflammatory cell numbers in bronchoalveolar lavage fluid (BALF). Treatment of AA also inhibited LPS-induced TNF-α, IL-6, and IL-1β production. Furthermore, Western blot analysis showed that AA inhibited LPS-induced TLR4 expression and NF-kB activation. In conclusion, AA inhibited LPS-induced ALI in mice by inhibiting inflammatory cytokine production, which is mediated via blocking of the TLR4/NF-kB signaling pathway.

  6. Mast cells mediate acute inflammatory responses to implanted biomaterials

    PubMed Central

    Tang, Liping; Jennings, Timothy A.; Eaton, John W.

    1998-01-01

    Implanted biomaterials trigger acute and chronic inflammatory responses. The mechanisms involved in such acute inflammatory responses can be arbitrarily divided into phagocyte transmigration, chemotaxis, and adhesion to implant surfaces. We earlier observed that two chemokines—macrophage inflammatory protein 1α/monocyte chemoattractant protein 1—and the phagocyte integrin Mac-1 (CD11b/CD18)/surface fibrinogen interaction are, respectively, required for phagocyte chemotaxis and adherence to biomaterial surfaces. However, it is still not clear how the initial transmigration of phagocytes through the endothelial barrier into the area of the implant is triggered. Because implanted biomaterials elicit histaminic responses in the surrounding tissue, and histamine release is known to promote rapid diapedesis of inflammatory cells, we evaluated the possible role of histamine and mast cells in the recruitment of phagocytes to biomaterial implants. Using i.p. and s.c. implantation of polyethylene terephthalate disks in mice we find: (i) Extensive degranulation of mast cells, accompanied by histamine release, occurs adjacent to short-term i.p. implants. (ii) Simultaneous administration of H1 and H2 histamine receptor antagonists (pyrilamine and famotidine, respectively) greatly diminishes recruitment and adhesion of both neutrophils (<20% of control) and monocytes/macrophages (<30% of control) to implants. (iii) Congenitally mast cell-deficient mice also exhibit markedly reduced accumulation of phagocytes on both i.p. and s.c implants. (iv) Finally, mast cell reconstitution of mast cell-deficient mice restores “normal” inflammatory responses to biomaterial implants. We conclude that mast cells and their granular products, especially histamine, are important in recruitment of inflammatory cells to biomaterial implants. Improved knowledge of such responses may permit purposeful modulation of both acute and chronic inflammation affecting implanted biomaterials. PMID

  7. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling.

    PubMed

    Martire, Alessandra; Bedada, Fikru B; Uchida, Shizuka; Pöling, Jochen; Krüger, Marcus; Warnecke, Henning; Richter, Manfred; Kubin, Thomas; Herold, Susanne; Braun, Thomas

    2016-09-01

    Mesenchymal stem cells (MSC) have been used to treat different clinical conditions although the mechanisms by which pathogenetic processes are affected are still poorly understood. We have previously analyzed the homing of bone marrow-derived MSC to diseased tissues characterized by a high degree of mononuclear cell infiltration and postulated that MSC might modulate inflammatory responses. Here, we demonstrate that MSC mitigate adverse tissue remodeling, improve organ function, and extend lifespan in a mouse model of inflammatory dilative cardiomyopathy (DCM). Furthermore, MSC attenuate Lipopolysaccharide-induced acute lung injury indicating a general role in the suppression of inflammatory processes. We found that MSC released sTNF-RI, which suppressed activation of the NFκBp65 pathway in cardiomyocytes during DCM in vivo. Substitution of MSC by recombinant soluble TNF-R partially recapitulated the beneficial effects of MSC while knockdown of TNF-R prevented MSC-mediated suppression of the NFκBp65 pathway and improvement of tissue pathology. We conclude that sTNF-RI is a major part of the paracrine machinery by which MSC effect local inflammatory reactions. PMID:27435289

  8. Molecular Imaging of Folate Receptor β–Positive Macrophages during Acute Lung Inflammation

    PubMed Central

    Zaynagetdinov, Rinat; Yull, Fiona E.; Polosukhin, Vasiliy V.; Gleaves, Linda A.; Tanjore, Harikrishna; Young, Lisa R.; Peterson, Todd E.; Manning, H. Charles; Prince, Lawrence S.; Blackwell, Timothy S.

    2015-01-01

    Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor β (FRβ) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRβ expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5–conjugated folate as FRβ+ interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2–deficient mice, we found that FRβ+ macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation. PMID:25375039

  9. Conflicting Physiological and Genomic Cardiopulmonary Effects of Recruitment Maneuvers in Murine Acute Lung Injury

    PubMed Central

    Mekontso Dessap, Armand; Voiriot, Guillaume; Zhou, Tong; Marcos, Elisabeth; Dudek, Steven M.; Jacobson, Jeff R.; Machado, Roberto; Adnot, Serge; Brochard, Laurent; Maitre, Bernard

    2012-01-01

    Low tidal volume ventilation, although promoting atelectasis, is a protective strategy against ventilator-induced lung injury. Deep inflation (DI) recruitment maneuvers restore lung volumes, but potentially compromise lung parenchymal and vascular function via repetitive overdistention. Our objective was to examine cardiopulmonary physiological and transcriptional consequences of recruitment maneuvers. C57/BL6 mice challenged with either PBS or LPS via aspiration were placed on mechanical ventilation (5 h) using low tidal volume inflation (TI; 8 μl/g) alone or in combination with intermittent DIs (0.75 ml twice/min). Lung mechanics during TI ventilation significantly deteriorated, as assessed by forced oscillation technique and pressure–volume curves. DI mitigated the TI-induced alterations in lung mechanics, but induced a significant rise in right ventricle systolic pressures and pulmonary vascular resistances, especially in LPS-challenged animals. In addition, DI exacerbated the LPS-induced genome-wide lung inflammatory transcriptome, with prominent dysregulation of a gene cluster involving vascular processes, as well as increases in cytokine concentrations in bronchoalveolar lavage fluid and plasma. Gene ontology analyses of right ventricular tissue expression profiles also identified inflammatory signatures, as well as apoptosis and membrane organization ontologies, as potential elements in the response to acute pressure overload. Our results, although confirming the improvement in lung mechanics offered by DI, highlight a detrimental impact in sustaining inflammatory response and exacerbating lung vascular dysfunction, events contributing to increases in right ventricle afterload. These novel insights should be integrated into the clinical assessment of the risk/benefit of recruitment maneuver strategies. PMID:22135358

  10. Inflammatory stimuli acutely modulate peripheral taste function.

    PubMed

    Kumarhia, Devaki; He, Lianying; McCluskey, Lynnette Phillips

    2016-06-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness. PMID:27009163

  11. Neutralization of Osteopontin Ameliorates Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Yang, Weng-Lang; Ochani, Mahendar; Wang, Ping

    2016-10-01

    Intestinal ischemia-reperfusion (I/R) is associated with acute respiratory distress syndrome. Osteopontin (OPN), a glycoprotein secreted from immune-reactive cells, plays a deleterious role in various inflammatory diseases. Considering OPN as a pro-inflammatory molecule, we hypothesize that the treatment with its neutralizing antibody (anti-OPN Ab) protects mice against intestinal I/R-induced acute lung injury (ALI). Intestinal I/R was induced in mice by superior mesenteric artery occlusion with a vascular clip. After 45 min of occlusion, the clip was removed and anti-OPN Ab (25 μg/mouse) or normal IgG isotype control (25 μg/mouse) was immediately administrated intravenously. Blood, small intestine, and lung tissues were collected at 4 h after reperfusion for various analyses. After intestinal I/R, mRNA and protein levels of OPN were significantly induced in the small intestine, lungs, and blood relative to sham-operated animals. Compared with the IgG control group, treatment of anti-OPN Ab significantly reduced plasma levels of pro-inflammatory cytokine and chemokine (IL-6 and MIP-2) and organ injury markers (AST, ALT, and LDH). The histological architecture of the gut and lung tissues in anti-OPN Ab-treated intestinal I/R-induced mice showed significant improvement versus the IgG control mice. The lung inflammation measured by the levels of IL-6, IL-1β, and MIP-2 was also significantly downregulated in the anti-OPN Ab-treated mice as compared with the IgG control mice. Besides, the lung MPO and neutrophil infiltration in anti-OPN Ab-treated mice showed significant reduction as compared with the IgG control animals. In conclusion, we have demonstrated beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic potential in intestinal I/R. PMID:26974422

  12. Neutralization of Osteopontin Ameliorates Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Yang, Weng-Lang; Ochani, Mahendar; Wang, Ping

    2016-10-01

    Intestinal ischemia-reperfusion (I/R) is associated with acute respiratory distress syndrome. Osteopontin (OPN), a glycoprotein secreted from immune-reactive cells, plays a deleterious role in various inflammatory diseases. Considering OPN as a pro-inflammatory molecule, we hypothesize that the treatment with its neutralizing antibody (anti-OPN Ab) protects mice against intestinal I/R-induced acute lung injury (ALI). Intestinal I/R was induced in mice by superior mesenteric artery occlusion with a vascular clip. After 45 min of occlusion, the clip was removed and anti-OPN Ab (25 μg/mouse) or normal IgG isotype control (25 μg/mouse) was immediately administrated intravenously. Blood, small intestine, and lung tissues were collected at 4 h after reperfusion for various analyses. After intestinal I/R, mRNA and protein levels of OPN were significantly induced in the small intestine, lungs, and blood relative to sham-operated animals. Compared with the IgG control group, treatment of anti-OPN Ab significantly reduced plasma levels of pro-inflammatory cytokine and chemokine (IL-6 and MIP-2) and organ injury markers (AST, ALT, and LDH). The histological architecture of the gut and lung tissues in anti-OPN Ab-treated intestinal I/R-induced mice showed significant improvement versus the IgG control mice. The lung inflammation measured by the levels of IL-6, IL-1β, and MIP-2 was also significantly downregulated in the anti-OPN Ab-treated mice as compared with the IgG control mice. Besides, the lung MPO and neutrophil infiltration in anti-OPN Ab-treated mice showed significant reduction as compared with the IgG control animals. In conclusion, we have demonstrated beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic potential in intestinal I/R.

  13. Resveratrol potentiates the effect of dexamethasone in rat model of acute lung inflammation.

    PubMed

    Sadarani, Bhakti N; Majumdar, Anuradha S

    2015-09-01

    Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD.

  14. Reduced Acute Inflammatory Responses to Microgel Conformal Coatings

    PubMed Central

    Bridges, Amanda W.; Singh, Neetu; Burns, Kellie L.; Babensee, Julia E.; Lyon, L. Andrew; García, Andrés J.

    2008-01-01

    Implantation of synthetic materials into the body elicits inflammatory host responses that limit medical device integration and biological performance. This inflammatory cascade involves protein adsorption, leukocyte recruitment and activation, cytokine release, and fibrous encapsulation of the implant. We present a coating strategy based on thin films of poly(N-isopropylacrylamide) hydrogel microparticles (i.e. microgels) cross-linked with poly(ethylene glycol) diacrylate. These particles were grafted onto a clinically relevant polymeric material to generate conformal coatings that significantly reduced in vitro fibrinogen adsorption and primary human monocytes/macrophage adhesion and spreading. These microgel coatings also reduced leukocyte adhesion and expression of pro-inflammatory cytokines (TNF-α, IL-1β, MCP-1) in response to materials implanted acutely in the murine intraperitoneal space. These microgel coatings can be applied to biomedical implants as a protective coating to attenuate biofouling, leukocyte adhesion and activation, and adverse host responses for biomedical and biotechnological applications. PMID:18804859

  15. Lung ultrasound-guided management of acute breathlessness during pregnancy.

    PubMed

    Zieleskiewicz, L; Lagier, D; Contargyris, C; Bourgoin, A; Gavage, L; Martin, C; Leone, M

    2013-01-01

    Lung ultrasonography is a standard tool in the intensive care unit and in emergency medicine, but has not been described in the particular setting of the labour ward. During pregnancy, acute respiratory failure and pulmonary oedema are not uncommon life-threatening events. We present two case reports outlining the potential of lung ultrasonography in parturients. In case 1, lung ultrasonography allowed early diagnosis and treatment of acute dyspnoea in a parturient admitted for suspected asthma exacerbation. Lung ultrasonography revealed a 'B-pattern' of vertical lines radiating into the lung tissue, indicating severe pulmonary oedema complicating previously undiagnosed pre-eclampsia. In case 2, a pre-eclamptic patient was managed with combined transthoracic echocardiography and lung ultrasonography. The accuracy of lung ultrasonography in detecting interstitial oedema at a pre-clinical stage allowed adequate fluid resuscitation in this patient who had a high risk of alveolar pulmonary oedema. We believe that these cases strongly support the prospective validation of lung ultrasound for management of lung disorders in pregnant women. PMID:23088788

  16. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury

    PubMed Central

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E.; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The ‘response to microorganisms’ was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the ‘neuron projection morphogenesis’ process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  17. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2. PMID:26276127

  18. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury

    PubMed Central

    Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C

    2015-01-01

    Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099

  19. Pentoxifylline Attenuates Nitrogen Mustard-induced Acute Lung Injury, Oxidative Stress and Inflammation

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Cervelli, Jessica A.; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B.; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (250 g; 8–10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histolopathological changes in the lung within 3 d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2+ and MMP-9+), and anti-inflammatory/wound repair (CD163+ and Gal-3+) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3 d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3+ macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  20. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  1. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-07-31

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress.

  2. The origins of cachexia in acute and chronic inflammatory diseases.

    PubMed

    Delano, Matthew J; Moldawer, Lyle L

    2006-02-01

    The term cachexia originates from the Greek root kakos hexis, which translates into "bad condition," recognized for centuries as a progressive deterioration of body habitus. Cachexia is commonly associated with a number of disease states, including acute inflammatory processes associated with critical illness and chronic inflammatory diseases, such as cancer, congestive heart failure, chronic obstructive pulmonary disease, and human immunodeficiency virus infection. Cachexia is responsible for the deaths of 10%-22% of all patients with cancer and approximately 15% of the trauma deaths that occur from sepsis-induced organ dysfunction and malnutrition days to weeks after the initial traumatic event. The abnormalities associated with cachexia include anorexia, weight loss, a preferential loss of somatic muscle and fat mass, altered hepatic glucose and lipid metabolism, and anemia. Anorexia alone cannot fully explain the development of cachexia; metabolic alterations in carbohydrate, lipid, and protein metabolism contribute to the severe tissue losses. Despite significant advances in our understanding of specific disease processes, the mechanisms leading to cachexia remain unclear and multifactorial. Although complex, increasing evidence from both animal models and clinical studies suggests that an inflammatory response, mediated in part by a dysregulated production of proinflammatory cytokines, plays a role in the genesis of cachexia, associated with both critical illness and chronic inflammatory diseases. These cytokines are further thought to induce an acute phase protein response (APR) and produce the alterations in lipid and carbohydrate metabolism identified as crucial markers of acute inflammation in states of malignancy and critical illness. Although much is still unknown about the etiology of cachexia, there is growing appreciation that cachexia represents the endproduct of an inappropriate interplay between multiple cytokines, neuropeptides, classic stress

  3. Postoperative Acute Exacerbation of IPF after Lung Resection for Primary Lung Cancer.

    PubMed

    Watanabe, Atsushi; Kawaharada, Nobuyoshi; Higami, Tetsuya

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by slowly progressive respiratory dysfunction. Nevertheless, some IPF patients experience acute exacerbations generally characterized by suddenly worsening and fatal respiratory failure with new lung opacities and pathological lesions of diffuse alveolar damage. Acute exacerbation of idiopathic pulmonary fibrosis (AEIPF) is a fatal disorder defined by rapid deterioration of IPF. The condition sometimes occurs in patients who underwent lung resection for primary lung cancer in the acute and subacute postoperative phases. The exact etiology and pathogenesis remain unknown, but the condition is characterized by diffuse alveolar damage superimposed on a background of IPF that probably occurs as a result of a massive lung injury due to some unknown factors. This systematic review shows that the outcome, however, is poor, with postoperative mortality ranging from 33.3% to 100%. In this paper, the etiology, risk factors, pathogenesis, therapy, prognosis, and predictors of postoperative AEIPF are described.

  4. Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers.

    PubMed

    Tariket, Sofiane; Sut, Caroline; Hamzeh-Cognasse, Hind; Laradi, Sandrine; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2016-05-01

    Transfusion-related acute lung injury (TRALI) may be induced by plasma, platelet concentrates and red blood cell concentrates. The mechanism leading to TRALI is thought to involve two steps. The priming step consists of previous inflammatory pathological conditions or external factors attracting leukocytes to lung vessels and creating conditions favorable for the second step, in which anti-HLA or anti-HNA antibodies or biologically active lipids, usually in transfused blood products, stress leukocytes and inflame lung epithelia. Platelets may be involved in the pathogenesis of TRALI because of their secretory potential and capacity to interact with other immune cells. There is no drug based-prophylaxis, but transfusion strategies are used to mitigate the risk of TRALI. PMID:26855042

  5. C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils.

    PubMed

    Baudiß, Kristin; de Paula Vieira, Rodolfo; Cicko, Sanja; Ayata, Korcan; Hossfeld, Madelon; Ehrat, Nicolas; Gómez-Muñoz, Antonio; Eltzschig, Holger K; Idzko, Marco

    2016-03-01

    Recently, ceramide-1-phosphate (C1P) has been shown to modulate acute inflammatory events. Acute lung injury (Arnalich et al. 2000. Infect. Immun. 68: 1942-1945) is characterized by rapid alveolar injury, lung inflammation, induced cytokine production, neutrophil accumulation, and vascular leakage leading to lung edema. The aim of this study was to investigate the role of C1P during LPS-induced acute lung injury in mice. To evaluate the effect of C1P, we used a prophylactic and therapeutic LPS-induced ALI model in C57BL/6 male mice. Our studies revealed that intrapulmonary application of C1P before (prophylactic) or 24 h after (therapeutic) LPS instillation decreased neutrophil trafficking to the lung, proinflammatory cytokine levels in bronchoalveolar lavage, and alveolar capillary leakage. Mechanistically, C1P inhibited the LPS-triggered NF-κB levels in lung tissue in vivo. In addition, ex vivo experiments revealed that C1P also attenuates LPS-induced NF-κB phosphorylation and IL-8 production in human neutrophils. These results indicate C1P playing a role in dampening LPS-induced acute lung inflammation and suggest that C1P could be a valuable candidate for treatment of ALI. PMID:26800872

  6. Growth arrest-specific protein 6 attenuates neutrophil migration and acute lung injury in sepsis.

    PubMed

    Giangola, Matthew D; Yang, Weng-Lang; Rajayer, Salil R; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2013-12-01

    Sepsis is an acute inflammatory condition that can result in multiple organ failure and acute lung injury. Growth arrest-specific protein 6 (Gas6) is a broad regulator of the innate immune response involved with the nuclear factor κB signaling pathway. We hypothesized that Gas6 could have a protective role in attenuating the severity of acute lung injury and sepsis. Male mice were subjected to sepsis by cecal ligation and puncture (CLP) after which recombinant murine Gas6 (rmGas6; 5 μg/mouse) or normal saline (vehicle) was administered intravenously. Blood and lung tissues were collected at 20 h after CLP for various measurements. Treatment with rmGas6 significantly reduced serum levels of the injury markers aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, as well as proinflammatory cytokines interleukin 6 (IL-6) and IL-17, compared with the vehicle group (P < 0.05). The parenchyma of the lungs damaged by CLP was attenuated by rmGas6 treatment. Lung mRNA levels of tumor necrosis factor α, IL-1β, IL-6, IL-17, and macrophage inflammatory protein 2 (MIP-2) were decreased by 60%, 86%, 82%, 93%, and 82%, respectively, with rmGas6 treatment as determined by real-time reverse transcriptase-polymerase chain reaction (P < 0.05). The degradation of IκB-α induced by CLP in the lungs was inhibited by rmGas6 treatment. The number of neutrophils and myeloperoxidase activity in the lungs were significantly reduced in the rmGas6 group. Moreover, rmGas6 reduced the in vitro migration of differentiated human promyelocytic HL60 cells by 64%. Finally, the 10-day survival rate of mice subjected to CLP was increased from 31% in the vehicle group to 67% in the rmGas6 group (P < 0.05). Thus, Gas6 has potential to be developed as a novel therapeutic agent to treat patients with sepsis and acute lung injury.

  7. Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Flanders, James; Southard, Teresa L.; Weiss, Robert S.; Webb, Watt W.

    2012-03-01

    Limitations of current medical procedures for detecting early lung cancers inspire the need for new diagnostic imaging modalities for the direct microscopic visualization of lung nodules. Multiphoton microscopy (MPM) provides for subcellular resolution imaging of intrinsic fluorescence from unprocessed tissue with minimal optical attenuation and photodamage. We demonstrate that MPM detects morphological and spectral features of lung tissue and differentiates between normal, inflammatory and neoplastic lung. Ex vivo MPM imaging of intrinsic two-photon excited fluorescence was performed on mouse and canine neoplastic, inflammatory and tumor-free lung sites. Results showed that MPM detected microanatomical differences between tumor-free and neoplastic lung tissue similar to standard histopathology but without the need for tissue processing. Furthermore, inflammatory sites displayed a distinct red-shifted fluorescence compared to neoplasms in both mouse and canine lung, and adenocarcinomas displayed a less pronounced fluorescence emission in the 500 to 550 nm region compared to adenomas in mouse models of lung cancer. These spectral distinctions were also confirmed by two-photon excited fluorescence microspectroscopy. We demonstrate the feasibility of applying MPM imaging of intrinsic fluorescence for the differentiation of lung neoplasms, inflammatory and tumor-free lung, which motivates the application of multiphoton endoscopy for the in situ imaging of lung nodules.

  8. Lung Ultrasound in the Management of Acute Decompensated Heart Failure

    PubMed Central

    Ang, Shiang-Hu; Andrus, Phillip

    2012-01-01

    Once thought impracticable, lung ultrasound is now used in patients with a variety of pulmonary processes. This review seeks to describe the utility of lung ultrasound in the management of patients with acute decompensated heart failure (ADHF). A literature search was carried out on PubMed/Medline using search terms related to the topic. Over three thousand results were narrowed down via title and/or abstract review. Related articles were downloaded for full review. Case reports, letters, reviews and editorials were excluded. Lung ultrasonographic multiple B-lines are a good indicator of alveolar interstitial syndrome but are not specific for ADHF. The absence of multiple B-lines can be used to rule out ADHF as a causative etiology. In clinical scenarios where the assessment of acute dyspnea boils down to single or dichotomous pathologies, lung ultrasound can help rule in ADHF. For patients being treated for ADHF, lung ultrasound can also be used to monitor response to therapy. Lung ultrasound is an important adjunct in the management of patients with acute dyspnea or ADHF. PMID:22708913

  9. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-12-10

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  10. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    PubMed Central

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  11. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury.

    PubMed

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI. PMID:26576075

  12. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury.

    PubMed

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI.

  13. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury

    PubMed Central

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI. PMID:26576075

  14. N-acetyl cysteine improves the effects of corticosteroids in a mouse model of chlorine-induced acute lung injury.

    PubMed

    Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2015-02-01

    Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated.

  15. [Perioperative lung injury: acute exacerbation of idiopathic pulmonary fibrosis and acute interstitial pneumonia after pulmonary resection].

    PubMed

    Hoshikawa, Yasushi; Kondo, Takashi

    2004-12-01

    The mortality rate after surgical resection for lung cancer has been reported to range between 1% and 3%, with 30% caused by acute exacerbation of idiopathic pulmonary fibrosis (IPF) or acute interstitial pneumonia (AIP). Approximately 20% of patients with IPF have lung cancer, while 2% to 4% of lung cancer patients have IPF. The incidence of postoperative acute exacerbation of IPF is about 20%. Some investigations in Japan revealed that 10% to 17% of lung cancer patients undergoing lung resection, who have not been diagnosed with IPF preoperatively, have localized-usual interstitial pneumonia (Lo-UIP) lesions. Approximately 20% of patients with Lo-UIP show postoperative acute exacerbation, while about 0.5% of those without Lo-UIP develop AIP after surgery. There is no confirmed treatment or prophylaxis. Most patients who develop postoperative acute exacerbation or AIP are treated with methylpredonisolone (1,000 mg/day x 3 days), but the mortality rate is 50% or greater. We emphasize that more efforts should be made to develop strategies to prevent postoperative acute exacerbation of IPF and AIP.

  16. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin.

    PubMed

    Kao, Shang-Jyh; Liu, Demeral David; Su, Chain-Fa; Chen, Hsing I

    2007-09-01

    Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.

  17. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia

    PubMed Central

    Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636

  18. Natural antioxidant betanin protects rats from paraquat-induced acute lung injury interstitial pneumonia.

    PubMed

    Han, Junyan; Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further.

  19. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role.

  20. Acute response to elastase in sheep lungs measured with Ga-67

    SciTech Connect

    Susskind, H.; Chanana, A.D.; Joel, D.D.; Brill, A.B.; Janoff, A.; Som, P.; Oster, Z.H.

    1984-12-01

    The early inflammatory changes in sheep's lungs were studied with Ga-67 citrate, injected i.v. immediately following intrabronchial instillation of different doses of elastase into the right diaphragmatic lobes of 15 sheep. The elastase-induced lesions in the first five sheep (two received 4000 units; three got 6000) were imaged up to seven times in an 8-day period to measure the temporal changes in the lesion and to select the appropriate imaging time; the other ten sheep (800-8000 units) were imaged once at 52 hr. Localization of Ga-67, as seen on the posterior and right lateral projections, was confined to a well-circumscribed region in the right lung field. The lesion could be detected as early as 4 hr after elastase instillation. It decreased to 60% of its initial area at 4 hr, while the total Ga-67 activity in the sheep remained constant after 52-75 hr. Gallium-67 uptake in the lesion correlated positively with the dose of elastase (r = 0.88, p < 0.001) and with the reduction in perfusion, as determined 4 wk after the elastase instillation (r = 0.66, p < 0.05). Early Ga-67 uptake in inflammatory lung lesions could therefore be used as a reliable predictor of the size of the acute elastase-induced inflammatory reaction, as well as of the sequelae involving the regional vascular supply 4 wk later. 25 references, 5 figures, 2 tables.

  1. Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice

    PubMed Central

    Zhu, Qiankun; He, Guizhen; Wang, Jie; Wang, Yukang; Chen, Wei

    2016-01-01

    This experiment was conducted to evaluate whether pretreatment with fenofibrate could mitigate acute lung injury (ALI) in a mice model of intestinal ischemia/reperfusion (I/R). Male C57BL/6 mice were randomly assigned into three groups (n = 6): sham, intestinal I/R + vehicle, and intestinal I/R + fenofibrate. Intestinal I/R was achieved by clamping the superior mesenteric artery. Fenofibrate (100 mg/kg) or equal volume of vehicle was injected intraperitoneally 60 minutes before the ischemia. At the end of experiment, measurement of pathohistological score, inflammatory mediators and other markers were performed. In addition, a 24-hour survival experiment was conducted in intestinal I/R mice treated with fenofibrate or vehicle. The chief results were as anticipated. Pathohistological evaluation indicated that fenofibrate ameliorated the local intestine damage and distant lung injury. Pretreatment with fenofibrate significantly decreased inflammatory factors in both the intestine and the lung. Consistently, renal creatine levels and hepatic ALT levels were significantly decreased in the fenofibrate group. Moreover, serum systemic inflammatory response indicators were significantly alleviated in the fenofibrate group. In addition, fenofibrate administration significantly improved the survival rate. Collectively, our data indicated that pretreatment with fenofibrate prior to ischemia attenuated intestinal I/R injury and ALI. PMID:26902261

  2. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    SciTech Connect

    Cover, Cathleen; Liu Jie; Farhood, Anwar; Malle, Ernst; Waalkes, Michael P.; Bajt, Mary Lynn; Jaeschke, Hartmut . E-mail: jaeschke@email.arizona.edu

    2006-10-01

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-{alpha}, interleukin-1{beta} and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose.

  3. Interplay between Cellular and Molecular Inflammatory Mediators in Lung Cancer

    PubMed Central

    Orozco-Morales, Mario; Soca-Chafre, Giovanny; Barrios-Bernal, Pedro; Hernández-Pedro, Norma; Arrieta, Oscar

    2016-01-01

    Inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Chronic inflammation plays a critical role in tumorigenesis. Tumor infiltrating inflammatory cells mediate processes associated with progression, immune suppression, promotion of neoangiogenesis and lymphangiogenesis, remodeling of extracellular matrix, invasion and metastasis, and, lastly, the inhibition of vaccine-induced antitumor T cell response. Accumulating evidence indicates a critical role of myeloid cells in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages (TAMs), the significance of granulocytes in cancer has only recently begun to emerge with the characterization of tumor-associated neutrophils (TANs). Recent studies show the importance of CD47 in the interaction with macrophages inhibiting phagocytosis and promoting the migration of neutrophils, increasing inflammation which can lead to recurrence and progression in lung cancer. Currently, therapies are targeted towards blocking CD47 and enhancing macrophage-mediated phagocytosis. However, antibody-based therapies may have adverse effects that limit its use. PMID:26941482

  4. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    PubMed

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  5. Ulinastatin reduces pathogenesis of phosgene-induced acute lung injury in rats.

    PubMed

    Shen, Jie; Gan, Zhengyi; Zhao, Jie; Zhang, Liming; Xu, Guoxiong

    2014-10-01

    Phosgene (CG) is an industrial chemical used to make plastics, rubbers, dyestuff, and pesticides. Although the inhalation of CG is relatively uncommon, its accidental exposure can lead to acute lung injury (ALI). Ulinastatin, a urinary trypsin inhibitor, has been emerged to use for the treatment of acute inflammatory state of a number of organs including the lung. In this study, we examined the pathogenic changes in the lungs after the inhalation of CG gas and also examined the effect of ulinastatin treatment in reversing these changes in rats. We found that the rats exposed to CG gas at a dose of 5.0 g/m(3) for 5 min led to ALI after 6 h. The signs of lung injury include pulmonary edema, hemorrhage, and cellular infiltration in pulmonary alveoli. In addition, interleukin-15 (IL-15) and intercellular adhesion molecule-1 (ICAM-1) were significantly increased in CG-inhaled animals. Ulinastatin administration at 1 h postexposure significantly reduced the intensity of all the pathological changes in the lungs of these CG-exposed animals. Ulinastatin at a dose of 400 U/g was shown to decrease the total number of cells in bronchoalveolar lavage fluid and the levels of IL-15 and ICAM-1 in the serum. We also found that the structure of the lung was protected by ulinastatin treatment. Thus, our data suggest that ulinastatin can be used as an effective drug for the treatment of CG-induced ALI. The serum levels of IL-15 and ICAM-1 can be used as the markers of lung injury after exposure to CG and may also serve as useful therapeutic targets at an early stage. The effects of long-term treatment of ulinastatin and the mechanisms by which ulinastatin decreases the infiltration of blood cells and reduces cytokines need further investigation.

  6. Isoflurane ameliorates acute lung injury by preserving epithelial tight junction integrity

    PubMed Central

    Englert, Joshua A.; Macias, Alvaro A.; Amador-Munoz, Diana; Vera, Miguel Pinilla; Isabelle, Colleen; Guan, Jiazhen; Magaoay, Brady; Velandia, Margarita Suarez; Coronata, Anna; Lee, Awapuhi; Fredenburgh, Laura E.; Culley, Deborah J.; Crosby, Gregory; Baron, Rebecca M.

    2015-01-01

    Background Isoflurane may be protective in pre-clinical models of lung injury but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. We hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. Methods Wild-type mice were treated with isoflurane one hour after exposure to nebulized endotoxin (n=8) or saline control (n=9) then allowed to recover for 24 hrs prior to mechanical ventilation (MV, tidal volume 15 mL/kg, 2 hrs) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane one hour after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. Results Mice treated with isoflurane following exposure to inhaled endotoxin and prior to MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice following treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e. zona occludens 1) that was rescued by isoflurane treatment. Conclusions Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein. PMID:26068207

  7. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    PubMed

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  8. Upregulation of PIAS1 protects against sodium taurocholate-induced severe acute pancreatitis associated with acute lung injury.

    PubMed

    Chen, Ping; Huang, Liya; Sun, Yunwei; Yuan, Yaozong

    2011-06-01

    The regulator of cytokine signaling known as protein inhibitor of activated STAT-1 (PIAS1) is increasingly understood to have diverse regulatory functions for inflammation, but its effect in inflammatory conditions such as severe acute pancreatitis (SAP) has not previously been reported. The aim of this study was to investigate the effect of upregulation of PIAS1 on SAP associated with acute lung injury (ALI), and its subsequent effect on disease severity. Sprague-Dawley rats were given an IV injection of adenovirus serotype 5 (Ad5)/F35-PIAS1, Ad5/F35-vector or saline before induction of SAP. The control group received only a sham operation. Lung and pancreas samples were harvested 16h after induction. The protein levels of PIAS1 in tissue were investigated. The severity of pancreatic injury was determined by a histological score of pancreatic injury, serum amylase, and pancreatic water content. The lung injury was evaluated by measurement of pulmonary microvascular permeability, lung myeloperoxidase activity and malondialdehyde levels. The survival rates of rats were also analyzed. The results found that in Ad5/F35-PIAS1 treated rats, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels were decreased but showed no influence on the levels of IL-10, and the severity of pancreatic tissue injury was less compared with either untreated SAP or Ad5/F35-vector treated rats (P<0.01). The administration of Ad5/F35-PIAS1 in SAP-induced rats downregulated the activity of the signal transducer and activator of transcription-1 (STAT1) pathway and the expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule (ICAM)-1 protein in lung. Thus, compared with the untreated SAP rats, the inflammatory response and the severity of ALI decreased, and the survival rates increased (P<0.01). These findings suggest that PIAS1 could augment anti-inflammatory activity by inhibiting STAT1, thus attenuating the severity of SAP associated with ALI.

  9. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing.

  10. Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury

    PubMed Central

    Lee, Sang-Min; McLaughlin, Joseph N.; Frederick, Daniel R.; Zhu, Lin; Thambiayya, Kalidasan; Wasserloos, Karla J.; Kaminski, Iris; Pearce, Linda L.; Peterson, Jim; Li, Jin; Latoche, Joseph D.; Peck Palmer, Octavia M.; Stolz, Donna Beer; Fattman, Cheryl L.; Alcorn, John F.; Oury, Tim D.; Angus, Derek C.; Pitt, Bruce R.

    2013-01-01

    Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice. Particularly, lung-to-liver zinc ratios decreased in wild-type (WT) and increased significantly in MT-null mice breathing 95% oxygen for 72 h. Compared with female adult WT mice, MT-null mice were significantly protected against hyperoxic lung injury indicated by reduced inflammation and interstitial edema, fewer necrotic changes to distal airway epithelium, and sustained lung function at 72 h hyperoxia. Lungs of MT-null mice showed decreased levels of immunoreactive LC3, an autophagy marker, compared with WT mice. Analysis of superoxide dismutase (SOD) activity in the lungs revealed similar levels of manganese-SOD activity between strains under normoxia and hyperoxia. Lung extracellular SOD activity decreased significantly in both strains at 72 h of hyperoxia, although there was no difference between strains. Copper-zinc-SOD activity was ∼4× higher under normoxic conditions in MT-null compared with WT mice but was not affected in either group by hyperoxia. Collectively the data suggest that genetic deletion of MT-I/II in mice is associated with compensatory increase in copper-zinc-SOD activity, prevention of hyperoxia-induced zinc transmigration from lung to liver, and hyperoxia-resistant phenotype strongly associated with differences in zinc homeostasis during hyperoxic acute lung injury. PMID:23275622

  11. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis

    PubMed Central

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  12. Acute lung injury after inhalation of nitric acid.

    PubMed

    Kao, Shih Ling; Yap, Eng Soo; Khoo, See Meng; Lim, Tow Keang; Mukhopadhyay, Amartya; Teo, Sylvia Tzu Li

    2008-12-01

    We report two cases of acute lung injury after the inhalation of nitric acid fumes in an industrial accident. The first patient, who was not using a respirator and standing in close proximity to the site of spillage of concentrated nitric acid, presented within 12 h with worsening dyspnea and required noninvasive ventilation for type 1 respiratory failure. The second case presented 1 day later with similar symptoms, but only required supportive treatment with high-flow oxygen. Both patients' chest radiographs showed widespread bilateral airspace shadows consistent with acute lung injury. Both received treatment with systemic steroids. They were discharged from hospital 5 days postexposure. Initial lung function test showed a restrictive pattern that normalized by 3 weeks postexposure. This case series describes the natural history after acute inhalation of nitric acid fumes, and demonstrates that the severity of lung injury is directly dependent on the exposure level. It also highlights the use of noninvasive ventilatory support in the management of such patients.

  13. Transfusion-Related Acute Lung Injured (TRALI): Current Concepts

    PubMed Central

    Álvarez, P; Carrasco, R; Romero-Dapueto, C; Castillo, R.L

    2015-01-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening intervention that develops within 6 hours of transfusion of one or more units of blood, and is an important cause of morbidity and mortality resulting from transfusion. It is necessary to dismiss other causes of acute lung injury (ALI), like sepsis, acute cardiogenic edema, acute respiratory distress syndrome (ARDS) or bacterial infection. There are two mechanisms that lead to the development of this syndrome: immune-mediated and no immune- mediated TRALI. A common theme among the experimental TRALI models is the central importance of neutrophils in mediating the early immune response, and lung vascular injury. Central clinical symptoms are dyspnea, tachypnea, tachycardia, cyanosis and pulmonary secretions, altogether with other hemodynamic alterations, such as hypotension and fever. Complementary to these clinical findings, long-term validated animal models for TRALI should allow the determination of the cellular targets for TRALI-inducing alloantibodies as well as delineation of the underlying pathogenic molecular mechanisms, and key molecular mediators of the pathology. Diagnostic criteria have been established and preventive measures have been implemented. These actions have contributed to the reduction in the overallnumber of fatalities. However, TRALI still remains a clinical problem. Any complication suspected of TRALI should immediately be reported. PMID:26312100

  14. Transfusion-Related Acute Lung Injured (TRALI): Current Concepts.

    PubMed

    Álvarez, P; Carrasco, R; Romero-Dapueto, C; Castillo, R L

    2015-01-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening intervention that develops within 6 hours of transfusion of one or more units of blood, and is an important cause of morbidity and mortality resulting from transfusion. It is necessary to dismiss other causes of acute lung injury (ALI), like sepsis, acute cardiogenic edema, acute respiratory distress syndrome (ARDS) or bacterial infection. There are two mechanisms that lead to the development of this syndrome: immune-mediated and no immune- mediated TRALI. A common theme among the experimental TRALI models is the central importance of neutrophils in mediating the early immune response, and lung vascular injury. Central clinical symptoms are dyspnea, tachypnea, tachycardia, cyanosis and pulmonary secretions, altogether with other hemodynamic alterations, such as hypotension and fever. Complementary to these clinical findings, long-term validated animal models for TRALI should allow the determination of the cellular targets for TRALI-inducing alloantibodies as well as delineation of the underlying pathogenic molecular mechanisms, and key molecular mediators of the pathology. Diagnostic criteria have been established and preventive measures have been implemented. These actions have contributed to the reduction in the overallnumber of fatalities. However, TRALI still remains a clinical problem. Any complication suspected of TRALI should immediately be reported.

  15. MyD88 in lung resident cells governs airway inflammatory and pulmonary function responses to organic dust treatment.

    PubMed

    Poole, Jill A; Wyatt, Todd A; Romberger, Debra J; Staab, Elizabeth; Simet, Samantha; Reynolds, Stephen J; Sisson, Joseph H; Kielian, Tammy

    2015-01-01

    Inhalation of organic dusts within agriculture environments contributes to the development and/or severity of airway diseases, including asthma and chronic bronchitis. MyD88 KO (knockout) mice are nearly completely protected against the inflammatory and bronchoconstriction effects induced by acute organic dust extract (ODE) treatments. However, the contribution of MyD88 in lung epithelial cell responses remains unclear. In the present study, we first addressed whether ODE-induced changes in epithelial cell responses were MyD88-dependent by quantitating ciliary beat frequency and cell migration following wounding by electric cell-substrate impedance sensing. We demonstrate that the normative ciliary beat slowing response to ODE is delayed in MyD88 KO tracheal epithelial cells as compared to wild type (WT) control. Similarly, the normative ODE-induced slowing of cell migration in response to wound repair was aberrant in MyD88 KO cells. Next, we created MyD88 bone marrow chimera mice to investigate the relative contribution of MyD88-dependent signaling in lung resident (predominately epithelial cells) versus hematopoietic cells. Importantly, we demonstrate that ODE-induced airway hyperresponsiveness is MyD88-dependent in lung resident cells, whereas MyD88 action in hematopoietic cells is mainly responsible for ODE-induced TNF-α release. MyD88 signaling in lung resident and hematopoietic cells are necessary for ODE-induced IL-6 and neutrophil chemoattractant (CXCL1 and CXCL2) release and neutrophil influx. Collectively, these findings underscore an important role for MyD88 in lung resident cells for regulating ciliary motility, wound repair and inflammatory responses to ODE, and moreover, show that airway hyperresponsiveness appears uncoupled from airway inflammatory consequences to organic dust challenge in terms of MyD88 involvement. PMID:26376975

  16. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  17. Genome-wide association mapping of acute lung injury in neonatal inbred mice

    PubMed Central

    Nichols, Jennifer L.; Gladwell, Wesley; Verhein, Kirsten C.; Cho, Hye-Youn; Wess, Jürgen; Suzuki, Oscar; Wiltshire, Tim; Kleeberger, Steven R.

    2014-01-01

    Reactive oxygen species (ROS) contribute to the pathogenesis of many acute and chronic pulmonary disorders, including bronchopulmonary dysplasia (BPD), a respiratory condition that affects preterm infants. However, the mechanisms of susceptibility to oxidant stress in neonatal lungs are not completely understood. We evaluated the role of genetic background in response to oxidant stress in the neonatal lung by exposing mice from 36 inbred strains to hyperoxia (95% O2) for 72 h after birth. Hyperoxia-induced lung injury was evaluated by using bronchoalveolar lavage fluid (BALF) analysis and pathology. Statistically significant interstrain variation was found for BALF inflammatory cells and protein (heritability estimates range: 33.6–55.7%). Genome-wide association mapping using injury phenotypes identified quantitative trait loci (QTLs) on chromosomes 1, 2, 4, 6, and 7. Comparative mapping of the chromosome 6 QTLs identified Chrm2 (cholinergic receptor, muscarinic 2, cardiac) as a candidate susceptibility gene, and mouse strains with a nonsynonymous coding single-nucleotide polymorphism (SNP) in Chrm2 that causes an amino acid substitution (P265L) had significantly reduced hyperoxia-induced inflammation compared to strains without the SNP. Further, hyperoxia-induced lung injury was significantly reduced in neonatal mice with targeted deletion of Chrm2, relative to wild-type controls. This study has important implications for understanding the mechanisms of oxidative lung injury in neonates.—Nichols, J. L., Gladwell, W., Verhein, K. C., Cho, H.-Y., Wess, J., Suzuki, O., Wiltshire, T., Kleeberger, S. R. Genome-wide association mapping of acute lung injury in neonatal inbred mice. PMID:24571919

  18. Quantitative gallium 67 lung scan to assess the inflammatory activity in the pneumoconioses

    SciTech Connect

    Bisson, G.; Lamoureux, G.; Begin, R.

    1987-01-01

    Gallium 67 lung scan has recently become increasingly used to evaluate the biological activity of alveolitis of interstitial lung diseases and to stage the disease process. In order to have a more precise and objective indicator of the inflammatory activity in the lung, we and others have developed computer-based quantitative techniques to process the /sup 67/Ga scan. In this report, we compare the results of three such computer-based methods of analysis of the scans of 38 normal humans and 60 patients suspected to have pneumoconiosis. Results of previous investigations on the mechanisms of /sup 67/Ga uptake in interstitial lung disease are reviewed. These data strengthen the view that quantitative /sup 67/Ga lung scan has become a standard technique to assess inflammatory activity in the interstitial lung diseases and that computer-based method of analysis of the scan provides an index of inflammatory activity of the lung disease that correlates with lung lavage and biopsy indices of inflammation in the lung tissue. 51 references.

  19. Cavitating lung lesion as a manifestation of inflammatory tumor (pseudotumor) of the lung: A case report and literature review

    PubMed Central

    Michaelides, Stylianos A.; Passalidou, Elisabeth; Bablekos, George D.; Aza, Evlambia; Goulas, George; Chorti, Maria; Nicolaou, Irene N.; Lioulias, Achilleas G.

    2014-01-01

    Patient: Female, 60 Final Diagnosis: Inflammatory pseudotumor of the lung Symptoms: Cough dry • fever Medication: — Clinical Procedure: — Specialty: — Objective: Rare disease Background: Inflammatory pseudotumor of the lung involves a benign, non-neoplastic lung lesion of unknown etiology. Case Report: We present a case of a 60-year-old female smoker who had been under intermittent immunosuppressive medication for discoid lupus, who was admitted to hospital with fever of 39.5°C of 10-day duration, not responding to an oral cephalosporin. Chest CT examination showed a cavitating opacity in the upper zone of the left lung. It was not feasible to establish a diagnosis based on clinical and laboratory testing nor based on CT scanning and bronchoscopy. Thus, the patient underwent left thoracotomy and sphenoid resection of the lesion, which was sent for biopsy. The histopathologic features aided by immunohistochemical staining proved the lesion to be an inflammatory pseudotumor of the lung. Conclusions: The case is reported because of the extremely rare radiologic presentation of the development of a lung pseudotumor emerging as a cavitated lesion, which relapsed during the follow-up period while the patient was still under immunosuppressive medication. PMID:24971159

  20. Sirtinol Inhibits Neutrophil Elastase Activity and Attenuates Lipopolysaccharide-Mediated Acute Lung Injury in Mice

    PubMed Central

    Tsai, Yung-Fong; Yu, Huang-Ping; Chang, Wen-Yi; Liu, Fu-Chao; Huang, Zhen-Cheng; Hwang, Tsong-Long

    2015-01-01

    Enhanced activity of neutrophil elastase leads to a protease–antiprotease imbalance, and plays an essential pathogenic role in acute lung injury (ALI) and acute respiratory distress syndrome. We assayed the pharmacological effects and mechanisms of the action of sirtinol in human neutrophils, and in neutrophil elastase (HNE)-induced paw edema and lipopolysaccharide (LPS)-mediated ALI in mice. Sirtinol significantly inhibited the activity of HNE from human neutrophils in response to various stimulators. The inhibitory effects on HNE activity were not mediated through protein kinase A, calcium, extracellular-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, Akt, or Src family kinases. Analysis of enzymatic activities showed that sirtinol inhibited HNE activity in a concentration-dependent manner. These results demonstrate that sirtinol does not affect neutrophil function and is an HNE inhibitor. In addition, administration of sirtinol significantly inhibited HNE-induced paw edema, and attenuated the myeloperoxidase activity and reduced pulmonary wet/dry weight ratio in the LPS-induced ALI mouse model. Our study indicates that sirtinol has anti-inflammatory effects through direct inhibition of HNE activity and attenuates HNE-induced and LPS-mediated tissue or organ injury in vivo. Sirtinol is a novel HNE inhibitor and may have the potential for clinical application in the treatment of inflammatory lung diseases. PMID:25666548

  1. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  2. [Sodium dichloroisocyanurate-induced acute lung injury in a child].

    PubMed

    Wiel, E; Sicot, J; Leteurtre, S; Binoche, A; Nisse, P; Assez, N

    2013-04-01

    Intoxication, by cyanurate and its chlorated derivatives in children, is increasingly reported in the literature due to accidental ingestion compared to accidental inhalation. We report a case in a 5-year-old child who presented with acute lung injury due to accidental inhalation of gas formed after a reaction of sodium dichloroisocyanurate tablets with water. Prevention remains the best way to reduce the risk of children being intoxicated by inhalation of the gas formed after contact of tablets with water. PMID:23433843

  3. Presumptive acute lung injury following multiple surgeries in a cat

    PubMed Central

    Katayama, Masaaki; Okamura, Yasuhiko; Katayama, Rieko; Sasaki, Jun; Shimamura, Shunsuke; Uzuka, Yuji; Kamishina, Hiroaki; Nezu, Yoshinori

    2013-01-01

    A 12-year-old, 3.5-kg spayed female domestic shorthair cat had a tracheal mass identified as malignant B-cell lymphoma. The cat had tracheal resection and subsequently developed laryngeal paralysis. Due to multiple episodes of respiratory distress the cat subsequently had tracheal surgeries. Finally, the cat had a sudden onset of severe respiratory distress and collapsed. Computed tomography imaging and arterial blood gas analysis supported a diagnosis of acute lung injury. PMID:24082167

  4. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity. PMID:27398612

  5. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation.

  6. [Acute lung injury as a consequence of blood transfusion].

    PubMed

    Rodríguez-Moyado, Héctor

    2011-01-01

    Acute lung injury (ALI) has been recognized as a consequence of blood transfusion (BT) since 1978; the Food and Drug Administration, has classified it as the third BT mortality issue, in 2004, and in first place related with ALI. It can be mainly detected as: Acute respiratory distress syndrome (ARDS), transfusion associated circulatory overload (TACO) and transfusion related acute lung injury (TRALI). The clinical onset is: severe dyspnea, bilateral lung infiltration and low oxygen saturation. In USA, ARDS has an incidence of three to 22.4 cases/100 000 inhabitants, with 58.3 % mortality. TACO and TRALI are less frequent; they have been reported according to the number of transfusions: one in 1275 to 6000 for TRALI and one in 356 transfusions for TACO. Mortality is reported from two to 20 % in TRALI and 20 % in TACO. Antileukocyte antibodies in blood donors plasma, caused TRALI in 89 % of cases; also it has been found antigen specificity against leukocyte blood receptor in 59 %. The UCI patients who received a BT have ALI as a complication in 40 % of cases. The capillary pulmonary endothelia is the target of leukocyte antibodies and also plasma biologic modifiers of the stored plasma, most probable like a Sanarelli-Shwar-tzman phenomenon.

  7. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration

    PubMed Central

    Li, Yan; Huang, Jie; Foley, Niamh M.; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H. Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  8. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration.

    PubMed

    Li, Yan; Huang, Jie; Foley, Niamh M; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  9. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury

    PubMed Central

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4+ CD25+ regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  10. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury.

    PubMed

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-02-17

    T helper (Th) 17 cells and CD4(+) CD25(+) regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease.

  11. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury.

    PubMed

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4(+) CD25(+) regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  12. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI.

  13. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI. PMID:26222277

  14. Amelioration of meconium-induced acute lung injury by parecoxib in a rabbit model

    PubMed Central

    Li, Ai-Min; Zhang, Li-Na; Li, Wen-Zhi

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays important roles in various inflammatory conditions and is significantly increased in meconium-induced lung injury. We investigated the effects of parecoxib on meconium-induced acute lung injury (ALI) in rabbits. Twenty-four rabbits were randomized into sham, control, and parecoxib groups. Rabbits in the control and parecoxib groups underwent tracheal instillation of meconium, followed by intravenous injection of saline or parecoxib and 4 h of ventilation. The airway pressure, dynamic compliance, and ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2 ratio) were recorded at baseline (T0) and 4 h after instillation (T1-T4). The lung tissue wet-to-dry weight ratio; neutrophil percentage; and total protein, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-8, prostaglandin E2, and malondialdehyde levels in bronchoalveolar lavage fluid (BALF) were evaluated. The myeloperoxidase activity, COX-2 expression, and degree of histopathologic injury in lung tissue were also analyzed. The airway pressure, compliance, and PaO2/FiO2 ratio were significantly improved by parecoxib after meconium instillation. The lung wet-to-dry weight ratio, total protein level, and neutrophil percentage in BALF were lowest in the parecoxib group. The TNF-α, IL-1β, IL-8, prostaglandin E2, and malondialdehyde levels in the BALF were lowest in the parecoxib group. The COX-2 expression and myeloperoxidase activity in lung tissue were significantly reduced by parecoxib. The degree of lung injury was also reduced. In conclusions: Parecoxib effectively ameliorates respiratory function and attenuates meconium-induced ALI. These effects are correlated with prostaglandin E2 and COX-2 inhibition. PMID:26221218

  15. Lactobacillus rhamnosus GG and Bifidobacterium longum Attenuate Lung Injury and Inflammatory Response in Experimental Sepsis

    PubMed Central

    Khailova, Ludmila; Petrie, Benjamin; Baird, Christine H.; Dominguez Rieg, Jessica A.; Wischmeyer, Paul E.

    2014-01-01

    Introduction Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. Objective Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury. Methods 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. Results LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. Conclusions Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis. PMID:24830455

  16. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury.

    PubMed

    Santana, Maria Cristina E; Garcia, Cristiane S N B; Xisto, Débora G; Nagato, Lilian K S; Lassance, Roberta M; Prota, Luiz Felipe M; Ornellas, Felipe M; Capelozzi, Vera L; Morales, Marcelo M; Zin, Walter A; Pelosi, Paolo; Rocco, Patricia R M

    2009-06-30

    Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa O2), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa O2. PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain.

  17. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment.

    PubMed

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F; Kolliputi, Narasaiah

    2015-09-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  18. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment

    PubMed Central

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F.

    2015-01-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  19. RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin β6 pathway inhibition.

    PubMed

    Ding, Xibing; Wang, Xin; Zhao, Xiang; Jin, Shuqing; Tong, Yao; Ren, Hao; Chen, Zhixia; Li, Quan

    2015-04-01

    Acute lung injury is a common consequence of sepsis, a life-threatening inflammatory response caused by severe infection. In this study, we elucidate the attenuating effects of synthetic Arg-Gly-Asp-Ser peptides (RGDs) on acute lung injury in a sepsis mouse model. We further reveal that the beneficial effects of RGDs stem from their negative regulation of the Wisp1 (WNT1-inducible signaling pathway)-integrin β6 pathway. After inducing sepsis using cecal ligation and puncture (CLP), mice were randomized into experimental and control groups, and survival rates were recorded over 7 days, whereas only 20% of mice subjected to CLP survived when compared with untreated controls; the addition of RGDs to this treatment regimen dramatically increased the survival rate to 80%. Histological analysis revealed acute lung injury in CLP-treated mice, whereas those subjected to the combined treatment of CLP and RGDs showed a considerable decrease in lung injury severity. The addition of RGDs also dramatically attenuated other common sepsis-associated effects, such as increased white blood cell number in bronchoalveolar lavage fluid and decreased pulmonary capillary barrier function. Furthermore, treatment with RGDs decreased the serum and bronchoalveolar lavage fluid levels of inflammatory cytokines such as tumor necrosis factor α and interleukin 6, contrary to the CLP treatment alone that increased the levels of these proteins. Interestingly, however, RGDs had no detectable effect on bacterial invasion following sepsis induction. In addition, mice treated with RGDs showed decreased levels of wisp1 and integrin β6 when compared with CLP-treated mice. In the present study, a linkage between Wisp1 and integrin β6 was evaluated in vivo. Most strikingly, RGDs resulted in a decreased association of Wisp1 with integrin β6 based on coimmunoprecipitation analyses. These data suggest that RGDs ameliorate acute lung injury in a sepsis mouse model by inhibiting the Wisp1-integrin β6

  20. [Differential magnetic resonance diagnosis of central lung cancer and acute pneumonia].

    PubMed

    Gamova, E V; Nudnov, N V

    2006-01-01

    The paper analyzes the authors' own data of chest magnetic resonance imaging (MRI) in 86 patients with verified central lung cancer and acute pneumonia. The MRI signs of lung cancer are systematized in exo-, endo-, and peribronchial forms of growth. The additional capacities of contrast enhancement are analyzed. The MRI semiotics of acute pneumonia has been developed. The differential diagnostic criteria for recognizing central lung cancer and acute pneumonia have been also elaborated.

  1. Antipseudomonal Bacteriophage Reduces Infective Burden and Inflammatory Response in Murine Lung

    PubMed Central

    Pabary, Rishi; Singh, Charanjit; Morales, Sandra; Bush, Andrew; Alshafi, Khalid; Bilton, Diana; Alton, Eric W. F. W.; Smithyman, Anthony

    2015-01-01

    As antibiotic resistance increases, there is a need for new therapies to treat infection, particularly in cystic fibrosis (CF), where Pseudomonas aeruginosa is a ubiquitous pathogen associated with increased morbidity and mortality. Bacteriophages are an attractive alternative treatment, as they are specific to the target bacteria and have no documented side effects. The efficacy of phage cocktails was established in vitro. Two P. aeruginosa strains were taken forward into an acute murine infection model with bacteriophage administered either prophylactically, simultaneously, or postinfection. The infective burden and inflammation in bronchoalveolar lavage fluid (BALF) were assessed at various times. With low infective doses, both control mice and those undergoing simultaneous phage treatment cleared P. aeruginosa infection at 48 h, but there were fewer neutrophils in BALF of phage-treated mice (median, 73.2 × 104/ml [range, 35.2 to 102.1 × 104/ml] versus 174 × 104/ml [112.1 to 266.8 × 104/ml], P < 0.01 for the clinical strain; median, 122.1 × 104/ml [105.4 to 187.4 × 104/ml] versus 206 × 104/ml [160.1 to 331.6 × 104/ml], P < 0.01 for PAO1). With higher infective doses of PAO1, all phage-treated mice cleared P. aeruginosa infection at 24 h, whereas infection persisted in all control mice (median, 1,305 CFU/ml [range, 190 to 4,700 CFU/ml], P < 0.01). Bacteriophage also reduced CFU/ml in BALF when administered postinfection (24 h) and both CFU/ml and inflammatory cells in BALF when administered prophylactically. A reduction in soluble inflammatory cytokine levels in BALF was also demonstrated under different conditions. Bacteriophages are efficacious in reducing both the bacterial load and inflammation in a murine model of P. aeruginosa lung infection. This study provides proof of concept for future clinical trials in patients with CF. PMID:26574007

  2. Protective effects of dexamethasone on early acute lung injury induced by oleic acid in rats

    PubMed Central

    Huang, Bin; Wang, Dao-Xin; Deng, Wang

    2014-01-01

    Objective: Whether alveolar edema could be cleared by alveolar epithelial is a key to the treatment and prognosis of ALI (acute lung injury). In this study, oleic acid(OA)-induced ALI model was established, the expression of α1 Na+/K+-ATPase (NKA) and β1 Na+/K+-ATPase were performed in vivo to investigate the mechanism of alveolar fluid clearance (AFC) in ALI and the effect of early low doses of dexamethasone on alveolar fluid clearance. Methods: In this study, Male rats were challenged by OA with or without dexamethasone (1 mg/kg, iv) post-treatment. Lung histopathology, blood gas, pulmonary vascular permeability, BALF IL-6, MPO and NKA activity of lung were examined. α1NKA and β1NKA mRNA and protein expression were detected. Results: The results indicated that compared with sham operated group, NKA activity, mRNA and protein expression of α1NKA and β1NKA were decreased in OA treated group, while wet/dry ratio, lung index, IL-6, and MPO activity were increased significantly. Pulmonary edema was obviously seen under light microscope. Those indexes were improved in dexamethasone treated group compared to OA treated group. Conclusion: The expression of NKA to decline for the lung injury is one important mechanism of pulmonary edema. Early low dose of dexamethasone treatment could suppress the expression of inflammatory mediators, improved lung epithelial-endothelial barrier permeability, increased the expressions of α1 NKA and β1 NKA mRNA, α1 NKA and β1 NKA protein level, stimulated NKA activity and decreased pulmonary edema. In conclusion, these observations suggest that early low dose of dexamethasone treatment has a protective effect on OA induced ALI. PMID:25663967

  3. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4

    PubMed Central

    Zhao, Juanjuan; Chen, Chao; Guo, Mengmeng; Tao, Yijin; Cui, PanPan; Zhou, Ya; Qin, Nalin; Zheng, Jing; Zhang, Jidong; Xu, Lin

    2016-01-01

    Recent evidence showed that microRNA-7 (miR-7) played an important role in the pathologies of lung-related diseases. However, the potential role of miR-7 in acute lung injury (ALI) still remains poorly understood. Here, we assessed the effect of miR-7 deficiency on the pathology of ALI. We, first, found that the expression of miR-7 was upregulated in lung tissue in murine LPS-induced ALI model. Notably, we generated miR-7 knock down mice by using miRNA-Sponge technique and found that miR-7 deficiency could ameliorate the pathologies of lung as evidenced by accelerated body weight recovery, reduced level of bronchoalveolar lavage (BAL) proinflammatory cytokines and decreased number of BAL cells in ALI mice. Moreover, the proportion and number of various immune cells in BAL, including innate immune cell F4/80+ macrophages, γδT cells, NK1.1+ T cells, and CD11c+DCs, as well as adaptive immune cell CD4+ T cells and CD8+ T cells, also significantly changed, respectively. Mechanistic evidence showed that KLF4, a target molecule of miR-7, was upregulated in lung tissues in ALI model, accompanied by altered transduction of NF-κB, AKT, and ERK pathway. These data provided a previously unknown role of miR-7 in pathology of ALI, which could ultimately aid the understanding of development of ALI and the development of new therapeutic strategies against clinical inflammatory lung diseases. PMID:27774091

  4. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.

  5. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  6. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    PubMed Central

    Li, G.; Zhou, CL.; Zhou, QS.; Zou, HD.

    2015-01-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  7. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  8. Neu-164 and Neu-107, two novel antioxidant and anti-myeloperoxidase compounds, inhibit acute cigarette smoke-induced lung inflammation.

    PubMed

    Thatcher, Thomas H; Hsiao, Hsi-Min; Pinner, Elhanan; Laudon, Moshe; Pollock, Stephen J; Sime, Patricia J; Phipps, Richard P

    2013-07-15

    Cigarette smoke is a profound proinflammatory stimulus that causes acute lung inflammation and chronic lung disease, including chronic obstructive pulmonary disease (COPD, emphysema, and chronic bronchitis), via a variety of mechanisms, including oxidative stress. Cigarette smoke contains high levels of free radicals, whereas inflammatory cells, including macrophages and neutrophils, express enzymes, including NADPH oxidase, nitric oxide synthase, and myeloperoxidase, that generate reactive oxygen species in situ and contribute to inflammation and tissue damage. Neu-164 and Neu-107 are small-molecule inhibitors of myeloperoxidase, as well as potent antioxidants. We hypothesized that Neu-164 and Neu-107 would inhibit acute cigarette smoke-induced inflammation. Adult C57BL/6J mice were exposed to mainstream cigarette smoke for 3 days to induce acute inflammation and were treated daily by inhalation with Neu-164, Neu-107, or dexamethasone as a control. Inflammatory cells and cytokines were assessed by bronchoalveolar lavage and histology. mRNA levels of endogenous antioxidant genes heme oxygenase-1 and glutamate-cysteine ligase modifier subunit were determined by qPCR. Cigarette smoke exposure induced acute lung inflammation with accumulation of neutrophils and upregulation of proinflammatory cytokines, including IL-6, macrophage inflammatory protein-2, and keratinocyte-derived cytokine. Both Neu-164 and Neu-107 significantly reduced the accumulation of inflammatory cells and the expression of inflammatory cytokines as effectively as dexamethasone. Upregulation of endogenous antioxidant genes was dampened. Neu-164 and Neu-107 inhibit acute cigarette smoke-induced inflammation by scavenging reactive oxygen species in cigarette smoke and by inhibiting further oxidative stress caused by inflammatory cells. These compounds may have promise in preventing or treating lung disease associated with chronic smoke exposure, including COPD.

  9. The Heat Shock Response and Acute Lung Injury

    PubMed Central

    Wheeler, Derek S.; Wong, Hector R.

    2006-01-01

    All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e. exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury. PMID:17157189

  10. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome

    PubMed Central

    Martínez, Gonzalo J; Robertson, Stacy; Barraclough, Jennifer; Xia, Qiong; Mallat, Ziad; Bursill, Christina; Celermajer, David S; Patel, Sanjay

    2015-01-01

    Background Interleukin (IL)-1β, IL-18, and downstream IL-6 are key inflammatory cytokines in the pathogenesis of coronary artery disease. Colchicine is believed to block the NLRP3 inflammasome, a cytosolic complex responsible for the production of IL-1β and IL-18. In vivo effects of colchicine on cardiac cytokine release have not been previously studied. This study aimed to (1) assess the local cardiac production of inflammatory cytokines in patients with acute coronary syndromes (ACS), stable coronary artery disease and in controls; and (2) determine whether acute administration of colchicine inhibits their production. Methods and Results Forty ACS patients, 33 with stable coronary artery disease, and 10 controls, were included. ACS and stable coronary artery disease patients were randomized to oral colchicine treatment (1 mg followed by 0.5 mg 1 hour later) or no colchicine, 6 to 24 hours prior to cardiac catheterization. Blood samples from the coronary sinus, aortic root (arterial), and lower right atrium (venous) were collected and tested for IL-1β, IL-18, and IL-6 using ELISA. In ACS patients, coronary sinus levels of IL-1β, IL-18, and IL-6 were significantly higher than arterial and venous levels (P=0.017, <0.001 and <0.001, respectively). Transcoronary (coronary sinus-arterial) gradients for IL-1β, IL-18, and IL-6 were highest in ACS patients and lowest in controls (P=0.077, 0.033, and 0.014, respectively). Colchicine administration significantly reduced transcoronary gradients of all 3 cytokines in ACS patients by 40% to 88% (P=0.028, 0.032, and 0.032, for IL-1β, IL-18, and IL-6, respectively). Conclusions ACS patients exhibit increased local cardiac production of inflammatory cytokines. Short-term colchicine administration rapidly and significantly reduces levels of these cytokines. PMID:26304941

  11. Daidzein attenuates lipopolysaccharide-induced acute lung injury via toll-like receptor 4/NF-kappaB pathway.

    PubMed

    Feng, Guang; Sun, Bo; Li, Tian-zuo

    2015-06-01

    Daidzein, a diphenolic isoflavone from many plants and herbs, has been reported to have anti-inflammatory properties. However, the effects of daidzein on lipopolysaccharide (LPS)-induced acute lung injury have not been determined. The aim of this study was to detect the effects of daidzein on LPS-induced acute lung injury and investigate the molecular mechanisms. Daidzein was intraperitoneally injected (2, 4, 8 mg/kg) 30 min after intratracheal instillation of LPS (5 mg/kg) in rats. The results showed that daidzein treatment remarkably improved the pulmonary histology and decreased the lung wet/dry weight ratios. We also found that daidzein significantly inhibited LPS-induced increases of macrophages and neutrophils infiltration of lung tissues, as well as markedly attenuated MPO activity. Moreover, daidzein effectively reduced the inflammatory cytokines release and total protein in bronchoalveolar lavage fluids (BALF). Furthermore, daidzein significantly inhibited LPS-induced toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein up-expressions and NF-κB activation in lung tissues. In vitro, daidzein obviously inhibited the expressions of TLR4 and MyD88 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. In conclusion, these data indicate that the anti-inflammatory effects of daidzein against LPS-induced ALI may be due to its ability to inhibit TLR4-MyD88-NF-κB pathway and daidzein may be a potential therapeutic agent for LPS-induced ALI. PMID:25887269

  12. Role of β-catenin-regulated CCN matricellular proteins in epithelial repair after inflammatory lung injury.

    PubMed

    Zemans, Rachel L; McClendon, Jazalle; Aschner, Yael; Briones, Natalie; Young, Scott K; Lau, Lester F; Kahn, Michael; Downey, Gregory P

    2013-03-15

    Repair of the lung epithelium after injury is integral to the pathogenesis and outcomes of diverse inflammatory lung diseases. We previously reported that β-catenin signaling promotes epithelial repair after inflammatory injury, but the β-catenin target genes that mediate this effect are unknown. Herein, we examined which β-catenin transcriptional coactivators and target genes promote epithelial repair after inflammatory injury. Transmigration of human neutrophils across cultured monolayers of human lung epithelial cells resulted in a fall in transepithelial resistance and the formation of discrete areas of epithelial denudation ("microinjury"), which repaired via cell spreading by 96 h. In mice treated with intratracheal (i.t.) LPS or keratinocyte chemokine, neutrophil emigration was associated with increased permeability of the lung epithelium, as determined by increased bronchoalveolar lavage (BAL) fluid albumin concentration, which decreased over 3-6 days. Activation of β-catenin/p300-dependent gene expression using the compound ICG-001 accelerated epithelial repair in vitro and in murine models. Neutrophil transmigration induced epithelial expression of the β-catenin/p300 target genes Wnt-induced secreted protein (WISP) 1 and cysteine-rich (Cyr) 61, as determined by real-time PCR (qPCR) and immunostaining. Purified neutrophil elastase induced WISP1 upregulation in lung epithelial cells, as determined by qPCR. WISP1 expression increased in murine lungs after i.t. LPS, as determined by ELISA of the BAL fluid and qPCR of whole lung extracts. Finally, recombinant WISP1 and Cyr61 accelerated repair, and Cyr61-neutralizing antibodies delayed repair of the injured epithelium in vitro. We conclude that β-catenin/p300-dependent expression of WISP1 and Cyr61 is critical for epithelial repair and represents a potential therapeutic target to promote epithelial repair after inflammatory injury.

  13. Vascular Immunotargeting of Glucose Oxidase to the Endothelial Antigens Induces Distinct Forms of Oxidant Acute Lung Injury

    PubMed Central

    Christofidou-Solomidou, Melpo; Kennel, Stephen; Scherpereel, Arnaud; Wiewrodt, Rainer; Solomides, Charalambos C.; Pietra, Giuseppe G.; Murciano, Juan-Carlos; Shah, Sayed A.; Ischiropoulos, Harry; Albelda, Steven M.; Muzykantov, Vladimir R.

    2002-01-01

    Oxidative endothelial stress, leukocyte transmigration, and pulmonary thrombosis are important pathological factors in acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Vascular immunotargeting of the H2O2-generating enzyme glucose oxidase (GOX) to the pulmonary endothelium causes an acute oxidative lung injury in mice. 1 In the present study we compared the pulmonary thrombosis and leukocyte transmigration caused by GOX targeting to the endothelial antigens platelet-endothelial cell adhesion molecule (PECAM) and thrombomodulin (TM). Both anti-PECAM and anti-TM delivered similar amounts of 125I-GOX to the lungs and caused a dose-dependent, tissue-selective lung injury manifested within 2 to 4 hours by high lethality, vascular congestion, polymorphonuclear neutrophil (PMN) sequestration in the pulmonary vasculature, severe pulmonary edema, and tissue oxidation, yet at an equal dose, anti-TM/GOX inflicted more severe lung injury than anti-PECAM/GOX. Moreover, anti-TM/GOX-induced injury was accompanied by PMN transmigration in the alveolar space, whereas anti-PECAM/GOX-induced injury was accompanied by PMN degranulation within vascular lumen without PMN transmigration, likely because of PECAM blockage. Anti-TM/GOX caused markedly more severe pulmonary thrombosis than anti-PECAM/GOX, likely because of TM inhibition. These results indicate that blocking of specific endothelial antigens by GOX immunotargeting modulates important pathological features of the lung injury initiated by local generation of H2O2 and that this approach provides specific and robust models of diverse variants of human ALI/ARDS in mice. In particular, anti-TM/GOX causes lung injury combining oxidative, prothrombotic, and inflammatory components characteristic of the complex pathological picture seen in human ALI/ARDS. PMID:11891211

  14. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation. PMID:27089391

  15. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation.

  16. Danaparoid sodium inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats

    PubMed Central

    Hagiwara, Satoshi; Iwasaka, Hideo; Hidaka, Seigo; Hishiyama, Sohei; Noguchi, Takayuki

    2008-01-01

    Introduction Systemic inflammatory mediators, including high mobility group box 1 (HMGB1), play an important role in the development of sepsis. Anticoagulants, such as danaparoid sodium (DA), may be able to inhibit sepsis-induced inflammation, but the mechanism of action is not well understood. We hypothesised that DA would act as an inhibitor of systemic inflammation and prevent endotoxin-induced acute lung injury in a rat model. Methods We used male Wistar rats. Animals in the intervention arm received a bolus of 50 U/kg of DA or saline injected into the tail vein after lipopolysaccharide (LPS) administration. We measured cytokine (tumour necrosis factor (TNF)α, interleukin (IL)-6 and IL-10) and HMGB1 levels in serum and lung tissue at regular intervals for 12 h following LPS injection. The mouse macrophage cell line RAW 264.7 was assessed following stimulation with LPS alone or concurrently with DA with identification of HMGB1 and other cytokines in the supernatant. Results Survival was significantly higher and lung histopathology significantly improved among the DA (50 U/kg) animals compared to the control rats. The serum and lung HMGB1 levels were lower over time among DA-treated animals. In the in vitro study, administration of DA was associated with decreased production of HMGB1. In the cell signalling studies, DA administration inhibited the phosphorylation of IκB. Conclusion DA decreases cytokine and HMGB1 levels during LPS-induced inflammation. As a result, DA ameliorated lung pathology and reduces mortality in endotoxin-induced systemic inflammation in a rat model. This effect may be mediated through the inhibition of cytokines and HMGB1. PMID:18380908

  17. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  18. Preemptive mechanical ventilation can block progressive acute lung injury

    PubMed Central

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-01-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  19. Acute caprine fasciolosis: a case with unusual migration to lung.

    PubMed

    Hashemnia, Mohammad; Rezaei, Farid; Nikousefat, Zahra; Ghashghaii, Ali

    2015-09-01

    Fasciolosis is an important parasitic disease of domestic ruminants and occurs worldwide as a result of infection with liver fluke species. This report describes the macroscopic and microscopic characteristics of acute fasciolosis in a goat with unusual migration to lung. A 10-month-old goat was presented with history of weakness and acute recumbency from 12 h ago. The clinicians didn't report clinical evidence of systemic disease. Hematological analysis showed no significant changes in blood parameters except a mild reduction in lymphocyte population and about 6 % eosinophilia and also normocytic normochromic anemia. A noticeable increase in the level of serum ALP, AST and also GLDH were observed. Moreover, total protein and albumin showed a slight decrease in value comparing to reference intervals. In macroscopic examination numerous short vermiform cords were noted on the liver surface and the surface had an uneven appearance. A large number of immature, wandering flukes were seen on the cut surface. Histopathologically, a wide range of hepatic lesions was found. The most important lesions were moderate to severe perihepatitis and haemorrhagic tracts on the hepatic surface. These lesions corresponded to migratory tunnels filled with blood, fibrin and cellular debris. However histopathological findings of lung revealed chronic suppurative bronchopneumonia, but this lesion is not only associated with larval migration. PMID:26345062

  20. Preemptive mechanical ventilation can block progressive acute lung injury.

    PubMed

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  1. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury.

    PubMed

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction. PMID:27586366

  2. 'Inflammatory breast cancer' due to metastatic adenocarcinoma of lung.

    PubMed

    Ninan, Jacob; Naik, Vinay; George, Gemy Maria

    2016-01-01

    A 67-year-old woman with a history of lung adenocarcinoma presented with 3 weeks of redness, pain, swelling and skin changes in her right breast. Her vital signs and physical examination were within physiological limits except for the right breast. She had extensive red streaks radiating from the right nipple with peau d'orange appearance of her overlying skin. Her breast was tender on examination and did not have any associated cervical or axillary lymphadenopathy. Her mammography revealed thickening of the skin, increased parenchymal markings and shrinkage the breast. Multiple skin biopsies demonstrated moderately differentiated lung adenocarcinoma with lymphovascular invasion. The patient made an informed decision to undergo radiotherapy following discussion with her oncologist and breast surgeon. She succumbed to her illness 2 months after the diagnosis of metastasis to her breast. PMID:27587745

  3. Effects of basic drugs on prognosis of acute lung injury in mice

    PubMed Central

    Jia, Liming; Ren, Junming; Zhang, Weiwei; Qi, Yuehong; Zheng, Lina; Guo, Yongqing

    2015-01-01

    The aim of this study was to investigate the effects of basic drugs that alkalizes blood, on prognosis of acute lung injury in mice. Mice were randomized into three groups: Group normal saline, Group THAM, injected with 3.64% tri-(hydroxymethyl) methylamine (THAM), and Group NaHCO3, injected with 5% NaHCO3 (n=26, each group). The acute lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS; 50 mg/kg), followed by infusion of varying concentrations of the above solution into tail vein at the rate of 0.5 ml/h (controlled by micro pump) for over 2 h. Thirty minutes later, 6 mice from each group were randomly selected for blood gas analysis; then, the mice were killed and their lung tissues were sampled for detection of relative indicators, and the remaining mice were observed for signs of mortality for 72 h. Arterial pH, bicarbonate (HCO3 -), and BE and mortality of group THAM and NaHCO3 increased significantly compared to the corresponding parameters of the group normal saline (P<0.05); compared to the group normal saline, group NaHCO3 had increased blood [Na+] and decreased [K+] and [Ca2+] (P<0.05). Blood [Na+] of group THAM decreased while the lactic acid concentration increased (P<0.05) compared to the corresponding values of the group normal saline. Malondialdehyde (MDA) and myeloperoxidase (MPO) activity and wet-to-dry lung weight ratio (W/D) of group THAM and NaHCO3 increased significantly relative to group normal saline (P<0.05). Compared with the biopsy results of (A), pathological biopsy of (B) and (C) clearly revealed alveolar wall thickening, edema of alveolar epithelial cells, and infiltration of large neutrophils. Alkalizing blood could neither inhibit inflammatory reactions in LPS mouse model nor reduce the mortality rate of mice with acute lung injury, while excessive alkalization of blood could increase mice mortality. PMID:26770536

  4. Effects of basic drugs on prognosis of acute lung injury in mice.

    PubMed

    Jia, Liming; Ren, Junming; Zhang, Weiwei; Qi, Yuehong; Zheng, Lina; Guo, Yongqing

    2015-01-01

    The aim of this study was to investigate the effects of basic drugs that alkalizes blood, on prognosis of acute lung injury in mice. Mice were randomized into three groups: Group normal saline, Group THAM, injected with 3.64% tri-(hydroxymethyl) methylamine (THAM), and Group NaHCO3, injected with 5% NaHCO3 (n=26, each group). The acute lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS; 50 mg/kg), followed by infusion of varying concentrations of the above solution into tail vein at the rate of 0.5 ml/h (controlled by micro pump) for over 2 h. Thirty minutes later, 6 mice from each group were randomly selected for blood gas analysis; then, the mice were killed and their lung tissues were sampled for detection of relative indicators, and the remaining mice were observed for signs of mortality for 72 h. Arterial pH, bicarbonate (HCO3 (-)), and BE and mortality of group THAM and NaHCO3 increased significantly compared to the corresponding parameters of the group normal saline (P<0.05); compared to the group normal saline, group NaHCO3 had increased blood [Na(+)] and decreased [K(+)] and [Ca(2+)] (P<0.05). Blood [Na(+)] of group THAM decreased while the lactic acid concentration increased (P<0.05) compared to the corresponding values of the group normal saline. Malondialdehyde (MDA) and myeloperoxidase (MPO) activity and wet-to-dry lung weight ratio (W/D) of group THAM and NaHCO3 increased significantly relative to group normal saline (P<0.05). Compared with the biopsy results of (A), pathological biopsy of (B) and (C) clearly revealed alveolar wall thickening, edema of alveolar epithelial cells, and infiltration of large neutrophils. Alkalizing blood could neither inhibit inflammatory reactions in LPS mouse model nor reduce the mortality rate of mice with acute lung injury, while excessive alkalization of blood could increase mice mortality. PMID:26770536

  5. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  6. Extracorporeal lung assist for sepsis and acute respiratory distress syndrome.

    PubMed

    Iwashita, Yoshiaki; Imai, Hiroshi

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is one of the major causes of ICU deaths. Extracorporeal lung assist (ECLA) has been used as a rescue therapy for most severe form of ARDS. However, its survival benefit had not been shown until CESAR trial in 2009. This has been because the concept of lung protective ventilation strategy had not yet known. Since CESAR trial, the clinical application of ECLA for ARDS as a method to achieve lung rest has wide spread. The effectiveness is further appreciated during the 2009 H1N1 influenza pandemic. The succeeded countries achieved building the transportation systems to collect ECLA patients. With the accumulating evidences of survival benefit, the long-term outcome such as pulmonary function and quality of life are in concern. PumplessECLA which is a newly developed form of ECLA is also reviewed. In this essay we will firstly review the basics of ARDS and ECLA. Then the historical development of ECLA evidences for ARDS are reviewed. PMID:25567336

  7. Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)

    PubMed Central

    Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario

    2016-01-01

    Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704

  8. Inflammatory myofibroblastic tumor of the lung in pregnancy mimicking carcinoid tumor.

    PubMed

    Maturu, Venkata Nagarjuna; Bal, Amanjit; Singh, Navneet

    2016-01-01

    Inflammatory myofibroblastic tumors (IMT) are uncommon neoplasms of the lung in adults. They constitute less than 1% of all lung neoplasms and usually present as parenchymal masses. Diagnosis requires a high index of suspicion. They are characterized by spindle-shaped tumor cells (fibroblasts/myofibroblasts) in a background of lymphoplasmacytic infiltrate. About 50% of the tumors harbor an ALK gene rearrangement. They have to be differentiated from inflammatory pseudotumors (IPT), which show increased number of IgG4 plasma cells on immunostaining and are negative for anaplastic lymphoma kinase (ALK) protein. Herein, we present a case of a 28-year old female who presented with hemoptysis and was diagnosed with an IMT of lung in the first trimester of pregnancy. We have not only reviewed the occurrence of IMT during pregnancy but also discuss the management options for IMT during pregnancy. PMID:26933315

  9. Acute effects of routine firefighting on lung function.

    PubMed

    Sheppard, D; Distefano, S; Morse, L; Becker, C

    1986-01-01

    We undertook a study to determine the acute effects of routine firefighting on lung function and the relationship between these acute effects and nonspecific airway responsiveness. For 29 firefighters from a single fire station, we calculated the concentration of methacholine aerosol that caused a 100% increase in specific airway resistance (Pc100). Over an 8-week period we than measured FEV1 and FVC in each firefighter before and after each 24-hr workshift and after every fire. From 199 individual workshifts without fires, we calculated the mean +/- 2 SD across-workshift change in FEV1 and FVC for each firefighter. Eighteen of 76 measurements obtained within 2 hr after a fire (24%) showed a greater than 2 SD fall in FEV1 and/or FVC compared to two of 199 obtained after routine workshifts without fires (1%; p less than .001). On 13 of 18 occasions when spirometry decreased significantly, we obtained repeat spirometry (postshift) 3-18.5 hr after fires, and on four of these occasions FEV1 and/or FVC were still more than 2 SD below baseline. Decrements in spirometry occurred as often in firefighters with high Pc100s as in those with low Pc100s. In two firefighters in whom FEV1 and FVC fell by more than 10% after fires, we repeated measurements of methacholine sensitivity, and it was increased over the prestudy baseline. These findings suggest that routine firefighting is associated with a high incidence of acute decrements in lung function.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Metabolomics and Its Application to Acute Lung Diseases

    PubMed Central

    Stringer, Kathleen A.; McKay, Ryan T.; Karnovsky, Alla; Quémerais, Bernadette; Lacy, Paige

    2016-01-01

    Metabolomics is a rapidly expanding field of systems biology that is gaining significant attention in many areas of biomedical research. Also known as metabonomics, it comprises the analysis of all small molecules or metabolites that are present within an organism or a specific compartment of the body. Metabolite detection and quantification provide a valuable addition to genomics and proteomics and give unique insights into metabolic changes that occur in tangent to alterations in gene and protein activity that are associated with disease. As a novel approach to understanding disease, metabolomics provides a “snapshot” in time of all metabolites present in a biological sample such as whole blood, plasma, serum, urine, and many other specimens that may be obtained from either patients or experimental models. In this article, we review the burgeoning field of metabolomics in its application to acute lung diseases, specifically pneumonia and acute respiratory disease syndrome (ARDS). We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent reports have suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe disease, such as sepsis, which kills many patients each year. In addition, metabolomics may provide more detailed phenotyping of patient heterogeneity, which is needed to achieve the goal of precision medicine. However, although several experimental and clinical metabolomics studies have been conducted assessing the application of the science to acute lung diseases, only incremental progress has been made. Specifically, little is known about the metabolic phenotypes of these illnesses. These data are needed to substantiate metabolomics biomarker credentials so that clinicians can employ them for clinical decision

  11. Protective effects of thoracic epidural anesthesia on hypoxia-induced acute lung injury in rabbits

    PubMed Central

    WANG, LIJUN; CANG, JING; XUE, ZHANGGANG

    2016-01-01

    The mechanism underlying the effect of thoracic epidural anesthesia (TEA) on hypoxia-induced acute lung injury (ALI) is currently unknown. In the present study, a rabbit acute lung injury model was established to investigate the effects of TEA on inflammatory factors, pulmonary surfactant and ultrastructure. A total of 56 rabbits were randomly assigned to four groups (n=14 per group): Control group (Group C), hypoxia group (Group H), sevoflurane group (Group S) and combined sevoflurane-epidural anesthesia group (Group ES). The ALI model was considered to have been successfully induced when the ratio of arterial oxygen partial pressure to fractional inspired oxygen was <300. The correct placement of a catheter for TEA was confirmed using epidurography. ALI was maintained for 3 h. Arterial blood samples were collected from all groups during spontaneous breathing (T0) and at 3 h after ALI induction (T5) in order to evaluate the serum levels of interleukin (IL)-6, IL-8 and IL-10. Bronchoalveolar lavage fluid was harvested to determine the total phospholipid, saturated phosphatidylcholine and total protein levels. Furthermore, the dry/wet weight ratio and the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue were determined using ELISA. In addition, light and transmission electron microscopy and histological techniques were used to examine the morphology of alveolar type II cells in the rat lung tissue. The results indicate that changes of serum IL-6, IL-8 and IL-10 levels following ALI were consistent with the changes in the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue. TEA attenuated these changes and thus reduced the severity of the ALI. In addition, TEA improved the alveolar structure, reduced the number of polymorphonuclear cells and mitigated the damage of lamellar bodies. In summary, the results of the present study indicate that TEA reduces lung tissue damage by inhibiting systemic and local inflammation, decreasing the

  12. Acute Cryptococcal Immune Reconstitution Inflammatory Syndrome in a Patient on Natalizumab

    PubMed Central

    Gundacker, Nathan D.; Jordan, Stephen J.; Jones, Benjamin A.; Drwiega, Joseph C.; Pappas, Peter G.

    2016-01-01

    Presented is the first case of acute immune reconstitution inflammatory syndrome (IRIS)-associated cryptococcal meningoencephalitis in a patient on natalizumab for multiple sclerosis. The patient developed acute cerebral edema after initiation of amphotericin B. We propose several mechanisms that explain the acuity of IRIS in this specific patient population and suggest possible therapies. PMID:27006962

  13. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  14. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  15. Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury

    PubMed Central

    Lucas, Rudolf; Czikora, Istvàn; Sridhar, Supriya; Zemskov, Evgeny A.; Oseghale, Aluya; Circo, Sebastian; Cederbaum, Stephen D.; Chakraborty, Trinad; Fulton, David J.; Caldwell, Robert W.; Romero, Maritza J.

    2013-01-01

    The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction. PMID:23966993

  16. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway.

    PubMed

    Qiu, Jiaming; Yu, Lijun; Zhang, Xingxing; Wu, Qianchao; Wang, Di; Wang, Xiuzhi; Xia, Cheng; Feng, Haihua

    2015-05-01

    Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.

  17. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  18. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  19. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    PubMed Central

    Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.

    2013-01-01

    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993

  20. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo

    PubMed Central

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases. PMID:27390516

  1. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    PubMed

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  2. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  3. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung.

    PubMed

    Li, Qingzhao; Hu, Xiaoli; Bai, Yuping; Alattar, Mohamed; Ma, Dong; Cao, Yanhua; Hao, Yulan; Wang, Lihua; Jiang, Chunyang

    2013-10-01

    Lead sulfide nanoparticles (PbS NPs) are one important nanoparticle materials which is widely used in photoelectric production, but its potential health hazard to respiratory system is not clear. This study aimed to explore the possible mechanism of lung injury induced by PbS NPs. Male SD rats were treated with nanoparticles of 60 nm and 30 nm lead sulfide. The main methods were detecting the vigor of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) and the content of malondialdehyde (MDA) in both blood and lung tissues and observing the pathological changes in lung tissue. PbS NPs suppressed the activity of SOD and T-AOC, and increased serum MDA content (P<0.05); both effects were observed together in lung tissues of 30-nm group (P<0.05) accompanied by an obviously inflammatory response. PbS NPs induced oxidative damage and inflammatory response in lung tissue, which may be an underlying mechanism for its pulmonary toxicity. Additionally, the toxicity of PbS NPs was closely related with the size of nanoparticles.

  4. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma.

    PubMed

    Gorbunov, N V; McFaul, S J; Januszkiewicz, A; Atkins, J L

    2005-01-01

    Impact of blast shock waves (SW) with the body wall produces blast lung injuries characterized by bilateral traumatic hemorrhages. Such injuries often have no external signs, are difficult to diagnose, and therefore, are frequently underestimated. Predictive assessment of acute respiratory distress syndrome outcome in SW-related accidents should be based on experimental data from appropriate animal models. Blood plasma transferrin is a major carrier of blood iron essential for proliferative "emergency" response of hematopoietic and immune systems as well as injured tissue in major trauma. Iron-transferrin complexes (Fe3+ TRF) can be quantitatively analyzed in blood and tissue samples with low-temperature EPR techniques. We hypothesized that use of EPR techniques in combination with assays for pro-inflammatory cytokines and granulocytes in the peripheral blood and BAL would reveal a pattern of systemic sequestration of (Fe3+)TRF that could be useful for development of biomarkers of the systemic inflammatory response to lung injury. With this goal we (i) analyzed time-dependent dynamics of (Fe3+)TRF in the peripheral blood of rats after impacts of SW generated in a laboratory shock-tube and (ii) assayed the fluctuation of granulocyte (PMN) counts and expression of CD11b adhesion molecules on the surface of PMNs during the first 24 h after SW induced injury. Sham-treated animals were used as control. Exposure to SW led to a significant decrease in the amount of blood (Fe3+)TRF that correlated with the extent of lung injury and developed gradually during the first 24 h. Thus, sequestration of (Fe3+)TRF occurred as early as 3 h post-exposure. At that time, the steady state concentration of (Fe3+)TRF in blood samples decreased from 19.7+/-0.6 microM in controls to 7.5+/-1.3 microM in exposed animals. The levels of (Fe3+)TRF remained decreased throughout the entire study period. PMN counts increased 5-fold and 3.5-fold over controls respectively, at 3 and 6 h postexposure

  5. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.

  6. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury

    PubMed Central

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  7. Arthralgia and digital clubbing in a child: hypertrophic osteoarthropathy with inflammatory pseudotumour of the lung.

    PubMed

    Pichler, G; Eber, E; Thalhammer, G; Muntean, W; Zach, M S

    2004-01-01

    Arthralgia in childhood is an unspecific symptom. One rare cause of arthralgia is hypertrophic osteoarthropathy associated with digital clubbing. We present a child where hypertrophic osteoarthropathy led to the rare diagnosis of an inflammatory pseudotumour of the lung. In a 12-year-old girl with arthralgia and digital clubbing, a chest radiograph disclosed a large round mass in the right upper lobe, and the following chest computed tomography scan showed a large solid homogenous, round, well marginated lesion with little contrast enhancement. A lobectomy of the right upper lobe was performed, and histological examination showed an inflammatory pseudotumour. The postoperative course was without problems: arthralgia and digital clubbing disappeared.

  8. Recent Treatment of Interstitial Lung Disease with Idiopathic Inflammatory Myopathies

    PubMed Central

    Kawasumi, Hidenaga; Gono, Takahisa; Kawaguchi, Yasushi; Yamanaka, Hisashi

    2015-01-01

    Interstitial lung disease (ILD) is a prognostic factor for poor outcome in polymyositis (PM)/dermatomyositis (DM). The appropriate management of ILD is very important to improve the prognosis of patients with PM/DM. ILD activity and severity depend on the disease subtype. Therefore, clinicians should determine therapeutic strategies according to the disease subtype in each patient with PM/DM. Anti–melanoma differentiation-associated gene 5 antibody and hyperferritinemia predict the development and severity of rapidly progressive (RP) ILD, particularly in East Asian patients. Combination therapy with corticosteroids, intravenous cyclophosphamide pulse, and calcineurin inhibitors should be administered in RP-ILD. In contrast, patients with anti–aminoacyl-tRNA synthetase (ARS) show better responses to corticosteroids alone. However, ILDs with anti-ARS often display disease recurrence or become refractory to corticosteroid monotherapy. Recent studies have demonstrated that the administration of tacrolimus or rituximab in addition to corticosteroids may be considered in ILD patients with anti-ARS. Large-scale, multicenter randomized clinical trials should be conducted in the future to confirm that the aforementioned agents exhibit efficacy in ILD patients with PM/DM. The pathophysiology of ILD with PM/DM should also be elucidated in greater detail to develop effective therapeutic strategies for patients with ILD in PM/DM. PMID:26279636

  9. Diagnostic Value of Combining Tumor and Inflammatory Markers in Lung Cancer

    PubMed Central

    Yoon, Ho Il; Kwon, Oh-Ran; Kang, Kyung Nam; Shin, Yong Sung; Shin, Ho Sang; Yeon, Eun Hee; Kwon, Keon Young; Hwang, Ilseon; Jeon, Yoon Kyung; Kim, Yongdai; Kim, Chul Woo

    2016-01-01

    Background Despite major advances in lung cancer treatment, early detection remains the most promising way of improving outcomes. To detect lung cancer in earlier stages, many serum biomarkers have been tested. Unfortunately, no single biomarker can reliably detect lung cancer. We combined a set of 2 tumor markers and 4 inflammatory or metabolic markers and tried to validate the diagnostic performance in lung cancer. Methods We collected serum samples from 355 lung cancer patients and 590 control subjects and divided them into training and validation datasets. After measuring serum levels of 6 biomarkers (human epididymis secretory protein 4 [HE4], carcinoembryonic antigen [CEA], regulated on activation, normal T cell expressed and secreted [RANTES], apolipoprotein A2 [ApoA2], transthyretin [TTR], and secretory vascular cell adhesion molecule-1 [sVCAM-1]), we tested various sets of biomarkers for their diagnostic performance in lung cancer. Results In a training dataset, the area under the curve (AUC) values were 0.821 for HE4, 0.753 for CEA, 0.858 for RANTES, 0.867 for ApoA2, 0.830 for TTR, and 0.552 for sVCAM-1. A model using all 6 biomarkers and age yielded an AUC value of 0.986 and sensitivity of 93.2% (cutoff at specificity 94%). Applying this model to the validation dataset showed similar results. The AUC value of the model was 0.988, with sensitivity of 93.33% and specificity of 92.00% at the same cutoff point used in the validation dataset. Analyses by stages and histologic subtypes all yielded similar results. Conclusions Combining multiple tumor and systemic inflammatory markers proved to be a valid strategy in the diagnosis of lung cancer. PMID:27722145

  10. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury

    PubMed Central

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J.; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-01-01

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs. PMID:26869337

  11. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    PubMed

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  12. Acid aspiration-induced acute lung injury causes leukocyte-dependent systemic organ injury.

    PubMed

    St John, R C; Mizer, L A; Kindt, G C; Weisbrode, S E; Moore, S A; Dorinsky, P M

    1993-04-01

    The adult respiratory distress syndrome is a form of acute lung injury (ALI) that is frequently associated with systemic organ injury and often occurs in the setting of wide-spread inflammatory cell activation. However, whether conditions that lead to ALI result in systemic organ injury is unclear. This study was designed to test the hypothesis that ALI induced by acid aspiration will not result in systemic organ injury. Morphological alterations and lymph-to-plasma protein ratios were measured in autoperfused cat ileum preparations of four control animals and five animals with ALI produced by the endobronchial instillation of 0.1 N HCl (0.5 ml.kg-1.lung-1). After 2 h, the lymph-to-plasma protein ratio (a measure of microvascular permeability) was increased in the ilea of HCl-injured animals compared with control animals (0.234 +/- 0.03 vs. 0.121 +/- 0.005; P = 0.012) and was accompanied by extensive morphological alterations. Four additional HCl-injured animals were pretreated with an antileukocyte adherence antibody (anti-CD18, 2 mg/kg) that blocked the HCl-induced alterations in the ileum. This study provides evidence for significant systemic organ injury after acid aspiration-induced ALI and suggests that the neutrophil may be a key mediator.

  13. Bufexamac ameliorates LPS-induced acute lung injury in mice by targeting LTA4H

    PubMed Central

    Xiao, Qiang; Dong, Ningning; Yao, Xue; Wu, Dang; Lu, Yanli; Mao, Fei; Zhu, Jin; Li, Jian; Huang, Jin; Chen, Aifang; Huang, Lu; Wang, Xuehai; Yang, Guangxiao; He, Guangyuan; Xu, Yong; Lu, Weiqiang

    2016-01-01

    Neutrophils play an important role in the occurrence and development of acute lung injury (ALI). Leukotriene B4 (LTB4), a hydrolysis product of epoxide leukotriene A4 (LTA4) catalyzed by LTA4 hydrolase (LTA4H), is one of the most potent chemoattractants for neutrophil. Bufexamac is a drug widely used as an anti-inflammatory agent on the skin, however, the mechanism of action is still not fully understood. In this study, we found bufexamac was capable of specifically inhibiting LTA4H enzymatic activity and revealed the mode of interaction of bufexamac and LTA4H using X-ray crystallography. Moreover, bufexamac significantly prevented the production of LTB4 in neutrophil and inhibited the fMLP-induced neutrophil migration through inhibition of LTA4H. Finally, bufexamac significantly attenuated lung inflammation as reflected by reduced LTB4 levels and weakened neutrophil infiltration in bronchoalveolar lavage fluid from a lipopolysaccharide-induced ALI mouse model. In summary, our study indicates that bufexamac acts as an inhibitor of LTB4 biosynthesis and may have potential clinical applications for the treatment of ALI. PMID:27126280

  14. Study of inflammatory responses to crocidolite and basalt wool in the rat lung.

    PubMed

    Adamis, Z; Kerényi, T; Honma, K; Jäckel, M; Tátrai, E; Ungváry, G

    2001-03-01

    The subacute effects of crocidolite and basalt wool dusts were studied by nmeans of biochemical, morphological. and histological methods 1 and .3 mo after intrabronchial instillation. The cell count, protein and phospholipid contents, and lactate dehydrogenase (LDH) activity were determined in the bronchoalveolar lavage (BAL). Both types of fibers induced a prolonged inflammatory reaction in the lung. All the parameters studied in the experimental groups were more markedly elevated after 3 mo. Relative to the control, the protein and LDH values were increased three- to fivefold, the phospholipid content twofold, and the number of free cells in the BAL exceeded the control level up to ninefold. The inflammatory responses to crocidolite and basalt wool in the lung did not differ significantly. In spite of this, basalt wool is recoinmended as an asbestos substitute, as the use of this man-nade fiber may result in a significantly lower release of dust than that from crocidolite.

  15. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases.

    PubMed

    Yue, Li; Yao, Hongwei

    2016-08-01

    Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases. PMID:27189175

  16. Lung ultrasound-a primary survey of the acutely dyspneic patient.

    PubMed

    Lee, Francis Chun Yue

    2016-01-01

    There has been an explosion of knowledge and application of clinical lung ultrasound (LUS) in the last decade. LUS has important applications in the ambulatory, emergency, and critical care settings and its deployability for immediate bedside assessment allows many acute lung conditions to be diagnosed and early interventional decisions made in a matter of minutes. This review detailed the scientific basis of LUS, the examination techniques, and summarises the current applications in several acute lung conditions. It is to be hoped that clinicians, after reviewing the evidence within this article, would see LUS as an important first-line modality in the primary evaluation of an acutely dyspneic patient. PMID:27588206

  17. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome.

    PubMed

    Nava, Stefano; Schreiber, Ania; Domenighetti, Guido

    2011-10-01

    Few studies have been performed on noninvasive ventilation (NIV) to treat hypoxic acute respiratory failure in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The outcomes of these patients, for whom endotracheal intubation is not mandatory, depend on the degree of hypoxia, the presence of comorbidities and complications, and their illness severity. The use of NIV as an alternative to invasive ventilation in severely hypoxemic patients with ARDS (ie, P(aO(2))/F(IO(2)) < 200) is not generally advisable and should be limited to hemodynamically stable patients who can be closely monitored in an intensive care unit by highly skilled staff. Early NIV application may be extremely helpful in immunocompromised patients with pulmonary infiltrates, in whom intubation dramatically increases the risk of infection, pneumonia, and death. The use of NIV in patients with severe acute respiratory syndrome and other airborne diseases has generated debate, despite encouraging clinical results, mainly because of safety issues. Overall, the high rate of NIV failure suggests a cautious approach to NIV use in patients with ALI/ARDS, including early initiation, intensive monitoring, and prompt intubation if signs of NIV failure emerge. PMID:22008399

  18. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Tong, Lin; Bi, Jing; Zhu, Xiaodan; Wang, Guifang; Liu, Jie; Rong, Linyi; Wang, Qin; Xu, Nuo; Zhong, Ming; Zhu, Duming; Song, Yuanlin; Bai, Chunxue

    2014-09-15

    Keratinocyte growth factor-2 (KGF-2) plays a key role in lung development, but its role in acute lung injury has not been well characterized. Lipopolysaccharide instillation caused acute lung injury, which significantly elevated lung wet-to-dry weight ratio, protein and neutrophils in bronchoalveolar lavage fluid (BALF), inhibited surfactant protein A and C expression in lung tissue, and increased pathological injury. Pretreatment with KGF-2 improved the above lung injury parameters, partially restored surfactant protein A and C expression, and KGF-2 given 2-3 days before LPS challenge showed maximum lung injury improvement. Pretreatment with KGF-2 also markedly reduced the levels of TNF-α, MIP-2, IL-1β and IL-6 in BALF and the levels of IL-1β and IL-6 in lung tissue. Histological analysis showed there was increased proliferation of alveolar type II epithelial cells in lung parenchyma, which reached maximal 2 days after KGF-2 instillation. Intratracheal administration of KGF-2 attenuates lung injury induced by LPS, suggesting KGF-2 may be potent in the intervention of acute lung injury.

  19. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  20. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury.

    PubMed

    Magalhães, Clarissa B; Riva, Douglas R; DePaula, Leonardo J; Brando-Lima, Aline; Koatz, Vera Lúcia G; Leal-Cardoso, José Henrique; Zin, Walter A; Faffe, Débora S

    2010-04-01

    Eugenol, a methoxyphenol component of clove oil, suppresses cyclooxygenase-2 expression, while eugenol dimers prevent nuclear factor-kappaB (NF-kappaB) activation and inflammatory cytokine expression in lipopolysaccharide-stimulated macrophages. Our aim was to examine the in vivo anti-inflammatory effects of eugenol. BALB/c mice were divided into four groups. Mice received saline [0.05 ml intratracheally (it), control (Ctrl) and eugenol (Eug) groups] or Escherichia coli LPS (10 microg it, LPS and LPSEug groups). After 6 h, mice received saline (0.2 ml ip, Ctrl and LPS groups) or eugenol (160 mg/kg ip, Eug and LPSEug groups). Twenty-four hours after LPS injection, pulmonary resistive (DeltaP1) and viscoelastic (DeltaP2) pressures, static elastance (E(st)), and viscoelastic component of elastance (DeltaE) were measured. Lungs were prepared for histology. In parallel mice, bronchoalveolar lavage fluid was collected 24 h after LPS injection. TNF-alpha was determined by ELISA. Lung tissue expression of NF-kappaB was determined by EMSA. DeltaP1, DeltaP2, E(st), and DeltaE were significantly higher in the LPS group than in the other groups. LPS mice also showed significantly more alveolar collapse, collagen fibers, and neutrophil influx and higher TNF-alpha levels and NF-kappaB expression than the other groups. Eugenol treatment reduced LPS-induced lung inflammation, improving lung function. Our results suggest that eugenol exhibits in vivo anti-inflammatory action in LPS-induced lung injury.

  1. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants

    PubMed Central

    Pomerenke, Anna; Lea, Simon R; Herrick, Sarah; Lindsay, Mark A; Singh, Dave

    2016-01-01

    Purpose Viruses are a common cause of exacerbations in chronic obstructive pulmonary disease (COPD). They activate toll-like receptors (TLRs) 3, 7, and 8, leading to a pro-inflammatory response. We have characterized the responses of TLR3 and TLR7/8 in lung tissue explants from COPD patients and control smokers. Methods We prepared lung whole tissue explants (WTEs) from patients undergoing surgery for confirmed or suspected lung cancer. In order to mimic the conditions of viral infection, we used poly(I:C) for TLR3 stimulation and R848 for TLR7/8 stimulation. These TLR ligands were used alone and in combination. The effects of tumor necrosis factor α (TNFα) neutralization and dexamethasone on TLR responses were examined. Inflammatory cytokine release was measured by enzyme-linked immunosorbent assay and gene expression by quantitative real-time polymerase chain reaction. Results WTEs from COPD patients released higher levels of pro-inflammatory cytokines compared with WTEs from smokers. Activation of multiple TLRs led to a greater than additive release of TNFα and CCL5. TNFα neutralization and dexamethasone treatment decreased cytokine release. Conclusion This WTE model shows an enhanced response of COPD compared with controls, suggesting an increased response to viral infection. There was amplification of innate immune responses with multiple TLR stimulation. PMID:27729782

  2. Synergistic effects of anethole and ibuprofen in acute inflammatory response.

    PubMed

    Wisniewski-Rebecca, Edirlene S; Rocha, Bruno A; Wiirzler, Luiz A M; Cuman, Roberto K N; Velazquez-Martinez, Carlos A; Bersani-Amado, Ciomar A

    2015-12-01

    This study assessed the effect of the combination of anethole and ibuprofen in comparison with monotherapy by either drug alone, using two in vivo inflammatory models, namely the pleurisy and paw edema in rats. We also measured the levels of the TNF protein in plasma, and the ability of anethole to inhibit, in vitro, the activity of the cyclooxygenase 1 and cyclooxygenase 2 enzymes. The test drugs (anethole; ibuprofen; anethole + ibuprofen), at different doses, were administered once (p.o.) 60 min before the induction of the inflammatory response. The association of anethole + ibuprofen inhibited the development of the inflammatory response in both models used. This effect can be partially explained by the inhibitory action on the production of TNF and of COX isoforms. The isobologram analysis evidenced a synergistic effect between ibuprofen and anethole, because the combination of drugs showed a higher inhibitory potential than either drug alone.

  3. Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat

    PubMed Central

    Takahashi, Kazunori; Mizukami, Hiroki; Kamata, Kosuke; Inaba, Wataru; Kato, Noriaki; Hibi, Chihiro; Yagihashi, Soroku

    2012-01-01

    Background Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism. Methods Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney. Results Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation. Conclusion AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality. PMID:22253906

  4. Peripheral NLCR4 inflammasome participates in the genesis of acute inflammatory pain.

    PubMed

    Lopes, Alexandre H; Talbot, Jhimmy; Silva, Rangel L; Lima, Jonilson B; França, Rafael O; Verri, Waldiceu A; Mascarenhas, Danielle P; Ryffel, Bernhard; Cunha, Fernando Q; Zamboni, Dario S; Cunha, Thiago M

    2015-03-01

    Inflammatory hyperalgesia is a complex process that depends on the sensitization of primary nociceptive neurons triggered by proinflammatory mediators, such as interleukin 1β (IL-1β). Recently, the peripheral activation of caspase-1 (previously known as IL-1β-converting enzyme) was implicated in the induction of acute inflammatory pain by promoting the processing of IL-1β from its precursor form, pro-IL-1β. Caspase-1 activation in several systems requires the assembly of an intracellular molecular platform called an inflammasome. Inflammasomes consist of 1 nucleotide-binding oligomerization domain-like receptor (NLR), the adapter molecule apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), and caspase-1. NLRP3 and NLRC4 inflammasomes are well described. However, the identity of the inflammasome that is involved in the peripheral activation of caspase-1 that accounts for acute inflammatory hyperalgesia has not been described. The present findings demonstrated that mice deficient in NLRC4 or ASC, but not in NLRP3, present reduced mechanical and thermal acute inflammatory hyperalgesia induced by carrageenan. The reduced hyperalgesia was accompanied by significant impairments in the levels of mature forms of IL-1β (p17) and caspase-1 (p20) compared to wild-type mice at the inflammatory site. Therefore, these results identified the inflammasome components NLRC4 and ASC as the molecular platform involved in the peripheral activation of caspase-1 and IL-1β maturation, which are responsible for the induction of acute inflammatory pain. In conclusion, our study provides new therapeutic targets for the control of acute inflammatory pain.

  5. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9.

    PubMed

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  6. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9

    PubMed Central

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  7. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respir atory distress syndrome

    PubMed Central

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS. PMID:26261640

  8. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respiratory distress syndrome.

    PubMed

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS.

  9. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  10. [Target Molecule for a Demyelinating Type of Guillain-Barré Syndrome, Acute Inflammatory Demyelinating Polyneuropathy].

    PubMed

    Mori, Masahiro

    2015-11-01

    Guillain-Barré syndrome is classified into demyelinating type, acute inflammatory demyelinating polyneuropathy (AIDP) and axonal form, acute axonal motor neuropathy (AMAN). It has been clearly established that the target molecule for the former is a ganglioside. In contrast, despite years of effort, the target molecule for the latter has not been identified. Recently, molecules around the nodes of Ranvier have entered the spotlight, and "moesin" was reported to be a target molecule for cytomegalovirus associated-AIDP.

  11. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions.

    PubMed

    McCarthy, Cormac; Saldova, Radka; Wormald, Mark R; Rudd, Pauline M; McElvaney, Noel G; Reeves, Emer P

    2014-07-01

    Acute phase proteins (APPs) are a group of circulating plasma proteins which undergo changes quantitatively or qualitatively at the time of inflammation. Many of these APPs are glycosylated, and it has been shown that alterations in glycosylation may occur in inflammatory and malignant conditions. Changes in glycosylation have been studied as potential biomarkers in cancer and also in chronic inflammatory conditions and have been shown to correlate with disease severity in certain conditions. Serine protease inhibitors (serpins), many of which are also APPs, are proteins involved in the control of proteases in numerous pathways. Alpha-1 Antitrypsin (AAT) is the most abundant serpin within the circulation and is an APP which has been shown to increase in response to inflammation. The primary role of AAT is maintaining the protease/antiprotease balance in the lung, but it also possesses important anti-inflammatory and immune-modulating properties. Several glycoforms of AAT exist, and they possess differing properties in regard to plasma half-life and stability. Glycosylation may also be important in determining the immune modulatory properties of AAT. The review will focus on the role and importance of glycosylation in acute phase proteins with particular attention to AAT and its use as a biomarker of disease. The review describes the processes involved in glycosylation, how glycosylation changes in differing disease states, and the alterations that occur to glycans of APPs with disease and inflammation. Finally, the review explores the importance of changes in glycosylation of AAT at times of inflammation and in malignant conditions and how this may impact upon the functions of AAT.

  12. Protective effects of patchouli alcohol isolated from Pogostemon cablin on lipopolysaccharide-induced acute lung injury in mice

    PubMed Central

    SU, ZUQING; LIAO, JINBIN; LIU, YUHONG; LIANG, YONGZHUO; CHEN, HAIMING; CHEN, XIAOYING; LAI, XIAOPING; FENG, XUEXUAN; WU, DIANWEI; ZHENG, YIFENG; ZHANG, XIAOJUN; LI, YUCUI

    2016-01-01

    Patchouli alcohol (PA) is a tricyclic sesquiterpene isolated from Pogostemon cablin, which exerts anti-inflammatory, anti-influenza and cognitive-enhancing bioactivities. The present study aimed to investigate the protective effects of PA on acute lung injury (ALI) induced by intratracheal instillation of lipopolysaccharide (LPS) in mice. Dexamethasone was used as a positive drug for protection against LPS-induced ALI. The results of the present study demonstrated that pretreatment with PA significantly increased survival rate, attenuated histopathologic damage and lung edema, and decreased the protein content in the bronchoalveolar lavage fluid (BALF) of mice with ALI. Furthermore, PA significantly inhibited the expression levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the BALF, downregulated the levels of myeloperoxidase and malondialdehyde, and upregulated the activity levels of superoxide dismutase and glutathione peroxidase in lung tissue. These results indicated that PA may exert potent protective effects against LPS-induced ALI in mice, the mechanisms of which are possibly associated with the anti-inflammatory and antioxidative activities of PA. PMID:26893665

  13. A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing.

    PubMed

    Choi, Sangwook; Camp, Sara M; Dan, Arkaprava; Garcia, Joe G N; Dudek, Steven M; Leckband, Deborah E

    2015-11-01

    Inflammatory mediators released in acute lung injury (ALI) trigger the disruption of interendothelial junctions, leading to loss of vascular barrier function, protein-rich pulmonary edema, and severe hypoxemia. Genetic signatures that predict patient recovery or disease progression are poorly defined, but recent genetic screening of ALI patients has identified an association between lung inflammatory disease and a single nucleotide polymorphism (SNP) in the gene for the actin-binding and barrier-regulatory protein cortactin. This study investigated the impact of this disease-linked cortactin variant on wound healing processes that may contribute to endothelial barrier restoration. A microfabricated platform was used to quantify wound healing in terms of gap closure speed, lamellipodia dynamics, and cell velocity. Overexpression of wild-type cortactin in endothelial cells (ECs) improved directional cell motility and enhanced lamellipodial protrusion length, resulting in enhanced gap closure rates. By contrast, the cortactin SNP impaired wound closure and cell locomotion, consistent with the observed reduction in lamellipodial protrusion length and persistence. Overexpression of the cortactin SNP in lung ECs mitigated the barrier-enhancing activity of sphingosine 1-phosphate. These findings suggest that this common cortactin variant may functionally contribute to ALI predisposition by impeding endothelial wound healing.

  14. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD.

    PubMed

    Shen, Liang-liang; Liu, Ya-nan; Shen, Hui-juan; Wen, Chong; Jia, Yong-liang; Dong, Xin-wei; Jin, Fang; Chen, Xiao-ping; Sun, Yun; Xie, Qiang-min

    2014-02-01

    Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600 μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600 μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD. PMID:24389380

  15. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  16. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  17. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer.

    PubMed

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-09-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case-control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21 cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  18. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer

    PubMed Central

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-01-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case–control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  19. MicroRNAs in inflammatory lung disease - master regulators or target practice?

    PubMed Central

    2010-01-01

    MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed. PMID:21029443

  20. The Effect of Cigarette Smoke-derived Oxidants on the Inflammatory Response of the Lung

    PubMed Central

    Foronjy, Robert; D’Armiento, Jeanine

    2013-01-01

    The inhalation of cigarette smoke triggers a marked cellular influx in the lung and this inflammation is believed to play a central role in the development of smoke-related lung diseases such as asthma and COPD. Studies demonstrate that smoke-derived oxidants are a major factor in this inflammatory reaction to cigarette smoke. These oxidants can overwhelm the lung’s antioxidant defenses and they can up regulate inflammation by a number of mechanisms. Free radicals directly stimulate the production of chemotactic compounds such as 8-isoprostane. In addition, smoke-derived oxidants can activate several intracellular signaling cascades including NF-κB, MAPK and AP-1. This transcriptional activation induces the expression of cytokines and intracellular adhesion molecules that facilitates the trafficking of neutrophils, macrophages and lymphocytes into the lung. Moreover, oxidants can promote chromatin remodeling that facilitates the expression of proinflammatory genes by stimulating the acetylation of histone residues in the nucleosome. This leads to conformational changes that enhance expression by rendering the gene more accessible to binding to transcriptional factors. Thus, the oxidant-antioxidant imbalance generated by cigarette smoke can promote inflammation which is critical to the functional decline that occurs in both asthma and COPD patients. Future research is needed to better define the effects of smoke-derived oxidants on lung inflammation and to determine the most efficacious strategies for generating significant antioxidant protection in the lung. PMID:23997664

  1. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro

    SciTech Connect

    Herzog, Eva Byrne, Hugh J.; Casey, Alan; Davoren, Maria; Lenz, Anke-Gabriele; Maier, Konrad L.; Duschl, Albert; Oostingh, Gertie Janneke

    2009-02-01

    Single-walled carbon nanotubes have gained enormous popularity due to a variety of potential applications which will ultimately lead to increased human and environmental exposure to these nanoparticles. This study was carried out in order to evaluate the inflammatory response of immortalised and primary human lung epithelial cells (A549 and NHBE) to single-walled carbon nanotube samples (SWCNT). Special focus was placed on the mediating role of lung surfactant on particle toxicity. The toxicity of SWCNT dispersed in cell culture medium was compared to that of nanotubes dispersed in dipalmitoylphosphatidylcholine (DPPC, the main component of lung lining fluid). Exposure was carried out for 6 to 48 h with the latter time-point showing the most significant responses. Moreover, exposure was performed in the presence of the pro-inflammatory stimulus tumour necrosis factor-{alpha} (TNF-{alpha}) in order to mimic exposure of stimulated cells, as would occur during infection. Endpoints evaluated included cell viability, proliferation and the analysis of inflammatory mediators such as interleukin (IL)-8, IL-6, TNF-{alpha} and macrophage chemoattractant protein-1 (MCP-1). Crocidolite asbestos was included as a well characterised, toxic fibre control. The results of this study showed that HiPco SWCNT samples suppress inflammatory responses of A549 and NHBE cells. This was also true for TNF-{alpha} stimulated cells. The use of DPPC improved the degree of SWCNT dispersion in A549 medium and in turn, leads to increased particle toxicity, however, it was not shown to modify NHBE cell responses.

  2. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  3. The inflammatory cytokine interleukin-23 is elevated in lung cancer, particularly small cell type

    PubMed Central

    Cam, Caner; Muftuoglu, Tuba; Bigi, Oguz; Emirzeoglu, Levent; Celik, Serkan; Ozgun, Alpaslan; Tuncel, Tolga; Top, Cihan

    2016-01-01

    Aim of the study Interleukin (IL)-17 and IL-23 play roles in inflammation and autoimmunity. The function of the IL-17/IL-23 pathway has not been completely evaluated in cancer patients. We aimed to investigate serum IL-17 and IL-23 levels and their relationship with clinicopathological and biochemical parameters in lung cancer patients. Material and methods Forty-five lung cancer patients and 46 healthy volunteers were included in the study. IL-17 and IL-23 measurements were made with the ELISA method. The ages of patients (53–84 years) and healthy subjects (42–82 years) were similar. Results Serum IL-23 levels were higher in lung cancer patients than in healthy subjects (491.27 ±1263.38 pg/ml vs. 240.51 ±233.18 pg/ml; p = 0.032). IL-23 values were higher in small cell lung cancer (SCLC) patients than in non-small cell lung cancer (NSCLC) patients (1325.30 ±2478.06 pg/ml vs. 229.15 ±103.22 pg/ml; p = 0.043). Serum IL-17 levels were lower in the patients, but the difference was not statistically significant (135.94 ±52.36 pg/ml vs. 171.33 ±133.51 pg/ml; p = 0.124). Presence of comorbid disease (diabetes mellitus, hypertension or chronic obstructive lung disease) did not have any effect on the levels of IL-17 or IL-23. Erythrocyte sedimentation rate values were positively correlated with cytokine levels, but serum albumin levels were negatively correlated. Conclusions Serum IL-23 levels are elevated in lung cancer patients, particularly those with SCLC. IL-17 and IL-23 values are correlated with inflammatory markers in the patients. PMID:27647985

  4. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury

    PubMed Central

    Silveyra, Patricia; Floros, Joanna

    2013-01-01

    Pulmonary surfactant, a lipoprotein complex, maintains alveolar integrity and plays an important role in lung host defense, and control of inflammation. Altered inflammatory processes and surfactant dysfunction are well described events that occur in patients with acute or chronic lung disease that can develop secondary to a variety of insults. Genetic variants of surfactant proteins, including single nucleotide polymorphisms, haplotypes, and other genetic variations have been associated with acute and chronic lung disease throughout life in several populations and study groups. The hydrophilic surfactant proteins SP-A and SP-D, also known as collectins, in addition to their surfactant-related functions, are important innate immunity molecules as these, among others, exhibit the ability to bind and enhance clearance of a wide range of pathogens and allergens. This review focuses on published association studies of human surfactant proteins A and D genetic polymorphisms with respiratory, and non-respiratory diseases in adults, children, and newborns. The potential role of genetic variations in pulmonary disease or pathogenesis is discussed following an evaluation, and comparison of the available literature. PMID:22201752

  5. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  6. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  7. Adenovirus-mediated overexpression of soluble ST2 provides a protective effect on lipopolysaccharide-induced acute lung injury in mice

    PubMed Central

    Yin, H; Li, X Y; Yuan, B H; Zhang, B B; Hu, S L; Gu, H B; Jin, X B; Zhu, J Y

    2011-01-01

    Acute lung injury is characterized by a diffuse inflammatory parenchymal process, implicated in the context of significant morbidity and mortality. Previously, we have reported that soluble ST2 (sST2), a member of the Toll-interleukin (IL)-1 receptor (TIR) superfamily, represses proinflammatory cytokine production of macrophage exposed to lipopolysaccharide (LPS). In this study, we examined the possibility of modulating LPS-induced murine inflammatory pulmonary damage by recombinant adenovirus-mediated sST2-Fc (Ad-sST2-Fc) gene transfer. Single intranasal administration of Ad-sST2-Fc led to a profound decrease in LPS-induced bronchoalveolar lavage leucocyte exudation and lung tissue myeloperoxidase activity (reflecting phagocyte infiltration). Histological examination revealed alveolitis with inflammatory cell infiltration and alveolar haemorrhage in the alveolar airspace was less severe in Ad-sST2-Fc-treated mice when compared with control groups. In addition, high levels of sST2-Fc in vivo reduced the transcription of tumour necrosis factor-α, IL-6 and Toll-like receptor-4 gene remarkably, and suppressed the nuclear translocation of nuclear factor-κB in lung tissues in response to LPS challenge. Taken together, these results suggested that administration of Ad-sST2-Fc gene transfer may have therapeutic potential for the immunomodulatory treatment of LPS-mediated inflammatory lung injury. PMID:21352201

  8. Anti-inflammatory effects of methanol extract of Canarium lyi C.D. Dai & Yakovlev in RAW 264.7 macrophages and a murine model of lipopolysaccharide-induced lung injury.

    PubMed

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Jeon, Chan-Mi; Shin, Na-Rae; Lee, Joongku; Park, Sang-Hong; Bach, Tran The; Hai, Do Van; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-05-01

    Canarium lyi C.D. Dai & Yakovlev (CL) is a member of the Anacardiaceae family. To the best of our knowledge, no studies on its anti-inflammatory effects have yet been reported. In the present study, we investigated the protective effects of CL on inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-induced acute lung injury (ALI) mice. CL attenuated the production of LPS-stimulated inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and interleukin-6 (IL-6). Furthermore, CL suppressed phosphorylation of the inhibitor κB-α (IκB-α), p38, c-Jun terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as the translocation of the nuclear factor-κB (NF-κB) p65 subunit into the nucleus. For the in vivo efficacy, the effect of CL on a mouse model of LPS-induced acute lung injury was assessed. CL treatment of the mice significantly inhibited the inflammatory cell recruitment and pro-inflammatory cytokine production in bronchoalveolar lavage fluids (BALF). CL-treated mice also showed a marked inhibition of cyclooxygenase-2 (COX-2) and phosphorylation of IκB and p65. In addition, CL attenuated lung histopathological changes in LPS-induced ALI mice. In conclusion, our results suggest that CL is a potential therapeutic candidate for the treatment of inflammatory diseases, including pneumonia.

  9. Pathophysiological mechanisms of acute pancreatitis define inflammatory markers of clinical prognosis.

    PubMed

    Minkov, Georgi A; Halacheva, Krasimira S; Yovtchev, Yovcho P; Gulubova, Maya V

    2015-07-01

    Development of acute pancreatitis illustrates the need to understand the basic mechanisms of disease progression to drive the exploration of therapeutic options. Cytokines play a major role in the pathogenesis of acute pancreatitis as underlying systemic inflammatory response, tissue damage, and organ dysfunction. However, little is known about circulating concentrations of these inflammatory markers and their real impact on clinical practice. Experimental studies have suggested that the prognosis for acute pancreatitis depends on the degree of pancreatic necrosis and the intensity of multisystem organ failure generated by the systemic inflammatory response. This suggests an intricate balance between localized tissue damage with proinflammatory cytokine production and a systemic anti-inflammatory response that restricts the inappropriate movement of proinflammatory agents into the circulation. Implication of such mediators suggests that interruption or blunting of an inappropriate immune response has the potential to improve outcome. A detailed understanding of pathophysiological processes and immunological aspects in patients with acute pancreatitis is the basis for the development of therapeutic strategies that will provide significant reductions in morbidity and mortality.

  10. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury.

    PubMed

    Zhang, Shijia; Danchuk, Svitlana D; Bonvillain, Ryan W; Xu, Beibei; Scruggs, Brittni A; Strong, Amy L; Semon, Julie A; Gimble, Jeffrey M; Betancourt, Aline M; Sullivan, Deborah E; Bunnell, Bruce A

    2014-06-01

    Adipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI. To better understand how ASCs may act in ALI and to elucidate the mechanism(s) involved in ASC modulation of lung inflammation, gene expression analysis was performed in ASC-treated (hASCs or mASCs) and control sham-treated lungs. The results revealed a dramatic difference between the expression of anti-inflammatory molecules by hASCs and mASCs. These data show that the beneficial effects of hASCs and mASCs in ALI may result from the production of different paracrine factors. Interleukin 6 (IL-6) expression in the mASC-treated lungs was significantly elevated as compared to sham-treated controls 20 hours after delivery of the cells by oropharyngeal aspiration. Knockdown of IL-6 expression in mASCs by RNA interference abrogated most of their therapeutic effects, suggesting that the anti-inflammatory properties of mASCs in ALI are explained, at least in part, by activation of IL-6 secretion.

  11. Interleukin 6 Mediates the Therapeutic Effects of Adipose-Derived Stromal/Stem Cells in Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Zhang, Shijia; Danchuk, Svitlana D.; Bonvillain, Ryan W.; Xu, Beibei; Scruggs, Brittni A.; Strong, Amy L.; Semon, Julie A.; Gimble, Jeffrey M.; Betancourt, Aline M.; Sullivan, Deborah E.; Bunnell, Bruce A.

    2015-01-01

    Adipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI. To better understand how ASCs may act in ALI and to elucidate the mechanism(s) involved in ASC modulation of lung inflammation, gene expression analysis was performed in ASC-treated (hASCs or mASCs) and control sham-treated lungs. The results revealed a dramatic difference between the expression of anti-inflammatory molecules by hASCs and mASCs. These data show that the beneficial effects of hASCs and mASCs in ALI may result from the production of different paracrine factors. Interleukin 6 (IL-6) expression in the mASC-treated lungs was significantly elevated as compared to sham-treated controls 20 hours after delivery of the cells by oropharyngeal aspiration. Knockdown of IL-6 expression in mASCs by RNA interference abrogated most of their therapeutic effects, suggesting that the anti-inflammatory properties of mASCs in ALI are explained, at least in part, by activation of IL-6 secretion. PMID:24449042

  12. Role of Integrin β4 in Lung Endothelial Cell Inflammatory Responses to Mechanical Stress.

    PubMed

    Chen, Weiguo; Epshtein, Yulia; Ni, Xiuquin; Dull, Randal O; Cress, Anne E; Garcia, Joe G N; Jacobson, Jeffrey R

    2015-01-01

    Simvastatin, an HMG-CoA reductase inhibitor, has lung vascular-protective effects that are associated with decreased agonist-induced integrin β4 (ITGB4) tyrosine phosphorylation. Accordingly, we hypothesized that endothelial cell (EC) protection by simvastatin is dependent on these effects and sought to further characterize the functional role of ITGB4 as a mediator of EC protection in the setting of excessive mechanical stretch at levels relevant to ventilator-induced lung injury (VILI). Initially, early ITGB4 tyrosine phosphorylation was confirmed in human pulmonary artery EC subjected to excessive cyclic stretch (18% CS). EC overexpression of mutant ITGB4 with specific tyrosines mutated to phenylalanine (Y1440, Y1526 Y1640, or Y1422) resulted in significantly attenuated CS-induced cytokine expression (IL6, IL-8, MCP-1, and RANTES). In addition, EC overexpression of ITGB4 constructs with specific structural deletions also resulted in significantly attenuated CS-induced inflammatory cytokine expression compared to overexpression of wildtype ITGB4. Finally, mice expressing a mutant ITGB4 lacking a cytoplasmic signaling domain were found to have attenuated lung injury after VILI-challenge (VT = 40 ml/kg, 4 h). Our results provide mechanistic insights into the anti-inflammatory properties of statins and may ultimately lead to novel strategies targeted at ITGB4 signaling to treat VILI. PMID:26572585

  13. Feasibility of 68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome

    PubMed Central

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [15O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting 68Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([68Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [68Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [68Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [68Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  14. Feasibility of (68)Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome.

    PubMed

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [(15)O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting (68)Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([(68)Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [(68)Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [(68)Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [(68)Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  15. Administration of Reconstituted Polyphenol Oil Bodies Efficiently Suppresses Dendritic Cell Inflammatory Pathways and Acute Intestinal Inflammation

    PubMed Central

    Cavalcanti, Elisabetta; Vadrucci, Elisa; Delvecchio, Francesca Romana; Addabbo, Francesco; Bettini, Simona; Liou, Rachel; Monsurrò, Vladia; Huang, Alex Yee-Chen; Pizarro, Theresa Torres

    2014-01-01

    Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. PMID:24558444

  16. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy

    PubMed Central

    Bouchlaka, Myriam N.; Sckisel, Gail D.; Chen, Mingyi; Mirsoian, Annie; Zamora, Anthony E.; Maverakis, Emanual; Wilkins, Danice E.C.; Alderson, Kory L.; Hsiao, Hui-Hua; Weiss, Jonathan M.; Monjazeb, Arta M.; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L.; Blazar, Bruce R.; Wiltrout, Robert H.; Redelman, Doug; Taub, Dennis D.

    2013-01-01

    Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice. PMID:24081947

  17. Differential Diagnosis of Solitary Pulmonary Inflammatory Lesions and Peripheral Lung Cancers with Contrast-enhanced Computed Tomography

    PubMed Central

    Chu, Zhi-gang; Sheng, Bo; Liu, Meng-qi; Lv, Fa-jin; Li, Qi; Ouyang, Yu

    2016-01-01

    OBJECTIVES: To clarify differences between solitary pulmonary inflammatory lesions and peripheral lung cancers with contrast-enhanced computed tomography. METHODS: In total, 64 and 132 patients with solitary pulmonary inflammatory masses/nodules and peripheral lung cancers, respectively, were enrolled in this study. Their computed tomographic findings were summarized and compared retrospectively. RESULTS: Compared with the peripheral lung cancers, the inflammatory lesions were located closer to the pleura (p<0.0001). The majority of the inflammatory lesions were patchy and oval-shaped (82.8%), whereas most of the tumors were lobulated (82.6%). Almost all the inflammatory cases were unclear (93.8%), whereas most of the tumors had spiculated margins (72.7%). Computed tomography values were significantly higher for the inflammatory lesions than for the cancers (p<0.0001). More than half of the inflammatory lesions had defined necrosis (59.3%). Furthermore, 49.2% of the cancers enhanced inhomogeneously, but only 24.6% had ill-defined necrosis or cavities. The peripheral zones of 98.4% of the inflammatory lesions and 72.7% of the tumors were unclear, with peripheral scattered patches (92.2%) and beam-shaped opacity (66.7%) being the most common findings, respectively. Adjacent pleural thickening was more frequent for the inflammatory lesions than the cancers (95.3% vs. 21.1%, p<0.0001), whereas pleural indentation was found in 67.4% of the subjects with cancer. In addition, hilar (p=0.034) and mediastinal (p=0.003) lymphadenopathy were more commonly detected in the cancers than in the inflammatory cases. CONCLUSIONS: Contrast-enhanced computed tomography findings for pulmonary inflammatory lesions and peripheral lung cancers were significantly different in many aspects. Developing a comprehensive understanding of these differences is helpful for directing their management. PMID:27759842

  18. Acute paretic syndrome in juvenile White Leghorn chickens resembles late stages of acute inflammatory demyelinating polyneuropathies in humans

    PubMed Central

    2010-01-01

    Background Sudden limb paresis is a common problem in White Leghorn flocks, affecting about 1% of the chicken population before achievement of sexual maturity. Previously, a similar clinical syndrome has been reported as being caused by inflammatory demyelination of peripheral nerve fibres. Here, we investigated in detail the immunopathology of this paretic syndrome and its possible resemblance to human neuropathies. Methods Neurologically affected chickens and control animals from one single flock underwent clinical and neuropathological examination. Peripheral nervous system (PNS) alterations were characterised using standard morphological techniques, including nerve fibre teasing and transmission electron microscopy. Infiltrating cells were phenotyped immunohistologically and quantified by flow cytometry. The cytokine expression pattern was assessed by quantitative real-time PCR (qRT-PCR). These investigations were accomplished by MHC genotyping and a PCR screen for Marek's disease virus (MDV). Results Spontaneous paresis of White Leghorns is caused by cell-mediated, inflammatory demyelination affecting multiple cranial and spinal nerves and nerve roots with a proximodistal tapering. Clinical manifestation coincides with the employment of humoral immune mechanisms, enrolling plasma cell recruitment, deposition of myelin-bound IgG and antibody-dependent macrophageal myelin-stripping. Disease development was significantly linked to a 539 bp microsatellite in MHC locus LEI0258. An aetiological role for MDV was excluded. Conclusions The paretic phase of avian inflammatory demyelinating polyradiculoneuritis immunobiologically resembles the late-acute disease stages of human acute inflammatory demyelinating polyneuropathy, and is characterised by a Th1-to-Th2 shift. PMID:20109187

  19. Critical care in the ED: potentially fatal asthma and acute lung injury syndrome

    PubMed Central

    Hodder, Rick

    2012-01-01

    Emergency department clinicians are frequently called upon to assess, diagnose, and stabilize patients who present with acute respiratory failure. This review describes a rapid initial approach to acute respiratory failure in adults, illustrated by two common examples: (1) an airway disease – acute potentially fatal asthma, and (2) a pulmonary parenchymal disease – acute lung injury/acute respiratory distress syndrome. As such patients are usually admitted to hospital, discussion will be focused on those initial management aspects most relevant to the emergency department clinician. PMID:27147862

  20. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    PubMed Central

    Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454

  1. A rare benign tumor of the lung: Inflammatory myofibroblastic tumor – Case report

    PubMed Central

    Demirhan, Ozkan; Ozkara, Selvinaz; Yaman, Mustafa; Kaynak, Kamil

    2013-01-01

    A fifty year old lady who was operated for thyroid cancer two years ago and completed adjuvant therapy, underwent a computer tomography (CT) of the chest during her follow up. The CT showed a mass lesion in the right lung, located to the lateral segment of the middle lobe. There were no intrabronchial lesions on bronchoscopy. Positron emission CT (PET CT) showed a dense hypermetabolic mass located in the right middle lobe lateral segment and having malignant characteristics. A videothorascopic wedge resection was performed and the specimen was sent for frozen section, which showed no evidence of malignancy. Pathology report revealed an inflammatory myofibroblastic tumor (IMT). Since IMT is a rare benign tumor of the lung, we herein report this patient along with a discussion of the relevant literature. PMID:26029612

  2. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs* **

    PubMed Central

    Torres, Ronaldo Lopes; Torres, Iraci Lucena da Silva; Laste, Gabriela; Ferreira, Maria Beatriz Cardoso; Cardoso, Paulo Francisco Guerreiro; Belló-Klein, Adriane

    2014-01-01

    Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels. PMID:25029646

  3. A Drosophila asthma model - what the fly tells us about inflammatory diseases of the lung.

    PubMed

    Roeder, Thomas; Isermann, Kerstin; Kallsen, Kim; Uliczka, Karin; Wagner, Christina

    2012-01-01

    Asthma and COPD are the most relevant inflammatory diseases of the airways. In western countries they show a steeply increasing prevalence, making them to a severe burden for health systems around the world. Although these diseases are typically complex ones, they have an important genetic component. Genome-wide association studies have provided us with a relatively small but comprehensive list of asthma susceptibility genes that will be extended and presumably completed in the near future. To identify the role of these genes in the physiology and pathophysiology of the lung, genetically tractable model organisms are indispensable and murine models were the only ones that have been extensively used. An urgent demand for complementary models is present that provide specific advantages lacking in murine models, especially regarding speed and flexibility. Among the model organisms available, only the fruit fly Drosophila melanogaster shares a comparable organ composition and at least a lung equivalent. It has to be acknowledged that the fruit fly Drosophila has almost completely been ignored as a model organism for lung diseases, simply because it is devoid of lungs. Nevertheless, its airway system shows striking similarities with the one of mammals regarding its physiology and reaction towards pathogens, which holds the potential to function as a versatile model in asthma-related diseases.

  4. Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature.

    PubMed

    Grunig, Gabriele; Marsh, Leigh M; Esmaeil, Nafiseh; Jackson, Katelin; Gordon, Terry; Reibman, Joan; Kwapiszewska, Grazyna; Park, Sung-Hyun

    2014-03-01

    Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung's vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung's vasculature, with emphasis on the lung's inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all.

  5. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  6. Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging

    PubMed Central

    Rajasekaran, Subbiah; Tamatam, Chandramohan R.; Potteti, Haranatha R.; Raman, Venu; Lee, Jae-Woo; Matthay, Michael A.; Mehta, Dolly; Reddy, Sekhar P.

    2015-01-01

    Inappropriate lung inflammatory response following oxidant and toxicant exposure can lead to abnormal repair and disease pathogenesis, including fibrosis. Thus early detection of molecular and cellular processes and mediators promoting lung inflammation is necessary to develop better strategies for therapeutic intervention and disease management. Previously, we have shown that transcription factor Fra-1/AP-1 plays key roles in lung inflammatory response, as Fra-1-null mice are less susceptible than wild-type mice to LPS-induced lung injury and mortality. Herein, we developed a transgenic reporter mouse model expressing tdTomato under the control of FRA-1 (human) promoter (referred to as FRA-1TdTg mice) to monitor its activation during inflammatory lung injury using fluorescence protein-based optical imaging and molecular analysis in vivo and ex vivo. A higher red fluorescent signal was observed in the lungs of LPS-treated FRA-1TdTg mice compared with vehicle controls, and Western blot and qRT-PCR analyses revealed a significant correlation with the FRA-1-tdTomato reporter expression. Immunocolocalization demonstrated expression of FRA-1-tdTomato largely in lung alveolar macrophages and to some extent in epithelial cells. Moreover, we validated these results with a second reporter mouse model that expressed green fluorescent protein upon activation of endogenous Fra-1 promoter. Additionally, we demonstrated increased expression of FRA-1 in alveolar macrophages in human lung instilled with Escherichia coli ex vivo. Collectively, our data obtained from two independent reporter mouse models and from human samples underscore the significance of Fra-1 activation in alveolar macrophages during inflammatory lung injury and may aid in developing strategies to target this transcription factor in lung injury and repair. PMID:26071555

  7. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome.

    PubMed

    Bosma, Karen J; Lewis, James F

    2007-09-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening form of respiratory failure that affects a heterogeneous population of critically ill patients. Although overall mortality appears to be decreasing in recent years due to improvements in supportive care, there are presently no proven, effective pharmacological therapies to treat ARDS and prevent its associated complications. The most common cause of death in ARDS is not hypoxemia or pulmonary failure, but rather multiple organ dysfunction syndrome (MODS), suggesting that improving survival in patients with ARDS may be linked to decreasing the incidence or severity of MODS. The key to developing novel treatments depends, in part, on identifying and understanding the mechanisms by which ARDS leads to MODS, although the heterogeneity and complexity of this disorder certainly poses a challenge to investigators. Novel therapies in development for treatment of ALI/ARDS include exogenous surfactant, therapies aimed at modulating neutrophil activity, such as prostaglandin and complement inhibitors, and treatments targeting earlier resolution of ARDS, such as beta-agonists and granulocyte macrophage colony-stimulating factor. From a clinical perspective, identifying subpopulations of patients most likely to benefit from a particular therapy and recognising the appropriate stage of illness in which to initiate treatment could potentially lead to better outcomes in the short term.

  8. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome.

    PubMed

    Rajasekaran, Subbiah; Pattarayan, Dhamotharan; Rajaguru, P; Sudhakar Gandhi, P S; Thimmulappa, Rajesh K

    2016-10-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc.

  9. Tissue Inhibitor of Metalloproteinase-1 Deficiency Amplifies Acute Lung Injury in Bleomycin-Exposed Mice

    PubMed Central

    Kim, Kyoung-Hee; Burkhart, Kristin; Chen, Peter; Frevert, Charles W.; Randolph-Habecker, Julie; Hackman, Robert C.; Soloway, Paul D.; Madtes, David K.

    2005-01-01

    Bleomycin-induced lung injury triggers a profound and durable increase in tissue inhibitor of metalloproteinase (TIMP)-1 expression, suggesting a potential role for this antiproteinase in the regulation of lung inflammation and fibrosis. TIMP-1 protein induction is spatially restricted to areas of lung injury as determined by immunohistochemistry. Using TIMP-1 null mutation mice, we demonstrate that TIMP-1 deficiency amplifies acute lung injury as determined by exaggerated pulmonary neutrophilia, hemorrhage, and vascular permeability compared with wild-type littermates after bleomycin exposure. The augmented pulmonary neutrophilia observed in TIMP-1–deficient animals was not found in similarly treated TIMP-2–deficient mice. Using TIMP-1 bone marrow (BM) chimeric mice, we observed that the TIMP-1–deficient phenotype was abolished in wild-type recipients of TIMP-1–deficient BM but not in TIMP-1–deficient recipients of wild-type BM. Acute lung injury in TIMP-1–deficient mice was accompanied by exaggerated gelatinase-B activity in the alveolar compartment. TIMP-1 deficiency did not alter neutrophil chemotactic factor accumulation in the injured lung nor neutrophil migration in response to chemotactic stimuli in vivo or in vitro. Moreover, TIMP-1 deficiency did not modify collagen accumulation after bleomycin injury. Our results provide direct evidence that TIMP-1 contributes significantly to the regulation of acute lung injury, functioning to limit inflammation and lung permeability. PMID:15947421

  10. Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis.

    PubMed Central

    Guice, K S; Oldham, K T; Caty, M G; Johnson, K J; Ward, P A

    1989-01-01

    Cerulein-induced acute pancreatitis in rats is associated with a reversible lung injury that is characterized by alveolar capillary endothelial-cell injury, increased microvascular permeability, interstitial edema formation, and intraalveolar hemorrhage and fibrin deposition. The role of mediators in this injury was analyzed using gravimetric data, microvascular permeability indices, electron microscopy, and a quantitative morphometric analysis. Neutrophil depletion induced by a specific antibody was highly protective against lung injury. Interruption of the complement pathway (using low dose Naja naja cobra venom factor) also protected against lung injury. Catalase and superoxide dismutase were also protective. The iron chelator deferoxamine and the hydroxyl radical scavenger, dimethylsulfoxide, were not protective against acute lung injury. These data suggest that complement, neutrophils, and neutrophil-derived (H2O2-dependent) oxygen products mediate lung injury that occurs secondary to cerulein-induced pancreatitis. In contrast to other models of neutrophil-dependent, oxygen-radical-mediated lung injury, this lung injury does not appear to be an iron-dependent and hydroxyl-radical mediated injury. We postulate that the process of acute pancreatitis leads to complement activation followed by neutrophil recruitment, sequestration, and adherence to alveolar capillary endothelial cells. Ultimately lung injury appears to result from local endothelial-cell injury secondary to neutrophil-generated oxygen products that may be myeloperoxidase dependent. Images Figs. 3A-D. PMID:2589887

  11. Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles.

    PubMed

    Becher, R; Hetland, R B; Refsnes, M; Dahl, J E; Dahlman, H J; Schwarze, P E

    2001-09-01

    Rat lung alveolar macrophages and type 2 cells were exposed for 20 h in vitro to various stone particles with differing contents of metals and minerals (a type of mylonite, gabbro, feldspar, and quartz). The capability to induce the release of the inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2) was investigated. We found marked differences in potency between the various particles, with mylonite being most potent overall, followed by gabbro, and with feldspar and quartz having an approximately similar order of lower potency. The results also demonstrated differences in cytokine release pattern between the two cell types. For all particle types including quartz, type 2 cells showed the most marked increase in MIP-2 and IL-6 secretion, whereas the largest increase in TNF-alpha release was observed in macrophages. To investigate possible correlations between in vitro and in vivo inflammatory responses, rats were instilled with the same types of particles and bronchoalveolar lavage (BAL) fluid was collected after 20 h. The results demonstrated a correlation between the in vitro cytokine responses and the number of neutrophilic cells in the BAL fluid. The BAL fluid also showed a strong MIP-2 response to mylonite. However, this was the only particle type to give a significant cytokine response in the BAL fluid. We further examined whether a similar graded inflammatory response would be continued in type 2 cells and alveolar macrophages isolated from the exposed animals. Again a differential cytokine release pattern was observed between type 2 cells and macrophages, although the order of potency between particle types was altered. In conclusion, various stone particles caused differential inflammatory responses after both in vitro and in vivo exposure, with mylonite being the most potent stone particle. The results suggest the alveolar type 2 cell to be an important participant in the

  12. Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles.

    PubMed

    Becher, R; Hetland, R B; Refsnes, M; Dahl, J E; Dahlman, H J; Schwarze, P E

    2001-09-01

    Rat lung alveolar macrophages and type 2 cells were exposed for 20 h in vitro to various stone particles with differing contents of metals and minerals (a type of mylonite, gabbro, feldspar, and quartz). The capability to induce the release of the inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2) was investigated. We found marked differences in potency between the various particles, with mylonite being most potent overall, followed by gabbro, and with feldspar and quartz having an approximately similar order of lower potency. The results also demonstrated differences in cytokine release pattern between the two cell types. For all particle types including quartz, type 2 cells showed the most marked increase in MIP-2 and IL-6 secretion, whereas the largest increase in TNF-alpha release was observed in macrophages. To investigate possible correlations between in vitro and in vivo inflammatory responses, rats were instilled with the same types of particles and bronchoalveolar lavage (BAL) fluid was collected after 20 h. The results demonstrated a correlation between the in vitro cytokine responses and the number of neutrophilic cells in the BAL fluid. The BAL fluid also showed a strong MIP-2 response to mylonite. However, this was the only particle type to give a significant cytokine response in the BAL fluid. We further examined whether a similar graded inflammatory response would be continued in type 2 cells and alveolar macrophages isolated from the exposed animals. Again a differential cytokine release pattern was observed between type 2 cells and macrophages, although the order of potency between particle types was altered. In conclusion, various stone particles caused differential inflammatory responses after both in vitro and in vivo exposure, with mylonite being the most potent stone particle. The results suggest the alveolar type 2 cell to be an important participant in the

  13. [Lung ultrasound in acute and critical care medicine].

    PubMed

    Zechner, P M; Seibel, A; Aichinger, G; Steigerwald, M; Dorr, K; Scheiermann, P; Schellhaas, S; Cuca, C; Breitkreutz, R

    2012-07-01

    The development of modern critical care lung ultrasound is based on the classical representation of anatomical structures and the need for the assessment of specific sonography artefacts and phenomena. The air and fluid content of the lungs is interpreted using few typical artefacts and phenomena, with which the most important differential diagnoses can be made. According to a recent international consensus conference these include lung sliding, lung pulse, B-lines, lung point, reverberation artefacts, subpleural consolidations and intrapleural fluid collections. An increased number of B-lines is an unspecific sign for an increased quantity of fluid in the lungs resembling interstitial syndromes, for example in the case of cardiogenic pulmonary edema or lung contusion. In the diagnosis of interstitial syndromes lung ultrasound provides higher diagnostic accuracy (95%) than auscultation (55%) and chest radiography (72%). Diagnosis of pneumonia and pulmonary embolism can be achieved at the bedside by evaluating subpleural lung consolidations. Detection of lung sliding can help to detect asymmetrical ventilation and allows the exclusion of a pneumothorax. Ultrasound-based diagnosis of pneumothorax is superior to supine anterior chest radiography: for ultrasound the sensitivity is 92-100% and the specificity 91-100%. For the diagnosis of pneumothorax a simple algorithm was therefore designed: in the presence of lung sliding, lung pulse or B-lines, pneumothorax can be ruled out, in contrast a positive lung point is a highly specific sign of the presence of pneumothorax. Furthermore, lung ultrasound allows not only diagnosis of pleural effusion with significantly higher sensitivity than chest x-ray but also visual control in ultrasound-guided thoracocentesis. PMID:22772347

  14. Depressive Symptoms and Impaired Physical Function after Acute Lung Injury

    PubMed Central

    Colantuoni, Elizabeth; Mendez-Tellez, Pedro A.; Dinglas, Victor D.; Shanholtz, Carl; Husain, Nadia; Dennison, Cheryl R.; Herridge, Margaret S.; Pronovost, Peter J.; Needham, Dale M.

    2012-01-01

    Rationale: Survivors of acute lung injury (ALI) frequently have substantial depressive symptoms and physical impairment, but the longitudinal epidemiology of these conditions remains unclear. Objectives: To evaluate the 2-year incidence and duration of depressive symptoms and physical impairment after ALI, as well as risk factors for these conditions. Methods: This prospective, longitudinal cohort study recruited patients from 13 intensive care units (ICUs) in four hospitals, with follow-up 3, 6, 12, and 24 months after ALI. The outcomes were Hospital Anxiety and Depression Scale depression score greater than or equal to 8 (“depressive symptoms”) in patients without a history of depression before ALI, and two or more dependencies in instrumental activities of daily living (“impaired physical function”) in patients without baseline impairment. Measurements and Main Results: During 2-year follow-up of 186 ALI survivors, the cumulative incidences of depressive symptoms and impaired physical function were 40 and 66%, respectively, with greatest incidence by 3-month follow-up; modal durations were greater than 21 months for each outcome. Risk factors for incident depressive symptoms were education 12 years or less, baseline disability or unemployment, higher baseline medical comorbidity, and lower blood glucose in the ICU. Risk factors for incident impaired physical function were longer ICU stay and prior depressive symptoms. Conclusions: Incident depressive symptoms and impaired physical function are common and long-lasting during the first 2 years after ALI. Interventions targeting potentially modifiable risk factors (e.g., substantial depressive symptoms in early recovery) should be evaluated to improve ALI survivors’ long-term outcomes. PMID:22161158

  15. Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-κB signaling pathways.

    PubMed

    Yu, Xiu; Yu, Sulan; Chen, Ling; Liu, Han; Zhang, Jian; Ge, Haixia; Zhang, Yuanyuan; Yu, Boyang; Kou, Junping

    2016-08-01

    Acute lung injury (ALI) is a life-threatening syndrome that is characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality worldwide. Here, we studied the protective effect of tetrahydroberberrubine (THBru), a berberine derivative, on a mouse model of lipopolysaccharide (LPS)-induced acute lung injury that was established in our previous studies. The results showed that a single oral administration of THBru significantly decreased the lung wet to dry weight (W/D) ratio at doses of 2, 10 and 50mg/kg administered 1h prior to LPS challenge (30mg/kg, intravenous injection). Histopathological changes, such as pulmonary edema, infiltration of inflammatory cells and coagulation, were also attenuated by THBru. In addition, THBru markedly decreased the total cell counts, total protein and nitrate/nitrite content in bronchoalveolar lavage fluid (BALF), significantly decreased tumor necrosis factor-α (TNF-α) and nitrate/nitrite content in the plasma, and reduced the myeloperoxidase (MPO) activity in the lung tissues. Additionally, THBru (10μM) significantly decreased the content of TNF-α and nitric oxide (NO) in LPS-induced THP-1 cells in vitro. Moreover, THBru significantly suppressed the activation of the MAPKs JNK and p38, AKT, and the NF-κB subunit p65 in LPS-induced THP-1 cells. These findings confirm that THBru attenuates LPS-induced acute lung injury by inhibiting the release of inflammatory cytokines and suppressing the activation of MAPKs, AKT, and NF-κB signaling pathways, which implicates it as a potential therapeutic agent for ALI or sepsis. PMID:27470389

  16. CT appearance of acute inflammatory disease of the renal interstitium

    SciTech Connect

    Gold, R.P.; McClennan, B.L.; Rottenberg, R.R.

    1983-08-01

    Today, infection remains the most common disease of the urinary tract and constitutes almost 75% of patient problems requiring urologic evaluation. There have been several major factors responsible for our better understanding of the nature and pathophysiology of urinary tract infection. One has been quantitated urine bacteriology and another, the discovery that a significant part of the apparently healthy adult female population has asymptomatic bacteriuria. Abnormal conditions such as neurogenic bladder, bladder malignancy, prolonged catheter drainage and reflux, altered host resistance, diabetes mellitus, and urinary tract obstruction, as well as pregnancy, may either predispose to or be implicated in the pathogenesis of urinary tract infection. There is a wide range of conditions that result in acute renal inflammation and those under discussion affect primarily the interstitium. This term refers to the connective tissue elements separating the tubules in the cortex and medulla. Hence, the interstitial nephritides are to be distinguished from the glomerulonephritides and fall into two general etiologic categories: infectious and noninfectious.

  17. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome.

    PubMed

    Pohl, Daniela; Alper, Gulay; Van Haren, Keith; Kornberg, Andrew J; Lucchinetti, Claudia F; Tenembaum, Silvia; Belman, Anita L

    2016-08-30

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating CNS disorder with predilection to early childhood. ADEM is generally considered a monophasic disease. However, recurrent ADEM has been described and defined as multiphasic disseminated encephalomyelitis. ADEM often occurs postinfectiously, although a causal relationship has never been established. ADEM and multiple sclerosis are currently viewed as distinct entities, generally distinguishable even at disease onset. However, pathologic studies have demonstrated transitional cases of yet unclear significance. ADEM is clinically defined by acute polyfocal neurologic deficits including encephalopathy. MRI typically demonstrates reversible, ill-defined white matter lesions of the brain and often also the spinal cord, along with frequent involvement of thalami and basal ganglia. CSF analysis may reveal a mild pleocytosis and elevated protein, but is generally negative for intrathecal oligoclonal immunoglobulin G synthesis. In the absence of a specific diagnostic test, ADEM is considered a diagnosis of exclusion, and ADEM mimics, especially those requiring a different treatment approach, have to be carefully ruled out. The role of biomarkers, including autoantibodies like anti-myelin oligodendrocyte glycoprotein, in the pathogenesis and diagnosis of ADEM is currently under debate. Based on the presumed autoimmune etiology of ADEM, the current treatment approach consists of early immunotherapy. Outcome of ADEM in pediatric patients is generally favorable, but cognitive deficits have been reported even in the absence of other neurologic sequelae. This review summarizes the current knowledge on epidemiology, pathology, clinical presentation, neuroimaging features, CSF findings, differential diagnosis, therapy, and outcome, with a focus on recent advances and controversies. PMID:27572859

  18. Combined treatment with bone marrow mesenchymal stem cells and methylprednisolone in paraquat-induced acute lung injury

    PubMed Central

    2013-01-01

    Background To evaluate the efficacy of combined treatment with bone marrow mesenchymal stem cell (BMSC) transplantation and methylprednisolone (MP) to treat paraquat (PQ)-induced acute lung injury. Materials and methods A total of 102 female rats were randomly divided into five groups: PQ, BMSC, MP, BMSC + MP and normal control. After 14 days of PQ poisoning, the survival of rats, wet/dry weight ratio of lung tissue, serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde (MDA) and superoxidase dismutase (SOD), and the expression of nuclear factor (NF)-кB p65 in lung tissue were determined. Results Rats in BMSC and BMSC + MP groups survived. BMSC transplantation significantly decreased the wet/dry weight ratio of lung tissue, down-regulated NF-кB p65 expression in lung tissue, lowered serum levels of TNF-α, IL-1β, IL-6 and MDA, and increased serum levels of IL-10 and SOD. These changes were particularly significant on days 7–14 after PQ poisoning. The above changes were more significant in the MP group on days 1–3 after PQ poisoning, compared with those of the BMSC group. However, the BMSC + MP group showed more significant changes on days 1–14 after PQ poisoning than those of both BMSC and MP groups. Conclusions MP inhibits the inflammatory response, reduces the products of lipid peroxidation and promotes survival of transplanted BMSC, thus improving the intermediate and longer term efficacy of BMSC transplantation for treatment of PQ-induced lung injury. PMID:23902576

  19. Fibrinogen modulates leukocyte recruitment in vivo during the acute inflammatory response.

    PubMed

    Vitorino de Almeida, V; Silva-Herdade, A; Calado, A; Rosário, H S; Saldanha, C

    2015-01-01

    Besides playing an important role in blood hemostases, fibrinogen also regulates leukocyte function in inflammation. Our previous in vitro studies showed that the adhesive behaviour of the neutrophil is modulated by soluble fibrinogen when present at a physiological concentration. This led us to propose that this plasma glycoprotein might further influence leukocyte recruitment in vivo and thus contribute to the inflammatory response. To address this in vivo, leukocyte recruitment was here investigated under acute inflammatory conditions in the absence of soluble fibrinogen in the blood circulation. For such, intravital microscopy on mesentery post-capillary venules was performed on homozygous fibrinogen α chain-deficient mice ((α-/-) mice). Acute inflammatory states were induced by perfusing platelet activating factor (PAF) over the exposed tissue. As control animals, two groups of mice expressing soluble fibrinogen in circulation were used, namely, C57BL/6 wild type animals and heterozygous fibrinogen α chain-deficient mice ((α+/-) mice). Under acute inflammatory conditions, an abnormal pattern of recruitment was observed for leukocytes in homozygous (α-/-) mice in comparison to both control groups. In fact, the former exhibited a significantly decreased number of rolling leukocytes that nevertheless, migrated with increased rolling velocities when compared to leukocytes from control animals. Consistently, homozygous mice further displayed a diminished number of adherent leukocytes than the other groups. Altogether our observations led us to conclude that leukocyte recruitment in homozygous (α-/-) mice is compromised what strongly suggests a role for soluble fibrinogen in leukocyte recruitment in inflammation.

  20. A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury.

    PubMed

    Mishra, Amarjit; Guo, Yujie; Zhang, Li; More, Sunil; Weng, Tingting; Chintagari, Narendranath Reddy; Huang, Chaoqun; Liang, Yurong; Pushparaj, Samuel; Gou, Deming; Breshears, Melanie; Liu, Lin

    2016-10-01

    Pulmonary neutrophils are the initial inflammatory cells that are recruited during lung injury and are crucial for innate immunity. However, pathological recruitment of neutrophils results in lung injury. The objective of this study is to determine whether the novel neutrophil chemoattractant, soluble VCAM-1 (sVCAM-1), recruits pathological levels of neutrophils to injury sites and amplifies lung inflammation during acute lung injury. The mice with P2X7 receptor deficiency, or treated with a P2X7 receptor inhibitor or anti-VCAM-1 Abs, were subjected to a clinically relevant two-hit LPS and mechanical ventilation-induced acute lung injury. Neutrophil infiltration and lung inflammation were measured. Neutrophil chemotactic activities were determined by a chemotaxis assay. VCAM-1 shedding and signaling pathways were assessed in isolated lung epithelial cells. Ab neutralization of sVCAM-1 or deficiency or antagonism of P2X7R reduced neutrophil infiltration and proinflammatory cytokine levels. The ligands for sVCAM-1 were increased during acute lung injury. sVCAM-1 had neutrophil chemotactic activities and activated alveolar macrophages. VCAM-1 is released into the alveolar airspace from alveolar epithelial type I cells through P2X7 receptor-mediated activation of the metalloproteinase ADAM-17. In conclusion, sVCAM-1 is a novel chemoattractant for neutrophils and an activator for alveolar macrophages. Targeting sVCAM-1 provides a therapeutic intervention that could block pathological neutrophil recruitment, without interfering with the physiological recruitment of neutrophils, thus avoiding the impairment of host defenses. PMID:27559050

  1. Lung hyperinflation stimulates the release of inflammatory mediators in spontaneously breathing subjects.

    PubMed

    Malbouisson, L M S; Szeles, T F; Barbalho, L; Massoco, C O; Carmona, M J C; Carvalho, C R R; Pelosi, P; Auler, J O C

    2010-02-01

    Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 +/- 1.2 years, BMI: 23.8 +/- 3.6 kg/m(2)). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH(2)O steps up to 20 cmH(2)O every 5 breaths. At CPAP 20 cmH(2)O, an inspiratory pressure of 20 cmH(2)O above CPAP was applied, reaching an airway pressure of 40 cmH(2)O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-alpha, IL-1beta, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-alpha: 1.2 +/- 3.8 vs 6.4 +/- 8.6 pg/mL; IL-1beta: 4.9 +/- 15.6 vs 22.4 +/- 28.4 pg/mL; IL-6: 1.4 +/- 3.3 vs 6.5 +/- 5.6 pg/mL; IL-8: 13.2 +/- 8.8 vs 33.4 +/- 26.4 pg/mL; IL-10: 3.3 +/- 3.3 vs 7.7 +/- 6.5 pg/mL, and IL-12: 3.1 +/- 7.9 vs 9 +/- 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.

  2. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  3. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms.

    PubMed

    Chen, Hui-Sheng; Li, Feng-Peng; Li, Xiao-Qiu; Liu, Bao-Jun; Qu, Fang; Wen, Wei-Wei; Wang, Yang; Lin, Qing

    2013-09-01

    Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.

  4. Acute secondary effects in the esophagus in patients undergoing radiotherapy for carcinoma of the lung

    SciTech Connect

    Mascarenhas, F.; Silvestre, M.E.; Sa da Costa, M.; Grima, N.; Campos, C.; Chaves, P.

    1989-02-01

    The incidence and nature of acute secondary irradiation esophagitis was studied in a series of 38 patients undergoing 60Co teletherapy for carcinoma of the lung. Thirty-four patients were male and four female, with ages ranging from 38 to 78 years. The mediastinum being irradiated in the process, all the patients underwent endoscopy for signs of esophagitis and/or gastritis after a dose of 30-40 Gy was delivered to the esophagus. Eighteen patients complained of dysphagia, but only in 12 of them did endoscopy show esophagitis. Of the remaining patients without complaints five had endoscopic signs of esophagitis. Gastritis was found in 18 cases and confirmed histologically in 14. In 17 cases, esophagitis and/or gastritis were confirmed histologically. It is believed that there is a fairly close correlation among clinical, endoscopic, and histological findings to support the claim that esophagitis in these patients is radiation induced. However, the cause of gastritis is not well understood. Data in the literature suggest that nonsteroid anti-inflammatory agents can act as prophylactic means of preventing radiation esophagitis.

  5. HIF2α signaling inhibits adherens junctional disruption in acute lung injury

    PubMed Central

    Gong, Haixia; Rehman, Jalees; Tang, Haiyang; Wary, Kishore; Mittal, Manish; Chatturvedi, Pallavi; Zhao, Youyang; Komorova, Yulia A.; Vogel, Stephen M.; Malik, Asrar B.

    2015-01-01

    Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junction (AJ) integrity and determined that vascular endothelial protein tyrosine phosphatase (VE-PTP) is a HIF2α target. HIF2α-induced VE-PTP expression enhanced dephosphorylation of VE-cadherin, which reduced VE-cadherin endocytosis and thereby augmented AJ integrity and endothelial barrier function. Mice harboring an EC-specific deletion of Hif2a exhibited decreased VE-PTP expression and increased VE-cadherin phosphorylation, resulting in defective AJs. Mice lacking HIF2α in ECs had increased lung vascular permeability and water content, both of which were further exacerbated by endotoxin-mediated injury. Treatment of these mice with Fg4497, a prolyl hydroxylase domain 2 (PHD2) inhibitor, activated HIF2α-mediated transcription in a hypoxia-independent manner. HIF2α activation increased VE-PTP expression, decreased VE-cadherin phosphorylation, promoted AJ integrity, and prevented the loss of endothelial barrier function. These findings demonstrate that HIF2α enhances endothelial barrier integrity, in part through VE-PTP expression and the resultant VE-cadherin dephosphorylation-mediated assembly of AJs. Moreover, activation of HIF2α/VE-PTP signaling via PHD2 inhibition has the potential to prevent the formation of leaky vessels and edema in inflammatory diseases such as ARDS. PMID:25574837

  6. The Impact of Acute Matriptase Inhibition in Hepatic Inflammatory Models.

    PubMed

    Pomothy, Judit; Szombath, Gergely; Rokonál, Patrik; Mátis, Gábor; Neogrády, Zsuzsanna; Steinmetzer, Torsten; Pászti-Gere, Erzsébet

    2016-01-01

    Purpose. Dysfunction of matriptase-2 can be involved in iron regulatory disorder via downregulation of hepcidin expression. In the present study, we investigated the effects of 3-amidinophenylalanine-derived matriptase inhibitors on porcine hepatic inflammatory cell models. Methods. Hepatocyte-Kupffer cell cocultures (ratio of 2 : 1 and 6 : 1) were treated with four structurally related matriptase inhibitors at 50 μM. Cell cytotoxicity and relative expressions of IL-6 and IL-8 and the levels of hepcidin were determined by MTS and porcine-specific ELISA. The extracellular H2O2 contents were analyzed by Amplex Red method. Results. Matriptase inhibitors at 50 µM for 24 h did not increase cell death rate. The elevated ROS production observed after short-term application of inhibitor MI-441 could be correlated with lowered hepcidin expression. MI-460 could significantly enhance hepcidin levels in the supernatants of cocultures (by 62.21 ± 26.8% in hepatocyte-Kupffer cell, 2 : 1, and by 42.6 ± 14.3% in hepatocyte-Kupffer cell, 6 : 1, cocultures, resp.). No significant changes were found in IL-6 and IL-8 levels in cocultures exposed to matriptase inhibitors. Conclusions. Based on in vitro findings, administration of MI-460 via modulation of hepcidin expression without cytotoxic and oxidative stress inducing properties might be a reliable alternative to treat iron overload in human and veterinary clinical practice. PMID:27642598

  7. The Impact of Acute Matriptase Inhibition in Hepatic Inflammatory Models

    PubMed Central

    Szombath, Gergely; Rokonál, Patrik; Mátis, Gábor; Neogrády, Zsuzsanna

    2016-01-01

    Purpose. Dysfunction of matriptase-2 can be involved in iron regulatory disorder via downregulation of hepcidin expression. In the present study, we investigated the effects of 3-amidinophenylalanine-derived matriptase inhibitors on porcine hepatic inflammatory cell models. Methods. Hepatocyte-Kupffer cell cocultures (ratio of 2 : 1 and 6 : 1) were treated with four structurally related matriptase inhibitors at 50 μM. Cell cytotoxicity and relative expressions of IL-6 and IL-8 and the levels of hepcidin were determined by MTS and porcine-specific ELISA. The extracellular H2O2 contents were analyzed by Amplex Red method. Results. Matriptase inhibitors at 50 µM for 24 h did not increase cell death rate. The elevated ROS production observed after short-term application of inhibitor MI-441 could be correlated with lowered hepcidin expression. MI-460 could significantly enhance hepcidin levels in the supernatants of cocultures (by 62.21 ± 26.8% in hepatocyte-Kupffer cell, 2 : 1, and by 42.6 ± 14.3% in hepatocyte-Kupffer cell, 6 : 1, cocultures, resp.). No significant changes were found in IL-6 and IL-8 levels in cocultures exposed to matriptase inhibitors. Conclusions. Based on in vitro findings, administration of MI-460 via modulation of hepcidin expression without cytotoxic and oxidative stress inducing properties might be a reliable alternative to treat iron overload in human and veterinary clinical practice.

  8. The Impact of Acute Matriptase Inhibition in Hepatic Inflammatory Models

    PubMed Central

    Szombath, Gergely; Rokonál, Patrik; Mátis, Gábor; Neogrády, Zsuzsanna

    2016-01-01

    Purpose. Dysfunction of matriptase-2 can be involved in iron regulatory disorder via downregulation of hepcidin expression. In the present study, we investigated the effects of 3-amidinophenylalanine-derived matriptase inhibitors on porcine hepatic inflammatory cell models. Methods. Hepatocyte-Kupffer cell cocultures (ratio of 2 : 1 and 6 : 1) were treated with four structurally related matriptase inhibitors at 50 μM. Cell cytotoxicity and relative expressions of IL-6 and IL-8 and the levels of hepcidin were determined by MTS and porcine-specific ELISA. The extracellular H2O2 contents were analyzed by Amplex Red method. Results. Matriptase inhibitors at 50 µM for 24 h did not increase cell death rate. The elevated ROS production observed after short-term application of inhibitor MI-441 could be correlated with lowered hepcidin expression. MI-460 could significantly enhance hepcidin levels in the supernatants of cocultures (by 62.21 ± 26.8% in hepatocyte-Kupffer cell, 2 : 1, and by 42.6 ± 14.3% in hepatocyte-Kupffer cell, 6 : 1, cocultures, resp.). No significant changes were found in IL-6 and IL-8 levels in cocultures exposed to matriptase inhibitors. Conclusions. Based on in vitro findings, administration of MI-460 via modulation of hepcidin expression without cytotoxic and oxidative stress inducing properties might be a reliable alternative to treat iron overload in human and veterinary clinical practice. PMID:27642598

  9. Role of toll-like receptor 4 in acute neutrophilic lung inflammation induced by intratracheal bacterial products in mice

    PubMed Central

    Yamada, Wakako; Tasaka, Sadatomo; Koh, Hidefumi; Shimizu, Mie; Ogawa, Yuko; Hasegawa, Naoki; Miyasho, Taku; Yamaguchi, Kazuhiro; Ishizaka, Akitoshi

    2008-01-01

    Background Toll-like receptors (TLRs) represent a conserved family of innate immune recognition receptors. Among TLRs, TLR4 is important for the recognition of Gram-negative bacteria, whereas TLR2 recognizes cell wall constituents of Gram-positive microorganisms, such as peptidoglycan (PGN). Methods To evaluate the role of TLR4 in the pathogenesis of acute lung injury induced by Escherichia coli endotoxin (lipopolysaccharide; LPS) or PGN, we compared inflammatory cell accumulation in bronchoalveolar lavage (BAL) fluid and lung pathology between C3H/HeJ (TLR4 mutant) and wild-type C3H/HeN mice. The levels of proinflammatory cytokines and chemokines in plasma and BAL fluid and nuclear factor-κB (NF-κB) translocation in the lung were also evaluated. Results In C3H/HeJ mice, LPS-induced neutrophil emigration was significantly decreased compared with C3H/HeN mice, whereas PGN-induced neutrophil emigration did not differ. Differential cell count in BAL fluid revealed comparable neutrophil recruitment in the alveolar space. In TLR4 mutant mice, LPS-induced upregulation of tumor necrosis factor-alpha (TNF-α), KC, and CXCL10 in plasma and BAL fluid was attenuate, which was not different after PGN. NF-κB translocation in the lung was significantly decreased in C3H/HeJ compared with C3H/HeN mice, whereas PGN-induced NF-κB translocation was not different. Conclusion These results suggest that TLR4 mediates inflammatory cascade induced by Gram-negative bacteria that is locally administered. PMID:22096342

  10. Role and importance of ultrasound lung comets in acute cardiac care.

    PubMed

    Ricci, Fabrizio; Aquilani, Roberta; Radico, Francesco; Bianco, Francesco; Dipace, Gioacchino Giuseppe; Miniero, Ester; De Caterina, Raffaele; Gallina, Sabina

    2015-04-01

    Lung ultrasonography is an emerging, user-friendly and easy-to-use technique that can be performed quickly at the patient's bedside to evaluate several pathologic conditions affecting the lung. Ultrasound lung comets (ULCs) are an echographic sign of uncertain biophysical characterisation mostly attributed to water-thickened subpleural interlobular septa, but invariably associated with increased extravascular lung water. ULCs have thus been proposed as a complementary tool for the assessment and monitoring of acute heart failure and are now entering into statements in international recommendation documents. Adding lung ultrasonography to conventional echocardiography allows for performing an integrated cardiopulmonary ultrasound examination, and this is an important opportunity for the cardiologist. The technique allows the simultaneous gathering of considerable information about the heart and the lungs to investigate acute and chronic cardio-pulmonary conditions within a non-invasive, radiation-free, single-probe, all-in-one examination. We have here reviewed the pertinent literature on the physical origin of ULCs and on their role and importance in intensive and acute cardiac care settings. We also here propose a new algorithm aimed at implementing evaluation in the diagnostic work-up of patients with suspected acute heart failure. PMID:25267879

  11. Matrix metalloproteinase and elastase activities in LPS-induced acute lung injury in guinea pigs.

    PubMed

    D'Ortho, M P; Jarreau, P H; Delacourt, C; Macquin-Mavier, I; Levame, M; Pezet, S; Harf, A; Lafuma, C

    1994-03-01

    Matrix metalloproteinases (MMPs) and elastase are proteolytic enzymes specifically directed against extracellular matrix (ECM) components. They are secreted by inflammatory cells and may consequently contribute to the lesions of the ECM observed during acute pulmonary edema. We therefore evaluated the MMP and elastase activities, which are secreted by cultured alveolar macrophages (AMACs) and polymorphonuclear neutrophils (PMNs) and present in the bronchoalveolar lavage (BAL) fluid in a guinea pig model of acute lung injury induced by intratracheal instillation of lipopolysaccharide (LPS). The control group was given 0.9% NaCl. 24 h after instillation, a BAL was performed, the BAL fluid was separated from the cells by centrifugation, and AMACs and PMNs were separately cultured for 24 h. In BAL fluid from LPS-treated guinea pigs, we found 1) an increase in free gelatinase activity, tested on [3H]gelatin (0.7 +/- 0.2 micrograms.200 microliters BAL fluid-1.48 h-1 vs. 0.2 +/- 0.1 in controls, P < 0.05), and 2) increased total gelatinase activities, as assessed by zymography. The molecular masses of the major gelatinase species found in BAL fluid by zymography were 92 and 68 kDa. The 92-kDa gelatinase was secreted by both AMACs and PMNs, as demonstrated by zymography of their respective culture media. When tested on [3H]elastin, the elastase activity of BAL fluid of LPS-treated animals exhibited no increase, but when tested on a synthetic peptidic substrate [N-succinyl-(L-alanine)3-p-nitro anilide (SLAPN)], increased elastase-like activity was observed (from 17 +/- 4 nmol of SLAPN.200 microliters BAL fluid-1.24 h-1 in control group to 34 +/- 8 in LPS group, P < 0.05). This increase was attributable to the activity of a metalloendopeptidase that was inhibited by the metal chelator EDTA but not by the specific tissue inhibitor of MMPs.

  12. Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update

    PubMed Central

    2013-01-01

    Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective. PMID:24238477

  13. Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Tao, Jin; Nie, Yan; Ma, Xiaoyao; Ding, Guoyu; Gao, Jie; Jiang, Min

    2016-01-01

    Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore throat.” However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI. PMID:27579049

  14. Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Wu, Dongdong; Pan, Pinhua; Su, Xiaoli; Zhang, Lemeng; Qin, Qingwu; Tan, Hongyi; Huang, Li; Li, Yuanyuan

    2016-01-01

    ABSTRACT Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation. PMID:26939040

  15. Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Tao, Jin; Nie, Yan; Hou, Yuanyuan; Ma, Xiaoyao; Ding, Guoyu; Gao, Jie; Jiang, Min; Bai, Gang

    2016-01-01

    Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for "clearing heat and relieving toxicity" and its ability to "diffuse the lung and relieve sore throat." However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI. PMID:27579049

  16. Selective NF-kappaB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model.

    PubMed

    von Bismarck, Philipp; Klemm, Karsten; García Wistädt, Carlos-Francisco; Winoto-Morbach, Supandi; Schütze, Stefan; Krause, Martin F

    2009-08-01

    Acute respiratory failure in neonates (e.g. ARDS, meconium aspiration pneumonitis, pneumonia) is characterized by an excessive inflammatory response, governing the migration of polymorpho-nuclear leukocytes (PMNLs) into lung tissue and causing consecutive impairment of gas exchange and lung function. Critical to this inflammatory response is the activation of nuclear factor-kappaB (NF-kappaB) that is required for transcription of the genes for many pro-inflammatory mediators. We asked whether the inhibition of NF-kappaB activity using either a selective inhibitor (IKK-NBD peptide) or dexamethasone would be more effective in decreasing NF-kappaB activity and chemokine expression in pulmonary cells. Changes in lung function were repeatedly assessed for 24h following induction of acute respiratory failure and therapeutic intervention. We conducted a randomized, controlled, prospective animal study with mechanically ventilated newborn piglets which underwent repeated airway lavage (20+/-2 [SEM]) to remove surfactant and to induce lung inflammation. Admixed to 100 mg kg(-1) surfactant, piglets then received either IKK-NBD peptide (S+IKK), a selective inhibitor of NF-kappaB activation, its control peptide without intrinsic activity, dexamethasone (S+Dexa), its solvent aqua, or an air bolus only (all groups n=8). After 24h of mechanical ventilation, the following differences were measured: PaO(2)/FiO(2) (S+IKK 230+/-9 mm Hg vs. S+Dexa 188+/-14, p<0.05); ventilation efficiency index (0.18+/-0.01 [3800/(PIP-PEEP)(*)f(*)PaCO(2)] vs. 0.14+/-0.01, p<0.05); extravascular lung water (24+/-1 ml kg(-1) vs. 29+/-2, p<0.05); PMNL in BAL fluid (112+/-21 cells microl(-1) vs. 208+/-34, p<0.05), IL-8 (351+/-117 pg ml(-1) vs. 491+/-144, p=ns) and leukotriene B(4) (23+/-7 pg ml(-1) vs. 71+/-11, p<0.01) in BAL fluid. NF-kappaB activity in the nucleus of pulmonary cells differed by 32+/-5% vs. 55+/-3, p<0.001. Differences between these two intervention groups were more pronounced in the

  17. Pre- or post-treatment with ethanol and ethyl pyruvate results in distinct anti-inflammatory responses of human lung epithelial cells triggered by interleukin-6.

    PubMed

    Relja, Borna; Omid, Nina; Schaible, Alexander; Perl, Mario; Meier, Simon; Oppermann, Elsie; Lehnert, Mark; Marzi, Ingo

    2015-08-01

    Increased local and systemic levels of interleukin (IL)-6 are associated with inflammatory processes, including neutrophil infiltration of the alveolar space, resulting in lung injury. Our previous study demonstrated the beneficial anti-inflammatory effects of acute exposure to ethanol (EtOH) in an acute in vivo model of inflammation. However, due to its side-effects, EtOH is not used clinically. In the present study, the effects of EtOH and ethyl pyruvate (EtP) as an alternative anti-inflammatory drug prior to and following application of an IL-6 stimulus on cultured A549 lung epithelial cells were compared, and it was hypothesized that treatment with EtOH and EtP reduces the inflammatory potential of the A549 cells. Time- and dose-dependent release of IL-8 from the A549 cells was observed following stimulation with IL-6. The release of IL-8 from the A549 cells was assessed following treatment with EtP (2.5-10 mM), sodium pyruvate (NaP; 10 mM) or EtOH (85-170 mM) for 1, 24 or 72 h, prior to and following IL-6 stimulation. The adhesion capacities of neutrophils to the treated A549 cells, and the expression levels of cluster of differentiation (CD)54 by the epithelial cells were measured. Treatment of the A549 cells with either EtOH or EtP significantly reduced the IL-6-induced release of IL-8. This effect was observed in the pre- and post-stimulatory conditions, which is of therapeutic importance. Similar data was revealed regarding the IL-6-induced neutrophil adhesion to the treated A549 cells, in which pre- and post-treatment with EtOH or EtP decreased the adhesion capacity, however, the results were dependent on the duration of incubation. Incubation durations of 1 and 24 h decreased the adhesion rates of neutrophils to the stimulated A549 cells, however, the reduction was only significant at 72 h post-treatment. The expression of CD54 was reduced only following treatment for 24 h with either EtOH or EtP, prior to IL-6 stimulation. Therefore, EtOH and Et

  18. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  19. High-mobility group box 1 enhances the inflammatory process in diabetic lung.

    PubMed

    Boteanu, Raluca Maria; Uyy, Elena; Suica, Viorel Iulian; Antohe, Felicia

    2015-10-01

    Diabetes mellitus generates metabolic changes associated with inflammatory events that may eventually affect all body tissues. Both high-mobility group box 1 (HMGB1) and β-catenin are active players in inflammation. The study aimed to determine whether HMGB1 modulates the β-catenin activity in supporting inflammation, using an experimental type 1 diabetes mouse model. The protein and gene expression of HMGB1 were significantly increased (2-fold) in the diabetic lung compared to control and were positively correlated with the HMGB1 levels detected in serum. Co-immunoprecipitation of HMGB1 with RAGE co-exists with activation of PI3K/AKT1 and NF-kB signaling pathways. At the same time β-catenin was increased in nuclear fraction (3.5 fold) while it was down-regulated in diabetic plasma membrane (2-fold). There was no difference of β-catenin gene expression between the control and diabetic mice. β-Catenin phosphorylation at Ser552 was higher in diabetic nuclear fraction, suggesting that AKT1 activation promotes β-catenin nuclear translocation. In addition, c-Jun directly binds β-catenin indicating the transcriptional activity of β-catenin in diabetes, sustained by significantly COX2 increase by 6-fold in the cytosolic extract of diabetic lung compared to control. Taken together, the data support the new concept that HMGB1 maintains the inflammation through RAGE/AKT1/β-catenin pathway in the diabetic lung. PMID:26254814

  20. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    PubMed

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial. PMID:26562768

  1. Chronic Disseminated Candidiasis Complicated by Immune Reconstitution Inflammatory Syndrome in Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Ukielska, Bogna; Jończyk-Potoczna, Katarzyna; Konatkowska, Benigna; Wachowiak, Jacek

    2016-01-01

    Hepatosplenic candidiasis also known as chronic disseminated candidiasis is a rare manifestation of invasive fungal infection typically observed in patients with acute leukemia in prolonged, deep neutropenia. Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory disorder triggered by rapid resolution of neutropenia. Diagnosis and treatment of IRIS are still challenging due to a variety of clinical symptoms, lack of certain diagnostic criteria, and no standards of treatment. The diagnosis of IRIS is even more difficult in patients with hematological malignancies complicated by “probable” invasive fungal infection, when fungal pathogen is still uncertain. We report a case of probable hepatic candidiasis in 4-year-old boy with acute lymphoblastic leukemia. Despite proper antifungal therapy, there was no clinical and radiological improvement, so diagnosis of Candida-related IRIS was made and corticosteroid therapy was added to antifungal treatment achieving prompt resolution of infection symptoms. PMID:27800196

  2. Corticosteroids prevent acute lung dysfunction caused by thoracic irradiation in unanesthetized sheep

    SciTech Connect

    Loyd, J.E.; Bolds, J.M.; Wickersham, N.; Malcolm, A.W.; Brigham, K.L.

    1988-11-01

    We sought to determine the effect of corticosteroid therapy in a new acute model of oxidant lung injury, thoracic irradiation in awake sheep. Sheep were irradiated with 1,500 rads to the whole chest except for blocking the heart and adjacent ventral lung. Seven experimental sheep were given methylprednisolone (1 g intravenously every 6 h for four doses) and thoracic irradiation; control sheep received only irradiation. In irradiated control sheep, lung lymph flow increased from baseline (7.6 ml/h) to peak at 3 h (13.2), and lung lymph protein clearance increased from 5.1 to 9.7 ml/h. Mean pulmonary artery pressure increased in the irradiated control sheep from 19 to 32.4 cm H/sub 2/O, whereas the lung lymph thromboxane concentration increased from 0.09 to 6.51 ng/ml at 3 h. Arterial oxygen tension in irradiated control sheep fell gradually from 86 mm Hg at baseline to 65 mm Hg at 8 h. Methylprednisolone administration significantly prevented the increase in lung lymph protein clearance, mean pulmonary artery pressure, and lung lymph thromboxane concentration. Methylprednisolone also prevented the fall in arterial oxygen tension after thoracic irradiation, but did not prevent a further decrease in lymphocytes in blood or lung lymph after radiation. We conclude that corticosteroid therapy prevents most of the acute physiologic changes caused by thoracic irradiation in awake sheep.

  3. Reduction of the systemic inflammatory induced by acute cerebral infarction through ultra-early thrombolytic therapy

    PubMed Central

    YE, LICHAO; CAI, RUOWEI; YANG, MEILI; QIAN, JIAQIANG; HONG, ZHILIN

    2015-01-01

    Acute ischemic stroke induces systemic inflammation, exhibited as changes in body temperature, white blood cell counts and C-reactive protein (CRP) levels. The aim of the present study was to observe the effects of intravenous thrombolytic therapy on inflammatory indices in order to investigate the hypothesis that post-stroke systemic inflammatory response occurs in response to the necrosis of brain tissues. In this study, 62 patients with acute cerebral infarction and indications for intravenous thrombolysis were divided into three groups on the basis of their treatment and response: Successful thrombolysis (n=36), failed thrombolysis (n=12) and control (n=14) groups. The body temperature, white blood cell counts and high-sensitivity (hs)-CRP levels were recorded pre-treatment and on post-stroke days 1, 3, 5 and 7. Spearman's correlation analysis showed that the pre-treatment National Institutes of Health Stroke Scale (NIHSS) score positively correlated with body temperature, white blood cell count and hs-CRP levels. On day 3 of effective intravenous thrombolysis, the body temperature and white blood cell were decreased and on days 3 and 5, the serum levels of hs-CRP were reduced compared with those in the failed thrombolysis and control groups. The results indicate that the systemic inflammatory response following acute cerebral infarction was mainly caused by ischemic injury of local brain tissue; the more serious the stroke, the stronger the inflammatory response. Ultra-early thrombolytic therapy may inhibit the necrosis of brain tissue and thereby reduce the inflammatory response. PMID:26622513

  4. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion.

    PubMed

    Kozan, Ahmet; Kilic, Nermin; Alacam, Hasan; Guzel, Ahmet; Guvenc, Tolga; Acikgoz, Mehmet

    2016-10-01

    The therapeutic efficiency of an anti-inflammatory agent, dexamethasone (DXM), and a nitric oxide synthase (NOS) inhibitor, Nitro-L-arginine methyl ester (L-NAME), in lung tissue injury after lung contusion was investigated. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), YKL-40, an inflammatory peptide, inducible NOS (iNOS), and Clara cell protein 16 (CC-16) were evaluated. Immunohistochemical analyses were also performed, and the lung tissue was examined histopathologically. The study consisted of eight groups of Sprague-Dawley rats (n = 10 in each group), weighing 250-300 g: (1) control, (2) contusion, (3) control + DXM, (4) contusion + DXM, (5) control + L-NAME (6) contusion + L-NAME, (7) control + DXM + L-NAME, and (8) contusion + DXM + L-NAME. A previously developed lung contusion model was used, in addition to the control group. The rats were administered DXM and L-NAME intraperitoneally (i.p.) at doses of 15 and 60 mg/kg/day, respectively. DXM and L-NAME administration decreased the iNOS level in the contusion groups. DXM increased the levels of YKL-40 and IL-10 in both the control and contusion groups, with higher levels in the contusion groups. L-NAME increased the serum level of IL-10 in the lung contusion groups. DXM increased the synthesis of CC-16 in the control and contusion groups. The combined use of a high-dose steroid and NOS inhibitor resulted in the death of the rats. Steroids can increase the level of cytokines, such as YKL-40 and IL-10, and the synthesis of CC-16 and prevent pneumonia, ALI/ARDS, and sepsis in lung contusion.

  5. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure.

    PubMed

    Gattinoni, L; Pelosi, P; Vitale, G; Pesenti, A; D'Andrea, L; Mascheroni, D

    1991-01-01

    Ten patients with parenchymal acute respiratory failure (ARF) underwent computed tomography (CT) scans while in the supine and prone positions. At equal levels of positive end-expiratory pressure, the authors measured the changes of CT density in dorsal and ventral basilar lung regions induced by the change of position as well as alterations of gas exchange. The level of venous admixture did not change with body position. The CT scan image of each lung was fractionated into ten levels from dorsal to ventral, each constituting 10% of the lung height. After measuring each lung fraction, the volume, the average CT number, its frequency distribution, and the expected normal value, we computed the lung tissue mass, the excess tissue mass, and the fraction of normally inflated tissue (excess tissue mass = amount of "tissue," which includes edema, cells, and blood in excess of the expected normal value). We also estimated the superimposed hydrostatic pressure on each lung region. We found that the excess lung tissue mass is independent of position. However, in patients in the supine position, lung CT density increased and regional inflation decreased from ventral to dorsal, suggesting progressive deflation of gas-containing alveoli along the gravity gradient. A similar ventral-dorsal deflation pattern occurred within 10 min in patients in the prone position. We conclude that the lung in patients with ARF behaves like an elastic body with a diffusely increased mass; dependent lung regions are compressed by the pressure of overlying structures.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Akt2 deficiency as a therapeutic strategy protects against acute lung injury.

    PubMed

    Gauna, Adrienne E; Cha, Seunghee

    2014-01-01

    Evaluation of: Vergadi E, Vaporidi K, Theodorakis EE et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J. Immunol. 192, 394-406 (2013). Acute respiratory distress syndrome currently has limited effective treatments; however, recent evidence suggests that modulation of alveolar macrophage responses may be an effective method for protection or repair of lung injury. Vergadi et al. are the first to demonstrate that depletion of Akt2 kinase and microRNA-146a induction in mice resulted in polarization of alveolar macrophages towards an M2 activation phenotype and resulted in less severe injury following acid-induced lung injury. However, this M2 polarization also resulted in increased lung bacterial load following infection with Pseudomonas aeruginosa.

  7. Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

    PubMed Central

    Barton, Samantha K.; Moss, Timothy J. M.; Hooper, Stuart B.; Crossley, Kelly J.; Gill, Andrew W.; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y.; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L.

    2014-01-01

    Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor

  8. Serial measurement of lipid profile and inflammatory markers in patients with acute myocardial infarction

    PubMed Central

    Shrivastava, Amit Kumar; Singh, Harsh Vardhan; Raizada, Arun; Singh, Sanjeev Kumar

    2015-01-01

    Serum concentration of lipids and lipoproteins changes during the course of acute coronary syndrome as a consequence of the inflammatory response. The objective of this study was to evaluate the effect of acute myocardial infarction (AMI) on the levels of lipid profile and inflammatory markers. We investigated 400 patients with AMI who were admitted within 24 h of onset of symptoms. Serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) were determined by standard enzymatic methods along with high sensitive C-reactive protein (hs-CRP) (latex enhanced immunoturbidimetric assay) and cytokines, interleukin (IL)-6 and IL-10 (quantitative ''sandwich'' enzyme-linked immunosorbent assay). The results indicate a trend of reduced TC, LDL, and HDL, and elevated TG levels, along with pro- and anti-inflammatory markers (p < 0.001), between day 1 and the day 2 serum samples of AMI patients. However, corrections in the serum levels have been observed at day 7. Our results demonstrate significant variations in the mean lipid levels and inflammatory markers between days 1, 2 and 7 after AMI. Therefore, it is recommended that the serum lipids should be assessed within 24 hours after infarction. Early treatment of hyperlipidemia provides potential benefits. Exact knowledge regarding baseline serum lipids and lipoprotein levels as well as their varying characteristics can provide a rational basis for clinical decisions about lipid lowering therapy. PMID:26535040

  9. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    PubMed Central

    2011-01-01

    Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis). Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D) weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of mediators. PMID:22204611

  10. Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury

    PubMed Central

    Mongan, Maureen; Tan, Zongqing; Chen, Liang; Peng, Zhimin; Dietsch, Maggie; Su, Bing; Leikauf, George; Xia, Ying

    2008-01-01

    Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury. PMID:18467339

  11. Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats.

    PubMed

    Liu, Shulin; Liu, Kan; Sun, Qiang; Liu, Wenwu; Xu, Weigang; Denoble, Petar; Tao, Hengyi; Sun, Xuejun

    2011-01-01

    Exposure to paraquat leads to acute lung injury and oxidative stress is widely accepted as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of water with dissolved molecular hydrogen to a saturated level (hydrogen water) prevents oxidative stress-induced diseases. Here, we investigated whether consumption of saturated hydrogen saline protects rats against paraquat-induced acute lung injury. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group; hydrogen water-only group (HW group); paraquat-only group (PQ group); paraquat and hydrogen water group (PQ + HW group). The rats in control group and HW group drank pure water or hydrogen water; the rats in PQ group and PQ + HW group were intraperitonealy injected with paraquat (35 mg/kg) and then provided pure water or hydrogen water. Both biochemical and histological lung alterations were measured. The results showed that hydrogen water ameliorated these alterations, demonstrating that hydrogen water alleviated paraquat-induced acute lung injury possibly by inhibition of oxidative damage. PMID:21318114

  12. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase

    PubMed Central

    2012-01-01

    Objective Sulfur mustard (SM) is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980–1988). It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries. Method This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment. Results Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments. PMID:23351279

  13. The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury.

    PubMed

    Yamashita, Cory M; Cybulskie, Candice; Milos, Scott; Zuo, Yi Y; McCaig, Lynda A; Veldhuizen, Ruud A W

    2016-06-01

    The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS.

  14. Attenuation of acute lung injury in mice by oxymatrine is associated with inhibition of phosphorylated p38 mitogen-activated protein kinase.

    PubMed

    Xu, G L; Yao, L; Rao, S Y; Gong, Z N; Zhang, S Q; Yu, S Q

    2005-04-01

    Oxymatrine is one of the alkaloids extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.) with activities of anti-inflammation, inhibiting immune reaction, antivirus, protecting hepatocytes and antihepatic fibrosis. However, the effect of oxymatrine on acute lung injury (ALI) has not been known yet. In this study, the effect of oxymatrine on ALI was investigated using an oleic acid-induced ALI mouse model. Morphological findings showed that the oleic acid group demonstrated a marked lung injury represented by prominent atelectasis, intraalveolar and interstitial patchy hemorrhage, edema, thickened alveolar septum, formation of hyaline membranes and the existence of inflammatory cells in alveolar spaces. While in the oxymatrine/dexamethasone group, these changes were less severe and in the vicinity of the control group. Furthermore, pretreatment with oxymatrine significantly alleviated oleic acid-induced lung injury accompanied by reduction of lung index and wet-to-dry weight ratio, decreases in serum TNF-alpha level and inhibition of phosphorylated p38 MAPK. These findings suggest that oxymatrine has a beneficial effect on acute lung injury induced by oleic acid in mice and may inhibit the production of proinflammatory cytokine, TNF-alpha, by means of the inhibition of p38 MAPK. PMID:15763380

  15. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury.

    PubMed

    Hua, Yi-Ming; Lien, Shao-Hung; Liu, Tao-Yuan; Lee, Chuen-Ming; Yuh, Yeong-Seng

    2008-04-01

    A positive end-expiratory pressure (PEEP) above the lower inflection point (LIP) of the pressure-volume curve has been thought necessary to maintain recruited lung volume in acute lung injury (ALI). We used a strategy to identify the level of open-lung PEEP (OLP) by detecting the maximum tidal compliance during a decremental PEEP trial (DPT). We performed a randomized controlled study to compare the effect of the OLP to PEEP above LIP and zero PEEP on pulmonary mechanics, gas exchange, hemodynamic change, and lung injury in 26 rabbits with ALI. After recruitment maneuver, the lavage-injured rabbits received DPTs to identify the OLP. Animals were randomized to receive volume controlled ventilation with either: (a) PEEP = 0 cm H2O (ZEEP); (b) PEEP = 2 cm H2O above OLP (OLP + 2); or (c) PEEP = 2 cm H2O above LIP (LIP + 2). Peak inspiratory pressure and mean airway pressure were recorded and arterial blood gases were analyzed every 30 min. Mean blood pressure and heart rate were monitored continuously. Lung injury severity was assessed by lung wet/dry weight ratio. Animals in OLP + 2 group had less lung injury as well as relatively better compliance, more stable pH, and less hypercapnia compared to the LIP + 2 and ZEEP groups. We concluded that setting PEEP according to the OLP identified by DPTs is an effective method to attenuate lung injury. This strategy could be used as an indicator for optimal PEEP. The approach is simple and noninvasive and may be of clinical interest. PMID:18293413

  16. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  17. [Acute pancreatitis and obstructive jaundice secondary to metastases from lung cancer].

    PubMed

    Belhassen-García, Moncef; Velasco-Tirado, Virginia; Carpio-Pérez, Adela; Soler-Fernández, María Carmen; López-Bernús, Amparo; Pardo-Lledias, Javier; Fuentes-Pardo, Lucía; Iglesias-Gómez, Alicia

    2009-12-01

    Lung cancer is one of the most frequent neoplasms. The symptoms are due to the cancer itself, its extension, and associated paraneoplastic syndromes. Although biliopancreatic metastases are common, biliopancreatic involvement as the initial symptom of lung cancer--whether as pancreatitis or obstructive jaundice--is rare. We describe our clinical experience, reporting two patients with acute pancreatitis and one patient with obstructive jaundice as the clinical presentation of advanced lung cancer. We also provide a brief review that highlights the absence of guidelines in this situation.

  18. Acute lung injury following exposure to nitric acid

    PubMed Central

    Jayalakshmi, T. K.; Shah, Samir; Lobo, Ivona; Uppe, Abhay; Mehta, Ankur

    2009-01-01

    We present a series of three cases of survival following inhalation of nitric acid fumes, which resulted in acute respiratory distress. Inhalation of nitric acid fumes and its decomposition gases such as nitrogen dioxide results in delayed onset of acute respiratory distress syndrome. Intensive respiratory management, ventilatory support, and steroids can help in survival. PMID:20532002

  19. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    PubMed

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury.

  20. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  1. Biomarkers and Autoantibodies of Interstitial Lung Disease with Idiopathic Inflammatory Myopathies

    PubMed Central

    Yoshifuji, Hajime

    2015-01-01

    Various autoantibodies are seen in idiopathic inflammatory myopathies. Among myositis-specific antibodies, anti-aminoacyl-tRNA synthetase and anti-melanoma differentiation-associated protein 5 (MDA5) antibodies are associated with interstitial lung disease (ILD). Anti-MDA5 antibodies are associated with dermatomyositis (DM) or clinically amyopathic DM complicated with rapidly progressive ILD. In anti-MDA5-positive patients, a random ground-glass attenuation pattern is a characteristic finding of ILD in chest high-resolution computed tomography. Conversely, anti-aminoacyl-tRNA synthetase antibodies are not associated with rapidly progressive ILD but with chronic ILD. DM or clinically amyopathic DM patients with anti-MDA5, and characteristic high-resolution computed tomography findings are highly likely to have devastating ILD and need aggressive treatment. PMID:27081322

  2. Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis.

    PubMed

    Lee, Jin Hwan; An, Chun San; Yun, Bok Sun; Kang, Kum Suk; Lee, Young Ae; Won, Sun Mi; Gwag, Byoung Joo; Cho, Sung Ig; Hahm, Ki-Baik

    2012-07-15

    Oxidative stress and inflammation both play major roles in the development of the acute pancreatitis. Currently, a pancreatic enzyme inhibitor with limited efficacy is only clinically available in a few countries, and antioxidants or non-steroidal anti-inflammatory drugs (NSAIDs) provide only partial tissue protection in acute pancreatitis animal models. Here, we introduce a new drug candidate for treating acute pancreatitis named ND-07 [chemical name: 2-acetoxy-5-(2-4-(trifluoromethyl)-phenethylamino)-benzoic acid] that exhibits both potent antioxidative and anti-inflammatory activities. In an electron spin resonance (ESR) study, ND-07 almost blocked hydroxyl radical generation as low as 0.05 μM and significantly suppressed DNA oxidation and cell death in a lipopolysaccharide (LPS)-stimulated pancreatic cell line. In a cerulein plus LPS-induced acute pancreatitis model, ND-07 pretreatment showed significant tissue protective effects, with reductions of serum amylase and lipase levels and pancreatic wet weights. ND-07 not only diminished the plasma levels of malondialdehyde (MDA) and nitric oxide but also significantly decreased prostaglandin E₂ (PGE₂) and expression of tumor necrotizing factor-alpha (TNF-α) in the pancreatic tissue. In a severe acute necrotizing pancreatitis model induced by a choline deficient, ethionine-supplemented (CDE) diet, ND-07 dramatically protected the mortality even without any death, providing attenuation of pancreas, lung, and liver damages as well as the reductions in serum levels of lactate dehydrogenase (LDH), amylase and lipase, MDA levels in the plasma and pancreatic tissues, plasma levels of TNF-α, and interleukin-1 (IL-1β). These findings suggest that current dual synergistic action mechanisms of ND-07 might provide a superior protection for acute pancreatitis than conventional drug treatments. PMID:22575522

  3. Effect of IMOD™ on the inflammatory process after acute ischemic stroke: a randomized clinical trial

    PubMed Central

    2013-01-01

    Background and purpose of the study Considering the role of inflammation in acute cerebrovascular accidents, anti-inflammatory treatment has been considered as an option in cerebrovascular diseases. Regarding the properties of Setarud (IMOD™) in immune regulation, the aim of the present study was to evaluate the role of this medication in treating patients with acute ischemic stroke. Methods In this randomized clinical trial, 99 patients with their first ever acute ischemic stroke were divided into two groups of IMOD™ (n = 49) and control (n = 50). The control group underwent routine treatment and the intervention group underwent routine treatment plus daily intermittent infusion of IMOD™ (250mg on the first day and then 375mg into DW5% serum during a 30-minute period for 7 days). The serum levels of inflammatory markers were evaluated on the first day (baseline) and on 4th and 7th days. Data were analyzed and the results were compared. Results and major conclusion 58 males (58.6%) and 41 females (41.4%) with a mean age of 67.00 ± 8.82 years, who had their first ever stroke attack, were enrolled in this trial. Treatment with IMOD™ showed a decreasing trend in IL-6 levels compared to the control group (p = 0.04). In addition, the treatment resulted in the control of increasing serum levels of hsCRP after 7 days compared to the control group (p = 0.02). There was an insignificant decrease in TNF-α and IL-1 levels in the IMOD™ group. Considering the prominent role of inflammation after an ischemic cerebral damage, it appears that treatment with IMOD™ improves the inflammatory profile. Therefore, IMOD™ (Setarud) might be considered as a therapeutic option in the acute ischemic stroke. However, future studies are necessary on its long-term results and clinical efficacy. PMID:23514014

  4. Anti-inflammatory and immunomodulating effects of clarithromycin in patients with cystic fibrosis lung disease.

    PubMed Central

    Pukhalsky, Alexander L; Shmarina, Galina V; Kapranov, Nikolai I; Kokarovtseva, Svetlana N; Pukhalskaya, Daria; Kashirskaja, Natalia J

    2004-01-01

    BACKGROUND AND AIM: Macrolide antibiotics are widely used in the treatment of suppurative lung diseases including cystic fibrosis (CF), the most common inherited fatal disease in the Caucasian population. This condition is characterized by secondary Pseudomonas infection resulting in neutrophil infiltration within the airways. The aim of the study was to investigate the evolution of inflammatory process in CF patients receiving long-term clarithromycin therapy. METHODS: Twenty-seven CF patients (mean age, 12 years) were enrolled into the study. Beside the basic therapy the patients were treated with clarithromycin at a dose of 250 mg every other day orally. All patients were routinely examined every 3 months. Blood and sputum were collected before clarithromycin treatment and then again 3, 6 and 12 months after the drug prescription. Cytokine concentrations (tumor necrosis factor-alpha, interleukin-8, interleukin-4, interferon-gamma) in the sputum and plasma were assayed. Peripheral blood lymphocyte response to phytohemagglutinin was also evaluated. RESULTS: Clarithromycin treatment resulted in a marked reduction of the cytokine levels both in the sputum and plasma specimens. At the same time, the interferon-gamma/interleukin-4 ratio has been significantly elevated. In addition, a sustained increase of peripheral blood lymphocyte response to phytohemagglutinin was demonstrated. These changes were associated with a significant improvement of the lung function. CONCLUSIONS: The beneficial effect of the prolonged treatment of CF patients with a 14-membered ring macrolide antibiotic clarithromycin seems to be associated not only with down-regulation of the inflammatory response, but also with immunological changes including the switch from Th2 to Th1 type response. PMID:15203552

  5. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice.

    PubMed

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  6. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  7. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation

    PubMed Central

    Rocksén, D; Lilliehöök, B; Larsson, R; Johansson, T; Bucht, A

    2000-01-01

    Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. In this study, the anti-inflammatory effects of the anti-oxidant N-acetylcysteine (NAC) and the glucocorticoid dexamethasone were investigated in mice exposed to aerosolized endotoxin (lipopolysaccharide (LPS)). Powerful reduction of neutrophils in bronchoalveolar lavage fluid (BALF) was obtained by a single i.p. injection of dexamethasone (10 mg/kg), whereas treatment with NAC only resulted in reduction of neutrophils when administered at a high dose (500 mg/kg). Measurement of cytokine and chemokine expression in lung tissue revealed a significant decrease of tumour necrosis factor-alpha, IL-1α, IL-1β, IL-6, IL-12p40, and MIP-1α mRNA when mice where treated with dexamethasone but not when treated with NAC. Analysis of oxidative burst demonstrated a remarkable reduction of oxygen radicals in BALF neutrophils after treatment with dexamethasone, whereas the effect of NAC was not significantly different from that in untreated animals. In conclusion, dexamethasone exerted both anti-inflammatory and anti-oxidative effects in acute airway inflammation, probably by blocking early events in the inflammatory cascade. In contrast, treatment with NAC resulted in a weak reduction of the inflammatory response but no inhibition of proinflammatory cytokines or reduction of oxidative burst in neutrophils. These results demonstrate dramatic differences in efficiency and also indicate that the two drugs have different actions. Combined treatment with NAC and dexamethasone revealed an additive action but no synergy was observed. PMID:11091282

  8. Lung injury in mice and rats acutely exposed to beryllium

    SciTech Connect

    Sendelbach, L.E. Jr.

    1985-01-01

    The effect of lung injury, in rats and mice, exposed to an aerosol of beryllium sulfate (BE) for one hour, through nose-only inhalation, was evaluated by the methods of bronchoalveolar lavage (BAL) and lung cell kinetics. The BAL in rats, sacrificed over a 21 day period following exposure, showed lactate dehydrogenase (LDH) and alkaline phosphatase (Alk Pase) activities as the most sensitive indicators of lung damage. LDH activity peaked at day 8 while Alk Pase activity peaked at day 5, both being 30 times greater than comparable control values. Acid phosphatase activity and albumin levels were also increased, but not to the same extent as LDH and Alk Pase. The BAL of mice showed LDH activity as the most sensitive indicator of lung damage, with a maximum response 3 times greater than controls at day 5. In another series of experiments, animals were treated with three agents capable of inducing fibrosis: beryllium sulfate, bleomycin, and butylated hydroxytoluene (BHT). Cy A completely inhibited the fibrogenic effects of BHT in mice, as measured through total lung hydroxyproline content. Bleomycin-induced fibrosis was significantly reduced by Cy A treatment in rats, but showed no effect in mice. Additionally, the effect of iron salt administration to rats decreased the intravenous LD/sub 50/ dose, and significantly reduced the inhalation toxicity, of beryllium sulfate. The protective mechanism of iron salt administration, through the induction of ferritin synthesis, is postulated.

  9. Lung xenotransplantation: recent progress and current status.

    PubMed

    Harris, Donald G; Quinn, Kevin J; Dahi, Siamak; Burdorf, Lars; Azimzadeh, Agnes M; Pierson, Richard N

    2014-01-01

    Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many preclinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation--including the seemingly unique challenges posed by this organ-and summarize proven and emerging means of overcoming acute lung xenograft injury.

  10. Inflammatory response to isocyanates and onset of genomic instability in cultured human lung fibroblasts.

    PubMed

    Mishra, P K; Bhargava, A; Raghuram, G V; Gupta, S; Tiwari, S; Upadhyaya, R; Jain, S K; Maudar, K K

    2009-02-10

    Lungs comprise the primary organ exposed to environmental toxic chemicals, resulting in diverse respiratory ailments and other disorders, including carcinogenesis. Carcinogenesis is a multi-stage phenomenon, which involves a series of genetic alterations that begin with genomic instability provoked by certain factors such as inflammation and DNA damage and end with the development of cancer. Isocyanates such as methyl isocyanate are the chief metabolic intermediates in many industrial settings with diverse applications; exposure to them can lead to severe hypersensitive, mutagenic and genotoxic alterations. We examined the molecular mechanisms underlying isocyanate-mediated inflammatory responses and their probable role in the onset of genomic instability in cultured IMR-90 human lung fibroblasts. The isocyanates induced inflammation, resulting in extensive DNA damage, evidenced by increases in ATM, ATR, gammaH2AX, and p53 expression levels. The apoptotic index also increased. Chromosomal anomalies in treated cells included over-expression of centrosome protein and variable amplification of inter-simple sequence repeats, further demonstrating isocyanate-induced genomic instability. This information could be useful in the design of new approaches for risk assessment of potential industrial disasters.

  11. [Differential diagnostics of acute inflammatory diseases and tumors of the neck].

    PubMed

    Vuĭtsik, N B; Butkevich, A Ts; Kuntsevich, G I; Zemlianoĭ, A B

    2008-01-01

    The purpose of the investigation was to assess the clinical significance of ultrasonography for differential diagnostics between acute inflammatory and tumorous lesions of the neck. One hundred and eighty-six patients with soft-tissue lesions of the neck aged 18 to 74 (mean age 31.45 +/- 8.39 years), 95 (51%) males and 91 (49%) females were examined. Basing on clinical and ultrasonographic examination, the patients were divided into two groups: 149 or 80% patients with acute inflammatory lesions (Group 1), and 37 or 20% patients with tumorous lesions (Group 2). Thirty-four of the 149 Group 1 patients (22.82%) had lymphadenitis, 30 (20.13%) had soft tissue infiltrates, 13 (8.72%) had abscesses, 19 (12.72%) had phlegmons, 32 (21.48%) had acute inflammatory changes in the major salivary glands, 3 (2.01%) had teratomas with signs of inflammation, and 17 (11.41%) patients had inflammatory changes in the tumors. Of 37 patients with tumorous lesions, 16 (43.2%) had salivary gland tumors, 12 (32.4%) had metastases in the lymphatic nodes, and 9 (24.3%) had neurofibromatosis. Soft tissue ultrasonography was performed using Sonos-5500 and Image-Point ultrasound scanners with 7.5 MHz sensors (Hewlett-Packard, USA), Logio-pro, Uoluson-730 Expert (General Electric, USA), and Premium Edition (ACUSON Antares, Siemens, Germany) with 5 to 13 MHz wide-frequency sensors. Visualization was performed in B-modes using tissue harmonics, color duplex scanning, Sie Scape panoramic visualization, contrast visualization and Sight 4D and 3D-Scape modes. The results of ultrasonography were analyzed taking into account additional methods such as computed and magnetic resonance tomography, intraoperative findings, the results of puncture biopsy, histological, morphological, and bacteriological studies. The study demonstrates that ultrasonography is the method of choice, which is in some cases enough to establish a diagnosis of an acute inflammatory disease or a tumorous formation of various

  12. Sphingomyelin synthase 2 affects CD14‑associated induction of NF‑κB by lipopolysaccharides in acute lung injury in mice.

    PubMed

    Hu, Shidong; Ding, Yi; Gong, Jie; Yan, Nianlong

    2016-10-01

    Lipopolysaccharide (LPS) is the predominant component of the outer membrane of Gram-negative bacteria, which can cause severe inflammation in the body. The acute lung injury (ALI) induced by LPS can cause extensive damage to the lung tissue, the severe stage of which is termed acute respiratory distress syndrome, when multiple organ dysfunction syndrome may appear. There are no effective clinical treatment measures at present. The involvement of cluster of differentiation (CD)14 assists LPS in causing inflammatory reactions, and CD14 and sphingomyelin (SM), located in lipid rafts areas, are closely associated. SM synthase (SMS) is a key enzyme in the synthesis of SM, however, the effect of SMS on the inflammatory pathway involving nuclear factor (NF)‑κB induced by LPS remains to be elucidated. Under the premise of the establishment of an ALI mouse model induced by LPS, the present study established a control group, LPS group and pyrrolidine dithiocarbamate (PDTC; an NF‑κB pathway inhibitor) group. Hematoxylin‑eosin staining, reverse transcription‑quantitative polymerase chain reaction analysis, western blot analysis and thin layer chromatography were used to investigate the mechanism of SMS in ALI. Compared with the control group, the mRNA and protein levels of CD14 were significantly increased (P<0.001; n=5 and P<0.05, n=5), and the activity of SMS and expression of SMS2 were significantly upregulated (P<0.001; n=5 and P<0.05, n=5) in the model group. The increases of SMS2 and CD14 in the PDTC group were less marked, compared with those in the model group (P<0.05; n=5). These findings suggested that the degree of lung injury was reduced during the acute inflammatory reaction when NF‑κB was inhibited, and that the expression of SMS2 may affect the induction of the NF‑κB pathway by LPS through CD14. PMID:27510408

  13. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress.

  14. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. PMID:26511907

  15. Acute Pelvic Inflammatory Disease in Cameroon: A Cross Sectional Descriptive Study.

    PubMed

    Nkwabong, Elie; Dingom, Madye A N

    2015-12-01

    This cross-sectional descriptive study, aimed at identifying the sociodemographic characteristics of women diagnosed with acute pelvic inflammatory disease (PID), as well as the microorganisms isolated, was carried out between October 1st, 2013 and March 31st, 2014 in two major hospitals in Yaoundé, Cameroon. Seventy women diagnosed with acute PID were recruited. The main variables recorded were maternal age, occupation, marital status, number of current sexual partners, the clinical presentation at admission and the microorganisms identified. Data were analyzed using SPSS 20.0. Mean maternal age was 29.0 ± 7.7 years. Students were more represented (37.1%), 58.6 % were single, 64.3% had ≥ 2 sexual partners. The most frequent signs and symptoms were abnormal vaginal discharge (100%), adnexal tenderness (97.1%), cervical motion tenderness (94.3%) and fever ≥ 38.3 degrees C (82.9%). No microorganism was isolated in 20% of cases, especially among women who underwent intra-uterine procedures. The most frequent microorganisms were genital tract mycoplasmas (54.3%). Acute PID is common among young, single women with multiple sexual partners. The micro-organisms frequently responsible for acute PID were genital tract mycoplasmas, whose identification should be included among routine tests for women with suspected acute PID in the hospitals. PMID:27337857

  16. Molecular-biological analysis of acute lung injury (ALI) induced by heat exposure and/or intravenous administration of oleic acid.

    PubMed

    Inoue, Hiromasa; Nakagawa, Yasuhisa; Ikemura, Mayumi; Usugi, Eri; Nata, Masayuki

    2012-11-01

    The aim of this study was to molecular-biologically investigate the interaction between heat exposure and pulmonary fat embolization in regards to the development of acute lung injury (ALI). Ten-week-old Wistar male rats were divided into four groups: (1) oleic acid injected into caudal vein after heat exposure, (2) oleic acid injected without heat exposure, (3) soybean oil injected after heat exposure, and (4) soybean oil injected without heat exposure, and then mRNA expression of eight inflammatory mediators related to ALI/acute respiratory distress syndrome (ARDS) and heat shock protein 70 (Hsp70) in lung was determined 1h after the injection. mRNA expression of interleukin 1 beta (Il1b), tumor necrosis factor alpha (Tnfa), vascular endothelial growth factor A (Vegfa), transforming growth factor beta 1 (Tgfb1) and Hsp70 was significantly increased by heat exposure, while that of Il1b, interleukin 6 (Il6), Tnfa, macrophage inflammatory protein 2 (Mip2) and granulocyte macrophage-colony stimulating factor (Gm-csf) was significantly elevated by the injection of oleic acid. Moreover, the expressions of inflammatory cytokines and chemokines in lung almost paralleled their mRNA expressions. In particular, IL-1β expression was synergistically elevated by heat exposure followed by injection of oleic acid. Additionally, IL-6 expression tended to increase under the same conditions as well. It is likely that heat exposure itself injures lung tissue within a short time, and that more than two conditions which induce ALI/ARDS interact with each other synergistically, exacerbating the development of ALI/ARDS.

  17. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  18. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study

    PubMed Central

    Kaspar, Felix; Jelinek, Herbert F.; Perkins, Steven; Al-Aubaidy, Hayder A.; deJong, Bev; Butkowski, Eugene

    2016-01-01

    Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809

  19. Inflammatory Cytokines as Risk Factors for Mortality After Acute Cardiac Events

    PubMed Central

    Hamzic-Mehmedbasic, Aida

    2016-01-01

    Introduction: Inflammatory markers have been identified as potential indicators of future adverse outcome after acute cardiac events. Aim: This study aimed to analyze baseline inflammatory cytokines levels in patients with acute heart failure (AHF) and/or acute coronary syndrome (ACS) according to survival. The main objective was to identify risk factors for mortality after an episode of AHF and/or ACS. Methods: In this prospective longitudinal study 75 patients with the diagnosis of AHF and/or ACS were enrolled. Baseline laboratory and clinical data were retrieved. Serum and urine interleukin-6 (IL-6) and interleukin-18 (IL-18) levels, plasma B-type natriuretic peptide (BNP) and serum cystatin C values were determined. The primary outcome was in-hospital mortality while secondary outcome was six-month mortality. Results: Median serum and urine IL-6 levels, serum and urine IL-18 levels, as well as median concentrations of plasma BNP and serum cystatin C, were significantly increased in deceased in comparison to surviving AHF and/or ACS patients. Univariate Cox regression analysis identified serum IL-6, serum IL-18, urine IL-6, urine IL-18 as well as serum cystatin C and Acute Physiology and Chronic Health Evaluation (APACHE) II score as risk factors for mortality after an episode of AHF and/or ACS. Multivariate Cox regression analysis revealed that only serum IL-6 is the independent risk factor for mortality after acute cardiac events (HR 61.7, 95% CI 2.1-1851.0; p=0.018). Conclusion: Present study demonstrated the strong prognostic value of serum IL-6 in predicting mortality of patients with AHF and/or ACS. PMID:27703283

  20. MATRILYSIN PARTICIPATES IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PRODUCTS

    EPA Science Inventory

    ROLE OF MATRILYSIN IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PARTICLES.

    K L Dreher1, WY Su2 and C L Wilson3. 1US Environmental Protection Agency, Research Triangle Park, NC; 2Duke University, Durham, NC;3Washington University, St. Louis, MO.

    Mechanisms by ...

  1. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  2. [Acute respiratory distress syndrome caused by tropical eosinophilic lung disease: a case in Gabon].

    PubMed

    Chani, M; Iken, M; Eljahiri, Y; Nzenze, J R; Mion, G

    2011-04-01

    The purpose of this report is to describe the case of a 28-year-old woman in whom acute respiratory distress syndrome (ARDS) following cholecystectomy led to the discovery of eosinophilic lung disease. Outcome was favorable after oxygenotherapy and medical treatment using ivermectin and corticosteroids. The case shows that hypereosinophilic syndrome can be the underlying cause of ARDS. PMID:21695880

  3. Lung Protective Ventilation (ARDSNet) versus APRV: Ventilatory Management in a Combined Model of Acute Lung and Brain Injury

    PubMed Central

    Davies, Stephen W.; Leonard, Kenji L.; Falls, Randall K.; Mageau, Ronald P.; Efird, Jimmy T.; Hollowell, Joseph P.; Trainor, Wayne E.; Kanaan, Hilal A.; Hickner, Robert C.; Sawyer, Robert G.; Poulin, Nathaniel R.; Waibel, Brett H.; Toschlog, Eric A.

    2014-01-01

    Background Concomitant lung/brain traumatic injury, results in significant morbidity and mortality. Lung protective ventilation (ARDSNet) has become the standard for managing acute respiratory distress syndrome (ARDS); however, the resulting permissive hypercapnea may compound traumatic brain injury (TBI). Airway pressure release ventilation (APRV) offers an alternative strategy for management of this patient population. APRV was hypothesized to retard the progression of acute lung/brain injury to a greater degree than ARDSNet in a swine model. Methods Yorkshire swine were randomized to ARDSNet, APRV, or sham. Ventilatory settings and pulmonary parameters, vitals, blood gases, quantitative histopathology, and cerebral microdialysis were compared between groups using chi-square, Fisher’s exact, Student’s t-test, Wilcoxon rank-sum, and mixed effects repeated measures modeling. Results 22 swine (17 male, 5 female), weighing 25±6.0kg, were randomized to APRV (n=9), ARDSNet (n=12), or sham (n=1). PaO2/FiO2 (P/F) ratio dropped significantly while intracranial pressure increased significantly for all three groups immediately following lung and brain injury. Over time, peak inspiratory pressure, mean airway pressure, and P/F ratio significantly increased, while total respiratory rate significantly decreased within the APRV group compared to the ARDSNet group. Histopathology did not show significant differences between groups in overall brain or lung tissue injury; however, cerebral microdialysis trends suggested increased ischemia within the APRV group compared to ARDSNet over time. Conclusion Previous studies have not evaluated the effects of APRV in this population. While our macroscopic parameters and histopathology did not observe a significant difference between groups, microdialysis data suggest a trend toward increased cerebral ischemia associated with APRV over time. Additional and future studies should focus on extending the time interval for observation to

  4. Critical role for the NLRP3 inflammasome during acute lung injury.

    PubMed

    Grailer, Jamison J; Canning, Bethany A; Kalbitz, Miriam; Haggadone, Mikel D; Dhond, Rasika M; Andjelkovic, Anuska V; Zetoune, Firas S; Ward, Peter A

    2014-06-15

    The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1β and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1β, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1β levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1β levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug. PMID:24795455

  5. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  6. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  7. Clinical course of acute chemical lung injury caused by 3-chloropentafluoropene.

    PubMed

    Morita, Satomu; Takimoto, Takayuki; Kawahara, Kunimitsu; Nishi, Katsuji; lino, Morio

    2013-01-01

    Perfluoroallyl chloride (PFAC), a fluorine-containing compound, has very severe toxicity, but this toxicity is not well characterised. We report a fatal case of acute chemical lung injury caused by the inhalation of PFAC. A 39-year-old man, working at a chemical factory, inhaled PFAC gas and died 16 days later of acute lung injury with severe pneumothorax. We present his clinical course together with thoracic CT findings, autopsy and analysis of PFAC in blood and urine samples with gas chromatograph-mass spectrometry. Previously, a fatal case of PFAC was reported in 1981 but PFAC was not identified in any of the patient's samples. In our patient, we identified PFAC in both blood and urine samples. Our toxicological analysis may be used as a reference to detect PFAC toxicity in the future. Our study should be helpful for diagnosing lung injury induced by a highly toxic gas, such as PFAC. PMID:24311414

  8. Clinical course of acute chemical lung injury caused by 3-chloropentafluoropene.

    PubMed

    Morita, Satomu; Takimoto, Takayuki; Kawahara, Kunimitsu; Nishi, Katsuji; lino, Morio

    2013-01-01

    Perfluoroallyl chloride (PFAC), a fluorine-containing compound, has very severe toxicity, but this toxicity is not well characterised. We report a fatal case of acute chemical lung injury caused by the inhalation of PFAC. A 39-year-old man, working at a chemical factory, inhaled PFAC gas and died 16 days later of acute lung injury with severe pneumothorax. We present his clinical course together with thoracic CT findings, autopsy and analysis of PFAC in blood and urine samples with gas chromatograph-mass spectrometry. Previously, a fatal case of PFAC was reported in 1981 but PFAC was not identified in any of the patient's samples. In our patient, we identified PFAC in both blood and urine samples. Our toxicological analysis may be used as a reference to detect PFAC toxicity in the future. Our study should be helpful for diagnosing lung injury induced by a highly toxic gas, such as PFAC.

  9. Aspirin and non-aspirin non-steroidal anti-inflammatory drug use and risk of lung cancer.

    PubMed

    Lim, Wei-Yen; Chuah, Khoon Leong; Eng, Philip; Leong, Swan Swan; Lim, Elaine; Lim, Tow Keang; Ng, Alan; Poh, Wee Teng; Tee, Augustine; Teh, Ming; Salim, Agus; Seow, Adeline

    2012-08-01

    There is evidence that aspirin and non-aspirin non-steroidal anti-inflammatory drug (NSAID) have anti-carcinogenic properties, but their effect on lung cancer, in particular in never-smokers, is unclear. Information on past or current use of anti-inflammatory medication was obtained in 398 Chinese female primary lung cancer cases and 814 controls in a hospital-based study in Singapore. 65% of cases and 88% of controls were never-smokers. Controls were excluded if they had been admitted for conditions associated with aspirin or NSAID use (n=174). Regular aspirin use (twice a week or more, for a month or more) was associated with a reduced risk of lung cancer (adjusted odds ratio [OR] 0.50, 95% confidence intervals [95%CI] 0.31-0.81 in non-smokers; OR 0.38, 95%CI 0.16-0.93 in smokers). Regular use of non-aspirin NSAID, paracetamol, steroid creams and steroid pills was uncommon and no association with lung cancer was detected. Our results suggest that aspirin consumption may reduce lung cancer risk in Asian women and are consistent with current understanding of the role of cyclooxygenase in lung carcinogenesis.

  10. Inhibition of Acute Lung Injury by TNFR-Fc through Regulation of an Inflammation-Oxidative Stress Pathway

    PubMed Central

    Yujie, Hu; Weifeng, Li; Zhenhui, Guo; Wenjie, Huang

    2016-01-01

    Background Acute lung injury (ALI), characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema, and associated with a proteinaceous alveolar exudate, is a leading cause of morbidity and mortality. Currently, inflammation-oxidative stress interaction between TNF-α and NF-κB was identified as a key pathway of ALI. We hypothesized that a TNFR-Fc fusion protein would have beneficial effects in experimental ALI, and sought to test this idea in mice by blocking TNF-α. Methods and Results Intratracheal instillation of lipopolysaccharide (LPS) into the lungs of ALI mice led to histiocyte apoptosis, and detection of serum and bronchoalveolar lavage fluid (BALF) cytokines, feedback between NF-κB and TNF-α, lung albumin leakage, lung damage, IκB kinase (IKK) and NF-κB activation, I-κB degradation, and oxidative injury. LPS administration raised pulmonary inflammation as reflected by increased inflammatory cytokines, alveoli protein concentration, and ALI scores. IKK is phosphorylated following LPS challenge, leading to I-κB degradation and NF-κB p65 phosphorylation. Furthermore, NF-κB is translocated into the nucleus and up-regulates TNF-α gene transcription. Infusion of TNFR-Fc 24h before LPS challenge significantly abrogated the increase of inflammatory cytokines, especially serum TNF-α concentration, as well as pulmonary alveoli protein levels, and diminished IKK and NF-κB activation and I-κB degradation. The nuclear translocation of NF-κB was inhibited, following by down-regulation of TNF-α gene transcription. In addition, LPS intratracheal instillation induced marked oxidative damage, such as a decrease in total anti-oxidation products and an increase in malondialdehyde (MDA), as well as up-regulation of oxidation enzymes. Histologic analysis and apoptosis scores revealed that the extent of tissue lesions was significantly reduced, but not abrogated, by TNF-α blockade. Conclusion Treatment with LPS alone

  11. Protective effect of Xuebijing injection against acute lung injury induced by left ventricular ischemia/reperfusion in rabbits

    PubMed Central

    JI, MINGLI; WANG, YUXIA; WANG, LEI; CHEN, LIPING; LI, JING

    2016-01-01

    Xuebijing (XBJ) is a Chinese herbal preparation. Previous studies have demonstrated that XBJ injection is able to inhibit the uncontrolled release of endogenous inflammatory mediators, attenuate inflammation, and alleviate organ damage. However, there are no relevant reports on the protective effect of XBJ against left ventricular ischemia/reperfusion (I/R)-induced acute lung injury (ALI). Therefore, the aim of the present study was to evaluate the protective effect of XBJ on ALI induced by left ventricular I/R, and provide evidence for the clinical application of XBJ. In the present study, 120 healthy rabbits of mixed gender were randomly assigned to a normal control group, ischemia group, I/R group (I/RG) and XBJ-injection treatment group (TG). In addition, each group was further divided into three subgroups (n=10/subgroup), namely, 30 min pre-ischemia, 30 min post-ischemia and 30 min post-reperfusion subgroups. Blood samples (5 ml) were collected from the jugularis externa and carotis communis of the rabbits at the three time points, and a blood gas analyzer was used to measure the arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). Following sacrifice, the lungs of the rabbits were removed and a bronchoalveolar lavage (BAL) was immediately performed. An enzyme-linked immunosorbent assay was used to measure the expression levels of tumor necrosis factor-α (TNF-α) in the BAL fluid (BALF) and peripheral blood. In addition, the lower lobe of the right lung was removed in order to measure the protein expression levels of intercellular adhesion molecule-1 (ICAM-1) and TNF-α. The results demonstrated that in the rabbits of the TG PaO2 was increased, PaCO2 was decreased, the lung tissue congestion edema was attenuated, the expression levels of TNF-α in the peripheral blood and BALF were reduced and the protein expression levels of ICAM-1 and TNF-α in the lung tissue samples were decreased, as compared with those in the I/RG rabbits. These

  12. The ultrastructure of rat lung following acute primary blast injury.

    PubMed

    Brown, R F; Cooper, G J; Maynard, R L

    1993-04-01

    While a number of workers have described the effects of blast waves upon the lung at both the macroscopic and light microscopic level, studies involving the use of the electron microscope have not been reported. In the experiments reported here the ultrastructural changes seen in lungs from rats exposed to a blast wave impacting on the right side of the chest are described. Considerable damage to the right lower lobe was observed which took the form of tearing of the inter-alveolar septa with capillary rupture and intra-alveolar haemorrhage. Changes to the alveolar epithelium and type II pneumocytes were also noted. Lesions were also identified in the left lung; these included intra-alveolar oedema with a minimal amount of interstitial oedema together with increased pinocytosis and isolated rupture of the alveolar epithelium. 'Ballooning' of the endothelium into the lumen of the capillary was also observed. There was an indication that lesions noted in the left lung at the electron microscopic level may be progressive in the first 24 hours following injury. PMID:8499315

  13. Gallbladder Metastasis of Non-small Cell Lung Cancer Presenting as Acute Cholecystitis.

    PubMed

    Jeong, Yu-Sook; Han, Hye-Suk; Lim, Sung-Nam; Kim, Mi-Jin; Han, Joung-Ho; Kang, Min-Ho; Ryu, Dong-Hee; Lee, Ok-Jun; Lee, Ki-Hyeong; Kim, Seung-Taik

    2012-09-01

    Although non-small cell lung cancer (NSCLC) can metastasize to almost any organ, metastasis to the gallbladder with significant clinical manifestation is relatively rare. Here, we report a case of gallbladder metastasis of NSCLC presenting as acute cholecystitis. A 79-year-old man presented with pain in the right upper quadrant and fever. A computed tomography (CT) scan of the chest and abdomen showed a cavitary mass in the right lower lobe of the lung and irregular wall thickening of the gallbladder. Open cholecystectomy and needle biopsy of the lung mass were performed. Histological examination of the gallbladder revealed a moderately-differentiated squamous cell carcinoma displaying the same morphology as the lung mass assessed by needle biopsy. Subsequent immunohistochemical examination of the gallbladder and lung tissue showed that the tumor cells were positive for P63 but negative for cytokeratin 7, cytokeratin 20 and thyroid transcription factor-1. A second primary tumor of the gallbladder was excluded by immunohistochemical methods, and the final pathological diagnosis was gallbladder metastasis of NSCLC. Although the incidence is extremely rare, acute cholecystitis can occur in association with lung cancer metastasis to the gallbladder. PMID:23358590

  14. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  15. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.

    PubMed

    Vergadi, Eleni; Vaporidi, Katerina; Theodorakis, Emmanuel E; Doxaki, Christina; Lagoudaki, Eleni; Ieronymaki, Eleftheria; Alexaki, Vassilia I; Helms, Mike; Kondili, Eumorfia; Soennichsen, Birte; Stathopoulos, Efstathios N; Margioris, Andrew N; Georgopoulos, Dimitrios; Tsatsanis, Christos

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.

  16. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory

    PubMed Central

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D’Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19–64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  17. The Clinical Course of Acute Pancreatitis and the Inflammatory Mediators That Drive It

    PubMed Central

    Kylänpää, Leena; Rakonczay, Zoltán; O'Reilly, Derek A.

    2012-01-01

    Acute pancreatitis (AP) is a common emergency condition. In the majority of cases, it presents in a mild and self-limited form. However, about 20% of patients develop severe disease with local pancreatic complications (including necrosis, abscess, or pseudocysts), systemic organ dysfunction, or both. A modern classification of AP severity has recently been proposed based on the factors that are causally associated with severity of AP. These factors are both local (peripancreatic necrosis) and systemic (organ failure). In AP, inflammation is initiated by intracellular activation of pancreatic proenzymes and/or nuclear factor-κB. Activated leukocytes infiltrate into and around the pancreas and play a central role in determining AP severity. Inflammatory reaction is first local, but may amplify leading to systemic overwhelming production of inflammatory mediators and early organ failure. Concomitantly, anti-inflammatory cytokines and specific cytokine inhibitors are produced. This anti-inflammatory reaction may overcompensate and inhibit the immune response, rendering the host at risk for systemic infection. Currently, there is no specific treatment for AP. However, there are several early supportive treatments and interventions which are beneficial. Also, increasing the understanding of the pathogenesis of systemic inflammation and the development of organ dysfunction may provide us with future treatment modalities. PMID:23304633

  18. Trait Hostility and Acute Inflammatory Responses to Stress in the Laboratory.

    PubMed

    Girard, Dominique; Tardif, Jean-Claude; Boisclair Demarble, Julie; D'Antono, Bianca

    2016-01-01

    Hostility has been associated with higher basal levels of inflammation. The present study evaluated the association of hostility with acute stress-induced changes in inflammatory activity. One hundred and ninety-nine healthy men and women, aged 19-64 years, were exposed to a stress protocol involving four interpersonal stressors. Participants completed the Cook-Medley Hostility questionnaire and provided two blood samples for the measurement of inflammatory biomarkers (CRP, Il-6, MPO, TNF-α, MCP-1, Il-8, Il-10, and Il-18), prior to and following exposure to a standardized stress protocol. In univariate analyses, hostility was associated with significantly higher TNF-α, but lower Il-8 and Il-18 values post-stress, though only Il-8 remained significant after controlling for baseline differences. In multivariate analyses, a significant Age by Hostility interaction emerged for Il-6, while sex moderated the relation between hostility and Il-10 reactivity. Following stress, hostility was associated with greater pro-inflammatory Il-6 activity among younger individuals and to decreased anti-inflammatory Il-10 activity in women. Future research is needed to replicate these findings and to evaluate their implication for disease. PMID:27270459

  19. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    PubMed Central

    Namas, R; Ghuma, A; Hermus, L; Zamora, R; Okonkwo, DO; Billiar, TR; Vodovotz, Y

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future. PMID:21483522

  20. Selective Exposure of the Fetal Lung and Skin/Amnion (but Not Gastro-Intestinal Tract) to LPS Elicits Acute Systemic Inflammation in Fetal Sheep

    PubMed Central

    Saito, Masatoshi; Newnham, John P.; Cox, Tom; Jobe, Alan H.; Kramer, Boris W.; Kallapur, Suhas G.

    2013-01-01

    Inflammation of the uterine environment (commonly as a result of microbial colonisation of the fetal membranes, amniotic fluid and fetus) is strongly associated with preterm labour and birth. Both preterm birth and fetal inflammation are independently associated with elevated risks of subsequent short- and long-term respiratory, gastro-intestinal and neurological complications. Despite numerous clinical and experimental studies to investigate localised and systemic fetal inflammation following exposure to microbial agonists, there is minimal data to describe which fetal organ(s) drive systemic fetal inflammation. We used lipopolysaccharide (LPS) from E.coli in an instrumented ovine model of fetal inflammation and conducted a series of experiments to assess the systemic pro-inflammatory capacity of the three major fetal surfaces exposed to inflammatory mediators in pregnancy (the lung, gastro-intestinal tract and skin/amnion). Exposure of the fetal lung and fetal skin/amnion (but not gastro-intestinal tract) caused a significant acute systemic inflammatory response characterised by altered leucocytosis, neutrophilia, elevated plasma MCP-1 levels and inflammation of the fetal liver and spleen. These novel findings reveal differential fetal organ responses to pro-inflammatory stimulation and shed light on the pathogenesis of fetal systemic inflammation after exposure to chorioamnionitis. PMID:23691033

  1. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    PubMed

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    transformation of human lung fibroblasts and showed antifibrotic and anti-inflammatory activity in two animal models of pulmonary fibrosis. These results suggest that nintedanib may impact the progressive course of fibrotic lung diseases such as idiopathic pulmonary fibrosis.

  2. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain.

    PubMed

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B; Jordt, Sven-Eric

    2013-10-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis, and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat, and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, although other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative that we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol- and WS-12-induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively, with diminished side effects. PMID:23820004

  3. TRPM8 is the Principal Mediator of Menthol-induced Analgesia of Acute and Inflammatory Pain

    PubMed Central

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B.; Jordt, Sven-Eric

    2013-01-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, while other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol and WS-12 induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively with diminished side effects. PMID:23820004

  4. The Role of Inflammasome in Inflammatory Macrophage in Mycobacterium Avium Complex-lung Disease and Mycobacterium Abscessus-lung Disease

    ClinicalTrials.gov

    2014-06-27

    To Investigate the Inflammasome Response of Inflammatory and Resting Macrophage; To Compare the Difference of Inflammasome Response of Inflammatory Macrophage; To Study the Diagnostic Aid From Immunological Markers in Inflammasome Response

  5. [Serrapeptase-induced lung injury manifesting as acute eosiniphilic pneumonia].

    PubMed

    Sasaki, S; Kawanami, R; Motizuki, Y; Nakahara, Y; Kawamura, T; Tanaka, A; Watanabe, S

    2000-07-01

    An 84-year-old man was referred to our hospital because of fever, cough, and hemoptysis. The patient had acute respiratory failure (PaO2 < 40 mmHg) on admission, with diffuse interstitial infiltration and bilateral pleural effusion. The bronchoalveolar lavage fluid was bloody, and contained a high percentage of eosinophils (32%). A diagnosis of acute eosinophilic pneumonia was established, and the patient made a rapid recovery after corticosteroids were administered. When the DLST (drug lymphocyte stimulation test) was performed after the corticosteroid therapy was stopped, it was positive for serrapeptase, which had been prescribed for chronic cystitis for 3 months before the onset of the pneumonia. This was a case of drug (serrapeptase)-induced pneumonitis manifesting as acute eosinophilic pneumonia.

  6. Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases

    PubMed Central

    Mernak, Márcia Isabel B.; Martins, Mílton A.; Lago, João H. G.; Tibério, Iolanda F. L. C.

    2016-01-01

    Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action. PMID:27445433

  7. Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases.

    PubMed

    Santana, Fernanda Paula R; Pinheiro, Nathalia M; Mernak, Márcia Isabel B; Righetti, Renato F; Martins, Mílton A; Lago, João H G; Lopes, Fernanda D T Q Dos Santos; Tibério, Iolanda F L C; Prado, Carla M

    2016-01-01

    Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action. PMID:27445433

  8. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after

  9. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis.

    PubMed

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.

  10. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis

    PubMed Central

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury. PMID:24091659

  11. Acute ischemic optic neuropathy with extended prone position ventilation in a lung transplant recipient.

    PubMed

    Panchabhai, Tanmay S; Bandyopadhyay, Debabrata; Kapoor, Aanchal; Akindipe, Olufemi; Lane, Charles; Krishnan, Sudhir

    2016-01-01

    Prone position ventilation (PPV) improves mortality in severe acute respiratory distress syndrome (ARDS), but outcomes following its use in lung transplant recipients are not known. We report the case of a 42-year-old Caucasian man who presented with severe ARDS from Bordetella pertussis, 5 years after bilateral sequential lung transplant for cystic fibrosis. He was managed with PPV for 22 days and had a prolonged ICU stay complicated by hypoxic ischemic optic neuropathy leading to blindness. Since his discharge from the ICU 6 months ago, his FEV1 has recovered to 47% predicted compared to his pre-ICU peak FEV1 of 85% predicted, suggesting recovery of lung function. This is the first report of optic nerve damage and vision loss in patients undergoing PPV. Our report also suggests that, in appropriately selected lung transplant recipients, severe hypoxemia could potentially be managed with prone ventilation. PMID:27051622

  12. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  13. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  14. Effects on rat lung immunity by acute lung exposure to benzo(a)pyrene

    SciTech Connect

    Schnizlein, C.T.; Bice, D.E.; Mitchell, C.E.; Hahn, F.F.

    1982-07-01

    This study describes the effects of intratracheal instillation of benzo(a)pyrene (BaP) on immunological responses in the lung-associated lymph nodes, cervical lymph nodes, and spleen after deposition of 10/sup 8/ sheep red blood cells (SRBC) in the lung or peritoneal cavity of rats. An increased number of anti-SRBC antibody-forming cells was observed in the lung-associated lymph nodes when rats were immunized simultaneously with BaP instillation. A suppression in the number of anti-SRBC antibody-forming cells occurred when SRBC were given intratracheally 4 or 7 days after BaP. The effects of the BaP appeared to be on the function of the cells in the lung-associated lymph nodes rather than due to changes in the exposed lung. BaP-induced changes in antigen handling or in regulatory populations of immune cells in the lung-associated lymph nodes may be responsible for the immune alterations observed.

  15. Effects on rat lung immunity by acute lung exposure to benzo(a)pyrene

    SciTech Connect

    Schnizlein, C.T.; Bice, D.E.; Mitchell, C.E.; Hahn, F.F.

    1982-07-01

    This study describes the effect of intratracheal instillation of benzo(a)pyrene (BaP) on immunological responses in the lung-associated lymph nodes, cervical lymph nodes, and spleen after deposition of 10/sup 8/ sheep red blood cells (SRCB) in the lung or peritoneal cavity of rats. An increased number of anti-SRBC antibody-forming cells was observed in the lung-assoicated lymph nodes when rats were immunized simultaneously with BaP instillation. A suppression in the number of anti-SRBC antibody-forming cells occurred when SRBC were given intratracheally 4 or 7 days after BaP. The effects of the BaP appeared to be on the function of the cells in the lung-associated lymph nodes rather than due to changes in the exposed lung. BaP-induced changes in antigen handling or in regulatory populations of immune cells in the lung-associated lymph nodes may be responsible for the immune alterations observed.

  16. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation

    PubMed Central

    Kanemi, O; Zhang, X; Sakamoto, Y; Ebina, M; Nagatomi, R

    2005-01-01

    There are lines of evidence that natural killer (NK) cells are sensitive to physical and psychological stress. Alterations in the immune system including NK cells are known to differ among tissues and organs. The effect of stress on the lung immune system, however, has not been well documented in spite of the fact that the lungs always confront viral or bacterial attacks as well as tumour cell metastasis. In this study, we intended to investigate the effect of restraint stress on lung lymphocytes including NK cells. C57BL/6 mice were exposed to 2 h restraint stress. The concentration of plasma epinephrine significantly rose immediately after the release from restraint as compared to home-cage control mice. Flow cytometric analysis revealed that the numbers of most lymphocyte subsets including NK cells were decreased in the lungs and blood but not in the spleen, immediately after restraint stress. Immunohistochemical examination revealed that the number of NK cells was decreased in the intraparenchymal region of the lungs, while the number of alveolar macrophages did not change. The decrease in the number of NK cells in the lungs and blood was reversed by the administration of propranolol, a nonselective beta adrenergic antagonist. Taken together, our findings suggest that acute stress reduces the number of intraparenchymal lung NK cells via activation of beta adrenergic receptors. PMID:15606610

  17. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs.

    PubMed

    Poulsen, Sarah S; Saber, Anne T; Williams, Andrew; Andersen, Ole; Købler, Carsten; Atluri, Rambabu; Pozzebon, Maria E; Mucelli, Stefano P; Simion, Monica; Rickerby, David; Mortensen, Alicja; Jackson, Petra; Kyjovska, Zdenka O; Mølhave, Kristian; Jacobsen, Nicklas R; Jensen, Keld A; Yauk, Carole L; Wallin, Håkan; Halappanavar, Sabina; Vogel, Ulla

    2015-04-01

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.

  18. Ilex kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Yu-Li; Hwang, Tsong-Long; Yu, Huang-Ping; Fang, Jia-You; Chong, Kowit Yu; Chang, Yao-Wen; Chen, Chun-Yu; Yang, Hsuan-Wu; Chang, Wen-Yi; Hsieh, Pei-Wen

    2016-01-01

    Acute lung injury (ALI) is a severe respiratory disease with high mortality rates worldwide. Recent reports suggest that human neutrophil elastase (HNE) plays a key role in the inflammatory response that is characteristic of ALI, which indicates that the development of HNE inhibitors could be an efficient treatment strategy. In the current study, an enzyme-based screening assay was used to identify effective HNE inhibitors from a number of traditional Chinese medicines (TCMs). Among them, a water extract of Ilex kaushue (IKWE) effectively inhibited HNE activity (IC50, 11.37 ± 1.59 μg/mL). Using bioactivity-guided fractionation, one new compound and 23 known compounds were identified. Compound 6 (identified as 3,5-dicaffeoylquinic acid; 3,5-DCQA) exerted the most potent and selective inhibitory effect on HNE activity (IC50, 1.86 ± 0.06 μM). In a cell-based assay, 3,5-DCQA not only directly reduced superoxide generation and elastase activity but also attenuated the Src family kinase (SRKs)/Vav signaling pathway in N-formyl-L-Met-L-Leu-L-Phe (fMLF)-stimulated human neutrophils. In an animal disease model, both 3,5-DCQA and standardized IKWE protected against lipopolysaccharide-induced ALI in mice, which provides support for their potential as candidates in the development of new therapeutic agents for neutrophilic inflammatory diseases. PMID:27681838

  19. Protective effects of Rabdosia japonica var. glaucocalyx extract on lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Xu, Nai-Yu; Chu, Chun-Jun; Xia, Long; Zhang, Jian; Chen, Dao-Feng

    2015-10-01

    The present study was designed to evaluate the protective effects of ethanol extracts of Rabdosia japonica var. glaucocalyx (Maxim.) Hara (RJ) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. The mice were orally administrated with RJ extract (16, 32 or 64 mg(kg(-1)) daily for consecutive7 days before LPS challenge. The ung specimens and the bronchoalveolar lavage fluid (BALF) were collected for histopathological examinations and biochemical analyses. Pretreatment with RJ significantly enhanced superoxide dismutase (SOD) activity and reduced the wet-to-dry weight (W/D) ratio, the levels of nitric oxide (NO) and protein leakage, and myeloperoxidase (MPO) activity in mice with ALI, in a dose-dependent manner. RJ reduced complement deposition and significantly attenuated LPS-induced ALI by reducing productions of inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). The results demonstrated that RJ may attenuate LPS-induced ALI via reducing the production of pro-inflammatory mediators, and reducing complement deposition and radicals. PMID:26481377

  20. A model of hemorrhagic shock and acute lung injury in Landrace-Large White Swine.

    PubMed

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-04-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace-Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases-stabilization, hemorrhage, maintenance, resuscitation, and observation-after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace-Large White swine may be useful for future study of hemorrhagic shock and acute lung injury.

  1. A Model of Hemorrhagic Shock and Acute Lung Injury in Landrace–Large White Swine

    PubMed Central

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-01-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace–Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases—stabilization, hemorrhage, maintenance, resuscitation, and observation—after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace–Large White swine may be useful for future study of hemorrhagic shock and acute lung injury. PMID:21535927

  2. Cohabitation with a sick partner increases allergic lung inflammatory response in mice.

    PubMed

    Hamasato, Eduardo Kenji; de Lima, Ana Paula Nascimento; de Oliveira, Ana Paula Ligeiro; dos Santos Franco, Adriana Lino; de Lima, Wothan Tavares; Palermo-Neto, João

    2014-11-01

    The bidirectional relationship between the nervous system and the immune system is relevant for homeostatic organism maintenance. Studies from our laboratory showed that 14days of cohabitation with a sick partner (injected with Ehrlich tumor cells-TAE) produced behavioral, neurochemical, endocrinological and immunological changes. This study analyzes the effects of cohabitation with an Ehrlich tumor-bearing animal on ovalbumin (OVA)-induced lung inflammatory response in mice. Pairs of male mice were divided into three groups: naïve, control and experimental. Animals of the naïve group were kept undisturbed being used for the assessment of basal parameters. One animal of each experimental and control pair of mice was immunized with OVA. On ED(0), these OVA-immunized animals received an OVA booster. At this day (D(0)) the experimental mice that were kept undisturbed were inoculated with 5×10(6) Ehrlich tumor cells; their immunized cage-mates were then referred as to CSP ("companion of sick partner"). The undisturbed mice of each control pair were i.p. treated on D(0) with 0.9% NaCl; their sensitized cage-mates were subsequently referred as CHP ("companion of health partner"). The OVA challenge was performed on CSP and CHP mice on ED(12) and ED(13); blood and tissue collection were performed on ED(14). Fourteen days after cohabitation, in comparison to the CHP mice, the CSP mice displayed the following: (1) an increased number of eosinophils and neutrophils in the BAL, (2) a decreased bone marrow cell count, (3) increased levels of IL-4 and IL-5 and decreased levels of IL-10 and IFN-γ in the BAL supernatant, (5) increased levels of IgG1-OVA, decreased levels of IgG2a-OVA and no changes in OVA-specific IgE in the peripheral blood, (6) increased expression of L-selectin in the BAL granulocytes, (7) decreased tracheal reactivity to methacholine measured in vitro, (8) no changes in plasma corticosterone levels and (9) increased levels of plasmatic noradrenaline. These

  3. Genomic and functional analysis of the host response to acute simian varicella infection in the lung

    PubMed Central

    Arnold, Nicole; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Rais, Maham; Messaoudi, Ilhem

    2016-01-01

    Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host. PMID:27677639

  4. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    PubMed

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  5. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression.

    PubMed

    Meng, L; Lv, Z; Yu, Z Z; Xu, D; Yan, X

    2016-07-29

    This study aimed to explore the protective effect of quercetin on acute lung injury (ALI) in rats with sepsis and the related mechanism. Rats were administered different doses of quercetin intraperitoneally, and blood samples and lung tissue were collected at 24 h after treatment. Arterial blood gases, lung water content, protein content, and cell counts in bronchoalveolar lavage fluid (BALF) were measured. Morphological changes in lung tissue pathology were observed under a light microscope. Serum intercellular adhesion molecule (ICAM)-1 and macrophage inflammatory protein 2 (MIP-2) levels were detected and ICAM-1 and MIP-2 mRNA expression in lung tissue was determined. Compared with that in the control model group, arterial blood gases, lung water content, protein content, and cell counts in BALF improved in the high- and low-dose quercetin groups (P < 0.05), with maximal improvement observed for the high-dose quercetin (P < 0.05). Lesions on the lungs improved in the high- and low-dose quercetin groups than those in the control model group, and the high-dose quercetin group showed better improvement than the low-dose group (P < 0.05). Compared with that in the sham-operated group, both serum and lung tissue ICAM-1 and MIP-2 expression increased significantly in the model group (P < 0.05). The quercetin groups presented lower ICAM-1 and MIP-2 expression than the control model group, with the lowest expression observed in the high-dose group (P < 0.05). Quercetin may protect against ALI in rats with sepsis by inhibiting ICAM-1 and MIP-2 expression.

  6. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    SciTech Connect

    Jing, Wang; Chunhua, Ma Shumin, Wang

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  7. Urinary 1-Hydroxypyrene is Associated with Oxidative Stress and Inflammatory Biomarkers in Acute Myocardial Infarction

    PubMed Central

    Freitas, Fernando; Brucker, Natália; Durgante, Juliano; Bubols, Guilherme; Bulcão, Rachel; Moro, Angela; Charão, Mariele; Baierle, Marília; Nascimento, Sabrina; Gauer, Bruna; Sauer, Elisa; Zimmer, Marcelo; Thiesen, Flávia; Castro, Iran; Saldiva, Paulo; Garcia, Solange C.

    2014-01-01

    Several studies have associated exposure to environmental pollutants, especially polycyclic aromatic hydrocarbons (PAHs), with the development of cardiovascular diseases. Considering that 1-hydroxypyrene (1-OHP) is the major biomarker of exposure to pyrenes, the purpose of this study was to evaluate the potential association between 1-OHP and oxidative stress/inflammatory biomarkers in patients who had suffered an acute myocardial infarction (AMI). After adopting the exclusion criteria, 58 post-infarction patients and 41 controls were sub-divided into smokers and non-smokers. Urinary 1-OHP, hematological and biochemical parameters, oxidative stress biomarkers (MDA, SOD, CAT, GPx and exogenous antioxidants) and the inflammatory biomarker (hs-CRP) were analyzed. 1-OHP levels were increased in post-infarct patients compared to controls (p < 0.05) and were correlated to MDA (r = 0.426, p < 0.01), CAT (r = 0.474, p < 0.001) and β-carotene (r = −0.309; p < 0.05) in non-smokers. Furthermore, post-infarction patients had elevated hs-CRP, MDA, CAT and GPx levels compared to controls for both smokers and non-smokers. Besides, β-carotene levels and SOD activity were decreased in post-infarction patients. In summary, our findings indicate that the exposure to pyrenes was associated to lipid damage and alterations of endogenous and exogenous antioxidants, demonstrating that PAHs contribute to oxidative stress and are associated to acute myocardial infarction. PMID:25257356

  8. Alterations in attentional mechanisms in response to acute inflammatory pain and morphine administration.

    PubMed

    Boyette-Davis, J A; Thompson, C D; Fuchs, P N

    2008-01-24

    Research indicates that pain negatively impacts attention; however, the extent of this impact and the mechanisms of the effect of pain on normal attentional processing remain unclear. This study 1) examined the impact of acute inflammatory pain on attentional processing, 2) examined the impact of morphine on attentional processing, and 3) determined if an analgesic dose of morphine would return attentional processing to normal levels. Male Sprague-Dawley rats were trained on the 5 choice serial reaction time task (5CSRTT), a test commonly used to assess the attentional mechanisms of rodents. Animals were injected with saline or 1, 3, or 6 mg/kg of morphine. Twenty minutes later, animals received a formalin (or saline) injection into one hind paw to induce an inflammatory condition and were then immediately tested in the 5CSRTT. The results show that the formalin injection significantly impaired performance, as measured by an increase in the number of trials in which the animal failed to attend to the task. Likewise, a high dose of morphine (6 mg/kg) produced similar decrements in task performance. Of primary importance is that 3 mg/kg of morphine produced analgesia with only mild sedation, and performance in the 5CSRTT was improved with this dose. This is the first study to use an animal model of acute pain to demonstrate the negative impact of pain on attention, and provides a novel approach to examine the neural correlates that underlie the disruptive impact of pain on attention.

  9. Serotonin transporter gene polymorphism modulates inflammatory cytokine responses during acute stress

    PubMed Central

    Yamakawa, Kaori; Matsunaga, Masahiro; Isowa, Tokiko; Ohira, Hideki

    2015-01-01

    Cytokines are important mediators of various stress-related modulations of immune function. A major genetic factor determining inter-individual differences in stress reactivity is polymorphisms of the serotonin (5-hydroxytryptamine, 5HT) transporter (5HTT) gene. A short (S) variant, compared with a long (L) variant, of the promoter region of the 5HTT gene-linked polymorphic region (5HTTLPR) has been related to emotional and stress hyper-reactivity. The present study examined whether the 5HTTLPR can modulate responses of inflammatory cytokines under acute stress. Nine Japanese male participants carrying two copies of the S alleles and nine Japanese males carrying S and L alleles underwent the Trier Social Stress Test (TSST). Inflammatory cytokines, endocrine parameters, heart rate and subjective stress were measured before, during and after the task. The participants carrying the SS alleles, but not those carrying the SL alleles, showed a significant increase of IL-1β immediately after TSST. This hyper-reactivity to acute stress in individuals with the SS alleles was also observed in their heart rate and cortisol levels. These results suggest that the S allele of the 5HTTLPR is consistently associated with stress reactivity in multi-level stress-related biological systems. PMID:26349674

  10. Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice.

    PubMed

    Hsia, Te-Chun; Yin, Mei-Chin

    2016-01-01

    The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E₂. LPS enhanced the expression of p47(phox), gp91(phox), Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities. PMID:27548215

  11. Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Hsia, Te-chun; Yin, Mei-chin

    2016-01-01

    The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E2. LPS enhanced the expression of p47phox, gp91phox, Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities. PMID:27548215

  12. Cytokine levels in pleural fluid as markers of acute rejection after lung transplantation*

    PubMed Central

    de Camargo, Priscila Cilene León Bueno; Afonso, José Eduardo; Samano, Marcos Naoyuki; Acencio, Milena Marques Pagliarelli; Antonangelo, Leila; Teixeira, Ricardo Henrique de Oliveira Braga

    2014-01-01

    Our objective was to determine the levels of lactate dehydrogenase, IL-6, IL-8, and VEGF, as well as the total and differential cell counts, in the pleural fluid of lung transplant recipients, correlating those levels with the occurrence and severity of rejection. We analyzed pleural fluid samples collected from 18 patients at various time points (up to postoperative day 4). The levels of IL-6, IL-8, and VEGF tended to elevate in parallel with increases in the severity of rejection. Our results suggest that these levels are markers of acute graft rejection in lung transplant recipients. PMID:25210966

  13. Intravascular laser therapy in different forms of lung diseases

    NASA Astrophysics Data System (ADS)

    Kirillov, M. N.; Reshetnikov, V. A.; Kazhekin, O. A.; Shepelenko, A. F.

    1993-06-01

    The potentions of laser intravascular therapy in elimination of pyogenic and inflammatory intoxication in cases of acute pneumonia, pyo-destructive diseases (including posttraumatic diseases) of the lungs are studied clinically.

  14. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

    PubMed

    Chen, Wen-Ying; Huang, Yi-Chun; Yang, Ming-Ling; Lee, Chien-Ying; Chen, Chun-Jung; Yeh, Chung-Hsin; Pan, Pin-Ho; Horng, Chi-Ting; Kuo, Wu-Hsien; Kuan, Yu-Hsiang

    2014-10-01

    Lipopolysaccharide (LPS), also called endotoxin, is the important pathogen of acute lung injury (ALI), which is a clinical syndrome that still lacks effective therapeutic medicine. Rutin belongs to vitamin P and possesses various beneficial effects. In this study, we investigate the potential protective effects and the mechanisms of rutin on LPS-induced ALI. Pre-administration with rutin inhibited LPS-induced arterial blood gas exchange and neutrophils infiltration in the lungs. LPS-induced expression of macrophage inflammatory protein (MIP)-2 and activation of matrix metalloproteinase (MMP)-9 were suppressed by rutin. In addition, the inhibitory concentration of rutin on phosphorylation of Akt was similar as MIP-2 expression and MMP-9 activation. In conclusion, rutin is a potential protective agent for ALI via suppressing the blood gas exchange and neutrophil infiltration. The mechanism of rutin is down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

  15. Photochemical products in urban mixtures enhance inflammatory responses in lung cells.

    PubMed

    Sexton, Kenneth G; Jeffries, Harvey E; Jang, Myoseon; Kamens, Richard M; Doyle, Melanie; Voicu, Iuliana; Jaspers, Ilona

    2004-01-01

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concentrations and aerosol chemistry. These chambers were used to generate photochemical and nonirradiated systems, which were interfaced with an in vitro exposure system to compare the inflammatory effects of complex air pollutant mixtures with and without sunlight-driven chemistry. These are preliminary experiments in a new project to study the health effects of particulate matter and associated gaseous copollutants. Briefly, two matched outdoor chambers capable of using real sunlight were utilized to generate two test atmospheres for simultaneous exposures to cultured lung cells. One chamber was used to produce a photochemically active system, which ran from sunrise to sunset, producing O(3) and the associated secondary products. A few hours after sunset, NO was added to titrate and remove completely the O(3), forming NO(2). In the second chamber, an equal amount of NO(2) and the same amount of the 55-component hydrocarbon mixture used to setup the photochemical system in the first side were injected. A549 cells, from an alveolar type II-like cell line grown on membranous support, were exposed to the photochemical mixture or the "original" NO(2)/hydrocarbon mixture for 5 h and analyzed for inflammatory response (IL-8 mRNA levels) 4 h postexposure. In addition, a variation of this experiment was conducted to compare the photochemical system producing O(3) and NO(2), with a simple mixture of only the O(3) and NO(2). Our data suggest that the photochemically altered mixtures that produced secondary products induced about two- to threefold more IL-8 mRNA than the mixture of NO(2) and hydrocarbons or O(3). These results indicate that secondary products generated through the photochemical reactions

  16. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury

    PubMed Central

    Wang, Lantao; Li, Yong; Qin, Hao; Xing, Dong; Su, Jie; Hu, Zhenjie

    2016-01-01

    Angiotensin converting enzyme 2 (ACE2) treatment suppresses the severity of acute lung injury (ALI), through antagonizing hydrolyzing angiotensin II (AngII) and the ALI-induced apoptosis of pulmonary endothelial cells. Nevertheless, the effects of ACE2 on vessel permeability and its relationship with placental growth factor (PLGF) remain ill-defined. In the current study, we examined the relationship between ACE2 and PLGF in ALI model in mice. We used a previously published bleomycin method to induce ALI in mice, and treated the mice with ACE2. We analyzed the levels of PLGF in these mice. The mouse lung vessel permeability was determined by a fluorescence pharmacokinetic assay following i.v. injection of 62.5 µg/kg Visudyne. PLGF pump or soluble Flt-1 (sFlt-1) pump was given to augment or suppress PLGF effects, respectively. The long-term effects on lung function were determined by measurement of lung resistance using methacholine. We found that ACE2 treatment did not alter PLGF levels in lung, but antagonized the effects of PLGF on increases of lung vessel permeability. Ectogenic PLGF abolished the antagonizing effects of ACE2 on the vessel permeability against PLGF. On the other hand, suppression of PLGF signaling mimicked the effects of ACE2 on the vessel permeability against PLGF. The suppression of vessel permeability resulted in improvement of lung function after ALI. Thus, ACE2 may antagonize the PLGF-mediated increases in lung vessel permeability during ALI, resulting in improvement of lung function after ALI. PMID:27158411

  17. Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise

    PubMed Central

    Dennis, Richard A; Trappe, Todd A; Simpson, Pippa; Carroll, Chad; Emma Huang, B; Nagarajan, Radhakrishnan; Bearden, Edward; Gurley, Cathy; Duff, Gordon W; Evans, William J; Kornman, Kenneth; Peterson, Charlotte A

    2004-01-01

    Inflammation appears to play an important role in the repair and regeneration of skeletal muscle after damage. We tested the hypothesis that the severity of the inflammatory response in muscle after an acute bout of resistance exercise is associated with single nucleotide polymorphisms (SNPs) previously shown to alter interleukin-1 (IL-1) activity. Using a double-blind prospective design, sedentary young men were screened (n = 100) for enrolment (n = 24) based upon having 1 of 4 haplotype patterns composed of five polymorphic sites in the IL-1 gene cluster: IL-1A (+4845), IL-1B (+3954), IL-1B (−511), IL-1B (−3737) and IL-1RN (+2018). Subjects performed a standard bout of resistance leg exercise and vastus lateralis biopsies were obtained pre-, and at 24, and 72 h post-exercise. Inflammatory marker mRNAs (IL-1β, IL-6 and tumor necrosis factor-α (TNF-α)) and the number of CD68+ macrophages were quantified. Considerable variation was observed in the expression of these gene products between subjects. At 72 h post-exercise, IL-1β had increased in a number of subjects (n = 10) and decreased (n = 4) or did not change (n = 10) in others. Inflammatory responses were significantly associated with specific haplotype patterns and were also influenced by individual SNPs. Subjects with genotypes 1.1 at IL-1B (+3954) or 2.2 at IL-1B (−3737) had approximately a 2-fold higher median induction of several markers, but no increase in macrophages, suggesting that cytokine gene expression is elevated per macrophage. The IL-1RN (+2018) SNP maximized the response specifically within these groups and was associated with increased macrophage recruitment. This is the first report that IL-1 genotype is associated with the inflammation of skeletal muscle following acute resistance exercise that may potentially affect the adaptations to chronic resistance exercise. PMID:15331687

  18. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-01-01

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury. PMID:26691774

  19. Ventilation defects observed with hyperpolarized 3He magnetic resonance imaging in a mouse model of acute lung injury.

    PubMed

    Thomas, Abe C; Nouls, John C; Driehuys, Bastiaan; Voltz, James W; Fubara, Boma; Foley, Julie; Bradbury, J Alyce; Zeldin, Darryl C

    2011-05-01

    Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 μg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-μg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS

  20. IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice

    PubMed Central

    Girtsman, Teri Alyn; Beamer, Celine A; Wu, Nianqiang; Buford, Mary; Holian, Andrij

    2014-01-01

    Exposure to certain engineered nanomaterials has been associated with pathological changes in animal models raising concerns about potential human health effects. MWCNT have been reported to activate the NLRP3 inflammasome in vitro, correlating with lung inflammation and pathology, in vivo. In this study, we investigated the role of IL-1 signalling in pulmonary inflammatory responses in WT and IL-1R−/− mice after exposure to MWCNT. The results suggest that MWCNT were effective in inducing acute pulmonary inflammation. Additionally, WT mice demonstrated significant increased airway resistance 24 h post exposure to MWCNT, which was also blocked in the IL-1R−/− mice. In contrast, by 28 days post exposure to MWCNT, the inflammatory response that was initially absent in IL-1R−/− mice was elevated in comparison to the WT mice. These data suggest that IL-1R signalling plays a crucial role in the regulation of MWCNT-induced pulmonary inflammation. PMID:23094697

  1. Inflammatory biomarkers predicting prognosis in patients with acute dyspnea☆☆☆★

    PubMed Central

    Wiklund, Karolin; Gränsbo, Klas; Lund, Nathalie; Peyman, Marjaneh; Tegner, Lena; Toni-Bengtsson, Maria; Wieloch, Mattias; Melander, Olle

    2016-01-01

    Objective/Purpose The objective was to identify inflammatory biomarkers that predict risk of 90-day mortality in patients with acute dyspnea. Method We analyzed 25 inflammatory biomarkers, in plasma, in 407 adult patients admitted to the emergency department (ED) with acute dyspnea and related them to risk of 90-day mortality using Cox proportional hazard models adjusted for age, sex, oxygen saturation, respiratory rate, C-reactive protein, and Medical Emergency Triage and Treatment System–Adult score. Results Fifty patients (12%) died within 90 day from admission. Two strong and independent biomarker signals were detected: The hazard ratio (95% confidence interval) for 90-day mortality per 1-SD increment of interleukin-8 (IL-8) was 2.20 (1.67-2.90) (P = 2.5 × 10− 8) and for growth differentiation factor–15 (GDF-15) was 3.45 (2.18-5.45) (P = 1.3 × 10− 7) A Biomarker Mortality Risk Score (BMRS) summing standardized and weighted values of IL-8 and GDF-15 revealed that of patients belonging to quartile 1 (Q1) of the BMRS, only 1 patient died, whereas 32 patients died among those belonging to quartile 4. Each 1-SD increment of the BMRS was associated with a hazard ratio of 3.79 (2.50-5.73) (P = 2 × 10− 10) for 90-day mortality, and the point estimate was 13 times higher in Q4 as compared with Q1 of the BMRS (Ptrend over quartiles = 2 × 10− 6). Conclusion Interleukin-8 and GDF-15 are strongly and independently related to risk of 90-day mortality in unselected patients admitted to the ED because of acute dyspnea, suggesting that they may guide first-line physicians at the ED in risk assessment which in turn could lead to more accurate level of care and treatment intensity. PMID:26740417

  2. Novel Insights into miRNA in Lung and Heart Inflammatory Diseases

    PubMed Central

    Petrkova, Jana; Petrek, Martin

    2014-01-01

    MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression. PMID:24991086

  3. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome - where do we go from here?

    PubMed Central

    2012-01-01

    Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant

  4. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome.

    PubMed

    Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B

    2016-01-01

    Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases. PMID:27670109

  5. Therapeutic Effect of the Tuber of Alisma orientale on Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Kwun, Min Jung; Choi, Jun-Yong; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Yong Gyu; Christman, John W.; Sadikot, Ruxana T.

    2013-01-01

    Although Alisma orientale, an ethnic herb, has been prescribed for treating various diseases in Asian traditional medicine, experimental evidence to support its therapeutic effects is lacking. Here, we sought to determine whether A. orientale has a therapeutic effect on acute lung injury (ALI). Ethanol extract of the tuber of A. orientale (EEAO) was prepared and fingerprinted by HPLC for its constituents. Mice received an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) for the induction of ALI. At 2 h after LPS treatment, mice received an intratracheal (i.t.) spraying of various amounts of EEAO to the lung. Bioluminescence imaging of transgenic NF-κB/luciferase reporter mice shows that i.t. EEAO posttreatment suppressed lung inflammation. In similar experiments with C57BL/6 mice, EEAO posttreatment significantly improved lung inflammation, as assessed by H&E staining of lung sections, counting of neutrophils in bronchoalveolar lavage fluid, and semiquantitative RT-PCR analyses of proinflammatory cytokines and Nrf2-dependent genes in the inflamed lungs. Furthermore, EEAO posttreatment enhanced the survival of mice that received a lethal dose of LPS. Together, our results provide evidence that A. orientale has a therapeutic effect on ALI induced by sepsis. PMID:23983806

  6. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    PubMed Central

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  7. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. PMID:27190065

  8. Association of calprotectin with leukocyte chemotactic and inflammatory mediators following acute aerobic exercise.

    PubMed

    Maharaj, Arun; Slusher, Aaron L; Zourdos, Michael C; Whitehurst, Michael; Fico, Brandon G; Huang, Chun-Jung

    2016-01-01

    The objective of this study was to examine whether acute aerobic exercise-mediated calprotectin in plasma would be associated with monocyte chemotactic protein-1 (MCP-1), myeloperoxidase (MPO), and interleukin-6 (IL-6) in healthy individuals. Eleven healthy participants, aged 18 to 30 years, were recruited to perform a 30-min bout of aerobic exercise at 75% maximal oxygen uptake. Acute aerobic exercise elicited a significant elevation across time in plasma calprotectin, MCP-1, MPO, and IL-6. Body mass index (BMI) was positively correlated with calprotectin area-under-the-curve with "respect to increase" (AUCi) and IL-6 AUCi. Furthermore, calprotectin AUCi was positively correlated with IL-6 AUCi and MPO AUCi, even after controlling for BMI. Although MPO AUCi was positively correlated with IL-6 AUCi, this relationship no longer existed after controlling for BMI. These results suggest that acute aerobic exercise could mediate innate immune response associated with calprotectin and its related leukocyte chemotactic and inflammatory mediators, especially in individuals with elevated BMI.

  9. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom.

    PubMed

    Moreira, Vanessa; Teixeira, Catarina; Borges da Silva, Henrique; D'Império Lima, Maria Regina; Dos-Santos, Maria Cristina

    2016-08-01

    Envenomation by snakes of the species Bothrops atrox induces local and systemic effects. Local effects include drastic tissue damage and a marked inflammatory response as a result of the synthesis and release of a variety of protein and lipid mediators. Toll-like receptor (TLR) signaling pathways can play an important role in this response, leading to synthesis of these inflammatory mediators. This study investigated the influence of TLR2 on the acute inflammatory response induced by Bothrops atrox venom. Wild-type C57BL/6 mice (WT) and TLR2 gene knockout mice (TLR2(-/-)) were injected with Bothrops atrox venom (BaV), and the following responses to the venom were assessed in peritoneal exudate: leukocyte accumulation; release of mediators, including CCL-2, IL-10, IL-1β, IL-6 and LTB4; protein expression of COX-1 and COX-2; and quantification of their products PGE2 and TXA2. After injection with BaV, the TLR2(-/-) mice (TLR2(-/-)BaV) had higher levels of IL-6 and CCL-2 than WT animals kept under the same conditions (WTBaV), together with an accumulation of polymorphonuclear leukocytes (PMNs), inhibition of IL-1β and LTB4 and reduced mononuclear leukocyte influx. However, no significant differences in COX-2 protein expression or PGE2, TXA2 and IL-10 production between the TLR2(-/-)BaV and WTBav animals were observed. Together, these results indicate that the signaling pathway activated by TLR2 acts by modulating the induced inflammatory response to BaV through the direct action of venom-associated molecular patterns (VAMPs) or indirectly by forming damage-associated molecular patterns (DAMPs) and that this may have important therapeutic implications. PMID:27109323

  10. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.

    2015-01-01

    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of imm